

CIRCUITBOT

KESTREL TECHNOLOGY, LLC.

MARCH 2016

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2016-089

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the Defense Advanced Research Projects Agency
(DARPA) Public Release Center and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2016-089 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S /
CARL THOMAS
Work Unit Manager

 / S /
RICHARD MICHALAK
Acting Technical Advisor, Computing
& Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2016
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

JUN 2012 – OCT 2015
4. TITLE AND SUBTITLE

CIRCUITBOT

5a. CONTRACT NUMBER
FA8750-12-C-0202

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Matthew Barry, Nelson Rushton, Andrew Keplinger, Gregory Izzo,
Qianji Zheng, Arnaud Venet, Henny Sipma

5d. PROJECT NUMBER
CSFV

5e. TASK NUMBER
KE

5f. WORK UNIT NUMBER
ST

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Kestrel Technology LLC
3260 Hillview Avenue
Palo Alto, CA 94304-1225

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA Defense Advanced Research
525 Brooks Road Project Agency
Rome NY 13441-4505 675 North Randolph St

 Arlington, VA 22203-2114

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2016-089
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 25938
Date Cleared: 15 MAR 2016
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The CircuitBot project developed a distributed algorithm for performing analysis of C programs. A constraint generator
first analyzed a target program’s C source files to prepare a collection of constraints describing the use of pointers and
offsets. There is no known closed-form solution to this problem, but human experts can help auto-solvers break free
when they become stuck. The project distributed these constraints to game players on the Internet, using a crowd of
game players to invoke human intuition schemes to solve the constraints problem. Game rules described valid moves
allowing player to generate a memory graph performing improved C program verification.

15. SUBJECT TERMS

Formal Verification, Static Analysis, Abstract Interpretation, Pointer Analysis, Fixpoint Iteration

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
CARL THOMAS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

330

TABLE OF CONTENTS

1.0 SUMMARY 1

2.0 INTRODUCTION 2
2.1 Proof Obligations . 2

2.1.1 Example . 3
2.1.2 Proof Obligations . 6
2.1.3 Invariants and Remaining Proof Obligations 6
2.1.4 Function Preconditions . 7
2.1.5 Counterexample . 10
2.1.6 Constraints on User Input . 11
2.1.7 Summary . 11

2.2 Challenges with BIND . 12
2.2.1 Initial Manual Review . 12
2.2.2 Overview of Approach . 13
2.2.3 Technical Challenges . 14

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 15
3.1 Semantics of Pointer Constraints . 16

3.1.1 Syntax of Constraints . 16
3.1.2 Semantic Domains . 17
3.1.3 Semantics of Constraints . 18
3.1.4 Fixpoint Semantics of the Game . 20

3.2 Procedure Example . 20
3.2.1 Memory Model . 21
3.2.2 Generation of Points-To Constraints 21
3.2.3 Resolution of Points-To Constraints 22
3.2.4 Verifying the Array-Bound Checks 23

3.3 Formalization of the Game Model . 24
3.3.1 Representation . 24
3.3.2 Internal State . 24
3.3.3 Visualization . 25
3.3.4 Constraints in the Game Play . 25
3.3.5 Game Rules . 26
3.3.6 Production of Results . 29

3.4 Design of the Game Model . 30
3.4.1 Definitions . 30
3.4.2 Objective . 31
3.4.3 Representation . 31
3.4.4 Example: Definitions . 31
3.4.5 Basic Assignments . 32
3.4.6 Representation . 34
3.4.7 Example: Basic Assignments . 35
3.4.8 Function Calls . 35

iv

3.4.9 Example: Function Calls . 35
3.4.10 Operational Description . 36
3.4.11 Organization of the Game . 36
3.4.12 Example: Game Play . 37
3.4.13 Verification Conditions . 37
3.4.14 Representation . 39
3.4.15 Example: Verification Conditions . 39
3.4.16 Example: Communication with CodeHawk 39
3.4.17 A Larger Example . 40

3.5 Implementation of the Game Model . 45
3.5.1 Test Suite . 47
3.5.2 Ordering Strategy . 72
3.5.3 Scoring of a Game Instance . 73

3.6 Implementation of the Analyzer . 75
3.6.1 Anchors File . 75
3.6.2 Detailed Example . 77

3.7 Software Architecture . 98
3.8 Backend Services . 100
3.9 Web Services . 106
3.10 CircuitBot Game . 106

3.10.1 Design Goals . 109
3.10.2 Resource Allocation Integration . 122
3.10.3 Launch . 122
3.10.4 Lessons Learned . 123

3.11 Dynamakr Game . 130
3.11.1 Design Goals . 131
3.11.2 Launch . 135
3.11.3 Lessons Learned . 138

3.12 VIPER Game . 146
3.12.1 Design Goals . 147
3.12.2 Lessons Learned . 149

4.0 RESULTS AND DISCUSSION 149
4.1 Economic Model . 156
4.2 CircuitBot Results . 157
4.3 Dynamakr Results . 169
4.4 VIPER Results . 183
4.5 Combined Results . 207
4.6 Arcweaver Results . 215
4.7 Solution Data . 257

5.0 CONCLUSIONS 259
5.1 Verification Improvement and Valuation . 259
5.2 Attracting and Retaining Players . 265
5.3 Role for Humans . 265

v

6.0 RECOMMENDATIONS 266
6.1 Verification Integration . 266
6.2 Paid Iterations . 266
6.3 Verification Tournaments . 267
6.4 Follow-On Exploration Game . 267

7.0 REFERENCES 269

Appendix A Compute Platform Experiment 270

Appendix B Databases 272
B.1 Awards . 272
B.2 Badge . 272
B.3 Call Graph . 272
B.4 Dictionary . 273
B.5 Factory . 273
B.6 Factory Definition . 274
B.7 Game Instance . 275
B.8 Goal . 276
B.9 Graph . 277
B.10 History . 277
B.11 Mission . 278
B.12 Planet . 278
B.13 Player . 279
B.14 Player History . 279
B.15 Resource . 280
B.16 Resource Definition . 280
B.17 Statistics . 281
B.18 UID . 281
B.19 Worker . 281
B.20 Worker History . 282

Appendix C Run Book 284
C.1 Technologies . 284
C.2 Dependencies . 284
C.3 Preparing the Backend Target Platform . 284
C.4 Running the CircuitBot Backend . 285
C.5 Ruby Gem List . 287
C.6 Building the CodeHawk Analyzer . 288
C.7 Game and Web Server Files . 288

Appendix D Source Lines of Code 290

Appendix E Game Statistics: BIND Inlining Level 0 291

Appendix F Backend Transactions 292

vi

Backend Service Routes 298

306

Appendix G

Appendix H Game Feedback

List of Abbreviations and Acronyms 317

vii

List of Figures

1 Assignment of address . 33
2 Assignment of pointer variable . 33
3 Assignment of derefenced pointer . 34
4 Assignment to dereferenced pointer . 34
5 Memory layout . 38
6 Points-to graph after the first set of constraints has been processed 42
7 Points-to graph after (deref(var(198)) in var(185)) is processed 43
8 Points-to graph after (deref(var(195)) in deref(var(194)) is processed 44
9 Points-to graph after (var(190) in deref(var(189))) is processed 45
10 Final result for the points-to graph . 46
11 System context diagram . 99
12 Reference architecture diagram . 101
13 Backend service implementation . 104
14 Backend administration GUI . 105
15 CircuitBot logo . 109
16 CircuitBot banner . 109
17 I2O Demo Day poster . 110
18 CircuitBot mission selection . 112
19 CircuitBot mission status and command . 115
20 CircuitBot landing site and robots . 116
21 CircuitBot command panel . 120
22 CircuitBot mission report . 121
23 CircuitBot Mr. Scott character . 124
24 CircuitBot tutorial, alpha connections . 125
25 CircuitBot tutorial, gamma connections . 126
26 CircuitBot tutorial, beta constraints . 126
27 CircuitBot tutorial, delta constraints . 127
28 CircuitBot mini-site . 129
29 Dynamakr logo . 131
30 Dynamakr game flow . 132
31 Dynamakr pattern visualization . 134
32 Dynamakr weaving process . 136
33 Dynamakr arcade reward game start . 137
34 Dynamakr arcade game energy collection . 137
35 Dynamakr arcade game obstacles . 138
36 Dynamakr tutorial 1 . 139
37 Dynamakr tutorial 2 . 140
38 Dynamakr tutorial 3 . 141
39 Dynamakr tutorial 4 . 142
40 Dynamakr tutorial 5 . 143
41 Dynamakr tutorial 6 . 144
42 Dynamakr tutorial 7 . 145
43 VIPER logo . 147

viii

44 VIPER game panel . 148
45 VIPER call graph coding . 150
46 VIPER game initial state . 151
47 VIPER instance tagging . 152
48 VIPER instance importing . 153
49 VIPER instance assembly . 154
50 VIPER related arcs fetch . 155
51 Economic benefit model dollars per SLOC 156
52 Economic benefit model SLOC per hour . 157
53 Economic benefit model SLOC per hour with computer time cost 158
54 CircuitBot spot visitors and page views . 160
55 CircuitBot cumulative visitors and page views 161
56 CircuitBot arc generation and game instance activity over time 162
57 CircuitBot arc generation and game instance accumulated over time 163
58 CircuitBot game internals over time . 164
59 CircuitBot top ranked arc producers . 165
60 CircuitBot top ranked game consumers . 166
61 CircuitBot cumulative play time . 167
62 CircuitBot player retention . 168
63 Dynamakr spot visitors and page views . 171
64 Dynamakr cumulative visitors and page views 172
65 Dynamakr arc generation and game instance activity over time 173
66 Dynamakr arc generation and game instance accumulated over time 174
67 Dynamakr top ranked arc producers . 175
68 Dynamakr top ranked arc producers with anonymous unbundled 176
69 Dynamakr top ranked game consumers . 177
70 Dynamakr top ranked game consumers with anonymous unbundled 178
71 Dynamakr game internals over time . 179
72 Dynamakr graph arc production over time 180
73 Dynamakr cumulative analysis time . 181
74 Dynamakr player retention . 182
75 VIPER spot game levels and arcs . 185
76 VIPER cumulative game levels and arcs . 186
77 VIPER game internals over time . 187
78 VIPER cumulative analysis time by date . 188
79 VIPER arc production rate, linear scale . 189
80 VIPER arc production rate, log-log scale . 190
81 VIPER arc production over time . 191
82 VIPER top arc producers . 192
83 VIPER top game consumers . 193
84 VIPER arc production by reward value . 194
85 VIPER arc production rate by reward value 195
86 VIPER time interest by reward value . 196
87 VIPER productive time by reward value . 197
88 VIPER productive analysis time by reward and di�culty 198

ix

89 VIPER games solved by reward and di�culty 199
90 VIPER arcs by solutions and di�culty . 200
91 VIPER arcs by solutions and payout . 201
92 VIPER arcs by solutions and payout grid . 202
93 VIPER solution improvements by payout grid 203
94 VIPER solution improvements by di�culty grid 204
95 VIPER solution time balking . 205
96 VIPER worker retention . 206
97 Combined Dynamakr and VIPER cumulative percentage all players 208
98 Combined Dynamakr and VIPER cumulative contribution of top 100 players 209
99 Combined Dynamakr and VIPER cumulative contribution of top 50 players . 210
100 Combined Dynamakr and VIPER ranked production of top 100 players . . . 211
101 Combined Dynamakr and VIPER ranked production of top 50 players 212
102 Combined Dynamakr and VIPER arc production capacity statistics 213
103 Combined Dynamakr and VIPER arc production 214
104 Arcweaver solver architecture overview . 219
105 Arcweaver verification benefit by module type, zero inlining 220
106 Arcweaver verification benefit by module type, zero inlining, no programs . . 221
107 Arcweaver verification marginal benefit . 222
108 Arcweaver verification marginal benefit, log scale 223
109 Arcweaver verification marginal benefit, depth fit 224
110 Arcweaver verification marginal benefit, type fit 225
111 Arcweaver modules by verification total improvements 226
112 Arcweaver modules by verification percent improvements 227
113 Arcweaver module before-after safe percent, depth 0 228
114 Arcweaver module before-after safe percent, depth 1 229
115 Arcweaver module before-after safe percent, depth 2 230
116 Arcweaver module before-after safe percent, depth 3 231
117 Arcweaver module safe count improvement, depth 0 232
118 Arcweaver module cumulative safe count improvement, depth 0 233
119 Arcweaver module safe count improvement, depth 1 234
120 Arcweaver module cumulative safe count improvement, depth 1 235
121 Arcweaver module safe count improvement, depth 2 236
122 Arcweaver module cumulative safe count improvement, depth 2 237
123 Arcweaver module safe count improvement, depth 3 238
124 Arcweaver module cumulative safe count improvement, depth 3 239
125 Arcweaver solution benefit by type and depth 240
126 Arcweaver solution rate by type and depth 241
127 Arcweaver solution rates, standard scale . 242
128 Arcweaver solution rates, log-linear scale . 243
129 Arcweaver solution rates, log-log scale . 244
130 Arcweaver solution rates, standard scale, no libraries 245
131 Arcweaver solution rates, log-linear scale, no libraries 246
132 Arcweaver solution rates, log-log scale, no libraries 247
133 Arcweaver verification benefit rate, standard scale, no libraries 248

x

134 Arcweaver verification benefit rate, log-linear scale, no libraries, by depth . . 249
135 Arcweaver verification benefit rate, log-log scale, no libraries, by depth . . . 250
136 Arcweaver verification benefit rate, log-log scale, no libraries, by type 251
137 Arcweaver verification benefit rate sample statistics 252
138 Arcweaver verification condition rate sample statistics 253
139 Arcweaver verification improvement rate sample statistics, all depths 254
140 Arcweaver verification improvement rate sample statistics, by depth 255
141 Arcweaver verification improvement rate dot plot, by depth 256

xi

List of Tables

1 Production game play solution data . 260
2 Arcweaver solution data depth zero . 261
3 Arcweaver solution data depth one . 262
4 Arcweaver solution data depth two . 263
5 Arcweaver solution data depth three . 264
6 Awards database . 272
7 Badge database . 272
8 Call graph database . 272
9 Dictionary database . 273
10 Factory database . 273
11 Factory definition database . 274
12 Game instance database . 275
13 Goal database . 276
14 Graph database . 277
15 History database . 277
16 Mission database . 278
17 Planet database . 278
18 Player database . 279
19 Player history database . 279
20 Resource database . 280
21 Resource definition database . 280
22 Statistics database . 281
23 UID database . 281
24 Worker database . 281
25 Worker history database . 282
26 BIND game level statistics . 291
27 Backend transactions . 292

xii

1.0 SUMMARY

The CircuitBot project developed an innovative distributed algorithm supporting the static
analysis of C-language programs. We created the distributed algorithm in such a way to
lend itself to crowd-sourced contributions via game play. In particular, the player-provided
solutions of puzzle games contribute to the construction of points-to graphs, which represent
information about which memory locations may hold the addresses of other memory locations
as the program runs. Nodes in the graph correspond to memory locations, and an arc
from node x to node y represents that x may hold the address of y at some point during
program execution. This is known classically as the “pointer analysis problem” and has many
variations. The variation we treat takes account of o↵sets in memory, but abstracts away
control flow from the program. Even this simplified version of the problem is undecidable,
and its solution or sound partial solution contributes substantially to program verification.
These two factors make this version of the pointer-analysis problem a good candidate for the
application of human intelligence through game play.

To evaluate the e↵ectiveness of this approach, the project developed two conventional free
online games, named CircuitBot and Dynamakr, and one paid online game named VIPER
(Verification Enhanced by PCS (Paid Crowd Source) Enhanced Results). These games
performed essentially the same work but explored di↵erent approaches to attracting players.
The project developed a fourth version of the game, called Arcweaver, that ran as an auto-
solver without human players. We collected and preset herein the player and analysis data
for each of these.

The project’s approach to program verification using this new distributed algorithm in-
volved three steps. A constraint generator first analyzed a target program’s C source files to
prepare a collection of constraints describing the use of pointers in the program. A backend
server distributed these constraints to players on the Internet as a collection of game levels,
aiming to use the crowd of game players to invoke human intuition as an iteration scheme
to build the points-to graph. Inside each game engine was a set of game rules that described
valid moves for the game level. Game players solved these game levels by making moves
in a judicious order, where each move consisted of adding arcs to the graph that result in
satisfying a single constraint. Eventually, as the crowd of players completed the collection
of game levels and satisfied all of the constraints, the game play yielded a fixpoint solution
– but the time required to reach this solution, and whether the process halted, depended on
triggering constraints in a wise order, as well as performing operations that lost information
but sped up the solution process or allowed it to halt. When the game play sessions achieved
a solution, we saved the resulting graph. The final step passed this graph to a custom static
analyzer we developed to use this points-to graph to support its analysis of the target pro-
gram. We compared the before-and-after verification results to find that our pointer analysis
approach substantially increased the quantity of automatically-proved verification results. In
particular, our analyzer performed checks of memory safety properties that describe over 50
weaknesses that comprise the primary cyber attack surface in C programs.

The first half of this report explains the analysis techniques we developed that ultimately
were embodied in three Internet games and one robotic auto-solver system. The second half
of the report provides the data we gathered describing both the game player performance
results and the program verification results.

1
Approved for Public Release; Distribution Unlimited.

2.0 INTRODUCTION

As an introduction to the problem we set out to solve we explain why the problem we chose
was both interesting and di�cult. Why did we decide to take up this particular challenge
and apply a crowd-sourced approach as a solution? Section 2.1 introduces the key elements
of program verification and in particular provides the details of what we mean by proof obli-
gations. This section steps through an example C program, applying the steps of generating
proof obligations, generating inductive invariants at all locations, developing function pre-
conditions, and discharging proof obligations. Section 2.2 on page 12 then describes our keen
interest in the BIND source code as the challenge target, and describes our initial insights
into why BIND in particular was an interesting challenge. Our CodeHawk analyzer already
performed very well on this target with assertions and counter-examples analysis. There was
however a significant residual of unresolved warnings. Using the insights we gleaned from
this evaluation, we decided early in the program that in order to improve static analysis of
programs like BIND we needed to do something about pointer analysis.

2.1 Proof Obligations

The following is a brief explanation of some major concepts in program verification. An
in-depth explanation of the terminology used here can be found in [4].

Program A program is a tuple P : hV ,L, I(V),Si that consists of a set of program variables
V that may include distinct variables for the initial values of the function parameters, a
set of program locations L (with a distinguished initial location `0), an initial condition
I(V) that is an assertion over the program variables at location `0, and a set of program
statements S that map program states to program states, where a program state is a
valuation of all variables in V .

Assertion Map An assertion map is map A : L 7! A(V) from program locations L to
assertions A over the program variables V .

Invariant Map An invariant map is an assertion map I : L 7! A(V) such that at each
location ` the assertion I(`) holds for all possible runs of the program (all possible
valuations of the program variables that are consistent with the program statements).

Inductive Assertion Map An assertion map is inductive if it is implied by the initial
condition and preserved by all program statements. It can be shown that all inductive
assertion maps are invariant maps. Not all invariant maps, however, are inductive
assertion maps. The only way, however, for non-trivial programs, to prove that an
assertion map is an invariant map is to show that it is implied by an inductive assertion
map. Hence the only useful assertion maps to us are inductive assertion maps. All
invariants generated by CodeHawk are inductive invariants.

Strongest Program Invariant Map The strongest inductive assertion map, IP is the
assertion map that exactly describes the reachable states of the program for all possible
inputs. All inductive assertion maps for P are implied by IP . We can strengthen

2
Approved for Public Release; Distribution Unlimited.

a program invariant map by restricting its inputs; we will denote the strengthened
invariant map by IP[C], where C are the constraints imposed on input variables.

In general, we do not know IP and we do not have to. The CodeHawk abstract
interpretation engine generates an assertion map that is an over-approximation of the
reachable state space, an inductive assertion map that is implied by IP . We will refer
to the assertion map generated by the CodeHawk engine as I

generated

.

Proof Obligation A proof obligation p(V) is an assertion at a particular location ` 2 L
of the program over the program variables; a proof obligation is valid if it is implied
by the strongest possible invariant at that location, that is, if IP(`)(V)) p(V). A
proof obligation is proven valid (“yes” or green in CodeHawk terms) if it is implied by
the invariant generated at that location, that is, if I

generated

(`)(V)) p(V). A proof
obligation is inconsistent if its negation is implied by the strongest possible invariant
at that location, that is, if IP(`)(V)) ¬p(V) and proven inconsistent (“no” or red in
CodeHawk terms) if its negation is implied by the generated invariant at that location,
that is, if I

generated

(`)(V)) ¬p(V). A proof obligation is indeterminate if neither the
proof obligation itself nor its negation is implied by the strongest possible invariant
(this happens, for example, when the value of a variable depends on user input). A
proof obligation is open (“maybe” or orange in CodeHawk terms) if neither the proof
obligation itself nor its negation is implied by invariant generated at that location.

Remaining Proof Obligation The remaining proof obligation r(V) of a proof obligation
p(V) at location ` is the simplification of p(V) against the generated location invari-
ant I

generated

(`), with variables rewritten to initial variables as much as possible. For
example the remaining proof obligation of p(x, y) : x > 0^y > 0 against the generated
location invariant x = x0 + 2 ^ y0 � 0 ^ y = y0 + 3 would be r(x0) : x0 > �2, where
x0 and y0 denote the values of the arguments passed to the parameters x and y, and x
and y in p denote the values of x and y at location `.

Trace A trace is a sequence of location and program state pairs,

T : (`0, s0), (`1, s1), (`2, s2), . . .

such that (1) `0 is an initial location and the variable assignment s0 is consistent with
the initial condition I(V), and (2) for each pair of successive pairs (`i, si), (`j, sj), the
program states (si, sj) are consistent with the statement(s) � 2 S that lead from `i to
`j.

Counterexample A counterexample to a proof obligation p at location `p is a trace T

T : (`0, s0), (`1, s1), (`2, s2), . . . , (`p, sp)

such that the program state sp does not satisfy the assertion of p.

2.1.1 Example

Consider the following program

3
Approved for Public Release; Distribution Unlimited.

1 #include "stdio.h"
1 #include "string.h"
1 #include "stdlib.h"
2
3 void f(char *a, int x, int y) {
4 char *p;
5 int i;
6
7 a[0] = ’*’;
8 a[1] = ’*’;
9
10 p = &a[2];
11
12 for (i=x; i<y; i++) {
13 p[i] = p[i+1];
14 }
15 }
16
17 void g1() {
18 char s[] = "Hello" ;
19 printf ("g1: %s\n", s);
20 f(s,0,0);
21 printf ("g1: %s\n", s);
22 }
23
24 void g2() {
25 char s[] = "A much longer sentence" ;
26 printf ("g2: %s\n", s) ;
27 f(&s[10],2, 7);
28 printf ("g2: %s\n", s) ;
29 }
30
31 void g3() {
32 char s[] = "Going negative" ;
33 printf ("g3: %s\n", s);
34 f(&s[10],-8,-3);
35 printf ("g3: %s\n", s);
36 }
37
38 void g4() {
39 char v[] = "Next string" ;
40 char s[] = "012345678901234" ;
41 printf ("g4: %s\n",s) ;
42 f(s,13 ,14);
43 printf ("g4: %s\n",s) ;
44 }
45
46 void g5() {
47 char s[] = "Hello" ;
48 printf ("g5: %s\n",s) ;
49 f(s,42 ,14);
50 printf ("g5: %s\n",s) ;
51 }
52

4
Approved for Public Release; Distribution Unlimited.

53 void g6(int n, char *t) {
54 char *s = (char *) malloc (n) ;
55 strncpy(s,t,n-1);
56 printf ("g6: %s\n",s);
57 f (s, n-10, n-3);
58 printf ("g6: %s\n",s);
59 }
60
61 int main(int argc , char** argv) {
62 if (argc > 1) {
63 char *command = argv [1];
64 if (! strcmp(command ,"g1")) { g1() ; }
65 if (! strcmp(command ,"g2")) { g2() ; }
66 if (! strcmp(command ,"g3")) { g3() ; }
67 if (! strcmp(command ,"g4")) { g4() ; }
68 if (! strcmp(command ,"g5")) { g5() ; }
69 if (! strcmp(command ,"g6")) {
70 if (argc == 2) { g6(25,"012345678901234567890123"); }
71 if (argc > 2) { g6(strlen(argv [2])+1,argv [2]); }
72 }
73 }
74 }

When compiled and run with some input, the output of this program for various inputs is

$./example g1
g1: Hello
g1: **llo
$
$./example g2
g2: A much longer sentence
g2: A much lon**r entennce
$
$./example g3
g3: Going negative
g3: Goin negaa**ve
$
$./example g4
g4: 012345678901234
g4: **2345678901234NNext string
$
$./example g5
g5: Hello
g5: **llo
$
$./example g6
g6: 012345678901234567890123
g6: **234567890123456890123
$

5
Approved for Public Release; Distribution Unlimited.

$./example g6 user-input-string
g6: user-input-string
g6: **er-inputstring

2.1.2 Proof Obligations

The first step in the analysis is to generate proof obligations. We will focus on function f
in this example. Function f contains four memory accesses, which give rise to the following
eight proof obligations (a lower-bound and upper-bound condition for each access).

At line 7:

lb7 : ao↵set � 0

ub7 : ao↵set < a
size

At line 8:

lb8 : ao↵set + 1 � 0

ub8 : ao↵set + 1 < a
size

At line 13:

lb13a : po↵set + i � 0

ub13a : po↵set + i < p
size

lb13b : po↵set + i+ 1 � 0

ub13b : po↵set + i+ 1 < p
size

For pointer variable a the “associate” variable a
o↵set

denotes the distance (in bytes)
between the value of a and the start of the memory block that a points at. The associate
constant a

size

denotes the size of the memory block that a points at. We assume that all
pointer variables contain valid addresses; we do not consider the possibility of null dereference
in this example.

2.1.3 Invariants and Remaining Proof Obligations

The next step is to generate (inductive) invariants for all locations in the function. The
relevant location invariants generated for lines 7, 8 and 13 are given below. In these invariant
assertions a 0-subscript denotes the initial value (at function entry) of the variable. We omit
the 0-subscript on the size-variables, since we assume the size of a bu↵er does not change,
that is, we always have a

size

= a
size,0. At lines 7 and 8 we have the invariant assertion:

a
o↵set

= a
o↵set ,0

producing the remaining proof obligations:

lb7 : ao↵set ,0 � 0

ub7 : ao↵set ,0 < a
size

lb8 : ao↵set ,0 � �1
ub8 : ao↵set ,0 < a

size

� 1

6
Approved for Public Release; Distribution Unlimited.

At line 13 we have the invariant assertions:

a
o↵set

= a
o↵set

, 0

p
o↵set

= a
o↵set

+ 2

p
size

= a
size

x = x0

y = y0
i � x

i < y

producing the remaining proof obligations

lb13a : ao↵set ,0 + x0 � �2
ub13a : ao↵set ,0 + y0 < a

size

� 1

lb13b : ao↵set ,0 + x0 � �3
ub13b : ao↵set ,0 + y0 < a

size

� 2

Thus, without any function preconditions, that is, without any constraints on a
o↵set ,0, asize ,

x0, and y0, we have eight open proof obligations for function f.

2.1.4 Function Preconditions

The next step is to impose constraints on the arguments passed to the function by declaring
a function precondition. The price for a function precondition is paid at the call sites of the
function: new proof obligations are created for each function precondition for each call site.
For example, we could start with declaring the simple precondition

c1 : ao↵set ,0 � 0.

Taking this precondition as our initial condition for the function discharges proof obligations
lb7 and lb8, so we only have six open proof obligations left in function f. Declaring this
precondition, however, causes the following six new proof obligations to be created:

p20,c1 : so↵set � 0

p27,c1 : (&s[10])
o↵set

� 0

p34,c1 : (&s[10])
o↵set

� 0

p42,c1 : so↵set � 0

p49,c1 : so↵set � 0

p57,c1 : so↵set � 0

Fortunately all of these proof obligations are readily discharged with the invariants generated
for these functions, so the precondition c1 results in a net reduction of two open proof
obligations.

7
Approved for Public Release; Distribution Unlimited.

Alternatively, we could impose a more aggressive precondition, say

c2 : ao↵set ,0 = 0

c3 : asize � 2

c4 : x0 = 0

c5 : y0 = 0

Taking this precondition as our initial condition for the function discharges all proof obli-
gations in function f. We now, however, have 24 new proof obligations, shown below with
their simplifications against the invariants generated at those locations:

p
20 ,c2 : s

o↵set

= 0 true

p
20 ,c3 : s

size

� 2 true

p
20 ,c4 : 0 = 0 true

p
20 ,c5 : 0 = 0 true

p
27 ,c2 : (&s[10])

o↵set

= 0 false

p
27 ,c3 : s

size

� 2 true

p
27 ,c4 : 2 = 0 false

p
27 ,c5 : 7 = 0 false

p
34 ,c2 : (&s[10])

o↵set

= 0 false

p
34 ,c3 : s

size

� 2 true

p
34 ,c4 : �8 = 0 false

p
34 ,c5 : �3 = 0 false

p
42 ,c2 : s

o↵set

= 0 true

p
42 ,c3 : s

size

� 2 true

p
42 ,c4 : 13 = 0 false

p
42 ,c5 : 14 = 0 false

p
49 ,c2 : s

o↵set

= 0 true

p
49 ,c3 : s

size

� 2 true

p
49 ,c4 : 42 = 0 false

p
49 ,c5 : 14 = 0 false

p
57 ,c2 : s

o↵set

= 0 true

p
57 ,c3 : s

size

� 2 n0 � 2

p
57 ,c4 : n� 10 = 0 n0 = �10
p
57 ,c5 : n� 3 = 0 n0 = �3

8
Approved for Public Release; Distribution Unlimited.

Thus, this precondition results in ten proof obligations that are inconsistent and three new
open proof obligations, a net reduction of five open proof obligations. The high number of
proof obligations that are inconsistent, however, suggests that the precondition is too strong,
and that we should look for a weaker precondition.

Many more preconditions can be proposed. The most general precondition to function f
that implies the validity of all proof obligations in this case can be derived to be:

a
o↵set ,0 � 0 ^ a

o↵set ,0 + 2 a
size

^ (x0 < y0 ! (a
o↵set ,0 + x0 � �2 ^ a

o↵set ,0 + y0 < a
size

� 2))

which we could represent as follows:

c1 : a
o↵set ,0 � 0

c6 : a
o↵set ,0 a

size

� 2

c7 : x0 < y0 ! a
o↵set ,0 + x0 � �2

c8 : x0 < y0 ! a
o↵set ,0 + y0 < a

size

� 2

Taking this precondition as our initial condition for the function, all proof obligations are

9
Approved for Public Release; Distribution Unlimited.

discharged in function f. It generates 24 new proof obligations as follows:

p
20 ,c1 : s

o↵set

� 0 true

p
20 ,c6 : s

o↵set

 s
size

� 2 true

p
20 ,c7 : x0 < y0 ! s

o↵set

+ 0 � �2 true

p
20 ,c8 : x0 < y0 ! s

o↵set

+ 0 < s
size

� 2 true

p
27 ,c1 : (&s[10])

o↵set

� 0 10 � 0 true

p
27 ,c6 : (&s[10])

o↵set

 s
size

� 2 10 < 21 true

p
27 ,c7 : x0 < y0 ! (&s[10])

o↵set

+ 2 � �2 10 + 2 � �2 true

p
27 ,c8 : x0 < y0 ! (&s[10])

o↵set

+ 7 < s
size

� 2 10 + 7 < 21 true

p
34 ,c1 : (&s[10])

o↵set

� 0 10 � 0 true

p
34 ,c6 : (&s[10])

o↵set

 s
size

� 2 10 + 2 < 15 true

p
34 ,c7 : x0 < y0 ! (&s[10])

o↵set

� 8 � �2 10� 8 � �2 true

p
34 ,c8 : x0 < y0 ! (&s[10])

o↵set

� 3 < s
size

� 2 10� 3 < 13 true

p
42 ,c1 : s

o↵set

� 0 0 � 0 true

p
42 ,c6 : s

o↵set

 s
size

� 2 0 < 14 true

p
42 ,c7 : x0 < y0 ! s

o↵set

+ 13 � �2 13 � �2 true

p
42 ,c8 : x0 < y0 ! s

o↵set

+ 14 < s
size

� 2 14 < 14 false

p
49 ,c1 : s

o↵set

� 0 0 � 0 true

p
49 ,c6 : s

o↵set

 s
size

� 2 0 < 6 true

p
49 ,c7 : x0 < y0 ! s

o↵set

+ 42 � �2 false ! 42 � �2 true

p
49 ,c8 : x0 < y0 ! s

o↵set

+ 14 < s
size

� 2 false ! 14 < 4 true

p
57 ,c1 : s

o↵set

� 0 0 � 0 true

p
57 ,c6 : s

o↵set

 s
size

� 2 0 < n0 � 2

p
57 ,c7 : x0 < y0 ! s

o↵set

+ (n� 10) � �2 n� 10 � �2 n0 � 8

p
57 ,c8 : x0 < y0 ! s

o↵set

+ (n� 3) < s
size

� 2 n� 3 < n� 2 true

Thus, this precondition identifies one inconsistent proof obligation (p42,c8) and creates one
new open proof obligation (p57,c7).

2.1.5 Counterexample

The presence of an inconsistent proof obligation for a function call can be handled in two
ways: (1) weakening the precondition of the function called or (2) exhibiting a counterex-
ample and (to make the program safe) creating new preconditions for the calling function to

10
Approved for Public Release; Distribution Unlimited.

ensure that the call is not reachable (which is the only way to satisfy an inconsistent proof
obligation).

A counterexample can indeed by constructed for the call at line 42,

`42 : so↵set = 0, s
size

= 16, argx = 13, argy = 14

`3 : ao↵set = 0, a
size

= 16, x = 13, y = 14

`10 : po↵set = 2, p
size

= 16, x = 13, y = 14

`12 : i = 13, p
o↵set

= 2, p
size

= 16

The trace demonstrates that if function f is called with the given arguments the proof
obligation

ub13b : po↵set + i+ 1 < p
size

is violated. The only way to make the call to f on line 42 unreachable is to declare the
precondition for g4 to be false, which will discharge the proof obligation p42,c8, and creates
a new inconsistent proof obligation

p67�then,c9 : false

2.1.6 Constraints on User Input

The open proof obligation,

p57,c7 : x0 < y0 ! s
o↵set

+ (n� 10) � �2 n0 � 8

can be handled in the same way as before. We declare the function precondition

c10 : n0 � 8

for function g6, which discharges the proof obligation p57,c7 and creates two new proof obli-
gations:

p70�then,c10 : 25 � 8 true

p71�then,c10 : (strlen(argv [2]) � 8

The second proof obligation imposes a constraint on user input: the length of the string
passed as the first argument to the program must be at least 8.

2.1.7 Summary

Based on the analysis performed the program can be declared safe (with respect to the
primary proof obligations in f that were considered here) if the inputs to the program satisfy
the following minimum constraints on the first and and second command-line arguments,
denoted by arg1 and arg2:

U1 : arg1 6= g4

U2 : (arg1 = g6)! strlen(arg2) � 8

11
Approved for Public Release; Distribution Unlimited.

Notice that there are several alternative ways to “make” the program safe, all of which,
however, would involve more restrictions on the user input. For example a trivial way to
make the program safe is to impose the constraints

U1 : arg1 6= g1

U2 : arg1 6= g2

U3 : arg1 6= g3

U4 : arg1 6= g4

U5 : arg1 6= g5

U6 : arg1 6= g6

which would allow the function preconditions to be declared false for all functions except
main. Obviously this is not a very useful outcome of the analysis. The notion of the severity
of the restrictions to be imposed on user input to allow the analysis to go through, however,
could be a basis for scoring the game.

2.2 Challenges with BIND

The CSFV Program o↵ered BIND as an example of an interesting candidate for analysis.
Our team found interest in this source code because of its maturity (it had been well verified
before we arrived), its code base size (there are many load modules including the tests), and
most of all its use of pointers. Section 2.2.1 describes our findings upon an initial manual
inspection of the code. This manual inspection led to a significant and exciting change in
direction for our team and our static analysis technology. Section 2.2.2 then describes the
initial approach we developed to tackle the new challenge. Section 2.2.3 describes some of
the lingering technical challenges we thought we would encounter from the outset of the
project, many of which we encountered and solved later in the project as explained herein.

2.2.1 Initial Manual Review

BIND comes as a set of distinct programs and tools (named, nsupdate, dig, etc.) that
perform the various tasks involved in domain name resolution. The source code for each
utility can be found under the bin directory of the standard distribution. All of those
programs are based on a common API located under the lib directory of the distribution.
BIND implements the nodes of a complex distributed system and it seems unlikely that
we can perform a full verification of any property without some model of the environment.
A manual review of the code, although incomplete, revealed that most pending verification
conditions are due to insu�cient information on the pointer structure among objects in the
memory. This finding is what impelled our change in analysis technique for the project.

The review revealed some encouraging observations:

• Although extremely pointer-intensive, the BIND programs manipulate relatively flat
data structures, without unions. Dynamic collections of objects seem to be mainly
implemented using simply-linked lists, whereas arrays seem to be mostly used to store
character strings and are usually statically allocated. The common points-to relation

12
Approved for Public Release; Distribution Unlimited.

looks like: (malloc@c) + offset(f) -> (malloc@c’) + 0. In other words, (1) there
are not many pointers to a position somewhere inside a memory block, and (2) pointers
usually sit in fields within a compound structure. Arrays of pointers occur and they are
usually dynamically allocated. The position of an object in the array doesn’t appear
to carry any context information.

• There are function pointers, which seem to be essentially stored in fields of data struc-
tures. The dispatch procedures consist of cascading conditional statements, where the
function pointers are invoked by explicitly accessing a field in some compound data
structure. There appeared to be no use of arrays of function pointers.

The upshot is that a field-sensitive points-to model of the memory should provide good
enough precision to discharge a significant number of verification conditions. Constant o↵sets
should work fine and we see no need for a complex array-sensitive analysis, as objects in
collections are uniformly manipulated.

This leaves us with the review’s observations presenting challenges:

• Memory allocation is buried inside helper functions and this requires some level of
context-sensitivity or inlining.

• Information about the size of a dynamically allocated memory block is often stored
in a field of a larger structure that also contains a pointer to the block. After close
inspection of pieces of code manipulating such structures, it seems highly unlikely
that intervals would be su�cient to track the size information precisely. Some kind of
relational information would have to be preserved.

• There are a few instances where complex pointer arithmetic is used, mainly to decode
messages received or sent by the BIND utilities. There is little hope we can resolve
the corresponding bu↵er-overflow checks in any case. These situations appear to be
isolated and should have little impact on the overall verification process.

2.2.2 Overview of Approach

The process of determining a conservative approximation of the pointer structure in memory
is called pointer analysis. We propose the crowd players to perform the pointer analysis.
The game dynamics mimics that of the pointer analysis, whereas the players build the
approximate memory graph by moving addresses (payloads of some sort) along the pointer
constraints (the circuits). Each game level corresponds to the pointers constraints associated
to a function. These constraints we generate in advance using CodeHawk and they are
substantially smaller than the code itself. In particular, CodeHawk abstracts away all control
structures (loops, conditional, jumps). Game play yields the memory graph in a distributed
fashion. The game ends when the memory graph can no longer be changed by the players’
actions.

For example, consider the following program:

/* example with two game levels main and set */

int *P1 , *P2;
int G1 , G2;

13
Approved for Public Release; Distribution Unlimited.

void set(int **p, int *a) {
*p = a;

}
main() {

set(&P1 , &G1);
set(&P2 , &G2);

}

The function set can be modeled as a game level that takes two payloads (the arguments)
and creates a pointer link between them (a connection in the pointer graph). A payload is a
pair (&x, off) where the first component is the symbolic address of a variable (or dynam-
ically allocated memory block) and off is an o↵set in bytes, which can be either a constant
or a range of o↵sets. The o↵set information is automatically computed by CodeHawk and
it does not have to appear as is in the game (it can be masqueraded into something more
appealing to the player). The two function calls in the game level corresponding to the main
function act by propagating a payload to another level (the one for set). Using this form of
interaction, the players can construct the following memory graph:

(&P1, 0) -> (&G1, 0), (&P2, 0) -> (&G2, 0)

The game controller detects stabilization when the memory graph can no longer be modified
and there is no pending payload at the entry points of each level (i.e., the parameters of
each function). This corresponds to a fixpoint computation and the game must make sure
that all functions have been processed at least once between two such checks. A common
strategy in pointer analysis is to process each function in some topological ordering of the
call graph, starting from main. The game must therefore be organized in “waves” that go
through the call graph without ignoring any function (level). This also imposes constraints
on the way players are distributed and can move across levels.

