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1. Introduction 

Glass is a widely used material in transparent armor systems due to its low cost and 
availability. Some types of glass that are used include soda lime silica (float glass), 
borosilicate glass, fused silica, and glass ceramics.1 These materials demonstrate 
properties to meet the ballistic requirements and are used, in practice, because of 
their wide availability and their low cost. The major uses of these glasses are 
architectural, automotive, and specialty applications such as semiconductor, photo- 
voltaic, mirrors, and optics. These commercial applications drive the need for these 
materials, and armor designers use the materials to develop transparent armor.  

The recent focus to improve and understand the behavior of glasses has been the 
investigation of glass under high-strain conditions. These investigations are 
difficult to conduct, so there is a need to assess glasses in the quasi-static regime. 
There has been extensive research on ceramic and glass materials to correlate 
materials properties to ballistic performance. Some properties of these materials are 
shown in Table 1. The hardness of the striking ply material relative to the projectile 
hardness has been found to be an important property to rank different striking ply 
materials.2 However, using hardness to rank materials is not adequate when 
comparing similar materials such as glasses. Hardness differences for various glass 
systems are not large enough to observe a change in ballistic performance. Thus, 
there have been ongoing studies to characterize and understand these commercial 
glasses.3–10 One of the critical parameters often overlooked is the surface condition 
of glass. The numerous surface flaws can affect ballistic performance. Wereszczak 
et al.10 scanned the surface of borosilicate and soda lime silica glass and found 
upward of 730 and160 surface flaws, respectively on a 75- × 75-mm square area. 
There have been several investigations11–18 to improve the surface strength of 
glasses using coating and etching techniques. 
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Table 1 Material properties of glass 

Material Type Density Young’s 
modulus 

Knoop 
hardness 

Poisson’s 
ratio 

Starphirea Soda lime silica 2.51 73.1 470 0.22 
Borofloatb Borosilicate 2.23 64 480 (0.1/20) 0.2 
BK-7c Borosilicate 2.53 81 520 0.206 
Corning 7740d Borosilicate 2.23 63 418 0.2 
Fused quartz Silica 2.2 72 570 0.17 

Notes: 
aPPG Industries, Inc. Starphire property data sheet. Pittsburgh (PA): PPG Industries, Inc. 2016 [accessed 
2016 Mar 17] http://www.jnsglass.com/pdf/Starphire.pdf. 
bSchott North America, Inc. Schott Borofloat 33 glass data sheet. Louisville (KY): Schott North America, 
Inc. 2016 [accessed 2016 Mar 17]. http://www.us.schott.com/borofloat/English/attribute/mechanical 
/index.html. 
cEsco Optics, Inc. BK-7 glass property data sheet. Oak Ridge (NJ): Esco Optics, Inc. 2016 [accessed 2016 
Mar 17]. https://www.escooptics.com/material-data/bk7-optical-glass.html.  
dMatWeb, LLC. Corning Pyrex 7740 borosilicate glass data sheet. Blacksburg (VA): MatWeb, LLC. 2016 
[accessed 2016 Mar 17]. http://www.matweb.com/search/datasheet.aspx?MatGUID=5bb651ca58524e7 
9a503011b2cd8083d. 

The properties listed in Table 1 are measured under ambient, quasi-static 
conditions. Pressure and temperature influence high-strain-rate events and there is 
limited correlation between high-strain-rate behavior and any of these properties. 
There is a need to determine critical material parameters that can bring insight into 
the behavior of different materials. One property that has not been investigated for 
correlation is the stress optic coefficient as a method to differentiate glasses. Upon 
review of commercial glasses properties, US Army Research Laboratory (ARL) 
researchers noted that the stress optic coefficient might correlate to the performance 
of these glasses. It is unknown if this is happenstance or true dependence. It is not 
believed the stress optic coefficient is the actual cause of the change in 
performance. Rather, the stress optic coefficient is an indirect measure of the glass 
composition and structure. This report discusses the development of an apparatus 
to measure the stress optic coefficient of different glasses and the results of 
commercially available glasses.  

2. Photoelasticity 

Materials that are transparent to visible light can be analyzed through the evaluation 
techniques of photoelasticity. Materials that are transparent and demonstrate 
birefringence only when under stress can be looked at with a series of polarizing 
filters to reveal information about the stress state of the material. A transparent 
material under a certain given loading and viewed through a polariscope, with 
crossed polarizing plates so that there is a net extinguishing of the illuminating 
light, is known as a dark field. In a dark field, configuration regions of constant 
stress will display a band of a single color and known wavelength. When light is 
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passed through a stressed, optically transparent material the theory of 
photoelasticity dictates that the light passing through will show constructive and 
destructive interference within the material itself. This leads to a known wavelength 
sequence, where each wavelength corresponds to a certain degree of relative 
retardation of the light.  

