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EXECUTIVE SUMMARY 

Microelectromechanical systems (MEMS) gyroscopes could potentially be used in low cost, size, 
weight, and power (CSWaP) navigation-grade inertial navigation units, but current solutions cannot 
be used due to issues with angular random walk (ARW), bias instability, and scale factor instability. 
While there are methods to address issues with bias and scale factor instability, with the commonly 
used demodulation schemes, ARW is limited by the ability to produce resonators with very high 
quality factors. Given that producing resonators with very high quality factors is challenging, the 
time-domain switching micromachined gyroscope (TDSMG) is proposed. As opposed to the 
conventional means that employ electrostatic sensing, the motion of the proof mass is detected 
through switches at known locations. In conjunction with an accurate time interval analyzer, the 
TDSMG is capable of estimating rotation rate in a low-noise fashion that is robust to environmental 
effects. Thus, it is expected that it will have low bias and scale factor instabilities. Simulated ARW 
performance of a particular incarnation of the TDSMG is studied. It is found that with narrow-
bandwidth restrictions, near navigation-grade performance is capable without the need for the 
resonator to have a very high quality factor. 
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1. INTRODUCTION 

The primary metrics that prohibit the use of microelectromechanical systems (MEMS) gyroscopes 
for navigation-grade inertial navigation units (IMUs) are angle random walk (ARW), bias instability, 
and scale factor instability. The need for MEMS gyroscopes is due to their decreased cost, size, 
weight, and power (CSWaP) constraints compared to current navigation-grade solutions. Note that to 
avoid confusion, while in a statistical context a random walk describes a particular type of random 
process, ARW is used herein to quantify the effects of white, or Gaussian, noise processes on the rate 
estimate of a gyroscope. The accepted theory about how to mitigate effects associated with 
thermomechanical noise, and thus lower ARW, quality factors on the order of a million are needed 
[1], [2]. While resonators with quality factors on the order of a million have been demonstrated in 
laboratory settings [3], navigation-grade ARW has only been demonstrated in high-vacuum systems 
(<10 µTorr) that would be challenging to implement in a portable system [4]. Other means of 
reducing ARW, such as increasing the amplitude of the drive mode, can be problematic. For 
electrostatically transduced devices, which is one of the more common methods used with MEMS, 
large oscillations can introduce nonlinear behavior such as electrostatic softening or pull-in [5]. 
Relatively recent works have demonstrated that virtual carouseling [2] and closed loop scale factor 
[6] can be used to significantly reduce bias and scale factor instability, respectively. However, it is 
important to note that it is unknown if these methods will degrade the performance of a gyroscope 
with navigation-grade ARW. 

The proposed time-domain switching micromachined gyroscope (TDSMG) seeks to address ARW, 
bias instability, and scale factor instability by using measurements from discrete trigger events that 
occur when the proof mass of the gyroscope passes known locations. It builds upon work done with 
the time-domain switching accelerometer that can estimate acceleration without the need for 
adjustable parameters [7]. In addition, instead of the sensor’s resolution being limited by noise from 
the amplifiers [5], it is controlled by the computational precision of the means used to estimate 
rotation rate and by the precision time is measured. There are no issues associated with noise from 
feedback electronics as feedback is not needed [4] and noise associated with the readout electronics 
is minimal as the TDSMG is sensed using digital means. By using highly accurate time interval 
analyzers and knowledge of the position of the triggers, determining angular rate as well other 
parameters (i.e., frequency mismatch, time constant mismatch, etc.) can be formulated as a 
parametric system identification problem. 

Unlike classically designed MEMS gyroscopes, timing jitter contributes to the ARW of the 
TDSMG. Effects due to thermomechanical noise also play a role, but time-domain switching aids in 
mitigating this effect as large-amplitude oscillations, which would typically introduce nonlinear 
effects with electrostatically transduced devices, can be used. Thus, with the combination of large-
amplitude oscillations, particular conditions for how the signal processing should be implemented, 
and the low jitter metrics of modern time interval analyzers (<1 ps), navigation-grade performance is 
capable. Moreover, since the signal processing used to determine angular rate is independent of 
parameters that are known to be sensitive to temperature or other environmental factors (e.g., 
variability of the natural frequency of the resonator with respect to temperature), it is expected that 
the bias and scale factor instability performance will be very good. The only parameter that is not 
directly estimated is the angular gain of the gyroscope. This parameter would need to be estimated 
with an initial calibration. Note that with structurally similar gyroscopes, such as the hemispherical 
resonator gyroscope, it was found that the angular gain was insensitive to temperature [8]. 
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2. PARAMETRIC SYSTEM IDENTIFICATION BASED ON  
TIME-DOMAIN SWITCHING 

