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ABSTRACT
We study the interplay between a dynamical process and the structure of the network
on which it unfolds using the parameterized Laplacian framework. This framework
allows for defining and characterizing an ensemble of dynamical processes on a network
beyond what the traditional Laplacian is capable of modeling. This, in turn, allows for
studying the impact of the interaction between dynamics and network topology on
the quality-measure of network clusters and centrality, in order to effectively identify
important vertices and communities in the network. Specifically, for each dynamical
process in this framework, we define a centrality measure that captures a vertex’s
participation in the dynamical process on a given network and also define a function
thatmeasures the quality of every subset of vertices as a potential cluster (or community)
with respect to this process. We show that the subset-quality function generalizes
the traditional conductance measure for graph partitioning. We partially justify our
choice of the quality function by showing that the classic Cheeger’s inequality, which
relates the conductance of the best cluster in a network with a spectral quantity of its
Laplacian matrix, can be extended to the parameterized Laplacian. The parameterized
Laplacian framework brings under the same umbrella a surprising variety of dynamical
processes and allows us to systematically compare the different perspectives they create
on network structure.

Subjects Network Science and Online Social Networks
Keywords Network, Community structure, Spectral graph theory, Centrality, Dynamical process

INTRODUCTION
As flexible representations of complex systems, networks model entities and relations
between them as vertices and edges. In a social network for example, vertices are people,
and the edges between them represent friendships. As another example, the World Wide
Web is a collection of web pages with hyperlinks between them. An unprecedented amount
of such relational data is now available. While discovery and fortune await, the challenge is
to extract useful information from these large and complex data.

Centrality and community detection are two of the fundamental tasks of network
analysis. The goal of centrality identification is to find important vertices that control the
dynamical processes taking place on the network. Page Rank (Page et al., 1999) is one such
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measure developed by Google to rank web pages. Other centrality measures, such as degree
centrality, Katz score and eigenvector centrality (Katz, 1953; Bonacich, 1972; Bonacich &
Lloyd, 2001; Ghosh & Lerman, 2012), are used in communication networks for studying
how each vertex contributes to the routing of information. Identifying central vertices also
plays an important role in methods to maximize influence (Kempe, Kleinberg & Tardos,
2003) or limit the spread of a disease on networks.

The objective of community detection is to discover subsets of well-interacting vertices in
a given network. Discovering such communities allows us to follow the classic reductionist
approach, separating the vertices into distinct classes, each of which can then be analyzed
separately. For example, US-based political networks usually exhibit a bipolar structure,
representing democrat/republican divisions (Adamic & Glance, 2005). Communitieswithin
online social networks like Facebook might correspond to real social groups which can
be targeted with various advertisements. However, just like with the different notions of
centrality, there is an assortment of community detection algorithms, each leading to a
different community structure on the same network (see Fortunato, 2010; Porter, Onnela
& Mucha, 2009 for reviews).

With so many choices for both centrality and community detection, practitioners
often face a difficult decision of which measures to use. Instead of looking for the ‘‘best’’
such measure, we describe an umbrella framework that unifies some of the well known
measures, connecting the ideas of centrality, communities and dynamical processes on
networks. In this dynamics-oriented view, a vertex’s centrality describes its participation in
the dynamical process taking place on the network (Borgatti, 2005; Lambiotte et al., 2011;
Ghosh & Lerman, 2012). Likewise, communities are groups of vertices that interact more
frequently with each other (according to the rules of the dynamical process) than with
vertices from other communities (Lerman & Ghosh, 2012). In fact, this view of modeling
is not new: when choosing conductance as a measure of community quality, one implicitly
assumes that unbiased random walk is taking place on the network (Kannan, Vempala &
Vetta, 2004; Spielman & Teng, 2004; Chung, 1997; Delvenne, Yaliraki & Barahona, 2008).
Under the continuous time random walk model, heat kernel page rank (Chung, 2007)
also leads to a measure of community structures. Other dynamical processes, such as the
spread of information, or exchange of opinions, arise from different interactions than the
unbiased random walk. For example, maximum entropy random walk (Burda et al., 2009)
is a stochastic process that is biased towards neighbors that are closer to the network’s
strongly connected core. Represented by the replicator operator (Lerman & Ghosh, 2012;
Smith et al., 2013), it also models an epidemic process at the epidemic threshold, whose
stationary distribution is closely related to eigenvector centrality (Bonacich & Lloyd, 2001;
Ghosh & Lerman, 2011). It is natural, then, that vertex centrality and community depend
on the specifics of the dynamical process, even if the underlying network topologies are the
same.

Recently, Ghosh et al. (2014) introduced a parameterization of Laplacian operators to
capture the interplay between a dynamical process and the underlying topology of the
network on which it unfolds. By generalizing the traditional conductance, they proved a
more general version of the Cheeger inequality and used it as a basis for an efficient spectral
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1A similar measure of a subset of this family
is called the generalized conductance
in Ghosh et al., (2014).

clustering algorithm (Spielman & Teng, 2004; Andersen, Chung & Lang, 2007; Andersen &
Peres, 2009). In this paper, we generalize previous results by introducing a formal framework
with additional parameters and better intuitions.We also introduce parameterized centrality
and relate it to existing centrality measures through transformations. This paper makes the
following contributions:

Parameterized Laplacian (‘Parameterized Laplacian Framework’): We introduce the
parameterized Laplacian framework that extends the traditional Laplacian for describing
diffusion and random walks on networks. Recall that a random walk is a stochastic
dynamical process that transitions from a vertex to a random neighbor of that vertex.
It defines a Markov chain that can be specified by the normalized Laplacian of the
network. Our framework attempts to capture a family of dynamical processes that have
additional parameters based on the normalized Laplacian, which allows the modeling of
arbitrary biases and delays. Members of this family are connected via simple parameterized
transformations, which enables analysis of the impact of these parameters on the measures
of centrality and communities.

Parameterized centrality (‘Parameterized Centrality’): Based on the connection
between centrality measures and the stationary distribution of a random walk (Page et
al., 1999; Ghosh & Lerman, 2012), we generalize the notion of centrality to all dynamical
processes in the parameterized Laplacian family. Some well known centrality measures are
identified as special cases under this unified framework, which allows us to systematically
compare them using transformations. In particular, we show that seemingly different
formulations of dynamics are in fact the same after a change of basis. Parameterized
centrality also leads to the definition of parameterized volume for subsets of vertices.

Parameterized conductance (‘Parameterized Community Quality’): We also
generalize the notion of conductance to all dynamical processes under the framework and
call it parameterized conductance.1 This quantity measures the quality of every subset (of
vertices) as a potential community with respect to this process on the given network. Recall
that conductance balances between minimizing the cross-community interactions and the
volume of each community. Parameterized conductance is defined in exact same fashion,
but with the parameterized notions of interaction as well as volume. As with centrality,
some existing community measures turn out to be special cases. For completeness, we will
restate the previously proven generalized versions of Cheeger inequality and the resulting
spectral algorithm (Ghosh et al., 2014). The parameterized Laplacian framework enables
systematic comparison between different community measures, as they are now unified
and connected by simple transformations.

Empirical evaluation on real-world networks (‘Experiments’): We apply our
framework to study the structure of several real-world networks. They are from different
domains that embody a variety of dynamical processes and interactions. We contrast the
central vertices and communities identified by different dynamical processes and provide
an intuitive explanation for their differences. Keep inmind that we do not claim any specific
centrality or community structure measures to be the ‘‘best.’’ We think every outcome is
potentially interesting among many possible perspectives.

Yan et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.57 3/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.57


2It represents a probability vector in
random walks, while becomes a belief
vector in consensus processes.

3This contrasts with the engineering
convention where row vectors and right-
multiplications are standards.

Table 1 Glossary of terms and notations.

Term Description Term Description

A Weighted adjacency matrix aij Entry i,j of A
W Interaction matrix wij Entry i,j ofW
θ(t ) Vertex state vector (column) at time t θi(t ) Entry i of θ(0)
DA Diagonal degree matrix of A di Degree of vertex i in A
DW Diagonal degree matrix ofW dW i Degree of vertex i inW
T Diagonal delay matrix τi Delay factor of vertex i
L Generalized Laplacian Operator Pij Random walk probability from j to i
−→v A Dominant eigenvector of A −→v A i Entry i of−→v A

VA Diagonal matrix with−→v A entries −→v i ith eigenvector ofL
ci Centrality of vertex i S Subset of V , defines a community

In contrast to the earlier work on which this paper is based, the emphasis of this paper is
on the theoretical framework that brings together important concepts in network science.
While the parameterized Laplacian framework described in this paper cannot model every
dynamical process of interest, it is still flexible enough to include a variety of dynamical
processes which are seemingly unrelated. It allows us to systematically study and compare
these processes under a unified framework.Wehope this studywill lead to better approaches
for defining and understanding the general interaction between dynamics and topologies.

BACKGROUND AND RELATED WORK
Before introducing our framework, we briefly review some closely related models. We will
later show that these existing models are special cases under the parametrized Laplacian
framework. The intuition about these well-known systems is helpful for understanding the
motivation behind the framework.

