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Abstract

We consider the problem of determining functions of an image of an object that are insensitive

to illumination changes. We �rst show that for an object with Lambertian reectance there are

no discriminative functions that are invariant to illumination. We do this by showing that given

any two images, one can construct a single Lambertian object that can produce both images under

two very simple lighting conditions. This result leads us to adopt a probabilistic approach in which

we analytically determine a probability distribution for the image gradient as a function of the

surface's geometry and reectance. Our distribution reveals that the direction of the image gradient

is insensitive to changes in illumination direction. We verify this empirically by constructing a

distribution for the image gradient from more than 20 million samples of gradients in a database of

1,280 images of 20 inanimate objects taken under varying lighting conditions. Using this distribution,

we develop an illumination insensitive measure of image comparison and test it on the problem of

face recognition.

�This paper is based on \Comparing Images Under Variable Illumination," by Jacobs, Belhumeur, and Basri, which
appeared in the IEEE Conference on Computer Vision and Pattern Recognition, June 1998, and on \In Search of
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yBelhumeur was supported by Presidential Early Career Award for Scientists and Engineers IIS-9703134, ARO
DAAH04-95-1-0494, NSF KDI-9980058, NIH RO1-EY 12691-01.



1 Introduction

Changes in viewpoint and illumination can dramatically alter the appearance of an object. To

generalize e�ectively, image-based recognition systems must use methods of image comparison that

work in spite of these changes. We focus here solely on changes in illumination and ask: Are there

discriminative illumination invariants? If not, are there local image measurements that are at least

insensitive to illumination changes?

We show that even for objects with Lambertian reectance [28], there are no discriminative

functions of images of objects that are invariant to illumination. This di�ers from earlier �ndings in

that we do not assume a homogeneous BRDF [27, 5], coplanarity [36], or consider invariants based

on multiple images [48]. To do this, we show that for any two images | whether or not they are

of the same object | there is always a family of surfaces, albedo patterns, and light sources that

could have produced them.

This result suggests that in comparing images for recognition, alignment, or tracking, one must

resort to probabilistic measures of comparison. (Here we do not assume we have access to multiple

training images of the same object under varying illumination. If we did, we could extract invariants

[48] or construct representations for modeling the illumination variation [43, 20, 3, 18].) We develop

a measure of image comparison by considering illumination to be a random variable which gives rise

to the apparent randomness in local image measurements. Speci�cally, we derive the probability

distribution of the image gradient of a point on a surface as determined by the di�erential geometric

and reectance properties at that point. Our distribution reveals that the direction of the image

gradient (which is perpendicular to the ow �eld [5]) is insensitive to changes in illumination direc-

tion. Using the image gradient distribution, we then develop an illumination insensitive measure of

image comparison.

Finally, we verify our qualitative theoretical arguments by empirically constructing both our

distribution for the image gradient and our illumination insensitive measure of image comparison.

We do this using a database of 1,280 images of 20 objects taken under varying illumination direction.

We then test our illumination insensitive measure on the problem of face recognition, and compare
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our performance on 450 images of 10 individuals to that of other existing methods.

2 Background

In recent years there has been much work on object recognition by image comparison. In these

methods, an object is not described in terms of its 3-D properties, but rather in terms of the 2-D

images that it produces. One approach to appearance-based recognition is to sample an object's

possible images, and then to compare, in a lower dimensional image subspace, a novel image to the

set of sampled images, using pattern recognition techniques such as nearest neighbors. Turk and

Pentland [44] (inspired by the work of Kirby and Sirovich [26]) suggest such an approach, using

principal component analysis to compactly represent the training images. Murase and Nayar [35]

suggest accounting for lighting and viewpoint variation with such an approach by explicitly sampling

images of the object under all possible viewing conditions. The advantage of these methods is that

they do not have to derive 3-D structure, or to extrapolate to all possible images of an object based

on a small set of samples. The disadvantage is that the set of images an object can produce is

extremely large, since there are so many ways that viewing conditions can vary. Murase and Nayar,

for example, are only able to deal with one rotational degree of freedom in the object, and one

positional degree of freedom in a point light source. In principal their approach can handle greater

variability, but the number of images an object produces grows exponentially with the number of

degrees of freedom in the viewing conditions.

To build exible recognition systems that account for all the variability of the image formation

process, it seems necessary to �nd ways to generalize from images that are few relative to this

variability. The most powerful form of generalization is based on invariants. An invariant is a

property of an object that shows up in every image of that object. Geometric invariants have been

used for the recognition of restricted classes of objects, (e.g., planar [29] or symmetric [16]) that have

identi�able local features. But it has been shown that invariants do not exist for general classes of 3-

D objects ([7, 9, 33]). Photometric invariants have also been used for planar objects ([36, 42]). Moses

and Ullman have shown that photometric invariants do not exist, even for Lambertian objects, if the
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\objects" are allowed to consist of mosaics of possibly disconnected planar patches. In this paper,

we show the stronger result that discriminative invariants do not exist even when these surface

normals are required to form surfaces. Both geometric and photometric invariants can also exist

when one has access to multiple images of an object at recognition time. Such techniques are used

for structure-from-motion (e.g., [13]) or photometric stereo (e.g., [48, 10, 37]).

In the absence of invariants for recognition, one can attempt to use a small number of images

of an object to characterize the complete set of images that the object might produce. Ullman

and Basri [45] take this approach, showing that in many cases each of the 2-D images produced

by an object from di�erent viewpoints is a linear combination of a small number of basis images.

The spirit of this work is to use images of an object to predict what other images the object might

produce, without ever explicitly reconstructing the object's 3-D properties. Jacobs [23] determines

the most compact possible representations of these sets of images, while Faugeras and Robert [14]

presents methods for extrapolating the images that an object produces under perspective projection.

Shashua [43] and Moses [31] take an approach similar to that of Ullman and Basri to show that the

set of intensity images produced by an object under variable lighting conditions can be predicted

linearly from a small number of basis images. Belhumeur and Kriegman [3] show how to extend

this work to account for multiple or di�use light sources, and self-shadowing. In all this work, it

is assumed that training images provide su�cient prior information to completely characterize the

entire set of images that an object can produce. This information may be strictly weaker than

having a precise 3-D description of the object, because various approaches may not attempt to

recover elements of the structures that are altered by a 3-D a�ne transformation (e.g., [45, 43]) or a

bas-relief transformation (e.g., [4]). However, it is clear that much of the structure of an object must

be recovered in order to predict all images that it can produce, and that this may be di�cult to do

based on a small set of unconstrained training images. For example, Jacobs, Belhumeur, and Basri

[24] show that under arbitrary, di�use lighting conditions, it is not possible to exactly reconstruct

the albedos of an object, even when its structure is precisely known.

Finally, one may wish to perform recognition under variable viewing conditions when there
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is simply not enough prior information to fully characterize the e�ect of this variation. In this

case, one may wish to use image comparision methods that are insensitive to changes in viewing

condition, even if they are not completely invariant to changes. These are sometimes called quasi-

invariants. A number of geometric quasi-invariants have been proposed (e.g., [7, 51]); they are

sometimes relaxed versions of invariant properties. Related photometric methods have long been

used; one justi�cation for edge-based recognition methods is that for polyhedral objects edge position

is insensitive to illumination and viewpoint changes. (However for smooth surfaces, edge position

is sensitive to illumination changes.) More recently, Rao and Ballard [39], for example, recognize

objects using descriptors built from the multi-scale output of �lters. These are insensitive to modest

changes in viewpoint and illumination (for insensitive comparisons of color see, e.g., [17]). Irani and

Anandan [22] suggest comparing images using the squared output of directional derivative �lters to

gain insensitivity to changes in sensing modality.

After proving that illumination invariant properties do not exist for 3-D objects, we also develop

a probabilistic semi-invariant measure, namely, the direction of the image gradient, that is insensitive

to lighting variation. Our method is based on a geometric analysis of the e�ects of lighting variation

on the image gradients produced by a 3-D object. We compare this to empirical data, and produce

and test a new image comparison method.

3 Do Illumination Invariants Exist?

Given two images, are they created by two distinct objects, or the same object under di�erent

illuminations? While it seems possible that one can always, or at least sometimes, distinguish with

certainty between these two scenarios, in this section we show the contrary is true.

To analyze this question, we study the existence of discriminative illumination invariants: func-

tions of an image which are invariant to illumination on the object but vary with the object identity.

