
Approved for Public Release; Distribution Unlimited. 14-1013.

A Hybrid Analysis for
Security Protocols with State∗

John D. Ramsdell Daniel J. Dougherty
Joshua D. Guttman Paul D. Rowe

July 16, 2014

Abstract

Cryptographic protocols rely on message-passing to coordinate ac-
tivity among principals. Many richly developed tools, based on well-
understood foundations, are available for the design and analysis of
pure message-passing protocols. However, in many protocols, a prin-
cipal uses non-local, mutable state to coordinate its local sessions.
Cross-session state poses difficulties for protocol analysis tools.

We provide a framework for modeling stateful protocols, and a
hybrid analysis method. We leverage theorem-proving—specifically,
PVS—for reasoning about computations over state. An “enrich-by-
need” approach—embodied by CPSA—focuses on the message-passing
part. The Envelope Protocol, due to Mark Ryan furnishes a case
study.

Protocol analysis is largely about message-passing in a model in which every
message transmitted is made available to the adversary. The adversary can
deliver the messages transmitted by the regular (i.e. compliant) principals,
if desired, or not. The adversary can also retain them indefinitely, so that in
the future he can deliver them, or messages built from them, repeatedly.

However, some protocols also interact with long-term state. For instance,
the Automated Teller Machine protocols interact with the long-term state

∗This work partially supported by the US National Security Agency, and partially
supported by the National Science Foundation under grant CNS-1116557. Authors’ email
addresses: {guttman,prowe,ramsdell}@mitre.org, {dd,guttman}@wpi.edu.

c©2014 The MITRE Corporation. ALL RIGHTS RESERVED.

stored in banks’ account databases. Protocol actions are constrained by that
long-term state; for instance, an ATM machine will be told not to dispense
cash to a customer whose account has insufficient funds. Protocol actions
cause updates to long-term state; for instance, a successful withdrawal re-
duces the funds in the customer’s account. State-manipulating protocols are
important to electronic finance and commerce. They are also important in
trusted computing, i.e. in systems using Trusted Platform Modules for attes-
tation and secrecy. Indeed, as software interacts with real-world resources in
interoperable ways, cryptographic protocols that manipulate long-term state
will be increasingly central.

Long-term state is fundamentally different from message passing. The
adversary can always choose to redeliver an old message. But he cannot
choose to redeliver an old state; for instance, the adversary in an ATM net-
work cannot choose to replay a withdrawal, applying it to a state in which he
has sufficient funds, in case he no longer does. Regular principals maintain
long-term state across protocol executions in order to constrain subsequent
executions, and ensure that future runs will behave differently from past
runs.

The Cryptographic Protocol Shapes Analyzer [24] (cpsa) is our program
for automatically characterizing the possible executions of a protocol com-
patible with a specified partial execution. It is grounded in strand space
theory. There exists a mathematically rigorous theory [18] that backs up
the implementation of cpsa in Haskell, and proves the algorithm produces
characterizations that are complete, and that the algorithm enumerates these
characterizations.

Part of state manipulation can be encoded by message-passing. In this
“state-passing style,” reception of a message bearing the state represents
reading from the state, and transmission of an updated state as a message
represents writing to the state. These conventions help cpsa analyze proto-
cols with state. If a protocol interacts with the state, we add state-bearing
receive/transmit event pairs to its roles, and cpsa attempts to find paths
through state space as it generates executions. However, cpsa constructs
some executions which are in fact not possible. In these executions, a state-
bearing message is transmitted from one node and then received by two
different state-receiving nodes.

cpsa does not recognize that this is not possible in a state-history, and
thus provides only an approximate analysis. Showing the correctness of the
protocol requires a more refined analysis.

2

Our contribution. We apply cpsa to a system that relies on state, cou-
pling cpsa with the Prototype Verification System [21] (pvs) proof assistant.

We specified a version of strand space theory in pvs. On top of this
theory, we encoded the result of a cpsa analysis run as a formula in the
pvs logic. This formula is justified by the cpsa completeness result [23].
We then use this formula as an axiom in pvs. Proofs using this axiom may
imply the existence of additional message transmission/receptions, leading to
an enriched cpsa analysis. In this way the theorem-proving and execution-
finding analysis activities cooperate, over the common semantic foundation
of strand space theory. Hence, the combination is semantically sound.

Outline of the Analysis. Our paradigm is cpsa’s enrich-by-need ap-
proach [15]. That is, we ask: What kinds of executions are possible, assuming
that a particular pattern of events has occurred? To verify authentication
properties, we observe that all executions contain certain required events. To
verify confidentiality properties, we consider patterns that include a disclo-
sure, and observing that no executions are possible. Our method involves a
conversation (so to speak) between cpsa and pvs. The main steps are:

1. Within pvs we define theories (i) Tbnd of strand spaces and protocol
executions (“bundles”) and (ii) Tstate of transition relations and their
state histories (see Fig. 1). Tannot is their union, a theory of protocol
executions where some protocol steps are annotated with a state tran-
sition. Augmenting Tbnd with information about a protocol Π produces
Tbnd(Π). Augmenting Tstate with information about a particular transi-
tion relation produces Tstate(). The union of Tannot , Tbnd(Π), and
Tstate() is Tannot(Π,).

Our pvs theories are in fact somewhat coarser than this.

2. Within the state transition theory Tstate(), we prove lemmas in pvs
such as Lemma 1 below. Some of their consequences in the anno-
tated protocol theory Tannot(Π,) use only the limited vocabulary of
Tbnd(Π); we call them bridge lemmas. Lemma 3 is a bridge lemma.
They bring information back from the state world to the protocol world.