2.2.3 Technical Challenges

There are additional di�culties that are not exposed in the simple example described in the
previous section:

• Function pointers are heavily used in BIND and must be taken into account. There
is no theoretical di�culty. It just means that new pathways between levels may be
added as the game unfolds. When checking for stabilization, the game shall make sure
that the call graph hasn’t changed since the last check.

• Functions may also return pointers, which means there may be a two-way dependency
across levels with entry points (the function parameters) and exit points (the return
statements). This does not require any change in the algorithm, but it may lead to
very long games if the call graph is explored in a top-down fashion (return values are
propagated one level at a time at each pass). A good strategy that has proven e↵ective
in practice is to alternate top-down passes (from the main functions to the leaves) and
bottom-up passes (from the leaves to the main function).

• The analysis of structures that contain an array of elements in one field and the size
of the array in another would require carrying scalar values in the payloads. These

14
Approved for Public Release; Distribution Unlimited.

values would also have to be related with the size of memory blocks. The review of
BIND hinted at little or no gain in precision, would this feature be implemented.

• Functions that return a pointer to a dynamically allocated memory block pose a chal-
lenge. Our approach must be able to distinguish between a block that is created at
two di↵erent calls of the function, otherwise it would confuse completely unrelated
data structures. This happens in BIND and the return value is tunneled back across
a number of function calls. This can be done at the CodeHawk level by inlining, i.e.
expanding the pointer constraints of the called function into those of the calling func-
tion. This can be fine-tuned and does not change the model whatsoever. There is
an additional di�culty in the memory management API of BIND, where one of the
helper functions, which ultimately calls malloc, is a function pointer stored in a global
variable. Again, this can be dealt with at the CodeHawk level and should not have
any impact on the game model.

• The greatest challenge in our approach is hidden in the description of the example,
where we say that players propagate payloads to the entry points of the next level
(the called function). We must make sure that these values are somewhat related,
otherwise by picking &P1 for the first parameter and &G2 for the second, a player
could generate the spurious link (&P1, 0) -> (&G2, 0). This is a problem known as
context-sensitivity, which could cause a combinatorial explosion when pointer values
are tunneled across long call chains. This issue is critical for precision.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

In this section we present the main technical explanation of our approach, several examples to
illustrate the techniques we programmed into the analyzers and games, and the three games
we developed the embody the main iteration devices. To support the deployment and oper-
ation of the games we first developed a distributed software architecture and implemented
a number of document stores and backend services shared by all of our games.

First, we construct the technical development behind the game model and iteration.
Section 3.1 on the following page explains our approach to the C program pointer constraints
problem, with Section 3.2 on page 20 providing an example of the procedure. Sections 3.3
on page 24 and 3.4 on page 30 then describe how we turned this approach into the design of
a game model that served as the core of our distributed game play system.

Second, we explain implementation details supporting the verification. Section 3.5 on
page 45 describes the implementation of the game model, which we embedded into the
games and embedded into auto-solvers. Section 3.6 on page 75 describes the implementation
of a static analyzer using the pointer analysis results to improve verification results.

Third, we explain the supporting architecture and services not specifically related to
verification. Section 3.7 on page 98 describes our client-server architecture using the Amazon
Web Services (AWS) cloud, an unstructured document store server, and a suite of stateless
backend services. Section 3.7 on page 98 describes the architecture, Section 3.8 on page 100
the backend services, and Section 3.9 on page 106 the related web services between the game,
backend, and supporting sign-on and social media services.

15
Approved for Public Release; Distribution Unlimited.

Finally, we describe the details of each of the three games. Section 3.10 on page 106
describes the CircuitBot game. Section 3.11 on page 130 describes the Dynamakr game.
Section 3.12 on page 146 describes the VIPER game.

3.1 Semantics of Pointer Constraints

Section 3.1.1 describes our development of the constraint generator’s syntax specification.
Sections 3.1.2 on the following page, 3.1.3 on page 18, and 3.1.4 on page 20 then describe
the semantics of domains, constraints, and fixpoint iteration to support the game play and
subsequent verification.

3.1.1 Syntax of Constraints

We assume that we are provided with a set F of symbols denoting the names of functions in
the program and two disjoint sets of variables Va and Vn used to represent address and o↵set
information respectively in points-to constraints. We denote by L a set of symbols denoting
the addresses of global data (global variables, dynamically allocated memory blocks, etc.).
We assume that there is a special type of location fun(f), which represents the location
of a function f 2 F and is used to model function pointers. We denote by I the set of
intervals over Z [{�1,+1} defined in the standard way. Intervals can be endowed with
the structure of a lattice (I,✓,t,?,u,>) and the extension of the usual arithmetic over
Z [{�1,+1}. Note that this lattice is complete for both t and u.

Each function f in F is assigned a set Va(f) of symbolic variables and a set Vn(f) of
numerical variables. These sets are disjoint for all functions in F . Each function f has a set
{f1 . . . fn} of formal parameters and a return value fr. We assume that each function has a
return value for the sake of uniformity.

Constraints are split up among Read constraints and Write constraints. We first define
a general notion of address as follows:

Address ::= var(a) | loc(`)

where a 2 Va and ` 2 L. A Read constraint has the following syntax:

Read ::= (a, o) ◆ rhs1 [· · · [rhsn

where a 2 Va, o 2 Vn and the rhsi are right-hand side expressions ReadRhs defined as
follows:

ReadRhs ::= (a, e) | deref(a, e) | fr | fi | retfp(a, e)

where a 2 Address, f 2 F , fi is a formal parameter of function f , fr is the return value of
function f and e is an o↵set expression O↵setExpr defined as follows:

O↵setExpr ::= i | c0 + c1o1 + · · ·+ cnon

where i 2 I is an interval, c0, . . . , cn 2 Z are integer coe�cients and o1, . . . , on 2 Vn are
numerical variables. An o↵set expression is either an interval or the linear combination of
numerical o↵set variables.

16
Approved for Public Release; Distribution Unlimited.

A Write constraint is defined as follows:

Write ::= ⇤(a, e) (a0, e0)
| fi (a, e)
| fpi(a, e) (a0, e0)
| fr (a, e)
| memcpy(a, e, a0, e0, l)

where a, a0 2 Address, e, e0 are o↵set expressions defined by O↵setExpr, fi is a formal
parameter of function f 2 F , fr is the return value of function f , i 2 N and l 2 I.

A system of constraints S is given by a collection of Read constraints ReadS(f) and
Write constraintsWriteS(f) for each function f 2 F , such that each variable in a constraint
associated to f belongs to either Va(f) or Vn(f). In other words, there are no free variables
in a constraint system.

3.1.2 Semantic Domains

In the rest of this document, we will use the notations @, t and u to denote the operations
of a lattice without specifying which lattice they refer to, as this should be obvious from the
context. The power set }(L) ordered by set inclusion can be endowed with the structure of
a complete lattice. We denote by M the product lattice }(L) ⇥ I. An element of M is a
pair (a, i), where a is a set of addresses and i is an interval of byte o↵sets. Let V(F) be the
set of all formal parameters fi and return values fr for all functions f 2 F . We denote by F
the product lattice defined as follows

F =
Y

v2V(F)

M

and ordered by the pointwise extension of the order on M. If f 2 F, we denote by f(v) the
v-th component of f. If f 2 F, v 2 V(F) and m 2M, we denote by f � (v,m) the element
f 0 2 F, such that f 0(v) = f(v)[m and f 0(v0) = f(v0) if v0 6= v. If A = {(v1,m1), . . . , (vn,mn)},
we denote by f � A the element (. . . (f � (v1,m1)) · · ·� (vn,mn)).

If f 2 F , we denote by Ef the product lattice defined as follows

Ef =

0

@
Y

v2Va(f)

}(L)

1

A⇥

0

@
Y

v2Vn(f)

I

1

A

We denote by E the product lattice given by

E =
Y

f2F

Ef

If e 2 E, we denote by ef the f -th component of e and by ef (v) the v-th component of ef
for v 2 Va(f) [Vn(f). If e 2 E, f 2 F , v 2 Va(f) [Vn(f) and x is an element of }(L) or I
depending on the type of v, we denote by e� (f, v, x) the element of E that coincides with
e everywhere except on the f, v-th component, where it is equal to ef (v)t x. If A is a finite
set of a triples (f, v, x), we define e� A as previously.

17
Approved for Public Release; Distribution Unlimited.

We denote by I2 the set }(I⇥I) of sets of boxes of Z2. If O 2 I2, we define the denotation
�(O) 2 }(Z2) of O as follows

�(O) =
[

(i,j)2O

(i⇥ j)

� defines a preorder � on I2 given by

O � O0 i↵ �(O) ✓ �(O0)

We define the equivalence relation ⌘ on I2 as

O ⌘ O0 i↵ �(O) = �(O0)

We denote by O the quotient set I2/⌘ ordered by the projection of �. This endows O with
the structure of a complete lattice.

We define the domain G of points-to graphs as

G =
Y

(s,t)2L2

O

endowed with the structure of the product lattice. If g 2 G and (s, t) 2 L2, we denote
by g(s, t) the (s, t)-th component of g. If s, t 2 L and i, j 2 I, we denote by g � (s, i, j, t)
the points-to graph that coincides with g everywhere, except on (s, t) where it is equal to
g(s, t) t {(i, j)}. If A is a finite set of tuples (s, i, j, t), we define g � A as previously.

Finally, the domain C of game configurations is defined as

C = F⇥ E⇥G

and is endowed with the structure of the product lattice. The solution of the game will be
defined in the next section as the least fixpoint of a monotonic operator on C. Note that the
previous definitions of operation � can be readily extended so as to have an infinite set as
the right-hand side operand.

3.1.3 Semantics of Constraints

Let c = (f , e,g) be a game configuration in C. Let f 2 F be a function. We want to define
the semantics of points-to constraints for f . The semantics of an Address a is a function
[[a]]f : C! }(L) defined as follows

[[var(a)]]fc = e(a)
[[loc(`)]]fc = {`}

The semantics of an O↵setExpr e is a function [[e]]f : C! I defined as follows

[[i]]fc = i
[[co + c1o1 + · · ·+ cnon]]fc = [co, c0] +I ([c1, c1] ⇥I ef (o1)) +I · · ·

+I ([cn, cn] ⇥I ef (on))

18
Approved for Public Release; Distribution Unlimited.

The semantics of an ReadRhs expression rhs is a function [[rhs]]f : C ! }(M) defined as
follows

[[(a, e)]]fc = {([[a]]fc, [[e]]fc)}
[[gr]]fc = {f(gr)}
[[gi]]fc = {f(gi)}

[[deref(a, e)]]fc = {({t}, i) | 9s 2 [[a]]fc : 9i0 2 I : (i0, i) 2 g(s, t)
^ [[e]]fc u i0 6= ?}

[[retfp(a, e)]]fc = {f(gr) | 9s 2 [[a]]fc : 9i, i0 2 I : (i0, i) 2 g(s, fun(g))
^ [[e]]fc u i0 6= ? ^ i 6= ?}

If cst is a Read constraint (a, o) ◆ rhs1 [· · · [rhsn, we denote by R the set

R = [[rhs1]]fc [· · · [[[rhsn]]fc

Then, the semantics of cst is a function

[[cst]]fc : C! } ((Va(f)⇥ }(L)) [(Vn(f)⇥ I))

defined as follows

[[cst]]fc = {(a, `) | 9A 2 }(L) : 9i 2 I : (A, i) 2 R ^ ` 2 A}
[{(o, i) | 9A 2 }(L) : (A, i) 2 R}

Now, if S is a system of constraints, the semantics of the Read constraints in S is the
function

[[S]]Read : C! } ((F ⇥ Va ⇥ L) [(F ⇥ Vn ⇥ I))

defined as follows

[[S]]Readc = {(f, v, x) | f 2 F ^ 9cst 2 Readf (S) : (v, x) 2 [[cst]]fc}

The semantics [[cst]]f of a Write constraint cst is the function

[[cst]]f : C! }(V(F)⇥M)⇥ }(L⇥ I2 ⇥ L)

defined as follows

[[⇤(a, e) (a0, e0)]]fc = (;, {(s, [[e]]fc, [[e0]]fc, t) | s 2 [[a]]fc ^ t 2 [[a0]]fc})
[[fi (a, e)]]fc = ({(fi, (`, [[e]]fc)) | ` 2 [[a]]fc}, ;)

[[fpi(a, e) (a0, e0)]]fc = ({(fi, (`, [[e0]]fc)) | ` 2 [[a0]]fc ^ 9s 2 [[a]]fc : 9i, i0 2 I :
(i, i0) 2 g(s, fun(f)) ^ [[e]]fc u i 6= ? ^ i0 6= ?}, ;)

[[fr (a, e)]]fc = ({(fr, (`, [[e]]fc)) | ` 2 [[a]]fc}, ;)
[[memcpy(a, e, a0, e0, l)]]fc = (;, {(s, i �I [[e0]]fc +I [[e]]fc, i0, t) | s 2 [[a]]fc

^ 9s0 2 [[a0]]fc : (i, i0) 2 g(s0, t)
^ i u ([[e0]]fc +I l) 6= ? ^ i0 6= ?})

Now, if S is a system of constraints, the semantics of the Write constraints in S is the
function

[[S]]Write : C! }(V(F)⇥M)⇥ }(L⇥ I2 ⇥ L)

19
Approved for Public Release; Distribution Unlimited.

defined as follows

[[S]]Write : C! [[S]]Writec =
.[

f2F

{[[cst]]fc | cst 2Writef (S)}

where
.
[denotes the pointwise extension of the set union operator to the components of a

pair.

3.1.4 Fixpoint Semantics of the Game

The semantics of a game given by a system of constraints S is expressed as the least fixpoint
of an extensive function F : C ! C. Let c = (f , e,g) be a game configuration. We denote
by (f, g) the semantics [[S]]Writec of Write constraints in S. Then F is defined as follows

F(c) = (f � f, e� [[S]]Readc,g � g)

Following Tarski’s theorem, the least fixpoint of F is the limit of the transfinite sequence
(Fn)n�0 defined inductively as follows:

8
<

:

F0 = ?
Fn+1 = F(Fn)
F� =

F
{Fn | n < �} for a limit ordinal �

Playing the game amounts to applying a certain iteration strategy to get to the least fixpoint.
Approximations have to be inserted during the game play as the least fixpoint may no be
computable in finite time. Therefore, we generally end up with a post-fixpoint. This is
su�cient to carry out bu↵er overflow analysis in a sound manner though.

3.2 Procedure Example

We will consider the following C program as our running example:

struct S {
int *p1;
int *p2;

};

int A[10];
int B[10];

void init1(struct S *p) {
p->p1 = &A[0];

}

void init2(struct S *p) {
volatile int random;
p->p2 = random ? &B[5] : &B[0];

}

main() {

20
Approved for Public Release; Distribution Unlimited.

struct S *pS;

pS = malloc(sizeof(struct S)); // Label M

init1(pS);
init2(pS);

pS ->p1[5] = pS->p2[5];
}

3.2.1 Memory Model

We assume that pointers and integers are four bytes long on the platform considered. An
abstract memory location L is a triple (a, o, s):

• a is either the address of a program variable &v, a memory block block@l dynamically
allocated at program location l, or the address &f of a function (function pointers are
supported by the analysis)

• o is an o↵set inside the memory block expressed as an interval of bytes

• s is the size of the memory block expressed as an interval of bytes

The nodes of the points-to graph are pairs (a, s), where a is the address of a memory
block and s is the size of the block, as described above. An edge (a, s)! (o, o0)! (a0, s0) is
labeled by a pair of interval (o, o0) of byte o↵sets. The interval o denotes the position in the
source block while o0 denotes the position within the target block. For clarity, in the rest of
the document a singleton interval [n, n] will simply be denoted by n.

3.2.2 Generation of Points-To Constraints

After running an analysis with CodeHawk, we obtain the following system of constraints:

init1 {
param1 + 0 ! (&A, 0, 4 0)

}

init2 {
param1 + 4 ! (&B, 20, 40) param1 + 4 ! (&B, 0, 40)

}

main {
pS ! (block@M , 0, 8)
init1(param1 = pS)
init2(param1 = pS)
let tmp = get_points_to_targets(pS , 0) in

check(0 offset(tmp) + 20 size(tmp) - 4)
let tmp = get_points_to_targets(pS , 4) in

check(0 offset(tmp) + 20 size(tmp) - 4)
}

21
Approved for Public Release; Distribution Unlimited.

The function size (resp. offset) returns the size of (resp. position inside) the memory
block denoted by the memory location given in argument.

The statement check denotes an array-bound safety condition that can be discharged
(or not) at the end of the analysis. For clarity we have omitted the safety conditions corre-
sponding to the dereference of pS (in this case, they can be solved statically by CodeHawk).

All sizes and o↵sets have been expressed in bytes. We assume that all memory objects
are aligned on 32-bit word boundaries.

3.2.3 Resolution of Points-To Constraints

We need to define an environment for each function in the system that keeps track of the
memory locations assigned to the parameters and local variables. The types of the objects
manipulated by the analysis are defined as follows:

SymbolicAddresses = {block@l ,&v,&function, . . .}
Function = {f, g, . . .}

Parameters = {param1 , param2 , . . .}
PointsToGraphs = }(SymbolicAddresses ⇥ ZInt ⇥ ZInt ⇥ SymbolicAddresses)

MemoryLocations = SymbolicAddresses ⇥ ZInt ⇥ ZInt

PointsToSets = }(MemoryLocations)

Environments = PointsToSetsParameters

Configurations = PointsToGraphs ⇥ EnvironmentsFunctions

Here } denotes the powerset operator and ZInt denotes the set of integer intervals (with
possibly one or two open bounds ±1. The main object manipulated by the analysis and
produced by the game is an element of Configuration.

Initially, the environments in the configuration are empty and so is the points-to graph:

Points -to graph: empty
Environment init1:param1 ! {}
Environment init2: param1 ! {}
Environment main: pS ! {}

Functions can be processed in any order as long as no function is ever left over (in Abstract
Interpretation terms, this is called a chaotic iteration strategy with a fairness assumption).
We stop processing functions when the points-to graph and the environments can no longer
be changed.

We choose an arbitrary processing order (which coincidentally is the optimal one). A key
aspect of the game approach is to leave it to the brains of players to choose a good iteration
strategy. This is notoriously di�cult to do automatically and in practice the iteration strat-
egy often has to be manually tweaked in order to get decent computation times. That can
be seen as a benefit of encoding the pointer analysis problem as a game.

We process the points-to constraints linearly in the order they appear. Again, this is
arbitrary (and also optimal in this case) and should be left to the player?s discretion.

22
Approved for Public Release; Distribution Unlimited.

We start by processing function main. Variable pS gets assigned a memory location,
which in turn is transmitted to functions init1and init2. Once we?re done processing
function main we obtain the configuration:

Points -to graph: empty
Environment init1:param1 ! { (block@M , 0, 8) }
Environment init2: param1 ! { (block@M , 0, 8) }
Environment main: pS ! { (block@M , 0, 8) }

We process function init1. The single constraint in the function creates an edge in the
points-to graph, originating from o↵set 4 in the dynamically allocated memory block and
pointing to the first element of array A. At the end we obtain the configuration:

Points -to graph: {(block@M ,8) ! (0,0) ! (&A,40)}
Environment init1:param1 ! { (block@M , 0, 8) }
Environment init2: param1 ! { (block@M , 0, 8) }
Environment main: pS ! { (block@M , 0, 8) }

We process function init2. Similarly, the function creates two new edges in the graph:

{(block@M ,8) ! (4,20) ! (&B,40)}

and

{(block@M ,8) ! (4,0) ! (&B,40)}

We have several options here. We could just decide to leave these two edges in the graph.
However, this approach might result in a combinatorial explosion for larger and more complex
programs. Another option is to allow only one edge between two nodes in the graph. In this
case, we simply perform the convex union on the o↵sets labeling the edges, so as to obtain
a sound approximation. Hence, at the end of this process we get the configuration:

Points -to graph: {(block@M ,8) ! (0,0) ! (&A,40),
(block@M ,8) ! (4, [0 ,20]) ! (&B,40)}

Environment init1:param1 ! { (block@M , 0, 8) }
Environment init2: param1 ! { (block@M , 0, 8) }
Environment main: pS ! { (block@M , 0, 8) }

If we process all functions one more time, the points-to graph and function environments
can no longer be changed. We have thus reached a fixpoint, and we can now proceed with
the verification of the safety conditions.

3.2.4 Verifying the Array-Bound Checks

For the first safety condition, we need to evaluate get points to targets(pS, 0), which
returns after examination of the points-to graph the unique memory location (&A, 0, 40).
The safety condition can then be rewritten to 0 0 + 20 36, which is true. This array-
bound condition is therefore discharged by the analysis.

Evaluating get points to targets(pS, 4) in the second safety condition returns the
memory location (&B, [0, 20], 40). Using interval arithmetic, we need to check that
0 [0, 20] + 20 36. The left-hand side of the inequality is fine, but the right-hand side
cannot be ascertained (we manipulate over-approximations and we cannot say for sure that
all values in the interval do occur in reality). In this case, we issue a warning, as there is a
potential o↵-by-one array access error.

23
Approved for Public Release; Distribution Unlimited.

3.3 Formalization of the Game Model

This section describes the game model’s conceptual realization in terms of states, visualiza-
tion, and game rules. We describe how the rules a↵ect game play and how the game results
become products for subsequent program verification.

3.3.1 Representation

There are just four atomic elements in a system of pointer constraints:

• A function identifier f id

• A symbolic variable aid

• A numerical variable oid

• The location of an object in memory locid

These four elements are uniquely determined by an integer identifier id . Symbolic and
numerical variables always come as a pair (aid ,oid). Inside the game, those components
shall always be referred to using their unique identifier. The connection between the unique
identifiers and the name of the actual program components (functions, variable, arguments,
etc.) is recorded in the dictionary and used by CodeHawk to produce the verification reports.
The only use of the verification dictionary in the game is for determining whether a memory
object locid represents a function (for function pointer resolution).

On top of these four atomic components come function parameters f idn, where n is the
rank of the argument, and function return values f id r.

3.3.2 Internal State

The internal state of the game is represented by

1. A collection of symbolic assignments:

aid 7! {locn1, locn2, . . . }
f idn 7! {locm1, locm2, . . . }
f id r 7! {lock1, lock2, . . . }

2. A collection of internal assignments:

oid [a, b]

f idn [a0, b0]

f id r [a00, b00]

3. And a collection of points-to edges:

(loc1, [a, b])! (loc2, [a
0, b0])

There may be more than one assignment to a game element. We assume that the game
maintains a canonical representation of the internal state (keeping a single points-to sets for
each symbolic variable for example).

24
Approved for Public Release; Distribution Unlimited.

3.3.3 Visualization

The nodes of the game consist of:

• Symbolic variables aid

• Function arguments f idn

• Function return values f id r

• Memory locations locid

Given an internal state:

aid 7! {locn1, locn2, . . . }
f idn 7! {locm1, locm2, . . . }
f id r 7! {lock1, lock2, . . . }
oid [a, b]

f idn [a0, b0]

f id r [a00, b00]

(loc1, [a, b])! (loc2, [a
0, b0])

edges consist of

aid) locn1
aid) locn2
f idn) locm1

f idn) locm2

f id r) lock1
f id r) lock2
loc1) loc2

The numerical information can be attached to edges in an abstract way that is easily under-
standable by the players (e.g., energy level).

Notation. If exp is an o↵set expression, as described in the semantic specification Sec-
tion 3.1, we denote by eval(exp) its evaluation as an interval in the current internal state.

An alpha constraint is satisfied if every target of its right node is a target of its left node.

3.3.4 Constraints in the Game Play

1. An ↵(l, r) constraint is satisfied if every target of its right node is a target of its left
node.

2. A �(l, r) constraint is satisfied if every indirect target of its right node is a target of
its left node.

25
Approved for Public Release; Distribution Unlimited.

3. A �(l, r) constraint is satisfied if every target of its right node is a target of every target
of its left node.

4. A �(l, r) constraint is satisfied if every indirect target of its right node is a target of
every target of its left node.

5. An ↵0(l, r) constraint is satisfied if its right node is a target of its left node.

3.3.5 Game Rules

We denote by p the relation used in the game play constraints. For example, �(l, r) is
equivalent to 8x8y.p(r, x) ^ p(x, y)) p(l, y).

1. Constraints: (aid ,oid) ◆ (aid 0, e), aid ◆ aid 0,oid 0 ◆ e

(a) Constraint: (aid ,oid) ◆ (aid 0, e)

if aid 0 7! S and eval(e) = [a, b]
then aid 7! S and oid 7! [a, b]

8x.p(aid 0, x)) p(aid , x)

alpha(aid , aid 0)

if aid 0 7! {loc} and eval(e) = [a, b]
then aid 7! {loc} and oid 7! [a, b]

alpha0(aid , aid 0)

If you have loc on the right-hand side of an expression, then it is equivalent to
an aid 7! {loc} for a fresh id . Similarly, if you have an expression on the
right-hand side, it can be interpreted as oid = e for a fresh id .

(b) Constraint: aid ◆ aid 0 or aid ◆ loc

if aid 0 7! S
then aid 7! S

8x.p(aid 0, x)) p(aid , x)

alpha(aid , aid 0)

If the right-hand side of the constraint is a location, then aid 7! {loc}.

(c) Constraint: oid ◆ e

if eval(e) = [a, b]
then oid [a, b]

26
Approved for Public Release; Distribution Unlimited.

2. Constraint: (aid ,oid) ◆ deref(aid 0, e) or deref(loc1, e)

if rhs is aid 0 and aid 00 7! {loc1, . . . } or rhs is loc1, then

if loc1 is a function and eval(e) 6= ; then aid 7! {loc1} and oid [�1,+1]
else
if eval(e) = [a, b] and (loc1, [a0, b0])! (loc2, [a00, b00])
and [a, b]

T
[a0, b0] 6= ;

then aid 7! {loc2} and oid [a00, b00]

8x8y.p(aid 0, x) ^ p(x, y)) p(aid , y)

beta(aid , aid 0)

3. Constraint: (aid ,oid) ◆ f id 0
r

if f id 0
r 7! S and f id 0

r [a, b]
then aid 7! S and oid [a, b]

8x.p(f id 0
r, x)) p(aid , x)

alpha(aid , f id 0
r)

4. Constraint: (aid ,oid) ◆ f id 0
n

if f id 0
n 7! S and f id 0

n [a, b]
then aid 7! S and oid [a, b]

8x.p(f id 0
n, x)) p(aid , x)

alpha(aid , f id 0
nx)

5. Constraint: (aid ,oid) ◆ retfp(aid 0, e) or retfp(loc1, e)

if (rhs is aid 0 7! {loc1, . . . } or rhs is loc1) and eval(e) = [a, b] and
(loc1, [a0, b0])! (loc2, [a00, b00])
and loc2 is a function f id 00 and [a, b]

T
[a0, b0] 6= ; and f id 00

r 7! S and fid00r [a000, b000]

then
aid 7! S and oid [a000, b000]

Game Rule. 8x8y8z.p(aid 0, x) ^ p(x, y) ^ p(y, z)) p(aid , z) (if we identify the
location of a function with the function itself and all its parameters and return value
as well).

27
Approved for Public Release; Distribution Unlimited.

else if (rhs is aid 0 7! {loc1, . . . } or rhs is loc1) and loc1 is a function f id 00 and
f id 00

r 7! S and f id 00
r [a000, b000]

then
aid 7! S and oid [a000, b000]

Game Rule. 8x8y.p(aid 0, x) ^ p(x, y)) p(aid , y) (if we identify the location of a
function with the function itself and all its parameters and return value as well)

The first case is a new sort of rule, and unique in that it involves three jumps
from aid 0. The second case is just beta(aid , aid 0).

6. Constraint: ⇤(aid , e) or ⇤(loc1, e) (aid 0, e0) or (loc2, e0)

if (rhs is aid 7! {loc1, . . . } or rhs is loc1) and eval(e) = [a, b] and (rhs is
aid 0 7! {loc2, . . . } or rhs is loc2) and eval(e0) = [a0, b0] then
(loc1, [a, b])! (loc2, [a0, b0])

8x8y.p(aid , x) ^ p(aid 0, y)) p(x, y)

gamma(aid , aid 0)

7. Constraint: f id 0
n (aid , e) or (loc, e)

if (rhs is aid 7! S or rhs is S = {loc}) and eval(e) = [a, b] then f id 0
n 7! S and

f id 0
n [a, b]

8x.p(aid , x)) p(f id 0
n, x)

alpha(f id 0
n, aid)

8. Constraint: f id 0
r (aid , e) or (loc, e)

if (rhs is aid 7! S or rhs is S = {loc}) and eval(e) = [a, b] then f id 0
r 7! S and

f id 0
r [a, b]

8x.p(aid , x)) p(f id 0
r, x)

alpha(f id 0
r, aid)

9. Constraint: fpn(aid , e) or fpn(loc1, e) (aid 0, e0) or (loc, e0)

if (lhs is aid 7! {loc1, . . . } or lhs is loc1) and eval(e) = [a, b]

28
Approved for Public Release; Distribution Unlimited.

then
if (loc1, [a0, b0])! (loc2, [a00, b00])
and loc2 is a function f id 00 and [a, b]

T
[a0, b0] 6= ; and (rhs is aid 0 7! S or rhs is

S = {loc}) and eval(e0) = [a000, b000]
then f id 000

n 7! S and f id 00
n [a00, b00]

Game Rule. 8x8y8z.p(aid 0, z) ^ p(aid , x) ^ p(x, y)) p(y, z) (as in rule 5, we
assume that we identify the location of a function with the function itself and all its
parameters and return value as well).

else if loc1 is a function f id 00 and (rhs is aid 0 7! S or rhs is S = {loc}) and
eval(e0) = [a000, b000]

then f id 00
n 7! S and f id 00

n 7! [a000, b000]

Game Rule. 8x8z.p(aid 0, z) ^ p(aid , x)) p(x, z) (as in rule 5, we assume that we
identify the location of a function with the function itself and all its parameters and
return value as well).

The first case is a reverse delta like a delta but the added arc goes the opposite
direction. Let’s call it epsilon(aid 0, aid). The second is gamma(aid , aid 0).

10. Constraint: memcpy(aid or loc3, e, aid
0 or loc1, e0, l)

if (rhs is aid 0 7! {loc1, . . . } or rhs is loc1) and eval(e0) = [a, b] and
(loc1, [a0, b0])! (loc2, [a00, b00])
and ([a, b] +l ([0, 0] [eval(/)))

T
[a0, b0] 6= ;

and (rhs is aid 7! {loc3, . . . } or rhs is loc3) and eval(e) = [a000, b000]
then (loc3, [a0, b0]�l [a, b] +l [a000, b000])! (loc2, [a00, b00])

8x8y8z.p(aid 0, x) ^ p(x, y) ^ p(aid , z)) p(z, y)

delta(aid , aid 0)

3.3.6 Production of Results

Consider a symbolic variable aid and its companion o↵set variable oid . If looking it up in
the dictionary brings up the following entry

<memory -element uid=id>
<anchor context="..." function="..." name="..."/>

</memory -element >

then the values of aid and oid shall be reported in the results file as follows:

if aid 7! {loc1, . . . , locn} and oid 7! [a, b] and size(loc1) [· · · [size(locn) = [a0, b0]
then add the following entry to the XML results file, substituting for the attribute values:

<anchor-value uid=id offset-lb=a offset-ub=b size-lb=a’ size-ub=b’ />

29
Approved for Public Release; Distribution Unlimited.

If some locations in {loc1, . . . , locn} do not have a size in the dictionary, then they have to
be removed. If after removal of those locations the resulting set is empty then the size is
[0, 0].

If we have the following entries in the dictionary:

<memory -element uid="2">
<malloc context="" function="allocate" location="1">

<interval -value lower -bound="0" upper -bound="256"/>
</malloc >

</memory -element >
<memory -element uid="6">

<global -variable name="P" size="32"/>
</memory -element >

Then size(loc2) = [0, 256] and size(loc6) = [32, 32].

3.4 Design of the Game Model

We now present a design of a game model to accompany its formalization from Section 3.3.
The pointer analysis the game players will enable is based on the flow-insensitive, context-
insensitive pointer analysis proposed by Andersen [1], extended with o↵sets. The introduc-
tion of o↵sets allows more precise handling of structs containing pointers, which are prevalent
in BIND, the target application to be analyzed.

The objective of the game is to have the players construct a points-to graph and points-to
sets that satisfy all constraints extracted from the program. These points-to sets and points-
to graph are then used to discharge memory access conditions. At the end of the game the
result of the checks, and the points-to graph and points-to sets are sent back to CodeHawk.

In principle all actions performed by the players could be performed automatically. The
hard part in an automatic computation, however, is to choose the order in which to process
the constraints. The order in which the constraints are processed does not a↵ect the final
result, but it can greatly a↵ect the number of operations, and thereby the time needed, to
reach the final result. Thus, the “creative contribution” of the players would be to try to
come up with an optimal order to finish the game fast or gain points.

3.4.1 Definitions

A game instance consists of the following components:

• M = {m1,m2, . . .}: a set of memory regions. A memory region can be a stack-allocated
variable or array or a dynamically allocated memory region on the heap, or a global
variable or array;

• A ✓ M ⇥ (N [{>}): a set of addresses, where each address (m, o) consists of a
memory region m 2M and a non-negative o↵set o = 0, 1, 2, 3, The value > (top)
denotes an unknown o↵set. Given a set A = {(m1, o1), (m2, o2), . . .}, we write A + k
to denote {(m1, o1 + k), (m2, o2 + k), . . .};

• S : M 7! (N [{>}), a size function that maps each memory region to its size in
bytes;

30
Approved for Public Release; Distribution Unlimited.

• V = {v1, v2, . . .}: a set of variables;

• F = {f1, f2, . . .}: a set of functions;

• L : F 7! 2V , a mapping that identifies the local variables of a function; We require
that each variable only belong to one function, that is, 8f1, f2 2 F . f1 6= f2 !
L(f1) \ L(f2) = ;. Variables that do not belong to any function are global;

• C ✓ F ⇥ F , the call graph;

• Con: a set of constraints, described below;

• p : V 7! 2A, a points-to function that maps variables to a set of addresses

• G ✓ A ⇥ A, the points-to graph, a directed graph where an edge (m1, o1), (m2, o2)
denotes the fact that the address in memory region m1 at o↵set o1 may point at
memory region m2 at o↵set o2. Note that the data type of (m1, o1) must be a pointer.
For a set of addresses a ✓ A we write G(a) to denote the maximal set of addresses
b ✓ A such that 8x 2 b . 9y 2 a . (y, x) 2 G, that is, b is the target set of a.

• Chk: a set of verification conditions, described below.

3.4.2 Objective

At the start of the game CodeHawk provides elements M, S, V , F , L, C, and Con. These
are static and do not change during the game1. The objective of the game is to construct
the points-to function p and the points-to graph G such that they satisfy the constraints
expressed in Con. The result is used to attempt to discharge the verification conditions in
Chk. Finally, at the end of the game, the result of the checks and p and G is sent back to
CodeHawk.

3.4.3 Representation

The game does not need names. In fact, to hide the identity of the program being analyzed,
it is preferred not to reveal names. Therefore each of M, V , and F can be represented by a
single number, namely their size. The other components can simply refer to index numbers
on each kind to represent relationships. CodeHawk will retain a mapping between index
numbers and actual program entities to interpret the results.

3.4.4 Example: Definitions

Continuing the running example we illustrate the definitions and operations described below.

1 struct S {
2 int *p1;
3 int *p2;
4 };

1In a future version of the game the call graph C may change during the course of the game, when we
incorporate the analysis of function pointers.

31
Approved for Public Release; Distribution Unlimited.

5 int A[10];
6 int B[10];
7
8 void init1(struct S *u) {
9 u->p1 = &A[0];
10 }
11
12 void init2(struct S *u) {
13 volatile int random;
14 u->p2 = random ? &B[5] : &B[0];
15 }
16
17 main() {
18 struct S *pS;
19 pS = malloc(sizeof(struct S));
20 init1(pS);
21 init2(pS);
22 pS ->p1[5] = pS->p2[5];
23 }

At the start of the game CodeHawk would provide the following data:

• M = {m1,m2,m3}, denoting the two global arrays A and B and the memory region
allocated at line 19, respectively; (communicated simply as |M| = 3);

• S: S(m1) = S(m2) = 40, S(m3) = 8

• V = {v1, v2, v3}, denoting pS, u in init1, and u in init2 (that is, |V| = 3);

• F = {f1, f2, f3}, denoting main, init1, init2 (that is, |F| = 3);

• L: L(f1) = {v1}, L(f2) = {v2}, L(f3) = {v3}

• C = {(f1, f2), (f1, f3)}

3.4.5 Basic Assignments

The points-to-graph is the solution to a constraint system constructed based on pointer
assignments in the program. Below we describe the di↵erent kinds of basic assignments with
their associated constraints. In the description v and w are program variables.

1. v = &w
constraint: (m, 0) 2 p(v), where m is the memory region that holds variable w;

2. v = &w[i]
constraint: (m, k) 2 p(v), where m is the memory region that holds the array w[], and
k = i s, where s is the size in bytes of the element type of w;

3. v = w
constraint: p(w) ✓ p(v)

32
Approved for Public Release; Distribution Unlimited.

4. v = *w
constraint: 8x 2 p(w) . G(x) ✓ p(v)

5. *v = w
constraint: 8x 2 p(v) . p(w) ✓ G(x)

6. *v = *w
constraint: 8x 2 p(v) 8y 2 p(w) . G(y) ✓ G(x)

7. v = w->f [also written as v = (*w).f]
constraint: 8x 2 p(w) . G(x+ k) ✓ p(v), where k is the o↵set of field f

8. v->f = w [also written as (*v).f = w]
constraint: 8x 2 p(v) . p(w) ✓ G(x+ k)

9. v->f1 = w->f2 [also written as (*v).f1 = (*w).f2]
constraint: 8x 2 p(v) 8y 2 p(w) . G(y + k2) ✓ G(x + k1), where k1 and k2 are the
o↵sets of fields f1 and f2, respectively.

Assignment types (1), (3), (4), and (5) are illustrated in Figures 1,2,3, and 4.

Figure 1: Assignment of address

Figure 2: Assignment of pointer variable

Assignment types (4-6) are special cases of (7-9), with k = 0 so in the remainder we will
only consider the general case.

An array access is treated in one of two ways: if the address of the array is taken,
the memory region that holds the array is in M and the access is treated as a pointer
dereference. If the address is not taken, the element accessed in the array can be treated
simply as a variable (most often an aggregate variable that represents every element in the
array).

33
Approved for Public Release; Distribution Unlimited.

Figure 3: Assignment of derefenced pointer

Figure 4: Assignment to dereferenced pointer

3.4.6 Representation

The di↵erent types of constraints can be communicated as follows:

1. ((m, 0), var(v))

2. ((m, k), var(v))

3. (var(w), var(v))

4. (deref(var(w), 0), var(v))

5. (var(w), deref(var(v), 0))

6. (deref(var(w), 0), deref(var(v), 0))

7. (deref(var(w), k), var(v))

8. (var(w), deref(var(v), k))

9. (deref(var(w), k2), deref(var(v), k1))

34
Approved for Public Release; Distribution Unlimited.

3.4.7 Example: Basic Assignments

The basic assignments in our example program are

9 u->p1 = &A[0]

form: v->f = &w[i]
constraint: 8x 2 p(init1 u) . (m1, 0) 2 G(x)

14 u->p2 = random ? &B[5] : &B[0]

form: v->f = &w[i]
constraint: 8x 2 p(init2 u) .{(m2, 0), (m2, 20)} ✓ G(x+ 4)

Note that no constraint is included for the assignment at line 22, because this assignment
is an integer assignment, not a pointer assignment.