Formally, let O be some set of rigid objects including their optical properties; S be certain illumi-

nation conditions; and I be the set of all images. Function Q : O�S ! I gives the image I 2 I of

object o 2 O under illumination s 2 S, i.e., I = Q(o; s).
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We adopt the following de�nitions:

De�nition 1 A function � on I is invariant to illumination () �(Q(o; s)) = �(Q(o; l)), 8s; l 2

S; o 2 O.

De�nition 2 An illumination invariant � is nondiscriminative for object set O () �(I) = �(J),

8I 6= J , where I and J are in the range of Q. An illumination invariant is discriminative i� it is

not nondiscriminative.

This de�nition implies � does not depend on o for nondiscriminative invariants.

Lemma 3.1 There are no discriminative illumination invariants for O if for any two images I and

J in the range of Q, there is always an object o 2 O which, under some pair of lighting conditions

in S, could have produced both image I and J .

Proof. The proof follows immediately from the above de�nitions. 2

The existence of discriminative invariants depends on the speci�c set of illumination and objects.

It is obvious that for a large enough class of illuminations, there are no such invariants. For example,

a movie projector can create arbitrary images by projecting carefully designed patterns on any given

object with nonzero reectance. The larger the set of illumination conditions we admit, the smaller

the set of invariants will be. Likewise, for purely specular convex surfaces, (e.g., mirrors) it is again

obvious that there are no discriminative illumination invariants. However these cases are clearly

extremes in illumination and reectance. Next, we consider in detail the case of Lambertian surfaces

illuminated by point light sources distant from the object. What is surprising is that even for this

simple case there are no discriminative illumination invariants. We �rst prove the claim ignoring the

e�ects of interreection, then show that our result holds when interreection is taken into account.

Moreover, our simulations show that their additive e�ect on the image intensity is often negligible

when considered in the context of this problem [8]. The fact that, statistically the typical albedo of
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an object is less than 0.15 [40, 41], lends empirical support for the technique, letting the albedo of

the object approach zero, employed in the proof of Theorem 3.2 below.

Theorem 3.1 Discounting interreection, given two arbitrary image functions I and J , and two

arbitrary point light sources ~s and ~l at in�nity, and if the projection on the image plane of the sum

~s+~l is nonzero, there exists a family of smooth Lambertian surface f such that I is the image of f

under ~s and J is that of f under ~l.

Proof. This is just a recapitulation of the Lemmas 3.5 and 3.2 that are to follow. 2

Corollary 3.1 Discounting interreection, all illumination invariants for objects with Lambertian

reectance under point light sources at in�nity are nondiscriminative.

Proof. Let � be an illumination invariant. Given two arbitrary images I; J in the range of Q,

by Theorem 3.1, there always exists a Lambertian surface of an object o and two light sources at

in�nity s and l, such that I and J are images of o under s and l, respectively, or I = Q(o; s) and

J = Q(o; l). By Lemma 3.1, � must be a nondiscriminative invariant. 2

Note that for the above propositions we require objects to be composed of surfaces, not freely

oating planar facets in space as in [32].

We prove the much stronger Theorem 3.1 rather than the weaker Corollary 3.1 directly, since

some researchers believe humans are able to determine the direction of the light source when viewing

an image [38, 6, 21, 25, 30, 46, 49, 50, 52]. We show even under this more stringent condition, there

is still no way to tell with certainty if the given two images are generated from two di�erent surfaces.

If we assume in addition that the invariant function is continuous with respect to the image

functions, the above result can be extended to Lambertian surfaces with interreection.

Theorem 3.2 Taking interreection into account, all continuous illumination invariants for objects

with Lambertian reectance under point light sources at in�nity are nondiscriminative.
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Proof. See appendix. 2

In this section we outline the proof of Theorem 3.1. The basic strategy of our proof is to

write two equations that describe the formation of the images, with the object's shape and albedo

as unknowns. After eliminating albedo, we arrive at a single �rst order linear partial di�erential

equation in shape. We then show that this PDE always has a unique solution, up to a set of initial

conditions that determine a family of solutions. Using this object shape, albedo is uniquely solved

for linearly, up to a scale factor. Finally, we must show that the solutions we arrive at do not contain

shadows, which justi�es our use of a simple linear description of image formation.

We begin the outline of our proof of Theorem 3.1 with the following setup. Set the camera

optical axis as the z-axis. An object o is viewed from the direction (0; 0; 1). The set O (more

accurately the visible surface of O) is de�ned to be the set of pairs (f; �), where f is the graph

(x; y; z = f(x; y)) of a smooth function z = f(x; y), and �(x; y) is a nonnegative function called

albedo, both de�ned on the prescribed unit square. Here, the set of point light sources at in�nity

S is represented by the set of 3-D vectors ~s = (sx; sy; sz) in the opposite direction of the light rays,

with jj~sjj equal to the powers of the sources. There are two regions on the surface (x; y; f(x; y)): one

that is illuminated by the light source, and the other called shadow region (SR hereafter) that is

either facing away and creates so called attached shadows, or obscured from the light source by other

parts of the surface. Suppose an image I is generated by f under point light sources ~s = (sx; sy; sz).

Excluding interreection, the image intensity I is described by

I(x; y) =

�
�(x; y) ~s � n̂(x; y) if (x; y; f(x; y)) =2 SR
0 otherwise

; (1)

where �(x; y) is the albedo of object o, ~n = (�@f
@x
; �@f

@y
; 1) is a normal vector to the surface f of o,

and n̂ is the unit vector for ~n. Henceforth, we will adopt the following convention: if ~r is a vector,

then r̂ = ~r=k~rk.

There is, in principle, no more restriction other than nonnegativity for a function to describe

the image of some object. By painting the albedo proportional to the given image function on a
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at surface, and placing the surface under any point light source with appropriate power, one can

always obtain any prescribed image. However, for convenience of later discussion, we de�ne

De�nition 3 I is called an image function, or I 2 I, if I is C1 and positive on a compact set. C1

on the boundary means there is a tangent plane approached by interior and boundary points.

The restriction is not severe in that any real valued piecewise continuous function on a compact

set can be approached pointwise by a sequence of continuous functions which can in turn be ap-

proached uniformly by a sequence of analytic functions (Stone-Weierstrass approximation theorem).

We may directly introduce discontinuities. However, its existence and the speci�c geometry of the

set on which I is discontinuous will greatly complicate the ensuing technical investigation without

altering the essential result1.

Our goal is to show that for any two I; J 2 I, there always exists a smooth solution on the unit

square to the partial di�erential equations (PDE's) given in Eq.'s 2 and 3, which in turn leads to

Theorem 3.1.

We construct a surface according to the local di�erential description, or the upper part of Eq. 1,

as if there is no e�ect of cast shadows.

I(x; y) = �(x; y) ~s � n̂(x; y); (2)

J(x; y) = �(x; y) ~l � n̂(x; y) (3)

We then show that if the boundary conditions are chosen appropriately, the surface thus con-

structed actually casts no shadows, and therefore renders the lower condition of Eq. 1 moot:

Lemma 3.2 Let 
 be a compact subset of IR2. Suppose I; J 2 I(
) (image functions on 
). There

is a family of C1 surfaces f that satis�es Eq. 2 and 3 has no attached or cast shadows.

To prove the above lemma, we make the following construction which leads to three additional

1If there are discontinuities, if the set of discontinuities obey certain smoothness conditions, the set of (~l; ~s) that
admits continuous surfaces may not be the whole 6-D space, but will be of nonzero measure
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lemmas. (The trusting reader may want to skip ahead to Section 4.) All the proofs are relegated to

the Appendix.

We cross multiply the two sides of Eq. 2 with those of Eq. 3. We then divide the resulting

equation by � (� cannot be zero as neither I nor J assumes zero value anywhere) to obtain the

following �rst order linear partial di�erential equation:

(I~l � J~s) � ~n = 0: (4)

(Wol� and Angelopoulou [47] and Fan and Wol� [12] also derive this equation, and then use it for

stereo matching and photometric stereo). Once this equation is solved, we can substitute the result

into our original equation to obtain a linear equation in albedo. When the magnitude of the light

is unknown, this equation determines albedo uniquely, up to a scale factor. To obtain valid albedos

we must scale the magnitude of the light so that all albedos are less than one.

To solve Equation 4 we use the method of characteristic curves. In this method, one performs

a change of variables to obtain a PDE in one variable. Solving this PDE tells us the surface height

along a curve on the object. The complete equation will have a unique solution, up to an initial

condition, if every point is on a single characteristic curves, so that solving these curves separately

provides exactly one height for every point on the surface.

