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ABSTRACT

The error due to image gquantization in stereoscopically
evaluated range is analyzed, using a simple cameré model and
assuming that the image planes of the two cameras are coplanar.
The "best"lposition and the uncertainty space for a point in
space are‘calculated on the basis of the quantized image co-

ordingtes of that point in the two camerss.
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1. Introduction

In this technical note we develop the mathematical formulas for de-
termination of range values and their extreme errors on the basis of quan-

tized stereoscopic pictures of a scene,

Two cameras, with lenses Lﬂ and Lr' are located at a distance D from

each other to determine the components of a distance r from the

midpoint between L  and Lr and an object point B, as shown in Fig. 1. The

£
focal length of each camera is f. The picture plane 1s of size w x w and is
gquantized into n x n cells, each of size d. We wish to caleulate the error

introduced by the digitization process in determihing the x, ¥, and z of r,

Let us denote the coordinates of the image point on the left and right

pictures by (xz, zﬂ) and (xr, zr), respectively. For convenience, we shall

use mirrored image planes, instead of the actual ones. To simplify the
analysis, let us first assume that zﬂ = zr = 0, l.,e.,, the projecting rays

(of lengths r_ and rr) lie in the plane defined by the parallel optieal

£
axes of the two cameras (see Fig., 1), We shgll later remove this assump-
tion. Furthermore, we shall also assume that the opticallaxes are parallel
to the y axis; the effects of panning and tilting of the cameras may be

added later by using standard transformation rules, -

2. Quantization Errors and Uncertainty Regions

The top view of the stereopsis plane, in which bofh xﬂ > 0 and xr > 0,
is shown in Fig. 2., Due to the quantization process, we obtain picture co-
ordinates xﬂ* and xr*, and thus arrive at Point B* whose coordinates are x*
and y* instead of the real point, Point B, whose coordinates are x and y.

By inspection,

y* _f
x*+3D x %
3 £
and
y* __f
x*-3D  x *
r



Solving for x* and y*, we get

X kix *
£

r
¥ = ) —m
x D 7 (x ox %) (1)
J r :

and
f

X k=¥ *
£ r

(2)

y*

For given quantized values of xz* and xr*, the quantization errors

6£ and ér (see Fig. 2) introduce uncertainty into the computed values of

X = x* - Ax and y = y* - Ay. A quadrilateral uncertainty region is ob-

tained by varying & and ér according to -d/2 < § < d/2 and -d/2 < 6r< d/2,

£ £
as shown in Fig. 3. The extreme x and y values of the guadrilateral un-

certainty region determine a rectangle defined by x , = x = x and
min max

¥y . =2y=xy . This rectangle constitutes a worst-case uncertainty
min max

region, It is marked in Fig, 3 by a dotted rectangle.

The values of 62 and ér in the above four cases of extreme quantiza-
tion errors are given in Table I, It can be shown that the values of
—53-6r and "6ﬁ+6r affect the expressions for x, y, Ax, and Ay. The re-
sulting expreésions are given in Table I for each of the four cases. DNote

that in Cases 2 &and 3 (see, for example, Fig, 3), Ay = 0 and the values

of Ax are equal'ih magnitude but opposite in sign,

3. Object Zones

S0 far we have assumed that xﬂ* > 0 and xr* >0, i,e,, Point B* is
to the right of Lr. There are, however, two more possibilities to consider:

x * > 0 and xr* < 0, in which Point B* is to the right bf,L and to the left

L £

of Lr' and xz* < 0 and x * < 0, in which Point B* is to the left of L
. r

"Note that the fourth possibility, =x

2‘
E* < 0 and xr* > 0, i8 forbidden. Note

also that by excluding xﬁ* = 0 and/or x * = 0, we have tacitly assumed
r

that picture~cell boundaries exist at xz = 0 and at xr = 0, Generally,
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therefore,zthere are three possible ohject zones, ‘as shown in Fig. 4:
Zone R (x£*>0 and xr*>0), Zone M (x£*>0 and xr*<0)?‘apd Zone L (x£*<0
and xr*<0). Any of these zones is characterized by the algebraic in-
equality x£2 xr (if Point B is at infinity, then x£= xr). Therefore,

assuming that the two cameras have identical quantization cells, then

X ¥ 2 x ¥,
£ r

Quadrilateral and worst-case rectangular uncertainty regions in each
of the above zones are illustrated in . Fig. 4. Each uncertainty region is
< d/2 and -d/2 < 6 < d/2. The

. . r

L
quadrilateral (or rectangular) uncertainty region in Zone R ig sgimilar to .

defined by two uncertainty beams, -d/2 < §

the one in Fig, 3. 1Its extreme boundaries are = X X = X
& reme bo min~ "1’ *max *a' Ymin