3.4.8 Function Calls

Function calls give rise to two types of assignment. Given a function f with parameters of
pointer type u1, u2, . . . , un (we ignore all other, non-pointer parameters for now), a function
call e = f(a1, a2, . . . , an) produces two types of assignments:

Parameters ui = ai, for i = 1, . . . , n, where ui can be treated as a local variable of the callee
and ai can be any pointer expression (a variable, or a dereference). The assignments
and their corresponding constraints, as given above, are added to the set of assignments
of the caller, but they directly a↵ect the constraint satisfaction state of the callee.

Return value If the function returns a pointer (address), each return statement return r
in the callee gives rise to the assignment e = r in the caller (calling function).

A special type of function call is a call to a function that allocates memory on the heap,
such as malloc or strdup:

Dynamic memory allocation v = allocatingFunction (size)
constraint: (m, 0) 2 p(v), and M(m) = size

3.4.9 Example: Function Calls

The function calls in our example are

19 pS = malloc(sizeof(struct S));

constraint: (m3, 0) 2 p(main pS)

20 init1(pS);

assignment: init1 u = main pS
constraint: p(main pS) ✓ p(init1 u)

21 init2(pS);

assignment: init2 u = main pS
constraint: p(main pS) ✓ p(init2 u)

35
Approved for Public Release; Distribution Unlimited.

3.4.10 Operational Description

The objective of the game is to construct a points-to-graph that satisfies all constraints
of the program. This can be accomplished by having the players perform a fixed point
computation in which edges are added to the graph and addresses are added to the points-to
sets of variables according to the following rules, derived from the constraints above, until
no more edges and addresses need to be added to satisfy the constraints, or, with these rules,
until none of the actions has any e↵ect any more.

1. v = &w
action: p(v) := p(v) [{(m, 0)}

2. v = &w[i]
action: p(v) := p(v) [{(m, k)}

3. v = w
action: p(v) := p(v) [p(w)

4. v = w->f [also written as v = (*w).f]
action: p(v) := p(v) [

S
x2p(w) G(x+ k), where k is the o↵set of field f

5. v->f = w [also written as (*v).f = w]
action: G := G [{(a1, a2) | a1 2 p(v) + k, a2 2 p(w)}

6. v->f1 = w->f2 [also written as (*v).f1 = (*w).f2]
action: G := G [{(a1, a2) | a1 2 p(v) + k1, a2 2

S
x2p(w) G(x + k2)}, where k1 and k2

are the o↵sets of fields f1 and f2, respectively.

3.4.11 Organization of the Game

The game consists of rooms, one room for each function. On the “world map” the players
can see all rooms. Two rooms are connected if there exists an edge from one to the other in
the call graph. Each room has a light, which is on if the constraints in that room are not
satisfied (that is, there is work to be performed in that room), and o↵ otherwise (nothing
to do). Players can go to any room to perform actions to satisfy the constraints. Their
actions may have “remote consequences,” for example, the addition of an edge to the points-
to graph, as in rule (5) and (6) above, may cause the constraints in another room to change
from satisfied to not satisfied, thus remotely turning on the light in that room (the remote
room does not have to be connected to the room in which the action was performed). The
e↵ect of a function call can be viewed as dropping new addresses on the doorstep of the
room representing the called function, thus potentially changing its constraint satisfaction
status. Once the callee is processed the change in return value may change the constraint
satisfaction status of the caller (and potentially of other callers).

Every action with potentially remote consequences requires, in principle, a re-computation
of the constraints in every room that could be a↵ected. It is, however, not imperative that
this re-computation be performed immediately after the action is taken. Re-computation
can be performed at certain time intervals. Re-computation must be performed, however,
when all rooms are dark, to ascertain whether indeed all constraints are satisfied.

36
Approved for Public Release; Distribution Unlimited.

3.4.12 Example: Game Play

The game instance associated with our example program has three rooms, described below
with their associated constraints.

room 1: init1
constraint: 8x 2 p(init1 u) . (m1, 0) 2 G(x)

room 2: init2
constraint: 8x 2 p(init2 u) .{(m2, 0), (m2, 20)} ✓ G(x+ 4)

room 3: main
constraint: (m3, 0) 2 p(main pS)
constraint: p(main pS) ✓ p(init1 u)
constraint: p(main pS) ✓ p(init2 u)

Initially the points-to sets for all variables and the points-to graph are the empty set. Thus
initially the constraints in room 1 and room 2 are satisfied, since p(init1 u) = p(init2 u) = ;,
and therefore the light is o↵. The constraints in room 3 are not satisfied. In particular, the
first constraint is not satisfied, and thus the light is on. A player can satisfy the constraint
by adding the requested address (m3, 0) to the points-to set of main pS. This action causes
the second and third constraint to be not satisfied anymore. The player can now drop the
address in p(main ps) on the doorstep of room 1 and room 2, by adding the address to
p(init1 u) and p(init2 u), causing the light to switch on in both rooms. At this point the
light in room 3 will switch o↵, because all constraints are satisfied.

The state of the game at this point is:

p(main pS) = {(m3, 0)}
p(init1 u) = {(m3, 0)}
p(init1 u) = {(m3, 0)}

G = ;

The player can now go to room 1 (or room 2) and add an edge to G between (m3, 0)
and (m1, 0), thus satisfying the constraint, causing the light to turn o↵. In room 2 the
player needs to add two edges to G: ((m3, 4), (m2, 0)) and ((m3, 4), (m2, 20)) to satisfy the
constraint. These actions do not have other consequences, and this stage of the game is over,
with state

p(main pS) = {(m3, 0)}
p(init1 u) = {(m3, 0)}
p(init1 u) = {(m3, 0)}

G = {((m3, 0), (m1, 0)), ((m3, 4), (m2, 0)), ((m3, 4), (m2, 20))}

reflecting the actual relationships between memory region, shown in Figure 5.

3.4.13 Verification Conditions

To prove that a program is not at risk for bu↵er overflow the safety of every memory access
must be proven. This is done by generating verification conditions for each memory access
that express that the access is within the bounds of the allocated memory region being

37
Approved for Public Release; Distribution Unlimited.

Figure 5: Memory layout

accessed, and proving that these verification conditions hold for every possible execution.
This proof is performed by proving that the condition is implied by the invariants generated
for that location. The points-to sets and points-to graph provide the basis for this implication
by supplying the information which memory regions could be accessed.

A majority of the memory accesses (60-70% at the start of the CSFV Program, up to
80% at the end of the Program)) is already proven safe by CodeHawk; these conditions will
not be included in the game instance. For example, the memory accesses in functions init1
and init2 would be proven automatically. The memory access in function main, however,
cannot be proven without knowing the points-to set of pS, (*pS).f1, and (*pS).f2.

In general, for any memory access (*v).k with type size t bytes, the following check
needs to be performed:

8x 2 p(v) . o↵set(x) + k + t S(base(x))

where base(x) is the first element of the address and o↵set(x) is the second element.
A two-level memory access (*(*v).k1).k2 with type size t generates the following check

(in addition to the first-level check described before):

8x 2 p(v) . 8y 2 G(x+ k1) . o↵set(y) + k2 + t S(base(y))

We can in principle continue to increase the level, but CodeHawk will usually generate
additional variables to represent the intermediate sets, and so we will not encounter more
than two levels.

A special case is the situation where a points-to set is found empty upon dereference.
This is considered an error (a potential null-dereference error) and should be reported back
to CodeHawk.

The IDs of the verification conditions that hold are also reported back to CodeHawk.
If the size of a memory region or the o↵set of an address is not known, the check cannot

be performed.

38
Approved for Public Release; Distribution Unlimited.

3.4.14 Representation

A verification condition for memory access (*v).k is represented by the tuple (id, v, k, t)
where id is an identification number, and t is an integer, representing the size of the type
accessed, in bytes.

A verification condition for memory access (*(*v).k1).k2 is represented by the tuple
(id, v, k1, k2, t)

3.4.15 Example: Verification Conditions

The example program has six memory accesses:

9 u! p1 (⇤u).0
12 u! p2 (⇤u).4
22 pS ! p1 (⇤pS).0
22 pS ! p2 (⇤pS).4
22 pS ! p1[5] (⇤(⇤pS).0).20
22 pS ! p2[5] (⇤(⇤pS).4).20

The verification conditions associated with the first four memory accesses are discharged by
CodeHawk automatically, and so are not made part of the game instance. Checks for the
last two verification conditions are represented by the tuples (1, 1, 0, 20, 4) (id, index of pS,
first o↵set, second o↵set, size of type (int) accessed) and (2, 1, 4, 20, 4).

With the results for the points-to sets and points-to graph computed, we can perform
the checks: For check 1:

p(main pS) = {(m3, 0)}
G((m3, 0)) = {(m1, 0)}

and thus we need to check
0 + 20 + 4 40

which holds, and thus the memory access is proven safe.
For check 2 we have

p(main pS) = {(m3, 0)}
G((m3, 0) + 4) = {(m2, 0), (m2, 20)}

giving rise to the conditions
0 + 20 + 4 40
20 + 20 + 4 40

of which the first one holds, but the second does not. Thus this memory access cannot be
proven safe. Note that it is not necessarily an error, because all points-to sets are over-
approximations, so they may contain addresses that cannot occur at the location of access
in any execution.

3.4.16 Example: Communication with CodeHawk

For the example program, the communication with CodeHawk would include the following
data

39
Approved for Public Release; Distribution Unlimited.

From CodeHawk to Game

M = 3
V = 3
F = 3
S = [(1,40), (2,40), (3,8)]
L = [(1,1), (2,2), (3,3)]
C = [(1,2), (1,3)]
Con:

fun 1: [((3,0), var(1)) ; (var(1), var(2)) ; (var(1), var(3))]
fun 2: [((1,0), deref (var(2),0))]
fun 3: [((2,0), deref (var(3),4)) ; ((2,20), deref (var(3),4))]

Chk:
fun 1: [(1,1,0,20,4) ; (2,1,4,20,4)]

From Game to CodeHawk

1: [(3,0)]
2: [(3,0)]
3: [(3,0)]
G: [((3,0),(1,0)), ((3,4)(2,0)), ((3,4),(2,20))]
safe: [1]
error: []

3.4.17 A Larger Example

Consider the following program

1 struct S {
2 int *a ;
3 struct S *next ;
4 } s1, s2, s3, s4 ;
5
6 int *p;
7
8 int initialize (struct S *v, int *a) {
9 v->a = a;
10 }
11
12 int redirect (struct S *v1 , struct S *v2) {
13 v1 ->next = v2->next;
14 }
15
16 int reassign (struct S *v) {
17 p = v->next ;
18 }
19
20
21 int main (int argc , char ** argv) {
22

40
Approved for Public Release; Distribution Unlimited.

23 int p1 ,p2 ,p3 ;
24
25 initialize (&s1 ,&p1) ;
26 s1.next = &s2 ;
27
28 initialize (&s2 ,&p2) ;
29 s2.next = &s3 ;
30
31 initialize (&s3 ,&p3) ;
32 s3.next = &s1 ;
33
34 redirect (&s1, &s2) ;
35 redirect (&s2, &s3) ;
36
37 reassign (&s1) ;
38 reassign (&s2) ;
39
40 }

We will process the constraints generated by this program in order. The first set of
constraints, generated by the main function, consists entirely of constraints generated by
statements of the type p = &q, and simply require that the given variable points to the
given address. For example the first constraint states that pointer variable 190 should point
to the address of variable 206, which will result in an edge from 190 to 206. The number
after the colon indicates the number of edges added by that constraint (the score for taking
the action).

(address(206) in var(190)): 1
(address(205) in var(190)): 1
(address(204) in var(190)): 1
(address(183) in var(195)): 1
(address(183) in var(189)): 1
(address(183) in var(182)): 1
(address(182) in var(198)): 1
(address(182) in var(195)): 1
(address(182) in var(194)): 1
(address(182) in var(189)): 1
(address(182) in var(181)): 1
(address(181) in var(198)): 1
(address(181) in var(194)): 1
(address(181) in var(189)): 1
(address(181) in var(183)): 1

The result of processing these constraints is given in Figure 6.
The next constraint is

(deref(var(198)) in var(185)): 2

which is generated by a statement of the type p = *q, in function reassign. It states that
all variables that are pointed to by variables pointed to by variable 198 (that is all nodes

41
Approved for Public Release; Distribution Unlimited.

181

182
183189

190

204

205

206

194

195

198

Figure 6: Points-to graph after the first set of constraints has been processed

42
Approved for Public Release; Distribution Unlimited.

that are two hops away from 198) should be included in the points-to set of variable 185.
Variable 198 points to variables 182 and 181; variable 182 points to 183, variable 181 points
to 182, and thus we add the edges (185,183) and (185,182), as shown in Figure 7.

181

182 183

185

189

190

204

205

206

194

195

198

Figure 7: Points-to graph after (deref(var(198)) in var(185)) is processed

The next constraint is

(deref(var(195)) in deref(var(194))): 3

which is generated by a statement of the type *p = *q in function redirect. It states
that all nodes that are two hops away from variable 195 should be included in the variables
pointed to by variable 194. The variables that are two hops away from 195 are 183 and
181, the variables pointed to by variable 194 are 181 and 182, and so we create the edges
(181,183), (181,181), (182,183), and (182,181). Although we have four edges, we only get
three points, because the edge (182,183) already existed. The result is shown in Figure 8.

The next constraint is

(var(190) in deref(var(189)))

which is generated by a statement of the type *p = q, in function initialize. It states that
all variables pointed to by variable 190 should be included in the points-to sets of all variables

43
Approved for Public Release; Distribution Unlimited.

181

182
183

185

189

190

204

205

206

194

195

198

Figure 8: Points-to graph after (deref(var(195)) in deref(var(194)) is processed

44
Approved for Public Release; Distribution Unlimited.

pointed to by variable 190. Three variables are pointed to by variable 190: {204, 205, 206},
and three variables are pointed to by variable 189: {181, 182, 183}, and thus we add an edge
from each of {181, 182, 183} to each of {204, 205, 206}, resulting in 9 new edges. The result
is shown in Figure 9.

181

182 183

204

205

206

185

189

190
194

195

198

Figure 9: Points-to graph after (var(190) in deref(var(189))) is processed

Finally we return to the constraint

(deref(var(198)) in var(185)): 4

that we processed before, but because of other edges that were added more work needs to
be done on this constraint. Finding the new edges is left as an exercise for the reader. After
processing this constraint the system is stable and we have reached the final result for the
points-to graph, as shown in Figure 10.

3.5 Implementation of the Game Model

We implemented the game model in the C# language using classes to represent intervals,
nodes, arcs, constraints, and game instances. The game model was bundled with the game
code to run in the player’s browser, but we could also run it standalone with an auto-solver.
Inheritance was useful here since there are several di↵erent subtypes of the node type. The

45
Approved for Public Release; Distribution Unlimited.

181

182

183

204

205

206

185

189

190

194

195

198

Figure 10: Final result for the points-to graph

46
Approved for Public Release; Distribution Unlimited.

nontrivial aspects of the game model implementation were (1) devising an exhaustive set of
test cases, covering every salient case for each game rule and simple enough to analyze by
hand, and (2) creating a strategy for ordering the game instances generated by a program,
to achieve faster solutions by either an auto-solver or a human player or players.

3.5.1 Test Suite

The test suite may be of general interest since any modification or extension of this rule set
would also have to pass most or all of these test cases. The test cases are listed below.

Rule 1

Example 1 Constraint: (a1, o1) ◆ (a2, o2).
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;.
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;.

Example 2 Constraint: (a1, o1) ◆ (a2, o3).
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;
a3 ! loc1;
o3 ! [1, 3];
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;
a3 ! loc1;
o3 ! [1, 3].

Example 3 Constraint: (a1, o1) ◆ (a2, o3).
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
a3 ! ;;
o3 ! ;;
.
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;

47
Approved for Public Release; Distribution Unlimited.

a2 ! loc1;
o2 ! [1, 3];
a3 ! ;;
o3 ! ;;
.

Example 4 Constraint: (a1, o1) ◆ (a2, [2, 4]).
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
.
Game state after triggering the constraint: a1 ! loc1;
o1 ! [2, 4];
a2 ! loc1;
o2 ! [1, 3];
.

Example 5 Constraint: (a1, o1) ◆ (loc2, o2).
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;
.
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;

Example 6 Constraint: (a1, o1) ◆ (loc2, [2, 4]).
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
.
Game state after triggering the constraint: a1 ! loc2;
o1 ! [2, 4];

Example 7 Constraint: (a1, o1) ◆ (a2, o3).
Game state before triggering the constraint: a1 ! loc1;
o1 ! [0, 2];
a2 ! loc2;
o2 ! [1, 3];
a3 ! loc3;
o3 ! [2, 4];
.

48
Approved for Public Release; Distribution Unlimited.

Game state after triggering the constraint: a1 ! loc1, loc2;
o1 ! [0, 3];
a2 ! loc2;
o2 ! [1, 3];
a3 ! loc3;
o3 ! [2, 4];
.

Example 8 Constraint: (a1, o1) ◆ (loc2, o3).
Game state before triggering the constraint: a1 ! loc1;
o1 ! [0, 5];
a3 ! loc3;
o3 ! [2, 4];
Game state after triggering the constraint: a1 ! loc1, loc2;
o1 ! [0, 5];
a3 ! loc2;
o3 ! [2, 4];

Example 9 Constraint: (a1, o1) ◆ (a2, [1, 3]).
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;

Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;

Rule 2

Example 1 Constraint: (a1, o1) ◆ deref(a2, o2).
Functions in the dictionary: ;.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;

49
Approved for Public Release; Distribution Unlimited.

Example 2 Constraint: (a1, o1) ◆ deref(a2, o3).
Functions in the dictionary: loc1.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! ;;
a3 ! ;;
o3 ! ;;
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! ;;
a3 ! ;;
o3 ! ;;

Example 3 Constraint: (a1, o1) ◆ deref(a2, [1, 4]).
Functions in the dictionary: ;.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! ;;
a3 ! ;;
o3 ! ;;
(loc1, [2, 3])! (loc2, [5, 6]).
Game state after triggering the constraint: a1 ! loc2;
o1 ! [5, 6];
a2 ! loc1;
o2 ! ;;
a3 ! ;;
o3 ! ;;
(loc1, [2, 3])! (loc2, [5, 6]).

Example 4 Constraint: (a1, o1) ◆ deref(a2, o3).
Functions in the dictionary: ;.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! ;;
a3 ! ;;
o3 ! ;;
(loc1, [2, 3])! (loc2, [5, 6]).
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;

50
Approved for Public Release; Distribution Unlimited.

o2 ! ;;
a3 ! ;;
o3 ! ;;
(loc1, [2, 3])! (loc2, [5, 6]).

Example 5 Constraint: (a1, o1) ◆ deref(a2, [1, 4]).
Functions in the dictionary: ;.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! ;;
a3 ! ;;
o3 ! ;;
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! ;;
a3 ! ;;
o3 ! ;;

Example 6 Constraint: (a1, o1) ◆ deref (a2, [1, 4]).
Functions in the dictionary: ;.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! ;;
a3 ! ;;
o3 ! ;;
(loc1, [7, 8])! (loc2, [5, 6]).
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! ;;
a3 ! ;;
o3 ! ;;
(loc1, [7, 8])! (loc2, [5, 6]).

Example 7 Constraint: (a1, o1) ◆ deref (a2, o3).
Functions in the dictionary: ;.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! ;;
a3 ! ;;
o3 ! ;;

51
Approved for Public Release; Distribution Unlimited.

Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! ;;
a3 ! ;;
o3 ! ;;

Example 8 Constraint: (a1, o1) ◆ deref (a2, o3).
Functions in the dictionary: ;.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;
a3 ! loc1;
o3 ! [1, 3];
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;
a3 ! loc1;
o3 ! [1, 3];

Example 9 Constraint: (a1, o1) ◆ deref (a2, o3).
Functions in the dictionary: loc1.
Game state before triggering the constraint: a1 ! loc3;
o1 ! [2, 4];
a2 ! loc1;
o2 ! [1, 2];
a3 ! loc2;
o3 ! [1, 3];
Game state after triggering the constraint: a1 ! loc3, loc1;
o1 ! [�1,+1];
a2 ! loc1;
o2 ! [1, 2];
a3 ! loc2;
o3 ! [1, 3];

Example 10 Constraint: (a1, o1) ◆ deref (a2, o3).
Functions in the dictionary: loc1.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1, loc4;
o2 ! ;;

52
Approved for Public Release; Distribution Unlimited.

a3 ! loc3;
o3 ! [1, 4];
(loc1, [2, 3])! (loc2, [5, 6]).
Game state after triggering the constraint: a1 ! loc1, loc4;
o1 ! [�1,+1];
a2 ! loc1, loc4;
o2 ! ;;
a3 ! loc3;
o3 ! [1, 4];
(loc1, [2, 3])! (loc2, [5, 6]).

Example 11 Constraint: (a1, o1) ◆ deref (a2, o3).
Functions in the dictionary: loc1.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1, loc4;
o2 ! ;;
a3 ! loc3;
o3 ! [1, 4];
(loc1, [7, 8])! (loc2, [5, 6]).
Game state after triggering the constraint: a1 ! loc1;
o1 ! [�1,+1];
a2 ! loc1, loc4;
o2 ! ;;
a3 ! loc3;
o3 ! [1, 4];
(loc1, [7, 8])! (loc2, [5, 6]).

Example 12 Constraint: (a1, o1) ◆ deref (a2, o3).
Functions in the dictionary: loc1, loc4.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1, loc4;
o2 ! ;;
a3 ! loc3;
o3 ! [1, 4];
(loc1, [7, 8])! (loc2, [5, 6]).
Game state after triggering the constraint: a1 ! loc1, loc4;
o1 ! [�1,+1];
a2 ! loc1, loc4;
o2 ! ;;
a3 ! loc3;
o3 ! [1, 4];
(loc1, [7, 8])! (loc2, [5, 6]).

53
Approved for Public Release; Distribution Unlimited.

Rule 3

Example 1 Constraint: (a1, o1) ◆ f10r.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
f10r ! (;, ;);
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
f10r ! (;, ;);

Example 2 Constraint: (a1, o1) ◆ f10r.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
f10r ! (loc1, [1, 3]);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
f10r ! (loc1, [1, 3]);

Example 3 Constraint: (a1, o1) ◆ f10r.
Game state before triggering the constraint: a1 ! loc2;
o1 ! [2, 4];
f10r ! (loc1, [1, 3]);
Game state after triggering the constraint: a1 ! loc1, loc2;
o1 ! [1, 4];
f10r ! (loc1, [1, 3]);

Rule 4

Example 1 Constraint: (a1, o1) ◆ f10n.
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
f10n ! (;, ;);
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
f10n ! (;, ;);

Example 2 Constraint: (a1, o1) ◆ f10n. Game state before triggering the constraint: a1 !
;;
o1 ! ;;
f10n ! (loc1, [1, 3]);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [1, 3];

54
Approved for Public Release; Distribution Unlimited.

f10n ! (loc1, [1, 3]);

Example 3 Constraint: (a1, o1) ◆ f10n. Game state before triggering the constraint: a1 !
loc2;
o1 ! [2, 4];
f10n ! (loc1, [1, 3]);
Game state after triggering the constraint: a1 ! loc1, loc2;
o1 ! [1, 4];
f10n ! (loc1, [1, 3]);

Rule 5

Example 1 Constraint: (a1, o1) ◆ retfp(a2, o2).
Functions in the dictionary: ;
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;

Example 2 Constraint: (a1, o1) ◆ retfp(a2, o2)
Functions in the dictionary: loc2 is a function f20

Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];
f20r ! (loc3, [7, 8])
Game state after triggering the constraint: a1 ! loc3;
o1 ! [7, 8];
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];
f20r ! (loc3, [7, 8])

Example 3 Constraint: (a1, o1) ◆ retfp(a2, o2)
Functions in the dictionary: loc2 is a function f20

Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;

55
Approved for Public Release; Distribution Unlimited.

o2 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f20r ! (loc3, [7, 8])
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f20r ! (loc3, [7, 8])

Example 4 Constraint: (a1, o1) ◆ retfp(a2, o2)
Functions in the dictionary: loc2 is a function f20

Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];
f20r ! (;, ;)
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];
f20r ! (;, ;)

Example 5 Constraint: (a1, o1) ◆ retfp(a2, o2)
Functions in the dictionary: loc1 is a function f10

Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];
f10r ! (loc3, [7, 8])
Game state after triggering the constraint: a1 ! loc3;
o1 ! [7, 8];
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];
f10r ! (loc3, [7, 8])

Example 6 Constraint: (a1, o1) ◆ retfp(a2, o2)
Functions in the dictionary: loc1 is a function f10

Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];

56
Approved for Public Release; Distribution Unlimited.

loc1, [2, 4]! loc2, [5, 6];
f10r ! (;, ;)
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];
f10r ! (;, ;)

Example 7 Constraint: (a1, o1) ◆ retfp(a2, o2)
Functions in the dictionary: ;
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];
f10r ! (loc3, [7, 8])
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];
f10r ! (loc3, [7, 8])

Example 8 Constraint: (a1, o1) ◆ retfp(a2, o2)
Functions in the dictionary: loc1isafunctionf1?andloc2isafunctionf20

Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];
f20r ! (loc3, [7, 8])
Game state after triggering the constraint: a1 ! loc3;
o1 ! [7, 8];
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];
f20r ! (loc3, [7, 8])

Example 9 Constraint: (a1, o1) ◆ retfp(a2, o2)
Functions in the dictionary: loc1isafunctionf10

Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];

57
Approved for Public Release; Distribution Unlimited.

f10r ! (loc4, [5, 6])?f20r ! (loc3, [7, 8])
Game state after triggering the constraint: a1 ! loc4;
o1 ! [7, 8];
a2 ! loc1;
o2 ! [1, 3];
loc1, [2, 4]! loc2, [5, 6];
f10r ! (loc4, [5, 6])?f20r ! (loc3, [7, 8])

Rule 6

Example 1 Constraint: ⇤(a1, o1) ◆ (a2, o2).
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;

Example 2 Constraint: ⇤(a1, o1) ◆ (a2, o3)
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;
a3 ! loc1;
o3 ! [1, 3];
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;
a3 ! loc1;
o3 ! [1, 3];

Example 3 Constraint: ⇤(a1, o1) ◆ (a2, o3)
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
a3 ! ;;
o3 ! ;;
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;

58
Approved for Public Release; Distribution Unlimited.

o2 ! [1, 3];
a3 ! ;;
o3 ! ;;

Example 4 Constraint: ⇤(a1, o1) ◆ (a2, [2, 4])
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [1, 3];

Example 5 Constraint: ⇤(a1, o1) ◆ (loc2, o2)
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! ;;
o2 ! ;;

Example 6 Constraint: ⇤(a1, o1) ◆ (loc2, [2, 4])
Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;

Example 7 Constraint: ⇤(loc1, [1, 3]) ◆ (loc2, [2, 4])
Game state before triggering the constraint: ;
Game state after triggering the constraint: (loc1, [1, 3])! (loc2, [2, 4]);

Example 8 Constraint: ⇤(a1, o1) ◆ (loc2, [2, 4])
Game state before triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
Game state after triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
(loc1, [1, 3])! (loc2, [2, 4]);

59
Approved for Public Release; Distribution Unlimited.

Example 9 Constraint: ⇤(a1, o1) ◆ (a2, o2).
Game state before triggering the constraint: a1 ! loc1;

o1 ! [1, 3];

a2 ! loc2;

o2 ! [2, 4];

Game state after triggering the constraint: a1 ! loc1;

o1 ! [1, 3];

a2 ! loc2;

o2 ! [2, 4];

(loc1, [1, 3])! (loc2, [2, 4]);

Example 10 Constraint: ⇤(loc1, [1, 3]) ◆ (a2, o2)
Game state before triggering the constraint: a2 ! loc2;

o2 ! [2, 4];

Game state after triggering the constraint: a2 ! loc2;

o2 ! [2, 4];

(loc1, [1, 3])! (loc2, [2, 4]);

Example 11 Constraint: ⇤(a1, o1) ◆ (a2, o2)
Game state before triggering the constraint: a1 ! loc1, loc3;

o1 ! [1, 3];
a2 ! loc2, loc4;
o2 ! [2, 4];

Game state after triggering the constraint: a1 ! loc1, loc3;

o1 ! [1, 3];

a2 ! loc2, loc4;

60
Approved for Public Release; Distribution Unlimited.

o2 ! [2, 4];

(loc1, [1, 3])! (loc2, [2, 4]);

(loc3, [1, 3])! (loc2, [2, 4]);

(loc1, [1, 3])! (loc4, [2, 4]);

(loc3, [1, 3])! (loc4, [2, 4]);

Rule 7

Example 1 Constraint: f10n ◆ (a2, o2).
Game state before triggering the constraint: f10n ! (;, ;);
a2 ! ;;
o2 ! ;;
Game state after triggering the constraint: f10n ! (;, ;);
a2 ! ;;
o2 ! ;;

Example 2 Constraint: f10n ◆ (a2, o3).
Game state before triggering the constraint: f10n ! (;, ;);
a2 ! ;;
o2 ! ;;
a3 ! loc1;
o3 ! [1, 3];
Game state after triggering the constraint: f10n ! (;, ;);
a2 ! ;;
o2 ! ;;
a3 ! loc1;
o3 ! [1, 3];

Example 3 Constraint: f10n ◆ (a2, o3).
Game state before triggering the constraint: f10n ! (;, ;);
a2 ! loc1;
o2 ! [1, 3];
a3 ! ;;
o3 ! ;;
Game state after triggering the constraint: f10n ! (;, ;);
a2 ! loc1;
o2 ! [1, 3];
a3 ! ;;

61
Approved for Public Release; Distribution Unlimited.

o3 ! ;;

Example 4 Constraint: f10n ◆ (a2, [2, 4])
Game state before triggering the constraint: f10n ! (;, ;);
a2 ! loc1;
o2 ! [1, 3];
Game state after triggering the constraint: f10n ! (loc1, [2, 4]);
a2 ! loc1;
o2 ! [1, 3];

Example 5 Constraint: f10n ◆ (loc2, o2)
Game state before triggering the constraint: f10n ! (;, ;);
a2 ! ;;
o2 ! ;;
Game state after triggering the constraint: f10n ! (;, ;);
a2 ! ;;
o2 ! ;;

Example 6 Constraint: f10n ◆ (loc2, [2, 4])
Game state before triggering the constraint: f10n ! (;, ;);
Game state after triggering the constraint: f10n ! (loc2, [2, 4]);

Example 7 Constraint: f10n ◆ (a2, [2, 4])
Game state before triggering the constraint: f10n ! (;, ;);
a2 ! ;;
o2 ! ;;

Game state after triggering the constraint: f10n ! (;, ;);
a2 ! ;;
o2 ! ;;

Example 8 Constraint: f10n ◆ (a2, o3)
Game state before triggering the constraint: f10n ! (loc4, [�1,+1]);
a2 ! loc1, loc2;
o2 ! [1, 3];
a3 ! loc3;
o3 ! [0, 0];
Game state after triggering the constraint: f10n ! (loc1, loc2, loc4, [�1,+1]);
a2 ! loc1, loc2;
o2 ! [1, 3];
a3 ! loc3;

62
Approved for Public Release; Distribution Unlimited.

o3 ! [0, 0];

Example 9 Constraint: f10n ◆ (loc2, o2)
Game state before triggering the constraint: f10n ! (loc1, loc2, [0, 2]);
a2 ! [loc2];
o2 ! [1, 3];
Game state after triggering the constraint: f10n ! (loc1, loc2, [0, 3]);
a2 ! [loc2];
o2 ! [�2, 3];

Rule 8

Example 1 Constraint: f10r ◆ (a2, o2)
Game state before triggering the constraint: f10r ! (;, ;);
a2 ! ;;
o2 ! ;;
Game state after triggering the constraint: f10r ! (;, ;);
a2 ! ;;
o2 ! ;;

Example 2 Constraint: f10r ◆ (a2, o3)
Game state before triggering the constraint: f10r ! (;, ;);
a2 ! ;;
o2 ! ;;
a3 ! loc1;
o3 ! [1, 3];
Game state after triggering the constraint: f10r ! (;, ;);
a2 ! ;;
o2 ! ;;
a3 ! loc1;
o3 ! [1, 3];

Example 3 Constraint: f10r ◆ (a2, o3)
Game state before triggering the constraint: f10r ! (;, ;);
a2 ! loc1;
o2 ! [1, 3];
a3 ! ;;
o3 ! ;;
Game state after triggering the constraint: f10r ! (;, ;);
a2 ! loc1;
o2 ! [1, 3];
a3 ! ;;

63
Approved for Public Release; Distribution Unlimited.

o3 ! ;;

Example 4 Constraint: f10r ◆ (a2, [2, 4])
Game state before triggering the constraint: f10r ! (;, ;);
a2 ! loc1;
o2 ! [1, 3];
Game state after triggering the constraint: f10r ! (loc1, [2, 4]);
a2 ! loc1;
o2 ! [1, 3];

Example 5 Constraint: f10r ◆ (loc2, o2)
Game state before triggering the constraint: f10r ! (;, ;);
a2 ! ;;
o2 ! ;;
Game state after triggering the constraint: f10r ! (;, ;);
a2 ! ;;
o2 ! ;;

Example 6 Constraint: f10r ◆ (loc2, [2, 4])
Game state before triggering the constraint: f10r ! (;, ;);
Game state after triggering the constraint: f10r ! (loc2, [2, 4]);

Example 7 Constraint: f10r ◆ (a2, [2, 4])
Game state before triggering the constraint: f10r ! (;, ;);
a2 ! ;;
o2 ! ;;

Game state after triggering the constraint: f10r ! (;, ;);
a2 ! ;;
o2 ! ;;

Example 8 Constraint: f10r ◆ (a2, o3)
Game state before triggering the constraint: f10r ! (loc4, [�1,+1]);
a2 ! loc1, loc2;
o2 ! [1, 3];
a3 ! loc3;
o3 ! [0, 0];
Game state after triggering the constraint: f10r ! (loc1, loc2, loc4, [�1,+1]);
a2 ! loc1, loc2;
o2 ! [1, 3];
a3 ! loc3;

64
Approved for Public Release; Distribution Unlimited.

o3 ! [0, 0];

Example 9 Constraint: f10r ◆ (loc2, o2)
Game state before triggering the constraint: f10r ! (loc1, loc2, [0, 2]);
a2 ! [loc2];
o2 ! [1, 3];
Game state after triggering the constraint: f10r ! (loc1, loc2, [0, 3]);
a2 ! [loc2];
o2 ! [�2, 3];

Rule 9

Example 1 Constraint: fp1(a1, o1) ◆ (a2, o2)
Functions in the dictionary: loc2 is a function f20

Game state before triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);
Game state after triggering the constraint: a1 ! ;;
o1 ! ;;
a2 ! loc1;
o2 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);

Example 2 Constraint: fp1(a1, o1) ◆ (a2, o2)
Functions in the dictionary: loc2 is a function f20

Game state before triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
a2 ! loc2;
o2 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
a2 ! loc2;
o2 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f201 ! (loc2, [0, 1]);

65
Approved for Public Release; Distribution Unlimited.

Example 3 Constraint: fp1(a1, o1) ◆ (a2, o2)
Functions in the dictionary: loc2 is a function f20

Game state before triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
a2 ! ;;
o2 ! ;;
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
a2 ! ;;
o2 ! ;;
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);

Example 4 Constraint: fp1(a1, o1) ◆ (a2, o3)
Functions in the dictionary: loc2 is a function f20

Game state before triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
a2 ! loc2;
o2 ! [0, 2];
a3 > ;;
o3 ! ;;
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
a2 ! loc2;
o2 ! [0, 2];
a3 > ;;
o3 ! ;;
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);

Example 5 Constraint: fp1(a1, o1) ◆ (a2, o3)
Functions in the dictionary: loc2 is a function f20

Game state before triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
a2 ! ;;
o2 ! ;;
a3 > loc2;
o3 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];

66
Approved for Public Release; Distribution Unlimited.

f201 ! (;, ;);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
a2 ! ;;
o2 ! ;;
a3 > loc2;
o3 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);

Example 6 Constraint: fp1(a1, o1) ◆ (a2, o3)
Functions in the dictionary: loc2 is a function f20

Game state before triggering the constraint: a1 ! loc1;
o1 ! [0, 1];
a2 ! ;;
o2 ! ;;
a3 > loc2;
o3 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [0, 1];
a2 ! ;;
o2 ! ;;
a3 > loc2;
o3 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);

Example 7 Constraint: fp1(a1, o1) ◆ (a2, o3)
Functions in the dictionary: loc2 is a function f20

Game state before triggering the constraint: a1 ! loc1;
o1 ! [0, 1];
a2 ! ;;
o2 ! ;;
a3 > loc2;
o3 ! [0, 1];
f201 ! (;, ;);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [0, 1];
a2 ! ;;
o2 ! ;;
a3 > loc2;

67
Approved for Public Release; Distribution Unlimited.

o3 ! [0, 1];
f21 ! (;, ;);

Example 8 Constraint: fp1(a1, o1) ◆ (a2, o2)
Functions in the dictionary: loc1isafunctionf10

Game state before triggering the constraint: a1 ! loc1;
o1 ! [0, 1];
a2 ! loc2;
o2 ! [3, 4];
f101 ! (;, ;);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [0, 1];
a2 ! loc2;
o2 ! [3, 4];
f101 ! (loc2, [3, 4]);

Example 9 Constraint: fp1(a1, o1) ◆ (a2, o2)
Functions in the dictionary: ;
Game state before triggering the constraint: a1 ! loc1;
o1 ! [0, 1];
a2 ! loc2;
o2 ! [3, 4];
f101 ! (;, ;);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [0, 1];
a2 ! loc2;
o2 ! [3, 4];
f101 ! (;, ;);

Example 10 Constraint: fp1(a1, o1) ◆ (a2, o3)
Functions in the dictionary: loc1 is a function f10

Game state before triggering the constraint: a1 ! loc1;
o1 ! [0, 1];
a2 ! loc2;
o2 ! [3, 4];
a3 ! ;;
o3 ! ;;
f101 ! (;, ;);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [0, 1];
a2 ! loc2;
o2 ! [3, 4];
a3 ! ;;

68
Approved for Public Release; Distribution Unlimited.

o3 ! ;;
f101 ! (;, ;);

Example 11 Constraint: fp1(a1, o1) ◆ (a2, o2)
Functions in the dictionary: loc2 is a function f20 and loc1 is a function f10

Game state before triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
a2 ! loc2;
o2 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
a2 ! loc2;
o2 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f201 ! (loc2, [0, 1]);

Example 12 Constraint: fp1(a1, o1) ◆ (a2, o2)
Functions in the dictionary: loc1 is a function f10

Game state before triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
a2 ! loc2;
o2 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);
f101 ! (;, ;);
Game state after triggering the constraint: a1 ! loc1;
o1 ! [1, 3];
a2 ! loc2;
o2 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f201 ! (;, ;);
f101 ! (loc2, [0, 1]);

Example 13 Constraint: fp1(a1, o1) ◆ (a2, o2)
Functions in the dictionary: loc1 is a function f10 and loc2 is a function f20 and loc3 is
a function f30.
Game state before triggering the constraint: a1 ! loc1, loc3;
o1 ! [1, 3];
a2 ! loc2;
o2 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];

69
Approved for Public Release; Distribution Unlimited.

f201 ! (;, ;);
f101 ! (;, ;);
f301 ! (;, ;);
Game state after triggering the constraint: a1 ! loc1, loc3;
o1 ! [1, 3];
a2 ! loc2;
o2 ! [0, 1];
loc1, [2, 4]! loc2, [5, 6];
f201 ! (loc2, [0, 1]);
f101 ! (;, ;);
f301 ! (loc2, [0, 1]);

Rule 10

Example 1 Constraint: memcpy(a1, o1, a2, o2, [4, 4])
Game state before triggering the constraint: a1 ! loc3;
o1 ! [2, 3];
a2 ! loc1;
o2 ! [0, 1];
(loc1, [3, 4])! (loc2, [5, 6]);
Game state after triggering the constraint: a1 ! loc3;
o1 ! [0, 1];
a2 ! loc1;
o2 ! [0, 1];
(loc1, [3, 4])! (loc2, [5, 6]);
(loc3, [4, 7])! (loc2, [5, 6])

Example 2 Constraint: memcpy(a1, o1, a2, o2, [4, 4])
Game state before triggering the constraint: a1 ! loc3;
o1 ! [2, 3];
a2 ! loc1;
o2 ! [0, 1];
(loc1, [6, 7])! (loc2, [5, 6]);
Game state after triggering the constraint: a1 ! loc3;
o1 ! [2, 3];
a2 ! loc1;
o2 ! [0, 1];
(loc1, [6, 7])! (loc2, [6, 6]);

Example 3 Constraint: memcpy(a1, o1, a2, o2, [4, 4])
Game state before triggering the constraint: a1 ! loc3;
o1 ! [2, 3];
a2 ! loc1;
o2 ! [0, 1];

70
Approved for Public Release; Distribution Unlimited.

Game state after triggering the constraint: a1 ! loc3;
o1 ! [2, 3];
a2 ! loc1;
o2 ! [0, 1];

Example 4 Constraint: memcpy(a1, o1, a2, o2, [4, 4])
Game state before triggering the constraint: a2 ! loc1;
o2 ! [0, 1];
(loc1, [3, 4])! (loc2, [5, 6]);
Game state after triggering the constraint: a2 ! loc1;
o2 ! [0, 1];
(loc1, [3, 4])! (loc2, [5, 6]);

Example 5 Constraint: memcpy(a1, o1, a2, o2, [4, 4])
Game state before triggering the constraint: a1 ! loc3;
o1 ! [2, 3];
a2 ! loc1;
o2 ! [0, 1];
(loc1, [3, 4])! (loc2, [5, 6]);
(loc1, [1, 2])! (loc4, [7, 8]);
Game state after triggering the constraint: a1 ! loc3;
o1 ! [0, 1];
a2 ! loc1;
o2 ! [0, 1];
(loc1, [3, 4])! (loc2, [5, 6]);
(loc1, [1, 2])! (loc4, [7, 8]);
(loc3, [4, 7])! (loc2, [5, 6]);
(loc3, [2, 5])! (loc4, [7, 8]);

Example 6 Constraint: memcpy(a1, o1, a2, o2, [4, 4])
Game state before triggering the constraint: a1 ! loc3, loc5;
o1 ! [2, 3];
a2 ! loc1;
o2 ! [0, 1];
(loc1, [3, 4])! (loc2, [5, 6]);
Game state after triggering the constraint: a1 ! loc3;
o1 ! [0, 1];
a2 ! loc1;
o2 ! [0, 1];
(loc1, [3, 4])! (loc2, [5, 6]);
(loc1, [3, 4])! (loc4, [7, 8]);
(loc3, [4, 7])! (loc2, [5, 6]);

71
Approved for Public Release; Distribution Unlimited.

(loc5, [4, 7])! (loc2, [5, 6]);

Example 7 Constraint: memcpy(a1, o1, a2, o2, [4, 4])
Game state before triggering the constraint: a1 ! loc3, loc5;
o1 ! [2, 3];
a2 ! loc1;
o2 ! [0, 1];
(loc1, [3, 4])! (loc2, [5, 6]);
(loc1, [3, 4])! (loc4, [7, 8]);
Game state after triggering the constraint: a1 ! loc3;
o1 ! [0, 1];
a2 ! loc1;
o2 ! [0, 1];
(loc1, [3, 4])! (loc2, [5, 6]);
(loc1, [3, 4])! (loc4, [7, 8]);
(loc3, [4, 7])! (loc2, [5, 6]);
(loc5, [4, 7])! (loc2, [5, 6]);
(loc3, [4, 7])! (loc2, [7, 8]);
(loc5, [4, 7])! (loc2, [7, 8]);

3.5.2 Ordering Strategy

The auto-solver, or human player or players, will solve the program in fewer iterations if we
solve the game instances in judicious order. In Dynamakr, wisely ordering game instances,
and then wisely ordering the constraints in individual game helps bring more meaningfully
elements to a player. Our ordering strategy is as follows:

Each constraint will be given a score, which is a 5-tuple of 0’s and 1’s. The score of a
constraint Con will be defined as follows:

1. C5 = 0.

2. C4 = 1 if Con belongs to either rule #6, #9 or #10 and the right hand side of Con is
a pair (n,e), where n is of type Loc and e is an interval. Otherwise C4 = 0.

