
IMAGE COMPRESSION FOR A SMALL SATELITTE – LESSONS LEARNED

Wayne Brown

Department of Computer Science

The United States Air Force Academy

2354 Fairchild Dr., Suite 6G-101

USAF Academy, CO 80840-6208

719-333-3590

Wayne.Brown@usafa.edu

ABSTRACT

A software system for lossless compression of images was developed for a micro satellite

with limited RAM memory. Valuable lessons learned during the development of the software are

presented, along with some implications for computer science education. The results of the

software implementation are also presented.

1 INTRODUCTION

 A small micro satellite called FalconSAT-7

[1][2] designed to take high-fidelity images of the

sun is being developed by the Physics department at

the United States Air Force Academy. The camera

images will be gray-scale at 10 bits per pixel. If the

camera images were downloaded as raw data, only

one image per day could be transmitted to the ground

station due to limited communication time. Image

compression, even in a limited scope of 3 to 1, could greatly enhance the number of images

accessible from the satellite.

 The brain of the micro satellite is an Atmel AVR32. Memory consists of 32K of SRAM,

256K of Flash memory, and a 2GB SD Card [3]. The onboard camera takes 1040x1360 pictures

and stores each 10 bit pixel value in 2 bytes of memory. A single image requires 2.70 MB of

memory. Scientific analysis of the images mandates that no loss of information be allowed in

their storage or transmission. The paper describes the development of a software system that

performs lossless compression on gray-scale images using very limited RAM.

2 PREVIOUS WORK

Image compression has been a very active research area for over 25 years. The Joint

Picture Expert Group (JPEG) [4] was organized in 1986, and issued the first JPEG standard in

1992. The JPEG standard is actually a collection of compression techniques bundled into a single

specification. Most software systems that implement the JPEG compression schemes do not

implement the entire JPEG standard. Software that claims to implement the JPEG standard must

implement a baseline set of functionality. The JPEG standard was designed to compression color

images and is lossy. In 1993 a lossless scheme was added to the standard, called Lossless JPEG

(JPEG-LS) [5], but it is not commonly included in JPEG implementations. Work on image

compression has been ongoing, with the JPEG 2000 compression standard being published in

2000 and amended as recently as 2008 [6].

Diane.Vagle
Typewritten Text
USAFA-DF-PA-390

A reasonable introduction to data compression can be found in the book “Introduction to

Data Compression” by Khalid Sayood [7]. A comprehensive treatment of lossless compression

techniques can be found in David Adams’ PhD thesis Reversible Integer-to-Integer Wavelet

Transforms for Image Coding [8]. An investigation into image compression on portable

multimedia devices which have low memory and low power issues can be found in Ranjan

Kumar Senapati’s PhD thesis [9].

3 IMPLEMENTATION AND RESULTS

 The software to implement lossless compression on high-fidelity, gray-scale images was

implemented in C for the FalconSAT-7 satellite. The compression software was designed to

minimize memory usage. The decompression software runs on ground station computers using

normal computer resources and does not attempt to minimize memory usage. The compression

software reads raw data from the camera where each two bytes in Little Endian order represents

one pixel intensity value. The output of the compression software is a unique bit-stream format

designed for this application. The decompression software reads the bit-stream, recreates the

original raw data and stores it in a file. The output file can easily be visualized or converted to a

standard image file format using simple MATLAB commands.

 The software performs an integer wavelet transform on the rows of an image and

separates the even and odd values into two sub-images: one containing the “averages” and one

containing the “differences.” An integer wavelet transform is then performed on the columns of

these two sub-images and again the even and odd values are separated to produce four sub-

images. Five possible encodings of the sub-images were developed: fixed-length encoding, run-

length encoding, table-lookup encoding, bit-plane encoding, and Huffman encoding. The details

of each encoding can be found in the implemented software. The number of bits needed to

encode a sub-image is calculated for each of the five possible encodings. Then an integer wavelet

transformation is applied to each sub-image to create four new sub-images. If the four sub-

images can be encoded using fewer bits than an encoding of the original sub-image, the sub-

division is kept and used for the final bit-stream. Otherwise, the sub-division is ignored and the

sub-image is encoded using the most efficient encoding scheme available. This is done

recursively to find the best overall encoding using the least number of bits. The recursive depth

is currently limited to 3 levels, which creates a maximum of 127 sub-images.