=y, andy =y, where each subscript denotes the "case' number, as

defined in Table I, Keeping the positive xﬂ* fixed, we "'fan' the right

uncertainty beam counterclockwise, thus causing the uncertainty region to
move to the left and into Zone M, until some negative x * is reached,
A ‘

Unlike Zone R, the extreme x boundaries of the uncerfainty region in Zone

"M are x = x_ and x = XB’ whereas the extreme y boundaries remain ym
in

min 2 max
= d = . * h
yl an Y max y4 Next, we keep the negative X, f;xed and fan the left
uncertainty beam counterclockwise, again causing the uncertainty region

to move to the left until reaching the position in Zone L. The extreme

X values have changed again, i.e. = X and x = and the extreme
& gain, » Xnin~ T4 max 1’
lues ar it = - a = . '
y values e again ymin yl nd ymax y4
4, Quantization Coordinate Numbers

So far we have used the quantization coordinates xz‘ahd x: to de-

termine the values of x, y, and their quantization errors. To be more
general, we may, alternatively, use the picture indices corresponding to

x; and x:. Following the assumption that picture-cell boundaries exist

at x,= 0 and x = 0,‘then
j r

»
*
I

(nz-é)d

»
*
1

(nr-é)d

where nE and n_ are quantization coordinate numbers, which are nonzero




integers, and the inequality nzz nr follows from the inequality x

* = x ¥,
g/ r
The guantized image shift is defined as
X ¥ =x % =% * = {(n -n )}d (4)
L r ( £ r) ' :

Assuming that‘D, f, and d are constant, we note in Table I that y and Ay
in every case and AX in Cases 2 and 3 are each a function of the image
shift only, However, X 1n every case and Ax in Cases 1 and 4
are each a function of both the image shift and the average guantized x
coordinate

X ¥4x * {(n +n -1)d

— 4 T 4 r

X ¥ = = (3)
p 2 2

We consider first y and Ay vs. the quantized image shift, nz—n .
r

Based on the expressi iven in T I lots of y . = nd =
P sions gi in Table I, p s ymin yl a ymax y4

vs, n_-n_ are shown in Fig., 5, As expected, both ¥y , and y inerease
L r ‘ min max

as n —nr decreases. Note that y =¥ Also note in

£ min,n -n max,n -n +2°
r
Fig. 5 that.as - n -n decreases, the wors%-case error y -y inecreases,
L r max "min
More information about the error in y may he obtalned by separating ymax
- into its component = and = = ., Based on Table I
Ymin P 8 Aymin Ay1 Aymax Ay4 ’

plots of Ay . and Ay ve, n_ -n are shown in Fié. 6.,
min max r

L

The errors in X in Zone M are inversely proportional to n -nr, whereas

b
all other errors (errors in x in Zones R and L and errors in y in all

2
zones) are approximately inversely proportional to (nﬂ-nr) . Furthermore,
since n =2 1 and n then n -n = |n |+|n and, therefore, the magnitudes
of the errors in both x and y in Zone M are smaller than those in Zones R

and L for the same x * and x * magnitudes. If x *.='-xr*, then ;;* = 0,

£ b
i.e., Point B* 1s along the axis of symmetry between the two cameras
(cf. Figs. 3 and 4). For this specilal case, the exbressions for x and Ax

in Cases 2 and 3 (see Table I) are reduced to

X = AX = =X = =Ax = —— ‘ 6
max Almx min min 4an (6)



Referring to Fig. 4, the area of the uncertainty region in Zone M is
minimized fbr a given projecting ray if the two projecting rays are per-
pendicular, The locus of such minimum regions is a semicircle centered
at x = 0 whose.diameter is D, TUnfortunately, this locus is likely to be

too close to the cameras to have any practical wvalue.

5. Vertical Coordinates

So faf we have assumed that the object point lies on the x-y plane.
We now lift fhis restriction and let Point B be in a three-dimensional
space, as shown in Fig, 7., The ideally parallel optical axes of the two
cameraé point aiong the y direction, as before., The left and right pro-
jecting rays pierce their corresponding image planes at two points ﬁhose
picture coordinates are (xﬁ; Zg) and (xr; zr) respe#t;vely. The‘above
“analysis for determination of the x and ¥y coordinates assuming z = O
is valid with no change for the general case in which z # 0 hecauge x

and y depend only on x, and xr, not on z, or Zr'

£ £

If there were no difference between the tilt angles of the two cameras,
the two projecting rays would meet at Poiht B (see Fig. 7). In this case,
the intersection of the plane defined by thertwo rays and the vertical
plane v = £ is a straight line parallel to the x-y plane gnd at a dis-
tance z = zr from this plane, By inspection of éimilﬁr triangles in Fig. 7,

L

zﬁ/z = zr/z = £/y; hence, z = zﬂy/f, and the "best estimate" of z is z*

= zﬂ*y*/f. Subétituting yk/f = D/(xﬂ*-xr*) from (2), and replacing Zg*

by the average value

z * = 3(z *¥+z *) 7
el £ r .