3. C3 = 1 if Con belongs to either rule #1, #2, #5, #7, #8 or #10 and the right hand
side of Con is a pair (n, e), where n is of type Loc and e is an interval. Otherwise
C3 = 0.

4. C2 = 1 if Con belongs to either rule #1, #2, #5, #6, #7, #8, #9 or #10 and the
right hand side of Con is a pair (n, e), where n is not of type Loc and e is not an
interval. Otherwise, C2 = 0.

5. C1 = 1 if Con belongs to either rule #3 or #4. Otherwise C1 = 0.

The following is a few examples of constraints and their scores

72
Approved for Public Release; Distribution Unlimited.

Constraint Rule of the Constraint Score of the Constraint
(a13, o13) ◆ f51 3 (0, 0, 0, 0, 1)
(a12, o12) ◆ deref (a10, o10) 2 (0, 0, 0, 1, 0)
(loc2, [0, 0]) (loc3, [0, 0]) 6 (0, 1, 0, 0, 0)
(a7, o7) ◆ deref (loc2, [0, 0]) 2 (0, 0, 1, 0, 0)

3.5.3 Scoring of a Game Instance

Scores are added pointwise. That is, If A = (x1, x2, . . . , x5) and B = (y1, y2, . . . , y5) are
constraint scores, then 4A+B = (x1 + y1, x2 + y2, . . . , x5 + y5). If a game instance has a set
of n constraints Cons = {Con1,Con2, . . . ,Conn} and S = [S1, S2, . . . , Sn] is a list, where Si

is the score of the Con i for 1 < i n. Then the score of the game instance is defined as sum
of the scores of its constraints.

Following are examples of the score of a game instances.
Constraint Rule of the Constraint Score of the Constraint
f61 (loc5, [�1,+1]) 7 (0, 0, 1, 0, 0)
(a7, o7) ◆ deref (loc2, [0, 0]) 2 (0, 0, 1, 0, 0)
f62 (a7, o7) 7 (0, 0, 0, 1, 0)
f61 (loc8, [�1,+1]) 7 (0, 0, 1, 0, 0)
(a9, o9) ◆ deref (loc2, [4, 4]) 2 (0,0,1,0,0)
f62 (a9, o9) 7 (0, 0, 0, 1, 0)

The score of the game instance is (0, 0, 4, 2, 0). The constraint scores are ordered lex-
icographically with the leftmost position most significant. For example (0, 0, 4, 2, 2) <
(0, 1, 0, 0, 0) and (0, 0, 1, 0, 0) < (0, 0, 1, 0, 1). The auto-solver tries to solve the program
by looping through each game instance in the program one by one. The following is one
example of how applying ordering can help to solve the program in fewer iterations.

Example Suppose there are five game instances in a program. They are named set1,
set2, run, init, and main. The constraints in the game instances and their corresponding
constraint scores are given in the following tables:

set1
Constraint Score of the Constraint
(a13, o13) ◆ f51 (0, 0, 0, 0, 1)

set2
Constraint Score of the Constraint
(a14, o14) ◆ f81 (0,0,0,0,1)

main

73
Approved for Public Release; Distribution Unlimited.

Constraint Score of the Constraint
f61 (loc5, [�1,+1]) (0, 0, 1, 0, 0)
(a7, o7) ◆ deref(loc2, [0, 0]) (0, 0, 1, 0, 0)
f62 (a7, o7) (0, 0, 0, 1, 0)
f61 (loc8, [�1,+1]) (0, 0, 1, 0, 0)
(a9, o9) ◆ deref(loc2, [4, 4]) (0, 0, 1, 0, 0)
f62 (a9, o9) (0, 0, 0, 1, 0)

init
Constraint Score of the Constraint
⇤(loc2, [0, 0]) (loc3, [0, 0]) (0, 1, 0, 0, 0)
⇤(loc2, [4, 4]) (loc3, [20, 20]) (0, 1, 0, 0, 0)

run
Constraint Score of the Constraint
(a10, o10) ◆ f61 (0, 0, 0, 0, 1)
(a11, o11) ◆ f62 (0, 0, 0, 0, 1)
(a12, o12) ◆ deref (a10, o10) (0, 0, 0, 1, 0)
f61 (loc8, [�1,+1]) (0, 0, 1, 0, 0)

The scores of the game instances are given in decreasing order in the following table
Game Instance Score
init (0, 2, 0, 0, 0)
main (0, 0, 4, 2, 0)
run (0, 0, 1, 1, 2)
set1 (0, 0, 0, 0, 1)
set2 (0, 0, 0, 0, 1)

If the auto-solver tries to solve the program in the order given above it can solve the
program in one iteration. Other orders will result in more than one iteration.

In the dynamic scoring strategy, the global points-to-graph is used. Each constraint will
be given a score, which is a 5-tuple of 0’s and 1’s. The score of a constraint Con will be
defined as follows:

1. C5 = 1 if there is at least one arc (source,destination) in the points-to-graph such that
the ID of source equals to the ID of right hand of Con, and otherwise C5 = 0.

2. C4 = 1 if Con belongs to either rule #6, #9 or #10 and the right hand side of Con is
a pair (n, e), where n is of type Loc and e is an interval. Otherwise C4 = 0.

3. C3 = 1 if Con belongs to either rule #1, #2, #5, #7, #8 or #10 and the right hand
side of Con is a pair (n, e), where n is of type Loc and e is an interval. Otherwise
C3 = 0.

4. C2 = 1 if Con belongs to either rule #1, #2, #5, #6, #7, #8, #9 or #10 and the right
hand side of Con is a pair (n, e), where n is not of type Loc and e is not an interval.
Otherwise C2 = 0.

74
Approved for Public Release; Distribution Unlimited.

5. C1 = 1 if Con belongs to either rule #3 or #4. Otherwise C1 = 0.

The scoring of a game instance and the ordering are the same as the static strategy.

3.6 Implementation of the Analyzer

3.6.1 Anchors File

The constraint generator produces an anchors file that lists all the anchor variables that the
game backend should report on. An entry in the anchor file has the following syntax:

<anchor context="..." function="..." seqnr="...">
<pointer -pair>

<address -component >
<var -address uid="n"/>

</address -component >
<offset -component >

<var -offset uid="m"/>
</offset -component >

</pointer -pair>
</anchor >

The context, function and seqnr attributes are only relevant to the CodeHawk bu↵er-
overflow analyzer and can be completely ignored by the backend. The results of the pointer
analysis should only be reported for the variables that are listed under the pointer pair
component. Each anchor refers to an address variable An and an o↵set variable Om. The
variable identifiers n and m are often identical but not always. For the game back-end, they
should just be considered as separate variables.

The format of the results file is very similar to that of the previous version. It consists
of a list of entries that have the following syntax:

<address -variable -size uid="n" lower -bound="..." upper -bound="..." />

or

<offset -variable -size uid="m" lower -bound="..." upper -bound="..." />

An address-variable-size reports the size of all memory locations that are assigned
to an address variable An. For example, if at the end of the game we find that the target set
of address variable An contains memory locations M1,M2, . . . ,Mk, then the range reported
in the address-variable-size is

size(M1) [size(M2) [. . . [size(Mk)

An offset-variable-range entry simply reports the range of an o↵set variable Om as it
stands at the end of the game.

As an illustrative example, consider the following anchor file produced by the new con-
straints generator:

<?xml version="1.0" encoding=" U T F 8 "?>
<anchor context="?; main@105" function="set1" seqnr="4">

<pointer -pair>
<address -component >

75
Approved for Public Release; Distribution Unlimited.

<var -address uid="16"/>
</address -component >
<offset -component >

<var -offset uid="16"/>
</offset -component >

</pointer -pair>
</anchor >
<anchor context="?; main@105;set1@74" function="set2" seqnr="1">

<pointer -pair>
<address -component >

<var -address uid="18"/>
</address -component >
< offset -component >

<var -offset uid="18"/>
</offset -component >

</pointer -pair>
</anchor >
<anchor context="?; main@121" function="set1" seqnr="4">

<pointer -pair>
<address -component >

<var -address uid="13"/>
</ address -component >
< offset -component >

<var -offset uid="13"/>
</offset -component >

</pointer -pair>
</anchor >
<anchor context="?; main@121;set1@74" function="set2" seqnr="1">

<pointer -pair>
<address -component >

<var -address uid="15"/>
</address -component >
<offset -component >

<var -offset uid="15"/>
</offset -component >

</pointer -pair>
</anchor >
<anchor context="?" function="set1" seqnr="4">

<pointer -pair>
<address -component >

< v a r -address uid="7"/>
</address -component >
<offset -component >

<var -offset uid="7"/>
</offset -component >

</pointer -pair>
</anchor >
<anchor context="?; set1@74" function="set2" seqnr="1">

<pointer -pair>
<address -component >

<var -address uid="12"/>
</address -component >
<offset -component >

<var -offset uid="12"/>

76
Approved for Public Release; Distribution Unlimited.

</offset -component >
</pointer -pair>

</anchor >
<anchor context="?" function="set2" seqnr="1">

<pointer -pair>
<address -component >

<var -address uid="11"/>
</address -component >
<offset -component >

<var -offset uid="11"/>
</offset -component >

</pointer -pair>
</anchor >

A possible results file produced by the game play, game model, and backend might be:

<?xml version="1.0" encoding=" U T F 8 "?>
<address -variable -size uid="16" lower -bound="40" upper -bound="40" />
<offset -variable -range uid="16" lower -bound="16" upper -bound="16" />
<address -variable -size uid="18" lower -bound="40" upper -bound="40" />
<offset -variable -range uid="18" lower -bound="20" upper -bound="20" />
<address -variable -size uid="13" lower -bound="40" upper -bound="40" />
<offset -variable -range uid="13" lower -bound="36" upper -bound="36" />
<address -variable -size uid="15" lower -bound="40" upper -bound="40" />
<offset -variable -range uid="15" lower -bound="40" upper -bound="40" />

Please note that anchors do not necessarily have to appear in the results file. In this case,
the bu↵er-overflow verifier assumes that the range is [�1,+1]. Also, entries may be listed
in any order and do not have to be grouped by UID or type. Address and o↵set variables are
completely decoupled and do not need to be paired. The backend need only report values for
anchors appearing in the anchor file as these are the values needed for subsequent verification
runs. All context information is handled by the CodeHawk analyzer so the game backend
has to manage only the variables (whether symbolic or numerical) as specified by their UIDs
and listed in the CodeHawk-generated dictionary.

3.6.2 Detailed Example

In this section we present a small C program with an intentional complex verification defect
and show how our approach finds that defect. We start with the following C-language
program:

1 int A[10];
2 int B[20];
3
4 typedef int *(* fptr)(int *);
5
6 int *f1(int *p) {
7 return p + 1;
8 }
9
10 int *f5(int *p) {
11 return p + 5;
12 }

77
Approved for Public Release; Distribution Unlimited.

13
14 void exec(fptr f, int *p) {
15 int *pp = f(p);
16 *pp = 1;
17 }
18
19 main() {
20 exec(f1, &A[8]);
21 exec(f5, &B[15]);
22 }

After studying the small program we can work out that the call on line 21 will result in
a bu↵er overflow in function exec() when the program performs the assignment at line 16.
Let us see if our analyzer and game model can find this problem automatically.

Running the CodeHawk constraint generator produces the following dictionary and an-
chors files:

% dictionary
<memory -element uid="22">

<function name="f1"/>
</memory -element >
<memory -element uid="23">
<function name="f5"/>

</memory -element >
<memory -element uid="24">
<function name="main"/>

</memory -element >
<memory -element uid="26">
<global -variable name="B" size="80"/>

</memory -element >
<memory -element uid="25">
<global -variable name="A" size="40"/>

</memory -element >
<memory -element uid="21">
<function name="exec"/>

</memory -element >

% anchors
<anchor context="?" function="exec" seqnr="5">

<pointer -pair>
<address -component >

<var -address uid="9"/>
</address -component >
<offset -component >

<var -offset uid="9"/>
</offset -component >

</pointer -pair>
</anchor >
<anchor context="?" function="exec" seqnr="6">
<pointer -pair>
<address -component >

<var -address uid="10"/>
</address -component >
<offset -component >

78
Approved for Public Release; Distribution Unlimited.

<var -offset uid="10"/>
</offset -component >

</pointer -pair>
</anchor >
<anchor context="?" function="exec" seqnr="8">
<pointer -pair>
<address -component >

<var -address uid="11"/>
</address -component >
<offset -component >

<var -offset uid="11"/>
</offset -component >

</pointer -pair>
</anchor >
<anchor context="?" function="exec" seqnr="11">
<pointer -pair>
<address -component >

<var -address uid="12"/>
</address -component >
<offset -component >

<var -offset uid="12"/>
</offset -component >

</pointer -pair>
</anchor >
<anchor context="?" function="f1" seqnr="1">
<pointer -pair>
<address -component >

<var -address uid="20"/>
</address -component >
<offset -component >

<var -offset uid="20"/>
</offset -component >

</pointer -pair>
</anchor >
<anchor context="?" function="f5" seqnr="3">
<pointer -pair>
<address -component >

<var -address uid="17"/>
</address -component >
<offset -component >

<var -offset uid="17"/>
</offset -component >

</pointer -pair>
</anchor >

The constraint generator also produces a constraint file for each function in the program:

% main.xml
<pointer -constraints >

<function uid="24">
<constraints >

<offset -flow>
<lhs>

<var -offset uid="3"/>
</lhs>

79
Approved for Public Release; Distribution Unlimited.

<rhs>
<offset >

<interval -value lower -bound="-oo" upper -bound="+oo"/>
</offset >

</rhs>
</offset -flow>
<address -flow>

<lhs>
<var -address uid="3"/>

</lhs>
<rhs>

<global -memory -location uid="22"/>
</rhs>

</address -flow>
<offset -flow>

<lhs>
<var -offset uid="4"/>

</lhs>
<rhs>

<offset >
<constant -value value="32"/>

</offset >
</rhs>

</offset -flow>
<address -flow>

<lhs>
<var -address uid="4"/>

</lhs>
<rhs>

<global -memory -location uid="25"/>
</rhs>

</address -flow>
<pointer -flow>

<lhs>
<function -arg argument="1" function -uid="21"/>

</lhs>
<rhs>

<pointer -pair>
<address -component >

<var -address uid="3"/>
</address -component >
<offset -component >

<offset >
<var -offset uid="3"/>

</offset >
</offset -component >

</pointer -pair>
</rhs>

</pointer -flow>
<pointer -flow>

<lhs>
<function -arg argument="2" function -uid="21"/>

</lhs>
<rhs>

80
Approved for Public Release; Distribution Unlimited.

<pointer -pair>
<address -component >

<var -address uid="4"/>
</address -component >
<offset -component >

<offset >
<var -offset uid="4"/>

</offset >
</offset -component >

</pointer -pair>
</rhs>

</pointer -flow>
<offset -flow>

<lhs>
<var -offset uid="5"/>

</lhs>
<rhs>

<offset >
<interval -value lower -bound="-oo" upper -bound="+oo"/>

</offset >
</rhs>

</offset -flow>
<address -flow>

<lhs>
<var -address uid="5"/>

</lhs>
<rhs>

<global -memory -location uid="23"/>
</rhs>

</address -flow>
<offset -flow>

<lhs>
<var -offset uid="6"/>

</lhs>
<rhs>

<offset >
<constant -value value="60"/>

</offset >
</rhs>

</offset -flow>
<address -flow>

<lhs>
<var -address uid="6"/>

</lhs>
<rhs>

<global -memory -location uid="26"/>
</rhs>

</address -flow>
<pointer -flow>

<lhs>
<function -arg argument="1" function -uid="21"/>

</lhs>
<rhs>

<pointer -pair>

81
Approved for Public Release; Distribution Unlimited.

<address -component >
<var -address uid="5"/>

</address -component >
<offset -component >

<offset >
<var -offset uid="5"/>

</offset >
</offset -component >

</pointer -pair>
</rhs>

</pointer -flow>
<pointer -flow>

<lhs>
<function -arg argument="2" function -uid="21"/>

</lhs>
<rhs>

<pointer -pair>
<address -component >

<var -address uid="6"/>
</address -component >
<offset -component >

<offset >
<var -offset uid="6"/>

</offset >
</offset -component >

</pointer -pair>
</rhs>

</pointer -flow>
</constraints >

</function >
</pointer -constraints >

% exec.xml
<pointer -constraints >

<function uid="21">
<constraints >

<pointer -flow>
<lhs>

<pointer -pair>
<address -component >

<var -address uid="9"/>
</address -component >
<offset -component >

<var -offset uid="9"/>
</offset -component >

</pointer -pair>
</lhs>
<rhs>

<function -arg argument="1" function -uid="21"/>
</rhs>

</pointer -flow>
<pointer -flow>

<lhs>
<pointer -pair>

82
Approved for Public Release; Distribution Unlimited.

<address -component >
<var -address uid="10"/>

</address -component >
<offset -component >

<var -offset uid="10"/>
</offset -component >

</pointer -pair>
</lhs>
<rhs>

<function -arg argument="2" function -uid="21"/>
</rhs>

</pointer -flow>
<pointer -flow>

<lhs>
<pointer -pair>

<address -component >
<var -address uid="11"/>

</address -component >
<offset -component >

<var -offset uid="11"/>
</offset -component >

</pointer -pair>
</lhs>
<rhs>

<deref >
<pointer -pair>

<address -component >
<var -address uid="9"/>

</address -component >
<offset -component >

<offset >
<var -offset uid="9"/>

</offset >
</offset -component >

</pointer -pair>
</deref >

</rhs>
</pointer -flow>
<offset -flow>

<lhs>
<var -offset uid="12"/>

</lhs>
<rhs>

<offset >
<var -offset uid="13"/>

</offset >
</rhs>

</offset -flow>
<address -flow>

<lhs>
<var -address uid="12"/>

</lhs>
<rhs>

<var -address uid="13"/>

83
Approved for Public Release; Distribution Unlimited.

</rhs>
</address -flow>
<offset -flow>

<lhs>
<var -offset uid="14"/>

</lhs>
<rhs>

<offset >
<var -offset uid="10"/>

</offset >
</rhs>

</offset -flow>
<address -flow>

<lhs>
<var -address uid="14"/>

</lhs>
<rhs>

<var -address uid="10"/>
</rhs>

</address -flow>
<pointer -flow>

<lhs>
<arg -fp arg="1">

<pointer -pair>
<address -component >

<var -address uid="11"/>
</address -component >
<offset -component >

<offset >
<var -offset uid="11"/>

</offset >
</offset -component >

</pointer -pair>
</arg -fp>

</lhs>
<rhs>

<pointer -pair>
<address -component >

<var -address uid="14"/>
</address -component >
<offset -component >

<offset >
<var -offset uid="14"/>

</offset >
</offset -component >

</pointer -pair>
</rhs>

</pointer -flow>
<pointer -flow>

<lhs>
<pointer -pair>

<address -component >
<var -address uid="13"/>

</address -component >

84
Approved for Public Release; Distribution Unlimited.

<offset -component >
<var -offset uid="13"/>

</offset -component >
</pointer -pair>

</lhs>
<rhs>

<ret -fp>
<pointer -pair>

<address -component >
<var -address uid="11"/>

</address -component >
<offset -component >

<offset >
<var -offset uid="11"/>

</offset >
</offset -component >

</pointer -pair>
</ret -fp>

</rhs>
</pointer -flow>

</constraints >
</function >

</pointer -constraints >

% f1.xml
<pointer -constraints >

<function uid="22">
<constraints >

<pointer -flow>
<lhs>
<pointer -pair>

<address -component >
<var -address uid="20"/>

</address -component >
<offset -component >

<var -offset uid="20"/>
</offset -component >

</pointer -pair>
</lhs>
<rhs>

<function -arg argument="1" function -uid="22"/>
</rhs>

</pointer -flow>
<offset -flow>

<lhs>
<var -offset uid="19"/>

</lhs>
<rhs>

<offset >
<linear -expression >

<constant -factor value="4"/>
<component coefficient="1" var -uid="20"/>

</linear -expression >
</offset >

85
Approved for Public Release; Distribution Unlimited.

</rhs>
</offset -flow>
<address -flow>

<lhs>
<var -address uid="18"/>

</lhs>
<rhs>

<var -address uid="20"/>
</rhs>

</address -flow>
<pointer -flow>

<lhs>
<function -return function -uid="22"/>

</lhs>
<rhs>

<pointer -pair>
<address -component >

<var -address uid="18"/>
</address -component >
<offset -component >

<var -offset uid="19"/>
</offset -component >

</pointer -pair>
</rhs>

</pointer -flow>
</constraints >

</function >
</pointer -constraints >

% f5.xml
<pointer -constraints >

<function uid="23">
<constraints >

<pointer -flow>
<lhs>

<pointer -pair>
<address -component >

<var -address uid="17"/>
</address -component >
<offset -component >

<var -offset uid="17"/>
</offset -component >

</pointer -pair>
</lhs>
<rhs>

<function -arg argument="1" function -uid="23"/>
</rhs>

</pointer -flow>
<offset -flow>

<lhs>
<var -offset uid="16"/>

</lhs>
<rhs>

<offset >

86
Approved for Public Release; Distribution Unlimited.

<linear -expression >
<constant -factor value="20"/>
<component coefficient="1" var -uid="17"/>

</linear -expression >
</offset >

</rhs>
</offset -flow>
<address -flow>

<lhs>
<var -address uid="15"/>

</lhs>
<rhs>

<var -address uid="17"/>
</rhs>

</address -flow>
<pointer -flow>

<lhs>
<function -return function -uid="23"/>

</lhs>
<rhs>

<pointer -pair>
<address -component >

<var -address uid="15"/>
</address -component >
<offset -component >

<var -offset uid="16"/>
</offset -component >

</pointer -pair>
</rhs>

</pointer -flow>
</constraints >

</function >
</pointer -constraints >

In order to follow game play more easily we reproduce the constraints in plain text with
cross reference numbers:

// function main

1: offset -flow(O#3, [-oo; +oo]) // offest of #3 is an integer

2: address -flow(A#3, &f1) // if #3 pointx to x then f1 does

3: offset -flow(O#4, [32; 32])
4: address -flow(A#4, &A)
5: pointer -flow(exec@1 , (A#3, O#3))
6: pointer -flow(exec@2 , (A#4, O#4))
7: offset -flow(O#5, [-oo; +oo])
8: address -flow(A#5, &f5)
9: offset -flow(O#6, [60; 60])
10: address -flow(A#6, &B)
11: pointer -flow(exec@1 , (A#5, O#5)) // If 1st parm of exec points to

x, then node #5 points to x

12: pointer -flow(exec@2 , (A#6, O#6))

// function exec

13: pointer -flow((A#9, O#9), exec@1)
14: pointer -flow((A#10, O#10), exec@2)

87
Approved for Public Release; Distribution Unlimited.

15: pointer -flow((A#11, O#11), deref(A#9, O#9))
16: offset -flow(O#12, O#13)
17: address -flow(A#12, A#13)
18: offset -flow(O#14, O#10)
19: address -flow(A#14, A#10)
20: pointer -flow(arg -fp@1(A#11, O#11), (A#14, O#14))
21: pointer -flow((A#13, O#13), ret -fp(A#11, O#11))

// function f1

22: pointer -flow((A#20, O#20), f1@1)
23: offset -flow(O#19, 4 + O#20)
24: address -flow(A#18, A#20)
25: pointer -flow(f1@ret , (A#18, O#19))

// function f5

26: pointer -flow((A#17, O#17), f5@1)
27: offset -flow(O#16, 20 + O#17)
28: address -flow(A#15, A#17)
29: pointer -flow(f5@ret , (A#15, O#16))

We now proceed with sample game play. For the sake of simplicity, we apply the optimal
strategy that leads to the best solution for the system of constraints. We could of course fire
the constraints in no particular order.

Initial game configuration:
Addresses O↵sets Functions
A#3 = ; O#3 = ; exec@1 = (;, ;)
A#4 = ; O#4 = ; exec@2 = (;, ;)
A#5 = ; O#5 = ; f1@1 = (;, ;)
A#6 = ; O#6 = ; f1@ret = (;, ;)
A#9 = ; O#9 = ; f5@1 = (;, ;)
A#10 = ; O#10 = ; f5@ret = (;, ;)
A#11 = ; O#11 = ;
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = ; O#14 = ;
A#15 = ; O#16 = ;
A#17 = ; O#17 = ;
A#18 = ; O#19 = ;
A#20 = ; O#20 = ;

After firing constraints 1 through 4 we assign explicit locations and o↵sets to four vari-
ables. Applying the rules we obtain the following game configuration:

Firing constraints 1-4:

88
Approved for Public Release; Distribution Unlimited.

Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = (;, ;)
A#4 = {&A} O#4 = [32, 32] exec@2 = (;, ;)
A#5 = ; O#5 = ; f1@1 = (;, ;)
A#6 = ; O#6 = ; f1@ret = (;, ;)
A#9 = ; O#9 = ; f5@1 = (;, ;)
A#10 = ; O#10 = ; f5@ret = (;, ;)
A#11 = ; O#11 = ;
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = ; O#14 = ;
A#15 = ; O#16 = ;
A#17 = ; O#17 = ;
A#18 = ; O#19 = ;
A#20 = ; O#20 = ;

After firing constraints 5 and 6 we assign values to the formal parameters of function
exec.

Firing constraints 5-6:
Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A}, [32, 32])
A#5 = ; O#5 = ; f1@1 = (;, ;)
A#6 = ; O#6 = ; f1@ret = (;, ;)
A#9 = ; O#9 = ; f5@1 = (;, ;)
A#10 = ; O#10 = ; f5@ret = (;, ;)
A#11 = ; O#11 = ;
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = ; O#14 = ;
A#15 = ; O#16 = ;
A#17 = ; O#17 = ;
A#18 = ; O#19 = ;
A#20 = ; O#20 = ;

Firing constraints 7 through 10 we assign explicit locations and o↵sets to four other
variables. Applying the rules, we obtain the following game configuration:

Firing constraints 7-10:

89
Approved for Public Release; Distribution Unlimited.

Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A}, [32, 32])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = (;, ;)
A#6 = {&B} O#6 = [60, 60] f1@ret = (;, ;)
A#9 = ; O#9 = ; f5@1 = (;, ;)
A#10 = ; O#10 = ; f5@ret = (;, ;)
A#11 = ; O#11 = ;
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = ; O#14 = ;
A#15 = ; O#16 = ;
A#17 = ; O#17 = ;
A#18 = ; O#19 = ;
A#20 = ; O#20 = ;

Continuing with constraints 11 and 12 we assign values to the formal parameters of
function exec.

Firing constraints 11-12:
Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = (;, ;)
A#6 = {&B} O#6 = [60, 60] f1@ret = (;, ;)
A#9 = ; O#9 = ; f5@1 = (;, ;)
A#10 = ; O#10 = ; f5@ret = (;, ;)
A#11 = ; O#11 = ;
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = ; O#14 = ;
A#15 = ; O#16 = ;
A#17 = ; O#17 = ;
A#18 = ; O#19 = ;
A#20 = ; O#20 = ;

Firing constraints 13 and 14 and applying rules assign values to four more variables,
producing the following game configuration:

Firing constraints 13-14:

90
Approved for Public Release; Distribution Unlimited.

Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = (;, ;)
A#6 = {&B} O#6 = [60, 60] f1@ret = (;, ;)
A#9 = {&f1,&f5} O#9 = [�1,+1] f5@1 = (;, ;)
A#10 = {&A,&B} O#10 = [32, 60] f5@ret = (;, ;)
A#11 = ; O#11 = ;
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = ; O#14 = ;
A#15 = ; O#16 = ;
A#17 = ; O#17 = ;
A#18 = ; O#19 = ;
A#20 = ; O#20 = ;

Firing constraint 15 tries to dereference a pointer to a function. Following the rule for
dereference in the game model we obtain the following configuration:

Firing constraint 15:
Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = (;, ;)
A#6 = {&B} O#6 = [60, 60] f1@ret = (;, ;)
A#9 = {&f1,&f5} O#9 = [�1,+1] f5@1 = (;, ;)
A#10 = {&A,&B} O#10 = [32, 60] f5@ret = (;, ;)
A#11 = {&f1,&f5} O#11 = [�1,+1]
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = ; O#14 = ;
A#15 = ; O#16 = ;
A#17 = ; O#17 = ;
A#18 = ; O#19 = ;
A#20 = ; O#20 = ;

Firing constraints 18 and 19 simply move around sets of addresses and o↵sets across
variables.

Firing constraints 18-19:

91
Approved for Public Release; Distribution Unlimited.

Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = (;, ;)
A#6 = {&B} O#6 = [60, 60] f1@ret = (;, ;)
A#9 = {&f1,&f5} O#9 = [�1,+1] f5@1 = (;, ;)
A#10 = {&A,&B} O#10 = [32, 60] f5@ret = (;, ;)
A#11 = {&f1,&f5} O#11 = [�1,+1]
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = {&A,&B} O#14 = [32, 60]
A#15 = ; O#16 = ;
A#17 = ; O#17 = ;
A#18 = ; O#19 = ;
A#20 = ; O#20 = ;

Firing constraint 20 assigns a value to the argument of a function called by pointer. The
function pointer is given by variable A#11, which refers to functions f1 and f5. Applying
the rule for indirect function calls, we obtain the following configuration:

Firing constraint 20:
Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = ({&A,&B}, [32, 60])
A#6 = {&B} O#6 = [60, 60] f1@ret = (;, ;)
A#9 = {&f1,&f5} O#9 = [�1,+1] f5@1 = ({&A,&B}, [32, 60])
A#10 = {&A,&B} O#10 = [32, 60] f5@ret = (;, ;)
A#11 = {&f1,&f5} O#11 = [�1,+1]
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = {&A,&B} O#14 = [32, 60]
A#15 = ; O#16 = ;
A#17 = ; O#17 = ;
A#18 = ; O#19 = ;
A#20 = ; O#20 = ;

Firing constraint 22 retrieves the value for the argument of function f1.

Firing constraint 22:

92
Approved for Public Release; Distribution Unlimited.

Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = ({&A,&B}, [32, 60])
A#6 = {&B} O#6 = [60, 60] f1@ret = (;, ;)
A#9 = {&f1,&f5} O#9 = [�1,+1] f5@1 = ({&A,&B}, [32, 60])
A#10 = {&A,&B} O#10 = [32, 60] f5@ret = (;, ;)
A#11 = {&f1,&f5} O#11 = [�1,+1]
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = {&A,&B} O#14 = [32, 60]
A#15 = ; O#16 = ;
A#17 = ; O#17 = ;
A#18 = ; O#19 = ;
A#20 = {&A,&B} O#20 = [32, 60]

Firing constraints 23 and 24 move around symbolic and o↵set values, performing some
arithmetic operations on the o↵sets.

Firing constraints 23-24:
Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = ({&A,&B}, [32, 60])
A#6 = {&B} O#6 = [60, 60] f1@ret = (;, ;)
A#9 = {&f1,&f5} O#9 = [�1,+1] f5@1 = ({&A,&B}, [32, 60])
A#10 = {&A,&B} O#10 = [32, 60] f5@ret = (;, ;)
A#11 = {&f1,&f5} O#11 = [�1,+1]
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = {&A,&B} O#14 = [32, 60]
A#15 = ; O#16 = ;
A#17 = ; O#17 = ;
A#18 = {&A,&B} O#19 = [36, 64]
A#20 = {&A,&B} O#20 = [32, 60]

Firing constraint 25 assigns a return value to function f1.

Firing constraint 25:

93
Approved for Public Release; Distribution Unlimited.

Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = ({&A,&B}, [32, 60])
A#6 = {&B} O#6 = [60, 60] f1@ret = ({&A,&B}, [36, 64])
A#9 = {&f1,&f5} O#9 = [�1,+1] f5@1 = ({&A,&B}, [32, 60])
A#10 = {&A,&B} O#10 = [32, 60] f5@ret = (;, ;)
A#11 = {&f1,&f5} O#11 = [�1,+1]
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = {&A,&B} O#14 = [32, 60]
A#15 = ; O#16 = ;
A#17 = ; O#17 = ;
A#18 = {&A,&B} O#19 = [36, 64]
A#20 = {&A,&B} O#20 = [32, 60]

Firing constraint 26 retrieves the value for the argument of function f5.

Firing constraint 26:
Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = ({&A,&B}, [32, 60])
A#6 = {&B} O#6 = [60, 60] f1@ret = ({&A,&B}, [36, 64])
A#9 = {&f1,&f5} O#9 = [�1,+1] f5@1 = ({&A,&B}, [32, 60])
A#10 = {&A,&B} O#10 = [32, 60] f5@ret = (;, ;)
A#11 = {&f1,&f5} O#11 = [�1,+1]
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = {&A,&B} O#14 = [32, 60]
A#15 = ; O#16 = ;
A#17 = {&A,&B} O#17 = [32, 60]
A#18 = {&A,&B} O#19 = [36, 64]
A#20 = {&A,&B} O#20 = [32, 60]

Constraints 27 and 28 move around symbolic and o↵set values, performing some arith-
metic operations on the o↵sets.

Firing constraints 27-28:

94
Approved for Public Release; Distribution Unlimited.

Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = ({&A,&B}, [32, 60])
A#6 = {&B} O#6 = [60, 60] f1@ret = ({&A,&B}, [36, 64])
A#9 = {&f1,&f5} O#9 = [�1,+1] f5@1 = ({&A,&B}, [32, 60])
A#10 = {&A,&B} O#10 = [32, 60] f5@ret = (;, ;)
A#11 = {&f1,&f5} O#11 = [�1,+1]
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = {&A,&B} O#14 = [32, 60]
A#15 = {&A,&B} O#16 = [52, 80]
A#17 = {&A,&B} O#17 = [32, 60]
A#18 = {&A,&B} O#19 = [36, 64]
A#20 = {&A,&B} O#20 = [32, 60]

Constraint 29 assigns a return value to function f5.

Firing constraint 29:
Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = ({&A,&B}, [32, 60])
A#6 = {&B} O#6 = [60, 60] f1@ret = ({&A,&B}, [36, 64])
A#9 = {&f1,&f5} O#9 = [�1,+1] f5@1 = ({&A,&B}, [32, 60])
A#10 = {&A,&B} O#10 = [32, 60] f5@ret = ({&A,&B}, [52, 80])
A#11 = {&f1,&f5} O#11 = [�1,+1]
A#12 = ; O#12 = ;
A#13 = ; O#13 = ;
A#14 = {&A,&B} O#14 = [32, 60]
A#15 = {&A,&B} O#16 = [52, 80]
A#17 = {&A,&B} O#17 = [32, 60]
A#18 = {&A,&B} O#19 = [36, 64]
A#20 = {&A,&B} O#20 = [32, 60]

Firing constraint 21 retrieves the value of a function called by pointer. The function
pointer is given by variable A#11, which refers to functions t1 and f5. Applying the rule for
indirect function returns, we obtain the following configuration:

Firing constraint 21:

95
Approved for Public Release; Distribution Unlimited.

Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = ({&A,&B}, [32, 60])
A#6 = {&B} O#6 = [60, 60] f1@ret = ({&A,&B}, [36, 64])
A#9 = {&f1,&f5} O#9 = [�1,+1] f5@1 = ({&A,&B}, [32, 60])
A#10 = {&A,&B} O#10 = [32, 60] f5@ret = ({&A,&B}, [52, 80])
A#11 = {&f1,&f5} O#11 = [�1,+1]
A#12 = ; O#12 = ;
A#13 = {&A,&B} O#13 = [36, 80]
A#14 = {&A,&B} O#14 = [32, 60]
A#15 = {&A,&B} O#16 = [52, 80]
A#17 = {&A,&B} O#17 = [32, 60]
A#18 = {&A,&B} O#19 = [36, 64]
A#20 = {&A,&B} O#20 = [32, 60]

Firing constraints simply transfer values from variable to variable.

