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Abstract

In a graph G, an odd hole is an induced odd cycle of length at least five. A clique of G is a set
of pairwise adjacent vertices. In this paper we consider the class C of graphs whose cliques have
a size bounded by a constant k. Given a graph G in Cj, we show how to recognize in polynomial
time whether G contains an odd hole.
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1 Introduction

A hole is a graph induced by a cycle of length at least four. A hole is odd if it contains an odd
number of vertices. Otherwise, it is even. Graph G contains graph H if H is isomorphic to an
induced subgraph of G. Chudnovsky, Cornuéjols, Liu, Seymour and Vuskovié¢ recently proved that
it is polynomial to test whether a graph contains an odd hole or its complement [2]. However, it is
still an open problem to test whether a graph contains an odd hole. Bienstock [1] proved that it
is N P-complete to test whether a graph contains an odd hole passing through a specific vertex. A
clique is a set of pairwise adjacent vertices. The clique number of a graph is the size of its largest
clique. In this paper, we show that it is polynomial to test whether a graph of bounded clique
number contains an odd hole.

We use the same general strategy as in [2]. Let H be an odd hole in a graph G. We say that
u € V(G)\ V(H) is H-minor if its neighbors in H lie in some 2-edge path of H. In particular, u is
H-minor if u has no neighbor in H. A vertex u € V(G)\ V(H) is H-magor if it is not H-minor. We
say that H is clean if G contains no H-major vertex. A graph G is clean if either it is odd-hole-free
or it contains a clean shortest odd hole. As in [2] our approach for testing whether a graph G of
bounded clique number contains an odd hole consists of two steps:

(i) constructing in polynomial time a clean graph G’ that contains an odd hole if and only if G
does, or in some cases identifying an odd hole of G, and

ii) checking whether the clean graph G’ contains an odd hole.
(ii) g grap

For step (ii), we can use the polynomial algorithms in [2]. The main result of this paper is a
polynomial algorithm for step (i). Step (i) is called cleaning the graph G.

1.1 Notation

For a graph G and a set B of vertices of G, we denote by G(B) the subgraph of G induced by the
vertex set B. For a vertex v, N(v) denotes the set of vertices adjacent to v.

A pyramid Tl(zyz;u) is a graph induced by three paths P, = z,...,u, P, = y,...,u and
P3 = z,...,u having no common or adjacent intermediate vertices, such that at most one of the
paths is of length 1 and the vertex set {x,y, z} induces a clique of size 3. Note that every two of
the paths P, P>, P3 induce a hole. Since two of the three paths must have the same parity, one of
these holes is odd. Therefore, every pyramid contains an odd hole.

A wheel, denoted by (H, ), is a graph induced by a hole H and a vertex « ¢ V(H) having at
least three neighbors in H, say x1,...,T,. Vertex x is the center of the wheel. A subpath of H
connecting x; and x; is a sector if it contains no intermediate vertex x;, I € {1,...,n}. A short
sector is a sector of length 1, and a long sector is a sector of length at least 2. A wheel is odd if
it contains an odd number of short sectors, and even otherwise. Fach of the long sectors together
with vertex x induces a hole. If each of these holes is even and the wheel (H,v) is odd then H is
an odd hole, since the wheel (H,x) contains an odd number of short sectors. Therefore, every odd
wheel contains an odd hole.

In a graph G, a jewel is a sequence vq, - - -, vs, P such that vy, - - -, v5 are distinct vertices, v1v
b ) ) b b ) b b
V93, U3l4, V4V5, U5V are edges, vivs, v9v4, U1V4 are nonedges, and P is a path of G between v



and vy such that ve, v3, v have no neighbors in V(P) \ {v1,v4}. Clearly a jewel either contains an
odd wheel or a 5-hole, so if there is a jewel in a graph G then there is an odd hole in G.

Chudnovsky and Seymour found an O(]V(G)|?) algorithm to test whether a graph G contains
a pyramid and an O(|V(G)|®) algorithm to test whether a graph G contains a jewel (see [2]).

2 Cleaning

In this section, we show how to clean a graph G of bounded clique number. That is, we perform
step (i) above. The cleaning algorithm produces a polynomial family of induced subgraphs of G
such that if G contains a shortest odd hole H*, then one of the graphs produced by the cleaning
algorithm, say G’, contains H* and H* is clean in G’.