We represent a network as a weighted, undirected graph G= (V ,E,A) with n vertices,
where for i,j ∈V , aij assigns an non-negative weight (affinity) to each edge (i,j)∈ E . We
follow the tradition that aij = 0 if and only if (i,j) 6∈ E ; i.e., A is the weighted symmetric
adjacency matrix. We assume aii= 0 for all i∈V . In the discussion below, the (weighted)
degree of vertex i∈V is defined as the total weight of edges incident on it, that is, di=

∑
j aij .

A dynamical process describes a state variable θi(t ) associated with each vertex i. This
variable changes its value based on interactions with the vertex’s neighbors according to
the rules of the dynamical process.2

In this paper, since we view dynamics as operators on the vector composed of vertex
state variables, we adopt the linear algebra convention, i.e., using column vertex state
vectors θ(t ) and left-multiply them by matrix operators.3 Table 1 summarizes the terms
and notation.

Random walks
One of the most-widely studied dynamical processes on networks is the random walk.
The simplest is the discrete time unbiased random walk (URW), where a walker at vertex
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4When there is no confusion, we will
abuse the notation and simply use θ and
θi without their explict time parameter (t ).

i follows one of the edges with a probability proportional to the weight of the edge (Ross,
2014; Aldous & Fill, 2002). In this case, the state vector θ4 forms a distribution whose
expected value follows the update equation:

θi(t+1)=
∑
j

Pijθj(t ).

Here P is a stochastic matrix whose entry Pij is the transition probability for a walker to go
from the vertex j to i, Pij = aij/dj .

The update equation of an unbiased random walk leads to the difference equation

1θi= θi(t+1)−θi(t )=
∑
j

Pijθj(t )−θi(t )=−
∑
j

LRWij θj(t ),

where LRW is the normalized random walk Laplacian matrix with LRW = I−AD−1A .
To go from a discrete time synchronous random walk to a continuous time dynamics,

we introduce a waiting time function for the asynchronous jumps performed by the
walk (Ross, 2014). Assuming a simple Poisson process where the waiting times between
jumps are exponentially distributed as the PDF f (t ,τ )= 1

τi
e−

t
τi , we can rewrite the above

difference equations as differential equations,

dθi
dt
=−

∑
j

LRWij
τj
θj .

The solution to the above differential equations gives the state vector of the random walk
at any time t :

θ(t )= e−L
RWT−1t

·θ(0),

where T is the n×n diagonal matrix with the mean waiting time τi as entries. If the
dynamical process converges, then regardless of its initial value θ(0), the stationary
distribution πi has the following density:

πi= lim
t→∞

θi(t )=
diτi∑
j

djτj
. (1)

Intuitively, the stationary distribution is proportional to the product of vertex degree and
the mean waiting time.

A natural extension of the process is to bias the random walk towards specific vertices,
making it a biased random walk (BRW). According to Lambiotte et al. (2011), any biased
random walk defined with the transition probability Pij ∝ biaij (where bi is the bias towards
vertex i) can be reduced to a URW on a re-weighted ‘‘interaction network’’ with the
adjacency matrix

W =BAB,
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where B is a diagonal matrix with Bii= bi. The above symmetric re-weighting ensures that

Pij =
biaijbj∑
i

biaijbj
∝ biaij, Pji=

bjajibi∑
j

bjajibi
∝ bjaji.

In one class of BRWs previously studied in network communications (Ling et al., 2013;
Fronczak & Fronczak, 2009; Gómez-Gardeñes & Latora, 2008), bias bi has a power-law
dependence on degree: Pij ∝ dβi aij . The exponent β controls the strength of bias. The URW
is recovered with β = 0; When β > 0, biases toward high degree vertices are introduced,
and when β < 0, the random walk is more likely to jump to a lower degree neighbor.

Another type of BRW is the maximum-entropy random walk (Burda et al., 2009;
Lambiotte et al., 2011), defined as

θi(t+1)=
∑
j

−→vAiaij
λmax
−→vAj

θj(t ),

where−→vA is the eigenvector of A associated with its largest eigenvalue λmax: A−→vA = λmax
−→vA .

Again, an unbiased random walk on the interaction networkW =VAAVA is equivalent to
biased random walk on the original network A (the entries of diagonal matrix VA is the
components of the eigenvector −→vA ). In particular, the stationary distributions of both can

be written as πi=
−→vAi

2∑
i
−→vAi

2 .

Consensus and opinion dynamics
Another closely related class of discrete time dynamical processes is the so-called the
‘‘consensus process’’ (DeGroot, 1974; Lambiotte et al., 2011; Olfati-Saber, Fax & Murray,
2007; Krause, 2008). Consensus process models coordination across a network where each
vertex updates its ‘‘belief’’ based on the average ‘‘beliefs’’ of its neighbors. Unlike random
walks, which conserves total state value throughout the network (since the state vector is
always a distribution), the consensus process follows the following update equation

θi(t+1)=
1
di

∑
j

aijθj(t ).

This leads to the difference equation

1θi= θ
t+1
i −θ ti =−

∑
j

LCONij θj(t )

where LCON is the consensus Laplacian matrix with LCON = I −D−1A A. For an undirected
graph with a symmetric A, LCON = [LRW ]T .

Consensus can also be turned into asynchronous continuous time dynamics. Again,
assuming a Poisson process where the update interval at each vertex is exponentially
distributed as τi(t )= 1

τi
e−

t
τi , we can rewrite the above difference equations as differential

equations,

dθi
dt
=−

∑
j

LCONij

τi
θj .
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The consensus process always converge to a uniform ‘‘belief’’ state with the value,

πi=
1∑

j

djτj

∑
i

θi(0)diτi. (2)

Just like the URW, unbiased consensus can also be generalized by introducing a weight
when averaging over neighbors’ values. This opens the door to consensus dynamics
such as opinion dynamics (Krause, 2008), and linearized approach to synchronization
models (Lerman & Ghosh, 2012; Motter, Zhou & Kurths, 2005; Arenas, Díaz-Guilera &
Pérez-Vicente, 2006).

Communities and conductance
In network clustering and community detection, previous work has focused on identifying
subsets of vertices S⊆V that interact more frequently with vertices in the same community
than vertices in other subsets (Fortunato, 2010; Porter, Onnela & Mucha, 2009). A standard
approach to clustering defines an objective function that measures the quality of a cluster.
For a subset S⊆V , let S̄=V \S denote the complement of S, which consists of vertices that
are not in S. Let cut(S,S̄)=

∑
i∈S,j∈S̄ai,j denote the total interaction strength of all edges

used by S to connect with the outside world. Let vol(S)=
∑

i∈Sdi=
∑

i∈S,j∈V ai,j denote
the volume of weighted ‘‘importance’’ for all vertices in S.

One popular measure of the quality of a subset S as a potential good cluster (or a
community) (Kannan, Vempala & Vetta, 2004; Spielman & Teng, 2004; Chung, 1997) is to
use the ratio of these two quantities:

φ(S)=
cut(S,S̄)

min(vol(S),vol(S̄))
. (3)

For example, a subset that (approximately) minimizes this quantity—the conductance
of S—is a desirable cluster, as it maximizes the fraction of affinities within the subset.
If interactions among vertices are proportional to their affinity weights, then a set with
small conductance also means that its members interact significantly more with each other
than with outside members. The smallest achievable ratio over all possible subsets is also
known as the isoperimetric number. As an important measure for mixing time in classic
Markov chains, conductance has proven mathematical bounds in terms of the second
eigenvalue of its Laplacian (Cheeger, 1970; Jerrum & Sinclair, 1988; Lawler & Sokal, 1988).
Other well-known quality functions are normalized cut (Shi & Malik, 2000) and ratio-cut,
given respectively by

cut(S,S̄)
vol(S)

+
cut(S,S̄)
vol(S̄)

and
cut(S,S̄)

min(|S|,|S̄|)
.

Algorithmically, once a quality function is selected, one can then perform a graph
partitioning algorithm or any community detection algorithm to find clusters that optimize
the objective. The optimization, however, is usually a combinatorial problem. To address
this problem on large networks, efficient approximate solutions have been developed,

Yan et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.57 7/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.57


such as Spielman & Teng (2004), Andersen, Chung & Lang (2007), and Andersen & Peres
(2009). Others took a machine learning approach, proposing efficient approximations
by enforcing various smoothness and regularization conditions (Avrachenkov et al., 2011;
Bertozzi & Flenner, 2012).

While most community detection algorithms do not explicitly model the dynamical
process that defines the interactions between vertices, the connection between conductance
and unbiased random walks is quite well studied (Kannan, Vempala & Vetta, 2004;
Spielman & Teng, 2004; Chung, 1997). In particular, Chung’s work on heat kernel page
rank and Cheeger inequality, where a dynamical system is built using the normalized
Laplacian, provides a theoretical framework for provably good approximations to the
isoperimetric number (Chung, 2007). Intuitively, the relationship between clustering and
dynamics can be captured as: a community is a cluster of vertices that ‘‘trap’’ a random
walk for a long period of time before it jumps to other communities (Lovász, 1996; Shi &
Malik, 2000; Rosvall & Bergstrom, 2008; Spielman & Teng, 2004). Therefore, the presence
of a good cluster based on conductance implies that it will take a random walk a long time
to reach its stationary distribution. Similar interplays with community structures can also
be generalized to richer dynamical processes, with different time scale, biases and locality
settings (Lambiotte, Delvenne & Barahona, 2008; Lambiotte et al., 2011; Jeub et al., 2015).