Firing constraints 16-17:
Addresses O↵sets Functions
A#3 = {&f1} O#3 = [�1,+1] exec@1 = ({&f1,&f5}, [�1,+1])
A#4 = {&A} O#4 = [32, 32] exec@2 = ({&A,&B}, [32, 60])
A#5 = {&f1} O#5 = [�1,+1] f1@1 = ({&A,&B}, [32, 60])
A#6 = {&B} O#6 = [60, 60] f1@ret = ({&A,&B}, [36, 64])
A#9 = {&f1,&f5} O#9 = [�1,+1] f5@1 = ({&A,&B}, [32, 60])
A#10 = {&A,&B} O#10 = [32, 60] f5@ret = ({&A,&B}, [52, 80])
A#11 = {&f1,&f5} O#11 = [�1,+1]
A#12 = {&A,&B} O#12 = [36, 80]
A#13 = {&A,&B} O#13 = [36, 80]
A#14 = {&A,&B} O#14 = [32, 60]
A#15 = {&A,&B} O#16 = [52, 80]
A#17 = {&A,&B} O#17 = [32, 60]
A#18 = {&A,&B} O#19 = [36, 64]
A#20 = {&A,&B} O#20 = [32, 60]

The system has been solved. Firing any constraint leaves the previous configuration
unchanged. We have therefore reached a fixpoint and obtained a solution of the system of
pointer constraints. We now need to report the values of the variables listed in the anchor
file, i.e., the variables A#9, O#9, A#10, O#10, A#11, O#11, A#12, O#12, A#17, O#17, A#20,
O#20. According to the dictionary, the size of variable A is 40 and the size of variable B is
80. The size of a function is 4 bytes by convention in the analyzer.

We generate the following result file:

<address -variable -size uid="9" lower -bound="4" upper -bound="4"/>
<offset -variable -range uid="9" lower -bound="-oo" upper -bound="+oo"/>
<address -variable -size uid="10" lower -bound="40" upper -bound="80"/>
<offset -variable -range uid="10" lower -bound="32" upper -bound="60"/>

96
Approved for Public Release; Distribution Unlimited.

<address -variable -size uid="11" lower -bound="4" upper -bound="4"/>
<offset -variable -range uid="11" lower -bound="-oo" upper -bound="+oo"/>
<address -variable -size uid="12" lower -bound="40" upper -bound="80"/>
<offset -variable -range uid="12" lower -bound="36" upper -bound="80"/>
<address -variable -size uid="17" lower -bound="40" upper -bound="80"/>
<offset -variable -range uid="17" lower -bound="32" upper -bound="60"/>
<address -variable -size uid="20" lower -bound="40" upper -bound="80"/>
<offset -variable -range uid="20" lower -bound="32" upper -bound="60"/>

We now pass this result file to the CodeHawk CircuitBot bu↵er overflow analyzer together
with the dictionary, anchors file, constraints files, and original CIL representation of the small
program in order to obtain the verification results. The verification result yields overflow and
underflow checks with safe, warning and error flags for each context and location by function.
Let us first examine the verification result without the benefit of the pointer analysis. We
see that the analyzer cannot resolve the proof obligations and yields warnings (unknowns)
for every check:

1 <?xml version="1.0" encoding="UTF -8"?>
2 <buffer -overflow -checks >
3 <function uid="33">
4 <checks >
5 <overflow -check context="?; main@272" line="14" status="warning"/>
6 <underflow -check context="?; main@272" line="14" status="warning"/>
7 <overflow -check context="?; main@272" line="13" status="warning"/>
8 <underflow -check context="?; main@272" line="13" status="warning"/>
9 <overflow -check context="?; main@272" line="13" status="warning"/>
10 <underflow -check context="?; main@272" line="13" status="warning"/>
11 <overflow -check context="?; main@254" line="14" status="warning"/>
12 <underflow -check context="?; main@254" line="14" status="warning"/>
13 <overflow -check context="?; main@254" line="13" status="warning"/>
14 <underflow -check context="?; main@254" line="13" status="warning"/>
15 <overflow -check context="?; main@254" line="13" status="warning"/>
16 <underflow -check context="?; main@254" line="13" status="warning"/>
17 <overflow -check context="?" line="14" status="warning"/>
18 <underflow -check context="?" line="14" status="warning"/>
19 <overflow -check context="?" line="13" status="warning"/>
20 <underflow -check context="?" line="13" status="warning"/>
21 <overflow -check context="?" line="13" status="warning"/>
22 <underflow -check context="?" line="13" status="warning"/>
23 </checks >
24 </function >
25 </buffer -overflow -checks >

Now let us rerun the analyzer with the benefit of the pointer analysis results. We find
now that the analyzer can identify the overflow error condition. Line 5 of the XML result file
below shows the verification result showing the overflow error, found in the exec function,
at line 14 of the source file (which corresponds to line 16 of our representation above). The
game model and procedure has been successful.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <buffer -overflow -checks >
3 <function uid="33">
4 <checks >

97
Approved for Public Release; Distribution Unlimited.

5 <overflow -check context="?; main@272" line="14" num -var="tmp_3N"
range -max="79" span -min="80" status="error" sym -var="tmp_3S"/>

6 <underflow -check context="?; main@272" line="14" status="safe"/>
7 <overflow -check context="?; main@272" line="13" status="warning"/>
8 <underflow -check context="?; main@272" line="13" status="warning"/>
9 <overflow -check context="?; main@272" line="13" status="warning"/>
10 <underflow -check context="?; main@272" line="13" status="warning"/>
11 <overflow -check context="?; main@254" line="14" status="safe"/>
12 <underflow -check context="?; main@254" line="14" status="safe"/>
13 <overflow -check context="?; main@254" line="13" status="warning"/>
14 <underflow -check context="?; main@254" line="13" status="warning"/>
15 <overflow -check context="?; main@254" line="13" status="warning"/>
16 <underflow -check context="?; main@254" line="13" status="warning"/>
17 <overflow -check context="?" line="14" status="warning"/>
18 <underflow -check context="?" line="14" status="warning"/>
19 <overflow -check context="?" line="13" status="warning"/>
20 <underflow -check context="?" line="13" status="warning"/>
21 <overflow -check context="?" line="13" status="warning"/>
22 <underflow -check context="?" line="13" status="warning"/>
23 </checks >
24 </function >
25 </buffer -overflow -checks >

3.7 Software Architecture

Early in the project the team members conducted a typical software engineering e↵ort to
gather requirements and prepare its software architecture. The team prepared an Archi-
tecture Description Document (ADD) to describe these engineering activities, the driving
requirements and constraints, views and tactics, the trade studies and quality attributes,
design patterns, and themes for communication for the project ([2, 3]). The ADD was a
deliverable item under the contract.

There were a few main results of the architectural analysis that proved valuable through-
out the project. The first was to implement a stateless game and backend workflow to avoid
having to keep track of progress relationships between game elements and players. The
second was to preprocess as much of the game data as possible in advance, preparing and
positioning a large volume of data for play to avoid computing values at play time. The
third was to create an interactive game for client-neutral platform. The team did not change
or undo any of these decisions and they served well for all three games.

Figure 11 shows the resulting system context diagram. A special version of the CodeHawk
program analyzer designed for this CSFV program creates a set of artifacts describing the
source target under analysis. We preprocess these artifacts to populate the databases for
the game and game model. Once populated, the game services can deliver game instances
for play to the game client and player. The source target never is shown or identified in the
databases or client. The game model, situated inside the game itself together in the player’s
browser, ensures the player makes only legal and evaluates the results. The game returns
results to the databases through the backend services. After some time a fixed-point solution
is reached and we can dump the databases for post-processing by a second special-purpose
CodeHawk analyzer which reads the points-to graph and performs program verification.

98
Approved for Public Release; Distribution Unlimited.

Figure 11: System context diagram

To meet the stateless workflow goal we chose to pursue a service-oriented architecture fol-
lowing the representational state transfer (REST) style. A RESTful architecture is resource-
focused and applies six constraints:

• Client-Server The client-server constraint separates the concerns of the client and
server. In our case this separation implies that servers provide access to data stores
and clients are not concerned with these details. Many clients can come or go during
an analysis operation, including by cloning or multiplication, and can be written for
di↵erent platforms than the serves. Servers do not have to keep client state to com-
municate with each one. Servers can be optimized to a particular backend to meet
scalability, security, availability, and other attributes.

• Stateless No client context is stored on the server between contexts. Each request
from a client contains all of the information the server needs to process the request.

• Cacheable Clients can cache responses to improve scalability or performance.

• Layered Intermediary servers may improve system scalability by enabling load-balancing
and shared caches. The client should not be able to tell what server it is working with
along the way to the backend server.

• Uniform Interface The uniform interface between clients and servers decouples the
architecture so that the two sides can evolve independently. This interface must provide
for the identification of resources; in our case we use uniform resource identifiers (URIs)
as the global identifier. Our clients and servers must manipulate the resources using
these representations, and the URI must be su�cient to modify or delete the resource
if it has permission. The interface must use self-descriptive messages. We use JSON for
network tra�c while the underlying MongoDB database services use BSON for storage
representation.

99
Approved for Public Release; Distribution Unlimited.

• Code on Demand Servers can extend functionality of a client by issuing executable
code. This RESTful constraint is optional and we do not apply any code-on-demand
services, such as service adapters or applets.

We apply these architectural constraints using the HTTP protocol for client-server commu-
nication, including its GET, POST, PUT and DELETE methods.

Providing some more detail for the chosen design, we refer to the reference architecture
of Figure 12. Following the step numbers in the diagram, the description follows:

1. (a) Administrator service invokes game instance service to load analysis output. (b)
Game instance job reads game variable, call graph, and constraint data from CodeHawk
XML files.

2. (a) Administrator service invokes statistics service to load analysis output. (b) Statis-
tics service reads CodeHawk *.xbo files and writes statistics to document store.

3. (a) Game pulls game by ID from game instance service. (b) TA3 performer (TopCoder)
provides the game ID to play, originally through a resource allocator (RA) service (later
abandoned for our own priority scheme). The method employed to gather RA game ID
candidates is not shown, but the reference content is populated by our game instance
service.

4. Administrator service queries game instance service for game progress.

5. Occasionally, or when game play is complete and the fixpoint iteration stabilizes, the
administrator service requests the game instance service to export game results as an
XML file for CodeHawk as subsequent analysis input.

6. The administrator service requests from the analyzer client another round of analysis
yielding analysis output files. From this point back to step 2(a) for refreshed statistics.

3.8 Backend Services

Our backend services typically run in the cloud to provide data to distributed game clients.
Each of our backend services provides access in one way or another to a MongoDB document
store collection. We expect our clients to access these stores only through these services, not
trying to access the document store directly. A standard application server, named Thin,
hosts the run-time backend services as well as a web server for simple user interface tasks.
We adopted a URI naming scheme that included the service version number as well as the
resource name. Our scheme was /api/v<version>/<resource>. Here the version was a
major-minor number indicator such as 0.1, and the resource was a service name such as
statistics. A complete GET service call might resemble

GET http://localhost:8080/api/v1.2/analysis/L8LN44332

We incremented the minor version numbers to indicate new features or repairs to existing
services. We incremented the major version number when the changes are substantial enough

100
Approved for Public Release; Distribution Unlimited.

Figure 12: Reference architecture diagram

101
Approved for Public Release; Distribution Unlimited.

to break out-of- date clients. Consequently, the services admitted requests with an out-of-
date minor version number, but not a mismatched major version number. The service request
must never exceed either the major or minor version number. Requests that fail a version
check received an HTTP 400 response.

We had twenty-two backend services which ran in the application server. We used the
modular style of the Ruby Sinatra framework to provide a lightweight and modular solution
for implementing our HTTP-based RESTful API. We hosted the Sinatra applications in
a Thin server which also provided an HTTP server single-point client access and route
distribution with Rack middleware. For scale-up and load-balancing, when needed, we added
an HAProxy layer above several instances of Thin for testing, and routed HTTP tra�c to
our servers via the TA3 performer’s Nginx host for deployment. All of the back-end services
including the CodeHawk analyzer ran on the CentOS operating system which we coordinated
in discussion with the TA3 performer.

Our backend services mostly corresponded to our document store collections:

Admin Message The administrative messages service handles transactions for the backend
clients and the event machine pool. The transactions originate with the administrative
web page GUI for control instructions by the administrator. The service dispatches the
messages and invokes operations in separate threads. This service has no corresponding
document collection or object model.

Administration The admin service provides web pages describing some simple states of
the services and document collections along with the some help pages. The admin
service provides GET operations for embedded data but does not integrate a document
collection.

Award The award service manages access to the player award document collection.

Badge The badge service manages access to the player badge document collection.

Call Graph The call graph services manages access to the function UID connection doc-
ument collection which serves as our call graph information for the game instance
relationship queries.

Dictionary The dictionary service manages access to the dictionary document collection.
CodeHawk generates the dictionary when it generates the constraint files that comprise
the game instances. The dictionary identifies the variable type and location information
in a non-identifiable manner. Subsequent analysis with the game results requires the
original dictionary to be provided to CodeHawk.

Factory Definition The factory definition service manages access to the factory definition
document collection. The factory definitions describe a factory and its relationship to
its planet.

Factory The factory service manages access to the factory document collection. Factories
are associated with game missions and instances and describe the status of the factory
completion.

102
Approved for Public Release; Distribution Unlimited.

Game Instance The game instance service manages access to the game instance docu-
ment collection. The game instances are the problems to be solved as defined by the
CodeHawk constraint generator; there is one unique instance per problem, and these
translate into game levels for the player.

Goal The goal service manages access to the goal document collection. Goals are game play
concepts that map achievements to rewards.

Graph The graph service manages access to the graph document collection. The graph
represents the collection of points-to graph arcs the players produce as a result of
game play. We collect all of these arcs and pass them to the CodeHawk analyzer for
subsequent analysis.

History The history service manages access to the history document collection. The history
records snapshots of verification progress over time.

Mission The mission service manages access to the mission document collection. The mis-
sions describe play structures for the player and game engine.

Planet The planet service manages access to the planet document collection. The planets
describe locations for missions.

Player History The player history service manages access to the player history document
collection.

Player The player service manages access to the player document collection. We use the
player records to record progress and rewards, but no personally identifiable informa-
tion; the player IDs come from the TA3 enrollment services.

Resource Definition The resource definition service manages access to the resource def-
inition document collection. Resource definitions describe characteristics of resources
as employed during missions.

Resource The resource service manages access to the resource document collection. Re-
sources are generated and consumed by player decisions during missions.

Statistics The statistics service manages access to the statistics document store. The statis-
tics are verification results for each function in the program under analysis.

UID The UID service manages access to the UID data which provides a mapping of game
instances to UID appearances.

Worker History The worker history service manages access to the worker history docu-
ment collection.

Worker The worker services manages access to the worker document collection. We use
the worker records to record progress and assignments, but no personally identifiable
information; the worker IDs come from the TA3 enrollment services.

103
Approved for Public Release; Distribution Unlimited.

Figure 13: Backend service implementation diagram. Developed elements are shown in
orange; non-developed elements are shown in white.

Appendix B provides the details of our document collection designs.
Figure 13 shows a block architecture of the backend. The services described above connect

the application server with the database (NoSQL, MongoDB document store) server. Our
REST service API connects the application clients with the application server. Our specific
implementation of the application server used o↵-the-shelf Rack and Thin products. We
wrote the application services in Ruby according to Sinatra library frameworks, connecting
the data models to MongoDB using the mongomodel gem. We used both HAProxy and
Nginx for load management during testing and deployment. Our clients used Unity and C#
for the game, PHP for web services, and a mix of OCaml, Ruby, and C# for analysis. The
CodeHawk verification engine and special-purposes analysis tools were written in OCaml.
Nearly all of our file formats were XML.

For development and testing we used Amazon Web Services (AWS) elastic compute cloud
(EC2) virtual machines. We created Amazon machine instances containing our working
configurations. For deployment we shared these with the TA3 performer for additional
configuration in specific virtual private cloud (VPC) setups.

The backend provided a service for administrator control and status information through
a browser client. Figure 14 shows the landing page for the administrator client. After
authenticating with the administrator user ID and password, the administrator could inspect
and sort most of the document stores in legible formats, collect progress statistics, and recall
some status and configuration information.

During the two years of game deployment with three games we experienced zero downtime
associated with the backend services or document stores.

104
Approved for Public Release; Distribution Unlimited.

Figure 14: Backend services administration client.

105
Approved for Public Release; Distribution Unlimited.

3.9 Web Services

We used a web-based middleware layer to serve as a broker between the game, the backend,
and the scoring and registration services. We designed and implemented this layer with
fairly typical PHP (personal home page) scripts. The PHP scripts primarily served as a
filter translating game constructs into backend service API calls. The game, developed in
Unity, ran in the Unity plugin inside the player’s browser. The game file and the web page
that hosted it were on our game server. Our PHP scripts were also on this server. The
game communicated with our PHP scripts via HTTP requests, and the PHP scripts likewise
communicated with the backend via HTTP requests.

Our PHP layer design and implementation o↵ered substantial flexibility in developing
and testing the game. We could change the host and port settings used by the PHP scripts
to direct them to any backend machine. Switching from a staging to a production backend
was a matter of changing a PHP configuration file. Because the browser-based game only
communicated with the game server, it did not contain the host and port location of our
backend services, thus o↵ering a layer of security as the game players could not find these
locations by embedded in the game. Moreover, the PHP layer acted as a bridge between
the game and our databases, which allowed us to filter, compress, and otherwise organize
data transfers with the backend. When TA3-provided services were later added for player
registration and for the scoring and awards API, we added these calls to our PHP layer, not
to our backend.

3.10 CircuitBot Game

In our CSFV proposal we employed the legacy Pipe Jam game as a springboard for our
CircuitBot (Figure 15 on page 109) concept, and envisioned our game unfolding as follows:

Like Pipe Jam, a CircuitBot game level is a directed graph, with certain edges
labeled (by the player) with properties a cargo must have in order to traverse them.
In the case of Pipe Jam the allowed properties are linearly ordered, corresponding
to the possible widths of balls and pipes, in such a way that if a cargo has property
p then it also has property q for any q > p (that is, a ball will fit through a pipe its
size, or through any larger pipe). From a mathematical standpoint, CircuitBot
enriches the Pipe Jam model in two ways. First, the properties of edges and
cargoes need not be linearly ordered. Second, cargoes may mutate when they pass
through a node, either singly or in combination with other cargoes, to form new
cargoes with new properties. Each game level represents a correctness problem for
a particular line of code with respect to a particular error that may occur in that
line according to a CodeHawk warning. The abstract generated graph corresponds
to relevant aspects of data flow with nodes playing the role of function calls, arcs
playing the role of variables, and labels playing the role of properties or types that
a variable may have.

From a gameplay standpoint, a game level is a room containing several small
tables, with one or more portholes in the walls, and with directed paths drawn
on the floor from certain tables and/or portholes to certain others. Portholes are
marked visually as to whether cargo passes into the room or out through them.

106
Approved for Public Release; Distribution Unlimited.

Each table or porthole is marked with properties a cargo must have in order to
occupy it, and with how it can transform or combine cargo that moves across it.
For example, a table may have a funnel that will turn a large ball into a small
one or vice versa, a paint brush that turns any colored ball into a green one, a red
laser that zaps any ball that is not red, etc. A table may also have a pipe network
that accepts two or more cargoes and creates a new one whose properties depend
on the inputs. For example a cargo of a certain color and another cargo of a
certain size may be required to form a new cargo with some specified property.
The outgoing portholes are similarly marked for what sorts of cargo may safely
exit through them.

The game is played by selecting one or more types of robots for each input
porthole. Generally speaking, robot types are defined by the kinds of cargo they
may carry, with the simplest case being all cargoes of a given size or smaller;
however more intricate combinations are possible, such as all cargoes of a given
color and of a given size or smaller, or all rectangular cargoes of a given width
or smaller and a given length or smaller. Once the player selects robots, he or
she hits go and the factory begins to operate in a frenzy. Each robot morphs into
a swarm of identical robots, as cargoes of various sorts pour out of the incoming
port holes. If a robot attempts to carry a cargo it cannot handle, that cargo drops
onto the floor. The robots carry the ones they can handle to every destination they
can reach, where the cargoes are transmuted and passed to other robots (who may
or may not be able to carry them) and the frenzy continues until all the possible
deliveries have been made. Each delivery of a cargo through an outgoing porthole
scores points for the player; but attempting to deliver a disallowed cargo causes
the room to explode. Thus the player is engaging in an optimization problem
trying to deliver all and only acceptable cargoes, leaving the “poisonous” ones
lying on the floor.

Robot types actually correspond to restrictions on variables in a function, and
higher scores in the game give more permissive preconditions thus allowing a
larger input space among the safe inputs. The absence of explosions corresponds
provably to the absence of errors. The attributes a cargo or robot may have, along
with the visual representations of these attributes and their allowed transmuta-
tions and interactions, will potentially be unique to each error type, though with
a substantial degree of reuse.

As explained in the Introduction, within the first few months of the project our approach
to the problem changed from assertions and counter-examples to constructing a points-to
graph for the program under analysis. The reason for this change was that we concluded our
static analyzer already generated automatically the vast majority of assertions and counter-
examples needed for the memory safety properties, so game play was unlikely to add value.
What was lacking, in particular for the BIND program, was information about the use of
pointers. We therefore changed our approach to generate facts about the use of pointers
and memory locations within the program. The new description of the abstract game model
envisioned a universe of connected rooms, with each room containing one or more crates.
There were one-dimensional paths or bridges between crates and between rooms. A set of

107
Approved for Public Release; Distribution Unlimited.

rules described when new bridges could be created. The player made a move by selecting
a bridge. The existing bridge and its endpoints were examined to determine which bridge-
building rules applied and then added new bridges if possible. When bridges were added,
any extant bridges which shared an endpoint with a new bridge would be reexamined to
determine if that bridge could generate new paths. The game was over when all bridges
were examined and no new bridges could be built.

From a game-making perspective, the work of adding connections to a points-to graph
appeared too much like work so we were concerned that Internet gamers would be turned
away by a game that involved serious work. To remedy the situation we decided to build
a game-within-a-game, with a fun outer game surrounding a more work-like inner game.
From the player’s perspective, playing the inner game would be necessary to unlock game
elements, or to provide resources to continue the outer game.

Maintaining the robots theme we envisioned the game taking place in the near future.
CircuitBot became a resource management game, where players carry out missions to des-
tinations in space, guiding robots to build facilities which prepare the way for human colo-
nization. The player needed to program the robots to build the needed factories, research
facilities, etc. This programming task is in fact the work that produces the arcs for the
desired points-to graph.

From a game theme perspective, the play description would appear as follows:

It costs $10,000+ per kilo to lift any payload from the Earth to a stable Earth
orbit. This cost applies to people, equipment, and fuel.

A near Earth asteroid is not a rare thing. Many asteroids travel in a zone
near the Earth’s orbit. Many are small rocks between the orbits of Venus and
Mars which make a orbit of the sun at a rate that places them nearest to Earth
with predictable frequency. There are many types of asteroids depending on their
origin. Their composition is similar to the elements of the inner solar system.
Some have high levels of metals, organic elements, and water. Detecting the
composition is critical to determining the mission value.

A Near Earth asteroid which contains an ice core can contain 100s of metric
tons of water in the form of ice surrounded by a surface of other materials which
prevent solar radiation from sublimating the ice core. A robotic expedition can
travel to one of these asteroids, in an orbit that places the group within a close
range to Earth every one to two years.

Extraction of water from such a core require a system which can drill below
the surface, melt the H2O, and collect the water. Combining the collected water
with a electrolysis system can separate the water into O2 and H2 and store them
separately. This is the basis of fuel production. In space maintaining the tem-
peratures required to e�ciently store these resources is simplified. Recombining
hydrogen to create more stable fuel sources is also simplified, but potentially not
required. Oxygen is valuable as a reaction agent or for human life support.

During the time that a robotic team is out of Earth’s ideal range, the mission
can retrieve metric tons of water, and convert this into fuel using solar energy
for delivery to Earth orbit. This translates into hundreds of millions worth of
fuel every approximately 1.5 years. This fuel is transported by a dedicated trans-

108
Approved for Public Release; Distribution Unlimited.

portation system, leaving the robotic team free to focus on production and to
relocation when a fuel source is depleted.

The cost of a robot team capable of setting up a fuel production station
would be high initially, but the same set of robots can be repositioned to set up
additional stations to multiply the e↵ort. Once the technology has been refined,
cost for additional missions is reduced. E�ciency is increased over time. This
e↵ort simplifies space travel considerably. Earth can lift humans and mechanical
resources to low Earth orbit for reduced payload cost, and be assisted to high
orbit using fuel provided at a much lower cost by these sources.

Figure 15: CircuitBot logo banner.

Figure 16: CircuitBot promotional banner for meeting booths.

3.10.1 Design Goals

Our design goals for the game were to

• Provide an entertaining game structure disguising the verification work

109
Approved for Public Release; Distribution Unlimited.

Figure 17: CircuitBot poster produced for I2O Demo Day.

110
Approved for Public Release; Distribution Unlimited.

• Provide the player with short, medium and long term goals, which provides motivation
for the player to return.

• Create an environment where the player is always planning or maintaining his settle-
ments.

• Allow for unexpected opportunities and disasters to keep players engaged.

• Create a casual game in a science fiction setting, incorporate hard science themes using
real science and technology as a foundation for the descriptive elements in the game.

Each building (factories, mines, research facilities, etc) represented a game level (game
instance) and embodied the verification work we needed the player to do. The robots rep-
resented variables and addresses, abstracted from source code, and had relationships with
other robots based on constraints also abstracted from the source code. These relationships
were represented by arrows pointing from one robot to other robots. The player was provided
with a tool panel for applying constraints which triggered new connection arrows to appear
between robots when new arcs were added to the points-to graph. When the player applied
constraints until all were satisfied, the level was completed. The connection information was
reported back to the server, and the player was able to continue managing his settlements.

The world of CircuitBot relied on a turn-based time system. On a given mission, the
player selected which factories or buildings to construct. After completing the robot program-
ming task, there was an imagined period of time while the building was under construction
and not yet capable of producing resources. The more advanced a building, the longer this
build time. The game player made decisions while the clock was frozen. When he was ready,
he pressed the end turn button to allow time to pass (10 in-game days). This allowed the
player to advance time, react to the state of the universe, and then advance time again. The
in-game time had no relationship to the player’s real life time.

Missions The CircuitBot player began on missions to near-Earth asteroids and after com-
pleting these missions unlocked more complex missions farther away (Figure 18 on the fol-
lowing page). Each mission had about five goals to produce amounts of specific resources.
Producing the resources required building some number of factories. Mission locations in-
cluded:

• Near Earth Asteroid

• Carbonaceous Chondrite

• Large Belt Asteroid

• Ceres

• The Moon

• Mars

• Ganymede

• Europa

111
Approved for Public Release; Distribution Unlimited.

Figure 18: CircuitBot Mission Selection screen. Some missions are not available until the
player has collected prerequisite resources during previous missions.

112
Approved for Public Release; Distribution Unlimited.

Factories Although we used the word factory to describe the things built at the mission
location, to the player these were various types of buildings (Figure 19 on page 115). Pro-
grammatically, the game treated them all like generic factories in the sense that each requires
an input resource and produces an output resource. This makes some factories dependent
on the resources produced by other factories. We used this dependency structure to provide
the player with mission goals (for example, build a reactor, which required that a sequence
of other factories first be built to provide the raw materials needed to build the reactor). For
any given mission, we o↵ered the player a choice of factories he could build. In the factory
interface panel, factories that required resources that did not exist did not include a build
button. Resource requirements about each factory were provided so the player could deter-
mine a build sequence (Figure 20 on page 116). The interface display for factories that were
built included production information as well as status indicators that alerted the player to
resource shortages. Factories included:

• Biodome

• Biodome Upgrade

• Nano

• Nano Upgrade

• Centrifuge

• Centrifuge Upgrade

• From-Earth Fuel

• From-Earth Robots

• Storage

• Storage Upgrade

• Refinery

• Refinery Upgrade

• Refinery Upgrade 2

• Greenhouse

• Greenhouse Upgrade

• Heavy

• Heavy Upgrade

• Hospital

• Hospital Upgrade

113
Approved for Public Release; Distribution Unlimited.

• Housing

• Housing Upgrade

• Ice

• Ice Upgrade

• Leisure

• Leisure Upgrade

• Manufacturing

• Manufacturing Upgrade

• MetalMine

• MetalMine Upgrade

• Organic Mine

• Organic Mine Upgrade

• Linear Accelerator

• Linear Accelerator Upgrade

• Radiation Shielding

• Radiation Shielding Upgrade

• Reactor

• Reactor Upgrade

• Research

• Robot

• Robot Upgrade

• Solar

• Solar Upgrade

• Starship

• Starship Upgrade

• Telescope

• Telescope Upgrade

114
Approved for Public Release; Distribution Unlimited.

Figure 19: View of the CircuitBot Mission Status screen showing factories built or available
for building, mission goals, and resources available for the mission. The player selects items
from the Mission Command list to access project details.

115
Approved for Public Release; Distribution Unlimited.

Figure 20: View of a CircuitBot landing site where the player will complete a factory or other
project. Robots represent nodes in the underlying points to graph. Links drawn between
robots represent arcs in the underlying graph.

116
Approved for Public Release; Distribution Unlimited.

Resources Factories in CircuitBot consumed and produced resources. The player man-
aged resources for each mission, choosing when to sell, buy or ship resources to and from
Earth. Missions could require that certain resources exist on Earth before the player could
launch that mission. This type of resource requirement enabled us to require the player to
complete one mission, before unlocking another mission. Awards and mission goals were tied
to producing a minimal quantity of a particular resource. Resources included:

• Asteroid Protection

• Bring Comets to planet

• Colony

• Launch

• Modifies Atmosphere

• Modifies Planet Orbit

• Orbital Insertion

• Radiation Protection

• Research

• Tourism

• Maneuvering

• Energy

• Water

• Fuel

• Organic Ore

• Metal Ore

• Nanotubes

• Components

• Robots

• Heavy Metals

• Plant Life

• Animal Life

• Colonists Goal

117
Approved for Public Release; Distribution Unlimited.

• Credits

• Engines

• Transport

• Reactor

• Fissionables

• Food

• Exotic Particles

• HRS Robots

• Repair Robots

• Ship Facilities

• Starship

Research In CircuitBot, after the player built a research facility, he could select a research
topic from the bottom layer of a research dependency tree. Research required elapsed time,
with higher level research topics taking more time than lower level topics. When the research
on a particular topic was complete, that topic was considered to be known. Internally, the
game created a hidden resource related to this topic. Like any other resource, factories could
require this research topic to be completed (known) before the factory could be built. This
provided another information thread for the player to manage as he planned how to complete
missions. Research topics included:

• Organic Mine

• Greenhouses

• Solar Array 2

• Metal Mine

• Human Habitation

• Fuel Cell

• Fuel Factory

• Bucky factory

• Heavy Metal Mine

• Manufacturing

118
Approved for Public Release; Distribution Unlimited.

• Bio Dome

• Centrifuge

• Telescope

• HRS Factory

• Radiation Shielding

• Spaceport

• Luxury Complex

• Near Earth Asteroid Mapping

• Reactor

• Starship

• Quantum Accelerator

• Hospital

• Main Asteroid Belt Mapping

• Improved Fuel Factory

• Martian Explorer

• Sub Kuiper Mapping

• Oort Cloud Mapping

Market The CircuitBot market o↵ered a way for the player to convert a given resource
into money (credits) which he could use to buy resources which he had not produced. Not all
resources were available for purchase, since this might allow a player to shortcut the mission
dependency setup of the game. Resources harvested on a mission must be sent back to
Earth in order to appear in the market. Shipping resources from a mission location required
elapsed time. This time-delay added to the realism of the game and promoted the idea that
missions are taking place on far away locations. Future plans for the market, in a subsequent
version of CircuitBot, were to add a microeconomics model that would allow the prices for
resources to fluctuate based on supply and demand.

119
Approved for Public Release; Distribution Unlimited.

Figure 21: CircuitBot player command panel. Along the left-hand side of the screen are
command buttons which represent game model constraints which would provide new graph
arcs when activated. Constraints that have already provided information or would otherwise
not add information are hidden.

120
Approved for Public Release; Distribution Unlimited.

Figure 22: Final report for an individual CircuitBot game mission. The player’s score is
reflected in the operational e�ciency of his completed project in ongoing game play.

Operations In order for a player to build a factory, which was any sort of building like
solar panels or ice mines, or to prepare a resource to ship back to Earth orbit, the player
needed to prepare the robots to do the work. The robots needed to be programmed.

Each robot represented a single node, variable, memory location, or parameters passed
between functions, in the domain of a program under analysis. Along the side of the screen
are the sets of rules which the player fires to create links between robots (Figure 21 on the
previous page).

Conceptually, robots were autonomous workers which have been given a procedure. Each
robot was responsible for completing distinct steps in the procedure. The player applies the
available rules which designate that one robot depends on one or more other robots, or
that one of more robots depends on them. Imagine an ad hoc assembly line, where robots
complete a smaller task and then the next robots continue to follow through on a task, from
creating a group of structures and actuators and combining them into larger components
and then into the final construction (Figure 22). That is the concept of the robotic team.

121
Approved for Public Release; Distribution Unlimited.

In applying these rules, the player was in fact activating pointer flow constraints inside
game instances, which produced new points-to graph arcs and modified the graph nodes.
All of this information was stored in the backend document stores to inform related game
instances and for subsequent verification analysis.

3.10.2 Resource Allocation Integration

We performed early integration testing with the TA3-provided Resource Allocator (RA).
The main purpose of the RA was to assign game levels to players according to skills and
experience. In theory, this would maximize throughput of all the games by giving players
levels that they could play and complete, rather than players encountering levels that were
either too easy (boring) or too di�cult (frustrating). In practice, for the system to work,
each TA1 team needed to establish a set of criteria and metrics to assess game level di�culty
as well as metrics to measure how well a player did on a given level. Reaching a workable
universal set of criteria proved di�cult because TA1 game design and play approaches di↵ered
substantially.

Our backend services and API were available very early in the project. The flow of
game levels between backend and game was handled by PHP scripts running in our game
server. Our game, running in the browser, made requests to these scripts, which in turn
accessed the backend services. The implementation of the RA was occurring in parallel,
and by the time it was available for requesting game levels we needed to redesign the PHP
code to integrate with it. This redesign and testing was complicated because in order to
continue development we needed a reliable source of game levels. The server which hosted
the RA was out of our control, so any outage or bugs would keep our game from working. To
mitigate this risk, we added logic to the PHP scripts to either use the RA or use our backend.
To further complicate the situation, some of the TA3-provided scoring system APIs, under
development in parallel, required that game level identifiers co-exist in the scoring database
and RA database. Eventually the RA was discontinued but it was a simple matter for our
team to reset the configuration of our backend to substitute its own service equivalents.

3.10.3 Launch

We developed eleven missions of content although we deployed only eight missions during
the CircuitBot game phase. The non-deployed missions consisted of additional factory types
required to complete each mission representing new technologies available. In total, a player
would need to complete 185 factories in order to complete all available missions. This
represented developing points-to graph data for the same number of game instances.

CircuitBot was developed on best guesses of the data which had not been generated from
CodeHawk until just before launch. Analysis of data collected from CircuitBot gameplay lead
to significant improvements to the quality of the entire process. After launch, we modified
the game according to quality of game instances being delivered in order to run an auto-
solver. This ran in the background to detect challenging game instances, and to solve them
partially before presenting them to the player. Multiple loaded instances would be combined
into a single game experience greatly increasing the rate at which players could contribute
productive results.

122
Approved for Public Release; Distribution Unlimited.

We had several ways to track player progress. Because players played the missions se-
quentially, and because significant milestones indicated accomplishments, we could detect
which players were returning, how far they were proceeding, the points where they more
likely to leave, and so on. We collected logs for every player event during game play as well
as the quality of player contributions. We accumulated metrics for total work generated and
time required, and computed allocations of work time to play time activity. We also used
this data to award player badges for the in-game milestones such as First Mission Launch
Completed and Moon Mission Completed.

3.10.4 Lessons Learned

This section captures some of the lessons learned, some of which we incorporated into our
subsequent games, and some of which we leave for future programs.

1. It was a challenge to create a simple game that included the verification
work. Creating tutorials was di�cult. The concepts were not easy to convey in an
engaging form without becoming long winded. Feedback from testing was contradic-
tory at times. Although players wanted more information about how to play, they
also complained that tutorials were long, boring, and so on. Many players do not
like being forced to play tutorials in any game. The combination of an outer, explo-
ration/strategy game with an inner puzzle-like/verification related game was e↵ective
at motivating certain types of players. Players could deal with much larger sets of rules
if trivial content were filtered away. Figures 23 on the next page, 24 on page 125, 25
on page 126, 26 on page 126 and 27 on page 127 present examples of our tutorials.

2. A variety of test data is important during development. Due to upgrades
to the CodeHawk analyzer, the source of data for the game, the nature of the data
changed during the course of development. We were forced to make assumptions
about how frequently certain types of data would appear, as well as speculated on
which properties in the data would be most valuable for ordering the game levels.
Some of our assumptions did not match up well. We built-in functionality for data
attributes that we believed would be important or frequent situations, but turned out
to be neither. There was a belief that players could encounter game levels where
satisfying some constraints causes others to become unsatisfied, and satisfying the
second group causing the first group to become unsatisfied, and repeating endlessly. We
never encountered this situation during gameplay. We assumed that players wouldn’t
be able to cope with large quantities of nodes and arcs, so they would need a way to
reduce this information. To address this we developed the process of synergy in which
the player could treat a group of nodes and the arcs that join them as a single entity.
Although we built this functionality into the game, in the end the player did not need
it. In hindsight, the time and resources that went into adding an interface to the game
for synergy, as well as creating tutorials to explain it was unnecessary.

3. Anonymous players turned out to be important. Accommodating anonymous
players in our first game was a bit of an afterthought. We had assumed the number
of anonymous players would be small compared to registered players, and therefore

123
Approved for Public Release; Distribution Unlimited.

Figure 23: The CircuitBot game’s Mr. Scott character appears with messages for the player
during early game play tutorial systems.

124
Approved for Public Release; Distribution Unlimited.

Figure 24: CircuitBot tutorial screen shot, presenting concepts for commands and producing
simple alpha connections.

125
Approved for Public Release; Distribution Unlimited.

Figure 25: CircuitBot tutorial screen shot, presenting gamma connections.

Figure 26: CircuitBot tutorial screen shot, presenting beta constraints, seen at bottom of
the command list.

126
Approved for Public Release; Distribution Unlimited.

Figure 27: CircuitBot tutorial screen shot, presenting delta constraints.

discounted any contributions anonymous players could provide. In CircuitBot, anony-
mous players played a tutorial version of the game which used a set of canned game
levels. Most players (by a 15:1 ratio) preferred to try the game anonymously without
creating a user account. In reviewing the number of milestones reached by anonymous
players, where more milestones indicates a longer play experience, we note a steady
drop o↵. After reviewing the number of milestones reached by players — more mile-
stones indicating a longer play experience — we noted a steady drop o↵ of players.
Some of the possible causes for drop-o↵ before launching the game may have included:

• Unity plugin installation. Many players are reluctant to install new software in
order to try a new game.

• Apathetic netbots. Bots that find the page would move on before the game
launches

• Players impatient with game download (about 10 seconds).

Some of the possible causes for drop-o↵ during the game may have included:

• Tutorials o↵-putting. The player numbers decline steadily with each tutorial.
Many players prefer to “just play” and then visit tutorials if they do not under-
stand something. Our game forced players through tutorial levels before allowing
them free access to the complete interface.

127
Approved for Public Release; Distribution Unlimited.

• Game style. Players who do not enjoy space-based resource management games
may be turned o↵ early in the tutorial process

• Game di�culty. CircuitBot was not a simple game.

• Return as registered players - An anonymous player who enjoyed playing Circuit-
Bot might have left the game to visit the registration page and then would be
counted among the registered players.