Roughly speaking, this is accomplished by showing that there exists a set X of vertices of H*,
whose size depends only on the clique number, such that every major vertex for H* has a neighbor
in X. Since the set Y of vertices of H* with neighbors in X has at most 2| X| elements, we may
enumerate all possible choices for X and Y, and for each choice of X and Y add to the family the
graph obtained by removing the vertices of V(G) \ Y that have a neighbor in X.

2.1 Vertices with At Most Three Neighbors in H*

Lemma 1 Let H* be a shortest odd hole in G. Suppose that G does not contain a pyramid. If a
vertex u ¢ V(H*) has a neighbor but no more than three neighbors in H* then u is H*-minor.

Proof: If u has one neighbor in H* then u is H*-minor. Now suppose that « has two neighbors in
H* say u; and us. Let P; and P, be the two ujus-subpaths of H*. Since H* is odd, P; and P;
have different parity, say P; is odd. If P; is of length 1 then w is H*-minor. Otherwise, V (P;)U{u}
induces an odd hole. Since this hole cannot be shorter than H*, P» is of length 2, and hence u is
H*-minor.

Now assume that u has three neighbors in H*, and let Py, P> and Ps be the three sectors of the
wheel (H*,u). If exactly one of the sectors is short then V(H*) U {u} induces a pyramid. If two of
the sectors are short then u is H*-minor. Finally suppose that all three sectors are long. Since H*
is odd, at least one of the sectors, say Pj, is odd. Then V(P;)U {u} induces an odd hole shorter
than H*, a contradiction. O

2.2 Vertices with More Than Three Neighbors in H*

Let H* be a shortest odd hole in G. Let S(H*) be the set of H*-major vertices that have four or
more neighbors in H*. Note that, for any v € S(H*), every long sector of the wheel (H*,u) is of
even length since H* is a shortest odd hole of G; hence, (H*,u) contains an odd number of short
sectors.

Let S C V(G). We say that vertex = € V(G) \ S is S-complete if x is adjacent to every vertex
in S. We say that an edge xy is S-complete if both vertices x and y are S-complete.

Lemma 2 Let H* be a shortest odd hole in G. Suppose that G does not contain a jewel. If
u,v € S(H*) are not adjacent then an odd number of edges of H* are {u,v}-complete.



Proof: Let u and v be nonadjacent vertices of S(H™*). Suppose that an even number of edges of
H* are {u,v}-complete. Then some long sector P of the wheel (H*,u) contains an odd number of
short sectors of (H*,v). Let u; and ug be the endvertices of P. P has even length. Let P’ be the
subpath of H* induced by (V(H*)\ V(P))U{ui,uz}. P’ has odd length. Note that P’ must be of
length at least four, since otherwise (H*,u) is a jewel, a contradiction. If P contains three or more
neighbors of v, then the vertex set V(P) U {u,v} induces an odd wheel with center v, and hence
contains an odd hole shorter than H*, contradicting our choice of H*. Otherwise, let v; and vs be
the two neighbors of v in P. Vertex v cannot have exactly four neighbors in H*, say vy, vs, U3, U4,
such that both vsu; and vqug are edges, because otherwise the vertex set (V(H*)\ V(P)) U {v}
induces a shorter odd hole than H*, since P is even and P’ is of length at least four. Therefore,
there exist vertices us,vs € V(H*)\ V(P), the neighbors of v and v respectively, such that u and v
have no other neighbors on usvs-subpath of H*, call it ), and vertices us and vs are not adjacent
to uy or ug. But now the vertex set V(Q)UV (P)U{u, v} induces a pyramid II(v;vav; u), and hence
contains an odd hole shorter than H*, contradicting our choice of H*. O

The following, which is an easy consequence of Lemma 2, will be used in several places.

Lemma 3 Let H* be a shortest odd hole in G, P be a subpath of H* such that |V (H*)\V(P)| > 3,
and x,y be two nonadjacent vertices in S(H*). Assume that no ends of P are {z,y}-complete and
there is no {x,y}-complete edge in P. Then there exists an {x,y}-complete vertex in H* with no
neighbor in P.

Proof: By Lemma 2, there exists an {x,y} complete edge e in H*. One of the two endvertices of e
has the desired property. O

Lemma 4 Suppose that G does not contain a jewel. If A C S(H™) is a stable set, then an odd
number of edges of H* are A-complete.

