

U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER

Fire Suppression M&S Validation (Status & Challenges) Systems Fire Protection Information Exchange 14-15 Oct 2015

> **Dr. Vamshi M. Korivi** US Army TARDEC Vamshi.m.korivi.civ@mail.mil

Contributors: Fire Protection Team (TARDEC), Navy Research Labs, CERDEC & ADAPCO

Outline

- Introduction
- Physics being solved
- Reduced Chemical Kinetics:
 - Complete description of suppression is complex
 - HFP (+SBC); Halon (+SBC), potassium acetate solution.
- Fire Suppression Evaluation Criteria
- Simulation Results & Comparison with Test Data:
 - Cup Burner
 - Exploratory Test Box
 - Crew Compartment
 - » Concentration
 - » Live Fire Simulation
 - Engine Compartment (In-Progress)
- Summary & Future Work

- Develop a <u>Computational Fluid Dynamics</u> (CFD) capability for modeling suppression events in ground combat vehicles.
- Using known component parameters, M&S allows:
 - To conduct trade studies between various layouts.
 - Reduces time and cost to compare multiple configurations.
 - Provides insight by complementing testing

RDECOM[®]

Physics Being Solved

Transient Analysis	 Model fuel spray and fire ball development Suppressant Discharge + Acid Mitigation 			
Turbulence Model	 K-Epsilon with Realizable Wall functions Segregated Solver 			
Lagrangian Physics	 Two-Way Coupling Evaporation & Devolatization 			
Suppressant Discharge	 Discharge from Pressurized bottle Liquid & Vapor Phase 			
Combustion Model	 Hybrid EBU with finite rate Kinetics 14 Species & 12 reactions 			
Radiation Model	 Participating Media Discrete Ordinate Method WSG model for CO2, H2O and Soot 			
Suppression	Catalytic & Non-Catalytic effectsAcid Levels			

Inhibition of JP-8 Combustion

RDECOM

Not useful for modeling large-scale fire suppression

Inhibition of JP-8 combustion by HFP (FM200) and/or sodium bicarbonate powder (SBC)

R1: JP-8 + $O_2 => CO + CO2 + H_2O$

(200 for hydrocarbon fuel—more for JP-8; 600 for fluorine chemistry)

R2: $CO + O_2 \iff CO_2$ •

Mechanism: ≈800 chemical reactions

Predicts flame inhibition, acid gas formation

Useful for modeling laboratory experiments

- **R3**: HFP + JP-8 + $O_2 = HF + COF_2 + CO + H_2O$
- **R4**: $COF_2 + H_2O => CO_2 + HF$
- **R5**: NaHCO₃(s) => CO₂ + NaOH(q)
- **R6:** $NaOH(q) \le NaOH(hvy gas)$ (hvy gas = heavy-gas approximation)
- **R7**: NaOH(hvy gas) + HF => NaF(hvy gas) + H₂O •
- **R8**: NaHCO₃(s) + HF => NaF(hvy_gas) + H₂O + CO₂
- **R9**: JP-8 + $O_2 => C$ (soot) + H_2O
- **R10**: C (soot) + $O_2 = +CO_2$

Kinetic Rate Coefficient for each equation is given in Arrhenius form (three-parameter) Halon Kinetics includes HBr acid

Overview of Reduced Kinetics Scheme for FM200

Parameter	Requirement	Simulation
Fire Suppression	Extinguish Flames without reflash	Y
Skin Burns	Less than Second degree burns	Y
Overpressure	Lung damage <11.6 psi; Ear damage ≤3.6 psi	Y
Acid Gases	Acid gas, 5 min dose (HF + HBr + $2 \cdot \text{COF}_2$) < 746 ppm-min	Y
Agent Concentration	<lowest adverse="" effects="" level<="" observed="" td=""><td>Y</td></lowest>	Y
Oxygen Levels	Not below 16%	Y
Discharge Impulse Noise	No hearing protection limit < 140 dB	Ν
Discharge Forces	Acceleration ≤ 8 g and pressure pulse ≤ 10 psig at crew locations	Ν
Fragmentation	Ejected non-agent particles \leq 300 micrometers	Ν

Cup-Burner Modeling (Determine Flame Extinguishing Concentrations)

ΞC

EXPLORATORY TEST BOX

Fire Ball Generator

RDECOM

Fireball is based on a medium shaped charge penetration into fuel cell

Reference: Fire Extinguishing Agents for Protection of Occupied Spaces in Military Ground Vehicles

EXPLORATORY TEST BOX SIMULATIONS

Test Box (Successful Suppression) Fire Ball (Red), SBC (Gold), HFC227ea (Blue)

RDECOM

Test Box (Failed Suppression) Fire Ball (Red), SBC (Gold), HFC227ea (Blue)

Criteria	Above Design Conc.		Below Design Conc.	
	Test	Simulation	Test	Simulation
Overall	Pass	Pass	Fail	Fail
Extinguish Flames without reflash	YES	YES	YES	No
K Value	1.56	1.44	1.14	1.44
HF Acid (PPM)	<20	47	3975	NA
COF2 Acid (PPM)	<20	97	1550	NA
Oxygen Levels	17.4%	18.0%	16.5%	NA

Comparison of FM200 Concentration (Test & Simulation)

Peak concentration levels measured within the 1st 200 and 340 ms

6.7% > Peak : Inadequate

Crew Compartment Nozzle Configuration Comparison

Nozzle Configuration Comparison With HVAC Off

Comparison of Simulation with Test Data

Criteria	Configuration I		Configuration II	
	Test	Simulation	Test	Simulation
Overall	Fail	Fail	Pass	Pass
Extinguish Flames without reflash	YES	YES	YES	YES
Overall Pressure (psi)	0.59	0.48	0.35	0.31
Agent Concentration	Below LOAEL	Below LOAEL	Below LOAEL	Below LOAEL
HF Acid (PPM)	708	656	<20	96
COF2 Acid (PPM)	161	518	<10	169
Oxygen Levels	15.9%	15.9%	17.1%	17.2%

Typical measurements include high speed video, blast overpressures, temperatures and the chemistry of the atmosphere, in particular the combustion byproducts using Fourier Transform Infrared Spectrometer (FTIR) **Simulations done To-date for Crew Compartment**

- With & without active air flow
- Fire Ball Generator (FBG) Location change
- Change nozzle parameters
 - number
 - location
 - discharge pattern
- Amount of agent & agent type
- Different clutter characteristics
- Hatch open vs closed scenario
 - RWS vs OGPK

Engine Compartment Concentration Simulation

Engine Compartment Suppression

Hydraulic Fluid Spray onto Turbo

Hydraulic Reservoir Leak

HFC-125

Summary & Future Work

- Simulation Results Comparison with testing
 - Results are qualitative and to a extent, quantitative
 - Coarse grid implications (adjustment of activation energy, soot)
 - Suppressant Nozzle specification (cone angle)
 - Halon and Water+Potassium acetate validation is limited to-date
- Improve turn-around time

- Status: 1-2 weeks for geometry preparation, 1 week for computation with DSRC HPC

- Atomization Specification (SWRI & ARL)
 - Scaling with Threat size
 - Phenomenological model
- Discharge of the suppressant (HAI effort)
 - Discharge Lag time, flow split etc.
- Nozzle Characterization effort (ADAPCO)
 - Droplet distribution
 - Velocity distribution
 - Cone Angle

RDECOM