As a simple example of this method, consider the case of l = (0; 0; 1) and s = (1; 0; 0). Then we

have

I
@f

@x
� J = 0:

Our equation reduces to one with a partial derivative. The characteristic curves in this case are

horizontal lines across the image. The value of f(x; y) is given by

f(x; y) = f(0; y) +

Z x

0

I(w; y)

J(w; y)
dw

where we have no obvious source of knowledge available to provide the initial condition f(0; y).

The above construction provides one pair of point light sources that when provided with an

appropriate boundary condition gives the required smooth surface. However, here we intend to
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show the existence of a surface even when the point light sources are given for each of the two

images.

Generally, the characteristic curves ~r(t) of Eq. 4 satisfy

d~r

dt
= I~l � J~s: (5)

Obviously, we only need to solve for the characteristic curves in the XY plane. The z-component

can be solved by simply integrating the z-component of the right hand side above along the XY

trajectory. The surface is constructed by weaving the characteristic curves together by choosing

continuous boundary values on part of the boundary of the unit square.

We claim that for a vector �eld uniformly bounded from below, as is the case here, there is a

characteristic curve in the XY-plane through each point in D2 with both ends lying on the boundary

@D2.

Lemma 3.3 Let 
 be a compact subset of IR2. Suppose I; J 2 I(
) (image functions on 
), and

the projection on the image plane of the sum ~s+~l is nonzero. Let ~� denote points in the XY-plane.

Through an arbitrary point q in 
, there exists a unique �q 2 R and a unique characteristic curve

projection on the XY-plane ~�(t), t 2 [0; �q] in 
 homeomorphic to [0; �q], such that ~�(0); ~�(�q) 2 @
.

Lemma 3.3 shows the global existence of characteristic curves through any point in the unit square.

Lemma 3.4 Let the hypothesis of Lemma 3.3 be satis�ed. The XY-plane characteristic curve is C1

with respect to t and its initial point.

The uniqueness of the characteristic curves provided by Lemma 3.4 removes the ambiguity, enabling

the later construction of a smooth surface instead of a multivalued function. It also guarantees the

needed smoothness for the characteristic curves, although not yet for the surface.

The smooth surface can then be fabricated by carefully assigning smooth boundary conditions.

Lemma 3.5 Let the hypothesis of Lemma 3.3 be satis�ed. There is a C1 surface f on 
 satisfying

Eq. 4.
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The above construction from the local description would not satisfy Eq. 1 if the surfaces cast

shadows onto themselves. Our task would be made much simpler if there is a surface without

attached or cast shadows. Fortunately, Lemma 3.2 assures that there indeed exist such surfaces

provided that the boundary condition is judiciously chosen.

To summarize, we have shown that given any two images, and any two point light sources, we

can construct a Lambertian surface that will generate each image, in the absence of interreections.

In the appendix, we show that the e�ects of interreections can be made arbitrarily small. This, in

turn, shows that no discriminative illumination invariants exist.

4 A Probabilistic Model

In the previous section, we concluded that for Lambertian and purely specular surfaces there are

no illumination invariants. Thus, we must settle for something less: a weaker, probabilistic form

of invariance. To this end, we will show that even if the direction of the light source is uniformly

distributed, the direction of the image gradient is not. We �rst analytically construct the probability

distribution for the image gradient as a function of the surface curvature and reectance. We will

verify this empirically by constructing a distribution for the image gradient from a database of real

images.

Suppose (x; y; f(x; y)) is a smooth, i.e. Ck or analytic, surface. Let (u; v) be coordinates on the

surface such that (x(u; �); y(u; �); f [x(u; �); y(u; �)]) as a function of u only and (x(�; v); y(�; v); f [x(�; v); y(�; v)])

as a function of v only are lines of curvature, with u; v being the length of the respective lines. For

subsequent development, let �u and �v be the principal curvatures of the surface in principal direc-

tions û and v̂, respectively. We set up a local Cartesian coordinate system by adopting the tangents

of the lines of curvature along with the surface normal as the third axis and call this the u-v-n

coordinate system.

The BRDF (bidirectional reectance distribution function) � is a function of (u; v), the direction

of the incident light î, and the direction of outgoing light ô in this local coordinate system. The

radiance from a point on a smooth surface in the camera direction ĉ (in the u-v-n coordinate system)
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is then

L(u; v; ĉ) =

Z


�[u; v; î(u; v; ŝ); ô(u; v; ĉ)] n̂(u; v) � ~s dŝ

= n̂ �
Z


�~s dŝ (6)

where 
 denotes the solid angle of light seen at the point of concern.

We analyze the inuence of the di�erential geometric and reectance properties by examining

the scene radiance under a single light source at in�nity. The scene radiance in Eq. 6 becomes

L(u; v; ĉ) = �[u; v; î(u; v; ŝ); ô(u; v; ĉ)] ~s � n̂(u; v): (7)

Assume the light sources are spherically symmetrically distributed. Suppose we have a patch of

a Lambertian surface with constant albedo and principal curvatures jkuj 6= jkv j. Then the gradient

of the scene radiance most likely lies in the direction in which the magnitude of the curvature

is maximal. Note that in the special case of cylindrical objects, e.g., co�ee mugs, animal limbs,

telephone poles, etc., the image intensity gradient lies orthogonal to the cylinder axis and tangent

to the surface, and the isophotes run parallel to the cylinder axis. As a second example, let us

consider a planar patch of surface with nonhomogeneous BRDF. For any BRDF, the direction of

the gradient of the scene radiance always points in the direction of the spatial gradient of the

BRDF. These observations suggest that if the light source directions are distributed uniformly,

the distribution of the gradient of scene radiance will be biased by the underlying geometry and

reectance.

We shall expound these observations in two steps. First, we derive the relation between the

gradient of the scene radiance ~rL and the surface's local geometry and reectance. Second, we

impose a spherically symmetric probability distribution on the light source ~s and determine the

resulting distribution on the gradient of the scene radiance ~rL. (Note that for simplicity we are

doing our analysis in the tangent plane of the surface, whereas the image records the projection of

scene radiance from the surface down to the x-y plane. Thus, our analysis ignores the e�ects of

projections.)
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In the following derivation, the operator ~r is understood to be the gradient taken in the tangent

plane, or u-v plane, at a point on the surface. A short calculation shows that the gradient of the

scene radiance

~rL = �(~s � ~r)n̂+ (~r�)~s � n̂: (8)

Eq. 8 highlights two factors that determine the gradient of the scene radiance. The �rst term, called

the geometric gradient, is the contribution from geometric changes; the second term, called the

reectance gradient, is the contribution from changes in the BRDF.

Consider the geometric gradient term:

(~s � ~r)n̂ = û�usu + v̂�vsv (9)

where �u and �v are the two principal curvatures, and su and sv are the u and v components of the

light source in the u-v-n coordinate system.

Consider next the reectance gradient term:

~r� = û
@�

@u
+ v̂

@�

@v
(10)

where, after a little calculation,

@�

@u
= ~rĉ� �

@ĉ

@u
+ ~rŝ� �

@ŝ

@u
+ û � ~r�

= �uv̂ �
�
~rĉ�� ĉ+ ~rŝ�� ŝ

�
+ û � ~r�;

@�

@v
= �vû �

�
~rĉ�� ĉ+ ~rŝ�� ŝ

�
+ v̂ � ~r�

where ~rĉ is the gradient taken with respect to ĉ and ~rŝ is the gradient taken with respect to ŝ.

We combine the geometric and reectance gradients to get an overall expression for ~rL:

~rL = (û �usu + v̂ �vsv)| {z }
geometric gradient

+
h
(�u û v̂ + �v v̂ û) � (~rĉ�� ĉ+ ~rŝ�� ŝ) + ~r�

i
~s � n̂| {z }

reectance gradient

: (11)

(Note that ûv̂ and v̂û are tensor products. The associative rule applies here.) The �rst term in the

square bracket, although classi�ed as part of the reectance gradient, is induced by the rotation of
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the u-v-n coordinate system along the lines of curvature. If the BRDF is Lambertian, the above

expression becomes

~rL = (û �usu + v̂ �vsv)| {z }
geometric

+ (~r�)~s � n̂| {z }
reectance

: (12)

Now that we have the expression for the gradient of the scene radiance in terms of the di�erential

geometric and reectance properties of the patch of surface, we can determine the distribution for

scene radiance by imposing a distribution on light sources. We consider light sources above the

tangent plane satisfying sn > 0. We felt it important for this discussion to choose a distribution

that does not favor any particular direction, or a distribution that depends on the magnitude j~sj

alone, even though it may prove useful to assume otherwise under some particular circumstances.

In addition, we assume the components of the source su, sv, and sn are distributed independently.