Proof: Let A C S(H*) be a stable set and suppose that an even number of edges of H* are A-
complete. Let A’ be a smallest subset of A with the property that an even number of edges of H*
are A’-complete. Note that by Lemma 2, |A’| > 3. Let s1,..., s, be the vertices of H* adjacent to
at least one vertex in A’; encountered in that order when traversing H* clockwise. For i € [m], let
S; be the s;s;+1-subpath of H* (indices taken modulo m), that does not contain any intermediate
vertex sj, j € [m].

Claim For every ¢ € [m], S; is either an edge whose endvertices are both adjacent to some vertex
x € A, or S; has even length.

Proof of Claim: If there is a vertex x € A’ adjacent to both s; and s;11, then S; is a sector of the
wheel (H*, z) and hence the result holds. Otherwise, let 21 and x2 be vertices of A’ such that z; is
adjacent to s; and x9 is adjacent to s;11. By Lemma 3 there exits an {x1, z2}-complete vertex u in
H* with no neighbor in S;. Then the vertex set V' (S;) U {x1,x2,u} induces a hole. Since both x;
and xo have at least four neighbors in H*, this hole is shorter than H*, so it must be even, hence
S; is of even length. This completes the proof of the claim. o



For C C A’, let 6¢ denote the number of edges of H* that are C-complete. Let § be the number
of paths in S1,...,5, of length one. Then

|A]

§ = Z(_l)iJrl Z 50

i=1 CCA|C|=i

By the choice of A’, for every C' C A’ such that C' # A’, §¢ is odd. Hence the parity of § is equal

to the parity of
|A’| -1
A/
> ( | . | ) + 0

i=1

which is itself equal to the parity of 6 4/ since

A1
() --

=1

By the Claim and because H* is odd, § is odd. Hence d 4/ must be odd as well, contradicting the
choice of A’. O

Theorem 5 Suppose that G does not contain a jewel. Let A be a stable set of S(H*) and let x1xo
be an edge of H* such that every vertex of A is adjacent to both x1 and xa (such an edge exists by
Lemma 4). Let B be the set of vertices of S(H™*) that have no neighbor in {x1,x2}, and have both a
neighbor and a nonneighbor in A. Then there exists an edge y1yo of H* such that y1 is A-complete
and every vertex of B has a neighbor in {y1,y2}.

Proof: If B = () then the result is trivially true, so we may assume that B # (). Since every vertex
of B is major, this implies that H* is of length greater than 5.

Claim 1 For every u € B, an edge of H* is (A U {u})-complete.

Proof of Claim 1: Let A; be the neighbors of u in A and A2 = A\ A;. By Lemma 4, there is an
edge ujuz of H* such that every vertex of Ay U {u} is adjacent to both u; and uy. Since u has no
neighbor in {x1,z2}, every vertex of A; must be adjacent to both u; and g, else there is a 5-hole.
This completes the proof of Claim 1. o

Claim 2 If X is a stable set of B, then there exists an edge z125 of H* such that z; is A-complete
and every vertex of X has a neighbor in {z1, 22}.

Proof of Claim 2: We consider the following two cases.

Case 1 There is a vertex in A that is not adjacent to any vertex in X.

Let A1 € A be such that A; U X is a maximal stable set. By Lemma 4, an edge of H* is
(A1 U X)-complete, say ujus. Let w € A\ A;. Note that w is adjacent to some x € X. If w is not
adjacent to u; or ug, then there is a 5-hole in the graph induced by {z,y,w,u1, us, x1,z2}, where
y € A;1. So every vertex of A\ A; is adjacent to both u; and us.



Case 2 Every vertex of A is adjacent to some vertex in X.

By Claim 1 and Case 1, we may assume w.l.o.g. that |X| > 1 and for every proper subset of X
the result holds. Let w € A be such that |[N(w) N X| is minimum. Let Z = N(w) N X. Since every
vertex of X has a non-neighbor in A and |Z| is minimum, |Z| < |X|. By our assumption, there
exists an edge y1y2 of H* such that y; is A-complete and every vertex of X \ Z has a neighbor in
{y1,y2}. By Lemma 4 an edge of H* is X-complete, say edge y3y.

We may assume that vertices y1, y2, ys3, y4 are all distinct and y;y3 and y;y4 are not edges, since
otherwise the result trivially holds. Also w.l.o.g. y2y4 is not an edge.