 An estimate of the memory usage of the software is provided in the table below. The

memory usage is calculated based on an image size of 1040 by 1360. Very deliberate choices of

data types (short vs. int) and the use of parallel arrays instead of arrays of structures were used to

minimize data memory usage. As the table shows, most of the memory usage is from the code

itself and not the data it manipulates. Further minimization of the memory usage will have to

come from reduction in code, which could be done by removing some of the encoding choices

that are rarely used.

Software Component Memory in bytes

Compression code 93,079

1D integer buffer (1360 * 4) 5,440

Sub-array structures (127 * 60) 7,620

Huffman encoding tables (50 codes max) 816

 Total memory usage: 106,955

 The software produces lossless compression ratios of approximately 2.5 to 1. The

software is freely available and can be obtained by contacting the author.

4 LESSONS LEARNED

 Development of the compression software for the satellite took many wrong turns. In an

effort to “learn from one’s mistakes”, this section documents lessons that need to be remembered

for future software development projects. These lessons can be applied to a broad range of

software engineering projects and they should be included in any undergraduate computer

science education.

Be Data Mindful

 The satellite was under development and its camera specifications were known, but no

images of the sun had been taken from the camera. An image of the sun was provided that was

similar to what the camera would be expected to produce. Unbeknown to the author, the image

was created by taking a 24 bit color image, converting it to gray-scale, and then scaling each

pixel value by 4 to create 10 bits per pixel. This image was run through the OpenJPEG software

with the lossless flag set to true and a compression ratio of 16-to-1 was produced for the output

image. This result was reported back to the satellite team but they were cautioned against

expecting a 16-to-1 compression ratio for the final version. However, 16-to-1 became the

benchmark target. Bad data created an unrealistic expectation for the software.

 The original JPEG compression standard is based on the Discrete Cosine Transform

(DCT). The standard includes both a lossless and lossy mode of operation. The DCT is

calculated using floating point math on unsigned integers but is not lossy. JPEG becomes lossy

when the quantization phase throws out high frequency data that the human eye typically can’t

see. The JPEG 2000 standard is based on wavelets and includes both a lossless and lossy mode

of operation. The wavelets are also calculated using floating point math on integers, but wavelets

are fundamentally lossy; it is not possible to recover the original integer data after a typical

wavelet transform. The author was very familiar with DCT compression, but decided to

implement wavelets because the literature claims that wavelets give approximately 5 to 10%

better compression ratios over DCT based compression. Having a good understanding of DCT

compression, the author made an incorrect assumption that JPEG 2000 did lossless compression

using wavelets without quantization, just as the original JPEG scheme can do with DCT.

Regrettably the bad data used for software testing was happy to confirm the wrong assumption.

After much development work and then testing on a wider range of images the approach proved

to be fundamentally flawed.

 Lesson learned: bad data created unrealistic expectations for the software project and

wasted a huge amount of development time implementing an invalid solution. As a teacher,

having good data at the beginning of a software project is something I have not emphasized

enough to my students.

Don’t use sample data to verify an algorithm

 As discussed in the previous section, bad data was used in the initial develop of the

software for test cases to validate the algorithms that were implemented. The algorithms

produced correct results for the data which lead to fundamental misunderstandings of how

wavelet functions operate. The fundamental misunderstandings were not discovered until late in

the software development cycle, which resulting in much wasted time and effort.

 Lesson learned: rigorous test cases are crucial at the beginning of the software

development cycle.