Parametric system identification of linear systems has a vast body of literature [9]. Direct methods, 
or methods that allow the underlying physical parameters to be estimated, in general produce biased 
estimates. This bias tends to decrease as the sampling frequency increases as it allows the derivatives 
of the associated underlying model to be more accurately represented. However, with the presented 
switch configuration, a relatively few number of samples are generated per oscillation of the 
gyroscope. While the switch configuration could be altered to increase the effective sampling rate, in 
general the variance of parameters estimated via direct methods tend to increase as the sampling 
frequency increases. Grey-box modeling [10] approaches could be used, however numerical 
experiments with its most recent implementation CTSM-R [11] demonstrated that it is vastly more 
sensitive to initial parameter estimates than the presented method. 

As noted in the introduction, while electrostatic transduction is capable of producing high-rate 
measurements for the state of the gyroscope, it can introduce nonlinear effects and limit the 
displacement of the gyroscope. With time-domain switching, sensing the state of the gyroscope is 
instead based on detecting when the proof mass of the gyroscope passes proximity switches that are 
placed below the gyroscope. These switches are capacitive, but other ones such as tunneling current 
switches could be used. While this does not provide a high-rate of state detection relative to the 
natural frequency the gyroscope, it allows the device to operate with larger displacements. Thus, 
instead of requiring extremely-high quality factors to achieve navigation-grade ARW, ARW can be 
lowered by operating with much larger displacements than conventional MEMS gyroscopes. 

Presented in this section is a means to estimate not only the rotation rate of the gyroscope, but 
other parameters associated with imperfections of the gyroscope, based on a finite number of trigger 
events. Fundamental to this method is the validity of Lynch’s model [12], which governs the modal, 
coordinates of class two Coriolis vibratory gyroscopes (CVGs) [13]. Class two CVGs are 
characterized by the having two or more degenerate modes, or modes that possess the same natural 
frequency, that are coupled via the Coriolis force. A crude schematic of the class two CVG 
considered in this study is shown in Figure 1. As will be discussed in greater detail in the following 
section, in the absence of any imperfections the mode shapes of the device can be represented by the 
ones shown in Figure 2. In practice, the modes of the gyroscope may not be aligned to the switches, 
and that in general, the damping axis will also not be aligned to the switches. However, Lynch’s 
model accounts for this non-alignment. Thus, the modes shown in Figure 2 can still be used to 
represent the displacement of the ring. Note that positive displacements of the ring, or displacement 
away from the center of the ring, at 0° (switch 1) and 180° (switch 5) are associated with positive 
displacements of the first modal coordinate. Positive displacements of the ring at 90° (switch 3) and 
270° (switch 7) are associated with negative displacements of the first modal coordinate. Similarly, 
positive displacements of the ring at 45° (switch 2) and 225° (switch 6) are associated with positive 
displacements of the second modal coordinate and positive displacements of the ring at 135° (switch 
4) and 315° (switch 8) are associated with negative displacements of the second modal coordinate. 
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Figure 1. A crude schematic of the TDSMG. It consists  
of a ring that is supported by a central post with eight  
curved springs. The numbered boxes around the perimeter  
of the ring correspond to the switches used to sense the  
deflections of the ring. 

Lynch’s equations, refereed by Lynch as the equation of motion of the generic vibratory gyro, are 
reproduced below 

 

, (1) 

where q1 and q2 denote displacements of the first and second modal coordinates, respectively, and Ω 
is the angular velocity of the system. Since the gyroscope is designed such that the natural 
frequencies and time constants of the two modes are similar, these equations are written using 
average and difference values of the natural frequencies and time constants 
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  (2) 

For generality, f1 and f2 denote generalized forces for their respective modes, k denotes the 
angular gain that accounts for the Coriolis force and angular acceleration, and k accounts for 
centripetal forces. Finally, to handle misalignment of the mode shapes and a nontrivial principal 
damping axis, θω and θτ have been introduced. 
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Figure 2. Mode shapes of the gyroscope corresponding  
to the first, degenerate flexural modes. These modes are  
used to sense rotation as they are coupled via the Coriolis  
force. Figure 2(a) and Figure 2(b) display positive displacements  
in the first and second modal coordinates, respectively. Note  
that these modes are not perfectly matched due to meshing  
issues with Comsol, but it is expected that with the actual device,  
a greater deviation of the natural frequencies will be observed  
due to fabrication imperfections and the anisotropic nature of  
silicon. 