Suppose that wy, is not an edge. We may assume that some z € Z is not adjacent to yp, since
otherwise the edge y;y satisfies the claim. If some v € X'\ Z is adjacent to y;, then {y1,v,w, z,y4}
induces a 5-hole. So for every v € X \ Z, vy; is not an edge, and hence vys is an edge. If w is
adjacent to ya, then {ys, w, v, z,y4} induces a 5-hole. So w is not adjacent to y2. By Lemma 3, there
is a vertex u of H* adjacent to both v and w, but with no neighbor in {y1,y2}. Then {y1, y2,u, v, w}
induces a 5-hole.

Therefore wyy is an edge. We now show that y4 is A-complete. Let w’ € A and assume w'yy is
not an edge. By the choice of w and by the above argument, there is a vertex v € X \ Z adjacent
to w’. But then the graph induced by {w,w’, x1,z2,v,y4} contains a 5-hole. This completes the
proof of Claim 2. o

Claim 3 For every edge viv2 in G(B), there exists v € A that is adjacent to neither v; nor vs.

Proof of Claim 3: Let A; be the set of neighbors of v; in A, and A3 = A\ A;. Suppose the claim
does not hold. Then vy is universal for As. Let wi be a vertex of A; that vs is not adjacent to.
Then vy, v9, ws, o, w1, v, where wy € As, is a 5-hole. This completes the proof of Claim 3. o

By Claim 1, we may assume that for every proper subset B’ of B, the statement holds. By
Claim 2 we may assume that B is not a stable set. Let vjvy be an edge of G(B). By Claim 3,
let v be a vertex of A that is adjacent to neither v; nor ve. Let y1y2 be an edge of H* such that
y1 is A-complete and all vertices of B \ vo have a neighbor in {y1,y2}. Let y3ys be an edge of H*
such that y3 is A-complete and all vertices of B\ v; have a neighbor in {y3,y4}. Then the theorem
follows from the following claim.

Claim 4 v; has a neighbor in {y3,y4}, or vy has a neighbor in {y1,y2}.

Proof of Claim 4: Suppose the claim does not hold. v; has no neighbor in {ys3,y4} and vo has no
neighbor in {y1,y2}.

If a vertex of {y1,y2} coincides with a vertex of {ys,ys}, then {y1,y2,y3,ya,v1,v2} induces a
5-hole. Therefore, vertices y1,y2, ys3, y4 are all distinct.

We now show that v and v; must have a common neighbor in {yi,y2}. Assume not. Then
vy and viye are edges, and vys and viy; are not. By Lemma 3, there is a vertex u of H* that is
{v, v1 }-complete but has no neighbor in {y1,y2}. Then {y1,y2,v,v1,u} induces a 5-hole. Therefore,
v and v; have a common neighbor y in {y1,y2}, and similarly v and v, have a common neighbor 3/
in {ys,ya}. If yy' is not an edge, then {y,y’, v,v1,v2} induces a 5-hole. Therefore, yy' is an edge.



Let a,y,y’,b be the subpath of H* induced by {y1,y2,y3,y4}. Then vy, vy, v1y, voy’ are edges
and voa, voy, v1%y’, v1b are not.

Let z9 be the neighbor of ve in H* that is closest to a in H*\ {y,y’'}. Note that zo # b since vy
is a major vertex. Let P be the azo-subpath of H* that does not contain y.

Suppose v does not have a neighbor in P,. By Lemma 3, some vertex u of H* is {v,va}-
complete and has no neighbor in P». Note that u # b since b is not {v,vs}-complete. But then
P,U{y,y,v,v9,u} induces a pyramid II(vyy’, v2), and hence there is an odd hole shorter than H*,
a contradiction. Therefore v must have a neighbor in P;.

We now show that a is the unique neighbor of v in P,. Let v’ be the neighbor of v in P that
is closest to z3. Assume that v’ # a. Let P’ be the v'29-subpath of P,. If v; has no neighbor in
P’, then the graph induced by S = P’ U {y,y’,v,v1,v2} is a pyramid II(vyy’, v2) hence there is an
odd hole shorter than H*. If v; has a neighbor in P’ \ z3, then the graph induced by S contains
a pyramid II(vyy’, v1) hence there is an odd hole shorter than H*. So v; is adjacent to z5. If the
graph induced by P,U{y, v, v1,v2} is an odd wheel with center v1, there is an odd hole shorter than
H*. Hence v; must have a neighbor in P, \ P'. If v; has a neighbor z in P, that lies strictly between
a and v’ then there is a path @ from v to vy with interior in z, P»,v’. But then Q U {y,v/,v2}
induces a pyramid II(vyy’, v1), which contains an odd hole shorter than H*. Therefore a and 29
are the only neighbors of v; in P,. Then v is not adjacent to a for otherwise a,v,y’,ve,v1,a is
an odd hole. Let v” be the neighbor of v closest to a in P». Note that v” # 29 since otherwise
P, U{y,y',va,v} induces an odd wheel with center v hence there is an odd hole shorter than H*.
Let P” denote the av”-subpath of P». By Lemma 3, some vertex u of H* is {v, v; }-complete and
has no neighbor in P”. But then the graph induced by P” U {y,v,v1,u} is a pyramid II(ayvy,v)
hence there is an odd hole shorter than H*. Therefore a is the unique neighbor of v in Ps.