Unit Testing is Crucial

 In order to save time, the author began implementing the required software pieces

without adequate testing along the way. While the pieces were reasonably straightforward, their

combination into a system was not. The result was wasted time on debugging and integration

testing. The author eventually started from “square one” and implemented “unit tests” for each

sub-system. In the long run, the “unit tests” saved huge amounts of time and effort.

 Lesson learned: “unit testing” and software engineering practices such as “extreme

programming” are not just academic issues that should be taught to students. They are critical to

the success of software system development.

Random data makes poor test cases

 Creating “unit tests’ for all of the special cases an algorithm must properly handle is

tedious and time consuming. It is easier to create random data sets and hope they cover all the

special cases. This is a bad idea.

 Lesson learned: Take the time required to create robust “unit tests” that verify every

special case an algorithm must correctly handle. It is time well spent.

Read code, not papers

 The JPEG standards for image compression have been widely researched and widely

published. However, finding published papers that present JPEG information that is helpful for

implementation is very challenging. The papers seemed more interested in confiscating their

work than in defining clear ways to replicate it. The author found reverse engineering of the

OpenJpeg code library (which implements the JPEG 2000 algorithms) to be much more valuable

than reading scholarly articles.

 Lesson learned: If an implementation of a software system is available, read the code

before reading the published paper.

 To illustrate this lesson, the following discussion describes the basic ideas behind lossless

compression in JPEG 2000 – ideas that were gained from reverse engineering software instead of

clear explanations from articles. Lossless compression in JPEG 2000 is performed using integer

wavelets that can be reversed with no loss of data. Integer wavelets have interesting properties

and they can be explained in simple terms that most students can grasp. The following discussion

presents integer wavelets in layman’s terms without obfuscating jargon.

 The big idea behind integer wavelets
1
 is to transform data in such a way that it requires

minimal bits to encode. A simple example will demonstrate this idea. Suppose you have two

numbers, 35 and 42, and you want to remember these values using smaller numbers. The average

of 35 and 42 is 38.5 and their difference is 7. You can remember 35 and 42 by storing 38.5 and

7. Since 7 is much smaller than the original values, it has the potential to be encoded using fewer

bits.

1
 Floating point wavelets perform a similar transformation, but they also divide the data into high and low

frequency signals. The human eye can’t detect the high frequency data and some of the high frequency data is

thrown away to produce lossy compression.

 An observant reader will immediately recognize that there is a problem. While the initial

two values were integers, the average value is floating point. Is it possible to calculate the

average and difference values using only integer math? In turns out you can because of a simple

arithmetic fact: The sum and difference of any two integer values will either both be even or both

be odd. If the difference value is even, you know the sum of the two numbers was even. If the

difference value is odd, you know the sum of the two numbers was odd. Therefore, when you

divide the sum by 2 to calculate the average, you can throw away any fractional part because the

difference value tells you whether there is a .0 or .5 fractional part to the average value. Using

the previous example, 35 and 42, if we stored 38 and 7 to remember the two numbers, we know

that the average is actually 38.5 because their difference, 7, is odd.

 This idea of storing transformed values instead of the original data is a powerful one and

many schemes for transforming the data have been proposed [8]. Any transformation where the

original data can be reclaimed without loss of precision is called a “reversible integer to integer”

transform. If the transformation produces averages and difference values, it is a wavelet

transform. The JPEG 2000 lossless compression transformation is elegant in the way it captures

the averages and differences between pixel values and retains all precision. The algorithm is

presented in example format to minimize mathematical notation. It is important to recognize that

the algorithm is performed in stages, where each stage uses data from the previous stage. The

algorithm cannot be understood as formulas, but rather must be understood as a process. To

explain the process, it will be performed on the following example data:

Index 0 1 2 3 4 5 6 7

Data 18 18 18 23 24 67 45 46

 Stage one of the lossless JPEG compression process is to calculate the difference between

a pixel and the average of its surrounding pixels. This is done on pixels in odd indexed array

slots and typically reduces the magnitude of the values stored in these locations because the

pixels in adjacent locations are often similar in magnitude. The formula takes the average of the

two pixels on either side of the pixel and subtracts it from its current value. All calculations are

performed using integer math, which truncates any fractional results. Notice that for slot 5, the

calculated average is 34.5, but 34 is subtracted from the pixel’s value. For index 7, the value in

slot 6 is used twice.