PARAMETERIZED LAPLACIAN FRAMEWORK
Consider a linear dynamical process of the following form:

dθ
dt
=−Lθ, (4)

where θ is a column vector of size n containing the values of the dynamical variable for all
vertices, and L is a positive semi-definite matrix, the spreading operator, which defines the
dynamical process.

As discussed in the introduction, we focus on dynamical processes that generalize
the traditional normalized Laplacian for diffusion and random walks. Recall that the
symmetric normalized Laplacian matrix of a weighted graph G= (V ,E,A) is defined as
D−1/2A (DA−A)D−1/2A , where DA is the diagonal matrix defined by (d1,...,dn). We study
the properties of a dynamical process that can be further parameterized as:

L(ρ,T ,W )= (TDW )−1/2−ρ(DW −W )(DWT )−1/2+ρ . (5)

We name this operator with parameters 〈ρ,T ,W 〉 parameterized Laplacian and represent
it usingL in the rest of the paper. Here T is the n×n diagonal matrix of vertex delay factors.
Its ith element τi represents the average delay of vertex i. We assume that the operator is
properly scaled : specifically, τi≥ 1, for all i∈V . Another generalization from the traditional
Laplacian is the use of the interaction matrix W instead of the adjacency matrix A. In
theory, W can be any n×n symmetric positive matrix. Note that the degree matrix DW

is now also defined in terms of the interaction matrix, that is dW i=
∑

jwij . While the ρ
parameter can technically be any real number, in this work we limit ourselves to three
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special cases: ρ= 1/2,0,−1/2. These cases correspond to three equivalent linear operators
with ‘‘consensus’’, ‘‘symmetric’’ and ‘‘random walk’’ interpretations respectively.

We show that by transforming the parameterized Laplacian in different ways we can
express a number of different dynamic processes.We focus on three simple transformations:
(a) the similarity transformations, which correspond to the parameter ρ in parameters in
Eq. (5), (b) scaling transformations, governed by the parameter T , and (c) the reweighing
transformation, governed byW .

Similarity transformations
Changing ρ in Eq. (5) leads to different representations of the same linear operator,
unifying seemingly unrelated dynamics, such as ‘‘consensus’’ and ‘‘random walk.’’ To see
this, we refer to the idea of matrix similarity.

In linear algebra, similarity is an equivalence relation for square matrices. Two n×n
matrices X and Y are similar if

X =QYQ−1, (6)

where the invertible n×n matrix Q is called the change of basis matrix. Similar matrices
share many key properties, including their rank, determinant and eigenvalues. Eigenvectors
are also transforms of each other under a change of basis.

Recall that under our framework, the symmetric version of the parameterized Laplacian
matrix is

LSYM
=T−1/2D−1/2W (DW −W )D−1/2W T−1/2.

We can rewrite the operator describing random walk dynamics as:

LRW
= (DW −W )(DWT )−1= (DWT )1/2LSYM (DWT )−1/2. (7)

Thus, continuous time random walk with delay factors T is similar to the symmetric
normalized Laplacian. Similarly, we can rewrite the continuous time consensus dynamics
under our framework as

LCON
= (DWT )−1(DW −W )= (DWT )−1/2LSYM (DWT )1/2=LRW T

. (8)

The fact that ‘‘consensus,’’ ‘‘symmetric’’ and ‘‘random walk’’ operators are similar means
that they model the same dynamics on a network, provided that we observe them in a
consistent basis.

The random walk Laplacian matrix provides a physical intuition for our framework. An
unbiased random walk on the interaction graph W is equivalent to a biased random walk
on the original adjacency matrix A (Lambiotte et al., 2011). On the other hand, τi specifies
the mean delay time of the random walk on vertex i before a transition. This interpretation
reveals the orthogonal nature of the parameters: namely W controls the distribution of
walk trajectories while T controls the delay time of vertex transitions along each trajectory.

While we use symmetric operators for mathematical convenience in definitions and
proofs and abuse the notation L=LSYM , it is often more intuitive to think from the
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random walk or consensus perspective. In the following subsections, we will use the
random walk formulation (ρ =−1/2) as examples, but all results apply to arbitrary ρ
values under a simple change of basis. More discussion about the similarity transformation
follows after we introduce a few properties of the parameterized Laplacian.

Scaling transformations
Uniform scaling. One of the simplest transformations is uniform scaling, which is given by
the diagonal matrix T with identical entries:

X =YQ= γY , (9)

where the scalar matrix Q can be rewritten as γ I , where γ is a scalar. Uniform scaling
preserves almost all matrix properties, including the eigenvalue and eigenvector pairs
associated with the operator.

Intuitively, uniform scaling can be understood as rescaling time by 1/γ . In other
words, a bigger global ‘‘time delay’’ slows down the random walk. Uniform scaling is a
useful transformation that enables the parameterized Laplacian to include arbitrary time
delay factors T ′. The trick is to rescale T to meet the condition τi≥ 1 by making T = T ′

maxiτi
without affecting any other matrix properties. We will later use it to define special operators
under the framework.

Non-uniform scaling. Non-uniform scaling enables us to use the T parameter to control
the time delay at each vertex. Non-uniform scaling is written as

X =YQ, (10)

where the diagonal matrixQ can have different entries. Unlike uniform scaling, this scaling
does not preserve the matrix’s spectral properties.

Under the parameterized Laplacian framework, non-uniform scaling can be understood
as rescaling the mean waiting time at each vertex i by τi. Non-uniform scaling does not
affect the trajectory of the random walk: the sequence of vertices, i0,i1,...,it , visited by the
random walk during some time interval does not depend on T . What changes with T is
only the waiting time at each vertex, i.e., the time the walk spends on the vertex before a
transition.

Reweighing transformations
The last parameterization we explore is one that transforms the adjacency matrix of a
graph, A, to the interaction matrix W . Given an adjacency matrix A, the choice of W is a
rather flexible design option. In fact, we can arbitrarily manipulate the adjacency matrix as
long as the result is still a positive and symmetric matrix, for any perceived dynamics.

In this paper, we limit our attention to bias transformations of the original adjacency
matrix A. We call them the reweighing transformations. Whereas the scaling transformation
changes the delay time at each vertex, the reweighing transformation changes the trajectory
of the dynamic process. Note that this transformation also changes the degree matrix DW .
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5By fixing ρ = 0 we recover the family of
special cases considered in Ghosh et al.
(2014).

As described in ‘Background and Related Work’, a biased random walk with transition
probability Pij ∝ biaij is equivalent to an unbiased random walk on an ‘‘interaction graph,’’
represented by the reweighed adjacency matrix:

wij = biaijbj, (11)

where we constrain bi > 0. This transformation allows the parameterized Laplacian to
model many different types of dynamic processes by transforming them into a unbiased
walk on the reweighted interaction graph.

Special cases
The simple parameterization of the Laplacian in terms of T and W allows us to model a
variety of dynamic processes,5 including those described by the Laplacian and normalized
Laplacian, as well as a continuous family of new operators that are not as well studied. It
also contains operators for modeling some types of epidemic processes. The consideration
of this family of operators is also partially motivated by recent experimental work in
understanding network centrality (Ghosh & Lerman, 2011; Lerman & Ghosh, 2012).

Normalized Laplacian. If the interaction matrix is the original adjacency matrix of the
graph W =A, and vertex delay factor is simply the identity matrix T = I , then we recover
the symmetric normalized Laplacian:

L= I−D−1/2A AD−1/2A .

The ‘‘random walk’’ and ‘‘consensus’’ formulations of this dynamic process correspond to
the unbiased random walk and consensus processes described in ‘Background and Related
Work’: LRW

= I−AD−1A and LCON
= I−D−1A A.

(Scaled) Graph Laplacian. When W = A, T = dmaxD−1A , the parameterized Laplacian
operator corresponds to the (scaled) graph Laplacian

L=
1

dmax
(DA−A).

This operator is often used to describe heat diffusion processes (Chung, 2007), where L is
replacing the continuous Laplacian operator ∇2.

Notice that by setting T = dmaxD−1A , the diagonal matrix TDW becomes effectively a
scalar. As a result, different similarity transformation (other values of ρ in Eq. (5)) lead to
identical linear operators, meaning the ‘‘random walk’’ and ‘‘consensus’’ formulations are
exactly the same as the symmetric formulation.

Replicator. Let −→vA be the eigenvector of A associated with its largest eigenvalue λmax:
A−→vA = λmax

−→vA . We can then construct a diagonal matrix VA whose elements are the
components of the eigenvector −→vA . Let us scale the adjacency matrix according to
W =VAAVA and use it as the interaction matrix. Setting the vertex delay factor to identity,
the spreading operator is:

L= I−D−1/2W WD−1/2W = I−
1
λmax

A,
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where the entries in DW simplifies as dW i =
∑

j
−→vAiaij
−→vAj =

−→vAi

∑
j aij
−→vAj = λmax

−→vAi
2.