Ignoring effects associated with angular acceleration and centripetal acceleration and treating the 
quantity 2kΩ as a single quantity, Lynch’s model has seven parameters. Assuming that over a given 
period of time that these parameters are stationary and that only the free response of the gyroscope 
is considered, with four or more estimates for position, velocity, and acceleration, or state, of both 
modal coordinates at specific times, one could use linear least-squares methods to estimate these 
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parameters. That is, parameter estimates can be found by solving the following equation in a least-
squares sense 

 

, (3) 

where the ellipses are used to denote further measurements of the state. Note that since this is a linear 
least-squares problem, initial guesses for the parameters are not needed. If the state of the gyroscope 
was sensed at a sufficiently high enough rate, finite difference methods could be used to approximate 
the velocity and acceleration. In general, however, over a single period, one will only acquire four 
estimates for both modal coordinates. This is due to assuming that linear accelerations are 
insignificant such that redundant information is gleamed from switches on opposite sides of the ring 
(e.g., in the absence of linear accelerations, the proof mass will cross switches 1 and 5 at the same 
time). The presented means to estimate the state is to assume a solution for the free response of 
Lynch’s equations and use the position of the triggers and the times at which the ring crosses the 
triggers to estimate parameters for the solution. That is, if Equation (1) can be rewritten in matrix 
form 

  (4) 
where z = [q1 q˙1 q2 q˙2]T , the homogeneous solution is of the form 

 
, (5) 

where vi and λi correspond to the i-th eigenvector and eigenvalue of [A], respectively, and the ci are 
used to account for initial conditions. As [A] contains just real values and is of rank four, the 
eigenvectors and eigenvalues of [A] come in complex conjugate pairs. Since only real initial 
conditions are of concern, it can be shown that the general form of the modal coordinates for the 
unforced version of Lynch’s equations is 

 

. (6) 

Thus, the proposed method of estimating all of the parameters in Lynch’s equations consists of 
first acquiring a window of data sufficiently long enough to estimate the parameters for Equation (6). 
The velocity and acceleration of the modal coordinates can then be determined by differentiating 
Equation (6). With a minimum of four estimates for the state of both modal coordinates, one can 
solve Equation (3) for the parameters in Lynch’s equations. Note that in the proposed method, it is 
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assumed that effects associated with linear acceleration are not considered. Given that the designed 
ring structure has a relative low natural frequency nominally at 1 kHz, sensitivity to linear 
acceleration might need to be addressed. However, assuming that linear accelerations result in slight 
translations of the center of the ring, one could account for linear accelerations by adding an offset 
term to Equation (6). Thus, while in the presented method, since linear accelerations are not 
considered, only the times the proof mass crosses switches 1 to 4 are needed. In practice, since linear 
accelerations may need to be considered, times from all eight switches would be needed. 

To estimate the parameters in Equation (6), one needs at minimum eight trigger events from the 
switches that correspond to a given modal coordinate. Unlike Equation (3), the means used to 
determine these values is based on nonlinear least-squares methods. Thus, initial guesses for these 
parameters are needed. If close estimates for all of the parameters of Lynch’s equations are known, 
the eigenvalues of [A] and the corresponding estimates for α1, α2, T1, and T2 can be determined. With 
these estimates in hand, one can use linear least-squares to estimate A1, B1, A2, and B2. These values 
can then be used as initial ones for the fully nonlinear least-squares problem of determining α1, α2, 
T1, and T2 jointly with A1, B1, A2, and B2. 