3. Independently, cpsa analyzes the protocols, with state-manipulation
modeled as message-passing, but without any special knowledge about
state transition histories. A sentence, called a shape analysis sen-
tence [22, 15], summarizes its results in a sentence in the language

3

Tbnd //
&&

Tbnd(Π)
**

Tannot // Tannot(Π,)

Tstate //
88

Tstate()
44

Figure 1: Theory Inclusions
of Tbnd(Π). A shape analysis sentence, such as Lemma 2, is used as an
axiom in proofs within pvs.

4. Using bridge lemmas and state analysis sentences jointly, we infer con-
clusions about protocol runs in Tbnd(Π). If we prove a contradiction,
that shows that the situation given to cpsa cannot in fact occur. Oth-
erwise, we may prove that additional message transmissions and recep-
tions occurred, as in Thm. 4.

5. We incorporate these additional nodes into a new cpsa starting point,
and allow cpsa to draw conclusions. Additional round trips are possi-
ble.

Structure. The body of this paper describes an application of our method
to the Envelope Protocol, a protocol that interacts with a Trusted Platform
Module (TPM) to achieve an important security goal. Section 1 describes
the protocol Π. Section 2 describes our TPM model, Tstate(). Section 3
presents the theory of bundles Tbnd encoded within pvs, and specializes this
to Tbnd(Π), demonstrating our main trick of including state-bearing receive-
transmit pairs to encode the state transitions. Section 4 describes cpsa, our
protocol analysis tool and what results cpsa infers in Tbnd(Π). Section 5
links the state world and the protocol world Tannot(Π,). The relevant
bridge lemma is stated and applied to prove the Envelope Protocol security
goal.

1 The Envelope Protocol

The proof of an important security goal of the Envelope Protocol [2] was the
focus of most of our effort. The protocol allows someone to package a secret
such that another party can either reveal the secret or prove the secret never
was and never will be revealed.

4

Protocol motivation. The plight of a teenager motivates the protocol.
The teenager is going out for the night, and her parents want to know her
destination in case of emergency. Chafing at the loss of privacy, she agrees to
the following protocol. Before leaving for the night, she writes her destination
on a piece of paper and seals the note in an envelope. Upon her return, the
parents can prove the secret was never revealed by returning the envelope
unopened. Alternatively, they can open the envelope to learn her destination.

The parents would like to learn their daughter’s destination while still
pretending that they have respected her privacy. The parents are thus the
adversary. The goal of the protocol is to prevent this deception.

Necessity of long-term state. The long-term state is the envelope. Once
the envelope is torn open, the adversary no longer has access to a state in
which the envelope is intact. A protocol based only on message passing is
insufficient, because the ability of the adversary monotonically increases. At
the beginning of the protocol the adversary can either return the envelope
or tear it. In a purely message-based protocol the adversary will never lose
these abilities.

Cryptographic version. The cryptographic version of this protocol uses a
TPM to achieve the security goal. Here we restrict our attention to a subset
of the TPM’s functionality. In particular we model the TPM as having a
state consisting of a single Platform Configuration Register (PCR) and only
responding to five commands. A boot command sets the PCR to a known
value. The extend command takes a piece of data, d, and replaces the
current value val of the PCR with the hash of d and val , i.e. #(d, val).
In fact, the form of extend that we model, which is an extend within an
encrypted session, also protects against replay. These are the only commands
that alter the value in a PCR.

The TPM provides other services that do not alter the PCR. The quote

command reports the value contained in the PCR and is signed in a way as
to ensure its authenticity. The create key command causes the TPM can
create an asymmetric key pair where the private part remains shielded within
the TPM. However, it can only be used for decryption when the PCR has a
specific value. The decrypt command causes the TPM to decrypt a message
using this shielded private key, but only if the value in the PCR matches the
constraint of the decryption key.

5

In what follows, Alice plays the role of the teenaged daughter packaging
the secret. Alice calls the extend command with a fresh nonce n in an
encrypted session. She uses the create key command constraining that
new key to be used only when a specific value is present in the PCR. In
particular, the constraining value cv she chooses is the following:

cv = #(“obtain”,#(n, val))

where val was the PCR value prior the extend command. She then encrypts
her secret v with this newly created key.

Using typical message passing notation, Alice’s part of the protocol might
be represented as follows (where k′ denotes the key created in the second line,
and where we still ignore the replay protection):

A → TPM : {|“extend”, n|}k
A → TPM : “create key”,#(“obtain”,#(n, val))

TPM→ A : k′

A → Parent : {|v|}k′
The parent acts as the adversary in this protocol. We assume he can per-
form all the normal Dolev-Yao operations such as encrypting and decrypting
messages when he has the relevant key, and interacting with honest proto-
col participants. Most importantly, the parent can use the TPM commands
available in any order with any inputs he likes. Thus he can extend the PCR
with the string obtain and use the key to decrypt the secret. Alternatively,
he can extend the PCR with the string refuse and then generate a TPM
quote as evidence the secret will never be exposed. The goal of the Envelope
Protocol is to ensure that once Alice has prepared the TPM and encrypted
her secret, the parent should not be able to both decrypt the secret and also
generate a refusal quote, {| “quote”,#(“refuse”,#(n, val)), {|v|}k′|}aik .

A crucial fact about the PCR role in this protocol is the injective nature
of the hashing, ensuring that for every x

#(“obtain”,#(n, val)) 6= #(“refuse”, x) (1)

2 The TPM Model

In this section we introduce our TPM state theory Tstate() focusing on
representing the value of the PCR and how the TPM commands may change
it.

