
^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

SYM-AM-16-061 

 

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

qÜáêíÉÉåíÜ=^ååì~ä=
^Åèìáëáíáçå=oÉëÉ~êÅÜ=

póãéçëáìã=

qÜìêëÇ~ó=pÉëëáçåë=
sçäìãÉ=ff= =

Acquisition Program Teamwork and Performance Seen 
Anew: Exposing the Interplay of Architecture and 

Behaviors in Complex Defense Programs 

Eric Rebentisch, Research Associate, MIT 
Bryan Moser, Lecturer, MIT 

John Dickmann, Vice President, Sonalysts Inc. 

 

Published April 30, 2016 

Approved for public release; distribution is unlimited. 

Prepared for the Naval Postgraduate School, Monterey, CA 93943. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

 

The research presented in this report was supported by the Acquisition Research 
Program of the Graduate School of Business & Public Policy at the Naval 
Postgraduate School. 

To request defense acquisition research, to become a research sponsor, or to print 
additional copies of reports, please contact any of the staff listed on the Acquisition 
Research Program website (www.acquisitionresearch.net).



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 194 - 

Panel 16. Improving Governance of Complex 
Systems Acquisition 

Thursday, May 5, 2016 

11:15 a.m. – 
12:45 p.m. 

Chair: Rear Admiral David Gale, USN, Program Executive Officer, SHIPS 

Complex System Governance for Acquisition 

Joseph Bradley, President, Leading Change, LLC 
Polinpapilinho Katina, Postdoctoral Researcher, Old Dominion University 
Charles Keating, Professor, Old Dominion University 

Acquisition Program Teamwork and Performance Seen Anew: Exposing the 
Interplay of Architecture and Behaviors in Complex Defense Programs 

Eric Rebentisch, Research Associate, MIT 
Bryan Moser, Lecturer, MIT 
John Dickmann, Vice President, Sonalysts Inc.  

A Complex Systems Perspective of Risk Mitigation and Modeling in 
Development and Acquisition Programs  

Roshanak Rose Nilchiani, Associate Professor, Stevens Institute of 
Technology 
Antonio Pugliese, PhD Student, Stevens Institute of Technology 

 

  



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 215 - 

Acquisition Program Teamwork and Performance Seen 
Anew: Exposing the Interplay of Architecture and 

Behaviors in Complex Defense Programs 

Eric Rebentisch—is a Research Associate at MIT’s Sociotechnical Systems Research Center. He 
leads the Center’s Consortium for Engineering Program Excellence and previously led the Lean 
Advancement Initiative’s Enterprise Product Development research. Dr. Rebentisch’s portfolio of 
research projects includes studies of the integration of program management and systems 
engineering and performance benchmarking of the U.S. shipbuilding industry. [erebenti@mit.edu] 

Bryan Moser—is the Founder and CEO of Global Project Design, Inc. (GPD), and Lecturer in the 
Systems Design and Management program at MIT. His industry engagements in the U.S., Europe, 
and Japan have provided a laboratory for development of project design workshop tools and 
methods. Prior to GPD, for a decade with United Technologies Corporation, Dr. Moser led research 
on and implementation of global technology and product systems development. He has published 
extensively on dispersed teamwork and the interplay of coordination architectures and team 
behaviors impacting complex project cost, schedule, and performance. [bry@mit.edu] 

John Dickmann—is a Vice President at Sonalysts Inc. He served for 22 years as an active duty 
Navy submarine officer. He is a graduate of MIT’s Engineering Systems Division and has researched 
lean processes and enterprise design for the U.S. Air Force, the Naval Sea Systems Command 
(PMS-401), and the Office of the Secretary of Defense (Net Assessment). Dr. Dickmann manages 
systems design projects and conducts operational and strategic technology analysis for defense and 
industry clients. [jdickmann@sonalysts.com] 

Abstract 
This research frames complex engineering development programs as sociotechnical systems 
with program performance driven by interpersonal and inter-organizational dynamics as well 
as technical system interdependencies. It attempts to address the question of why 
performance in complex development programs has not improved significantly in the last 
several decades, despite the development and application of many new and sophisticated 
tools for managing these programs. A review of the literature on managing complex 
sociotechnical systems was used to develop a framework and method for instrumenting 
complex engineering programs and measuring their essential attributes. The proposed 
framework identifies fundamental elements of engineering programs (relating to, e.g., 
products, processes, organizations, and people) and the drivers of program performance. 
The framework is illustrated using a case study of a complex engineering program that 
spanned multiple technical systems, organizations, and disciplines. The paper discusses the 
resulting measurement framework and provides examples of the application of the framework 
to identify management control “levers” for design, engineering, test and evaluation, fielding, 
and sustainment of complex engineering programs. 

Introduction 
Large-scale engineering programs are challenging to complete within planned 

parameters. U.S. Department of Defense (DoD) programs involve outlays of public finds, 
and are therefore well-documented. They unfortunately often report disappointing outcomes. 
The U.S. Government Accountability Office (GAO) reported in 2009 that the accumulated 
cost overrun of the largest 96 DoD engineering development programs reached nearly $300 
billion, with an average schedule overrun close to two years (GAO, 2009). This doesn’t 
appear to be an aberration from the early part of the 21st century. The GAO reported 
previously that combined cost overruns for large development programs (programs totaling 
more than $1 billion for research, development, testing and evaluation in fiscal year 2005 
dollars) initiated in the 1970s exceeded the DoD’s initial investment estimate by 30%, or $13 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 216 - 

billion (in fiscal year 2005 dollars), with equivalent overruns of 39% in the 1980s and 40% in 
the 1990s (GAO, 2006). Despite numerous acquisition reform efforts and policy revisions 
during those years, defense acquisition programs during that three decade period continued 
to routinely experience cost overruns, schedule slips, and performance shortfalls. 
Underperformance is not confined just to defense development programs, though. Reports 
of disappointing performance in large-scale civil engineering programs tell a similar story 
(Cantarelli et al., 2010).  