To determine close estimates for the parameters of Lynch’s equations, one could use the results of 
previous iterations. For example, one could use the average of previous iterations to provide the 
needed close estimate. For the very first iteration, however, some initial calibration is needed. Based 
on the simulations conducted with the presented method, using averages of the previous 100 iterates 
as the close guess, the initial calibration values could be perturbed by 50% relative to the exact values 
with an insignificant effect on the resulting estimates. Thus, the proposed method is intensive to its 
initial calibration, but it does require some calibration. 

In regards to implementation, with the estimates from Equation (6) in hand, one could use these fits 
to extrapolate. However, in the presented method, for a given window of data, the velocity and 
acceleration for q1 are determined at the time that corresponds to the beginning of the window. For 
q2, the velocity and acceleration are determined at the same time as q1, but the window of data used 
to determine these values was selected such that the start of these two windows are as close as 
possible. Lastly, while provided the total number of estimates for both the position, velocity, and 
acceleration of q1 and q2 are greater than four and the window of data used to estimate the parameters 
in Equation (6) must be greater than eight, more state estimates and larger data windows help to 
mitigate effects with noise. In this study, it will be assumed that if the window of data used to 
estimate the parameters in Equation 6 contains N measurements, then N state estimates of q1 and q2 
will be used to solve Equation (3). With this constraint, a total of 2N − 1 trigger events from both 
modal coordinates are needed to complete a full iteration of the proposed method. 
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3. FINITE ELEMENT MODELING OF RESONATOR 

This section details basic finite element modeling of the resonator used with the TDSMG. While it 
was done in part to validate that the first flexural mode is nominally at 1 kHz, more important was an 
estimate for the effects of thermomechanical noise. This was needed as the two primary sources of 
noise for the TDSMG are timing jitter from the time interval analyzer and thermomechanical 
fluctuations. However, for a given design of the resonator, while the effects of thermomechanical 
noise are constant, the relative effect of thermomechanical noise is dependent on the selection of the 
gap size of the triggers. This relative effect allows a comparison to the effects of timing jitter that will 
be discussed in the following section, and thus provide an overall study of the two primary sources of 
noise. The schematic of the resonator shown in Figure 1 exaggerates some of the features of the 
resonator that would be used in practice. The undeformed state of the resonator is shown in black in 
Figure 2. Device thickness is fixed at 500 µm and is assumed to be made of silicon. The radius of the 
ring is 5,700 µm and is 30 µm thick. The radius of the support post is 300 µm and the radius of the 
springs is 2,600 µm. The length of the posts connecting the springs to the support post is 100 µm. 
The width of the springs and connecting posts are 11 µm such that the springs are relatively soft. 

As can be seen in Figure 2, natural frequencies of the first flexural modes were estimated in 
Comsol as approximately 996 Hz. These modes are not exactly matched due to issues with meshing, 
but given that in practice imperfections due to fabrication and the anisotropic nature of silicon, this 
mismatch is insignificant. 

To estimate the effects of theromechanical noise, the modal stiffness of one of the employed 
modes is needed. From the equipartition theorem, one can estimate the mean square value of 
displacements due to theromechanical noise 

 
, (7) 

where K is the modal stiffness, kB is Boltzmann’s constant, T is temperature in Kelvin, and <.> denotes 
the ensemble average. To estimate the modal stiffness, two opposing forces were applied near 
switches 1 and 5 and, in turn, the resulting displacement was estimated. This value was  
approximately 37.1 N/m. Assuming that temperature is 300 K, the standard deviation of 
displacements due to thermomechanical noise is 1.06 ×10−5µm. 

Since Lynch’s equations are linear, it is possible to arbitrarily scale them. A convenient choice is 
selecting the displacement needed to cross the switches, or the switch gap, as 1. Thus, while the 
initial displacement of the ring needs to be greater than the switch gap, dividing the standard 
deviation of the displacement due to thermomechanical noise by the switch gap provides a 
normalized measure of thermomechanical noise. Assuming that the switch gap is 100 µm, as will be 
shown in the following section, this puts the effects of thermomechanical noise on par with 10 ps of 
timing jitter. A switch gap of 1000 µm would put the effects of thermomechanical noise close to 
having 1 ps of timing jitter, but it is likely that a displacement of 1000 µm would damage the ring. 
Thus the lower bound for the room temperature performance of the TDSMG discussed is near 10 ps 
of jitter response, but this bound could be pushed lower with lower temperatures or slightly larger 
switch gaps.
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4. ANGULAR RANDOM WALK CHARACTERIZATION 