6

Sorts: M, >, A, S, D, E
Subsorts: A < >, S < >, D < >, E < >
Operations: bt : M TPM boot

ex :>×M→ M TPM extend
(·, ·) :>×> → > Pairing
{| · |}(·) :>× A→ > Asymmetric encryption
{| · |}(·) :>× S→ > Symmetric encryption

(·)−1 : A→ A Asymmetric key inverse

(·)−1 : S→ S Symmetric key inverse
:> → S Hashing
ai, bi : A Asymmetric key constants
si : S Symmetric key constants
di : D Data constants
ei : E Text constants
gi :> Tag constants

Equations: ai
−1 = bi bi

−1 = ai (i ∈ N)

∀k : A. (k−1)
−1

= k ∀k : S. k−1 = k

Figure 2: Crypto Algebra with State Signature

Fig. 2 shows the signature of the order-sorted algebra used in this paper.
Sort M is the sort of TPM machine states and sort > is the top sort of
messages. Messages of sort A (asymmetric keys), sort S (symmetric keys),
sort D (data), and sort E (text) are called atoms. Messages are atoms, tag
constants, or constructed using encryption {| · |}(·), hashing #(·), and pairing
(·, ·), where the comma operation is right associative and parentheses are
omitted when the context permits.

The algebra is the initial quotient term algebra over the signature. It is
easy to show that each term t of the algebra is equal to a unique term t′

with no occurrences of the inverse operation (·)−1; we choose this t′ to be the
canonical representative of t.

We use the function pcr to coerce TPM states, which are of sort M, to
messages, specifically to symmetric keys of sort S:

pcr : M→ S
pcr(bt) = s0

pcr(ex(t,m)) = #(t, pcr(m))

7

where constant s0 is known to all. Modeling the injectivity of the hash
function (cf. Equation 1), we postulate that the function pcr is injective.

The definition of the TPM transition relation is

m0 m1 iff m1 = bt (boot)
or ∃t :>.m1 = ex(t,m0) (extend)
or m0 = m1 (quote, decrypt)

The create key command does not interact with the state.
In this framework we prove a crucial property of all executions which we

express in terms of the notion of a state having a message. A state has a
message if an extend operation with it is part of the state. For example,
ex(“obtain”, ex(v, bt)) has “obtain” and v, but it does not have “refuse”.

An infinite sequence of states π is a path if π(0) = bt and ∀i ∈ N. (π(i),
π(i+ 1)) ∈ . Paths in this TPM model have several useful properties. For
example, if a previous state is not a subterm of a state, there must have been
an intervening boot. Also, if a state has a message, and a previous state is a
boot state, there must have been an intervening transition that extends with
the message. These two properties can be combined into the property used
by the proof of the Envelope Protocol security goal: if a previous state is not
a subterm of a state that has a message, there must have been an intervening
transition that extends with the message. Lemma 1 formalizes this property
in our state theory Tstate(), and we proved it using pvs.

Lemma 1 (Prefix Boot Extend).

∀π ∈ path, t :>, i, k ∈ N. i ≤ k ∧ π(k) has t
⊃ subterm(π(i), π(k))
∨ ∃j ∈ N. i ≤ j < k ∧ π(j + 1) = ex(t, π(j))

3 Strand Spaces

This section introduces our strand space theory of the envelope protocol,
Tbnd(Π). In strand space theory [25], a strand represents the local behavior
of a principal in a single session. The trace of a strand is a linearly ordered
sequence of events e0 ⇒ · · · ⇒ en−1, and an event is either a message trans-
mission +t or a reception −t, where t has sort >. A strand space Θ is a map
from a set of strands to a set of traces. In the pvs theory of strand spaces,

8

the set of strands is a prefix of the natural numbers, so a strand space is a
finite sequence of traces.

In a strand space, a node identifies an event. The nodes of strand space
Θ are {(s, i) | s ∈ Dom(Θ), 0 ≤ i < |Θ(s)|}, and the event at a node is
evtΘ(s, i) = Θ(s)(i).

A message t0 is carried by t1, written t0 v t1 if t0 can be extracted from a
reception of t1, assuming the necessary keys are available. In other words, v
is the smallest reflexive, transitive relation such that t0 v t0, t0 v (t0, t1),
t1 v (t0, t1), and t0 v {|t0|}t1 . A message originates in trace c at index i if it is
carried by c(i), c(i) is a transmission, and it is not carried by any event earlier
in the trace. A message t is non-originating in a strand space Θ, written
non(Θ, t), if it originates on no strand. A message t uniquely originates in a
strand space Θ at node n, written uniq(Θ, t, n), if it originates in the trace
of exactly one strand s at index i, and n = (s, i).

The model of execution is a bundle. The pair Υ = (Θ,→) is a bun-
dle if it defines a finite directed acyclic graph, where the vertices are the
nodes of Θ, and an edge represents communication (→) or strand succes-
sion (⇒) in Θ. For communication, if n0 → n1, then there is a message t
such that evtΘ(n0) = +t and evtΘ(n1) = −t. For each reception node n1,
there is a unique transmission node n0 with n0 → n1. We use ≺ to denote
the causal ordering of nodes in a bundle: the transitive closure of → ∪ ⇒.
The strand space associated with a bundle Υ will be denoted ΘΥ unless the
association is clear from the context.