Poor development program performance seen across a number of different 
applications and business sectors suggests that there may be underlying, systematic factors 
that bias programs toward trouble. An example from commercial aerospace illustrates just 
such a diverse array of challenges. In 2003, Boeing launched the 7E7 program as a refresh 
and partial replacement for its 767 and 747 families of aircraft. The 7E7 eventually came to 
be known as the 787 and quickly established a very strong order book from airlines (“Boeing 
787 Dreamliner,” 2016). By the time it finished development, the program exceeded the 
estimated costs by three times and took roughly twice as long to develop as estimated. An 
investigation into the reasons for these outcomes suggested that a likely cause was an 
excessive growth of development project complexity. The aircraft itself became more 
complex due to the use of new materials which was in many cases beyond the capacity and 
experience of Boeing or its suppliers. The organization tasked with developing this new 
aircraft also became more complex because of significantly increased external development 
through partners and vendors, outsourced system integration and higher interdependence 
through a more parallelized development process (Allworth, n.d.). Insufficient ability to 
handle growth in both types of complexities eventually led to the major project delay and 
skyrocketing costs, pushing the program into crisis (Denning, n.d.). Although the 787 
eventually overcame the crisis, each delivered 787 still generates losses (Gates, 2016). The 
development of the Boeing 787 aircraft design and production required coordination across 
the globe of multiple organizations, corporations, and governments, which is representative 
of many development projects, where estimated costs and development are exceeded.  

The same challenges plague complex programs in public sector layered 
infrastructure initiatives and commercial services deployment. Current program 
management standards are largely heuristic, experience-based, and generic, with 
application oriented toward a wide range of sectors, project scope, and activities. They are, 
however, deficient in addressing the management of interdependencies and cross-boundary 
interactions in complex programs such as those seen in the 787 development program. 
These interdependencies and interactions include those that are hierarchical between 
management layers, lateral between functional groups, and multi-scale based on nested 
layers of performance domains. While hierarchical and lateral interdependencies are 
acknowledged in traditional organizational/management literature, they are seldom defined 
at the level of specificity that is required for program management. Multi-scale relationships 
are increasingly pervasive in operations, driven by increasing complexity in engineered 
systems, but they remain largely undefined at a useful level of specificity in either the 
organizational/management or program management literatures.  

The lack of improvement in complex program outcomes may be traced to few new 
and more effective program management practices and, ultimately, too little innovation in 
the way that the basic attributes of programs are measured. Prevalent project management 
standards rest upon heuristic practices. Systems engineering standards address system 
architecture, methods, and tools, but fall short in defining social and managerial 
interdependencies with a product system and its design and operating context. Identifying 
and articulating measurement and instrumentation for program elements at a fundamental 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 217 - 

level could lead to a richer characterization of the essential attributes of complex programs. 
The resulting richer datasets might then enable the development of new analytic methods 
for understanding the underlying drivers of program performance. The framework explained 
in this paper is part of an effort to move program management from its primary basis in 
heuristics and collections of best practices toward the design of projects based on a deeper 
understanding of the interdependencies, behaviors, and performance of sociotechnical 
networks under systemic complexity.  

Current Measurement and Control Systems for Complex Programs 
Relatively simple programs (i.e., linear extrapolations from known space to known 

space, perhaps best characterized by manufacturing), while potentially complicated, may 
not be particularly complex. That is to say, they may have many elements, but they and the 
relationships between them are all relatively well-understood and predictable in their 
behaviors. The associations between tasks, participants, and sequencing may be well-
specified, and the imperative is to execute the tasks through clearly-defined relationships. In 
these types of programs, traditional tools, practices, and methods for managing the program 
may be entirely adequate to this challenge. 

However, when novelty, scarcity, or uncertainty are part of the work space, there are 
potentially more known unknowns or even unknown unknowns than would be expected in a 
simple program. This may require learning, innovation, and possibly improvisation from the 
program team to deal with exceptions to the plan or other unexpected developments. With 
these emergent behaviors, a linear extrapolation from known practices will be of limited 
benefit. Learning will require the flow of information from a range of different sources in 
order to notice, acquire, understand, and synthesize knowledge into needed new forms. 
This suggests exploration and exploitation of the information (and related resource) 
networks across the program. This would not be possible without understanding and 
controlling the dependencies in the system. 

Evolution of Systems Projects Control 

We can trace the underlying model of work used most commonly in project 
management back to Taylor and Gantt (Gantt, 1903; Wilson, 2003), with jobs described as 
sets of discrete tasks, refined over time to reduce variation in repeatable activities of fixed 
duration and fixed sequence. Both Taylor and Gantt (1903) were managing factories, with 
the Gantt chart itself originally a table to describe fixed jobs for workers. These same 
assumptions of standardized durations and sequence were carried forward in the middle of 
the last century with the advent of critical path (CPM; Kelley & Walker, 1959) and other 
network techniques.  

The complexity of government programs and a shift towards cost control led in that 
next decade to a more centrally-controlled project management approach. The roots of 
today’s project control, including earned value, emerged in the 1960s in requirements for 
defined work breakdown structures (WBS), systems engineering management plans (499), 
and Cost/Schedule Control System Criteria (C/SCSC). Still, the underling view of task as 
project “atom” connected through a precedence based network remained.  

Amidst a call for simplification compared to prior heavy processes, defense 
acquisition management was transformed starting in 1991 through the DoD Directive 5000 
series (Dillard, 2003). Over the next decade, in parallel with streamlining through adoption of 
commercial practices in government programs, improved risk management emerged, 
including attention to technology readiness. The underlying model of project work spread 
through the introduction of CMMI by SEI and other standards, including PMBOK in North 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 218 - 

America. Like the century earlier factory models of work and the mid-century defense 
approaches, these followed the same underlying model of project work as tasks connected 
by precedence networks of dependencies. 

The emergence of project control beyond large government programs can be partly 
traced to Fleming and Koppelman, who promoted earned value over two decades as 
Koppelman built Primavera Systems (now part of Oracle). They commented on the potential 
of earned value as a concept not only in large defense programs but—in simplified form—for 
software and other projects (Fleming & Koppelman, 1994, 1996). Their papers and book in 
the PMI community from the middle to late 1990s introduced earned value to a broader 
project management audience in industry. 

Earned Value 

Earned Value management is well-documented by many; this paper assumes the 
reader has already or can easily gain EVMS basics, so it does not include reiteration of the 
earned value approach. Instead, we trace the evolution of EVMS from its emergence from 
the DoD in the early 1990s to recent years. 

The A-12 program cancellation in 1991 has been widely accredited to early 
indicators of cost variation from EVM. However, Christensen’s (1994) work showed, too, that 
after the first third of the program, the cost performance index will stabilize, with limited 
variability as a project proceeds. Still, as an early indicator of the A-12 Program cost 
overruns, the method performed as expected (Christensen, 1994).  