Jjust in case zﬂ* # z ¥ due to error in camera glignment, we find that
T .

Z¥ = DE */x ¥ 1 (8)
- p A & :

Since each of the quantized codrdinates x ¥, xr*, ZL*' and‘zr* may have an

£
error that varies between -d/2 and d/2, the value of z may vary between

6



z . and =z ;- where
max

min _
zp*—%d
= rr———— : 9
zm:l.n D X *+d (9
A
d —
an zp*+éd ‘
=D ——— ’ 10)
zmax xA*-d (

6. Three-Dimensional Uncertainty Space

The error in estimating x, y, and z due to the picture quantization

is confined to a hexahedral uncertainty space formed by the two three-

dimensional uncertainty beams as shown in Fig. 8 (note that x£*>>D/2 in
Fig. 8 by mistake). Each of the uncertainty beams:has the shape of a
four-sided pyramid, The side views of these beams along the =-x axis are

shown in Fig, 8(a). These side views overlap because we have decided to

* R
approximate the ranpes z£= ZE + %d and zr= z: + éd by the average range

%(zz*+zr*)i%d.-(Note that z, or z is not necessarily within this average
range,) On the basis of this approximation, the uncertainty space is hexa-
| hedral witﬁ four vertical sides, as shown in Fig. 8(b), Without this
assumption fhe two uncertainty beams may not meet and the averaging

process will become unnecessarily complex,

Let us summarize the above analysis in terms of the quantization

numbers
nﬂx = (xz*/d) + % (11)
D= (xr*/d) + % Co (r2)
n, = (zz*/d) + 3 : (13)
and
n_ = (z */d) + % . ' : (14)
rz T ‘ .

Using the abbreviations



n,=n, -n =x*/d : (15)
rXx A

i) Lx
n_ = %(nﬂx+ n )= (xp*/d) + 3 (18)
and
nz= %(n,ﬂz-‘- nrz) = (Zp*/d) + %: (17)
(4), (5), and (7) become
X * = (n -3)d (19)
p X :
and o
z * = (n -3)d | (20)
o) z

Hence, (1), (2), and (8) are expressed ag

X* D(Ex—%)/nA
vk =| y¥| = Df/(nAd) o (21)
2* D(az—é)/nA

and the expresgions in Table I in conjunction with Fig, 4 are reduced to

the following:

D(ﬁx-%)/(na+l) ifn >0 andn > 0 (Zone R)

ix X
x = D(ﬁ =1)/n ifn > b and n < 0 (Zone M) (22)
min X i Ix rXx .
D(n -3)/(n -1) 1if n <0 andn < O (Zone L)
X A ix rx ‘
( D(n -%)/(n -1) if n_ > 0 and n > O (Zone R)
. X A ix rXx
X = ﬁ an/na . if n£x> 0 and ?rx< 0 (Zone M) (23)
[ D(ﬁ -3)/(n +1) 4if n, < 0 and n < O (Zone L)
X i Ix rx ‘ 7
Df
y - — (24)

min d(nA+1)



-Df

d(n -1
max (nA )
D(n -1)/(n +1)
. zZ Fa)
z . =¢ .
TR D@ -1)/(n -1)
z A
and _
Dnz'/ (n A—l)
zmax= -
Dn /¢(n,+1)
z A

if n > 3
z

nf-

if n s %

2
if n_ 3

if n< ¥

z

(25)

(26)

(27

The relative errors in x, y, and z are found from (21) through (27)

‘to be as follows:

1/n if n, > 0 andn > 0 (Zone R)
: A Ax rx
Ax X* -
=) = -1 =< 1/[2(n -1)] 4if n_ >0 and n < O (Zone M)
X x x rXx
min min ‘
1 -1/n ifn <0 andn < 0 (Zone L)
A Lx rx
~1/n ifn_ >0 and n >0 (Zone R)
Ax X* A— £x L EX
) = -1 =¢-1/¢(2n ) ifn, >0 andn < 0 (Zone M)
* max xmax Lx T
1/n ifn <0 andn < 0 (Zone L)
A 2x X
* 1
Ay _¥*x = (30)
Y min ymin )
A * 1
(_1) = y -1 = = ;— (31)
y max Ymax A
C (2n S0 -1)/[2(n ~1)n,] if n > 3
o zk A
& = 2 (32)
min min -2n + n + 1)/[2(n ~1)n ] if n s 3
(- 2n -n +1)/(2n n,) if 5 z 3
*
& - N (33)
max max (n -n —1)/(n n ) if nz<'§

(28)

29)