When a bundle is a run of a protocol, the behavior of each strand is
constrained by a role. Adversarial strands are constrained by roles as are
non-adversarial strands. A protocol is a set of roles, and a role is a set of
traces. A trace c is an instance of role r if c is a prefix of some member of r.
More precisely, for protocol P , we say that bundle Υ = (Θ,→) is a run of
protocol P if there exists a role assignment ra ∈ Dom(Θ)→ P such that for
all s ∈ Dom(Θ), Θ(s) is an instance of ra(s). In what follows, we fix the
protocol P and only consider bundles that are runs of P .

The roles that constrain adversarial behavior are defined by the functions
in Figure 3. The adversary can execute all instances of these patterns. For
the encryption related roles, k : A|S asserts that k is either a symmetric or
asymmetric key. For the create role, t : A|S|D|E asserts that t is an atom.
Atoms, characteristically, are what the adversary can create out of thin air
(modulo origination assumptions).

There is a role for each TPM operation. We represent them using a state-

9

create(t : A|S|D|E) = +t tag i = + gi
pair(t0 :>, t1 :>) = −t0 ⇒ −t1 ⇒ +(t0, t1)
sep(t0 :>, t1 :>) = −(t0, t1)⇒ +t0 ⇒ +t1
enc(t :>, k : A|S) = −t⇒ −k ⇒ +{|t|}k
dec(t :>, k : A|S) = −{|t|}k ⇒ −k−1 ⇒ +t

hash(t :>) = −t⇒ +#t

Figure 3: Adversary Traces

passing style. The state-passing style allows cpsa to do draw conclusions
about where states could come from. Each role receives a message encoding
the state at the time it occurs. It transmits a message encoding the state
after any state change it causes. We do the encoding using a special tag g0

and an encryption. For a transition m0 m1, the role contains

· · · ⇒ −{| g0, pcr(m0)|}#k ⇒ +{| g0, pcr(m1)|}#k ⇒ · · · .

Here k is an uncompromised symmetric key used only in TPM operations.
The states are encoded as encryptions using the hash #k of k. Tag g0 is
included to ensure that a state-bearing message is never confused with any
other protocol message. State-passing style is less restrictive than actual
state histories, since a state-bearing message may be received many times,
even if it is sent only once.

Using these receive-transmit pairs of state-bearing messages the TPM
roles are represented in Fig. 4, where tag g1 is obtain and tag g2 is refuse.
In the extend role, we now show the two initial messages that provide replay
prevention; the TPM supplies a fresh nonce as a session ID that must appear
with the value to be extended into the PCR. The createkey role does not
interact with the state. It simply creates a key that will be constrained by
the state in the boot role.

Alice’s role, including the messages to prevent replays, is:

alice(sid , v : D, esk : S, k, tpmk , aik : A, n : E, p :>) =
+(g4, tpmk , {|esk |}tpmk)⇒ −(g4, sid)
⇒ +{| g5, n, sid |}esk ⇒ +(g9,#(g1,#(n, p)))
⇒ −{| g8,#(g1,#(n, p))|}aik ⇒ +{|v|}k

The parameters sid and tpmk help prevent replays. To make formulas more
comprehensible, we omit them.

10

boot(k : S, p :>) =
− g3 ⇒ −{| g0, p|}#k ⇒ +{| g0, s0 |}#k

extend(sid : D, tpmk : A, esk , k : S, p, t :>) =
−(g4, tpmk , {|esk |}tpmk)⇒ +(g4, sid)⇒ −{| g5, t, sid |}esk
⇒ −{| g0, p|}#k ⇒ +{| g0,#(t, p)|}#k

quote(k : S, aik : A, p, n :>) =
−(g6, n)⇒ −{| g0, p|}#k ⇒ +{| g0, p|}#k ⇒ +{| g6, p, n|}aik

decrypt(m, t :>, k′, aik : A, k : S) =
−(g7, {|m|}k′)⇒ −{| g8, k

′, p|}aik ⇒ −{| g0, p|}#k ⇒ +{| g0, p|}#k ⇒ +m

createkey(k, aik : A, t :>) =
−(g9, t)⇒ +{| g8, k, t|}aik

g0 state g2 refuse g4 session g6 quote g8 created
g1 obtain g3 boot g5 extend g7 decrypt g9 create key

Figure 4: State-Bearing Traces

4 CPSA

This section discusses how we use our analysis tool cpsa to infer results in the
theory Tbnd(Π). cpsa carries out enrich-by-need analysis, and characterizes
the set of bundles consistent with a partial description of a bundle.

These partial descriptions are called skeletons. cpsa takes as input an
initial skeleton A0, and when it terminates it outputs a set of more descriptive
skeletons {Bi}i∈I . They have the property that any bundle containing the
structure in the initial skeleton A0 also contains all the structure in one
of the output skeletons Bi. In particular, it infers all of the non-adversarial
behavior that must be present in any bundle satisfying the initial description.
Of course for some initial skeletons A0, there may be no bundles that are
consistent with them. In this case, cpsa outputs the empty set.

The security goal for the Envelope Protocol is that a run of Alice’s role
should ensure that the secret and the refusal certificate are not both available:

Security Goal 1. Consider the following events:

11

•

•

•

•

•

alice
g4, tpmk , {|esk |}tpmk

g4, sid

{| g5, n, sid |}esk

g9,#(g1,#(n, p))

{| g8,#(g1,#(n, p))|}aik

{|v|}k

• v

•
{| g0, pcr(ex(g2, ex(n, p)))|}aik

Figure 5: Alice Point-Of-View

• An instance of the Alice role runs to completion, with secret v and
nonce n both freshly chosen;

• v is observed unencrypted;

• the refusal certificate {| “quote”,#(“refuse”,#(n, val)), {|v|}k′ |}aik is
observed unencrypted.