4. Lower player tra�c than expected demanded alternative production. The
hypothetical “best” outcome for the project was to produce a game that was as popular
as “Angry Birds.” More players meant more work done. By the end, CircuitBot had
seen nearly 1,000 registered players, and had been played anonymously about 13,000
times. These unexpectedly low player visit numbers hindered the solving process. Due
to the low number of players, our team worked on automating game play, driven by
the practical need to generate data to use for analysis. One side benefit of creating
this auto-solver was that by studying the data, and looking for ways to speed it up,
we gained a better understanding of the data in the game instances.

5. Forums were a good way to reach the registered players. The forums on the
Verigames site recorded the number of players that read each forum post. This was
a large number, compared to the number of players who actually posted a message.
We conclude that the forums were a good way for the developers to communicate with
registered players.

6. Social network integration could have been expanded. The TA3 performer
developed a web portal incorporating many social elements (Figure 28 on the following
page). This was intended to provide a method for players to share information and
collaborate. The forums were a good way for players to report problems and to share
experiences. Unfortunately, this took place outside the games. The website included
buttons for “liking” the web pages for each game (via Facebook, Twitter, Google+).
This provided some social engagement, but there was room for more. If players could
have made social posts from within the games, including artwork and event messages
from the game, and linking directly back into the game, there might have been more
tra�c to the games. The di�culty in adding this deep level of social engagement arose
from the fact that each game was developed di↵erently, using di↵erent technologies,
and the TA3 performer would have been tasked with creating a generic API for all
TA1 performers to use which linked to the various social networks. There wasn’t time
or budget for such a development e↵ort. For future development it might be helpful
to allow developers to create their own social systems which could be integrated into
their games at a deeper level.

7. Replay level assumptions wedged. In our game a single game level needed to be
played multiple times, so it was permissible for a single user to encounter the same
game level multiple times. This ran contrary to assumptions used by the TA3 performer
when it designed systems that recorded data about players. In several subsystems it
assumed the combination of player id and game level id was a unique key used

128
Approved for Public Release; Distribution Unlimited.

Figure 28: A view of the CircuitBot mini-site the player used to access the game through
the Verigames web site. The mini-site displays player status, summary instructions, leader
board, and access to other social features.

129
Approved for Public Release; Distribution Unlimited.

without replacement. For our games it was unique but used with replacement. This
lead to problems in accumulating game play data about CircuitBot players to the
RA and the Scoring system. For the Scoring system - which fed the game web site
and player ranking - we established subfields in the record to track the individual
scores achieved by the player for this game level, a “best” field. The PHP code would
overwrite the top level score value for the player id + game level id record with
the “best” value.

8. More player data is better. As a result of work of integrating with the RA, we
included code to record a large amount of information about the player during game-
play. This included the time each player spent on various screens, session duration,
etc. We also recorded when players reached certain internal milestones (the first time
they reached each major screen, first mission launch, completion of each tutorial, etc).
Because the missions were played sequentially, and significant milestones were tracked
related to player progress, we could detect which players were returning, how far they
were getting, the points where they would drop o↵, and analyze this data. We collected
logs of player events and contributions during game play (these were not attributable
to identifiable individuals unless later volunteered). We maintained tallies for total
productive work generated and time required, and developed assessments of the pro-
portion of play-time to work-time. We gathered a number of internal game and backend
metrics for progress and performance tuning.

3.11 Dynamakr Game

The low player volume seen during the Phase I games refocused the project to target the
whales or gurus; that is, a handful of interested players who are willing to take the time
to learn the game and be especially productive. In particular, our team’s experience with
CircuitBot led us to make some course-correcting decisions for our Phase II game:

• The game would not include an outer game such as exploration missions, originally
intended for player retention.

• Full focus of the game should be the symbolic node relationships of our game model.

• The game should auto-activate constraints whenever possible, instead of asking the
player to take an extra step to do this.

• The game would present just-in-time tutorials to eliminate the qualification procedure.

• We would enable anonymous players to contribute to the verification e↵ort.

As we worked with the verification data in CircuitBot and gained a better understanding
of the components of a game instance — constraint types, memory o↵sets, memory intervals
— we spent time exploring di↵erent ways of ordering the game instances, grouping them
and exploring relationships between the elements. It was this basic idea of exploration that
started our search for our Phase II game design. During CircuitBot development we created
tools for automating di↵erent aspects of gameplay and wanted to include automation in the

130
Approved for Public Release; Distribution Unlimited.

new game. We saw automation as the means for clearing away the large volume of trivial
and tedious work and leaving the player to spend time on meaningful tasks.

The process of exploration was at the heart of what we were doing as we examined the
data, and we wanted to put the player in charge of this exploration. The design began
as first-person exploration game, with the player flying through many visually interesting
environments. This became our second game which we called Dynamakr (29). The main
conceptual di↵erences between Dynamakr and CircuitBot were the following:

• CircuitBot players would work on a single game level at a time. In Dynamakr the
player would work with multiple game levels simultaneously, with an auto-solver doing
some of the work. Figure 30 on the following page captures some of this idea.

• CircuitBot wrapped the verification-based work into the universe of the game. In
Dynamakr we twisted the focus of game play to encourage the player to make direct
contributions to verification rather than indirect contributions.

• In Dynamakr we revealed some of the game model by way of rules and constraints,
without exposing the program identification or its vulnerabilities.

• In Dynamakr we used simplified visual objects to enable many more important elements
to be displayed in the player’s browser.

Figure 29: Dynamakr game logo.

3.11.1 Design Goals

The Dynamakr design themes captured the conceptual changes. Dynamakr was a game of
action and puzzle solving. It adopted the metaphor of a universe containing warped fabrics
composed of knots and threads. The player traveled through the alternate reality collecting
power knots and avoiding everything else. The player piloted his way through this environ-
ment using first person controls, while constantly moving forward. The player controlled an
avatar which must perform game actions and collect energy required for additional travel.
The player’s primary goal was to search the fabric universe for certain special knots which

131
Approved for Public Release; Distribution Unlimited.

Figure 30: Early design flow detailing the change in game play, from focusing on the elements
inside a single instance, to focusing on the relationships between game instances, the decisions
available to the player, and the consequences of those decisions.

132
Approved for Public Release; Distribution Unlimited.

were not connected to threads. The player collected these unconnected knots and carried
them during travel through the universe. The player needed to avoid collisions with other
objects lest he lose travel energy. Over time as well the player’s travel energy would be
depleted so he must pause and accumulate more energy with the special play actions. When
the energy was depleted the power knot converter would appear for the player. The player
would attempt to combine, or tie, power knots to accumulate energy and earn points. The
game determined which power knots were similar enough to be combined and would assign
an energy and point value. Thoughtful players would examine the possible combinations and
only tie power knots in such a way to achieve the maximum energy value (see for instance
Figure 31 on the next page). The player could choose to save power knots to use in future
games.

The game design goals included the following:

• Take advantage of Unity 5 graphical features.

• Play multiple game instances simultaneously, illustrating how game results influenced
each other.

• Find related game instances dynamically and determine play priorities for e�ciency.

• Auto-solver analyzers were embedded in the game, working alongside the player.

• Cases where infinite loops were predicted from automated solving of game instances
did not materialize, so the need for a player to detect and deal with these situations
was no longer present. Before the second game development period started, we ran
the auto-solver many times analyzing types of constraints, numbers of arcs, CPU load,
number of iterations over the entire set, and many other factors to try to determine
what a player could do to improve on any aspect of the auto solution process.

• CircuitBot revealed that the number of arcs in a completed points to graph would be
in the millions so there needed to be special tools to allow each game instance to be
solved with only a subset of the required arcs. A player could use information about
each instance to help him determine when or if each instance needed to be solved before
committing to the time consuming and memory intensive process of downloading the
arcs already associated with the instance.

• We envisioned a Mechanical Turk derivative while developing the Dynamakr game.
Some of the development e↵ort for Mechanical Turk was devoted to designing a system
which would support both the game and the Turk system. We developed a prototype
system which exposed as much information as possible for a player to work with, which
helped us to determine the important factors having impact on game play. The two
finished games shared over 80% of the underlying code, with the main di↵erences being
how the data is presented to the player and the addition of the Dynamakr reward game.
The two games shared 100% of the backend code.

• The arcade style reward game was designed so that if any final changes to the game
model code or the CodeHawk-generated levels wound up introducing the predicted in-
finite loop states, we might detect the condition and incorporate some remedy player

133
Approved for Public Release; Distribution Unlimited.

Figure 31: Dynamakr game play visualization of individual game instances measuring arcs
generated with and without merging relevant arcs from the underlying points-to graph.

134
Approved for Public Release; Distribution Unlimited.

action into the shooter game. This would have been reflected by continuous, increas-
ingly fast game play with the player encountering larger knots of arcs repeatedly. This
optional element was never integrated because the looping situation did not occur.

The Dynamakr game was graphically intense. It used the most advanced features of
the Unity 5 game engine to yield a play experience that was abstract, interesting, and fun
to explore. The player searched through under-water, outer space, geometric, whirlwind
and other abstract environments to obtain the power knots that were the player’s primary
source of energy. The universe of the game was generated procedurally. Each game session
introduced undiscovered worlds for the player to explore.

3.11.2 Launch

The Dynamakr game was composed of two phases: a working analysis phase and a rewarding
dynamo phase. We defined these as follows:

• Analysis Phase. The player’s goal was to generate new arcs (energy in the game).
The analysis phase was complete when the player had added the target amount of
energy or more. Arcs are added when the player satisfies constraints in a game instance.
The player directed the search for related game instances based on the assumption that
arcs added to one game instance will trigger new arcs in related instances. There were
three types of relationships that instances could share based on elements they have in
common. Figure 32 on the following page describes the weaving logic.

• Dynamo Phase. Using the data from the game instances encountered the analysis
phase, the game generated a first-person flying environment. The player steered a ship
which required energy to fly and had a limited amount of shield energy which protected
the player from flying obstacles. The player shot the obstacles having di↵ering point
values based on how di�cult or dangerous they were. By shooting obstacles the player
replenished his power and shields. He could also collect powerups which improved his
weapons, which allowed the player to extend play time, and di�culty increased with
additional obstacles and hardening. Some obstacles even avoided the player’s shots
and returned fire. The dynamo phase time was proportional to the number of game
instances encountered during the analysis phase. At the end of the dynamo phase,
the player resumed play in the analysis phase. The game continued until the player
decided to leave. Figures 33 on page 137, 34 on page 137, and 35 on page 138 capture
the dynamo phase action.

On-the-Fly Tutorial The Dynamakr game learned from the CircuitBot player drop-o↵
lesson and used on-the-fly tutorials. Rather than forcing players through an initial static
and somewhat contrived tutorial level we chose to integrate text displays and indicators that
appeared just at the moment they are needed. In most cases, these indicators appeared
when the player encountered game elements for the first time. The feedback from player
testing was positive. Figures 36 on page 139 through 42 on page 145 show screen shots of
these tutorials.

135
Approved for Public Release; Distribution Unlimited.

Figure 32: Dynamakr game weaving process flow showing more refined player actions related
to state of instances, focusing player on generating new graph arcs.

136
Approved for Public Release; Distribution Unlimited.

Figure 33: Dynamakr game’s arcade-style reward game inside the dynamo. For each instance
the player fed into the dynamo there was a section of arcade objects presented that he could
shoot.

Figure 34: Additional view of the arcade reward phase of the Dynamakr game. The player
shot the energized nodes to collect their energy.

137
Approved for Public Release; Distribution Unlimited.

Figure 35: View of an Dynamakr game phase where the player shot obstacles which the
game generated based on the number of inactive pointer-flow constraints.

Citizen Scientists One of the goals during Phase II was to engage with Citizen Scientists.
One of the conclusions reached analyzing the visitor tra�c during the Phase I game was that
people were visiting the Verigames site not to play the games, but to learn more about the
project. The TA3 performer therefore revamped the Verigames website to include more
detailed information about the CSFV project from an academic perspective. To support
this with more academic information about our game, we exposed the number of arcs added
to our points-to graph so that number could be presented to the Citizen Science audience as a
measure of progress for our game. This number is labeled as the verification facts discovered
on the Citizen Scientist2 landing page.

3.11.3 Lessons Learned

This section captures some of the lessons learned, some of which were reinforced from the
previous game, some of which we incorporated into our subsequent games, and some of which
we leave for future programs.

1. It was di�cult to create a pure exploration game. Our original vision was to
create a first person flying game where the player would direct the flight of a ship
through strange environments. However, in order to do meaningful verification work
in the game, the player needed to make decisions about which game instances to load.
This could not be done while flying the ship, so we introduced an analysis phase. This
allowed us to present information about the already-loaded instances – through color,

2http://verigames.com/science/.

138
Approved for Public Release; Distribution Unlimited.

http://verigames.com/science#/.
http://verigames.com/science/.

Figure 36: Dynamakr game tutorial 1. Presenting the instance generator and dynamo that
will process the instances.

139
Approved for Public Release; Distribution Unlimited.

Figure 37: Dynamakr game tutorial 2. First instance presented and scoring for measuring
progress in game.

140
Approved for Public Release; Distribution Unlimited.

Figure 38: Dynamakr game tutorial 3. Presents tools leading the player through process
of using Seek Similar patterns on a game instance. This tool uses the underlying pointer
flow constraint call graph to find related game instances exchanging information via function
parameters.

141
Approved for Public Release; Distribution Unlimited.

Figure 39: Dynamakr game tutorial 4. Adding new instances to the workspace. These
instances are automatically solved in isolation by the auto-solvers.

142
Approved for Public Release; Distribution Unlimited.

Figure 40: Dynamakr game tutorial 5. Visualization showing the accumulation of more
instances into the work space. In this sequence, arcs from one instance are causing additional
arcs to be generated in other instances, causing the yellow meters to appear.

143
Approved for Public Release; Distribution Unlimited.

Figure 41: Dynamakr game tutorial 6. The player uses the Enhance Energy tool in instances
to pull in points-to graph elements from the server in order to activate more constraints in
each game instance. In this case, doing so causes more instances to change to yellow meters
highlighting additional information brought in from outside. If this caused new graph arcs to
be generated, and these arcs were not already present in the global points-to graph solution,
then the player’s instances would turn green to reflect his contribution to the solution.

144
Approved for Public Release; Distribution Unlimited.

Figure 42: Dynamakr game tutorial 7. The player has fulfilled the requirements to submit
the set of game instances into the dynamo.

145
Approved for Public Release; Distribution Unlimited.

size, animation, and other attributes – and allow the player to choose what to load
next. This two-phase game worked well, with a clear work phase, followed by a play
phase.

2. Anonymous players are important. The player counts from CircuitBot clearly
indicated that users wanted to visit the game without registering, so we revised our
PHP scripts to allow anonymous players to contribute results without participating
in rewards. If the player was not logged in when he reached our index page, we
o↵ered him a choice of going to the Verigames login page or playing anonymously.
If he chose to remain anonymous, our code generated a new player record in our
backend and assigned it a player ID which was identifiable as an anonymous player
but not otherwise associated to the person. This helped when analyzing player data to
distinguish anonymous players and registered players. We reused this approach for the
VIPER version of the game because we could treat Amazon Mechanical Turk workers
as a separate class of players during subsequent player analysis. While the changes to
Dynamakr did increase the rate at which a player could contribute, the overall game
appeal was not as e↵ective as CircuitBot. If the project were revisited the CircuitBot
game could be combined with Dynamakr’s improvements to provide a storyline to push
players to replay. The focus of Dynamakr was to allocate enough engineering hours
to the technical goal and focus less on motivational game play. The main di↵erence
with the CircuitBot 2.0 game would be that instead of each robot representing a single
node in a game instance, each robot would represent a game instance. The player
would need to activate a certain number of robots in order to complete a factory.
Whereas completing all eight missions in CircuitBot originally would have solved 180
game instances, a player of CircuitBot 2.0 would have needed to find new arcs in over
2,500 instances, and may solve thousands more in the process. It would combine the
motivation and sequential play of the original game with the huge improvement to
player productivity.

3.12 VIPER Game

Part way through Phase II we proposed and were tasked to produce amechanical turk version
of our verification game. This version would enlist paid crowd source (PCS) or pay for play
participants, an experiment to determine whether we could interest a di↵erent community
to contribute to the crowd sourced verification solutions. Having anticipated this version our
game was largely a revealed or stripped-away version of Dynamakr, our third game which we
called VIPER (verification improvement by PCS enhanced results) (Figure 43). Eventually
the mechanical turk operation landed fully on the Amazon Mechanical Turk (AMT) foun-
dation, with a new and convenient TA3-provided tool for loading human intelligence tasks
(HITs) into the work queue and assigning payout values. Our HITs were batches of game
instances that we would prefetch and load into the VIPER game for the player as a starting
point.

Owing to the di↵erent player motivation, the VIPER version of our game had one major
di↵erence from both Dynamakr and CircuitBot. When playing VIPER, the players were
paid for successful results. One of our primary building principles was to have the paid

146
Approved for Public Release; Distribution Unlimited.

Figure 43: VIPER game logo.

players do as much direct verification work as possible, and to do this without a need in
the game for an overt entertainment element or an obfuscation of purpose. We dropped the
overt entertainment elements of CircuitBot and Dynamakr because those were designed for
player retention. In VIPER the monetary payout was the retention device. The VIPER
player working time and retention statistics of Section 4.4 on page 183 show the success of
this approach.

3.12.1 Design Goals

Having anticipated the VIPER game during Dynamakr game development, our design and
implementation of the two were similar underneath but quite di↵erent in appearance. Our
design approach for VIPER was to start with the Dynamakr game then strip it down to the
minimum user interface necessary for a player to choose which game instances to load and
which game instances to solve (by applying its constraints). The minimum feedback would
indicate when solving a game instance produced new arcs and yielded points.

For VIPER we elevated the exploration of inter-game-level relationships to a primary
activity. Our intuition about how to search through the set of game instances, which devel-
oped during the construction of Dynamakr, was to move from one game instance to others
by following neighbor relationships. Three types of relationships were relevant:

• Left Related – game instances that are called (via function calls) from the target
game instance

• Right Related – game instances that call to the target instance

• Common Related – game instances whose constraints refer to memory locations
found within the constraints of the target game instance

In VIPER the game instances were referred to as patterns and were displayed on the
screen as rectangular information panels such as Figure 44 on the next page. The background
color of a panel was a visual indicator of the state of that pattern. Red background indicated
that the instance had been loaded, but that the arcs leading to and from the memory
locations in its constraints had not been loaded. Arc counts could be very high and a single
game instance might have referenced hundreds of arcs, so the game engine did not load them
automatically. The player chose if and when to load the arcs. The presumption was that
the player would examine the detailed information for the pattern to decide whether it was
worth the time to load the arcs for that instance. Some strategies the player may have
considered, none of which were guaranteed to succeed in any specific situation, included:

147
Approved for Public Release; Distribution Unlimited.

Figure 44: VIPER game play display panel showing detail information for a single pattern
(a single game instance). The panel shows the number of related game instances based on
di↵erent relationships (From=3, To=1, and Common=637), number of arcs (Arcs=91/260,
showing the ratio of arcs loaded over the estimated total arcs connected to this instance) and
the number of constraints (C=89/174, showing the ratio of satisfied constraints to the total
constraints.

• When a pattern background turned green, focus on loading the neighbors of that
pattern, with the understanding that arcs added for one game instance may allow for
new arcs to be generated for its neighbors.

• The pattern panel showed an estimate for the number of arcs that would be loaded
if the add arcs button for this pattern was pressed. Loading large quantities of arcs
tended to slow down the game, so it was in the player’s time and economic interest to
be thoughtful about this action.

The player was given a target number of patterns to turn green for success. Once he
reached that goal, the game provided a completion code which was sent automatically to the
AMT system through the TA3-provided API. To be paid for his e↵ort, the player submitted
his completion code into his AMT form.

In summary, the VIPER game worked like Dynamakr behind the scene, but did not
resemble it at all:

• VIPER presented none of Dynamakr’s graphical gameplay elements. In VIPER, only
the most important aspects of a game instance itself were presented to the player.
Essentially, VIPER revealed the game content directly to the player, while Dynamakr
hid this content.

• In VIPER, game instances were presented to the player as graphical panels showing
the key properties, including numerical values, of that game instance.

• In VIPER the player was given only a few actions to take. A player could load instances
related to an on-screen instance, or he could request arcs for a game instance. Request-
ing arcs caused the given game instance to be evaluated (its pointer flow constraints
were triggered) to determine if any new arcs could be added. If so, the display for
that game instance turned green and the player was awarded one point. Figures 45 on
page 150 through 50 on page 155 show the instance tagging and arc fetching activities
for the game.

148
Approved for Public Release; Distribution Unlimited.

3.12.2 Lessons Learned

The following were some lessons learned during our experience with the Mechanical Turk
version of our verification game.

• By comparison, Turk workers were plentiful. In a strong contrast to the small
population of players for either of the CircuitBot or Dynamakr games, the population
of AMT workers was plentiful. Because they were motivated by the possibility of
financial payment associated with completing a HIT, the population of turk workers
immediately descended on any new HIT candidate that appeared ripe for the taking.
Turk workers had the option of examining a HIT and then returning it if they did not
want to complete the work. We had thousands of turk workers who did this with our
VIPER game.

• Turk workers would endure inconveniences for potential payouts. With the
player directing the search through the collection of game instances, some players took
longer to find the target number of instances that could be improved. Longer searches
resulted in the game having to manage a large number of instances, which tended to
make the game run more slowly. The longer the game took to complete, the more
negative feedback we received from the turk workers. Such feedback focused on the
amount of time it took to play the game, which translated directly into less pay per hour
of e↵ort. Although this negative feedback — email messages — gave the impression
that the game was not working, this impression was misplaced. The VIPER game
simply took more time to process the game content because more game instances were
loaded into memory and consuming network tra�c. Overall, given the large number of
turk workers who played the game, the percentage of negative feedback we received was
quite small. Section H on page 306 provides an example of the feedback we followed
during the AMT sessions.

4.0 RESULTS AND DISCUSSION

In this section we present statistical results gathered for each of our three games. Each result
collection presents player counts and play time as well as various game productivity measures.
Section 4.1 on page 156 first presents the economic model we derived to assess the value of
an improved verification result, comparing the cost of obtaining that result automatically
or with the crowd, with the cost avoidance of human experts manually computing the same
result. Section 4.2 on page 157 presents the CircuitBot game results. Section 4.3 on page 169
presents the Dynamakr game results. Section 4.4 on page 183 presents the VIPER game
results. For better comparison of paid and unpaid players, we have also produced a set of
combined results for the Dynamakr and VIPER games, presented in Section 4.5 on page 207.

In addition to game play results, we also present here our auto-solver results. Section 4.6
on page 215 presents the production and economic statistics for our Arcweaver auto-solver.
Section 4.7 on page 257 provides the verification cases and data tables accompanying these
results.

149
Approved for Public Release; Distribution Unlimited.

Figure 45: VIPER game play. This workspace shows a single instance in the middle and the
related instances up and down the call graph. Color coding shows red for instances which
link to or produce no arcs beyond the ones contained initially. Yellow shows arcs from the
server points-to graph, and green represents instances which have produced additional arcs
after importing arcs from server’s global points-to graph.

150
Approved for Public Release; Distribution Unlimited.

Figure 46: VIPER game play. The grey instances indicate the initial state of instances before
being processed by the auto-solver.

151
Approved for Public Release; Distribution Unlimited.

Figure 47: VIPER game play. Workers can tag instances they find interesting so that they
remain in the workspace while changing views, as shown with the instance above center.
Below center is an instance which contains one or more common node identifiers (called
universal IDs).

152
Approved for Public Release; Distribution Unlimited.

Figure 48: VIPER game play. This worker is importing more instances from the server as
referenced by shared graph nodes.

153
Approved for Public Release; Distribution Unlimited.

Figure 49: VIPER game play. An alternative view of the imported instances to search for
pastes all instances together.

154
Approved for Public Release; Distribution Unlimited.

Figure 50: VIPER game play. The player has tagged more instances of interest and is
importing the related arcs for one of them.

155
Approved for Public Release; Distribution Unlimited.

Figure 51: A straight-forward model for the value of a memory safety verification condition
(MSVC) based on formal methods studies claiming a cost of $1 thousand per source line of
code (SLOC).

4.1 Economic Model

In order to assign a rough monetary value to a verification result obtained with our auto-
mated systems we derived some models. Where one agrees with the premises, these models
are straight-forward. Our first economic benefit model was based on formal methods lore
claiming a cost of one thousand dollars per source line of code ($1K/SLOC) (see Figure 51).
If memory safety verification conditions (MSVC) comprise say 90% of the cyber attack sur-
face and associated formal methods e↵ort (including vulnerabilities such as stack corruption,
heap corruption, use-after-free, and so on) then the value of the formal methods verification
related to memory safety is $900/SLOC. The number of MSVC for a body of source code
is fixed, so for BIND we have roughly 332 KSLOC and with zero levels of inlining about
3.3 million MSVC, or an average of 10 MSVC/SLOC. Canceling the SLOC terms yields
$90/MSVC. If an automated verification system obtains 350 new proven safe MSVC results
at zero cost, its net economic benefit is $31,500. If there was cost associated with computer
time or worker reward payments, we would subtract this from the benefit.

Our second model is similar but based on a di↵erent premise and study. The study
reported expert time rather than expert cost for formal methods at 3.27 SLOC/hr. If we
assumed fully burdened expert cost might cost $200/hr, then the formal method e↵ort cost
would be $654/SLOC (Figure 52 on the next page). With 10 MSVC/SLOC the cancellation
yields $65.40/MSVC and our small case example benefit becomes $22,890.

For an example that includes economic cost consider the case shown in Figure 53 on
page 158. The Arcweaver auto-solver solution rate on a particular Amazon Web Services
(AWS) Elastic Compute Cloud (EC2) host type c3.large is 10,000 MSVC/hr at a computer
time cost of $0.10/hr. For the previous example with 10 MSVC/SLOC at the study rate
of 3.27 SLOC/hr, this yields a required 32.7 MSVC/hr at $200/hr expense for the expert

156
Approved for Public Release; Distribution Unlimited.

Figure 52: A straight-forward model for the value of a memory safety verification condition
(MSVC) based on a source line of code (SLOC) per hour rate for formal methods.

time. The Arcweaver production rate is 10,000 MSVC/hr at a cost of $0.10/hr. For the
example study case of 350 MSVC improvements, the expert cost would be $21,406.73 while
the equivalent Arcweaver cost would be $0.0035. In fact the EC2 lease time is rounded up
to the next whole hour so the imposed cost for a solitary job would be ten cents.

With CodeHawk analysis we usually employ inlining to increase the verification resolu-
tion. When deeper levels of inlining are used the number of MSVC per SLOC increases
as will be seen below in the Arcweaver results (Section ?? on page ??). Consequently the
dollar value per verification condition decreases by these models, but the total number of
verification conditions increases as well. Generally the results improve as well and we expect
to obtain more verification conditions improved even at a reduced individual value for an
overall larger economic benefit. The Arcweaver results tables illustrate this di↵erence.

4.2 CircuitBot Results

CircuitBot was our Phase I game. The game provided a space colonization mission backstory
intended to retain and incentivize players and thereby generate increased program verification
production. We loaded a large volume of verification game candidates onto the backend to
initialize the content, and the CircuitBot backend delivered these candidates to the players
using its game instance prioritization algorithm. This section presents a number of statistical
results collected from game play through our backend and the TA3-provided Logaholics
server. These data were collected starting with the “friends and family” release on 24 October
2013 or the public live release date of 2 December 2013.

Figure 54 on page 160 shows the spot statistics for the number of unique visitors (by
IP address), page views, and pages per user over time for the CircuitBot game beginning
with its live release on 2 December 2013. Figure 55 on page 161 provides the cumulative

157
Approved for Public Release; Distribution Unlimited.

Figure 53: A straight-forward model for the value of a memory safety verification condition
(MSVC) based on a source line of code (SLOC) per hour rate for formal methods. The Ar-
cweaver auto-solver solution rate on a particular host type is 10,000 MSVC/hr at a computer
time cost of $0.10/hr.

count representation of these statistics. Clearly the visitor tra�c was highest just after
the live release, likely associated with the news generated by the CSFV Program and the
Verigames site, press releases, and social media. There were a few ephemeral tra�c spikes
in tra�c later on, and these also were directly associated with news releases. While playing
the game the player contributes verification results in the form of points-to graph arcs.
Figure 56 on page 162 shows the spot statistics for graph arcs generated by day along with
the number of game instances (game levels) played each day. Figure 57 on page 163 provides
the cumulative count representation of these statistics. Because there were hundreds of
thousands of unique game instances that must be played several times over in order to
complete a fixpoint iteration, these data show that the volume of tra�c was insu�cient
to achieve a fixpoint solution in a reasonable amount of time; this finding informed our
subsequent game designs. Figure 58 on page 164 shows some of the internal metrics we
collected about the game mechanics and play experience, intended to help us determine where
bottlenecks or obstacles might occur. The figure shows no particular problems, although we
did use a figure like this early in the project to collect data about player loss during the
tutorial flow.

Ranking the players by contributions we can learn whether a few players contributed
most of the results. We measured verification productivity the number of arcs the player
contributed to the points-to graph for the program under analysis. After the graph reached
a fixed point solution (which we measured by both arc and interval stability) then we could
compute the total size of the graph and each player’s individual contribution. The measure

158
Approved for Public Release; Distribution Unlimited.

also enabled an in-progress contribution merely by computing the player’s fraction of the
total graph arcs generated so far. Figure 59 on page 165 ranks the individual registered
players by their total arc production for all games played. There were over 300 registered
players for CircuitBot, as well as over 1,000 anonymous players for which we did not collect
data. The figure highlights a region in orange to indicate that a small proportion of registered
players produced 80% of the total volume of arcs for the game’s graph iteration. The top
producers annotation provides the actual count included in this region. Similarly, because
we know we have a finite number of game levels contributing constraints to the constraint
problem the players are solving, we can compute how many of these game levels have been
consumed. Figure 60 on page 166 ranks the registered players by their total game instance
consumption for all days played. It highlights a region in orange to indicate that a small
proportion of players is required to consume 80% of the game instances; the annotation top
consumers provides the actual count included in this region. Figure 61 on page 167 depicts
the cumulative play time (in seconds) experienced to produce these arcs and consume these
game instances, measured as the total session time including the backstory and analysis time.
Finally, Figure 62 on page 168 shows one measure of CircuitBot player retention reported
during the course of the program. For each registered player ID we counted the number of
di↵erent days that player contributed game results. The player may have contributed many
results on a given day but we do not distinguish single-day contributions. For CircuitBot we
did not track or collect verification results for anonymous player contributions. These data
reveal that the CircuitBot game had a few “whale” players that returned many days and
contributed most of the productive work.

159
Approved for Public Release; Distribution Unlimited.

Figure 54: CircuitBot game daily visitor and page view counts over time. Samples from 2
December 2013 live release through 15 August 2015.

160
Approved for Public Release; Distribution Unlimited.

Figure 55: CircuitBot game daily visitor and page view counts accumulated over time.
Samples from 2 December 2013 live release through 15 August 2015.

161
Approved for Public Release; Distribution Unlimited.

Figure 56: CircuitBot arc generation and game instance consumption daily counts over time.
Samples from 24 October 2013 Friends and Family release through 15 August 2015.

162
Approved for Public Release; Distribution Unlimited.

Figure 57: CircuitBot arc generation and game instance consumption daily counts accu-
mulated over time. Samples from 24 October 2013 Friends and Family release through 15
August 2015.

163
Approved for Public Release; Distribution Unlimited.

Figure 58: CircuitBot game internal metrics over time. Internal metrics tracked regard-
ing game instance activity and back story progress included arcs generated, mission goals
achieved, missions completed, and mission days played. Samples from 24 October 2013
Friends and Family release through 15 August 2015.

164
Approved for Public Release; Distribution Unlimited.

Figure 59: CircuitBot game top arc producers. Ranked high to low from left to right, the top
few players produced 80% of all the productive results (points-to graph arcs) for the game.
The CircuitBot game did not enable anonymous players to contribute game results so these
data were not collected. Samples from 24 October 2013 live release through 15 August 2015.

165
Approved for Public Release; Distribution Unlimited.

Figure 60: CircuitBot game top game consumers. Ranked high to low from left to right, the
top few players consumed 80% of all the constraints problem game instances. The CircuitBot
game did not enable anonymous players to contribute game results so these data were not
collected. Samples from 24 October 2013 Friends and Family release through 15 August
2015.

166
Approved for Public Release; Distribution Unlimited.

Figure 61: CircuitBot game cumulative play time (seconds). In the CircuitBot game the play
time collected was the combined session time which included backstory time and analysis
time. Samples from 24 October 2013 Friends and Family release through 15 August 2015.

167
Approved for Public Release; Distribution Unlimited.

Figure 62: CircuitBot game player retention represented as number of days played (repeat
visits) per unique player identifier. Within each day a player may have played the game
one or more times. Samples from 24 October 2013 Friends and Family release through 15
August 2015.

168
Approved for Public Release; Distribution Unlimited.

4.3 Dynamakr Results

Dynamakr was our Phase II game. We designed it with lessons learned from CircuitBot
in mind, and with an eye toward a possible Amazon Mechanical Turk game in the future.
Dynamakr stripped away much of the backstory elements of the game, which were designed
for player retention, and set out for more immediate capture of productive work with higher
integration between human players and robot auto-solvers. This section presents a number
of statistical results collected from game play through our backend and the TA3-provided
Logaholics server. These data were collected starting with the “friends and family” release
on 10 April 2015 or the public live release date of 27 May 2015.

Figure 63 on page 171 shows the spot statistics for the number of unique visitors (by
IP address), page views, and pages per user over time for the Dynamakr game beginning
with its live release on 27 May 2015. Figure 64 on page 172 provides the cumulative count
representation of these statistics. The visitor tra�c was high just after the live release, likely
associated with the news generated by the CSFV Program and the Verigames site, but there
was also a nearly equally-sized spike in tra�c associated with a BBC article. There were a
few ephemeral tra�c spikes in tra�c later on, and these also were directly associated with
news releases. As with the CircuitBot game, while playing the Dynamakr game the player
contributes verification results in the form of points-to graph arcs. Unlike the CircuitBot
game, during the Dynamakr game the anonymous players can contribute valid results to
the collection but we do not associate them with particular persons. Figure 65 on page 173
shows the spot statistics for graph arcs generated by day along with the number of game
instances (game levels) played each day. Figure 66 on page 174 provides the cumulative
count representation of these statistics. Interestingly, even though the BBC-stimulated tra�c
perked up the visitors, these visitors did not contribute to game results. Like CircuitBot,
because there were hundreds of thousands of unique game instances that must be played
several times over in order to complete a fixpoint iteration, these data show that the volume
of tra�c was insu�cient to achieve a fixpoint solution in a reasonable amount of time;
this finding informed our subsequent game designs. However, unlike CircuitBot, during
Dynamakr we used auto-solvers to work o↵ a large proportion of the easier game problems
in order to eliminate the tedium from the human game play experience. Consequently,
the games were more interesting for the players and the problems presented required more
human intuition to solve. During Dynamakr we loaded only one or two BIND modules at
a time in order to try to achieve a fixed point solution for a verifiable module, rather than
loading all BIND modules at one time and trying to solve all of them to fixpoint solution
simultaneously.

As with CircuitBot, by ranking the Dynamakr players by contributions we learn whether
a few players contributed most of the results. We measured verification productivity the
number of arcs the player contributed to the points-to graph for the program under analysis.
Figure 67 on page 175 ranks both the anonymous and the individual registered players by
their total arc production for all games played. The figure shows all anonymous players
(over 750 as shown in the annotation) bundled into one data point, while ranking the regis-
tered players individually. The figure highlights a region in orange to indicate that a small
proportion of contributors produced 80% of the total volume of arcs for the game’s graph
iteration. The top producers annotation provides the actual count included in this region. If

169
Approved for Public Release; Distribution Unlimited.

we unbundle the anonymous players as in Figure 68 we can see the contribution of a small
number of registered players exceeds the relative contribution of anonymous contributors.
Similarly, because we know we have a finite number of game levels contributing constraints
to the constraint problem the players are solving, we can compute how many of these game
levels have been consumed. Figure 69 on page 177 ranks the anonymous and registered play-
ers by their total game instance consumption for all days played, with anonymous players
bundled into one point. It highlights a region in orange to indicate that a small proportion
of players is required to consume 80% of the game instances. Figure 70 on page 178 provides
the game consumption ranking with anonymous players unbundled.

To help examine game productivity, Figure 71 on page 179 shows some of the internal
metrics we collected about the game mechanics and play experience. Figure 72 on page 180
shows the cumulative graph arc production over the course of new game instances seen by
players. Eventually the game would continue to generate new arcs even after no new game
instances were seen as the fixpoint iteration continues to resolve the graph arcs and intervals.
Figure 73 on page 181 depicts the cumulative phase time (in seconds) experienced to produce
the game results. The Dynamakr game included both a productive work phase (analysis
time) and a non-productive play phase (dynamo time), the latter intended to reward the
help to retain the player.

Finally, Figure 74 on page 182 shows one measure of Dynamakr player retention reported
during the course of the program. For each registered player ID we counted the number
of di↵erent days that player contributed game results. The player may have contributed
many results on a given day but we do not distinguish single-day contributions. These data
reveal that the Dynamakr game had a few “whale” players that returned several days and
contributed most of the productive work, although not as many as the CircuitBot game
(moreover Dynamakr had not been running as long as CircuitBot).

170
Approved for Public Release; Distribution Unlimited.

Figure 63: Dynamakr game daily visitor and page view counts over time. Samples from 27
May 2015 live release through 12 October 2015.

171
Approved for Public Release; Distribution Unlimited.

Figure 64: Dynamakr game daily visitor and page view counts accumulated over time.
Samples from 27 May 2015 live release through 12 October 2015.

172
Approved for Public Release; Distribution Unlimited.

Figure 65: Dynamakr arc generation and game instance consumption daily counts over time.
Samples from 10 April 2015 Friends and Family release through 12 October 2015.

173
Approved for Public Release; Distribution Unlimited.

Figure 66: Dynamakr arc generation and game instance consumption daily counts accumu-
lated over time. Samples from 10 April 2015 Friends and Family release through 12 October
2015.

174
Approved for Public Release; Distribution Unlimited.

Figure 67: Dynamakr game top arc producers. Ranked high to low from left to right, the top
few players produced 80% of all the productive results (points-to graph arcs) for the game.
This plot bundles all the anonymous players into one point. Samples from 27 May 2015 live
release through 12 October 2015.

175
Approved for Public Release; Distribution Unlimited.

Figure 68: Dynamakr game top arc producers. Ranked high to low from left to right, the top
few players produced 80% of all the productive results (points-to graph arcs) for the game.
This plot unbundles all the anonymous players into separate points in order to see their
contribution in relation to the registered players. Samples from 27 May 2015 live release
through 12 October 2015.

176
Approved for Public Release; Distribution Unlimited.

Figure 69: Dynamakr game top game consumers. Ranked high to low from left to right,
the top few players consumed 80% of all the constraints problem game instances. This plot
bundles all the anonymous players into one point. Samples from 27 May 2015 live release
through 12 October 2015.

177
Approved for Public Release; Distribution Unlimited.

Figure 70: Dynamakr game top game consumers. Ranked high to low from left to right,
the top few players consumed 80% of all the constraints problem game instances. This plot
unbundles all the anonymous players into separate points in order to see their contribution in
relation to the registered players. Samples from 27 May 2015 live release through 12 October
2015.

178
Approved for Public Release; Distribution Unlimited.

Figure 71: Dynamakr game internal metrics over time. Internal metrics tracked regarding
game instance activity included game instances seen, updated, solved, improved, and first-
played counts. Samples from 10 April 2015 Friends and Family release through 12 October
2015.

179
Approved for Public Release; Distribution Unlimited.

Figure 72: Dynamakr game graph arc production (arc count) and player games seen over
time. Samples from 10 April 2015 Friends and Family release through 12 October 2015.

180
Approved for Public Release; Distribution Unlimited.

Figure 73: Dynamakr game cumulative analysis and dynamo time (seconds) over time. In
the Dynamakr game there were two phases to the game: the analysis time is the work or
productive phase time, while the dynamo time is the play or reward phase time. Samples
from 10 April 2015 Friends and Family release through 12 October 2015.