Evolution of Earned Value: ES and ED 

Earned Schedule 

In 2003, Walter Lipke, at the time head of the software division in the U.S. Air Force’s 
Oklahoma Air Logistics Center, proposed a change to the schedule measures in EV (SV–
Schedule Variances and SPI—Schedule Performance Index) that he called Earned 
Schedule (ES; Lipke, 2003, 2004). Lipke and others at the time had noticed that the 
schedule variance (SV and SPI) as used in earned value became less predictive later in a 
program. Since EV schedule measures are derived from cost (BCWP–Budgeted Cost for 
Work Performed, and BCWS–Budgeted Cost for Work Scheduled), as an over-schedule 
project approaches completion, the schedule variance according to SPI approaches 1.0. 
and SV approaches $0. Instead, in Earned Schedule (ES), as a substitute for budgeted cost 
as performed versus as scheduled (BCWP and BCWS), Lipke takes the actual duration 
versus the planned duration for the work performed. Lipke was able to show that in some 
cases, the earned schedule measures remain meaningful in the latter stages of a program, 
including showing positive or negative variance at completion if the actual duration differed 
from the planned duration.  

While ES is an improvement over EV and can be implemented using the existing EV 
metrics, ES still rests upon schedule progress as derived from a portion of original budget 
spending, with a linear association to schedule progress.  

Earned Duration 

In a recent and important contribution, Khamooshi and Golafshani (2014) take a step 
further than Lipke’s Earned Schedule approach. They refer to their methods as “Earned 
Duration” (Khamooshi & Golafshani, 2014). Consistent with Lipke's response to the 
inaccuracy of EVM schedule-related performance, they propose complete decoupling of the 
schedule metrics and forecasts from cost related inputs. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 219 - 

The authors point out that as patterns of cost over time, progress over time, and 
value of scope over time become non-linear, then the assumptions of uniform linear 
association between spending, progress, and likelihood of ultimate schedule performance 
become false. Instead, they define earned duration as “Earned Duration of scheduled 
activity i: EDi, at any point in time, is the value of work performed expressed as proportion of 
the approved duration assigned to that work for activity (e.g., days)” (Khamooshi & 
Golafshani, 2014). 

In their paper, they also, interestingly, emphasize the dual role of project control 
techniques: first to ascertain the performance of a project to date as compared to some 
original baseline plan, and second to determine the accuracy of original estimates, providing 
a view that will allow comparison and learning across multiple projects. 

While the data necessary to calculate earned duration ("ED(t)") goes beyond that 
required by classic EVM, they argue that the data is available otherwise, as was necessary 
for original planning and ongoing scheduling by project teams. Importantly, the measures 
require an estimate of remaining duration, given the current state of the project, as an 
indicator of progress rather than cost. Whether these estimates are made at the macro or 
micro level is a project control or architectural decision irrespective of which measures are 
chosen. 

The authors also point out that use of actual performance metrics from an earlier 
stage of a project as a proxy for expected performance in later stages, given the typically 
limited information about specific resources, priorities, and other externalities, is 
“questionable”: “If the stages of the project are different and heterogeneous, which normally 
is the case, there is no rationale for assuming past performance is a good predictor of the 
future” (Khamooshi & Golafshani, 2014). 

EV Variants and Control Points 

Colin and Vanhoucke survey recent literature on earned value and project control 
techniques, characterizing the set from the original use of Critical Path Method (CPM) from 
Kelley and Walker (1959) as a bottom-up approach and the more recent earned value and 
its variants which are described as top-down. They assert that these methods vary in the 
number and position of control points—positions in a WBS at which are placed monitors for 
observing and buffers for controlling project flow. EVM as practiced rests upon a topmost 
WBS element with calculated EV, PV, cost and schedule metrics; they discuss several 
recent papers which show control points at key points in the project, not necessarily the 
complete data collected bottom up from each WBS activity. For example, another method by 
Lipke (2012) places control points along the critical path. They introduce two approaches 
inspired by Goldratt's Critical Chain method (Goldratt, 1997), in which they explore control 
along the critical path, along feeding paths into the CP, or instead entire subnetworks which 
feed the CP. 

Their approach recognizes that a program manager (the PM) is burdened by the 
amount and upkeep of control data and response. By seeking a balance between bottom-up 
and top-down approaches, they seek to minimize overzealous control that—being 
unsustainable—causes latent and poor quality control signals. However, their paper does 
not directly address resource capacities, and only indirectly the capacity of a PM to handle 
control activities. 

Furthermore, as the various methods in Colin and Vanhoucke, Lipke and others rest 
upon an underlying model of project as network with discrete precedence dependencies, the 
capacity and quality of interactions across these project interfaces is misrepresented. In 
selecting the positions of control points, one must ask, “Who calculates, interprets, and 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 220 - 

reports the information at that interface?” Are their experience, capacity, and accountability 
aligned with the demanded attention, in timely fashion, to the control point in balance of all 
the other demands “on their plate”? 

Our thinking, when viewing complex systems projects as sociotechnical systems, 
places an emphasis not only on the PM, but on distributed resources, their condition of 
awareness and attention, their attempts to work and interact, who make mistakes and 
correct them, and learn over time. Therefore, not only the PM, but those project participants 
who would be best positioned to own control points and their source knowledge, should be 
considered. By analogy, if a control system lacks the capacity to process input signals in 
real time, it will become saturated and lose its control authority. The capacity of the system 
can be increased by parallel processing using a system of distributed controllers. However, 
that approach only works if the distributed controllers are coordinated and the 
interdependencies between them are managed. We assert that a burden of demands to be 
aware of and interact for project governance be distributed to align both with capacity and 
inherent capabilities of resources. 

Summary  

The legacy of program management and systems engineering tools and methods is 
rooted in practices suited to factory operations where tasks are assumed to be well-defined, 
dependencies between tasks are relatively simple, and the flow of work is fairly linear. 
These assumptions have changed little since a century ago, or at least have not been 
challenged in a vigorous way. Yet, it is clear that the complexity, both static and dynamic, of 
development programs and their corresponding sociotechnical systems has increased 
significantly in both scale and nature over the same time period. As a consequence, it 
should not be surprising that complex developments suffer poor outcomes and are 
seemingly uncontrollable. Their program management control systems have not kept pace 
with their changing nature. The case study introduced in the next section illustrates some of 
the ways in which management control systems may be challenged in a complex program.  

Re-Architecting the Submarine Sonar Sociotechnical System 
Our case study examples highlight the challenges of getting people to act with 

awareness and conviction at critical interfaces. We find that these are especially difficult 
when change causes patterns of demanded coordination to shift from historical ones. 
Whether due to habit, old incentives, or gaming—shifts in behavior are necessary to 
improve both local and systemic performance. This is especially true when program 
managers are confronted with shifting externalities such as changing technologies, shifting 
operational performance requirements and fiscal constraints. Successful program leaders 
understand the need to shift organization and system architectural alignment in these 
conditions.  