These events, which we call jointly A0, are not all present in any execution.

We can feed cpsa an input skeleton A0 representing this undesirable
situation. The skeleton A0 is visualized in Fig. 5.

We would hope cpsa could determine that no bundles are consistent
with this input A0 and return the empty set. However, our technique of
using state-bearing messages to represent the TPM state transitions under-
constrains the set of possible state paths. For this reason, cpsa actually
produces one skeleton in its output. This skeleton represents some activity
that must have occured within the TPM in any bundle conforming to the
initial skeleton. It contains an instance of the decrypt role (to explain the
secret leaking), an instance of the quote role (to explain the creation of the
refusal token), and several instances of the extend role (to explain how the
TPM state evolved in order to allow the other two operations).

Fig. 6 displays the relevant portion of cpsa’s output displaying only the
state-bearing nodes of the extend strands inferred by cpsa. Notice that two

12

•

extend •

extend

•

extend

{| g0, pcr(p)|}#k

{| g0, pcr(ex(n, p))|}#k {| g0, pcr(ex(n, p))|}#k

{| g0, pcr(ex(g1, ex(n, p))|}#k

{| g0, pcr(ex(g2, ex(n, p))|}#k

g1 is obtain
g2 is refuse

g0 is state

Figure 6: State Splitting

of the extend strands branch off from the third strand. This is a state split
in which a single state evolves in two distinct ways. The technique of using
state-bearing messages is not sufficient to preclude this possibility.

cpsa’s enrich-by-need approach is a form of model finding, rather than
theorem proving. In order to use cpsa’s results to our advantage we need
to express its conclusions in the logical theory Tbnd(Π). For that purpose
we transform our skeletons into formulas in order-sorted logic and define
what it means for a bundle to satisfy these formulas. The sorts are the
message algebra sorts augmented with a sort Z for strands and sort N for
nodes. The atomic formula htin(z, h, c) asserts that strand z has a length
of at least h, and its trace is a prefix of trace c. The formula n0 � n1

asserts node n0 precedes node n1. The formula non(t) asserts that message t
is non-originating, and uniq(t, n) asserts that message t uniquely originates
at node n. Finally, the formula sends(n, t) asserts that the event at node n
is a transmission of message t. The roles of the protocol serve as function
symbols. A skeleton A is represented by the conjunction of all facts true in
the skeleton.

We encode an entire cpsa analysis by first encoding the input skeleton
A0 and the output skeletons {Bi}i∈I . The analysis is then encoded as an
implication. A formula Φ0 describing the input A0, is the hypothesis of
the conditional. The disjunction of the formulas Ψi describing the outputs
{Bi}i∈I form the conclusion. When cpsa discovers that there are no bundles
compatible with the initial skeleton, the conclusion is encoded as the empty
disjunction, ⊥.

The satisfaction relation is defined using the clauses in Fig. 7. It relates
a bundle, a variable assignment, and a formula: Υ, α |= Φ. A bundle Υ

13

Υ, α |= x = y iff α(x) = α(y);
Υ, α |= htin(z, h, c) iff |ΘΥ(α(z))| ≥ α(h) and

ΘΥ(α(z)) is a prefix of α(c);
Υ, α |= n0 � n1 iff α(n0) ≺Υ α(n1);
Υ, α |= non(t) iff non(ΘΥ, α(t));
Υ, α |= uniq(t, n) iff uniq(ΘΥ, α(t), α(n));
Υ, α |= sends(n, t) iff evtΘΥ

(α(n)) = +α(t).

Figure 7: Satisfaction

is described by a skeleton iff the skeleton’s sentence Φ satisfies Υ, written
Υ |= Φ.

The formula Φ0 that specifies the initial skeleton relevant to the Envelope
Protocol security goal is

htin(z, 4, alice(v, esk , k, aik , n, p)) ∧ sends(n1, v)
∧ sends(n2, {| g0, pcr(ex(g2, ex(n, p)))|}aik)
∧ non(aik) ∧ non(esk)
∧ uniq(n, (z, 1)) ∧ uniq(v, (z, 4)),

(2)

where v : D, esk : S, k, aik : A, n : E, p :>, z : Z, n1, n2 : N.
The output skeleton B1 is much larger and its formula Ψ1 is correspond-

ingly large. The relevant part of this formula representing the fragment in
Fig. 6 is

htin(z1, 3, extend(esk , k, pcr(p), n))
∧ htin(z2, 3, extend(esk , k, pcr(ex(n, p)), g1))
∧ htin(z3, 3, extend(esk , k, pcr(ex(n, p)), g2)),

(3)

where esk , k : S, p :>, n : E, z1, z2, z3 : Z. The full formula for B1 has more
conjuncts.

Let the vector x contain the variables that appear free in Φ0, and possibly
also in Ψ1, and let the vector y contain the variables that occur free in Ψ1

only. Summarizing cpsa’s analysis for the Envelope Protocol in Tbnd(Π), we
have:

Lemma 2. ∀x. (Φ0 ⊃ ∃ y.Ψ1), where Φ0,Ψ1 are as in formulas 2–3.

However, unlike Lemma 1, this lemma was not derived within pvs.
Rather, it is true if cpsa’s analysis is correct. We import it into pvs as
an axiom.