With these assumptions, it can be shown that the probability density for ~s is given by

�s(~s) =
1

(
p
2��)3

e
� 1

2�2
(s2
u
+s2

v
+s2

n
)
; sn 2 [0;1): (13)

Note again this distribution is uniform over the direction of the source. We subsequently deduce

the corresponding probability density function of ~rL as follows:

General Case:

The geometry and reectance factors are mixed. The distribution in u-v coordinate is

�u;v(u; v)

=
1

�u�v

Z 1

0
�s(

�
u� asn

�u

�2

+

�
v � bsn

�v

�2

+ s2n) dsn

=
1

�
3
2�2�u�vc

e
� 1

2�2

��
1�a

2

c2

�
�2�2 ab

c2
��+

�
1� b

2

c2

�
�2
� Z 1

�a�+b�p
2�c

e��
2

d�: (14)

where a = @�
@u
, b = @�

@v
, c =

r�
a
�u

�2
+
�

b
�v

�2
+ 1, � = u

�u
; and � = v

�v
.

We pay particular attention to two special cases which we feel are the determining factors for

the distribution of the image gradient.

Special Case I: Non-zero Curvatures with Constant Albedo
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Figure 1: Distribution �u;v for constant albedo as described in Eq. 15 in polar coordinates (r; ').

If the surface patch has spatially homogeneous reectance (constant albedo), then @�
@u

= @�
@v

= 0. In

coordinate system u-v-n, the probability density function for ~rL is then

�u;v(u; v) =
1

�
3
2�2�u�v

e
� 1

2�2

��
u

�u

�2
+
�
v

�v

�2�
: (15)

Note that the level curves of this function are concentric ellipses and that there is a ridge along the

larger of the curvature directions. In polar coordinates (r; '), where r =
p
u2 + v2 and tan' = v

u
,

there are two equal ridges, at ' = 0 and ' = �, along the direction of r-axis whenever
j�uj
j�vj

6= 1

as shown in Figure 1. The ridges grow sharper as the ratio deviates farther away from 1. The

existence of these ridges implies that the gradient is more likely to point in the larger principal

curvature direction. As stated previously, if one of the principal curvatures, say �v , is 0, such as in

the case of a cylindrical surface, the image gradient always points along the direction of the nonzero

curvature �u.

Special Case II: Zero Curvatures with Nonconstant Abedo

Let �u = �v = 0. The two curvatures are the same, so the orientation of the u-v coordinate system

is ambiguous. We may simply choose the direction of the albedo gradient as the positive u axis.

The probability density function for the gradient is then simply

�u;v(u; v) =

p
2

��
e
� 1

�2

�
u

�u

�2
�(v)�(u); (16)
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Figure 2: Distribution �u;v for a planar surface as described in Eq. 16 in polar coordinates (r; ').

where �u =
@�
@u
, � is the Dirac delta function, and � is the Heaviside theta function (or step function).

The distribution in the u-v coordinate system is one thin slice along the positive u axis. In polar

coordinates (r; '), there is only one slice at ' = 0 along r as depicted in Figure 2. Therefore, the

image gradient is always directed along the albedo gradient, regardless of the direction of the light

source.

We surmise that the above two special cases dominate the natural occurrence of images. In

most natural images, the gradient in intensity will be largely due to albedo change (case II), and

the geometric inuence comes into play only when the material is almost optically homogeneous

(case I). We conjecture that the linear combination of these two cases is enough to describe the

distribution of the image gradient.

We want to develop an illumination insensitive measure for image comparison encompassing

the two determining factors described above. If we are given the directions and magnitudes of

principal curvature along with the variance of the BRDF, then we can use the density function �u;v

to determine, in a probabilistic sense, how faithful any image is to the given values. The problem we

are interested in is slightly di�erent: we want to compare two images and determine the likelihood

that they have been produced by the same object. For this problem, the magnitudes and directions

of surface curvature and the BRDF are unknown. We must then look at the joint density for
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gradients of scene radiance as given in two images, (as they are the only observables amongst these

previously introduced quantities) and integrate out the unknown unobservable quantities, i.e., the

magnitude and direction of the principal curvatures and the reectance parameters.

Furthermore, we do not know the variation in the strength of the source (the standard deviation

� in Eq. 13). This variation in the strength of the light source is, of course, embedded in | but

not determining | the variation in the magnitude of the gradient. Because of this, we elect to

integrate out the magnitude of the image gradient as well, distilling the discriminative power of

the distribution. On the other hand, the magnitude of the gradient is not completely proportional

to the power of the light source. As the image intensity decreases as in the shadow region, the

variation in angle ' of �u;v(r; ') decreases, as can be deduced from Eq. 14, and is clearly depicted

in Figure 1. Moreover, the signal to noise ratio decreases as well. There is thus distinction between

�u;v at high image intensity and low image intensity. We loose some information in collapsing the

dimension of the probability density �u;v. We believe nevertheless that under usual circumstances

the information thus lost is minute and we gain much in the resulting simplicity and computational

speed. The experimental result in Section 5 con�rms our intuition.

The gradients are observed in a �xed x-y coordinate system. Given the angle  between x̂ and

û, the principal curvatures denoted by �'s, and the albedo gradient ~r�, the probability density of

observing a gradient with magnitude r and angle ' from x̂ is �r(r; 'j; �; ~r�) = r �(u;v)(r cos(' �

); r sin(' � )). (The scaling of � by r comes from the Jacobian in converting from Cartesian

to polar coordinates.) Noting that the angular dependence is only on the di�erence of the angles

'� , we rewrite the density as �r(r; '� j�; ~r�). Now, the joint probability density of observing

two scene radiance gradients (r1; '1) and (r2; '2) under two independent and identically distributed

light sources is

�(r1; '1; r2; '2) =

Z
�r(r1; '1 � j�; ~�)�r(r2; '2 � j�; ~�) dP (; �; ~�); (17)

where ~� = ~r(u;v)�, P (; �; ~�) is the probability measure on the unobservable random variables, and

the integration is over the whole sample space. Furthermore if azimuthal symmetry holds for P ,
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then the density � above can be rewritten as a function of three variables

�(r1; ' = '1 � '2; r2) =

Z Z �

=��
�r(r1; ('1 � '2)� j�; ~�)�r(r2;�j�; ~�) ddP (�; ~�): (18)

Azimuthal symmetry is intrinsic for any set of reasonably random image samples: the unrestrained

relative rotation of the objects and the camera along the optical axis of the lens will almost surely

render the azimuthal angle indistinguishable. Eq. 18 implies that the joint density depends on the

magnitude of the angle between two image gradients or the absolute value of ' = '2�'1. It is thus

an even function with respect to '.

In keeping with our earlier assumption that the density function �u;v is the linear combination of

the special cases I and II, we evaluate the joint density �(r1; '; r2j�; ~�) as such a linear combination.

Let �1 and �2 denote the distribution in polar coordinate in the special case I and II, respectively.

The joint density for special case I is then

p1(r1; '; r2j�)

=

Z �

��
�1(r1; j�)�1(r2;  + 'j�) d

=
2

(��2�u�v)2
e
� 1

4�2
(r21+r

2
2)

�
1

�
2
1

+ 1

�
2
2

�
I0

�
1

(2�)2

���� 1�21 �
1

�22

����
q
r41 + r42 + 2r21r

2
2 cos(2')

�
; (19)

where I0 is the 0'th hyperbolic Bessel function. The joint density for special case II is

p2(r1; '; r2) =

Z �

��
�2(r1; j~�)�1(r2;  + 'j~�) d

=
2

�2�2
e
�
r
2
1
+r2

2

(��2
u
) �('): (20)

The joint density is then the linear combination of Eq.s 19 and 20,

�(r1; '; r2j�; ~�) = w1p1 + w2p2; (21)

where w1 � 0 and w2 � 0 are the weights for the two cases, and w1 + w2 = 1.

Figure 3(a) shows a graph of the joint probability density function �(r1; '; r2j�; ~�). For this

graph we chose � = 1:7, �u = 4, �v = 1, au = 6, w1 = 0:22, and w2 = 0:78. We chose these

19



values simply to illustrate the nature of the shape of the density. Di�erent values will of course yield

di�erent densities, but their underlying shapes remain qualitatively the same.

Since the magnitude r of an image gradient is directly proportional to the power of the light

source, and we consider only the local e�ect, the magnitude is greatly inuenced by the light

source power and thus not as sensitive to the underlying geometry and photometry as the angle '.

Therefore, if we desire an even simpler illumination insensitive measure, we can integrate � over r1

and r2 and obtain

�'(') =

Z Z
�(r1; '; r2) dr1dr2: (22)

Clearly, �' inherits from �(r1; '; r2) the property of having a unique maximum at ' = 0. On the

other hand, the original measure �(r1; '; r2) may have more discriminatory power, especially for the

dark regions of the images, or the small magnitudes r1 and r2.