This section details simulation of the TDSMG for the purposes of estimating the ARW. This is 
done by characterizing the behavior of the proposed system when the angular velocity is zero. The 
parameters used to simulate the device are given in Table I. The structure detailed in the previous 
section nominally has matched natural frequencies of 1 kHz; however, it is assumed that 
imperfections will exist with the real system. With the associated quality factors given in Table I, 
initial velocities of zero for both coordinates, and q1 and q2 are initially equal to 2g and ˗2g, 
respectively, where g is the switch gap, one can simulate for 8000 cycles before the oscillations of 
one of the modal coordinates is too small to be detected by the switches. This time corresponds to 
approximately 8 s. Note that if this system is implemented, a means to both set the initial conditions 
and detect when the oscillations can no longer be detected by the switches will need to be devised. 

Table 1. Parameters used to simulate the TDSMG. 

 

To generate simulated data from the switching events, standard numerical integration is not 
practical. The first dilemma with using numerical integration is that to generate an accurate solution, 
small time steps are needed. This, in turn, requires a long period of time to generate data. Note that 
most of this data is not needed as only switching events are used in the proposed method. The second 
dilemma is numerical integration does not directly provide a means to determine when the proof 
mass of the ring crosses the switches. Thus, as an alternative to numerical integration, an 
eigenvector/eigenvalue approach, is used. That is, the means used to generate simulated data employs 
the solution given in Equation (5). Since in simulation one knows all of the parameters in Lynch’s 
model, it is simple to determine the eigenvectors and eigenvalues of [A]. With a given set of initial 
conditions, one can solve a system of linear equations for the ci. The primary advantage of this 
method is that the state of the modal coordinates can be determined at arbitrary times. In conjunction 
with a root-finding algorithm, one can use the solution in Equation (5) to determine the times when 
the proof mass passes the switches. 

Two different effects that influence ARW will be considered. The first is jitter associated the time 
interval analyzer. For simplicity, it is assumed that the error associated with the time interval 
analyzer is normally distributed with a zero mean and that this error corrupts measurements for 
when the proof mass passes the switches. Thus the value that is adjusted to account for error with 
the time interval analyzer is a standard deviation. It is worth noting that other sources of timing 
error may exist, such as effects associated with the selection of switching threshold and the velocity 
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of the modal coordinates, but these effects are not considered. The second is N, or the length of the 
data window used to estimate the parameters of Equation (6). 

In an experimental context, ARW is typically estimated by fitting a model to an Allan variance 
measurement [14]. If the ARW is low, a rather long measurement is needed to acquire an accurate 
estimate of the Allan variance. For example, in [14] where a navigation-grade IMU was tested, data 
was acquired for two hours. However, since in effect the noise processes associated the TDSMG are 
Gaussian, the distribution of the estimated parameters is also Gaussian. Thus, the simulation only 
needs to be run long enough such that estimates for the associated standard deviations to converge. 
From [1], ARW is given by 

 

, (8) 

where θnoise(t) denotes the estimate of the rotation angle due to noise processes. Explicitly, 

 
, (9) 

where Ωnoise refers to the estimate of the rotation rate due to noise processes. For large integration 
times, the ARW approaches a constant value 

 
, (10) 

where Ωnoise is the power spectral density of Ωnoise. In general, the integral of the power spectral 
density signal over the entire frequency domain is equal to its mean square value. If this signal has a 
zero mean, then this integral is equal to its variance. Moreover, if it assumed that this signal is 
sampled at a frequency fs, the power spectral density is equal to zero for frequencies greater than fs/2 
and less than −fs/2, and the power spectral density is equal to a constant, which is the case for Ωnoise 
since it is a Gaussian process 

 
, (11) 

where Ωnoise is the standard deviation of the noisy rate estimate. Thus, accounting for the 
conversion from to (i.e., the scaling factor 10800/π), ARW is estimated as  

.  , (12) 