The case of Navy submarine sonar system program management in the 1990s is an 
example of these types of change and the consequent need to recognize and design 
changed dependencies. To date, many published lessons drawn from this case fall in the 
category of best practices. How can we move from heuristics to a repeatable, measurable 
approach that can provide program managers real or near-real time feedback on internal 
program coordination demands? 

 

 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 221 - 

Crisis: Loss of Submarine Acoustic Superiority 

Military competition in the undersea consists of a constant evolution of operations 
and technologies to detect and to minimize acoustic emissions. In the early 1990s, U.S. 
submarines lost their long-standing acoustic advantage against Russian submarines—the 
ability to detect and track them before detection by them.  

Throughout the Cold War, the Navy had invested billions of dollars in acoustic 
research and advanced sonar systems, concentrating its effort on custom-designed digital 
signal processing systems with military-unique components and tightly integrated proprietary 
hardware and software. Specifications were developed by the Navy Laboratory, and detailed 
design and production of hardware and software were conducted at one of two prime 
contractors. System development and fielding took a decade or more from conception and 
cost billions of dollars, with unit costs ranging to hundreds of millions of dollars.  

The loss of acoustic superiority coupled with post–Cold War budget cuts created 
pressure to improve the performance of U.S. submarine sonar systems quickly. Added to 
this pressure was a wider questioning of the relevance of submarines in the “new world 
order,” which created an organizational crisis, spurring what is arguably the most successful 
acquisition reform effort in U.S. defense industry history. 

Diagnosis and Prescription 

The Submarine Force response to this technical and fiscal challenge was to examine 
the problem from a fact-based perspective. In early 1995, the Submarine Superiority 
Technology Panel (SSTP), a panel of acoustics experts, was established to examine the 
technical performance of submarine sonars. It came to two major conclusions: (1) The 
legacy sonar system technical architecture was ill-suited to leverage Moore’s Law for 
increased signal processing power and (2) the system development and acquisition 
organizations and the development-acquisition process inhibited experimentation with new 
algorithms.  

The panel observed that there was no viable means to test, evaluate, and integrate 
advanced algorithms that had been developed by academic researchers through the 1980s. 
They recommended a commercial-off-the-shelf (COTS) architecture and an “open” 
development process. By the fall of 1995, the Submarine Superiority Management Council 
(SSMC) was established to address the findings of the SSTP. The SSMC worked through 
the spring of 1996, by which time, the core problems of boosting processing power and 
developing a means to inject new ideas into the sonar system were the main focus of 
attention. From this time onward, the responsible program managers for submarine sonar 
systems were working on developing new technical, process, and organization architectures 
for the development and acquisition of advanced technology for submarine sonar systems.  

System Solution 

The program managers charged with submarine sonar embarked on an effort to 
identify viable commercial processing technologies, identify and develop improved signal 
processing algorithms, and to develop a process to field these improvements quickly. This 
collective effort was reflected in new technical and organizational architectures—new 
dependencies and interfaces among the organizations involved in the submarine sonar 
program and in the functional implementation of the sonar system.  

Architecture Changes 

Architecture is the overall scheme by which the functional elements of a system 
(technical, people, organizational) are partitioned to individual subsystems/teams and are 
arranged with respect to each other. Architecture sets the rules which govern interactions in 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 222 - 

and among systems, both in operation and over time, as they evolve in response to 
changing technology, operational demands and external constraints (Ulrich & Eppinger, 
1995; Moses, 2006; Henderson & Clark, 1990; Garlan & Shaw, 1993; Clark et al., 2004; 
Clark et al., 2005; Board, 2000). 

Change the System Technical Architecture 

The major technical change was to separate hardware and software into a layered 
architecture. This was achieved by the development of middleware, a set of software that 
served as an interface between commercial processors and proprietary Navy algorithms. 
This change enabled the program managers to leverage the cost and processing benefits of 
Moore’s Law without the need to change the existing software.  

Change the Development and Acquisition Enterprise Architecture  

It was recognized that improving schedule performance at the same time as 
technical architecture changes were implemented required new relationships among 
management and technical organizations. The cognizant program managers worked 
together to increase the speed of development by creating an iterative build-test-build 
process. Their goal was to more closely connect academic and government laboratory 
research and development with engineering integrators and operational users. This required 
changing the dependencies and responsibilities for technical tasks and re-allocating 
decision authorities among participating organizations. Changes to the development 
process were implemented in parallel with changes in the organizational structure. In an 
evolutionary (over several years) pattern, PEO-level management evaluated technical 
information dependencies and information requirements for the evolving system, crafting 
organizational dependencies and interfaces to address them.  

Implementing the System Solution Within the Sociotechnical System 

Program Office Architecture 

Steps were taken to increase the richness of the dependencies between the 
Advanced Systems Technology Office (ASTO), responsible for developing advanced sonar 
technologies, and the submarine sonar systems program office (PMS4252). These changes 
were documented in the semi-annual PMS4252 Acoustic Program Plan (APP; Naval Sea 
Systems Command [PMS4252], 1994): 

The original dependency: 

“ASTO has traditionally provided one of a kind systems … and then 
transitioned them to NAVSEA PMS5252 in the form of paper algorithm 
designs which, in turn, are provided to contractors for implementation.” 

The new dependency:  

“A common test bed and common, if not identical, deployable hardware will 
be created so that 6.3 developed capabilities can be easily transitioned to 
6.4.  

PEO(USW) ASTO and PMS425 are coordinating the development of a 
concept that would enable expeditious fielding of an advance sonar 
processing concept into fleet systems.” 

A bulletized list of specific activities to implement this new coordination was also 
listed. Included in these architectural decisions was the goal of connecting the advanced 
development process to operational users (the fleet): 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 223 - 

“The approach of beta testing is fundamentally a means to allow the user (the 
fleet) to get a feel for a capability (new functions) and quickly provide 
feedback to the developers as to suitability before significant investment. It 
also provides a more expedient means to work out the operational concept in 
a forum well suited to define usability. Additionally, it may prove an effective 
means to introduce capability in parallel with new systems development, 
conducted by the commodity manager, PMS425, without long and costly 
changes to existing MILSPEC systems.” 

Evolution continued to an Integrated Project Team-Working Group structure which 
fundamentally changed organizational dependencies within and across industry, academia, 
and government.  

Working Group Dependencies 

The new development process was named “Advanced Processing Build” (APB). 
Early APBs were numbered sequentially (e.g., APB-1); later they were numbered according 
to the year in which they were developed (e.g., APB-98 for 1998). As indicated above, the 
ASTO-PMS4252 developed process evolved into an extensive set of interrelated working 
groups. The program managers actively identified and managed intra- and inter-working 
group dependencies and dependencies between the WG and participating organizations. 