7. Space of View

The effect of the size of the image plane will now be considered,

assuming thaf the image plane is a w X w square, The widest space viewed
from each cémefa ig a pyramid formed by the straight lines connecting each
lens with the corners of its square image plane, The top view along the
-2 direction and the side view along the -x direction of the_two pyrémids
are shown in Fig, 9, The half-infinite space in front of the two cameras
is divided into three spaces: (lj the spéée not seen by an& cameré, (2)
the space segn:by only one camera, and (3) the space seen by both cameras,
The top and éide views of the third space are shaded in Fig, 9, and each

is characterized by the view angle

R =2 tan -1 g? . “:" (34)

Clearly, only this tent-shaped space is effective for stereo applications.
The distance between the origin (midpoint between the lenses) and the tip

of the effective gpace is

r= 2 (35)
m w . )

»

This is the minimum distance that can be determined by the stereoscopic

setup,
8. Numerical Example
Let us consider a numerical example in which D = 6" = 152 mm, f = 16 mm,

w = 10 mm, and the image plane is quantized into 120 ¥ 120 cells, We wish
to determine the éffective stereopsis space, the analog and quantized image
coordinates associated with an object point located at v = (loamm, 104 mm,
2 . 103 mm)t, and the uncertainty space that corresponds to the image quan-

tized data (if these data were given).

(1) Effective Stereopsis Space

‘Using (34) and (35),

10



0
B = w tan 10 = 34,7°

2+16
and
. 52
r = 16 l—— = 243 mm.
m 10
(2} 1Image Coordinates
The guantization cell size is
W 10 1
d=—=— = — = 0,08 N
120 " 120~ 12 ™ 33 mm
DI 52416 ‘
Modifying (2}, x,= — = l—g—l— = 0,243 mm,
‘ Ay 4 ‘
10
= XA 0.243 3
Modifying (1] = —X =——— +« 10 = 1,6 mm,
ifying ( ),‘XP = 152
- XA 0,243 3
Modifying (?),'zp= 52 = —iga— + 2+ 10 = 3,2 mm,

Solving for x, and x , we get
r

4

X )= 3 (2xp+ xA)

3 (3.2 + 0,243) = 1.7215 mm

3 (3.2 - 0,243) = 1,4785 mm.

1

= 3 (2x -
X 3¢ xp xA)

The image quantization numbers are

n, = ‘I—:‘cﬂ/d_l*= [1.7215/0.0833] = [20.7] = 21
n_ = rxr/'d_[ = [1.4785/0.0833] = [17.7] = 18
A= l-Ep/d-l = [3.2/0.0833] = [38.4] = 39
Following (11) through (20},
x ¥ = (nzx— 31)d = 20,5 * 0.0833 = 1.71 mm
x ¥=(n -4%d=17,5 ¢ 0,0833 = 1,46 mm
rx

¥ We shall use the notation
ri] = round up integer 2x

L

round down integer <x

m

11



21 - 18 = 3

=]
1]

A

Bx =} (21 + 18) = 19.5

x,* = 3+ 0.0833 = 0,25 mm

Ep* = (19.5 - 0.5) - 0,0833 = 1,585 mm
Ep* = (39 - 0,5) » 0,0833 = 3,21 mm,

Following (21),

x* 152 - 19/3 963
v¥ = y* | =| 152 - 16/(3°0.0833) = |9,730 | (mm)
z¥{ 1152 + 38,5/3 1,950
The absolute errors are, therefore,
x* - x -37
AV = y* -y = =270 (mm)
z¥ - 2 ~50
The corresponding relative errors are
fAX/% ) (x*-x)/x% -37/1,000 -0,037
Ay/y = | ty*-y)/y | = | -270/10,000| = | -0.027
Az/z. (z*-z)/2z -50/2,000 . -0,025

(3) Uncertainty Space

Following (22) through (27),

152 - 19/4

x , = = 722,35 mm
min
x =152 + 19/2 = 1,445 mm
max
152.16
= ————2_ - 7,300
Ymin ~ 0.0833-4 ! mm
v = ‘15216
m — 60
"X 5.083z-z - TH00mm
z = 152 « 38/4 = 1,445 mm
min
z =152 . 39/2 = 2,962 mm.
max

12



t
Thus, the best estimate and the uncertainty space of v = (x, y, z) are

"963 mm; 722.5 < x < 1,445 mm

x¥ =
y¥ = 9,730 mm; 7,300 < y < 14,600 mm
z¥ = 1,950 mm; 1,445 < z < 2,962 mm,

The resulting relative uncertainty space is defined by -0,33 < Ax/x < 0,33,
-0.33 < Av/y < 0,33, and -0.34 < Az/z < 0,35, These results agree with

(28) through (33) in which nA=' 3 and n = 39,
z

13
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