14

Lemma 2 is however something capable of direct proof within pvs as a
theorem of Tbnd(Π). Indeed, there is precedent for constructing proofs of this
sort. Meier et al. [19] show how to instrument a different protocol analysis
tool, called Scyther [7], so that each step it takes generates a lemma in the
Isabelle proof system. Then, they use reusable results proved once within
Isabelle to discharge these lemmas. Curiously, one of the main lemmas, the
authentication test theorem in an earlier form, has already been established
within pvs [17]. Thus, it appears possible, although a substantial undertak-
ing, to transform cpsa from a central piece of our analysis infrastructure to
a heuristic to guide derivations within pvs.

5 Reasoning About Messages and State

This section presents some details of the theory Tannot(Π,). We then show
how the previous lemmas combine allowing us to conclude that the security
goal of the Envelope Protcol is achieved.

In Tannot(Π,), the state transitions associated with a protocol are spec-
ified by annotating some events in a role of Π with a subset of the transition
relation . The reason for annotating events with a subset of the transition
relation, rather than an element, will be explained at the end of this sec-
tion. We use ⊥ for an event that is not annotated, and ↑a for an event that
is annotated with a. The events that are annotated are the transmissions
associated with receive-transmit pairs of state-bearing messages.

· · · ⇒ −{| g0, pcr(m0)|}#k ⇒ +{| g0, pcr(m1)|}#k ⇒ · · ·
⊥ ⊥ ↑{(m0,m1)} ∩ ⊥

A node in a bundle inherits its annotation from its role. The set of
nodes in Υ that are annotated is anode(Υ), and anno(Υ, n, a) asserts that
node n in Υ is annotated with some a ⊆ . In the Envelope Protocol, a node
annotated by a TPM extend role cannot be an instance of any other role.

Our goal is to reason only with bundles that respect state semantics.
A bundle Υ with a transition annotating role assignment is compatible [14,
Def. 11] with transition relation if there exists ` ∈ N, f ∈ anode(Υ) →
{0, 1, . . . , `− 1}, and π ∈ path such that

1. f is bijective;

2. ∀n0, n1 ∈ anode(Υ). n0 ≺ n1 ⇐⇒ f(n0) < f(n1);

15

3. ∀n ∈ anode(Υ), a ⊆ .
anno(Υ, n, a) ⊃ (π(f(n)), π(f(n) + 1)) ∈ a.

A bundle that satisfies Tannot(Π,) is a compatible bundle.
Because the function f is bijective, all annotated nodes in a compatible

bundle are totally ordered. Looking back at Fig. 6, either the nodes in the
leftmost strand precede the nodes in the rightmost strand or succeed them.

The compatible bundle assumption allows one to infer the existence of
nodes that are not revealed by cpsa. In the case of the Envelope Protocol
this is done by importing the Prefix Boot Extend Lemma (Lemma 1) from
Tstate() into the strand space world by proving the following lemma (stated
here in plain English) within Tannot(Π,) using pvs. Its proof uses the full
content of compatibility.

Lemma 3 (Bridge, informally). Let Υ be a compatible bundle, containing
two annotated nodes, n0 ≺ n1, where n1’s state has a value t. Then either
n0’s state is a subterm of n1’s state, or else there is an extend node between
them that incorporates t.

This Bridge Lemma implies there is another extend strand between the
two strands that represent the state split. This theorem is also proved with
pvs in Tannot(Π,); however, syntactically it is a sentence of the language
of Tbnd(Π). That is, Tannot(Π,) adds information to Tbnd(Π), because
Tannot(Π,)’s models are only the compatible bundles. The theorem is the
following.

Theorem 4 (Inferred Extend Strand).

∀z0, z1 : Z, t, t0, t1 :>,m0,m1 : M, esk 0, esk 1, k0, k1 : A.
htin(z0, 2, extend(esk 0, k0, pcr(m0), t0))
∧ htin(z1, 2, extend(esk 1, k1, pcr(m1), t1))
∧ (z0, 1)� (z1, 0) ∧m1 has t
⊃ subterm(ex(t0,m0),m1)
∨ ∃z : Z,m : M, esk , k : A.
htin(z, 2, extend(esk , k, pcr(m), t))
∧ (z0, 1)� (z, 0) ∧ (z, 1)� (z1, 0)

Theorem 4 implies that Fig. 6 has an additional extend strand, as shown
in Fig. 8. Restarting cpsa with A0 enriched with all of this additional infor-
mation, we learn that no such execution is possible. This justifies Security
Goal 1.

16

•

extend •

extend

•

extend

•

extend≺

≺

{| g0, pcr(m)|}#k′

{| g0, pcr(ex(n,m))|}#k′

Figure 8: Inferred Extend Strand

Our Method. We have now completed an illustration of the hybrid method
for analyzing a protocol with state. We took the following key steps.

1. We defined states and a transition relation representing a TPM frag-
ment. We proved a key lemma (Lemma 1) in the resulting theory
Tstate().

2. We defined the envelope protocol as a pvs theory Tbnd(Π). We en-
coded the states as certain encrypted messages, and used state-passing
to represent the actions of the TPM in protocol roles. The encoding
function is an injective function g. We connect · · · − t0 ⇒ +t1 · · · , as
a state-passing representation, with Tstate() by annotating the role
with the annotation:

{(m0,m1) | t0 = g(m0) ∧ t1 = g(m1)} ∩ .

We prove bridge lemmas along the lines of Lemma 3.

3. Independently, we define Π in the cpsa input language, and query
cpsa with a starting point A0 as in our security goal. We translate the
results in the form of state analysis sentences such as Lemma 2, which
we use within pvs as axioms.