3. ASTM Testing 

ASTM C770, Measurement of Glass Stress–Optical Coefficient,19 outlines a 
procedure for identifying the stress optical coefficient (SOC) of bars in 4-point 
bending, fibers in tension, and bars in compression. In all instances the optical 
retardation is calculated in response to a number of fixed loads. The measurement 
apparatus used in the evaluation of these techniques is described. A mechanism for 
stressing the glass and a polarimeter are used together to evaluate the retardation, 
which is then used to calculate the SOC. 

The polarimeter and loading mechanism described in the ASTM standard, shown 
in Fig. 1, is as follows: A light source, preferably a single wavelength source A), is 
followed by an adjustable aperture B), a polarizer C), a loading frame D), a Babinet 
compensator E), an analyzer (polarizer) F), and telescope with an angular scale G). 
The polarizer and analyzer are mounted at 45° from the vertical and at right angles 
from each other creating a full extinction of the transmitted light, or dark field 
image.  

 

Fig. 1 Beam stressing and polarimeter arrangement 

This study is an alternate method of calculating the stress optical condition of stress-
birefringent glass material. The beam loading configuration of the ASTM standard 
is used (Fig. 2).  
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Fig. 2 Loading configuration of glass beams adapted from the ASTM standard. The glass 
beams used are to have a width b) of 20–30 mm, thickness d) of 6–10 mm, and a length within 
the range 120–130 mm. The top and bottom surfaces of the specimen are prepared with a fine 
grind. The faces normal to the light transmission direction (L × d) are polished. The 4 faces, 
excluding the ends, are flat and parallel to within 0.050 mm. Annealing of the specimens 
should be performed if the neutral fringe is excessively curved. The 4-point bend loading 
fixture uses a support span L) of 115 mm and a moment arm a) of 45 mm (a = (L-Li)/2). The 
loading points are approximately 5 mm in radius. 

The polariscope setup is also in accordance with the ASTM standard. The system 
is set up as a plane polariscope, which means that the polarizer and the analyzer are 
at 90° to each other. The system is set up with the broadband light source and 
polarizer positioned behind the load frame with a glass sample in 4-point bend 
configuration. The analyzer is situated after the load frame and closest to the 
observer. Each polarizing plate is set up at 45° from the vertical and so 90° from 
each other. The system will display a dark field view due to the full extinction of 
crossed polarizers. Any stress in the test material will create colored fringes that 
will help to identify the stress state of the material.  

4. SOC Experimental Evaluation 

The SOC is a material property, independent of sample geometry, that is used in 
the photoelastic analysis of glass and other transparent materials with stress-
induced birefringence. When light passes through a transparent medium, with 
principle stresses in the plane normal to the propagation direction, it is resolved into 
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slow and fast waves along the principle stress directions. These waves show a 
relative angular phase difference or retardation (δ). This property is insensitive to 
wavelength. The SOC (sometimes referred to as C and sometimes K) is a property 
that relates stress to the retardation in a specific material system. The unit for C is 
the Brewster (10-12 m2/N) and is used in the relationship  

 Stress = retardation/(thickness * C), or σ (MPa) = δ (nm)/(b (mm) * C (Brewster)). (1) 

This relationship can also be expressed in terms of fringe order (N) and wavelength 
(λ 565 nm for glass)20,21: 

 σ =N* λ /b*C . (2) 

In the case of a beam in 4-point bending loading configuration, the value of the 
maximum tensile or compressive stress is given as 

 σ = [3(L – Li)W]/(2b*d2). (3) 

In this study L is 115 mm; Li is 25 mm, the width in the light-propagating direction; 
b is 25 mm; and the thickness d is 10 mm. W represents net loading in newtons and 
the stress σ is in MPa.22  

5. New Method for Evaluation 

The SOC measurement in the ASTM standard is made by applying a series of fixed 
weights, measuring the retardation, and then calculating the SOC through these 
measurements. An alternative method for this calculation is the use of a variable 
load, such as that provided by a computer-controlled load frame, and an 
identification of the level of retardation. When fixed loads are used, the exact 
amount of retardation must be evaluated. This is accomplished using a polariscope 
and a Babinet compensator. The alternative method proposed does not require the 
use of a Babinet compensator but does need highly controllable loading 
capabilities. This fine control over loading can be accomplished with a load frame. 