The joint distributions �'(') and �(r1; '; r2) are the illumination insensitive measures we seek.

Under each of these distributions, we would expect high probability to be assigned to two images of

the same object (di�ering only in illumination, not viewpoint) and low probability assigned to two

images of di�erent objects. Yet, we are hampered by our ignorance of the probability distribution

for the unobservables (curvatures and albedo gradients) and thus, cannot perform the integration

in Eq. 18. We note that all of the above analysis is done in the tangent plane of the surface, and

consequently ignores the e�ect of the projection of the radiance from the surface onto the image

plane. However, it will become apparent in the next section that this e�ect is small.

To circumvent this di�culty, and to o�er a practical solution, in the next section we will construct

empirically the distribution in Eq. 18 from real images of objects under varying illumination. We

will also compare the empirical data against the theoretical construct.

5 Empirical Joint Density

Using a geodesic dome (see Figure 4) with 64 photographic ashes, we gathered a database of 1,280

images of 20 objects (see Figure 5). The 64 ashes are positioned on the dome to cover slightly more

than a hemisphere of directions. The objects included folded cloth, a computer keyboard, cups, an
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Figure 3: (a) Joint probability densities calculated from the theoretical model of the two image
gradients �(r1; '; r2 = 50), expressed as a function of the magnitude of one gradient and the angle
between the two, with the other's magnitude set to 50. (b) Empirical data of the same function as
in (a).

umbrella, plants, a styrofoam mannequin, among others2. A stationary camera, positioned at the

center of the hemisphere covered by the ashed light, captured 64 images, each illuminated by one of

the 64 lights ashing in quick succession, for each stationary object. The 64 images of a telephone,

one of the objects, is shown in Figure 6. We estimate the density �(r1; �; r2) in Eq. 18 directly

from a histogram of the image gradients. Eq. 18 is used with the except that the integral becomes

discrete summation and the summation is taken over the pixel coordinates and objects instead of

the curvatures and albedo gradient. Since the image function is scaled by the power of the light

source, we only need to collect the images under light sources with the same power, which is the

case for the ashs on the dome. The image gradient distribution under light sources with spherically

symmetric distribution is then attained by integrating the distribution �(r1; �; r2js1 = 1; s2 = 1)

under unit light source power with respect to the power distribution

�(r1; '; r2) =
1

2��6

Z 1

0

Z 1

0
�(
r1

s1
; ';

r2

s2
js1 = 1; s2 = 1)e

1

2�2
(s21+s

2
2)s21s

2
2 ds1ds2; (23)

As we have discussed in Section 4, if convenience or simplicity is desired, �'(') is another

2All databases used in this paper are available for download from subdirectories \hrlfaces", \yaleAselected," and
\objects" at ftp://Plucky.cs.yale.edu/FTPRoot.
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Figure 4: Geodesic dome with 64 ashes used to capture data base images.

excellent illumination insensitive measure. The distribution �'(') in angle alone can be gathered

directly from the image database under a uniform single power lighting distribution. We see this by

substituting the above expression for �(r1; '; r2), the angular distribution

�'(') =

Z Z
�(r1; '; r2) dr1dr2

=

Z Z
�(�1; '; �2js1 = 1; s2 = 1)E[s]2d�1d�2

=
1

2��6

Z Z
e

1

2�2
(s21+s

2
2)s31s

3
2 ds1ds2

Z Z
�(�1; '; �2js1 = 1; s2 = 1)d�1d�2

=
2�2

�

Z Z
�(�1; '; �2js1 = 1; s2 = 1) d�1d�2: (24)

where all the integrations are over the positive real axis, and E is the expectation value with respect

to the radial distribution of the light power �. We perform a change of variables from (r; �) to (�; �)

to obtain the second equation. As shown in the second line, Eq. 24 is valid for any radial power

distribution.

A slice of the joint probability density �(r1; '; r2) for a �xed r2 is shown in Figure 3(b). As
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Figure 5: 20 objects in the database used to collect the empirical distribution of image gradient.

Figure 6: A telephone, one of the 20 objects, under the illumination of 64 ashes.

expected in Section 4, the distribution exhibits most of the features in the theoretical model depicted

in Figure 3(a). It is symmetric with respect to the plane ' = 0. There is a prominent ridge at

' = 0 and it is the unique global maximum of �(r1; �; r2) on the line of arbitrarily �xed r1; r2.
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As anticipated in Section 4, the linear combination of the two special cases captures the dominant

properties of the joint image gradient distribution, and the e�ect of projecting the tangent plane

to the imaging plane can be safely ignored. This shows that the statistical regularity of the scene

radiance gradient does reect the intrinsic geometric and reectance properties of surfaces and that

this regularity can be exploited. In Section 6, we will demonstrate this on the problem of face

recognition under varying illumination.

6 Application to Face Recognition

Given an object o which generates images I and J under two di�erent lighting conditions, the joint

probability of observing the gradients of I and J is assumed to satisfy

P (I; J) =
Y
i2M

�(~rIi; ~rJi)

=
Y
i2M

�'('(i));

where M is the set of pixel indices and ' is the angle between the two gradient vectors. We treat

the points on the surface as being independent, ignoring correlations arising from spatial proximity.

From a Bayesian perspective, this is equivalent to assuming that when the images come from two

di�erent objects, the di�erence in the gradient direction will be uniformly distributed. We use

density function �' as the illumination insensitive measure for the sake of simplicity.

We apply this scheme to face recognition. Given a test image I of a face, we compute P (I; J) for

every training image using an empirically collected probability database as described in Section 5.

The one training image having the highest P value is deemed the most likely to have come from the

same face as the test image I. Figure 7 shows the result of a face recognition test and compares it to

those of other methods. 450 images of 10 faces each under 45 di�erent lighting conditions are used.

One image of each face under frontal illumination is taken as a training image. The recognition test

is then performed for the remaining 440 images. The results are grouped into 4 subsets according to

the lighting angle with respect to the frontal or camera axis. The �rst subset covers lighting angles

0� � 12�, the second covers 12� � 25�, the third 25� � 50�, and the fourth 50� � 77�. We compared
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Method
Error Rate (%) vs. Illumination

Subset Subset Subset Subset
1 2 3 4

Correlation 0.0 0.0 11.7 65.0
Eigenfaces 0.0 0.0 16.7 69.3
Eigenfaces 0.0 0.0 3.3 57.9
w/o 1st 3

Linear subspace 0.0 0.0 1.7 12.9
Cones-attached 0.0 0.0 0.8 9.3
Gradient Angle 0.0 0.0 0.0 1.4

Cones-cast 0.0 0.0 0.0 0.0

Figure 7: Each of the methods except Gradient Angle, which has only one training image, is trained
on images with near frontal illumination (Subsets 1). This graph shows the error rates under more
extreme light source conditions.

our method with those tested and reported in [19]. The image gradient method clearly outperforms

all other methods except Cone Cast.

We also perform the test using the probability density �(r1; '; r2) including the gradient magni-

tudes instead of �' with only the gradient angle, and the error rates are on a par with those above.

It con�rms our earlier assertion in Section 4 that not much information is lost when the magnitudes
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Subset 4

Figure 8: Images of one of the 10 individuals under the 4 subsets of lighting.

are integrated out. Nevertheless, we hasten to reassert that when the image intensity is extremely

low as in the shadow region and the shadow region is large, we expect that the higher dimensional

density would be more discriminating.

It should be noted that all the methods other than Gradient Angle use all of Subset 1 for

training, and so by de�nition have zero error rates for Subset 1. In contrast, our method uses only

one frontal image in Subset 1 for each individual. The result of our method is still better than the

others with the exception of Cone Cast. Also note that Cone Cast is the Illumination Cone method
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in [18] in which Subset 1 images are used to construct person speci�c illumination representations.

Our method, however, has the advantage of being much simpler and faster than Cone Cast using

only local image comparisons.

It is worthwhile to note that the probability distribution used to perform the test is gathered

from images of objects rather than human faces. The distributions collected from di�erent categories

of objects or faces are remarkably similar. This is expected from the analysis in Section 4.