4. From a state analysis sentence and bridge lemmas, we deduce con-
clusions about all compatible bundles of Π and . Thm. 4 was an
example. These theorems may already establish our security goals.

5. Alternatively, the conclusions about compatible bundles may give us
an enriched starting point, which we can bring back into cpsa, as we

17

did here to determine that Security Goal 1 is achieved, and A0 cannot
appear in any compatible bundle.

We have also applied this method to several simple protocols besides the
Envelope Protocol. The steps in applying the method are always the same.
While the application of these ideas is routine, it is quite time consuming. A
goal of future research is to automate much more of the method.

But why annotate events with subsets of the transition relation rather
than elements of it? The extend role does not guarantee it receives a state-
bearing message of the form {| g0, pcr(m0)|}#k. It says only that the incoming
message has the form {| g0, t0|}#k. We must eliminate strands in which t0 is
not in the range of the pcr function. That is why we use the annotation
shown in Step 2.

A bundle in which a received state encoding message is not in the range
of the pcr function will have a node annotated with the empty set. This
bundle does not respect state semantics and is eliminated from consideration
by the definition of compatibility.

6 Related Work and Conclusion

Related Work. The problem of reasoning about protocols and state has
been an increasing focus over the past several years. Protocols using Trusted
Platform Modules (TPMs) and other hardware security modules (HSMs)
have provided one of the main motivations for this line of work.

A line of work was motivated by HSMs used in the banking industry [16,
26]. This work identified the effects of persistent storage as complicating the
security analysis of the devices. Much work explored the significance of this
problem in the case of PKCS #11 style devices for key management [5, 6, 12].
These papers, while very informative, exploited specific characteristics of the
HSM problem; in particular, the most important mutable state concerns the
attributes that determine the usage permitted for keys. These attributes
should usually be handled in a monotonic way, so that once an attribute has
been set, it will not be removed. This justifies using abstractions that are
more typical of standard protocol analysis.

In the TPM-oriented line of work, an early example using an automata-
based model was by Gürgens et al. [13]. It identified some protocol failures
due to the weak binding between a TPM-resident key and an individual
person. Datta et al.’s “A Logic of Secure Systems” [9] presents a dynamic

18

logic in the style of PCL [8] that can be used to reason about programs that
both manipulate memory and also transmit and receive cryptographically
constructed messages. Because it has a very detailed model of execution,
it appears to require a level of effort similar to (multithreaded) program
verification, unlike the less demanding forms of protocol analysis.

Mödersheim’s set-membership abstraction [20] works by identifying all
data values (e.g. keys) that have the same properties; a change in properties
for a given key K is represented by translating all facts true for K’s old
abstraction into new facts true of K’s new abstraction. The reasoning is still
based on monotonic methods (namely Horn clauses). Thus, it seems not to
be a strategy for reasoning about TPM usage, for instance in the envelope
protocol.

The paper [14] by one of us developed a theory for protocols (within strand
spaces) as constrained by state transitions, and applied that theory to a fair
exchange protocol. It introduced the key notion of compatibility between
a protocol execution (“bundle”) and a state history. In the current paper
we will also rely on the same notion of compatibility, which was somewhat
hidden in [14]. However, the current paper does not separate the protocol
behavior from state history as sharply as did [14].

A group of papers by Ryan with Delaune, Kremer, and Steel [10, 11], and
with Arapinis and Ritter [3] aim broadly to adapt ProVerif for protocols that
interact with long-term state. ProVerif [4, 1] is a Horn-clause based protocol
analyzer with a monotonic method: in its normal mode of usage, it tracks
the messages that the adversary can obtain, and assumes that these will
always remain available. Ryan et al. address the inherent non-monotonicity
of adversary’s capabilities by using a two-place predicate att(u,m) meaning
that the adversary may possess m at some time when the long-term state
is u. In [3], the authors provide a compiler from a process algebra with
state-manipulating operators to sets of Horn clauses using this primitive.
In [11], the authors analyze protocols with specific syntactic properties that
help ensure termination of the analysis. In particular, they bound the state
values that may be stored in the TPMs. In this way, the authors verify two
protocols using the TPM, including the envelope protocol.

One advantage of the current approach relative to the ProVerif approach
is that it works within a single comprehensive framework, namely that of
strand spaces. Proofs about state within pvs succeeded only when definitions
and lemmas were properly refined, and all essential details represented. As
a result, our confidence is high that our proofs about protocols have their

19

intended meaning.

Conclusion. The proof of the Envelope Protocol security goal presented
here shows a detailed example of our method for applying cpsa to systems
that include a state component. cpsa was coupled with about 2400 lines of
pvs specifications to produce a proof of a difficult security goal. The method
is sound due to the use of the common foundation of strand space theory for
all reasoning.

The approach could be improved in two main ways. First, the proofs
within pvs are strenuous. We would like to develop a method in which—
apart perhaps from a few key reusable lemmas in the state theory Tstate()—
the remainder of the reasoning concerning both state and protocol behavior
occurs automatically in cpsa’s automated, enrich-by-need manner. Second,
there is some artificiality in the state-threading representation that we have
used here. It requires the protocol description to make explicit the details
of the full state, and to express each state change in a syntactic, template-
based form. Moreover, the state information is also redundantly encoded in
the annotations that appear in Tannot(Π,). Our earlier work [14] instead
encapsulated all of the state information in a labeled transition relation. The
protocol definitions contain only a type of “neutral node” which are neither
transmissions nor receptions. These nodes are associated with the same labels
as appear in labeled transitions. This allows us to define “compatibility,”
and to work with protocol and state definitions as independent modules. We
intend also to explore this style of definition.