Index 0 1 2 3 4 5 6 7

Data 18 18  0 18 23  2 24 67  33 45 46  1
 18 –

(18+18)/2

 23 –

(18+24)/2

 67 –

(24+45)/2

 46 –

(45+45)/2

 In stage two of the process, each even indexed pixel value is increased to remember half

of the average of its surrounding pixel values. To compensate for truncation, ½ is added into the

calculation. The result of stage two on the example data is shown below. For index 0, the value

in slot 1 is used twice.

Index 0 1 2 3 4 5 6 7

Data 18  18 0 18  19 2 24  33 33 45  54 1
 18 +

((0+0)/2)/2

+1/2 

 18 +

((0+2)/2)/2

+1/2 

 24 +

((2+33)/2)/2

+1/2 

 45 +

((33+1)/2)/2

+1/2 

 The two stages perform a transformation of the original pixel values into 2 distinct

sequences. The odd indexed values, [0, 2, 33, 1], describe the fine details between adjacent

pixels. The even indexed values, [18, 19, 33, 54], describe the overall nature of the image. Notice

that the odd indexed values are small compared to the original data. Depending on the type of

image being compressed, these values can often be efficiently encoded using schemes such as

Huffman encoding, run-length encoding, or bit-wise encoding. By carefully selecting an

appropriate encoding, image compression can be achieved.

 Although it may not be obvious, the JPEG 2000 lossless transformation is a “reversible

integer to integer” transformation. This is demonstrated without explanation in the following two

decoding stages which reverse the transform.

 Decoding stage one:

Index 0 1 2 3 4 5 6 7

Data 18  18 0 19  18 2 33  24 33 54  45 1
 18 -

((0+0)/2)/2

+1/2 

 19 -

((0+2)/2)/2

+1/2 

 33 -

((2+33)/2)/2

+1/2 

 54 -

((33+1)/2)/2

+1/2 

 Decoding stage two produces the original data:

Index 0 1 2 3 4 5 6 7

Data 18 0  18 18 2  23 24 33  67 45 1  46
 0 +

(18+18)/2

 2 +

(18+24)/2

 33 +

(24+45)/2

 1 +

(45+45)/2

CONCLUSIONS

 Appropriate application data, appropriate software engineering processes, and thorough

literature analysis are necessary for successful implementation of complex software systems.

REFERENCES

[1] http://www.usafa.edu/df/dfe/dfer/centers/lorc/docs/FalconSAT07.pdf.

[2] http://www.amostech.com/TechnicalPapers/2013/Space-Based_Assets/ANDERSEN.pdf.

[3] http://www.atmel.com/images/doc32000.pdf.

[4] http://en.wikipedia.org/wiki/JPEG

[5] http://en.wikipedia.org/wiki/JPEG-LS#JPEG-LS.

[6] http://en.wikipedia.org/wiki/JPEG_2000.

[7] Sayood, Khalid, Introduction to Data Compression, Morgan Kaufmann Publishers, 2000, 636

pages.

[8] Adams, Michael David, Reversible Integer-to-Integer Wavelet Transforms for Image Coding,

PhD thesis, http://www.ece.uvic.ca/~frodo/publications/phdthesis.pdf.

[9] Senapati, Ranjan Kumar, Development of Novel Image Compression Algorithms for Portable

Multimedia Applications, PhD thesis, http://ethesis.nitrkl.ac.in/5485/1/thesis.pdf.