Due to the asynchronous nature rate estimates are generated, the value for fs used is based on the 
average of the time differences from when the estimates arrive. 
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The proposed method does not lend itself well to providing a simple expression for σnoise, and thus 
ARW, but Equation (12) does provide some design insights. The first is that while fs is not equal to 
the natural frequency of the ring structures, it is approximately equal to four times this value. The 
natural frequency of the ring scales inversely with the square of the ring’s radius (i.e., fn ∝ 1/r2) [15], 
[16], thus if one can devise a means to mitigate the timing and signal processing issues associated 
with high frequencies, one path to decreasing ARW is decreasing the radius of the ring. The second 
is that with the assumed model for timing jitter, jitter is linearly related to the standard deviation of 
the position error of the modal coordinates. Position error in this context is defined as error 
associated with the position of the modal coordinates due to the time interval analyzer imprecisely 
recording when the proof mass crosses one of the switches. This can be seen in Figure 3 where 
increasing jitter by an order of magnitude increases the standard deviation of the position error by an 
order of magnitude. While not strictly applicable for the proposed method as position error disturbs 
the position, velocity, and acceleration of the modal coordinates differently, in general, for least-
squares methods, the standard deviations of the estimated parameters scale linearly with the standard 
deviation of the noise. Thus it is expected that ARW scales linearly with jitter. 

 
Figure 3. Histograms of the position error for the cases that  
jitter is 1 ps (Figure 3 (a)) and 10 ps (Figure 3 (b)). Position  
error is normalized such that g = 1. Note that black and white 
are used to denote the position error of q1 and q2, respectively. 
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Table 2 provides estimates for ARW for various values of jitter and data window length. These 
results are also shown graphically in Figure 4. As one might expect, increasing N or decreasing jitter 
decreases ARW. The predicted result that linearly increasing jitter linearly increases ARW is shown. 
In regards to N , these simulations suggest that there are diminishing returns on increasing N. The 
implication is then that arbitrarily increasing N may not be a practical means to getting to even lower 
values of ARW. However, for N ≥ 18, Figure 4 shows a log-linear trend. Given the linear relationship 
with AWR and jitter, for N ≥ 18, it is very simple to determine if a given jitter and N will meet a given 
ARW requirement. For N < 18, the breakdown of this trend is a reflection of challenges associated 
with fitting to Equation (6). Results for N < 14 are not shown as sporadic poor fits have yielded 
inconsistent estimates for AWR (i.e., angular rate estimates contain many outliers that skew the 
standard deviation estimate). Additional error handling could be introduced if operation with a 
low N is required, but it is not considered here. 

Table 2. ARW estimates for various values of time interval analyzer jitter and N, 
the length of data used to fit to the model given in Equation (6). 

 Jitter (ps) 

N 1 2 5 10 100 

14 0.005072 0.010373 0.023565 0.047833 0.526467 

16 0.010373 0.005577 0.014021 0.027456 0.276728 

18 0.001867 0.003554 0.009266 0.017818 0.181893 

20 0.001219 0.002527 0.006323 0.012475 0.125560 

22 0.000934 0.001831 0.004547 0.009074 0.090761 

24 0.000709 0.001407 0.003575 0.007045 0.069496 

The N ≥ 18 trend in Figure 4 also demonstrates a unique feature of the TDSMG: the ARW 
performance of the gyroscope is weakly coupled to the design of the mechanical structure, but 
strongly coupled to the performance of the time interval analyzer and how the data from the switches 
is processed. A limitation of the TDSMG is that increasing N not only introduces a delay in the 
sensor’s response, but it also decreases its bandwidth. However, if the TDSMG is implemented 
where the data from the switches is processed via software or field-programmable gate array 
(FPGA), it might be possible to dynamically select N to balance ARW, delay, and bandwidth 
requirements. Thus, a single sensor could be tuned to suit a variety of applications. As noted in the 
previous section, for the designed resonator, the effects of thermomechanical noise for a switch gap 
of 100 µm corresponds to approximately 10 ps of timing jitter. For the 10 ps of timing jitter case 
with N = 24, ARW is approximately 0.007 ◦/√h, which is very close to the metrics that are 
considered navigation-grade. Thus, the TDSMG has the potential for navigation-grade performance, 
but without the need for a quality factor on the order of a million. 
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Figure 4. ARW as a function of N for various values of time interval analyzer jitter.  
Note that red (lowest), green, blue, cyan, and black (highest) are used to denote  
1, 2, 5, 10, and 100 ps of jitter, respectively. 
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6. CONCLUSION 