Acknowledgment. We are grateful to Ed Zieglar for discussions and sup-
port.

References

[1] Mart́ın Abadi and Bruno Blanchet. Analyzing security protocols with
secrecy types and logic programs. Journal of the ACM, 52(1):102–146,
January 2005.

[2] K. Ables and M. Ryan. Escrowed data and the digital envelope. Trust
and Trustworthy Computing, pages 246–256, 2010.

20

[3] Myrto Arapinis, Eike Ritter, and Mark Dermot Ryan. Statverif: Verifi-
cation of stateful processes. In Computer Security Foundations Sympo-
sium (CSF), pages 33–47. IEEE, 2011.

[4] Bruno Blanchet. An efficient protocol verifier based on Prolog rules. In
14th Computer Security Foundations Workshop, pages 82–96. IEEE CS
Press, June 2001.

[5] Véronique Cortier, Gavin Keighren, and Graham Steel. Automatic anal-
ysis of the security of xor-based key management schemes. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 538–
552. Springer, 2007.

[6] Véronique Cortier and Graham Steel. A generic security api for symmet-
ric key management on cryptographic devices. In Computer Security–
ESORICS 2009, pages 605–620. Springer, 2009.

[7] Cas Cremers and Sjouke Mauw. Operational semantics and verification
of security protocols. Springer, 2012.

[8] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A
derivation system and compositional logic for security protocols. Journal
of Computer Security, 13(3):423–482, 2005.

[9] Anupam Datta, Jason Franklin, Deepak Garg, and Dilsun Kaynar. A
logic of secure systems and its application to trusted computing. In
Security and Privacy, 2009 30th IEEE Symposium on, pages 221–236.
IEEE, 2009.

[10] Stéphanie Delaune, Steve Kremer, Mark D Ryan, and Graham Steel.
A formal analysis of authentication in the TPM. In Formal Aspects of
Security and Trust, pages 111–125. Springer, 2011.

[11] Stéphanie Delaune, Steve Kremer, Mark D. Ryan, and Graham Steel.
Formal analysis of protocols based on TPM state registers. In IEEE
Symposium on Computer Security Foundations. IEEE CS Press, June
2011.

[12] Sibylle Fröschle and Nils Sommer. Reasoning with past to prove PKCS#
11 keys secure. In Formal Aspects of Security and Trust, pages 96–110.
Springer, 2011.

21

[13] Sigrid Gürgens, Carsten Rudolph, Dirk Scheuermann, Marion Atts, and
Rainer Plaga. Security evaluation of scenarios based on the TCG’s TPM
specification. In Computer Security–ESORICS 2007, pages 438–453.
Springer, 2007.

[14] Joshua D. Guttman. State and progress in strand spaces: Proving fair
exchange. Journal of Automated Reasoning, 48(2):159–195, 2012.

[15] Joshua D. Guttman. Establishing and preserving protocol security goals.
Journal of Computer Security, 2014.

[16] Jonathan Herzog. Applying protocol analysis to security device inter-
faces. IEEE Security & Privacy, 4(4):84–87, 2006.

[17] Bart Jacobs and Ichiro Hasuo. Semantics and logic for security protocols.
Journal of Computer Security, 17(6):909–944, 2009.

[18] Moses D. Liskov, Paul D. Rowe, and F. Javier Thayer. Com-
pleteness of CPSA. Technical Report MTR110479, The MITRE
Corporation, March 2011. http://www.mitre.org/publications/

technical-papers/completeness-of-cpsa.

[19] Simon Meier, Cas Cremers, and David Basin. Efficient construction of
machine-checked symbolic protocol security proofs. Journal of Computer
Security, 21(1):41–87, 2013.

[20] Sebastian Mödersheim. Abstraction by set-membership: verifying se-
curity protocols and web services with databases. ACM Conference on
Computer and Communications Security, pages 351–360, 2010.

[21] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, 11th International Conference on
Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial
Intelligence, pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag.
http://pvs.csl.sri.com.

[22] John D. Ramsdell. Deducing security goals from shape analysis sen-
tences. The MITRE Corporation, April 2012. http://arxiv.org/abs/
1204.0480.

22

http://www.mitre.org/publications/technical-papers/completeness-of-cpsa
http://www.mitre.org/publications/technical-papers/completeness-of-cpsa
http://pvs.csl.sri.com
http://arxiv.org/abs/1204.0480
http://arxiv.org/abs/1204.0480

[23] John D. Ramsdell. Proving security goals with shape analysis sentences.
Technical Report MTR130488, The MITRE Corporation, September
2013. http://arxiv.org/abs/1403.3563.

[24] John D. Ramsdell and Joshua D. Guttman. CPSA: A cryptographic pro-
tocol shapes analyzer, 2009. http://hackage.haskell.org/package/

cpsa.

[25] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: Proving security protocols correct. Journal of Computer Secu-
rity, 7(2/3):191–230, 1999.

[26] Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow, Jonathan Herzog,
Amerson Lin, Ronald Rivest, and Ross Anderson. Robbing the bank
with a theorem prover. In Security Protocols Workshop, 2007. Available
at http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-644.pdf.

23

http://arxiv.org/abs/1403.3563
http://hackage.haskell.org/package/cpsa
http://hackage.haskell.org/package/cpsa
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-644.pdf

	The Envelope Protocol
	The TPM Model
	Strand Spaces
	CPSA
	Reasoning About Messages and State
	Related Work and Conclusion