This operator is known as the replicator matrix R, and it models epidemic diffusion at
the epidemic threshold on a graph (Lerman & Ghosh, 2012). It is simply the normalized
Laplacian of the interaction graph VAAVA (Smith et al., 2013), given by reweighting the
adjacency graph A with the eigenvector centralities of the vertices.

Using the random walk formulation, an URW on VAAVA is equivalent to a maximum
entropy random walk on the original graph A (Burda et al., 2009; Lambiotte et al., 2011).
Its solution is

θi(t+1)=
∑
j

−→vAiwij

λmax
−→vAj

θj(t ). (12)

This means that both dynamics have exactly the same state vector θ at each time step. In

particular, the stationary distributions are both πi=
−→vAi

2∑
i
−→vAi

2 .

The consensus formulation of the replicator gives a maximum entropy agreement
dynamics:

LCON
= I−

1
λmax

V−1A AVA.

Unbiased Laplacian. Reweighing each edge by the inverse of the square root of
the endpoint degrees gives the what is known as the normalized adjacency matrix
W =D−1/2A AD−1/2A (Chung, 1997). Then, the degree of vertex i of the reweighted graph is
dW i=

∑
j∈VW [i,j]. With T = dWmaxD

−1
W we define the unbiased Laplacian matrix :

L=
1

dWmax
(DW −W ).

Unbiased Laplacian is an example of the degree based biased random walk with Pij ∝
d−1/2i aij (‘Background and Related Work’). An URW on the reweighed adjacency matrix
W is equivalent to a BRW on the original adjacency matrix of the following dynamics

θi(t+1)=
∑
j

d−1/2i aij∑
k

d−1/2k akj
θj(t ). (13)

The stationary distribution for this class of BRWs in general is πi=
∑

id
β
i aijd

β
j∑

ij d
β
i aijd

β
j
.

Equivalent to the (scaled) graph Laplacian of the normalized adjacency matrix, the
diagonal matrix TDW of the unbiased Laplacian is also effectively a scalar. As a result,
the ‘‘random walk’’ and ‘‘consensus’’ formulations are exactly the same as the symmetric
formulation.

These four special cases are related to each other through various transformations
introduced earlier in this section, which are captured by Fig. 1.
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Figure 1 Relationships between special cases of the parameterized Laplacian.

PARAMETERIZED CENTRALITY
Centrality is used to capture how ‘‘central’’ or important a vertex is in a network. In
dynamical systems, a centrality measure should have the following properties: (1) it should
be a per-vertex measure, with all values positive scalars; (2) it should be strongly related
to that’s vertex’s state variable; (3) it should be independent of initial state of the state
vector. These conditions ensure that centrality of a vertex is determined by the topology
of the network as well as the interactions taking place on it. It also follows our intuition
that the importance of a vertex should not depend on the specific initializations of the
dynamical process. It is sometimes desirable to define a centrality measure as a function of
time (Taylor et al., 2015). In this paper, however, we stick to the more conventional notion
of time-invariant centralities.

The various centrality measures introduced in the past have lead to very different
conclusions about the relative importance of vertices (Katz, 1953;Bonacich, 1972;Page et al.,
1999), including degree centrality, eigenvector centrality and PageRank. Our parameterized
Laplacian framework unifies some of these measures by showing that they are related to
solutions of different dynamic processes on the network.

Stationary distribution of a random walk
A vertex has high centrality with respect to a random walk if it is visited frequently by it.
This is specified by the distribution of the dynamic process at time t :

θ(t )= e−L
RW t
·θ(0)=

∞∑
k=0

(−t )k

k!
LRW k

θ(0), (14)

where θ(0) is the state vector describing the initial distribution of the random walk. The
stationary distribution of the random walk:

lim
t→∞

θ(t )=π with πi=
dW iτi∑
j

dW jτj
, (15)

because

(DW −W )(TDW )−15= (DW −W )
−→
1 =
−→
0 ,

with π being the vector with π entries and 5 being the diagonal matrix with the same
elements. By convention, π is the standard centrality measure in conservative processes,
including random walks (Ghosh & Lerman, 2012).
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Figure 2 The similarity transformations between ‘‘consensus’’ and ‘‘randomwalk’’ dynamics.

If we define centrality as the stationary distribution of a random walk, the importance
of a vertex can be thought of as the total time a random walk spends at the vertex in the
steady state. This is proportional to both vertex degree and delay factor, which we will later
relate to the volume measure. If LRW is a normalized Laplacian, this centrality measure is
exactly the heat kernel page rank (Chung, 2009), which is identical to degree centralities
sinceW =A and T = I .

Stationary distribution of consensus dynamics
In consensus processes, the state vector always converges to a uniform state, where each
vertex has the same value of the dynamic variable. As a result, the stationary distribution
is not an appropriate measure of vertex centrality, since it deem all vertices to be equally
important. However, the final consensus value associated with each vertex is

πi=
1∑

j

dW jτj

∑
i∈V

θi(0)dW iτi, (16)

where weight of vertex i in this average is dW iτi∑
j dW jτj

.

Intuitively, as a measure of importance, it make sense to define the centrality of a vertex
in the consensus process as its contribution to the final value. This consistency between
‘‘consensus’’ and ‘‘random walk’’ leads us to define the parameterized centrality.

Parameterized centrality
As shown in ‘Similarity transformations,’ the matrices connected through a similarity
transformation represent the same linear operator up to a change of basis. For example, the
relationship between ‘‘consensus’’ and ‘‘random walk’’ dynamics are captured by Fig. 2.

The above equivalence applies to all state vectors at any time t , including the stationary
state. To verify, we first rewrite the initial state vector in terms of the eigenvectors
of L {−→v1 ,−→v2 ,...,−→vn }, indexed by their corresponding eigenvalues in ascending order
λ1<λ2< ··· , with the smallest λ1 as the dominant eigenvalue.
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Table 2 Stationary and initial state vectors of different formulations of the parameterized Laplacian.

Formulations [θ(0)]ρ u1i z1 −→v 1i [πi]ρ

LSYM (DT )−1/2θ(0)
√
diτi√∑
j dj τj

1√∑
j dj τj

√
diτi√∑
j dj τj

√
dj τj∑
j dj τj

LRW θ(0) 1√∑
j dj τj

1√∑
j dj τj

diτi√∑
j dj τj

dj τj∑
j dj τj

LCON (DT )−1θ(0) diτi√∑
j dj τj

1√∑
j dj τj

1√∑
j dj τj

1∑
j dj τj

θ(t )= e−Lt
·θ(0)=

∞∑
k=0

(−t )k

k!
Lkθ(0)

=

∑
i

∞∑
k=0

(−t )k

k!
λi

kzi−→vi =
∑
i

zie−λit−→vi

=

∑
i

uTi θ(0)e
−λit−→vi =Ve−3tUT θ(0), (17)

where in the last step we used matrices to simplify the notation, with3 being the diagonal
matrix of eigenvalues, V composed of {−→v1 ,−→v2 ,...,−→vn } as columns and UT

=V−1. One
interesting observation is that by left multiplying both sides with UT , we have

UT θ(t )=UTVe−3tUT θ(0)= e−3tUT θ(0).

Recall that UT θ is a vector in the eigenbasis V. Applying the operator L to any input
vector simply re-scales it according to eigenvalues. Since the smallest eigenvalue of the
parameterized Laplacian is always 0, we have

uT1 θ(t )= e−λ1tuT1 θ(0)= uT1 θ(0),

which states that the state vector is conserved along the direction of the dominant
eigenvector −→v1 .

The state vector reaches a stationary distribution π

π = lim
t→∞

θ(t )= lim
t→∞

eλ1tθ(t )

= z1

(
eλ1

eλ1

)t
−→v1 +z2

(
eλ1

eλ2

)t
−→v2 +···+zn

(
eλ1

eλn

)t
−→vn ≈ z1−→v1 . (18)

Since all terms vanish as t→∞, the stationary state vector π only depends on −→v1 . z1−→v1
qualifies as a time invariant, initialization-independent vertex centrality measure.

Table 2 summarizes the properties of the stationary distributions and centralities
associated with different similarity transformation of the parameterized Laplacian. [θ]ρ
represents the vector θ under the basis specified by the ρ parameter, with the random walk
vector under the standard basis being θ(0).

The spectral theorem states that any symmetric real matrix, regardless if its rank, has an
orthonormal basisV which consists of its eigenvectors. Under the parameterized Laplacian
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framework, the symmetric formulation with ρ = 0 falls into this category. In the above
table, we have chosen the normalization of the orthonormal basis

√∑
j djτj as the common

normalization for all formulations.
As the table shows, similarity transformations of the same operator give the same the

state vector θ, as long as the input and output vectors are properly transformed into the
correct basis. They represent the same dynamics in different coordinate systems. Since
centrality is determined by the dynamic process on a given network, it should be unified
across these similarity transformations. In theory, any coordinate system can be set as the
standard. Here, following the intuitions described earlier, we define the unnormalized
stationary state vector of the random walk as the parameterized centrality :

ci= dW iτi. (19)

Another motivation behind this definition is to establish a direct connection between
centrality and community measures, as we will later demonstrate with the notion of
parameterized volume (23).