181
Approved for Public Release; Distribution Unlimited.

Figure 74: Dynamakr game player retention represented as number of days played (repeat
visits) per unique player identifier. Within each day a player may have played the game one
or more times. Samples from 27 May 2015 live release through 12 October 2015.

182
Approved for Public Release; Distribution Unlimited.

4.4 VIPER Results

VIPER was our Amazon Mechanical Turk (AMT) game. This section presents a number
of statistical results collected from game play through AMT, human intelligence task (HIT)
reward value (dollar value) assignment, and our backend. These data were collected starting
with the live release date of 4 June 2015. We dispatched the games through a succession
of HITs, each with an objective and payout budget in mind. After each HIT objective was
achieved we prepared and dispatched another HIT; this explains the somewhat discontinuous
appearance of these data over time.

Figure 75 on page 185 shows the spot graph arc generation and game instance consump-
tion over time owing to HIT activity from the AMT workers. Figure 76 on page 186 provides
the cumulative count representation of these statistics. We collected a variety of internal
metrics, shown in Figure 77 on page 187, for game instance counts that had been seen, up-
dated, solved, improved, and first-played by the AMT workers over time, clearly influenced
by HIT release events. The productive work time we refer to as analysis time during which
points-to arc generation occurs for the results graph, and as Figure 78 on page 188 shows
we accumulated those seconds over time and these too were influenced by game instance
delivery and HIT releases. Figure 79 on page 189 shows the individual game play sessions
for analysis time (in seconds) and graph arc production (arcs produced). While most of the
samples appear in the wandering and non-productive area of the bottom left-hand corner
(low production rate), many workers produced a large number of arcs in a relatively small
period of time (high production rate), while a few workers played for a long time and pro-
duced almost no arcs. Spreading the data out for better examination requires a log-log scale
as shown in Figure 80 on page 190. In this figure we also have shown a conditional fitted
mean to 95% confidence level with standard error bars. Figure 81 on page 191 depicts the
arc production over time together with the cumulative number of game instances seen by
the players. Initially a few key game instances drive the arc production, but later as the
graph fills out the other instances arrive to complete the periphery.

Ranking the players by contributions we can learn whether a few players contributed
most of the results. Figure 82 on page 192 ranks the individual AMT workers by their total
arc production during a session. It highlights the region in orange to indicate that a small
proportion of the total players produced 80% of the total volume of arcs for the game’s graph
iteration. Moreover, it highlights that a large proportion of players contributed no arcs to the
solution, most of these being the players that returned the HIT unsolved. Similarly, because
we know we have a finite number of game levels contributing constraints to the constraint
problem the workers are solving, we can compute how many of these game levels have been
consumed. Figure 83 on page 193 ranks the individual AMT workers by their total game
instance consumption during a session. It highlights the region in orange to indicate that a
larger proportion of players is required to consume 80% of the game instances.

Relating the arc production e↵ort to money, we can introduce the HIT reward or payout
value. If the worker successfully completes the HIT by our criteria given at the start of the
task, then he earns the payout. We were given a budget to manage and experiment with
for the project. Figure 84 on page 194 shows the VIPER game total arc production by HIT
payout value; there were four payout values of 15 cents, 50 cents, $1 and $2. At the time
of the data collection we had run many more HITs at the 50 cent payout. Interestingly, the

183
Approved for Public Release; Distribution Unlimited.

medians of the 50 cent HITs are higher and the upper quartile is much higher than the 15
cents and $1 HITs. These data include the non-productive sessions in which the workers look
at the task and return it unsolved. If we look instead at the arc production rate (arcs per
second), then the medians and means are much closer together for the total sessions, shown
in Figure 85 on page 195, including productive and non-productive sessions regardless of the
number of HITs released at each payout. Interestingly, when we examine the time spent by
workers in each session, omitting just a few outliers as shown in Figure 86 on page 196, we see
that at all four payout values the workers spend about the same amount of time in a session:
about 1,200 seconds on average including productive and non-productive time, regardless of
payout value. But once we eliminate the non-productive sessions, shown in Figure 87 on
page 197, we see an interesting di↵erence among the payout values. Workers seem to be
indi↵erent to the 15 cent and 50 cent payouts regarding production time: the medians and
means are rather close. The productive workers at the $1 and $2 HIT payouts, however, are
willing to spend much more time solving the problem. The median AMT worker spent over
2,200 seconds (about 36 minutes) on the $1 payout problems.

We prepared each HIT with an expected di�culty level. The number of simultaneous
game instances to be reasoned about comprised the di�culty level, and it also stressed the
game engine plugin and player’s browser. We started with smaller di�culties and worked
our way up to higher di�culties to learn how much work we might push out in a HIT before
the plugins, browsers, and players complained. We expected player performance to drop
with higher di�culties at lower payouts, as the time investment for the smaller reward likely
was not worthwhile. Some players nevertheless pressed through the di�culties to earn the
rewards. Figure 88 on page 198 shows the AMT worker graph arc production by HIT value
and di�culty. Our di�culty thresholds were 15, 20, 25 and 50 simultaneous game instances.
One can see in this figure for instance at a di�culty of 15 that for each HIT payout value
the median and quartile player times spent completing the HIT increases with the HIT
payout value. Figure 89 on page 199 shows the game instances the players managed to solve
during the HIT sessions, by HIT value and di�culty. The game would stream in more game
instances as the player worked through the constraints problems, and the auto-solvers would
solve constraints by applying the game model rules where it could. Figure 92 on page 202
plots the graph arc production by games solved during the HIT session, by HIT di�culty and
payout value, while Figure 93 on page 203 reduces the content to the graph arc production
by games improved during the HIT session, again by HIT di�culty and payout value. In
the latter case the AMT worker has taken a previously-solved game instance and by his arc
contributions made the game score higher for that game instance. Figure 94 on page 204
rearranges these results by di�culty rather than payout.

Figure 90 on page 200 ignores the payouts and combines the di�culties onto a graph
arc production by games solved plot, using log scales, together with conditional mean fits
on each di�culty level in order to identify whether there may be a varying correspondence
between production and game solutions by di�culty. Ignoring the payout in this case seems
to destroy such a relationship because the incentive factor that increases productivity is
lost. Moreover in these data we have an issue that the fixpoint iteration is near stable such
that the arc production tails o↵ while game solutions continue; adding new game content in
future HITs will restart arc production. Figure 91 on page 201 makes a similar statement
by ignoring di�culty and fitting payouts.

184
Approved for Public Release; Distribution Unlimited.

Figure 75: VIPER game spot arc production and game levels (instances) played over time.
Samples from 4 June 2015 live release through 17 September 2015.

Figure 95 on page 205 sums the total play time for each level of solved game instances.
The level of zero solved game instances is the balking level at which the AMT workers played
the game but did not come up with any solutions, returning the game unsolved and therefore
not earning a payout. The sum total time at that level is the balking time for the AMT
workers which exceeded 63,000 seconds.

Finally, Figure 96 on page 206 shows AMT worker retention. Workers may revisit the
AMT HIT list and select to perform another VIPER HIT. The plot indicates the number of
times known worker IDs played only one HIT as well as the number of times known worker
IDs returned to play on two occasions, three occasions, and so on. These data include visits
at all HIT payout values.

185
Approved for Public Release; Distribution Unlimited.

Figure 76: VIPER game cumulative arc production and game levels (instances) played over
time. Samples from 4 June 2015 live release through 17 September 2015.

186
Approved for Public Release; Distribution Unlimited.

Figure 77: VIPER game internal metrics over time. These internals accumulate counters for
game instances by whether they have been seen, updated, solved, improved, or first-played
by the player community. Samples from 4 June 2015 live release through 17 September 2015.

187
Approved for Public Release; Distribution Unlimited.

Figure 78: VIPER cumulative analysis time by date. Because the VIPER game uses Amazon
Mechanical Turk delivery it strips away the game elements. Consequently we tracked only
the productive analysis time for the solution and there was no non-productive play time
(labeled Dynamo phase time as in the Dynamakr game) for the solution. Samples from 4
June 2015 live release through 17 September 2015.

188
Approved for Public Release; Distribution Unlimited.

Figure 79: VIPER game analysis time versus arcs produced. The mean line represents the
mean arc production rate (arcs per unit time) with an intercept of zero. Samples from 4
June 2015 live release through 17 September 2015.

189
Approved for Public Release; Distribution Unlimited.

Figure 80: VIPER game analysis time versus arcs produced, log-log scale. The conditional
mean shown is fitted to 95% confidence and shown with standard error range. Samples from
4 June 2015 live release through 17 September 2015.

190
Approved for Public Release; Distribution Unlimited.

Figure 81: VIPER game arcs produced and seen by all players over time. Samples from 4
June 2015 live release through 17 September 2015.

191
Approved for Public Release; Distribution Unlimited.

Figure 82: VIPER player rank by arc production. Players ranked left-to-right by arc pro-
duction count. The highlighted region indicates the players contributing 80% of the total
arc production. Samples from 4 June 2015 live release through 17 September 2015.

192
Approved for Public Release; Distribution Unlimited.

Figure 83: VIPER player rank by game consumption. Players ranked left-to-right by game
instance consumption (play) count. The highlighted region indicates the players consuming
80% of the played game count. Samples from 4 June 2015 live release through 17 September
2015.

193
Approved for Public Release; Distribution Unlimited.

Figure 84: VIPER game arc production statistics by HIT reward value. Box-and-whisker
representation of population statistics with median and quartiles. Samples from 4 June 2015
live release through 17 September 2015.

194
Approved for Public Release; Distribution Unlimited.

Figure 85: VIPER game arc production rate (arcs per second) by HIT reward value. Box-
and-whisker representation of population statistics with median and quartiles. Samples from
4 June 2015 live release through 17 September 2015.

195
Approved for Public Release; Distribution Unlimited.

Figure 86: VIPER player time interest by HIT reward value, including non-productive cases.
Box-and-whisker representation of population statistics with median and quartiles. Two
cases above 20,000 samples removed for presentation. Samples from 4 June 2015 live release
through 17 September 2015.

196
Approved for Public Release; Distribution Unlimited.

Figure 87: VIPER player productive time by HIT reward value, including only productive
cases. Box-and-whisker representation of population statistics with median and quartiles.
Two cases above 20,000 samples removed for presentation. Samples from 4 June 2015 live
release through 17 September 2015.

197
Approved for Public Release; Distribution Unlimited.

Figure 88: VIPER productive analysis time by reward and di�culty. Human intelligence task
(HIT) payout value in dollars by the log of arc-producing analysis time in seconds, allocated
by HIT di�culty level panels of values 15, 20, 25 and 50 simultaneous game instances. The
statistics are presented as box-and-whisker plots with median bars and the upper and lower
quartiles defining the boxes, and whiskers extending to 1.5 times the interquartile range.
Outliers are shown as points beyond the whiskers. The bottom panel combines all di�culty
levels from the panels above. Samples from 4 June 2015 live release through 17 September
2015.

198
Approved for Public Release; Distribution Unlimited.

Figure 89: VIPER games solved by reward and di�culty. Human intelligence task (HIT)
payout value in dollars by the number of game instances solved during HIT completion, allo-
cated by HIT di�culty level panels of values 15, 20, 25 and 50 simultaneous game instances.
The statistics are presented as box-and-whisker plots with median bars and the upper and
lower quartiles defining the boxes, and whiskers extending to 1.5 times the interquartile
range. Outliers are shown as points beyond the whiskers. The bottom panel combines all
di�culty levels from the panels above. Samples from 4 June 2015 live release through 17
September 2015.

199
Approved for Public Release; Distribution Unlimited.

Figure 90: VIPER arc production by game solutions and di�culty. Human intelligence
task (HIT) game solutions and graph arc production samples annotated and fitted by HIT
di�culty rating (15, 20, 25 or 50 simultaneous game instances). Fits are linear fits of
conditional means to each di�culty on the log-log data to 95% confidence. The di�culty
20 data were hampered by the near-completion of a fixpoint solution for the program under
analysis and therefore few arcs available for production; future HITs at this di�culty with
a fresh fixpoint iteration would yield a positive-sloping fit. Samples from 4 June 2015 live
release through 17 September 2015.

200
Approved for Public Release; Distribution Unlimited.

Figure 91: VIPER arc production by game solutions and payout. Human intelligence task
(HIT) game solutions and graph arc production samples annotated and fitted by HIT payout
value (0.15, 0.50, 1.00 and 2.00 dollars). Fits are linear fits of conditional means to each
payout value on the log-log data to 95% confidence. The payout 2 data were hampered by the
near-completion of a fixpoint solution for the program under analysis and therefore few arcs
available for production; future HITs at this payout with a fresh fixpoint iteration would
yield a positive-sloping fit. Samples from 4 June 2015 live release through 17 September
2015.

201
Approved for Public Release; Distribution Unlimited.

Figure 92: VIPER arc production by game solutions and payout grid. Human intelligence
task (HIT) game solutions and graph arc production samples by HIT di�culty (15, 20, 25
and 50 simultaneous game instances) and annotated by HIT payout value (0.15, 0.50, 1.00
and 2.00 dollars). Samples from 4 June 2015 live release through 17 September 2015.

202
Approved for Public Release; Distribution Unlimited.

Figure 93: VIPER arc production and game solution improvement by human intelligence
task (HIT) payout value and di�culty rating. The HIT payout values are 0.15, 0.50, 1.00 and
2.00 dollars. The HIT di�culty ratings are 15, 20, 25, and 50 simultaneous game instances.
All series exclude samples in which no arcs were generated or no solutions were improved.
Samples from 4 June 2015 live release through 17 September 2015.

203
Approved for Public Release; Distribution Unlimited.

Figure 94: VIPER arc production and game solution improvement by human intelligence
task (HIT) di�culty rating and payout value. The HIT payout values are 0.15, 0.50, 1.00 and
2.00 dollars. The HIT di�culty ratings are 15, 20, 25, and 50 simultaneous game instances.
All series exclude samples in which no arcs were generated or no solutions were improved.
Samples from 4 June 2015 live release through 17 September 2015.

204
Approved for Public Release; Distribution Unlimited.

Figure 95: VIPER play time by games solved. Total play time seconds for each number of
game instances solved. Total play time at zero game solutions is considered the balking time
in which players returned games unsolved. Samples from 4 June 2015 live release through
17 September 2015.

205
Approved for Public Release; Distribution Unlimited.

Figure 96: VIPER worker retention by return visit count. Indicates the number of times
workers revisited to performed another HIT. Samples from 4 June 2015 live release through
17 September 2015.

206
Approved for Public Release; Distribution Unlimited.

4.5 Combined Results

We combined the Dynamakr and VIPER results onto the same plots in order to facilitate
comparison. Although the games started at di↵erent times, played di↵erent game loads at
di↵erent times, saw a di↵erent number and likely di↵erent population of participants (we
were not able to identify anonymous players), the games use the same game model and
underlying analysis targets so we are interested in comparing certain productivity measures.
Figure 97 on the following page shows the cumulative contribution of graph arc production
by player ranking for the three player types in the two games; Dynamakr had registered
and anonymous players while VIPER had paid players here labeled turks. As explained in
the individual game data, the top contributors for each contributed most of the productive
work, so the traces here climb quickly indicating the top players – left to right – contribute
most of the work. Because there are fewer registered players than either turks or anonymous
players, that curve reaches its maximum value 100% quickly. Zooming in for more details
of the top performers, Figure 98 on page 209 shows the top-100 performers in each player
category. Here we see the top-performing turks actually out-perform the registered players
initially, but because there are more of them many turks contribute to the results. Figure 99
on page 210 zooms in further to examine to top-50 performers.

Examining the individual contributions directly, we plot the total number of graph arcs
produced by ranked player type. Figure 100 on page 211 plots the log of the total arcs
produced by the top-100 players, ranked left-to-right and colored by player type. Figure 101
on page 212 shows the same for the top-50 players. These plots reconfirm the finding that
the handful of key contributors generate most of the productive work. Interestingly, while
the registered players contribute the most productive work, there are fewer of them. The
turk players contribute nearly as much productive work and there are many more of them so
overall they can be much more productive to a large objective. Figure 102 on page 213 shows
the sample statistics for each player type. The VIPER data show some lower productive
capacity metrics because of the dwell time the game delivery mechanism uses allowing the
player to evaluate the game before returning, ultimately yielding lower arc production per
play although with higher volume overall; these capacity metrics would be much higher if
we could filter those cases in which the game ultimately was returned without payout, but
the data collection did not identify such cases. Finally, Figure 103 on page 214 shows the
time-production samples together with model fits for these data by player type. Here again
the VIPER data show the consequence of a wider range of analysis time on the productivity
rate results.

207
Approved for Public Release; Distribution Unlimited.

Figure 97: Cumulative production percentage for all of the Dynamakr and VIPER game
players, ranked in descending order of contribution. The registered and anonymous player
statistics are for the Dynamakr game while the turk player statistics are for the VIPER
game. The population sizes di↵er so the trends reach their 100% contribution levels at
di↵erent points. Samples from 4 June 2015 live release through 17 September 2015.

208
Approved for Public Release; Distribution Unlimited.

Figure 98: Cumulative arc contributions for the Dynamakr and VIPER game top 100 players,
ranked in descending order of contribution. The registered and anonymous player statistics
are for the Dynamakr game while the turk player statistics are for the VIPER game. Samples
from 4 June 2015 live release through 17 September 2015.

209
Approved for Public Release; Distribution Unlimited.

Figure 99: Cumulative arc contributions for the Dynamakr and VIPER game top 50 players,
ranked in descending order of contribution. The registered and anonymous player statistics
are for the Dynamakr game while the turk player statistics are for the VIPER game. Samples
from 4 June 2015 live release through 17 September 2015.

210
Approved for Public Release; Distribution Unlimited.

Figure 100: Arc production rank ordering for the Dynamakr and VIPER game top 100
players. The registered and anonymous player statistics are for the Dynamakr game while
the turk player statistics are for the VIPER game. Samples from 4 June 2015 live release
through 17 September 2015.

211
Approved for Public Release; Distribution Unlimited.

Figure 101: Arc production rank ordering for the Dynamakr and VIPER game top 50 players.
The registered and anonymous player statistics are for the Dynamakr game while the turk
player statistics are for the VIPER game. Samples from 4 June 2015 live release through 17
September 2015.

212
Approved for Public Release; Distribution Unlimited.

Figure 102: Arc production capacity statistics for the Dynamakr and VIPER game players,
box-and-whisker statistic representation. The registered and anonymous player statistics are
for the Dynamakr game while the turk player statistics are for the VIPER game. The boxes
show the median and the first and third quartiles. The whiskers extend to 1.5 times the
interquartile range. The samples of production capacity are the number of valid points-to
graph arcs generated by game play per player, and omit cases of non-producing samples.
Samples from 4 June 2015 live release through 17 September 2015.

213
Approved for Public Release; Distribution Unlimited.

Figure 103: Arc production by analysis time (log scale, non-zero arc production cases only)
for the combined Dynamakr and VIPER games. The data distinguish between the contri-
butions of registered and anonymous Dynamakr players, and the qualified Mechanical Turk
VIPER players. Fitted means with standard errors to 95% confidence are shown for each
type. The production rates for the two game methods are not strictly comparable because
the same game instance modules were not loaded in these cases, the same players did not play
each case, and the relative contributions of auto-solvers have not been taken into account.
Samples from 4 June 2015 live release through 17 September 2015.

214
Approved for Public Release; Distribution Unlimited.

4.6 Arcweaver Results

Arcweaver was our cloud-hosted auto-solver. This auto-solver was a C# source language
solver compiled and linked with the mono libraries and built into a standalone executable for
Linux. The solver algorithms applied our game model rules using a fixpoint search algorithm
in brute force fashion, adding graph arcs per the rules until the arcs and intervals stabilized.
We installed this solver onto an Amazon EC2 Linux instance and from that prepared an
Amazon Machine Instance (AMI) that we could deploy from a script to process a given
problem (see Figure 104 on page 219). We prepared a few dozen candidate target problems
with CodeHawk which we loaded into a GitHub repository for retrieval by Arcweaver, then
ran up to 20 Arcweaver solvers simultaneously to process the work queue. Some of these
solvers ran for over 13 days of compute time. This section presents the results.

Figure 105 on page 220 presents the verification benefit sample statistics by program
module type for the case of zero inlining depth. Here we see that the bulk of the benefit we
obtain from the program module types, which are by far the largest modules and therefore
contain the most verification conditions by count. Solving an additional 11% of all verification
conditions across all module types, one would expect the largest benefit to be earned by the
program modules. The Arcweaver solver, however, was unable to solve such large programs
(owing to memory constraints of the virtual machine host operating systems) for deeper
levels of inlining where the problems are say up to 100-times larger at three levels of inlining
depth. Figure 106 on page 221 drops the program module types to example the remaining
types in more detail at depth zero, where we observe there is little verification benefit for
the library module types. This too is to be expected because it would be unusual to perform
whole-program analysis on just a library module where the analyzer can resolve very little
without specific entry points.

Figure 107 on page 222 and Figure 108 on page 223 present the verification marginal
benefit picture as verification conditions improved by verification e↵ort benefit. The figures
distinguish the samples by depth of inlining and module type. The second figure uses a log
scale for better separation along the improvement axis. The benefit includes the economic
value of the verification condition minus the computing cost of obtaining that verification
result from the solver. Figure 109 on page 224 then applies the log to the benefit axis and
fits models to 95% standard error on depth of inlining samples, unsurprisingly finding a nice
discrimination of points with this benefit model. As we increase the constraint generator’s
depth of inlining we increase substantially the number of verification conditions required to
prove for each module (e.g. 6 times for level 1, 28 times for level 2, 100 times for level 3, and so
on) which in turn decreases the economic benefit of an individual verification condition by our
economic value model. Our economic model, and the constraint generator, are independent
of the module type. Figure 110 on page 225 nevertheless shows that reasonable fits might be
made in the log-log space along the type characteristic, regardless of depth, for these data.
In some cases, such as the program types, there are not enough Arcweaver result samples to
make reasonable fits.

Figure 111 on page 226 presents the Arcweaver results by module identifier sorted by
verification condition improvements. Because the program types on the whole are larger
modules and have more verification conditions required to prove, these yielded larger total
improvements. Similarly, the auto-solver results for the deeper inlining cases that also had

215
Approved for Public Release; Distribution Unlimited.

more verification conditions required to prove yielded larger total improvements. If instead
of total verification conditions we examine the percent of verifications improved (of the
total required for the particular module) we obtain the result of Figure 112 on page 227.
Using percentages shows the contributions are a little more evenly distributed but the large
program modules still benefit the most, which is good news for verification overall. The figure
shows the mean improvement for these results at over 11% improvement in safe verification
condition count per module. The unusually high counts for the modules on the right-hand
side of the figure, for library modules, might be discounted because it would be unusual to
analyze library modules in isolation.

Sorting by module identifier, we present the before-and-after safe percentage improvement
values by depth of inlining in Figures 113 on page 228, 114 on page 229, 115 on page 230,
and 116 on page 231. The Arcweaver auto-solver was unable to complete fixpoint iterations
for the larger problems at deeper levels of inlining so there are few samples there for analysis.
Because depth of inlining turns out to be so important for the results we can filter the data
along this value. Figure 117 on page 232 presents the before-and-after safe verification
condition count sorted by module, then Figure 118 on page 233 presents the running total in
cumulative safe count improvement, which is a way of showing the total improvement for all
of BIND at depth zero; that is, nearly 200,000 new safe verification conditions proved correct
automatically (about 11% of the total) as a result of this non-relational pointer analysis, never
done before CSFV. At depth of inlining one, Figures 119 on page 234 and 120 on page 235
present the spot and cumulative values, again amounting to about 11% of the 12 modules
that were solvable by Arcweaver. Figures 121 on page 236 and 122 on page 237 present the
results for inlining depth 2, and Figures 123 on page 238 and 124 on page 239 present the
results for inlining depth 3.

Figure 125 on page 240 presents solution benefit samples (verification improvement ratio
by the log of verification benefit dollars) in a panel grid of inlining depth and module type.
The library modules types are not shown for reasons given earlier. At the deeper levels of
inlining we have fewer successful Arcweaver fixpoint solutions so fewer — or no – samples
shown in the panels. One can see the verification benefit of deeper levels of inlining that we
expect with static analysis, and this e↵ect is enhanced with our game model and solvers.
Figure 126 on page 241 presents a similar panel grid for the Arcweaver solution rates data (log
of arcs generated per hour by log of verification conditions improved per hour). The deeper
levels of inlining create much larger constraint problems that require more computing time
to solve, so the arc generation rates are somewhat slower, yet their improvement rates are
nevertheless reasonable and, as shown in the previous grid, their verification improvement
ratios and economic benefits are valuable. One can also see in the rates data that the
larger P-type modules, the full programs which are the largest of the modules, require longer
solution times even at zero levels of inlining and therefore lower production rates than the
smaller T- and U-type modules.

Combining the solution rate samples onto the same grid we might explore type and
depth relationships. Figure 127 on page 242 presents the samples on linear scales of arcs
generated per hour by verification conditions improved (safe counts improved) per hour by
the Arcweaver solver. The samples are distinguished by the constraint generator depth of
inlining and the module type L for library, P for program, T for test, and U for utility per
the BIND manual. On this plot the L-type modules stand out as generating many arcs and

216
Approved for Public Release; Distribution Unlimited.

improved verification conditions per hour. In order to spread out the other samples we use
log scales as shown in Figures 128 on page 243 and 129 on page 244. The latter figure includes
an attempt to fit a linear model of the samples as a single group to 95% confidence, which
does not fit especially well to these data in this way as we see by the standard error bands.
We show a better model below. Because the L-type modules are shown in these figures to be
unusual, and because we know their standalone static analysis value is dubious, we repeat
the analysis without these modules included. Figure 130 on page 245 presents the samples on
the linear scales of arcs generated per hour by verification conditions improved (safe counts
improved) per hour. The samples are better distributed without the library samples, but
the log scales will help again. Figures 131 on page 246 and 132 on page 247 present the
samples with log-linear and log-log scales. The latter figure includes linear models fitted to
the samples of each module type with 95% confidence, and we see much better fits in this
case. There are three fits shown, two of which (the T and U type fits) overlap.

The next series of figures explore Arcweaver’s economic value by way its rate of delivering
verification improvements. Figures 133 on page 248, 134 on page 249 and 135 on page 250
show the Arcweaver samples of verification benefit rate (dollars per hour) by verification
conditions improved, in an inlining depth grid, with combinations of linear and log scales.
The samples are distinguished by BIND module type, but the plots do not include the library
module types. At zero depth of inlining, the smaller modules deliver benefits at faster rates
but smaller verification improvement quantities, while the program types are slower to solve
but yield higher verification improvements. At higher levels of inlining, the benefit rate is
slower for all modules but the verification quality is higher. Unfortunately we did not obtain
fixpoint solution samples from Arcweaver for the larger modules at higher levels of inlining.
Figure 136 on page 251 presents the log-log version of these samples with the di↵erent panel
arrangement, this time with module type panels and the samples distinguished by depth of
inlining. Here we see interesting clustering of samples by depth of inlining. This result is
intuitive because similar modules are roughly the same size, have roughly the same number
of total verification conditions, link the same libraries, and so on. That is, the test modules
are roughly the same kind of analysis program and the utility modules are roughly kind of
analysis problem. To the constraint generator and Arcweaver solver, they appear similar
from a pointer-flow constraints standpoint and yield similar points-to graphs. They require
about the same time to solve. They resolve many of the same open verification conditions.

Finally, we explore some of the distribution statistics of the samples using the familiar
box-and-whisker representation. In the boxes the inner line is the median of the samples
and the edges are the first and third quartiles. The whiskers extend to 1.5 times the inter-
quartile range. Any outliners beyond the whiskers are shown as points. Figure 137 on
page 252 shows the distribution statistics of the samples for verification benefit rate (dollars
per hour using our verification condition to SLOC scale model) by module type and depth
of inlining. The library module types are not shown. As mentioned above, many of the
module type samples have similar analysis profiles at each level of inlining, so the sample
statistics present fairly narrow distributions. Figure 138 on page 253 presents in a similar
fashion the samples of verification conditions produced per hour, again revealing fairly narrow
distributions on types owing to the design of the target program being analyzed. Figure 139
on page 254 presents the distributions for verification condition improvement rate (safe count
increase per hour) by module type regardless of inlining depth. Interestingly the distributions

217
Approved for Public Release; Distribution Unlimited.

for the utility and test modules are similar even though the program designs are quite
di↵erent. The distribution for the program modules is unique, and quite narrow, although
we have just a few samples at shallow inlining levels for the Arcweaver auto-solver. The
module distribution similarity ends if we separate the samples by inlining depth, however,
as shown in Figure 140 on page 255. Here we see the zero-inlining cases provide faster
improvement rates overall (they are smaller analysis problems), while the deeper-inlining
cases provide incrementally slower improvement rates at each depth (they are larger analysis
problems). These results are intuitive because each level of inlining depth dramatically
expands the number of verification conditions and pointer flow constraints that must be
solved and analyzed. Figure 141 on page 256 provides the dot plot for these distributions,
replacing the box-and-whisker summary with the stacked dots representing the samples.

218
Approved for Public Release; Distribution Unlimited.

Figure 104: Arcweaver cloud-hosted auto-solver architecture overview. The solver programs
run on specially-configured Amazon machine instances deployed by a manager instance run-
ning in the Amazon cloud. The manager pulls constraint problem candidates prepared by
CodeHawk from a GitHub repository pool and assigns them to the AMI workers, which
process the problems to completion (or failure) then provide notifications through the sim-
ple notification service (SNS) topics and subscriptions, then terminate the instance. The
instances store any logs and results to an Amazon S3 bucket for further processing or re-
trieval. The results are points-to arc sets for the constraints problem. We then feed the
results to the CodeHawk analyzer, together with the original constraints, dictionary, and
anchors file for the problem, to obtain the after-game-play verification condition counts.

219
Approved for Public Release; Distribution Unlimited.

Figure 105: Arcweaver auto-solver estimated verification benefit for the constraint generator
using zero inlining, by module type (L for library, P for program, T for test, and U for
utility per the BIND manual). Box-and-whisker representation of sample statistics. The
boxes bound the median and the first and third quartiles. The whiskers extend to 1.5 times
the interquartile range. Overall, the verification benefit for a typical P type module is higher
because it has substantially more verification conditions improved by the game model and
analysis, with each such improvement earning a constant dollar benefit. At the same time,
the total benefit requires proportionally more time to be accomplished. Data and analysis
are current through 31 August 2015.

220
Approved for Public Release; Distribution Unlimited.

Figure 106: Arcweaver auto-solver estimated verification benefit for the constraint generator
using zero inlining, by module type (L for library, T for test, and U for utility per the
BIND manual). The type P for program samples have been hidden in order to expand the
details for the other types. Box-and-whisker representation of sample statistics. The boxes
bound the median and the first and third quartiles. The whiskers extend to 1.5 times the
interquartile range. Overall, the verification benefit for library modules is lower because there
is lower expected value in performing static analysis on a library as a standalone artifact;
the analysis is better performed when the library is linked with a main program as with the
test, utility, and program type modules. Data and analysis are current through 31 August
2015.

221
Approved for Public Release; Distribution Unlimited.

Figure 107: Arcweaver auto-solver verification marginal benefit, represented as verification
conditions improved (safe conditions increased as a result of game play) versus verification
e↵ort benefit in dollars. For the e↵ort benefit we use our verification conditions and source
lines of code proportional model described in the text. The samples are shown distinguished
by module type and depth of inlining. The few samples of type P near the top of the plot
indicate the relatively high value of verification condition improvements for programs, owing
to the relatively high quantity of verification conditions even at low levels of inlining. By
contrast, we see in the bottom right-hand corner with three levels of inlining there are many
more verification conditions to improve (over 27 times the quantity at depth zero) so their
individual value and overall contribution to benefit is substantially lower. Data and analysis
through 31 August 2015.

222
Approved for Public Release; Distribution Unlimited.

Figure 108: Arcweaver auto-solver verification marginal benefit, represented as the log of
verification conditions improved (safe conditions increased as a result of game play) versus
verification e↵ort benefit in dollars. For the e↵ort benefit we use our verification conditions
and source lines of code proportional model described in the text. The samples are shown
distinguished by module type and depth of inlining. The log scale is used to expand the
detail of the verification conditions count. The few samples of type P near the top of the
plot indicate the relatively high value of verification condition improvements for programs,
owing to the relatively high quantity of verification conditions even at low levels of inlining.
Data and analysis through 31 August 2015.

223
Approved for Public Release; Distribution Unlimited.

Figure 109: Arcweaver auto-solver verification marginal benefit, represented as the log of
verification conditions improved (safe conditions increased as a result of game play) versus
the log of verification e↵ort benefit in dollars. For the e↵ort benefit we use our verification
conditions and source lines of code proportional model described in the text. The samples
are shown distinguished by module type and depth of inlining. The log-log scale is used
to expand the detail on both scales, and the log fit on depth serves to highlight the e↵ect
of inlining on the number of verification conditions and benefit. Because inlining increases
the verification conditions count for each module, it also decreases in proportion the relative
value of each safe result and its contribution to verification benefit, which appears as a nice
separation by inlining level in such a plot. Data and analysis through 31 August 2015.

224
Approved for Public Release; Distribution Unlimited.

Figure 110: Arcweaver auto-solver verification marginal benefit, represented as the log of
verification conditions improved (safe conditions increased as a result of game play) versus
the log of verification e↵ort benefit in dollars. For the e↵ort benefit we use our verification
conditions and source lines of code proportional model described in the text. The samples
are shown distinguished by module type and depth of inlining. The log-log scale is used to
expand the detail on both scales. The fit on module type does not discriminate the data
as much as depth does, other than perhaps to repeat our refrain that the library modules
ought not be analyzed in isolation. Data and analysis through 31 August 2015.

225
Approved for Public Release; Distribution Unlimited.

Figure 111: Arcweaver auto-solver results represented by BIND module total safe verification
condition improvements as a result of applying our game model. The module identifiers are
sorted by increasing verification condition improvement count, and color-coded by module
type. The module identifier label also indicates its type L for library, P for program, T for
test, and U for utility per the BIND manual, and by the depth of inlining 0 through 3 applied
at the time of constraint generation. In general, the larger program types P benefitted the
most from game play, as expected, as did some utilities and tests with high levels of inlining.
Increasing the levels of inlining increases the number of verification conditions for the module.
Data and analysis through 31 August 2015.

226
Approved for Public Release; Distribution Unlimited.

Figure 112: Arcweaver auto-solver results represented by BIND module percent of total ver-
ification condition improvements as a result of applying our game model. The improvements
represent an increase in the safe verification condition count as a fraction of the total re-
quired. The module identifiers are sorted by increasing verification condition improvement
percent, and color-coded by module type. The module identifier label also indicates its type
L for library, P for program, T for test, and U for utility per the BIND manual, and by the
depth of inlining 0 through 3 applied at the time of constraint generation. In general, the
larger program types P benefitted the most from game play, as expected, while the library
modules might be treated cautiously for their analysis in isolation. The mean percent im-
provement – considering only the non-relational pointer analysis performed – is shown for
this data set at over 11%. Data and analysis through 31 August 2015

227
Approved for Public Release; Distribution Unlimited.

Figure 113: Arcweaver auto-solver results presented as before-and-after safe verification
condition percentages by module. The modules are listed in numerical order and results given
without inlining. The blue line represents the percentages proven safe before application of
our techniques. The orange line represents the percentages proven safe afterward. On the
whole, the program modules listed on the left-hand side benefit the most from the application
of the game model techniques, increasing from less than 10% proven safe to nearly 25% proven
safe. Considering these also are the largest programs with the most verification conditions
overall, this is where most of the verification e↵ort occurs. Data and analysis through 31
August 2015.

228
Approved for Public Release; Distribution Unlimited.

Figure 114: Arcweaver auto-solver results presented as before-and-after safe verification con-
dition percentages by module. The modules are listed in numerical order and results given
with one level of inlining. The blue line represents the percentages proven safe before appli-
cation of our techniques. The orange line represents the percentages proven safe afterward.
Because these problems are at least six times larger than the zero-inlining cases, the solver
was unable to complete fixpoint iteration for any of the full programs of type P. Consequently
we are unable to compare the impressive safe percentage improvements for type P for zero
inlining with deeper inlining cases. Data and analysis through 31 August 2015.

229
Approved for Public Release; Distribution Unlimited.

Figure 115: Arcweaver auto-solver results presented as before-and-after safe verification
condition percentages by module. The modules are listed in numerical order and results
given with two levels of inlining. The blue line represents the percentages proven safe before
application of our techniques. The orange line represents the percentages proven safe after-
ward. Because these problems are at least 28 times larger than the zero-inlining cases, the
solver was unable to complete fixpoint iteration for any of the full programs of type P and
all but one of the utility programs of type U. Consequently we are unable to compare many
of the improvements for these types found for zero inlining with deeper inlining cases. Data
and analysis through 31 August 2015.

230
Approved for Public Release; Distribution Unlimited.

Figure 116: Arcweaver auto-solver results presented as before-and-after safe verification
condition percentages by module. The modules are listed in numerical order and results
given with three levels of inlining. The blue line represents the percentages proven safe
before application of our techniques. The orange line represents the percentages proven safe
afterward. Because these problems are at least 100 times larger than the zero-inlining cases,
the solver was able to complete fixpoint iteration for only two of the smaller modules: one
test and one utility. Consequently we are unable to compare many of the improvements for
these types found for zero inlining with deeper inlining cases. Data and analysis through 31
August 2015.

231
Approved for Public Release; Distribution Unlimited.

Figure 117: Arcweaver auto-solver results presented as before-and-after safe verification
condition count improvements by module with zero levels of inlining. The module arrange-
ment is by identifier. The blue line represents the count of safe verification conditions before
game play. The orange line represents the count of safe verification conditions after game
play. Data and analysis through 31 August 2015.

232
Approved for Public Release; Distribution Unlimited.

Figure 118: Arcweaver auto-solver results presented as before-and-after safe verification con-
dition count cumulative improvements by module with zero levels of inlining. The module
arrangement is by identifier. The blue line represents the cumulative count of safe verifica-
tion conditions before game play. The orange line represents the cumulative count of safe
verification conditions after game play. The overall result is roughly 11% improvement in
total verification closure. Data and analysis through 31 August 2015.

233
Approved for Public Release; Distribution Unlimited.

Figure 119: Arcweaver auto-solver results presented as before-and-after safe verification
condition count improvements by module with one level of inlining. The module arrangement
is by identifier. The blue line represents the count of safe verification conditions before game
play. The orange line represents the count of safe verification conditions after game play.
Data and analysis through 31 August 2015.

234
Approved for Public Release; Distribution Unlimited.

Figure 120: Arcweaver auto-solver results presented as before-and-after safe verification con-
dition count cumulative improvements by module with one level of inlining. The module
arrangement is by identifier. The blue line represents the cumulative count of safe verifica-
tion conditions before game play. The orange line represents the cumulative count of safe
verification conditions after game play. The overall result is roughly 11% improvement in
total verification closure. Data and analysis through 31 August 2015.

235
Approved for Public Release; Distribution Unlimited.

Figure 121: Arcweaver auto-solver results presented as before-and-after safe verification con-
dition count improvements by module with two levels of inlining. The module arrangement
is by identifier. The blue line represents the count of safe verification conditions before game
play. The orange line represents the count of safe verification conditions after game play.
Data and analysis through 31 August 2015.

236
Approved for Public Release; Distribution Unlimited.

Figure 122: Arcweaver auto-solver results presented as before-and-after safe verification con-
dition count cumulative improvements by module with two levels of inlining. The module
arrangement is by identifier. The blue line represents the cumulative count of safe verifica-
tion conditions before game play. The orange line represents the cumulative count of safe
verification conditions after game play. The overall result is roughly 11% improvement in
total verification closure. Data and analysis through 31 August 2015.

237
Approved for Public Release; Distribution Unlimited.

Figure 123: Arcweaver auto-solver results presented as before-and-after safe verification con-
dition count improvements by module with three levels of inlining. The module arrangement
is by identifier. The blue line represents the count of safe verification conditions before game
play. The orange line represents the count of safe verification conditions after game play.
Data and analysis through 31 August 2015.