In an early example of this management, one ASTO program manager, in the face of 
confusion among the working groups, identified specific dependencies and the means by 
which they should be satisfied. These were laid out in a long directive to the WG, 
transmitted via email (Zarnich, 1996). 

In this note, he specified three working groups, their work tasks, the technical and 
programmatic uncertainties surrounding them, and his decision rationale. He specified 
coordination dependencies with other WGs, the Navy Lab, a commercial contractor, and 
expected dependencies within the WG itself. He also directed the addition of WG members 
in order to ensure the right level of technical expertise was involved. Included in these 
directions were WG charters, performance milestones, work products, and deadlines. It is 
important to note that this directive memo included a traditional project plan in Microsoft 
Project format. 

Resistance to New Dependencies: APB-T(01) 

After the first two APB development cycles (APB-1[98] and APB-2[99]), the Program 
Executive Officer, Submarines (PEOSUBS) directed the extension of the new development 
process to the Combat Control System (CCS). The new process was named “APB(T),” and 
the initial development cycle was to be APB(T)-01. This new process was implemented by a 
different program office using the sonar APB model and involved a similar set of actions at 
the program manager level. New technical architecture choices were made, new 
dependencies identified and new organizational architecture (dependencies) implemented.  

The new architecture created new dependencies, which caused friction and 
resistance. Specifically, the architecture changes shifted technical responsibilities and 
authorities. The Navy lab and its main contractor were particularly affected, and their 
response was to ignore the new dependencies, which resulted in poor performance of the 
program in shifting to the new APB model.  

Specifically, assigned roles were disregarded, and work products were not delivered, 
which impacted the work products of other parts of the organization (Navy Program 
Manager, 2001). As an example, over a two month period, attempts were made to get 
software artifacts delivered to organizations responsible for integration, but the Navy 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 224 - 

laboratory was late and, in one case, delivered obsolete software. As an example, one 
participant noted,  

The nature of the support needed is sufficiently broad, and dynamic, that a 
cooperative interactive engagement process is more appropriate than simply 
throwing request lists, and return questions about the items, over the transom 
to one another. While it's true that the items need to be clearly documented, 
even in an interactive process, unfortunately it's also true that the process 
can be ground to a crawl easily—and seemingly very technically and 
rigorously proper, if the participants don't all want to drive toward timely 
success. Establishing that motivation for mutual success among the 
engineering team typically isn't all that difficult—most of them are stimulated 
simply by the technical issues at hand and their natural desire to solve them. 
The leadership challenge in those circumstances is usually no more complex 
than making clear that timely success is the desired outcome and 
encouraging the cooperative engagement. Hopefully the leaders of the 
engineering team members are encouraging, rather than discouraging, that 
positive type of interaction.  

… executive-level folks all playing project facilitator, … clearly isn't 
reasonable (although occasionally it still may feel great). We'll continue to 
provide encouragement to our troops to strive for the cooperative interaction, 
hopefully yours will be provided similar encouragement from their bosses. 
(Navy Contractor, 2001) 

Summary 

Initial observations on these three simple examples highlight the focus of these 
Program Managers on dependencies and interactions. Based on interview data and email 
data records, they were mainly focused on implementing processes that increased outside, 
or non-traditional, participants in the development process. The expectation was that the 
new participants and a different process architecture and organization architecture would 
bring more objective evaluation of technical alternatives and, therefore, result in improved 
system performance.  

However, their focus was on outcomes and on getting the “right” participants 
connected to each other. It was a very evolutionary process, where membership was 
increased or decreased based on immediate need, where WGs were established and 
disestablished as need dictated. The initial examination of this program’s history highlights 
the underlying importance of dependencies and attention to them. 

Framework for Design & Control of Coordination 
The discussion to this point has highlighted the importance of dependencies and 

interactions in programs, particularly in a dynamic or complex environment. It further argued 
that existing measures and control mechanisms do not fundamentally address 
dependencies and interactions, and therefore there is a significant opportunity to improve 
upon existing measures and control mechanisms. While this work is preliminary and 
ongoing, these points will be addressed in the following sections based on work recently 
completed or underway.  

Characterizing and Measuring Dependence 

A measurement and control system based on dependence and interaction must start 
with a characterization of dependence. Starke (2015) identified a set of eight characteristics 
of activity dependence and 21 corresponding measures derived from a review of the 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 225 - 

literature and expert discussions (see Table 1). No measure was defined for the 
characteristic awareness, since awareness of a dependence itself is a precondition to be 
able to assess the dependence. Starke further attempted to validate the set of 
characteristics and their respective measures through a survey with 138 participants in a 
workshop. The work was considered preliminary, but he did establish that all the 
characteristics and measures were reliable with the exception of Closeness and Degree of 
Mutuality.1 This characterization of dependence is a first step in the development of a 
comprehensive system of measurement for programs. 

A key objective of a dependence measurement system must be to identify indicators 
of program behavior that can be linked to superior program outcomes. In the end, if it is to 
be useful (and used), it must demonstrate its ability to predict future program outcomes 
more accurately than existing measures. Consequently, it must comply with a number of 
requirements: 

 It must be able to be instrumented so as to be practically and sustainably 
implemented in a performance measurement system. 

 It must have a clear sampling approach, frequency, unit of analysis, etc. in 
order to produce reliable results. 

 It must have a clearly-defined measurement process and ideally be indexed 
to current measurement and control systems in order to assess its predictive 
power relative to existing approaches. 

This ongoing work is part of a larger effort that aims to revise and further develop 
these measures and develop an instrumentation method for gathering empirical data on 
dependence in programs and its impact on program control and performance. This work 
supports a larger agenda of determining whether it is possible to improve program 
assessment and control methods and tools beyond those currently in use. 

                                            
 

 

1 These two characteristics and their corresponding measures in particular have strong pooled 
dependence traits, and were considered to be not well-suited to the experimental methods used in 
the validation. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 226 - 

 Measures of Dependence in Programs  

(Starke, 2015) 

 

Coordination in Response to Dependence and Architecture 

Having characterized and developed measures of dependence, the next step is to 
demonstrate how dependence plays a role in program coordination and control processes. 
Based on Moser, Grossmann, and Starke (2015) and Starke (2015), a framework was 
developed to demonstrate the mechanisms whereby dependence is satisfied in programs 
(see Figure 1) Dependence is driven by two sources of need: Flow and Pool causes. A flow 
cause of dependence results from the need for results or information from another task. A 
pool cause of dependence results from the need for a resource shared by another task. 
They both result in a demand for interaction.  