7 Conclusion

This paper presents two results: �rst, illumination invariants do not exist for Lambertian surfaces;

and second, the angle (or direction) of the image gradient is insensitive to changes in illumination

direction. The latter statement is consistent with the conclusion in [1] that linear �lters for image

comparison do not exist, since the gradient angle is a nonlinear function of the image. However, we

cannot conclude that image edges are good measures of image comparison under varying illumination

| in fact the contrary is true. Most edge detection methods are highly sensitive to the magnitude

of the image gradient. As we can see from Eq. 12, the magnitude of the gradient varies drastically

with the change in the direction of the light source. The distributions in Figure 3 also shows the

slow variation of the density function with respect to the magnitude of the gradient. Therefore

the gradient magnitude is a poor indicator of the underlying surface geometry and photometry.

Nevertheless, when combined with the gradient angle, the magnitude may extract more information

from extremely low intensity images.

Our assumption about pixel independence implicit in Eq. 25 is obvious incorrect | the light

sources are �xed for all pixels in a given image, and neighboring surface points tend to have sim-

ilar geometric and reectance properties. We hope to remedy the crudeness of our independence

assumption by exploring how spatial dependencies in pixel values [2] can be exploited to produce

even more discriminating measures of the images.
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8 Appendix

The propositions in Section 3 are proved here.

The following observation on the characteristic curve Eq. 5 is crucial to the proofs of the lemmas.

Observation 8.1 Let q be an arbitrary point in R3, Sq the plane containing q parallel to ~l and ~s, and

~rq the characteristic curve passing through q. It is clear that if ~rq exists, it remains in the plane Sq.

Moreover, the characteristic vector at every point resides in the planar cone C = fa~l� b~s; a; b � 0g

generated by ~l, �~s, and the negative of C. Consequently the curve ~rq is also con�ned in the two-sided

cone q + C [ q � C. Speci�cally, the projection ~�p of ~rq onto the XY-plane is contained in a cone

Cp, the projection of C on the XY-plane.

We also need another lemma, Whitney's Extension Theorem [15], to extend a C1 function onto

a larger set in the proof of the lemmas in the main text.

Lemma 8.1 Let A be a closed set of points a in Rm at which the values and derivatives of a desired

C1 function are prescribed by linear polynomials Pa : Rm ! R. For each compact subset C of A

and � > 0, let �(C; �) be the supremum of the numbers
jPa(b)�Pb(b)j

ja�bj , kDPa(b) �DPb(b)k, where D

is the di�erentiation operator, over all a; b 2 C with 0 < ja � bj � �. If the prescribed data satisfy

the coherence condition that lim�!0 �(C; �) = 0 for each compact subset C of A, then there exists a

C1 funciton g satisfying g(a) = Pa(a); Dg(a) = DPa(a); 8a 2 A, and infx2Rm g(x) = infa2A Pa(a),

supx2X = supa2A Pa(a).

Proof of Lemma 3.3.

We shall �rst caution the reader that this lemma concerns the global existence of a solution as

opposed to the local existence. We intend to turn the ordinary equation into an integral equation

and solve the integral equation with iterations. However, the interval of integration should be �xed

and the trajectory from each iteration should all reach the boundary of the domain 
. Thus the

vector �eld should be extended to a larger domain containing 
 to satisfy these requirements.

Proof. Without loss of generality, we assume that the given point is at the origin and 
 is bounded
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by R > 0. Since I and J are positive and continuous on a compact set, M 0 > I; J > c for some

constants M 0 > c > 0. Recall (Observation 8.1) that the characteristic vectors in the XY-plane are

con�ned in the cone Cp. We denote by ~h the vector bisecting the angle subtended by ~lp and �~sp. As

I and J are both bounded from below by c > 0, the projection of the vector �eld on ~h is bounded

from below by c(lp + sp) cos �, where � is half the angle between ~lp and ~sp, the projections of ~l and

~s on the XY plane respectively.

If � < �
2
, any curve starting from the origin with these velocity (or tangential) vectors will leave


 in time T = R
c cos �

. If � = �
2
, I~lp�J~sp is on a straight line. The exit time is then simply bounded

by T = R
c
. Let max~�2
 jI(~�)~lp�J(~�)~spj =M . By setting P~a(~�) = I(~a)+DI(~a)(~�), and the same for

J(~�), Lemma 8.1 (Whitney's Extension Theorem) allows us to extend the functions I; J 2 C1(
) to

C1 functions, again denoted by I and J , onto the closed ball B of radiusMT , such that both newly

constructed I and J maintain their original values on 
, and assume the same respective maxima

and minima on B as on 
.

We are now in a position to recursively construct a sequence of functions f~�ng1n=0 : [0; T ]! B.

Let

~�0(t) = 0: (25)

Suppose ~�n is de�ned on [0; T ]. De�ne

~�n+1(t) =

Z t

0

h
I(~�n(�))~lp � J(~�n(�))~sp

i
d�; t 2 [0; T ]: (26)

Clearly ~�n(t) 2 B; 8t 2 [0; T ]; 8n 2 N or f~�g1n=0 is uniformly bounded by B. Since I; J 2 C1

on the convex and compact set B, by the mean value theorem, j(I(~�2)~lp � J(~�2)~sp) � (I(~�1)~lp �

J(~�1)~sp)j < �j~�2 � ~�1j, 8~�1; ~�2 2 B for some constant � > 0. This leads to

j~�n+1(t)� ~�n(t)j < �

Z t

0
j~�n(�)� ~�n�1(�)j d�: (27)

Apply the bound jI~l � J~sj < M to Inequality 27,

j~�1(t)j < Mt: (28)
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We obtain by induction,

j~�n+1(t)� ~�n(t)j < M
�ntn+1

(n+ 1)!
; 8t 2 [0; t]: (29)

The series
1X
n=0

(~�n+1(t) � ~�n(t)) is majorized by that of M
�
e�t. Therefore the sequence ~�n tends

uniformly to a continuous function ~�. Since B is closed, ~�(t) 2 B, 8t 2 [0; T ].

I~lp � J ~sp is continuous on the compact set B, and is therefore uniformly continuous. Together

with the uniform convergence of f~�ng1n=0, it enables us to take the limit n ! 1 on both sides of

Eq. 26, and substitute ~�n with ~� in the integrand.

Let � = inft2[0;T ]ft : ~�(t) 2 B � Int(
)g. Since the image of the continuous function ~� on the

compact set [0; T ] is also compact and therefore closed, its intersection with the closed set B�Int(
)

is closed. Again by continuity of ~� ft : ~�(t) 2 B � Int(
)g is closed, and thus ~�(�) 2 B � Int(
).

Consequently ~�(�) 2 @
 and ~�(t) 2 Int(
), 8t 2 [0; �). Thus ~�(t); t 2 [0; �] is a solution of Eq. 5

on 
.

The uniqueness of the characteristic curve through the origin on 
 can be shown following the

classical argument. Suppose there are two solutions to Eq. 5, ~�1 and ~�2 with the same initial points

~�1(0) = ~�2(0) = 0 (They may exist only in the interior of 
 without reaching the boundary.).

Suppose they are both de�ned up to t. We have

j~�2(t)� ~�1(t)j �
Z t

0

���(I[~�2(�)]~lp � J [~�2(�)]~sp)� (I[~�1(�)]~lp � J [~�1(�)]~sp)
��� d�

� �

Z t

0
j~�2(�)� ~�1(�)j d�;

or, what is equivalent,

d

dt

�
e��t

Z t

0
j~�2(t)� ~�1(t)j d�

�
� 0: (30)

It is obvious from the initial condition j~�2(0)�~�1(0)j = 0, that j~�2(t)�~�1(t)j = 0 for every de�ned t.

Consequently, there is a unique solution emanating from the origin and evolving positively in time.

It lands on the boundary @
 at t = �.

As for the other part of the curve in the negative direction, replace t with �t, every step of the

above argument carries through. 2
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Proof of Lemma 3.4. The proof for these global properties is the same as that for the corre-

sponding local ones in many classic texts (e.g., [11]). 2

Proof of Lemma 3.5.

Lemma 3.3 guarantees that every point in 
 is an outgrowth from the boundary. A surface covering

the whole domain 
 can be constructed by growing the characteristic curves from boundary curves.

However the boundary conditions should not lead to multi-valued function f . To avoid this di�culty,

we simply expend the vector �eld to a triangle containing 
, and assign boundary values to one side

of the triangle which will not lead to multi-valuedness. The required surface is simply the restriction

of the surface constructed on the triangle to 
.

Proof. Let ~c = 1
2
(~lp � ~sp). Draw a straight line � perpendicular to ~c such that 
 is on the side of

� that ~c points to. Draw two lines parallel to ~lp and �~sp respectively, so that together with � they

form a triangle enclosing the compact set 
. Then restrict � to denote the closed segment that is

a side of the triangle (If ~lp and �~sp are parallel, we can either consider the triangle as having one

apex at in�nity, or cut o� the two parallel sides and form a rectangle, so long as it contains 
.). We

again use Whitney's Extension Theorem, Lemma 8.1, and extend I and J on 
 to two C1 functions

on the closed triangle, retaining their original minima and maxima.