The evaluation of the first, second, third, and potentially subsequent order 
transitions can be used to determine the extent of retardation. A specific color 
sequence can be observed in photoelastic materials with varying degrees of stress. 
Crossed polarizers set up to create a dark field image will display a zero stress state 
as dark (black). Even in material that has some degree of residual stress, the neutral 
fiber, the transition point from compression to tension, will appear as black. 
Depending on the state of the polarizing equipment, this black color can appear 
gray, but it will be equivalent to the fully extinguished dark field background. This 
central black band is known as the 0-order fringe. The first-order fringe is indigo-
violet (transitional purple in some descriptions). The second-order fringe is the 
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transition from red to green, and the third-order fringe is the transition from light 
red to green. These colors can be difficult to ascertain in isolation but can be 
identified by their proximity to other colors on the scale. The color scale shown in 
Fig. 3 is representative of the constructive and destructive interference that is 
created as incoming light is broken into 2 paths, each parallel to the principle 
stresses. The light retardation or relative delay is proportional to the principle stress 
difference.23 

 
Fig. 3 Color scale showing the relationship among retardation, fringe order, and displayed 
color through crossed polarizers (adapted from Micro-Measurements24) 
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In the ASTM test method, fixed weights are used so that the measurable quantity 
in the analysis is the precise degree of retardation. In the method used for this study, 
it is possible to shift quantity of interest to the exact loading that produces a known 
amount of retardation. To achieve this, it is necessary to determine the stress in the 
sample corresponding to a known retardation value. With a sample bar loaded into 
a 4-point bend fixture and the polarizer showing the isochromatic fringes, the load 
is incrementally increased until the fringe color of interest is present at the extreme 
tensile fiber. It is sometimes hard to determine this exactly but it is possible to 
observe the transition by surpassing the transition and then decreasing the load until 
the posttransition color is seen at the extreme fiber. For example, to identify the 
indigo-to-violet transition that occurs at a retardation value of 575 nm, the load can 
be increased until blue is distinctly observed and then the load decreased until the 
blue is extinguished (Fig. 4).  
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Fig. 4 A) A glass specimen in a 4-point bend with no load applied, a dark field image. B) 
0-order (black) fringe at position 1, the first-order fringe (indigo to violet) at position 2, the 
second-order fringe (red to green) at position 3 and the third-order fringe (red to green) at 
position 4. C) A beam overloaded so that the blue appears (position 1). D) Relaxation of the 
applied stress so only the first transitional fringe is shown (position 2). E and F) Repeat of this 
procedure so that the second-order fringe can be identified with position 1 being overloaded 
and position 2 showing the transition point at the extreme tensile fiber. 
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6. Experimental Results 

SOC was calculated for various glass samples and 4 samples were prepared for 
each glass type: fused silica, borosilicate float, Supremax, Starphire, borosilicate, 
and BK-7. Each sample was tested by 4-point bend. The samples were loaded so 
that the retardations of 565, 850, 1,130, and 1,695 nm (1-, 1.5-, 2-, 3-order fringes) 
could be observed by interpreting isochromic fringes. The load at each retardation 
value was taken 5 times and the corresponding maximum tensile stress calculated 
from the loading data averages. Plotting the data with the quantity (Stress*thickness 
in the light propagation direction) with the units of MPa*mm along the X and 
retardation (nm) on the Y is shown below a linear fit was applied. The slope of the 
trend line represents the quantity of SOC for each glass type (Fig. 5). Table 2 
summarizes the experimental results. 

 

Fig. 5 The slope of each linear fit line represents the SOC for each glass type tested 
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Table 2 SOC determined experimentally from the retardation and stress values from 4-point 
bending. Values are shown when the 1.5-order fringe is included and when it is excluded. 

Glass type  SOC 
(1-, 1.5-, 2-, and 3-order fringe) 

SOC 
(1-, 2-, and 3-order fringe) 

Fused silica  3.86  3.81  
Borofloat  4.18  4.15  
Supremax  4  3.92  
Starphire  2.63  2.59  
Borosilicate 3.96  3.9  
BK-7  2.79  2.73  

 

7. Conclusions 

SOC can be a tool to help characterize glass samples. The methodology discussed 
in this report is useful if a load frame is available. The human eye can be used to 
identify the transitions that occur at known retardation values. If more precise 
values are needed for the retardation measurement, a Babinet compensator can be 
used as described in the ASTM specification19. Comparing the glass to existing 
sample values can help to confirm an unknown glasses composition. Because the 
SOC is a material property, it can be used as an additional glass characterization 
method. If the SOC of a glass sample is known, the stress state of a glass specimen 
can be evaluated through photoelastic methods both qualitatively and 
quantitatively. 
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