Awareness of the dependence and allocation of attention are the major factors 
influencing how or if any interaction takes place. The volume, timeliness, cost, and quality of 
the interaction all have consequences regarding the satisfaction of the dependence. 
Dependency management, or coordination, may influence the demand itself, the awareness 
and the allocation of attention, as well as the interaction. Classic dependency management 
techniques seek to improve the awareness of the dependence (e.g., CPM or DSM) or 
improve the interaction (e.g., action plans or standardization). 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 227 - 

 

 Mechanisms of Dependence From Cause to System Effects 

Whether the dependence is satisfied will determine the local effects. This in turn 
influences the systemic effects. Local effects are the immediate consequences for the tasks 
(e.g., delay, costs, and rework) and for the individuals (e.g., frustration or establishment of 
trust). Systemic effects influence the significance of the local effect on product quality, the 
process as a whole, and the organization. These effects in turn can lead to a change in the 
remaining demand to interact. If the dependence is fully satisfied, the demand is effectively 
eliminated, and thus no demand to interact remains. If the dependence is only partly 
satisfied or not at all satisfied through insufficient interaction, demand to interact may 
decrease or even increase. 

The Health of Interactions as an Early Indicator of Overall Performance 

The framework shown in Figure 1 is a simple closed-loop feedback control system. 
As such, it lends itself to the development of a control system for program management 
based primarily on dependence. This alone represents a significant departure from existing 
tools and methods for program measurement, management and control. Current program 
planning and control practices (if sustainable) are necessary for governance, but may 
simultaneously act as a straightjacket on learning, depending upon the judgement of 
program and team leaders to make strategic adjustments. Perhaps an approach that relies 
on the basic characteristics of dependencies within a program could provide sufficient 
insights to free up critical program control capacity to enable more effective handling of 
exceptions, learning, and improvisation within the program. 

The emergent and actual performance, in contrast to detailed baseline plans, reflects 
the gap between detailed control of tasks and strategic management of organization and 
interactions. Human teams take time and experience, and often fail to learn new habits of 
interaction. Simply completing one’s own work according to finely separated work packages 
is not sufficient for system performance. 

If a dependence-based control system is to make a difference, the treatment 
(coordination) of the interaction should be driven by the nature of the dependencies 
amongst tasks, where they fall across the organization, and the pattern of demands they 
place on teams. Teams would consequently be challenged to adjust their interactions so as 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 228 - 

to be aware, pay attention, select amongst demands within limited capacity, and to perform. 
Important questions for teams, implied by the dependence-based framework include the 
following: 

 Have the teams prioritized and paid attention to quality? 

 Are defects/issues even noticed?  

 If so, how does each team respond and make a decision on how to proceed?  

Whether this framework and measurement approach is successful in spurring this 
kind of activity is the focus of ongoing research, and cannot be conclusively reported at this 
point in the process. Nevertheless, there is optimism based on not only literature reviews, 
but also anecdotal empirical evidence. The aim of this study is to collect systematic 
empirical evidence to assess the validity of the dependence-based approach to program 
activity measurement and control. 

Conclusion, Limits, and Future Research 
This paper has demonstrated a set of measures and an emerging measurement 

process for characterizing the fundamental elements of complex commercial, civil, and 
defense programs and projects. It focused specifically on the interactions and 
interdependencies that exist between the product system and social system. It identified 
implications for the execution of programs and future research relating to program 
management based on insights gained from this measurement approach. 

The validation of this research on engineering projects as sociotechnical systems will 
require the instrumentation of performance during complex program planning and execution. 
The intent is to use this paper’s representation of dependence to observe projects in 
progress to test the dependency model’s practicality and usefulness. The paper doesn’t 
present an analysis and conclusions because the work is underway. 

Future work will require the preparation of a system to measure the demands on and 
the attention of teams across product, process, and project organization. The responses to 
dependence will be correlated to local and systemic performance. Additionally, experiments 
to test the effect of increased awareness of concurrent and mutual dependence on local and 
systemic performance of the engineering project will be needed. Generating sufficient data 
to validate this approach from multiple programs will be a lengthy process, but sample 
identification is already underway. Early experiments using the measures and framework 
discussed in this paper are promising, but more systematic data will ultimately tell whether 
this approach addresses the shortfalls in existing methods that have been identified. 

 

 

 

 

 

 

 

 

 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 229 - 

References 
Allworth, J. (n.d.). The 787’s problems run deeper than outsourcing. Retrieved from 

https://hbr.org/2013/01/the-787s-problems-run-deeper-t  

Board, I. S. (2000). IEEE recommended practice for architectural description of software-
intensive systems (IEEE Std 1471-2000). New York, NY: The Institute of Electrical and 
Electronics Engineers. 

Boeing 787 Dreamliner. (2016, April 4). In Wikipedia. Retrieved from 
https://en.wikipedia.org/wiki/Boeing_787_Dreamliner  

Cantarelli, C. C., Flyvbjerg, B., Molin, E. J., & van Wee, B. (2010). Cost overruns in large-
scale transportation infrastructure projects: Explanations and their theoretical 
embeddedness. European Journal of Transport and Infrastructure Research, 10(1), 5–
18.  

Christensen, D. S. (1994). Using performance indices to evaluate the estimate at 
completion. The Journal of Cost Analysis, 11(1), 17–23. 

Clark, D., Sollins, J., Wroclawski, J., Dina, K., Kulik, J., Yang, X., … Chiappa, N. (2004). 
New arch: Future generation internet architecture. MIT and USC. 

Clark, D., Wroclawski, J., Sollins, K., & Braden, R. (2005). Tussle in cyberspace: Defining 
tomorrow's Internet. IEEE/ACM Transactions on Networking, 13(3), 462–475. 

Denning, S. (n.d.). What went wrong at Boeing? Retrieved from 
http://www.forbes.com/sites/stevedenning/2013/01/21/what-went-wrong-at-boeing  

Dillard, J. T. (2003). Centralized control of defense acquisition programs: A comparative 
review of the framework from 1987–2003. Monterey, CA: Naval Postgraduate School. 

Fleming, Q. W., & Koppelman, J. M. (1996). Earned value project management (1st ed.). 
Project Management Institute. 

Fleming, Q., & Koppelman, J. (1994). The essence and evolution of earned value. 
Transactions of AACE International, 73. 

Gantt, H. L. (1903). A graphical daily balance in manufacture. Transactions of the ASME, 
24, 1322–1336. 

GAO. (2006). Defense acquisitions: Major weapon systems continue to experience cost and 
schedule problems under DoD’s revised policy (GAO-06-368). Washington, DC: Author. 

GAO. (2009). Assessments of selected weapon programs. Report to congressional 
committees (GAO-09-326SP). Washington, DC: Author. 