Transformations and special cases
Parameterized centrality includes many well known centrality measures as special cases.
Below, we summarize the induced special cases discussed in the previous subsection.

Normalized Laplacian. W =A and T = I , and hence the parameterized centrality reduces
to degree centrality ci= di.

(Scaled) Graph Laplacian. W =A and T = dmaxD−1A , hence the parameterized centrality
measure here is uniform with ci = dmax. This intuition is easier to see if one considers
the unnormalized Laplacian as a consensus operator, as it is often used to calculate the
unweighted average of vertex states (Olfati-Saber, Fax & Murray, 2007).

Replicator. W =VAAVA and T = I . Recall that −→vA is the eigenvector of A associated with
the largest eigenvalue λmax. The parameterized centrality in this case is ci= λmax

−→vAi
2, which

corresponds to the stationary distribution of a maximal-entropy random walk on the
original graph A. Note that −→vA , also known as the eigenvector centrality, was introduced by
Bonacich (Bonacich & Lloyd, 2001) to explain the importance of actors in a social network
based on the importance of the actors to which they were connected.

Unbiased Laplacian. W =D−1/2A AD−1/2A and T = dWmaxD
−1
W . Similar to the (scaled) graph

Laplacian, the parameterized centrality measure here is uniform with ci= dWmax.

Other transformations. Besides the above special cases, we can use any transformation
introduced in the last section for new dynamics, and the corresponding parameterized
centrality will be immediately apparent. Scaling transformations change τi terms,
while reweighing transformations change dW i. Similarity transform has no effect on
parameterized centrality by definition.
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6We focus on the symmetric formulation in
this section for mathematical convenience,
but all results apply for general ρ values
under similarity transformations.

PARAMETERIZED COMMUNITY QUALITY
Now we investigate the impact of dynamics on network communities. A community is a
subset of vertices that interact more with each other according to the rules of a dynamic
process than with outside vertices. A quality function measures the degree to which this
interaction is confined within communities. Here in the context of dynamical processes, we
use the following considerations to constrain our choice of quality function: 1. Community
quality should be a global measure of interactions; 2. Community quality should be
invariant of initial state vectors; 3. Community quality of a subset should be strongly
correlated to the change of state variable of member vertices.

The above conditions ensure that the quality function is solely determined by the choice
of communities, network structure and the interactions between vertices. We assume
that the underlying network structure remains static as the dynamics unfolds. Similar to
parameterized centralities, we focus on the time-invariant communities. There is a catch,
however, by simply dividing each vertex into its own community, we would have a optimal
but trivial community division. Therefore, we need additional constraint on the size of the
communities.

A closely related problem in geometry is the isoperimetric problem, which relates the
circumference of a region to its area. Isoperimetric inequalities lie at the heart of the study
of expander graphs in graph theory. In graphs, area translates into the size of the vertex
subset, and the circumference translates into the size of their boundary (Chung, 1997). In
particular, we will focus on the graph bisection (cut) problem, which restricts the number
of communities to two. For bisections, the constraint on community sizes becomes a
balancing problem.

Just as for centrality, various community measures used in previous literature lead to
very different conclusions about community structure (Fortunato, 2010; Newman, 2006;
Rosvall & Bergstrom, 2008; Zhu, Yan & Moore, 2014). In this section, we will demonstrate
that for graph bisection, some of them are essentially graph isoperimetric solutions under
our parameterized Laplacian framework, and more importantly, each one corresponds to
a unified community measure for a class of similar operators including seemingly different
formulations of ‘‘consensus,’’ ‘‘symmetric’’ and ‘‘random walk.’’6

Parameterized conductance
Recall that conductance is a community quality measure associated with unbiased random
walks.

φ(S)=
cutA(S,S̄)

min(vol(S),vol(S̄))
, (20)

where vol(S)=
∑

i∈Sdi and cutA=
∑

i∈S,j∈S̄aij .
We generalize this notion with a claim that every dynamic process has an associated

function that measures the quality of the cluster with respect to that process. Optimizing
the quality function leads to cohesive communities, i.e., groups of vertices that ‘‘trap’’ the
specific dynamic process for a long period of time.
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Consider a dynamic process defined by the spreading operator L=T−1/2D−1/2W (DW −

W )D−1/2W T−1/2. We define the parameterized conductance of a set S with respect to L as:

hL(S)=
cutW (S,S̄)

min
(
volL(S),volL(S̄)

) (21)

=

∑
i∈S,j∈S̄

wij

min

∑
i∈S

dW iτi,
∑
i∈S̄

dW iτi

 . (21)

The minimum over all possible S is the parameterized conductance of the graph,

φL(G)=min
S∈V

hL(S). (22)

Notice that we have also defined the parameterized volume of a set S⊆V as

volL(S)=
∑
i∈S

ci=
∑
i∈S

dW iτi, (23)

which is the sum of parameterized centralities of member vertices. Using the random walk
perspective, the numerator measures the random jumps across communities, while the
denominator ensures a balanced bisection. As previously pointed out, the presence of a good
cut implies that it will take a random walk a long time to cross this boundary and reach
its stationary distribution. This corresponds to a small numerator. The parameterized
volume can be interpreted as the total time a random walk stays within a community
after convergence, as it is proportional to both vertex degrees and vertex delay factors.
This interpretation of the denominator coincides with our definition of parameterized
centrality (19).

Transformations and special cases
We can use any transformation to produce new dynamics, and the corresponding
parameterized conductance will be redefined according to Eq. (21),

hL(S)=

∑
i∈S,j∈S̄

wij

min

∑
i∈S

dW iτi,
∑
i∈S̄

dW iτi

 . (24)

However, the effect of transformations on the resulting communities is not as obvious
when compared with the parameterized centrality. Below, we elaborate the effect of
transformations on the parameterized conductance measure in cases and examples.

First of all, the similarity transformation keeps both numerator and denominator the
same, which makes the quality function of the same communities identical. This ultimately
leads to identical parameterized conductances, which is the minimum over all possible
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bisections. Uniform scaling does change the denominator. However, because all possible
bisections are scaled uniformly, the relative quality measure remain the same, leading to
identical parameterized conductances communities.

From the algorithmic perspective, both similarity and uniform scaling transformations
preserve spectral properties of the operator. Since the spectrum is the only input
information our spectral dynamics clustering Algorithm 1 uses, we always expect to
get the same solution after the transformations. This is not the case with non-uniform
scaling and reweighing transformations.

With non-uniform scaling, the numerator remains unchanged. It is each vertex’s delay
time change that scales the volume measures in the denominator, which in turn results in
different optimal bisections because of the balance constraint.

The reweighing transformation is the most complex of all, changing both the numerator
and denominator in Eq. (21). This trade-off between cut and balance can oftentimes be
very complicated to analyze (as will be seen with real world networks).

Finally, we summarize the induced special cases.

Normalized Laplacian. W =A and T = I , and hence hL(S) is the conductance.

(Scaled) Graph Laplacian. W =A and T = dmaxD−1A , hence

hL(S)=
cutA(S,S̄)

min(dmax|S|,dmax|S̄|)
=

1
dmax
·

∑
i∈S,j∈S̄

aij

min(|S|,|S̄|)
.

This is the ratio cut scaled by 1/dmax.

Replicator. W =VAAVA and T = I . Recall −→vA is the eigenvector of A associated with the
largest eigenvalue λmax. The redefined cut size is

∑
i∈S,j∈S̄wij =

∑
i∈S,j∈S̄

−→vAiaij
−→vAj . Therefore,

hL(S)=

∑
i∈S,j∈S̄

−→vAiaij
−→vAj

λmaxmin

∑
i∈S

−→vAi
2,
∑
i∈S̄

−→vAi
2

 .

Since the degree of a vertex in the interaction graph W is dW i =
∑

jwij = λmax
−→vAi

2, the
parameterized conductance of the replicator is simply the conductance of the interaction
graphW (Smith et al., 2013).

Unbiased Laplaican. W =D−1/2A AD−1/2A and T = dWmaxD
−1
W . The associated quality

function is

hL(S)=
1

dWmax
·

∑
i∈S,j∈S̄

aij√
didj

min(|S|,|S̄|)
.
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Notice that here the parameterized conductance for graph Laplacian and unbiased
Laplacian share the same denominator even though they are related through both
reweighing and scaling transformations. This is a result of their scaling cancelling out
the reweighing effect on volumes (centralities). This is part of the motivation behind
our design of the unbiased Laplacian operator for easier comparisons. Another simple
obseravation is that graph Laplacian shares the same numerator with its normalized
counterpart. We will be using these relationships for analyzing experimental results in the
next section.