Estimates of the ARW of a TDSMG for various levels of noise were presented. The two dominant 
sources of noise are due to thermomechanical fluctuations and timing jitter associated with the 
needed time interval analyzer. Based on finite element simulations of the employed resonator, it is 
found that the effects of thermomechanical noise is on par with 10 ps of timing jitter. As such, the 
10 ps of timing jitter ARW response of the TDSMG provides an approximate lower bound for the 
performance of the sensor. With this lower bound performance, in the case that the length of the 
needed number of measurements for a single mode of the resonator, or N , is equal to 24, ARW is 
very close to metrics that are considered navigation-grade. While the N = 24 case corresponds to 
a relatively narrow bandwidth, it would still be suitable for static rotation rate sensing 
applications, like gyrocompassing, or nearly-static rotation rate sensing, such as unmanned 
underwater vehicle navigation. Note, unlike other MEMS gyroscopes, once these narrow-bandwidth 
tasks are achieved (e.g., initializing the inertial navigation unit), it is possible to adjust the 
performance of the TDSMG to increase its bandwidth. While this would be done at the cost of 
increasing ARW, it would allow the TDSMG to be well suited for applications where the error 
due to initialization is of the greatest of concern (i.e., short duration). Future work on the 
TDSMG will focus on improving the needed signal processing to account for linear 
acceleration, developing a general model that will allow one to balance the effects of both 
thermomechanical noise and timing jitter for different resonator designs, and experimental 
validation of the sensor. 

 



 

15 
 

REFERENCES 

1  R. Leland. 2005. “Mechanical-thermal Noise in MEMS Gyroscopes,” IEEE Sensors Journal,  
vol. 5, no. 3, pp. 493–500. 

2  A. Trusov, G. Atikyan, D. Rozelle, A. Meyer, S. Zotov, B. Simon, and A. Shkel. 2014. “Flat is 
not Dead: Current and Future Performance of Si-MEMS Quad Mass Gyro (QMG) System.” 
Proceedings of the Position, Location and Navigation Symposium (PLANS 2014, 2014 
IEEE/ION) (pp. 252–258). 5–8 May, Monterey, CA. 

3 I. Prikhodko, S. Zotov, A. Trusov, and A. Shkel. 2011. “Sub-degree-per-hour Silicon MEMS 
Rate Sensor with 1 million Q-factor.” Proceeding of the 16th International Solid-State Sensors, 
Actuators and Microsystems Conference (Transducers’11) (pp. 2809–2812). 5–9 June, Beijing, 
China. 

4 D. Senkal, A. Efimovskaya, and A. Shkel. 2015. “Minimal Realization of Dynamically Balanced 
Lumped Mass WA Gyroscope: Dual Foucault Pendulum,” Proceedings of the 2nd IEEE 
International Symposium on Inertial Sensors and Systems (ISISS 2015) (pp. 1–2). 23–26 March, 
Hapuna Beach, HI. 

5 M. W. Putty. 1995. “Micromachined Vibrating Ring Gyroscope.” Doctoral dissertation. 
University of Michigan, Ann Arbor, MI. 

6 A. Trusov, I. Prikhodko, D. Rozelle, A. Meyer, and A. Shkel. 2013. “1 PPM Precision Self-
Calibration of Scale Factor in MEMS Coriolis Vibratory Gyroscopes.” Proceedings of the 17th 
International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & 
Eurosensors 2013) (pp. 2531–2534). 16–20 June, Barcelona, Spain. 

7 P. Swanson, C. Tally, and R. Waters. 2011. “Proposed Digital, Auto Ranging, Self Calibrating 
Inertial Sensor.” Proceedings of the 10th IEEE Sensors Conference (pp. 1457–1460).  
28–31 October, Limerick, Ireland. 

8 D. M. Rozelle. 2009. “The Hemispherical Resonator Gyro: From Wineglass to the Planets.” 
Proceedings of the 19th AAS/AIAA Space Flight Mechanics Meeting (AAS/AIAA 2009)  
(pp. 1157–1178). 8–12 February, Savannah, GA. 

9 H. Garnier, and L. Wang, Eds. 2008. Identification of Continuous-time Models from Sampled 
Data. Springer-Verlag, London, United Kingdom. 

10 N. R. Kristensen, H. Madsen, and S. B. Jørgensen. 2004. “Parameter Estimation in Stochastic 
Grey-box Models,” Automatica, vol. 40, no. 2, pp. 225–237. 