Let the compact set 
 in the premise of Lemma 3.3 be the triangle constructed above. It then

follows from Lemma 3.3 and Observation 8.1, and the fact that � is not parallel to any characteristic

direction of the PDE, that through any point ~� 2 
 runs a unique characteristic line emanating

from a unique point on � and reaching the other two sides of the triangle. Parameterize � by its

length s from one of its two ends. Denote the characteristic curve emanating from � by ~�(s; t). By

Lemma 3.4, (x(s; t); y(s; t)) = ~�(s; t) establishes a C1 di�eomorphic coordinate chart for the triangle

(a two dimensional manifold).
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Let f0(s) be an arbitrary C1 function on � and let

f(s; t) =

Z t

0
(I[~�(s; �)]lz � J [~�(s; �)]sz) d� (31)

It is obvious that f(s; t) 2 C1, and therefore ~r(s; t) = (x(s; t); y(s; t); f(s; t)) is a C1 manifold. By

the di�eomorphism (x; y) = ~�(s; t), f could be written as a function of (x; y) and the manifold is

the graph of f . The desired surface is the manifold restricted to 
. 2

Proof of Lemma 3.2.

As is mentioned in Section 3, for Eq.'s 2 and 3 to adequately provide the global description of

the required surface, it is necessary that the surface constructed should have no attached or cast

shadows. Otherwise Eq. 1 instead should be used. Since all the characteristic curves stay con�ned

in a planar cone described in Observation 8.1, no point on the surface will attach a shadow to itself

or cast one on another point so long as the boundary curve assigned to the side of the triangle

satis�es certain condition.

Proof. Construct the same triangle as in Lemma 3.5. Let f0(s) be the initial condition on � as

de�ned in the proof of Lemma 3.5. By Lemma 3.5, the graph can also be denoted as ~r(s; t = 0). In

addition, ~r(s; 0) is such that

�~s�~l � @~r(s; 0)
@s

> 0: (32)

Point a casts a shadow on point b if and only if a and b are on the same line parallel to either ~s or

~l. By the way we construct the surface, it is a manifold parameterized by (s; t) via a di�eomorphism

~r(s; t). Let a = ~r(s1; t1) and b = ~r(s2; t2), we distinguish two cases: 1) s1 = s2; 2) s1 6= s2.

In case of 1),

~r(s1; t2)� ~r(s1; t1) =

Z t2

t1

�
I[~�(s1; t)]~l � J [~�(s1; t)]~s

�
d�: (33)

Since J [~�(s; t)] > 0 and continuous, � R t2
t1
J [~�(s1; t)] d� < 0 and thus ~r(s1; t2) � ~r(s1; t1) is not

parallel to ~l. By the same token, ~r(s1; t2)� ~r(s1; t1) is not parallel to ~s either.
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For case 2), we show that ~r(s1; t2)� ~r(s1; t1) is not in the plane of ~l and ~s.

�~s�~l � ~r(s; t) = �~s�~l �
�Z t

0

�
I[~�(s; �)]~l � J [~�(s; �)]~s

�
d� + ~r(s; 0)

�

= �~s�~l �
�
a(s; t)~l � b(s; t)~s+ ~r(s; 0)

�

= �~s�~l � ~r(s; 0): (34)

a(s; t) and b(s; t) stand for the scalar functions of vectors ~l and ~s. Without loss of generality, we

assume s2 > s1.

�~s�~l � (~r(s2; t2)� ~r(s1; t1)) = �~s�~l � (~r(s2; 0)� ~r(s1; 0)) > 0; (35)

where the last inequality comes from integrating Inequality 32 over s from s1 to s2 and the claim is

veri�ed.

Divide Inequality 34 by s2 � s1 and let s2 ! s1, we obtain

�~s�~l � @~r(s; t)
@s

> 0: (36)

Then for the surface normal vector
@~r(s;t)
@s

� @~r(s;t)
@t

, the sign of the inner product is always

@~r(s; t)

@s
� @~r(s; t)

@t
� ~s = @~r(s; t)

@s
�
�
I~l � J~s

�
� ~s > 0; (37)

since I(x; y) and J(x; y) are positive. The same inequality holds for the inner product of the normal

vector and ~l. In other words, there is no attached shadow. 2

Proof of Theorem 3.2.

We have shown that in the absence of interreections we can construct an object and two light

sources that produce the two images I and J . We now show that with interreections, there will

still be no continuous discriminative invariants. To do this we show that if we scale up the magnitude

of the light sources, while scaling down the albedos by an inverse amount, we can suppress the e�ect

of interreections to the in�nitesimal and thus approximate the given images with those generated

by the surface with arbitrary precision.
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Proof. An image I(x; y) generated by an interreecting surface f(x; y) on a compact set (x; y) 2 


can be described by the di�ero-integral equation

I = I0 + �S[f ]I; (38)

where I is the image function, and I0 is the intensity of the �rst reection o� the surface of the

light directly from the light source. Linear operator S[f ] is a function of the continuous surface

f 2 C(
) \ piecewiseC1(
),

S[f ]I(~�) = �
Z


d2�0 �(~�; ~� 0)

n̂ � r̂ n̂0 � r̂
r2

I(~� 0); (39)

where ~� = (x; y), ~� 0 = (x0; y0), ~�; ~� 0 2 
. d2�0 stands for area element on the surface. ~r =

(x0 � x; y0 � y; z0 � z), z = f(~�) = f(x; y), and z0 = f(~� 0) = f(x0; y0). r = j~rj, r̂ = ~r=r. n̂ and

n̂0 are the surface normal at points (x; y; f(x; y)) and (x0; y0; f(x0; y0)), respectively. �(~�; ~� 0) is an

index function equal to 1 if the line segment connecting ~� and ~� 0 does not intersect the surface

(x; y; f(x; y)), and 0 if the line segment does.

It is clear by conservation of energy, the maximum norm of the operator kS[f ]kL1 < 1, and

0 < �m
def
= max~�2
 �(~�) < 1. The solution of Eq. 38 is then readily obtained by Neumann series,

i.e.,

I =
1X
n=0

�nSnI0; (40)

where Sn denotes the n'th operation of the operator S on I0 and �n is the n'th multiplication. Thus

kI � I0kL1 < �m
kI0kL1

1� �mkSkL1
: (41)

Given two image functions I0 and J0 and two arbitrary light source direction ŝ and l̂, there

are, according to Theorem 3.1, a surface f and an albedo �, such that I0 = �~s � n̂ = a~�ŝ � n̂ and

J0 = �~l � n̂ = b~�l̂ � n̂ (and there is no cast or attached shadow on f), where a
def
= �mj~sj, b def

= �mj~lj,

and ~�
def
= �

�m
.

De�ne I and J , as at the beginning of the proof, to be the images generated by the surface f

with interreection under ~s and ~l, respectively. Let s
def
= j~sj = a

�m
and l

def
= j~lj = b

�m
, I(�m) and
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J(�m) are then functions of 0 < �m < 1. I0 and J0, on the other hand, are independent of �m. It

then follows from Inequality 41 that I(�m)! I0 and J(�m)! J0, as �m ! 0+.

Suppose � is a continuous illumination invariant. By the de�nition of illumination invariant,

�(I(�m)) = �(J(�m)), since I and J are generated from the same surface and albedo. By the

continuity of �, �(I0) = lim�m!0+ �(I(�m)) = lim�m!0+ �(J(�m)) = �(J0). Hence the invariant �

is nondiscriminative. 2

Acknowledgements

We are grateful to Alan Yuille, David Kriegman, David Forsyth, Mike Langer, Steven Zucker,

Athinodoros Georghiades, Jonas August, Patrick Huggins, Melissa Koudelka and Todd Zickler for

their help and advice in writing this paper.

References

[1] Y. Adini, Y. Moses, S. Ullman. \Face Recognition: The Problem of Compensating for Changes in
Illumination Direction", IEEE Trans.PAMI, Vol.19, No.7: 721{732, July 1997.

[2] J. August and S. Zucker, \The curve indicator random �eld: curve organization via edge correlation,"
in Perceptual Organization for Arti�cial Vision Systems, K. Boyer and S. Sarkar, Eds., pp. 265{288,
Kluwer Academic, Boston, 2000.

[3] P. Belhumeur, D. Kriegman. \What is the Set of Images of an Object Under All Possible Lighting
Conditions?", IEEE CVPR 96: 270{277, 1996.