Garlan, D., & Shaw, M. (1993). An introduction to software architecture. In V. Ambriola, & G. 
Tortora (Eds.), Advances in software engineering and knowledge engineering, volume 
1. New Jersey: World Scientific. 

Gates, D. (2016, January 5). Will 787 program ever show an overall profit? Analysts grow 
more skeptical. Retrieved from http://www.seattletimes.com/business/boeing-
aerospace/will-787-program-ever-show-an-overall-profit-analysts-grow-more-skeptical/  

Goldratt, E. M. (1997). Critical chain [A business novel]. Great Barrington, MA: North River 
Press. 

Henderson, R. M., & Clark, K. (1990). Architectural innovation: The reconfiguration of 
existing product technologies and the failure of established firms [Special issue: 
Technology, Organizations, and Innovation]. Administrative Science Quarterly, 35(1). 

Kelley, J. E., Jr., & Walker, M. R. (1959). Critical-path planning and scheduling. Paper 
presented at the Eastern Joint IRE-AIEE-ACM Computer Conference (pp. 160–173). 
ACM. 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=`Ü~åÖÉ= - 230 - 

Khamooshi, H., & Golafshani, H. (2014). EDM: Earned duration management, a new 
approach to schedule performance management and measurement. International 
Journal of Project Management, 32(6), 1019–1041. 

Lipke, W. (2003). Schedule is different. PMI CPM Journal, The Measurable News. 

Lipke, W. (2004). Connecting earned value to the schedule. The Measurable News, 1, 6–16. 

Lipke, W. (2012). Speculations on project duration forecasting. The Measurable News, 3, 3–
7. 

Moser, B., Grossmann, W., & Starke, P. (2015). Mechanisms of dependence in engineering 
projects as sociotechnical systems. In Transdisciplinary Lifecycle Analysis of Systems: 
Proceedings of the 22nd ISPE International Conference on Concurrent Engineering 
(Vol. 2, p. 142). IOS Press. 

Moses, J. (2006). Overview of organizational structures and system architectures [ESD.342 
class lecture notes]. Cambridge, MA: MIT. 

Naval Sea Systems Command (PMS4252). (1994, September 30). Acoustic program plan.  

Navy Contractor. (2001, March 15). More NUWC support items. 

Navy Program Manager. (2001, March 5). NUWC impact to APB(T)-01. 

Patanakul, P., Kwak, Y. H., Zwikael, O., & Liu, M. (2016). What impacts the performance of 
large-scale government projects? International Journal of Project Management, 34(3), 
452–466. 

Starke, P. (2015, June). A New approach to understanding and measuring task 
interdependence (Master’s thesis). Munich, Bavaria, Germany: Technische Universität 
München. 

Ulrich, K. T., & Eppinger, S. D. (1995). Product design and development. New York, NY: 
McGraw-Hill. 

Wilson, J. M. (2003). Gantt charts: A centenary appreciation. European Journal of 
Operational Research, 149(2), 430–437. 

Zarnich, R. W. (1996, September 3). Novel1.doc. 

 



^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=
RRR=aóÉê=oç~ÇI=fåÖÉêëçää=e~ää=
jçåíÉêÉóI=`^=VPVQP=

www.acquisitionresearch.net 

 



Acquisition Research Symposium, 5 May 2016 
 

Eric Rebentisch, Massachusetts Institute of Technology (erebenti@mit.edu) 
Bryan Moser, Massachusetts Institute of Technology (bry@mit.edu) 

John Q. Dickmann, Sonalysts, Inc. (jdickmann@sonalysts.com) 

Acquisition Program Teamwork and Performance Seen Anew: 
Exposing the Interplay of Architecture and Behaviors in 

Complex Defense Programs 

© 2016 MIT 1 

mailto:erebenti@mit.edu
mailto:bry@mit.edu
mailto:jdickmann@sonalysts.com


The Fundamental Challenge: Improving Development 
Program Performance 

• Motivation 
– Performance in complex development programs (both military and civil) has not 

improved significantly in the last several decades, despite many new and 
sophisticated tools for managing these programs 
• Example: B787 development program (2004 launch)—cost from $6B to $16B; schedule from 4 years 

to 7 years; overall program may never be profitable. 

• Research questions 
– Are current program monitoring and 

control systems adequate for increasingly 
complex sociotechnical system programs? 

– What additional measures and controls are 
needed to adequately understand and 
address the challenges posed but complex 
sociotechnical system programs? 

 
2 © 2016 MIT 

30% 

39% 40% 

1970s 1980s 1990s

MDAP Development Cost 
Overrun (%) by Decade (GAO, 

2006) 



• What we create and how we work combine as a sociotechnical system in 
which products, processes, and people interact and evolve. 

• When both change simultaneously the emergent performance of an 
engineering project becomes difficult to anticipate.  
– For this reason the thought leaders of scientific management a century ago 

promoted standard work and reduction of variation in both parts and people. 

• Standardization may not always be the answer. Programs are often beset by 
complexity, novelty, and variability that further challenge existing 
connections between social and technical systems and which lead to 
surprises. 

Research Issue: Ineffective Control of Interactions in a 
Program Can Lead to Surprises 

3 © 2016 MIT 

Managing interactions within/between the social and technical systems is a 
core program activity—the organization’s ability and experience to manage 

these connections may be a critical differentiator for performance.  



• The starting point—the task as the “atom” of work: 
– 1903: Assumptions of fixed duration, sequence, resource neutrality are deeply embedded in 

early scientific management approaches (Gantt) 
– 1950s, 1960s: CPM, PERT, WBS, SEMP(499), C/SCSC 
– 1990s: DOD 5000, CMMI, PMBOK, … 
– These methods and their underlying representation of tasks and dependence drove 

definition of Earned Value Management (EVMS) 

• Newer developments in project control (built on the same foundation assumptions): 
– Critical Chain (Goldratt 1997) 
– Earned Schedule (Lipke 2003, 2004) 
– Earned Duration (Khamooshi & Goalfshano, 2014) 
– TRLs and Technical Performance Management 
– Bottom-Up, Top-Down, and Distribution of Control Points 

Advances in Project Control Approaches Still Largely 
Framed by Original Assumptions 

4 © 2016 MIT 

Team awareness, capacity, attention, and performance in managing the 
interactions (satisfying dependences) are not addressed by these 
program control mechanisms based on century-old assumptions 



Case Study of a Complex Sociotechnical Program: 
Submarine Sonar System Upgrade 

5 Source:  NAVSEA PMS425/ASTO 

“Peace dividend” + loss 
of acoustic superiority 

Inability to Pace 
Moore’s Law 



Solution Required Significant Changes to the Technical 
System Architecture 

• Action:  Submarine Superiority Technology Panel 
– Reviewed technical and operational issues which determine acoustic 

superiority 

• Diagnosis - Prescription: 
– Leverage Moore’s Law:  COTS hardware 
– Experiment with new algorithms 