Parameterized Cheeger inequality
Given the parameterized conductance measure, finding the best community bisection
is still a combinatorial problem, which quickly becomes computationally intractable
as the network grows in size. In this subsection we will extend the theorems for the
classic Laplacian to our parameterized setting, ultimately leading to efficient approximate
algorithms with theoretical guarantees. For mathematical convenience we will use the
symmetric formulation and assume that ρ = 0 for L. Cheeger inequality (Cheeger, 1970)
states that

φ2(G)/2≤ λ2≤ 2φ(G)

where λ2 is the second smallest eigenvalue of the symmetric normalized Laplacian,
L= I−D−1/2WD−1/2, and φ(G) is conductance. The relationship between conductance
and spectral properties of the Laplacian enables the use of its eigenvectors for partitioning
graphs, particularly the nearest-neighbor graphs and finite-element meshes (Spielman &
Teng, 1996).

In this section, we generalize Cheeger inequality to any spreading operator under our
framework and its associated parameterized conductance of the graph (given by Eq. (22)).
Compared with classic results in Markov chain mixing times (Jerrum & Sinclair, 1988;
Lawler & Sokal, 1988), we generalize Cheeger inequality to accommodate the asyncronized
delay factors in T . It also comes with algorithmic consequences, leading to spectral
partitioning algorithms that are efficient in finding low conductance cuts for a given
operator.

Theorem 1. (Parameterized Cheeger Inequality): Consider the dynamic process described
by a (properly scaled) spreading operator L= T−1/2D−1/2W (DW −W )D−1/2W T−1/2. Let
λ1 ≤ λ2 ≤ ··· ≤ λn be the eigenvalues of L. Then λ1 = 0 and λ2 satisfies the following
inequalities:

φL(G)2/2≤ λ2≤ 2φL(G)

where φL(G) is given by Eq. (22).

Proof. We prove the theorem by following the approach for proving the classic Cheeger
inequality (see Chung, 1997).
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7We shall revert back to dW i notations after
this proof.

Let (τ1,...,τn) be the diagonal entries of T , and −→v1 be the eigenvector associated with
λ1. Note that −→v1 = T 1/2D1/2

W ·
−→
1 , where

−→
1 denotes the column vector of all 1’s, is an

eigenvector of L associated with eigenvalue λ0 = 0. Let volL(S)=
∑

i∈Sdiτi for S⊆ V ,
where for clarity we abuse the notation di and use it as dW i.7 Suppose f is the eigenvector
associated with λ2. Then, f ⊥−→v1 . Consider vector g such that g [u] = f [u]/

√
duτu. The fact

that f ⊥−→v1 then implies
∑

v g [v]dvτv = 0. Then,

λ2 =
f TLf
f T f

=

∑
u,v∈V

(
f [u]
√
duτu
−

f [v]
√
dvτv

)2

wu,v∑
v

f [v]2

=

∑
u,v∈V

(
g [u]−g [v]

)2wu,v∑
v

g [v]2dvτv
.

Instead of sweeping the vertices of G according to the eigenvector f itself, we sweep the
vertices of the graph G according to g by ordering the vertices of G so that

g [v1] ≥ g [v2] ≥ ··· ≥ g [vn]

and consider sets Si={v1,...,vi} for all 1≤ i≤ n.
Similar to Chung (1997), we will eventually only consider the first ‘‘half’’ of the sets Si

during the sweeping: let r denote the largest integer such that volL(Sr )≤ volL(V )/2. Note
that∑
v

(g [v]−g [vr ])2dvτv =
∑
v

g [v]2dvτv+g [vr ]2dvτv ≥
∑
v

g [v]2dvτv

where the first equation follows from
∑

v g [v]dvτv = 0.We denote the positive and negative
part of g−g [vr ] as g+ and g− respectively:

g+[v] =

{
g [v]−g [vr ], if g [v] ≥ g [vr ].
0, otherwise.

(25)

g−[v] =

{
|g [v]−g [vr ]|, if g [v] ≤ g [vr ].
0, otherwise.

(26)

Now

λ2 =

∑
u,v∈V

(g [u]−g [v])2wu,v∑
v

g [v]2dvτv
≥

∑
u,v∈V

(g+[u]−g+[v])2wu,v+ (g−[u]−g−[v])2wu,v∑
v

(g+[v]2+g−[v]2)dvτv

≥min


∑

(g+[u]−g+[v])2wu,v∑
v

g+[v]2dvτv
,

∑
(g−[u]−g−[v])2wu,v∑

v

g−[v]2dvτv

.
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Without loss of generality, we assume the first ratio is at most the second ratio, and will
mostly focus on the vertices {v1,....,vr } in the first ‘‘half’’ of the graph in the analysis below.
Thus,

λ2≥

∑
u,v

(g+[u]−g+[v])2wu,v∑
v

g+[v]2dvτv
≥

(∑
u,v

(g 2
+
[u]−g 2

+
[v])wu,v

)2

(∑
v

g+[v]2dvτv

)(∑
u,v

(g+[u]+g+[v])2wu,v

)

which follows from the Cauchy-Schwartz inequality.
We now separately analyze the numerator and denominator. To bound the denominator,

we will use the following property of τi: because L is properly scaled, τi≥ 1 for all i∈V .
Therefore,∑
u,v

(g+[u]+g+[v])2wu,v ≤
∑
u,v

2(g 2
+
[u]+g 2

+
[v])wu,v

= 2
∑
u∈V

g 2
+
[u]du≤ 2

∑
u∈V

g 2
+
[u]duτu.

Hence, the denominator is at most

2

(∑
u∈V

g 2
+
[u]duτu

)2

.

To bound the numerator, we consider subsets of vertices Si={v1,...,vi} for all 1≤ i≤ r
and define S0=∅. First note that

volL(Si)−volL(Si−1)= dviτvi . (27)

By the definition of φL(G), we know φL(G)≤minihL(Si) for all 1≤ i≤ r , where recall the
function hS(L) is defined by Eq. (21). Since volL(Si)≤ volL(S̄i) for all 1≤ i≤ r , we have

cut(Si,S̄i)≥φL ·volL(Si). (28)

By orienting vertices according to v1,...,vn, we can express the numerator

Num=

(∑
u,v

(g 2
+
[u]−g 2

+
[v])wu,v

)2

=

∑
i<j

j−i−1∑
k=0

g 2
+
[vi+k]−g 2+[vi+k+1]

wvi,vj

2

.

Rewrite the difference as a telescoping series

=

(n−1∑
i=1

(
g 2
+
[vi]−g 2+[vi+1]

)
·cut(Si,S̄i)

)2

Yan et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.57 22/40

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.57


Collecting (vi,vi+1) terms

≥

(n−1∑
i=1

(
g 2
+
[vi]−g 2+[vi+1]

)
·φL ·volL(Si)

)2

By Eq. (28)

= φ2L ·

( n∑
i=1

g 2
+
[vi] ·(volL(Si)−volL(Si+1))

)2

By Eq. (27) and g+(vn)= 0

= φL(G)2 ·

( n∑
i=1

g 2
+
[vi] ·dviτi

)2

.

Combining the bounds for the numerator and the denominator, we obtain λ2≤ φ2L/2
as stated in the theorem. The upper bound of λ2 follows from the same argument for the
standard Cheeger inequality. �

Spectral partitioning for parameterized conductance
The parameterized Cheeger inequality is essential for providing theoretical guarantees for
greedy community detection algorithms. In this section, we extend traditional spectral
clustering algorithm to the parameterized Laplacian setting.

Given a weighted graph G= (V ,E,A) and a operator L, we can use the standard
sweeping method in the proof of Theorem 1 to find a partition (S,S̄). This procedure is
described in Algorithm 1.

Before stating the quality guarantee of the above algorithm, we quickly discuss its
implementation and running time. The most expensive step is the computation of the
eigenvector f associated with the second smallest eigenvalue of L. While one can use
standard numerical methods to find an approximation of this eigenvector—the analysis
would depend on the separation of the second and the third eigenvalue of L. Since L is a
diagonally scaled normalized Laplacianmatrix, one can use the nearly-linear-time Laplacian
solvers (e.g., by Spielman–Teng (Spielman & Teng, 2004) or Koutis–Miller–Peng (Koutis,
Miller & Peng, 2010)) to solve linear systems in L.

Following Spielman & Teng (2004), let us consider the following notion of spectral
approximation ofL: suppose λ2(L) the second smallest eigenvalue ofL. For ε≥ 0, f̄ is an
ε-approximate second eigenvector of L if f̄ ⊥D1/2

A T 1/2
·
−→
1 , and

f̄ TLf̄
f̄ T f̄

≤ (1+ε) ·λ2(L).

The following proposition follows directly from the algorithm and Theorem 7.2
of Spielman & Teng (2004) (using the solver from Koutis, Miller & Peng, 2010).
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Algorithm 1. Spectral Dynamics Clustering (G,L)

Input: weighted network: G = (V ,E,A), and spreading operatorL defined by the
interaction matrixW and the vertex delay factor T .

Output partition: (S,S̄)
Algorithm

• Find the eigenvector f ofL= T−1/2D−1/2W (DW −W )D−1/2W T−1/2 associated with the
second smallest eigenvalue ofL.