[4] P. Belhumeur, D. Kriegman, and A. Yuille, 1997. \The Bas-Relief Ambiguity" CVPR:1060{1066.

[5] P. Breton, S. Zucker. \Shadows and Shading Flow Fields", CVPR 96: 782-789, 1996.

[6] M. J. Brooks and B. K. P. Horn, \Shape and Source from Shading", Proc. of the 9th Int. Joint Conf.
on Arti�cial Intelligence: 932{936, 1985.

[7] J. Burns, R. Weiss, E. Riseman. \The Non-Existence of General-Case View-Invariants", Geometric
Invariance in Computer Vision, edited by J. Mundy, A. Zisserman, MIT Press, Cambridge, 1992.

[8] H. Chen, P. Belhumeur. \Illumination Invariance". Technical Report, Center for Computational Vision,
Computer Science Dept., Yale University, Dec., 1999.

[9] D. Clemens, D. Jacobs. \Space and Time Bounds on Model Indexing", IEEE Trans. on Pattern Analysis
and Machine Intelligence, Vol.13, No.10: 1007{1018,1991.

[10] E. Coleman, R. Jain. \Obtaining 3-Dimensional Shape of Textured and Specular Surfaces Using Four-
Source Photometry", CGIP 82, Vol.18, No.4: 309{328, 1982.

[11] Earl A. Coddington, Norman Levinson. Theory of Ordinary Di�erential Equations, Krieger Publishing
Co. Malabar, Fl, 1984.

[12] J. Fan, L. Wol�. \Surface Curvature and Shape Reconstruction from Unknown Multiple Illumination
and Integrability", Computer Vision and Image Understanding, Vol.65, No.2: 347{359, 1997.

35



[13] Faugeras, O., 1992, \What can be Seen in Three Dimensions with an Uncalibrated Stereo Rig?" Second
European Conference on Computer Vision:563-578.

[14] O. Faugeras, L. Robert. \What Can Two Images Tell Us about a Third One?", Int. J. of Comp. Vis.,
Vol. 18, No.1: 5{19, 1996.

[15] H. Federer, \Geometric Measure Theory", Springer-Verlag, New York, 1969.

[16] Forsyth, D., Mundy, J., Zisserman, A., and Rothwell, C., 1992. \Recognising Rotationally Symmetric
Surfaces from their Outlines," European Conf. on Comp. Vis.:639{647.

[17] B. Funt, G. Finlayson. \Color Constant Color Indexing", IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol.17, No.5: 522-529, 1995.

[18] A. Georghiades, D. Kriegman, P. Belhumeur. \Illumination Cones for Recognition Under Variable Light-
ing: Faces", CVPR 98: 52{59, 1998.

[19] A. Georghiades, P. Belhumeur ,D. Kriegman. \From Few to Many: Generative Models for Recognition
Under Variable Pose and Illumination", Int. Conf. on Automatic Face and Gesture Recognition 2000,
2000.

[20] P. Hallinan. \A Low-Dimensional Representation of Human Faces for Arbitrary Lighting Conditions",
CVPR 94: 995{999, 1994.

[21] D. R. Hougen and N. Ahuja, \Estimation of the Light Source Distribution and Its Use in Integrated
Shape Recovery from Stereo and Shading", IEEE 4th Int. Conf. on Computer Vision, Berlin, Germany:
148{155, 1993.

[22] M. Irani, and P. Anandan, "Robust multi-sensor image alignment", ICCV 98, 959-966.

[23] D. Jacobs. \Matching 3-D Models to 2-D Images", Int. J. of Comp. Vis., Vol.21, No.1-2: 123{153, 1997.

[24] D. Jacobs, P. Belhumeur, R. Basri. \Comparing Images Under Variable Illumination", CVPR 98: 610-
617, 1998.

[25] C-Y Kim et al. \Illuminant Direction and Shape of a Bump", J. Opt. Soc. Am. 15: 2341{2350, 1998.

[26] M. Kirby, and L. Sirovich, 1990, \The application of the Karhunen-Loeve procedure for the characteriza-
tion of human faces", IEEE transactions on Pattern Analysis and Machine Intelligence, 12(1):103-108.

[27] J. J. Koenderink, A. J. van Doorn. \Photometric Invariants related to solid Shape", Optica Acta, Vol.
27, No.7: 981-996, 1980.

[28] J. Lambert. \Photometria Sive de Mensura et Gradibus Luminus, Colorum et Umbrae", Eberhard Klett,
1760.

[29] Lamdan, Y., J.T. Schwartz and H.J. Wolfson, 1990, \A�ne Invariant Model-Based Object Recognition,"
IEEE Trans. Robotics and Automation, 6: 578{589.

[30] C. H. Lee and A. Rosenfeld, \Improved Methods of Estimating Shape from Shading Using the Light
Source Coordinate System", Arti�cial Intelligence, No.26: 125{143, 1985.

[31] Y. Moses. Face recognition: generalization to novel images, Ph.D. Thesis, Weizmann Institute of Science,
1993.

[32] Y. Moses, S. Ullman. \Generalization to Novel Views: Universal, Class-based, and Model-based Pro-
cessing", Int. J. of Comp. Vis., Vol.29, No.3: 233-253, 1998.

[33] Y. Moses, S. Ullman. \Limitations of Non Model-Based Recognition Schemes", Sec. Eur. Conf. on Comp.
Vis.: 820-828, 1992.

[34] J. Mundy, A. Zisserman (eds.). Geometric Invariance in Computer Vision, MIT Press, Cambridge, 1992.

[35] H. Murase, S. Nayar. Visual learning and recognition of 3D objects from appearance. Int. J. of Comp.
Vis. , Vol.14, No.1: 5{25, 1995.

[36] S. Nayar, R. Bolle. \Reectance Based Object Recognition", Int. J. of Comp. Vis., Vol.17, No.3: 219-240,
1996.

[37] R. Onn, F. Bruckstein. \Integrability Disambiguates Surface Recovery in Two-Image Photometric
Stereo", Int. J. of Comp. Vis., Vol.5, No.1: 105{113, 1990.

36



[38] A. P. Pentland, \Finding the Illuminant Direction", J. Opt. Soc. Am. 72: 448-455, 1982.

[39] R. Rao, and D. Ballard, \Object Indexing Using an Iconic Sparse Distributed Memory," IEEE Int. Conf.
on Comp. Vis. :24-31, 1995.

[40] D. Ruderman, \The statistics of natural images", Network: Computation in Neural Systems 5 (1994),
517-548.

[41] D. Ruderman and W. Bialek, \Statistics of Natural Images: Scaling in the Woods", Phyical Review
Letters Vol 73, No. 6 (1994), 814-817.

[42] C. Schmid, R. Mohr. \Local Grayvalue Invariants for Image Retrieval", IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol.19, No.5:530-535, 1997.

[43] A. Shashua. \On Photometric Issues in 3D Visual Recognition from a Single 2D Image", Int. J. of Comp.
Vis., Vol.21, No.1-2: 99{122, 1997.

[44] M. Turk, A. Pentland. \Eigenfaces for Recognition", Journal of Cognitive Neuroscience, Vol.3, No.1:
71-96, 1991.

[45] S. Ullman, R. Basri. \Recognition by Linear Combinations of Models", IEEE Trans. PAMI, Vol.13,
No.10: 992-1007, 1991.

[46] D. Weinshall, \The Shape and the Direction of Illumination from Shading on Occluding Contours",MIT
Arti�cial Intelligence Memo 1264, 1990.

[47] L. Wol�, E. Angelopoulou. Eur. Conf. on Comp. Vis.: 247{258, 1994.

[48] L. Wol�, J. Fan. \Segmentation of Surface Curvature with a Photometric Invariant", J. Opt. Soc. Am.
A, Vol.11, No.11: 3090-3100, Nov. 1994.

[49] Y. Yang and A. Yuille, \Source from Shading", Proc. of the Conf. on Comp. Vision and Pat. Recog.:
534{539, 1991.

[50] Y. Zhang and Y. Yang, \Illuminant Direction Determination for Multiple Light Sources", Proc. of the
Conf. on Comp. Vision and Pat. Recog.: 269{276, 2000.

[51] M. Zerroug, and R. Nevatia, (1996). Three-dimensional descriptions based on the analysis of the invariant
and quasi-invariant properties of some curved-axis generalized cylinders. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18, 3, 237-966.

[52] Q. Zheng and R. Chellappa, \Estimation of Illumination, Albedo, and Shape from Shading", IEEE
TRans. Pattern Anal. Mach. Intell. 13: 680{702, 1991.

37