Then v; is not adjacent to a for otherwise a,v,y’,v2,v1,a is an odd hole. Suppose vy has a
neighbor in P,. By Lemma 3, there exists a vertex v of H* adjacent to both v and vy, but with no
neighbor in P,. Then the graph induced by P, U {y,v,v1,u} contains a pyramid II(ayv,v1) hence
there is an odd hole shorter than H*. Therefore, v; has no neighbor in Ps.

Let z1 be the neighbor of v1 in H* that is closest to b in H*\ {y,vy'}. Let P; be the bz;-subpath
of H* that does not contain y. By symmetry, b is the unique neighbor of v in P; and v2 has no
neighbor in Pj. Since Py, a,y,y’ is a sector of wheel (H*,v3), P, must be even, and similarly Pj is
even. Note that 2129 is not an edge since H* and the path a,y,v’, b have odd length and P;, P, have
even length. But then P; U P, U {v,v1,v2} induces an odd hole shorter than H*, a contradiction.
O

2.3 Cleaning Algorithm

In this section, we present our cleaning algorithm for the class of graphs of bounded clique number.
The running time depends on the clique number.

Input: A graph G of bounded clique number k.

Output: Either an odd hole or a family F of induced subgraphs of G that satisfies the following
properties:



(1) G contains an odd hole if and only if some graph of F contains a clean shortest odd
hole.

(2) |Flis O(V(G)**).

Step 1: Check whether G contains a jewel or a pyramid (by algorithms in [2]). If it does, output
an odd hole and stop. Otherwise, set F; = {G} and F» = 0.

Step 2: Repeat the following k times. For each graph F' € F; and every (P, P») where P, =
o, T1, T2, x3 and Po = yo,y1, Y2, y3 are two induced paths of F', add to F3 the graph obtained
from F' by removing the vertex set (N(z1) U N(z2) UN(y1) UN(y2)) \ (V(P1) UV (P)). Set
fl == fz and .FQ = (Z)

Step 3: Set F = Fi.

Theorem 6 This algorithm produces the desired output, and its running time is O(|V (G)[®).
Proof: Suppose that the algorithm does not output an odd hole. Suppose G contains a shortest
odd hole H*. By Step 1 GG contains no jewel and no pyramid. Now we show how Step 2 generates
a graph in Fj that contains H* and H* is clean in it.

By Lemma 1, S(H*) is the set of all H*-major vertices. Let A be a maximal stable set of S(H™*).
We follow the notation in Theorem 5. Let P, = xg, 1, T2, 3 and P> = yg, Y1, y2, y3 such that zixs
and yyy satisfy the conditions stated in Theorem 5. Let S'(H*) denote the set of vertices of S(H*)
that have no neighbor in {z1,x2}, and are A-complete. Let G’ be the graph obtained from G by
removing (N(z1) U N(x2) U N(y1) UN(y2)) \ (V(P) UV (FP2)). Then G’ contains H* and the set
of major vertices for H* in G’ is contained in S’(H*). The clique number of the graph induced by
S’(H*) is one less than the clique number of the graph induced by S(H*). Hence, by the fact that
the clique number of G is bounded by k, Theorem 5 implies that, when the k iterations of Step 2
are completed, some graph F' € Fj contains H* and H* is clean in F. Hence (1) holds.

O(|V(G)|®*) graphs are created in Step 2. Hence, (2) holds. The running time of Step 1 is
O(|V(@)|°) as discussed in [2]. The running time of Steps 2 is O(|V(G)|®*). Therefore, the overall
running time is O(|V (G)[8). O

In [2] a polynomial time algorithm with following specification is obtained.

Input: A clean graph G.
Output: ODD-HOLE-FREE when G is odd-hole-free, and NOT ODD-HOLE-FREE otherwise.

The above two algorithms imply that it is polynomial to test whether a graph of bounded clique
number contains an odd hole.
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