11 R. Juhl. 2016. “CTSM-R - Continuous Time Stochastic Modelling for R.”Available online at 
http://ctsm.info/. Accessed April 17, 2016. 

12 D. Lynch. 1995. “Vibratory Gyro Analysis by the Method of Averaging.” 2nd Saint Petersburg 
Conference on Gyroscopic Technology and Navigation (pp. 26–34), 24–25 May, Saint 
Petersburg, Russia. Scientific Council of the Russian Academy of Sciences on the Traffic Control 
and Navigation Problems. 

13 IEEE Aerospace and Electronic Systems Society. “IEEE Standard Specification Format Guide 
and Test Procedure for Coriolis Vibratory Gyros,” IEEE Std 1431-2004, pp. 1–78. 

http://ctsm.info/


 

16 
 

14 N. El-Sheimy, H. Hou, and X. Niu. 2008. “Analysis and Modeling of Inertial Sensors Using 
Allan Variance,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 1,  
pp. 140–149. 

15 S. S. Rao. 2007. Vibration of Continuous Systems. John Wiley & Sons, Inc. Hoboken, NJ. 

16 F. Ayazi, and K. Najafi. 2001. “A HARPSS Polysilicon Vibrating Ring Gyro-scope,” Journal of 
Microelectromechanical Systems, vol. 10, no. 2, pp. 169–179. 

 

 



5f. WORK UNIT NUMBER 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-01-0188 
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.

 PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED  (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

6. AUTHORS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER

10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON 

19B. TELEPHONE NUMBER (Include area code) 

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18 

September 2016 Final 

Angular Random Walk Estimation of a Time-Domain Switching Micromachined 
Gyroscope 

 

 

Andrew B. Sabater 
Paul Swanson 

 

 

SSC Pacific 
53560 Hull Street  
San Diego, CA 92152–5001 

TD 3308 

SSC Pacific 
Naval Innovative Science and Engineering Program 
53560 Hull Street  
San Diego, CA 92152–5001 
 

 

 

Approved for public release. 

This is a work of the United States Government and therefore is not copyrighted. This work may be copied and disseminated 
without restriction. 

 

     Microelectromechanical systems (MEMS) gyroscopes could potentially be used in low cost, size, weight, and power (CSWaP) 
navigation-grade inertial navigation units, but current solutions cannot be used due to issues with angular random walk (ARW), 
bias instability, and scale factor instability. While there are methods to address issues with bias and scale factor instability, with 
the commonly used demodulation schemes, ARW is limited by the ability to produce resonators with very high quality factors. 
Given that producing resonators with very high quality factors is challenging, the time-domain switching micromachined 
gyroscope (TDSMG) is proposed. As opposed to the conventional means that employ electrostatic sensing, the motion of the proof 
mass is detected through switches at known locations. In conjunction with an accurate time interval analyzer, the TDSMG is 
capable of estimating rotation rate in a low-noise fashion that is robust to environmental effects. Thus, it is expected that it will 
have low bias and scale factor instabilities. Simulated ARW performance of a particular incarnation of the TDSMG is studied. It is 
found that with narrow-bandwidth restrictions, near navigation-grade performance is capable without the need for the resonator to 
have a very high quality factor. 

microelectromechanical systems gyroscopes; navigation-grade inertial navigation; angular random walk characterization; 
time-domain switching micromachined gyroscope;  parametric system identification; finite element modeling  

 
Paul Swanson 
 

U U U U 23 (619) 553-7269 



INITIAL DISTRIBUTION 
84300 Library (1) 
85300 Archive/Stock (1) 
55250 P. Swanson (1) 
71730 A. Sabater (1) 
 
Defense Technical Information Center 
Fort Belvoir, VA 22060–6218 (1) 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Approved for public release. 
 
 
 
 
 

  

 
 
 

SSC Pacific 
San Diego, CA 92152-5001 


	EXECUTIVE SUMMARY
	1. INTRODUCTION
	2. PARAMETRIC SYSTEM IDENTIFICATION BASED ON  TIME-DOMAIN SWITCHING
	3. FINITE ELEMENT MODELING OF RESONATOR
	4. ANGULAR RANDOM WALK CHARACTERIZATION
	5.
	6. CONCLUSION
	REFERENCES