• Let vector g be g [u] = f [u]/
√
dW uτu.

• Order the vertices of G into (v1,....,vn) such that g [v1] ≥ g [v2] ≥ ··· ≥ g [vn].
• Sweeping: for each Si={v1,...,vi}, compute

hL(Si) =
cut(Si,S̄i)

min(volL(Si),volL(S̄i))
.

• Output the Si with the smallest hL(Si).

Proposition 1 For any interaction graph G= (V ,E,W ) and vertex scaling factor T , and
ε,p> 0, with probability at least 1−p, one can compute an ε-approximate second eigenvector
of operator L in time

O
(
|E|lognloglognlog(1/p)log(1/ε)/ε

)
.

To use this spectral approximation algorithm (and in fact any numerical approximation
to the second eigenvector of L) in our spectral partitioning algorithm for the dynamics,
we will need a strengthened theorem of Theorem 1.

Theorem 2. (Extended Cheeger Inequality with Respect to Rayleigh Quotient): For
any interaction graph G= (V ,E,W ) and vertex scaling factor T , (whose diagonals are
(τ1,...,τn)), for any vector u such that u⊥D1/2

A T 1/2
·
−→
1 , if we order the vertices of G into

(v1,....,vn) such that g [v1] ≥ ··· ≥ g [vn], where g = (DT )−1/2 ·u then

(minihL(Si))2

2
≤

uTLu
uTu

,

where L=T−1/2D−1/2W (DW −W )D−1/2W T−1/2 and Si={v1,...,vi}.

Proof. The theorem follows directly from the proof of Theorem 1 if we replace vector f
(the eigenvector of associated with the second smallest eigenvalue ofL) by u. This theorem
is the analog of a theorem byMihail (1989) for Laplacian matrices. �

The next theorem then follows directly fromProposition 1, Theorem 2 and the definition
of ε-approximate second eigenvector of L that provide a guarantee of the quality of the
algorithm of this subsection.
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Table 3 Networks studied in this paper and their properties, including number of vertices and edges,
diameter, clustering coefficient, and the number of communities, if known.

Network #vertices #edges Diameter Clustering #communities

Zachary’s Karate Club 34 78 5 0.588 2
College Football 115 613 4 0.403 12
House of Representatives 434 51,033 4 0.882 2
Political Blogs 1,490 16,714 9 0.21 2
Facebook Egonets 4,039 88,234 17 0.303 N/A
Power Grid 4,941 6,594 46 0.107 N/A

Theorem 3. For any interaction graph G= (V ,E,W ) and vertex delay factor T , (whose
diagonals are (τ1,...,τn)), one can compute in time

O(|E|lognloglognlog(1/ε)/ε)

a partition (S,S̄) such that

hL(S)=

∑
v∈S,u∈S̄

wu,v

min

∑
v∈S

dW vτv ,
∑
v∈S̄

dW vτv

 ≤
√
2(1+ε)λ2(L)

where T−1/2D−1/2W (DW −W )D−1/2W T−1/2, wu,v is the (u,v)th entry of the interaction matrix
W , and λ2(L) is the second smallest eigenvalue of L. Consequently,

hL(S)≤ 2
√
(1+ε)φL(G)= 2(1+ε)

√√√√√√√√√√
min
S∗∈V

∑
v∈S∗,u∈S̄∗

wu,v

min

∑
v∈S∗

dW vτv ,
∑
v∈S̄∗

dW vτv

 .

EXPERIMENTS
We demonstrate that different dynamic processes can lead to divergent views of network
structure in several well studied real-world networks. These networks come from
different domains and embody a variety of dynamical processes and interactions,
from real-world friendships (Zachary karate club (Zachary, 1977)), to online social
networks (Facebook (McAuley & Leskovec, 2012)), to electrical power distribution (Power
Grid (Watts & Strogatz, 1998)), to co-voting records (House of Representatives (Poole,
2012)) and hyperlinked weblogs on US politics (Political Blogs (Adamic & Glance, 2005)),
to games played between NCAA football teams (Girvan & Newman, 2002). Table 3 lists
these networks and their properties. We treat all as undirected networks.
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To compare the different perspectives on network structure obtained under the parame-
terized Laplacian framework, we study the centrality and sweep profiles calculated using the
four dynamic operators defined in ‘Special Cases.’ The centrality profile gives the parame-
terized centrality of each vertex under a given operator. To improve visualization, vertices
are ordered by their centrality according to the normalized Laplacian and then rescaled
to fall within the same range. Thus, only relative differences in centrality are relevant.
The sweep profile is similar to the community profile used in Leskovec et al. (2008) to study
network partitioning. Community profile shows the conductance of the best bisection of the
network into two communities of size k andN−k as k is varied. They found that community
profiles of real-world networks reveal a ‘‘core and whiskers’’ organization, with a large core
and many small peripheral communities, or whiskers, loosely connected to the core. In
contrast, sweep profile gives the parameterized conductance Eq. (21) of a bisection of the
network into communities of size k and N −k using Algorithm 1, not necessarily the best
bisection. To improve visualization, we rescale sweep profiles to lie within the same range.

In addition to the sweep profile, we also visualize the best bisection obtained using
Algorithm 1 (which corresponds to the minimum of the sweep profile). The visualizations
are created using network layout that combines ‘‘Yifan Hu’’ and ‘‘Force Atlas’’ algorithms
from the Gephi software package (Bastian, Heymann & Jacomy, 2009). Nodes in the same
partition have the same color. We also compare with the ground truth communities, where
possible, and report accuracy of the comparison.

Zachary’s Karate Club
The first network we study is a social network consisting of 34 members of a karate club in a
university, where undirected edges represent friendships (Zachary, 1977). This well-studied
network is made up of two assortative blocks centered around the instructor and the club
president, each with a high degree hub and lower-degree peripheral vertices. With a simple
community structure, this network often serves as a benchmark for community detection
algorithms. Its centrality and sweep profiles identified by each operator are shown in Fig. 3.
The visualizations show the best bisection of the network obtained by each operator, and
the last visualization, which gives the ground truth communities.

Just as many other community detection algorithms, the four parameterized Laplacians
give almost identical optimal bisections of this simple network, all of which are close to
the ground truth communities, with accuracies ranging from 94.1% to 97.1% (Fig. 3G).
Furthermore, their centrality and sweep profiles are very similar as well (Figs. 3A and 3B).
This is a excellent example showing that most good community measures capture the same
fundamental idea of communities, those well-interacting subsets of vertices with relatively
sparse connection in between. They do differ, however, in finer details of theirmathematical
definitions, as we will see in more complicated networks in the following subsections.

College football
The second network represents American football games played between Division IA
colleges during the regular season in Fall 2000 (Girvan & Newman, 2002), where two
vertices (colleges) are linked if they played in a game. Following the structure of the divisions,
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Figure 3 Analysis of the Karate Club network. Centrality and sweep profiles and optimal bisections of
Zachary’s Karate Club identified by the four special cases of the parameterized Laplacian. The table reports
accuracy of the bisection.

the network naturally breaks up into 12 smaller conferences, roughly corresponding to
the geographic locations of colleges. Most games are played within each conference which
leads to densely connected local clusters. Its centrality and sweep profiles and visualizations
of optimal bisections under each operator are shown in Fig. 4.

The centrality profiles show heavy tailed distributions, which corresponds to evenly
spread out degrees across the network Fig. 4A. This is consistent with the reality of the
network, where every football team plays roughly the same number of games each season.

Unlike Karate Club, College Football starts to give us different community divisions
under different dynamic operators. Most operators lead to a balanced east–west bisection
(Figs. 4C, 4D and 4F). This division is mostly consistent (around 95%) with the bisection
produced by merging 6 conferences (label 0,1,4,5,6,9 for the east cluster) on each side, as
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Figure 4 Analysis of the College Football network. Centrality and sweep profiles and optimal bisections
of the College Football network identified by the four special cases of the parameterized Laplacian.

illustrated by the accuracy numbers. The replicator, however, places the ‘‘swing’’ Big Ten
Conference (contains mostly colleges in the midwest) into the east cluster (Fig. 4E). Upon
further investigation, we discovered that while both bisections have almost the same cross
community edges, the seemingly more balanced division does lead to a slight imbalance in
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terms of links within each community. The the parametrized centrality under the replicator
magnified this imbalance, ultimately pushed the ‘‘swing’’ conference to the east side.

In fact, the sweep profile Fig. 4B clearly shows that all four special cases actually see both
bisections as plausible solutions, with closely matched local optima. This phenomenon
where different dynamics agrees on multiple local optima but favor different ones as the
global solution is a repeating theme in the following examples. This means that while
different special cases of the parameterized conductance can differ in finer details, they will
agree on strong community structures that impact all dynamics in similar ways. Figure 4H
further illustrates the point. All four special cases here agree on the first local optimum in
the sweep profiles, and this local cluster corresponding to the Pacific 10 conference (it later
becomes the Pacific 12).