• Decision - Implementation: 
– Modular, “open” hardware, software, business architectures 
– “4 Step” build-test-build development process to experiment with new 

ideas using operational data 

6 © 2016 MIT 



Technical System Architecture Changes Required New 
Interaction Patterns Among Program Stakeholders 

7 

Middleware creates a layered 
architecture:  enables 

independent hardware and 
software upgrades* 

Program Office oversight + IPT 
structure enables:   

• Collaborative and decentralized 
decisions  

• Increased flexibility 
• Decisions on technical merit 
• Potentially increased innovation 

Integrated to Modular and 
Layered Architecture 

Tree to Lateral 
Hierarchy 

NUWC L-M 

*Interview data indicates that lack of modularity within application software 
block causes development/integration iterations (design churn) 

© 2016 MIT 



A Key PM Task Was Designing New Interactions Based 
on the New Social and Technical System Dependencies 

8 © 2016 MIT 



An Organic Process Evolved For Identifying and 
Satisfying Crucial Dependencies 

• Program managers understood that the primary program challenges 
included the dependencies and interactions. 

• They were mainly focused on implementing processes that increased the 
role of outside, or non-traditional, participants in the development process.  

• Their focus was on outcomes and on getting the “right” participants 
connected to each other.   

• This was a very evolutionary process, where membership was increased or 
decreased based on immediate need, where WGs were established and 
disestablished as need dictated.  
– Highlights the inherent role of change management in this kind of effort. 

9 © 2015 MIT – Eric Rebentisch – erebenti@mit.edu 



10 

Proposed Framework for Understanding Dependencies 
and Interactions Impacts on Programs 

© 2016 MIT 



Potential Dependency Attributes With Measurement 
Challenges 

• Dependence is driven by two sources of need:  
– Flow dependence results from the need for results or information from another task.  
– Pool dependence results from the need for a resource shared by another task. 

• Flow dependencies are more direct and easier to measure (traditional approaches) 
• Pool dependencies are more challenging to identify and measure, but also 

pervasive in complex networks 

11 © 2016 MIT 

Dependence Characteristic Description 
Awareness The extent to which the interdependence is recognized within the process. 

Closeness The extent to which the actions of dependent activities have an immediate 
effect on each other. 

Degree of mutuality The extent to which the dependent activities have equal need for each other. 

Feedback mechanism The way feedback is passed between dependent activities. 
Impact The extent to which not fulfilling the dependence in the desired manner affects 

the dependent activities. 

Satisfaction criteria The criteria necessary to fulfill the dependence. 
Strength The amount of required interaction as a direct result of the dependence. 

Urgency The time-criticality for fulfilling the dependence. 

 



A New Measurement Approach to Identify Key Behaviors 
and Performance Drivers in Complex Sociotechnical Systems 

• Key objectives of a dependence measurement system: 
– Must be able to be instrumented so as to be practically and sustainably implemented in a 

performance measurement system. 
– Must have a clear sampling approach, frequency, unit of analysis, etc. in order to produce 

reliable results. 
– Must have a clearly-defined measurement process, and ideally be indexed to current 

measurement and control systems in order to assess its predictive power relative to 
existing approaches. 

• Attributes to measure (at minimum): 
– Demands to interact 
– Awareness of interaction demands 
– Performance of interactions (volume, quality, timeliness, cost, …) 
– Satisfaction of the demand to interact 

12 © 2016 MIT 

This emphasis on interaction behaviors and capabilities is significantly 
different from, but compliments existing control systems that focus 

exclusively on task completion 



Conclusion 
• This research identified important gaps in current program control systems, 

primarily around dependencies and interactions within and between the 
social and technical systems in a program.  

• The completed research will identify measures and an experimental 
method to empirically validate these measures of behavioral elements in 
programs. 

• Follow-on research (just beginning) will employ these measures with teams 
in programs to evolve and refine the measurement process and develop 
corresponding control systems for design, engineering, test and evaluation, 
fielding and sustainment of complex engineering programs. 

• By improving the awareness of, and coordination of action around critical 
dependencies in complex sociotechnical systems, we believe that program 
performance can be significantly improved. 
 

13 © 2016 MIT 



Contact  Information 

For additional information about our affiliated MIT research groups:  
CEPE: http://cepe.mit.edu  
GTL: http://gtl.k.u-tokyo.ac.jp/en/  
SERG: http://strategic.mit.edu/index.php  
 

Eric Rebentisch, Research Associate, Massachusetts Institute of Technology 
77 Massachusetts Ave., Bldg. E38-408, Cambridge, MA  02139 
Phone:  (617) 258-7773, Fax:  617-258-7845, email: erebenti@mit.edu 
 
Bryan Moser, Lecturer, Massachusetts Institute of Technology 
77 Massachusetts Ave., Bldg. E40-381, Cambridge, MA  02139 
Phone:  (617) 253-8973, email: bry@mit.edu 
 
John Q. Dickmann, Ph.D., Vice President, Sonalysts, Inc. 
P.O. Box 280, 215 Parkway North, Waterford, CT, 06385 
Phone: (401) 225-3511, email: jdickmann@sonalysts.com  

© 2016 MIT 

http://cepe.mit.edu/
http://gtl.k.u-tokyo.ac.jp/en/
http://strategic.mit.edu/index.php
mailto:erebenti@mit.edu
mailto:bry@mit.edu
mailto:jdickmann@sonalysts.com

	SYM-AM-16-122.pdf
	Acquisition Program Teamwork and Performance Seen Anew:�Exposing the Interplay of Architecture and Behaviors in Complex Defense Programs
	The Fundamental Challenge: Improving Development Program Performance
	Research Issue: Ineffective Control of Interactions in a Program Can Lead to Surprises
	Advances in Project Control Approaches Still Largely Framed by Original Assumptions
	Case Study of a Complex Sociotechnical Program: Submarine Sonar System Upgrade
	Solution Required Significant Changes to the Technical System Architecture
	Technical System Architecture Changes Required New Interaction Patterns Among Program Stakeholders
	A Key PM Task Was Designing New Interactions Based on the New Social and Technical System Dependencies
	An Organic Process Evolved For Identifying and Satisfying Crucial Dependencies
	Proposed Framework for Understanding Dependencies and Interactions Impacts on Programs
	Potential Dependency Attributes With Measurement Challenges
	A New Measurement Approach to Identify Key Behaviors and Performance Drivers in Complex Sociotechnical Systems
	Conclusion
	Slide Number 14