House of representatives
The House of Representatives network is built from the voting records of the members
of 98th United States House of Representatives (Poole, 2012). Unlike previously studied
variants (Waugh et al., 2009), here we use a special version taking into account all 908
votes. The resulting network has a dense two-party structure with 166 Republicans and 268
Democrats. This network better differentiates some of the dynamics under our framework.
Its centrality and sweep profiles and visualizations of optimal bisections under each
operator are given below.

The ‘‘House of Representatives’’ network is an excellent example of how centralities and
communities are closely related under our framework. First, the centrality profile of this
network looks similar to that of the College Football, but quite different from the other
networks in Table 3. Because we have taken into account all votes, this network is very
densely connected, and its degree distribution also has a heavy tail as demonstrated by the
red curve in Fig. 5A.

Since the degree distribution is relatively uniform, we expect the change of the cut
size (numerator) in Eq. (21) to be relatively small. The exception here is the optimal
bisection produced by the regular Laplacian (Fig. 5D), which is most prone to ‘‘whiskers,’’
leading to a low accuracy of 38.5%. For the other three special cases, the volume balance
(denominator) is the determining factor in communities measures, and all produce fairly
‘‘balanced’’ bisections according their own parametrized volume measures.

Another observation is that centrality measures disagree about importance of vertices.
In particular, centralities given by the normalized Laplacian might differ from those of
the unbiased Laplacian by the degree, but given its relative uniform distribution, leads to
almost identical optimal bisections (Figs. 5C and 5F). The replicator, on the other hand,
scales vertex centrality according to eigenvector centralities, which places more volume to
the high degree vertices on the cyan cluster. The resulting optimal bisection is thus shifted
to the right to balance volumes (Fig. 5E). In this case, the ground truth aligns closer to the
formers with over 90% accuracies as Democrats dominated the 98th Congress.
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Figure 5 Analysis of the House of Representatives covoting network. Centrality and sweep profiles and
optimal bisections of the House of Representatives network identified by the four special cases of the pa-
rameterized Laplacian.

Political Blogs
The next example is the political blogs network (Adamic & Glance, 2005). Here we focus
on the largest component, which consists of 1,222 blogs and 19,087 links between them.
The blogs have known political leanings, and were labeled as either liberal or conservative.
The network is assortative and has a highly skewed degree distribution. Its centrality and
sweep profiles and visualizations of optimal bisections under each special case dynamic are
given below.

The Political Blogs network demonstrates a pitfall of many commonly used community
quality measures. Many real world networks have a skewed degree distributions, which
often corresponds to a ‘‘core-whiskers’’ (also known as core–periphery) structure. As
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shown in Leskovec et al. (2008), such structures have ‘‘whisker’’ cuts that are so cheap
that balance constrains can be effectively ignored. The same happened here for three of
our special cases, whose optimal bisections are highly unbalanced. They have below 50%
accuracies when compared to the ground truth.

Unlike theHouse of Representatives, communitymeasure in Political Blogs is dominated
by the cut size (numerator). In particular, both the normalized Laplacian and the Laplacian
share the same cut size measures, give the same solution (Figs. 6C and 6D), despite their
differences in volume/centrality measures (see curves in Fig. 6A). The unbiased Laplacian
produces a different whisker cut, because it has a reweighed cut size measure (Fig. 6F).
Further investigation reveals that the unbiased Laplacian cuts off a whisker from two highly
connected vertices, which according to Eq. (21) greatly reduces the cut size.

The exception here is the replicator operator (Fig. 6E). By reweighing the adjacency
matrix by eigenvector centralities, the parameterized volume measure now considers
highly connected vertices near the core to be even more important (see the red curve in
the centrality profile). The difference in parameterized volume is now too drastic to be
ignored. As a result, replicator does not fall for the ‘‘whisker’’ cuts and produces balanced
communities with a respectable accuracy of 95.3%.

Facebook Egonets
The Facebook Egonets dataset was collected using a Facebook app (McAuley & Leskovec,
2012). Each egonet is a local network that consists of one user’s Facebook ‘‘friends’’
that represent that user’s social circles. We use the combined network that merges all
egonets. This network has many typical social network properties, including a heavy tailed
degree distribution. However, it also differs from traditional social networks because of
the sampling bias in the data collection process, leading to lower clustering coefficient
and a bigger diameter than what one might expect. Its centrality and sweep profiles and
visualizations of optimal bisections under each special case dynamic are given below.

As with Political Blogs, the overall multi-core structure leads to unbalanced bisections.
Due to its bigger size and an evenmore heterogeneous degree distribution (Fig. 7A), all four
special cases of the parameterized Laplacian fall for local clusters, each in a different fashion.
Again, the ordinary Laplacian finds the smallest local community with the minimal cut
size of 17 links (Fig. 7D). In contrast, the unbiased Laplacian which has the same volume
measure, finds a superset of vertices as the optimal cut, with 40 inter community edges
(Fig. 7F). The normalized Laplacian measures cut sizes the same way as the Laplacian, but
its different volume measure leads to a much more balanced cut (Fig. 7C). Last but not
least, the replicator finds a local core structure with an average degree of 85.7 (Fig. 7E). This
is consistent with what we observed on House of Representatives, where the eigenvector
centrality places more volume in the cyan cluster, and the resulting cut is actually much
more balanced than it looks.
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Figure 6 Analysis of the Political Blogs network. Centrality and sweep profiles and optimal bisections of
the Political Blogs network identified by the four special cases of the parameterized Laplacian.

Power grid
The last example is an undirected, unweighted network representing the topology of the
western United States power grid (Watts & Strogatz, 1998). Among the six datasets in
Table 3, Power Grid is the largest network in terms of the number of vertices. However, it
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Figure 7 Analysis of the Facebook Egonets network. Centrality and sweep profiles and optimal bisec-
tions of the Facebook Egonets network identified by the four special cases of the parameterized Laplacian.
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Figure 8 Analysis of the Power Grid network. Centrality and sweep profiles and optimal bisections of
the Power Grid network identified by the four special cases of the parameterized Laplacian.
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is extremely sparse with an average degree of 2.67, leading to a homogeneous connecting
pattern across the whole network without core–periphery structure. Its centrality and
sweep profiles and visualizations of optimal bisections are given below.

The long tails of the centrality profiles indicate existence of high degree vertices, or hubs
Fig. 8A. However, as the visualizations of network bisection show, these hubs do not usually
link to each other directly, resulting in negative degree assortativity (Newman, 2003). This
is consistent with the geographic constrains when designing a power grid, as the final goal
is to distribute power from central stations to end users. These important difference in
overall structure prevented core or whiskers from appearing, and changes how different
dynamics behave on Power Grid.

Replicator, which demonstrated the most consistent performance on social networks
with core–periphery structure, performs the worst on bisecting the Power Grid. In fact,
the visualization shown in Fig. 8E is obtained by manually fixing negative eigenvector
centrality entries in ‘Replicator’ (the numeric error comes from the extreme sparse and
ill-conditioned adjacency matrix).

The other three special cases all give reasonable results. Laplacian and unbiased Laplacian
share the same volumemeasure, and they have nearly identical solutions with well balanced
communities (Figs. 8D and 8F). Their different cut size measures only lead to slightly
different boundaries thanks to the homogeneous connecting pattern. Normalized Laplacian
share the same cut sizemeasure with the regular Laplacian, and its volume balance is usually
more robust on social networks with core-whisker structures. On Power Grid, however,
it opts for a smaller cut size at the cost of volume imbalance (Fig. 8C). It turns out the
volume of the cyan cluster is compensated by its relative high average degree.

CONCLUSION
The parameterized Laplacian framework presented in this paper can describe a variety
of dynamical processes taking place on a network, including random walks and simple
epidemics, but also new ones, such as one captured by the unbiased Laplacian.We extended
the relationships between the properties of centrality, community-quality measures and
properties of the Laplacian operator, to this more general setting. Each dynamical process
has a stationary distribution that gives centrality of vertices with respect to that process.
In addition, we show that the parameterized conductance with respect to the dynamical
process is related to the eigenvalues of the operator describing that process through a
Cheeger-like inequality. We used these relationships to develop efficient algorithm for
spectral bisection.

The parameterized Laplacian framework also provides a tool for comparing different
dynamical processes. By making the dynamics explicit, we gain new insights into network
structure, including who the central nodes are and what communities exist in the network.
By connecting the operators using standard linear transformations, we discovered an
equivalence among different dynamical systems. In the future, we plan to investigate
their differences based on how the vertex state variables change during the evolution of
the dynamic process. In the analysis of massive networks, it is also desirable to identify
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subsets of vertices whose induced sub-graphs have ‘‘enough’’ community structure without
examining the entire network. Chung (2007) and Chung (2009) derived a local version of
the Cheeger-like inequality to identify random walk-based local clusters. Similarly, our
framework can be adapted to such local clustering procedures.

While our framework is flexible enough to represent several important types of dynamical
processes, it does not represent all possible processes, for example, those processes that
even after a change of basis, do not conserve the total volume. In order to describe such
dynamics, an even more general framework is needed. We speculate, however, that the
more general operators will still obey the Cheeger-like inequality, and that other theorems
presented in this paper can be extended to these processes.
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