238
Approved for Public Release; Distribution Unlimited.

Figure 124: Arcweaver auto-solver results presented as before-and-after safe verification
condition count cumulative improvements by module with three levels of inlining. The
module arrangement is by identifier. The blue line represents the cumulative count of safe
verification conditions before game play. The orange line represents the cumulative count of
safe verification conditions after game play. The overall result is roughly 11% improvement
in total verification closure. Data and analysis through 31 August 2015.

239
Approved for Public Release; Distribution Unlimited.

Figure 125: Arcweaver auto-solver result samples for verification improvement factor by the
log of verification benefit dollars. The verification improvement factor is the ratio of the safe
verification condition counts after and before applying the game techniques. The benefit
is estimated by our verification condition to SLOC scale model described in the text. The
grid panel dimensions are the constraint generator depth of inlining (0-3, deeper is better for
verification) and module type according to the BIND manual (P for program, T for test, U
for utility; type L library modules are not included as unreasonable for standalone analysis).
Data and analysis through 31 August 2015.

240
Approved for Public Release; Distribution Unlimited.

Figure 126: Arcweaver auto-solver result samples for log of arcs generated per hour by the log
of verification conditions improved per hour. The grid panel dimensions are the constraint
generator depth of inlining (0-3, deeper is better for verification) and module type according
to the BIND manual (P for program, T for test, U for utility; type L library modules are
not included as unreasonable for standalone analysis). Data and analysis through 31 August
2015.

241
Approved for Public Release; Distribution Unlimited.

Figure 127: Arcweaver auto-solver solution rates represented as points-to graph arcs gener-
ated per hour against verification conditions improved per hour. Samples are distinguished
by depth of inlining and by program type U for utility, T for test, P for program, and L for
library according to the BIND manual. Data and analysis through 31 August 2015.

242
Approved for Public Release; Distribution Unlimited.

Figure 128: Arcweaver auto-solver solution rates represented as the log of points-to graph
arcs generated per hour against verification conditions improved per hour. Samples are
distinguished by depth of inlining and by program type U for utility, T for test, P for
program, and L for library according to the BIND manual. The log scale does a better job
than the linear scale of Figure 127 on the preceding page in separating the samples along
the arc generation rate axis. Data and analysis through 31 August 2015.

243
Approved for Public Release; Distribution Unlimited.

Figure 129: Arcweaver auto-solver solution rates represented as the log of points-to graph
arcs generated per hour against the log of verification conditions improved per hour. Samples
are distinguished by depth of inlining and by program type U for utility, T for test, P for
program, and L for library according to the BIND manual. The double log scales do a better
job than the single-log scale of Figure 128 on the previous page of separating the samples.
The blue line fit shown is a linear model with standard error to 95% confidence encompassing
all program types as one group. Owing to apparent clustering by types other model fits may
be better; a fit by type is shown in Figure 132 on page 247. Data and analysis through 31
August 2015.

244
Approved for Public Release; Distribution Unlimited.

Figure 130: Arcweaver auto-solver solution rates represented as points-to graph arcs gener-
ated per hour against verification conditions improved per hour. Samples are distinguished
by depth of inlining and by program type U for utility, T for test, and P for program ac-
cording to the BIND manual. Library types are not included. Data and analysis through 31
August 2015.

245
Approved for Public Release; Distribution Unlimited.

Figure 131: Arcweaver auto-solver solution rates represented as the log of points-to graph
arcs generated per hour against verification conditions improved per hour. Samples are
distinguished by depth of inlining and by program type U for utility, T for test, and P for
program according to the BIND manual. Library types are not included. The log scale does
a better job of separating samples than the linear scale of Figure 130 on the preceding page.
Data and analysis through 31 August 2015.

246
Approved for Public Release; Distribution Unlimited.

Figure 132: Arcweaver auto-solver solution rates represented as the log of points-to graph
arcs generated per hour against the log of verification conditions improved per hour. Samples
are distinguished by depth of inlining and by program type U for utility, T for test, and P
for program according to the BIND manual. Library types are not included. The double log
scale does an even better job of separating samples than the log-linear scale of Figure 131 on
the preceding page. The three color-coded fits shown are linear models with standard error
to 95% by program type. Data and analysis through 31 August 2015.

247
Approved for Public Release; Distribution Unlimited.

Figure 133: Arcweaver auto-solver verification benefit rates represented as verification benefit
dollars per hour versus verification conditions improved, by inlining depth panel. Samples
are distinguished by program type U for utility, T for test, and P for program according
to the BIND manual. Library module types are not included. The benefit dollars per hour
are computed by our verification condition to SLOC scale model described in the text. Data
and analysis through 31 August 2015.

248
Approved for Public Release; Distribution Unlimited.

Figure 134: Arcweaver auto-solver verification benefit rates represented as the log of ver-
ification benefit dollars per hour versus verification conditions improved, by inlining depth
panel. Samples are distinguished by program type U for utility, T for test, and P for pro-
gram according to the BIND manual. Library module types are not included. The benefit
dollars per hour are computed by our verification condition to SLOC scale model described
in the text. Data and analysis through 31 August 2015.

249
Approved for Public Release; Distribution Unlimited.

Figure 135: Arcweaver auto-solver verification benefit rates represented as the log of verifi-
cation benefit dollars per hour versus the log of verification conditions improved, by inlining
depth panel. Samples are distinguished by program type U for utility, T for test, and P
for program according to the BIND manual. Library module types are not included. The
benefit dollars per hour are computed by our verification condition to SLOC scale model
described in the text. Data and analysis through 31 August 2015.

250
Approved for Public Release; Distribution Unlimited.

Figure 136: Arcweaver auto-solver verification benefit rates represented as the log of verifi-
cation benefit dollars per hour versus the log of verification conditions improved, by program
type panel. Samples are distinguished by constraint generator depth of inlining 0-3. Pro-
gram types are U for utility, T for test, and P for program according to the BIND manual.
Library module types are not included. The benefit dollars per hour are computed by our
verification condition to SLOC scale model described in the text. Data and analysis through
31 August 2015.

251
Approved for Public Release; Distribution Unlimited.

Figure 137: Arcweaver verification benefit rate sample statistics in box-and-whisker plot
representation, verification benefit per hour by program module type and constraint gener-
ator depth of inlining (0-3). Program types are U for utility, T for test, and P for program
according to the BIND manual. Library module types are not included. The benefit dollars
per hour are computed by our verification condition to SLOC scale model described in the
text. The box elements represent the median and the first and third quartiles of the sam-
ples. The whiskers extend to 1.5 times the inter-quartile range. Outliers are shown as points
beyond the whiskers. Data and analysis through 31 August 2015.

252
Approved for Public Release; Distribution Unlimited.

Figure 138: Arcweaver verification condition production rate sample statistics in box-and-
whisker plot representation, verification condition production per hour by program module
type and constraint generator depth of inlining (0-3). Program types are U for utility, T
for test, and P for program according to the BIND manual. Library module types are not
included. The box elements represent the median and the first and third quartiles of the
samples. The whiskers extend to 1.5 times the inter-quartile range. Outliers are shown as
points beyond the whiskers. Data and analysis through 31 August 2015.

253
Approved for Public Release; Distribution Unlimited.

Figure 139: Arcweaver verification condition improvement rate sample statistics (safe count
improved per hour) in box-and-whisker plot representation, verification improvement rate by
program module type for all combined levels of constraint generator inlining. Program types
are U for utility, T for test, and P for program according to the BIND manual. Library
module types are not included. The box elements represent the median and the first and
third quartiles of the samples. The whiskers extend to 1.5 times the inter-quartile range.
Outliers are shown as points beyond the whiskers. Data and analysis through 31 August
2015.

254
Approved for Public Release; Distribution Unlimited.

Figure 140: Arcweaver verification condition improvement rate sample statistics (safe count
improved per hour) in box-and-whisker plot representation, verification improvement rate
by program module type by constraint generator inlining depth panel (depth 0-3). Program
types are U for utility, T for test, and P for program according to the BIND manual. Library
module types are not included. The box elements represent the median and the first and
third quartiles of the samples. The whiskers extend to 1.5 times the inter-quartile range.
Outliers are shown as points beyond the whiskers. Owing to the significantly larger size of
the constraint problem, the auto-solver was not able to produce P -type results for higher
levels of inlining. Data and analysis through 31 August 2015.

255
Approved for Public Release; Distribution Unlimited.

Figure 141: Arcweaver verification condition improvement rate samples (safe count im-
proved per hour) in stacked dot plot representation, verification improvement rate by pro-
gram module type by constraint generator inlining depth panel (depth 0-3). Program types
are U for utility, T for test, and P for program according to the BIND manual. Library
module types are not included. Owing to the significantly larger size of the constraint prob-
lem, the auto-solver was not able to produce P -type results for higher levels of inlining. Data
and analysis through 31 August 2015.

256
Approved for Public Release; Distribution Unlimited.

4.7 Solution Data

This section presents the raw solution data for the game play and auto-solver results. It
includes the verification results before and after applying the game model and solution
iteration. We present several tables each collecting a di↵erent category of data. In the tables
the major column headers are defined as follows:

Case A study case name, usually a code name for a test case or a solution case for the BIND
program under analysis. The coding for the BIND modules usually followed a naming
template for example bxdi10024 meant BIND executable depth of inlining 1 module
24. The numbering of the various build modules of BIND referred to the sequence in
which the make programs would build the load modules.

Module The case module type and depth, referring to the module type and inlining depth
of the target program.

Before Game Play CodeHawk verification results before game play results have been ap-
plied.

Game Non-Fixed Point Solution CodeHawk results after game play results have been
applied, but with the understanding these results have not reached a fixpoint solution
and are not completely trustworthy.

Arcweaver Fixed Point Solution CodeHawk results after auto-solver results have been
applied.

Backend Statistics for the backend performance of the auto-solver including run time and
estimated cost and economic model benefit.

EC2 c3.large The Amazon Web Services EC2 virtual machine size used for the auto-
solver host and its performance statistics; usually c3.large size for the single-threaded
solvers.

Rate Production rate and improvement rate measures for the solutions.

Below the major column headers are minor column headers defined as follows:

Type The module type identifier. The types were P for program, T for test, U for utility,
and L for library, as characterized by the BIND manual.

Depth The inlining depth used by CodeHawk during constraint generation.

Safe The number of CodeHawk verification conditions producing safe results.

Warning The number of CodeHawk verification conditions producing warning results.

Error The number of CodeHawk verification conditions producing error results.

Total The total verification conditions, sum of Safe, Warning, and Error. This total is the
same before and after applying the game solution because the game does not change
the obligations.

257
Approved for Public Release; Distribution Unlimited.

ID The game identifier. The identifiers were C for CircuitBot, D for Dynamakr, and V for
VIPER.

Iter The number of auto-solver iterations required to reach a fixpoint solution.

Arcs The number of graph arcs generated for the solution.

Improved The number of verification conditions improved; that is, the increase in Safe
verification count.

Factor The ratio of after Safe verification count to before Safe verification count.

Duration The run time for the auto-solver or backend to obtain the solution, in hours.

Cost The AWS infrastructure cost (including fractional hour round-up for CPU time) to
obtain the solution, in dollars.

Benefit The economic value, in dollars, of the Improved verification conditions according
to our SLOC/VC proportional economic model.

Arc/hr The solution production rate, arcs per hour, for the full solution.

Impr/hr The verification count improvement rate, improvements per hour, for the full
solution.

Table 1 on page 260 provides the raw data for our production game play results. Because
the games did not see su�cient player tra�c to reach complete fixpoint solutions for these
games, the results are useful but not as impressive as the auto-solver results. The data shown
in the table are useful as results in progress because while they are sound results, they can
nevertheless be improved with further game play.

Table 2 on page 261 provides the raw data for our Arcweaver auto-solver results for
modules analyzed to inlining depth zero. We obtained more case solutions at depth zero
because – although quite large – these cases were the smallest we could produce and solve with
our single-threaded solvers and condensers. These are all thought to be fixpoint solutions,
although we believe they point to a quasi-fixpoint solution because the reported found errors
should be reported as warnings, and would be reported as warnings if the iteration continued
a bit further. We were unable to pinpoint the reason for this apparent early termination.

Tables 3 on page 262, 4 on page 263, and 5 on page 264 provide the raw data for Arcweaver
auto-solver results for modules analyzed to inlining depth one, two and three. Each level of
depth results in fewer successful solutions owing to the vast increase in size of the analysis
products and computational resource demand for solving the constraint problems. However,
note that with each increase in inlining depth the verification improvement factor increases
substantially owing to the increased precision of analysis. At inlining depth level zero the
typical improvement factor owing to the pointer analysis is about 2.5 times. At level one the
improvement factor is about 3.5 times; at level two the improvement factor is 5.3; at level
three the improvement factor is 7.0. Typically we run CodeHawk the highest level of inlining
possible – usually starting by default with around five or six levels. We were not able to run
the pointer-flow analysis that deeply (yet) without exhausting memory. Nevertheless, the

258
Approved for Public Release; Distribution Unlimited.

pointer-flow model and “game play” results contributed substantially to the improvement of
the verification results, as shown by improvement factor, improvement rate, and economic
benefit.

Regarding the initial safe verification counts, we o↵er an aside. Typically we run Code-
Hawk with many more static analysis domains enabled. Were we to run CodeHawk with
more analysis domains enabled the before game play verification safe counts would be much
higher relative to the total, say 70-80% of the total, much higher than the 10% or so of the
total shown in these tables. CodeHawk is able to prove correct, automatically, soundly, and
without annotations, a very high proportion of all memory safety properties in C source code.
The reason our tables show a low proportion of the total is that the version of CodeHawk
we used in these analyses was built with only the analysis domains of interest to the pointer
analysis and none of the others enabled.

5.0 CONCLUSIONS

Section 5.1 summarizes the important contribution regarding our verification improvement
for memory safety properties under sound static analysis. Section 5.2 on page 265 reflects
on our experience attracting and retaining members of this crowd of players we want to
contribute to solving verification problems. Section 5.3 on page 265 o↵ers a conclusion
that, despite all the data we collected with auto-solvers, there remains an important role for
humans in this verification process.

5.1 Verification Improvement and Valuation

The C program pointer analysis problem we tackled was already known to be undecid-
able. When performing verification manually, human experts make progress by asserting
summaries of the points-to graph without perhaps complete knowledge of every variable
value and memory location. We tackled specifically the pointer analysis problem taking into
account pointers with o↵sets, abstracting away the program control flow information. A
points-to graph for the program supports static analysis by describing bu↵er arrangements
and sizes. When performing memory safety property verification with our CodeHawk ana-
lyzer we can use the graph to support the production of invariants and discharge of proof
obligations to make substantially more progress resolving bu↵er accesses than without the
points-to graph. Our results show a mean of 11% improvement at even the lowest levels of
precision. At higher levels of precision, where the constraint problem size grows exponen-
tially (6 times larger for one level of inlining, 28 times larger for two levels, 100 times for
three levels, and so on) and the corresponding verification contribution improves even more.
At inlining depth level zero the typical improvement factor owing to the pointer analysis is
about 2.5 times. At level one the improvement factor is about 3.5 times; at level two the
improvement factor is 5.3; at level three the improvement factor is 7.0. Typically we run
CodeHawk for memory safety properties at the highest level of inlining possible ? usually
starting by default with around five or six levels. We were not able to run the pointer-flow
analysis that deeply without exhausting memory. We remain quite eager to find ways to
achieve this capability.

259
Approved for Public Release; Distribution Unlimited.

C
a
se

M
o
d
u
le

B
ef
o
re

G
a
m
e
P
la
y

G
a
m
e
N
o
n
-F

ix
ed

P
o
in
t
S
o
lu
ti
o
n

B
a
ck

en
d

R
a
te

M
od

u
le

T
yp

e
D
ep
th

S
af
e

W
ar
n
in
g

E
rr
or

T
ot
al

ID
A
rc
s

S
af
e

W
ar
n
in
g

E
rr
or

Im
p
ro
ve
d

F
ac
to
r

D
u
ra
ti
on

C
os
t

B
en
efi
t

A
rc
/h

r
Im

p
r/
h
r

bx
d
i1
00
24

T
1

1,
98
5

47
,0
11

0
48
,9
96

D
39
,7
36

4,
97
0

43
,3
35

69
1

2,
98
5

2.
5

39
.6
22

$1
2.
60
0

$4
7,
04
5

1,
00
3

75
bx

d
i1
00
35

T
1

2,
72
6

57
,7
46

0
60
,4
72

D
10
,4
73

3,
59
4

56
,7
40

13
8

86
8

1.
3

39
.6
22

$1
2.
60
0

$1
3,
68
0

26
4

22
bx

d
i1
00
35

T
1

2,
72
6

57
,7
46

0
60
,4
72

V
68
,0
13

9,
13
9

50
,7
84

54
9

6,
41
3

3.
4

19
0.
96
2

$2
11
.4
00

$1
01
,0
72

35
6

34
T
ot
al
/A

vg
27
0.
20
6

$2
36
,6
00

$1
61
,7
96

54
1

44

T
ab

le
1:

P
ro
d
u
ct
io
n
ga
m
e
p
la
y
d
at
a
ap

p
ro
ac
h
in
g
fi
xp

oi
nt

so
lu
ti
on

s.
T
h
e
ID

co
lu
m
n
id
en
ti
fi
es

th
e
so
u
rc
e
ga
m
e,
D

fo
r
D
yn

am
ak

r
an

d
V

fo
r
V
IP

E
R
.
T
h
e
m
od

u
le

ty
p
e
co
lu
m
n
id
en
ti
fi
es

th
e
lo
ad

ed
ga
m
e
m
od

u
le
s
p
er

th
e
B
IN

D
m
an

u
al
,
in

th
is
ca
se

th
e
m
od

u
le

ty
p
es

ar
e
T

fo
r
te
st

m
od

u
le
s.

T
h
e
in
li
n
in
g
d
ep
th

of
1
re
fe
rs

to
th
e
co
n
st
ra
in
t
ge
n
er
at
or

ap
p
ly
in
g
in
li
n
in
g
d
u
ri
n
g
th
e
ge
n
er
at
io
n

of
p
oi
nt
er

fl
ow

co
n
st
ra
in
ts

fo
r
th
e
ga
m
e
in
st
an

ce
s,
w
h
er
e
d
ee
p
er

in
li
n
in
g
in
cr
ea
se
s
ve
ri
fi
ca
ti
on

re
so
lu
ti
on

b
u
t
al
so

in
cr
ea
se
s
th
e

vo
lu
m
e
of

th
e
ga
m
e
p
ro
b
le
m
.
T
h
e
so
lu
ti
on

co
lu
m
n
s
ar
e
th
e
ve
ri
fi
ca
ti
on

re
su
lt
s
af
te
r
ap

p
ly
in
g
th
e
ar
cs

fr
om

ga
m
e
p
la
y
th
ro
u
gh

th
e
C
od

eH
aw

k
an

al
yz
er

to
ge
th
er

w
it
h
th
e
co
n
st
ra
in
ts
,
d
ic
ti
on

ar
y
an

d
an

ch
or
s
fr
om

th
e
or
ig
in
al

co
n
st
ra
in
t
ge
n
er
at
io
n
.
T
h
e

im
p
ro
ve
d
co
u
nt

is
th
e
nu

m
b
er

of
sa
fe

ve
ri
fi
ca
ti
on

co
n
d
it
io
n
s
in
cr
ea
se
d
by

ga
m
e
p
la
y,

an
d
th
e
fa
ct
or

is
th
e
ra
ti
o
of

th
e
af
te
r
to

b
ef
or
e
sa
fe

co
u
nt
s.

T
h
e
b
ac
ke
n
d
d
u
ra
ti
on

is
th
e
cu
m
u
la
ti
ve

an
al
ys
is
ti
m
e
(p
la
y
ti
m
e)

in
h
ou

rs
,
th
e
co
st

is
th
e
es
ti
m
at
ed

cl
ou

d
in
fr
as
tr
u
ct
u
re

co
st

u
si
n
g
A
m
az
on

’s
cl
ou

d
se
rv
ic
e
ra
te
s,
an

d
th
e
b
en
efi
t
is
th
e
ec
on

om
ic

b
en
efi
t
of

th
e
im

pr
ov
ed

co
u
nt

m
u
lt
ip
li
ed

by
th
e
va
lu
e
of

a
ve
ri
fi
ca
ti
on

co
n
d
it
io
n
p
er

ou
r
ec
on

om
ic

m
od

el
(u
si
n
g
$1
5.
75

p
er

ve
ri
fi
ca
ti
on

co
n
d
it
io
n
fo
r
th
e
in
li
n
in
g
d
ep
th

of
on

e)
.
T
h
e
co
st

fo
r
th
e
V
IP

E
R

ga
m
es

al
so

in
cl
u
d
es

th
e
cu
m
u
la
ti
ve

p
ay
ou

ts
of

th
e
hu

m
an

in
te
ll
ig
en
ce

ta
sk

(H
IT

)
p
ai
d
to

th
e

m
ec
h
an

ic
al

tu
rk

w
or
ke
rs
.
T
h
e
ra
te
s
ar
e
b
ac
ke
n
d
ar
cs

p
er

h
ou

r
an

d
im

p
ro
ve
m
en
ts

p
er

h
ou

r,
D
at
a
an

d
an

al
ys
is
cu
rr
en
t
th
ro
u
gh

31
A
u
gu

st
20
15
.

260
Approved for Public Release; Distribution Unlimited.

C
a
se

M
o
d
u
le

B
ef
o
re

G
a
m
e
P
la
y

A
rc
w
ea

v
er

F
ix
ed

P
o
in
t
S
o
lu
ti
o
n

E
C
2
c3

.l
a
rg

e
R
a
te

M
od

u
le

T
yp

e
D
ep
th

S
af
e

W
ar
n
in
g

E
rr
or

T
ot
al

It
er

A
rc
s

S
af
e

W
ar
n
in
g

E
rr
or

Im
p
ro
ve
d

F
ac
to
r

D
u
ra
ti
on

C
os
t

B
en
efi
t

A
rc
/h

r
Im

p
r/
h
r

bx
d
iz
00
01

P
0

8,
04
6

86
,5
24

0
94
,5
70

3
10
4,
16
3

8,
35
8

86
,2
12

0
31
2

1.
0

2.
17
1

$0
.3
15

$3
1,
54
9

47
,9
83

14
4

bx
d
iz
00
02

P
0

8,
03
2

86
,4
30

0
94
,4
62

3
10
2,
36
9

8,
34
4

86
,1
18

0
31
2

1.
0

2.
06
0

$0
.3
15

$3
1,
54
9

49
,6
94

15
1

bx
d
iz
00
03

P
0

7,
96
4

84
,8
48

0
92
,8
12

13
3,
38
6,
48
0

21
,7
96

71
,0
12

4
13
,8
32

2.
7

33
2.
00
0

$3
4.
86
0

$1
,3
98
,6
92

10
,2
00

42
bx

d
iz
00
04

P
0

7,
96
4

84
,8
60

0
92
,8
24

12
3,
38
6,
65
8

21
,8
02

71
,0
18

4
13
,8
38

2.
7

19
2.
72
4

$2
0.
26
5

$1
,3
99
,2
99

17
,5
73

72
bx

d
iz
00
06

P
0

8,
34
8

90
,9
38

0
99
,2
86

12
4,
02
8,
31
3

23
,9
00

75
,3
82

4
15
,5
52

2.
9

27
7.
47
8

$2
9.
19
0

$1
,5
72
,6
18

14
,5
18

56
bx

d
iz
00
07

P
0

8,
34
9

91
,0
33

0
99
,3
82

12
4,
00
6,
34
1

23
,9
05

75
,4
73

4
15
,5
56

2.
9

31
2.
54
3

$3
2.
86
5

$1
,5
73
,0
23

12
,8
19

50
bx

d
iz
00
10

P
0

8,
05
1

85
,5
01

0
93
,5
52

12
3,
61
3,
17
0

21
,8
39

71
,7
09

4
13
,7
88

2.
7

20
2.
26
2

$2
1.
31
5

$1
,3
94
,2
43

17
,8
64

68
bx

d
iz
00
11

P
0

8,
05
1

85
,4
77

0
93
,5
28

12
3,
59
6,
95
6

21
,9
95

71
,5
29

4
13
,9
44

2.
7

19
8.
79
1

$2
0.
89
5

$1
,4
10
,0
17

18
,0
94

70
bx

d
iz
00
12

P
0

8,
05
1

85
,5
07

0
93
,5
58

12
3,
59
0,
74
6

21
,9
79

71
,5
75

4
13
,9
28

2.
7

19
8.
16
6

$2
0.
89
5

$1
,4
08
,3
99

18
,1
20

70
bx

d
iz
00
13

P
0

8,
06
4

85
,7
98

0
93
,8
62

12
3,
89
5,
43
9

21
,9
25

71
,9
33

4
13
,8
61

2.
7

23
8.
04
4

$2
5.
09
5

$1
,4
01
,6
24

16
,3
64

58
bx

d
iz
00
14

P
0

8,
05
1

85
,4
75

0
93
,5
26

12
3,
59
2,
67
9

21
,9
22

71
,6
00

4
13
,8
71

2.
7

21
1.
69
4

$2
2.
26
0

$1
,4
02
,6
36

16
,9
71

66
bx

d
iz
00
16

P
0

8,
31
3

89
,7
75

0
98
,0
88

12
4,
01
6,
36
6

23
,5
48

74
,5
36

4
15
,2
35

2.
8

26
2.
81
4

$2
7.
61
5

$1
,5
40
,5
63

15
,2
82

58
bx

d
iz
00
17

P
0

8,
06
4

87
,4
68

0
95
,5
32

12
3,
65
7,
88
0

22
,4
85

73
,0
43

4
14
,4
21

2.
8

21
5.
39
4

$2
2.
68
0

$1
,4
58
,2
52

16
,9
82

67
bx

d
iz
00
24

T
0

77
4

14
,1
70

0
14
,9
44

6
20
,6
82

2,
27
3

12
,6
65

6
1,
49
9

2.
9

0.
11
0

$0
.1
05

$1
51
,5
79

18
7,
54
5

13
,5
93

bx
d
iz
00
24

T
0

77
4

14
,1
70

0
14
,9
44

6
20
,6
82

2,
34
0

12
,5
98

6
1,
56
6

3.
0

0.
11
0

$0
.1
05

$1
58
,3
54

18
7,
54
5

14
,2
01

bx
d
iz
00
26

T
0

79
2

14
,1
24

0
14
,9
16

6
19
,5
53

2,
38
5

12
,5
25

6
1,
59
3

3.
0

0.
10
4

$0
.1
05

$1
61
,0
84

18
7,
70
9

15
,2
93

bx
d
iz
00
28

T
0

76
4

14
,0
12

0
14
,7
76

6
19
,1
64

2,
26
7

12
,5
03

6
1,
50
3

3.
0

0.
10
3

$0
.1
05

$1
51
,9
83

18
5,
95
8

14
,5
84

bx
d
iz
00
31

T
0

77
4

14
,1
24

0
14
,8
98

6
19
,5
22

2,
27
0

12
,6
22

6
1,
49
6

2.
9

0.
10
5

$0
.1
05

$1
51
,2
76

18
5,
43
3

14
,2
10

bx
d
iz
00
33

T
0

19
42
9

0
44
8

3
35
1

31
41
7

0
12

1.
6

0.
00
2

$0
.1
05

$1
,2
13

15
7,
95
0

5,
40
0

bx
d
iz
00
35

T
0

1,
00
4

17
,0
12

0
18
,0
16

6
23
,9
55

3,
09
8

14
,9
12

6
2,
09
4

3.
1

0.
15
0

$0
.1
05

$2
11
,7
45

59
,9
96

13
,9
86

bx
d
iz
00
36

T
0

0
22
8

0
22
8

2
18

0
22
8

0
0

1.
0

0.
00
1

$0
.1
05

$0
21
,6
00

0
bx

d
iz
00
41

T
0

78
1

14
,2
43

0
15
,0
24

8
23
,1
10

2,
47
3

12
,5
45

6
1,
69
2

3.
2

0.
17
3

$0
.1
05

$1
71
,0
95

13
3,
97
1

9,
80
9

bx
d
iz
00
41

T
0

78
1

14
,2
43

0
15
,0
24

8
23
,1
10

2,
50
3

12
,5
15

6
1,
72
2

3.
2

0.
17
3

$0
.1
05

$1
74
,1
29

13
3,
97
1

9,
98
3

bx
d
iz
00
42

T
0

77
4

14
,1
44

0
14
,9
18

8
21
,7
27

2,
50
1

12
,4
11

6
1,
72
7

3.
2

0.
15
9

$0
.1
05

$1
74
,6
34

13
6,
98
3

10
,8
88

bx
d
iz
00
43

U
0

75
0

14
,0
00

0
14
,7
50

6
19
,0
43

2,
23
7

12
,5
07

6
1,
48
7

3.
0

0.
09
8

$0
.1
05

$1
50
,3
65

19
4,
75
8

15
,2
08

bx
d
iz
00
44

U
0

75
0

14
,0
14

0
14
,7
64

6
19
,0
75

2,
23
7

12
,5
21

6
1,
48
7

3.
0

0.
10
0

$0
.1
05

$1
50
,3
65

19
0,
22
2

14
,8
29

bx
d
iz
00
45

U
0

75
0

14
,0
26

0
14
,7
76

6
19
,3
98

2,
20
8

12
,5
62

6
1,
45
8

2.
9

0.
10
4

$0
.1
05

$1
47
,4
33

18
7,
21
9

14
,0
72

bx
d
iz
00
48

L
0

20
31
4

0
33
4

3
1,
89
4

21
31
3

0
1

1.
1

0.
00
3

$0
.1
05

$1
01

75
7,
60
0

40
0

bx
d
iz
00
50

L
0

31
38
7

0
41
8

3
1,
39
2

28
9

38
9

0
25
8

9.
3

0.
00
2

$0
.1
05

$2
6,
08
9

62
6,
40
0

11
6,
10
0

bx
d
iz
00
51

L
0

74
5

14
,0
01

0
14
,7
46

6
19
,0
22

2,
23
2

12
,5
08

6
1,
48
7

3.
0

0.
10
1

$0
.1
05

$1
50
,3
65

18
9,
16
9

14
,7
88

bx
d
iz
00
52

L
0

24
1,
18
8

0
1,
21
2

6
1,
42
1

11
8

1,
09
4

0
94

4.
9

0.
00
4

$0
.1
05

$9
,5
05

34
1,
04
0

22
,5
60

bx
d
iz
00
53

L
0

64
1,
74
0

0
1,
80
4

5
3,
15
3

23
5

1,
56
9

0
17
1

3.
7

0.
00
8

$0
.1
05

$1
7,
29
2

39
1,
40
7

21
,2
28

bx
d
iz
00
54

L
0

25
4

3,
08
8

0
3,
34
2

5
3,
10
1

74
0

2,
60
2

0
48
6

2.
9

0.
00
6

$0
.1
05

$4
9,
14
4

50
7,
43
6

79
,5
27

T
ot
al
/A

vg
2,
64
7.
75
6

$2
80
.6
65

$1
8,
23
0,
21
7

16
1,
70
8

12
,7
77

T
ab

le
2:

A
rc
w
ea
ve
r
so
lu
ti
on

d
at
a
fo
r
in
li
n
in
g
d
ep
th

ze
ro
.
A
m
az
on

c
3
.
l
a
r
g
e
in
st
an

ce
ty
p
e
vi
rt
u
al

m
ac
h
in
es

at
u
n
it

co
st

of
$0
.1
05
/h

ou
r.

B
en
efi
t
es
ti
m
at
e
u
si
n
g
ve
ri
fi
ca
ti
on

co
n
d
it
io
n
ra
ti
o
m
od

el
at

$1
01
.1
2
p
er

im
p
ro
ve
d
ve
ri
fi
ca
ti
on

co
n
d
it
io
n
.
D
at
a
an

d
an

al
ys
is
cu
rr
en
t
th
ro
u
gh

31
A
u
gu

st
20
15
.

261
Approved for Public Release; Distribution Unlimited.

C
a
se

M
o
d
u
le

B
ef
o
re

G
a
m
e
P
la
y

A
rc
w
ea

v
er

F
ix
ed

P
o
in
t
S
o
lu
ti
o
n

E
C
2
c3

.l
a
rg

e
R
a
te

M
od

u
le

T
yp

e
D
ep
th

S
af
e

W
ar
n
in
g

E
rr
or

T
ot
al

It
er

A
rc
s

S
af
e

W
ar
n
in
g

E
rr
or

Im
p
ro
ve
d

F
ac
to
r

D
u
ra
ti
on

C
os
t

B
en
efi
t

A
rc
/h

r
Im

p
r/
h
r

bx
d
i1
00
24

T
1

1,
98
5

47
,0
11

0
48
,9
96

5
64
,6
31

7,
03
5

41
,6
63

29
8

5,
05
0

3.
5

0.
72
7

$0
.1
05

$7
9,
59
0

88
,9
08

6,
94
7

bx
d
i1
00
26

T
1

2,
02
4

48
,1
22

0
50
,1
46

5
64
,3
97

7,
34
8

42
,1
82

61
6

5,
32
4

3.
6

0.
68
8

$0
.1
05

$8
3,
90
8

93
,6
68

7,
74
4

bx
d
i1
00
28

T
1

1,
96
0

46
,6
68

0
48
,6
28

5
62
,0
50

6,
96
0

41
,0
50

61
8

5,
00
0

3.
6

0.
65
9

$0
.1
05

$7
8,
80
2

94
,0
94

7,
58
2

bx
d
i1
00
31

T
1

1,
99
6

46
,8
92

0
48
,8
88

5
62
,9
11

7,
11
4

41
,1
52

62
2

5,
11
8

3.
6

0.
67
0

$0
.1
05

$8
0,
66
2

93
,9
36

7,
64
2

bx
d
i1
00
33

T
1

26
49
6

0
52
2

2
54
1

44
47
6

2
18

1.
7

0.
00
1

$0
.1
05

$2
84

48
6,
90
0

16
,2
00

bx
d
i1
00
35

T
1

2,
72
6

57
,7
46

0
60
,4
72

5
77
,1
25

10
,2
03

49
,6
44

62
5

7,
47
7

3.
7

1.
10
8

$0
.2
10

$1
17
,8
41

69
,6
39

6,
75
1

bx
d
i1
00
41

T
1

2,
62
1

53
,8
61

0
56
,4
82

7
88
,9
61

9,
86
1

45
,9
95

62
6

7,
24
0

3.
8

1.
63
2

$0
.2
10

$1
14
,1
05

54
,5
03

4,
43
6

bx
d
i1
00
43

U
1

1,
94
4

46
,5
96

0
48
,5
40

5
61
,8
80

6,
90
4

41
,0
18

61
8

4,
96
0

3.
6

0.
65
1

$0
.1
05

$7
8,
17
2

95
,0
78

7,
62
1

bx
d
i1
00
44

U
1

1,
94
4

46
,6
60

0
48
,6
04

5
62
,0
41

6,
94
0

41
,0
42

62
2

4,
99
6

3.
6

0.
62
7

$0
.1
05

$7
8,
73
9

98
,9
58

7,
96
9

bx
d
i1
00
45

U
1

1,
99
3

46
,8
55

0
48
,8
48

5
62
,4
34

6,
97
6

41
,2
54

61
8

4,
98
3

3.
5

0.
66
1

$0
.1
05

$7
8,
53
4

94
,4
78

7,
54
0

bx
d
i1
00
51

L
1

1,
93
3

44
,9
05

0
46
,8
38

5
61
,8
59

6,
77
9

39
,4
41

61
8

4,
84
6

3.
5

0.
93
6

$0
.1
05

$7
6,
37
5

66
,0
81

5,
17
7

bx
d
i1
00
54

L
1

76
3

9,
15
5

0
9,
91
8

3
9,
01
7

2,
63
5

7,
27
9

4
1,
87
2

3.
5

0.
01
4

$0
.1
05

$2
9,
50
4

63
6,
49
4

13
2,
14
1

T
ot
al
/A

vg
8.
37
3

$1
.4
70

$8
96
,5
16

16
4,
39
5

18
,1
46

T
ab

le
3:

A
rc
w
ea
ve
r
so
lu
ti
on

d
at
a
fo
r
in
li
n
in
g
d
ep
th

on
e.

A
m
az
on

c
3
.
l
a
r
g
e
in
st
an

ce
ty
p
e
vi
rt
u
al

m
ac
h
in
es

at
u
n
it

co
st

of
$0
.1
05
/h

ou
r.

B
en
efi
t
es
ti
m
at
e
u
si
n
g
ve
ri
fi
ca
ti
on

co
n
d
it
io
n
ra
ti
o
m
od

el
at

$1
5.
76

p
er

im
p
ro
ve
d
ve
ri
fi
ca
ti
on

co
n
d
it
io
n
.
D
at
a
an

d
an

al
ys
is
cu
rr
en
t
th
ro
u
gh

31
A
u
gu

st
20
15
.

262
Approved for Public Release; Distribution Unlimited.

C
a
se

M
o
d
u
le

B
ef
o
re

G
a
m
e
P
la
y

A
rc
w
ea

v
er

F
ix
ed

P
o
in
t
S
o
lu
ti
o
n

E
C
2
c3

.l
a
rg

e
R
a
te

M
od

u
le

T
yp

e
D
ep
th

S
af
e

W
ar
n
in
g

E
rr
or

T
ot
al

It
er

A
rc
s

S
af
e

W
ar
n
in
g

E
rr
or

Im
p
ro
ve
d

F
ac
to
r

D
u
ra
ti
on

C
os
t

B
en
efi
t

A
rc
/h

r
Im

p
r/
h
r

bx
d
i2
00
24

T
2

3,
50
6

13
5,
44
6

0
13
8,
95
2

5
17
6,
33
1

18
,6
11

11
8,
21
0

2,
13
1

15
,1
05

5.
3

4.
94
6

$0
.5
25

$5
4,
20
3

35
,6
48

3,
05
4

bx
d
i2
00
43

U
2

3,
43
7

13
4,
36
9

0
13
7,
80
6

5
17
1,
71
3

18
,1
63

11
6,
89
6

2,
74
7

14
,7
26

5.
3

5.
05
1

$0
.6
30

$5
2,
84
3

33
,9
95

2,
91
5

bx
d
i2
00
52

L
2

12
3

7,
02
9

0
7,
15
2

4
8,
31
3

80
8

6,
34
4

0
68
5

6.
6

0.
01
4

$0
.1
05

$2
,4
58

59
8,
53
6

49
,3
20

bx
d
i2
00
53

L
2

67
5

15
,5
45

0
16
,2
20

4
20
,8
40

2,
29
8

13
,5
61

36
1

1,
62
3

3.
4

0.
06
5

$0
.1
05

$5
,8
24

31
9,
25
1

24
,8
63

bx
d
i2
00
54

L
2

1,
83
7

18
,6
63

0
20
,5
00

3
17
,6
66

5,
56
3

14
,9
21

16
3,
72
6

3.
0

0.
04
1

$0
.1
05

$1
3,
37
0

43
2,
63
7

91
,2
49

T
ot
al
/A

vg
10
.1
18

$1
.4
70

$1
28
,6
99

28
4,
01
3

34
,2
80

T
ab

le
4:

A
rc
w
ea
ve
r
so
lu
ti
on

d
at
a
fo
r
in
li
n
in
g
d
ep
th

tw
o.

A
m
az
on

c
3
.
l
a
r
g
e
in
st
an

ce
ty
p
e
vi
rt
u
al

m
ac
h
in
es

at
u
n
it

co
st

of
$0
.1
05
/h

ou
r.

B
en
efi
t
es
ti
m
at
e
u
si
n
g
ve
ri
fi
ca
ti
on

co
n
d
it
io
n
ra
ti
o
m
od

el
at

$3
.5
9
p
er

im
p
ro
ve
d
ve
ri
fi
ca
ti
on

co
n
d
it
io
n
.
D
at
a
an

d
an

al
ys
is
cu
rr
en
t
th
ro
u
gh

31
A
u
gu

st
20
15
.

263
Approved for Public Release; Distribution Unlimited.

C
a
se

M
o
d
u
le

B
ef
o
re

G
a
m
e
P
la
y

A
rc
w
ea

v
er

F
ix
ed

P
o
in
t
S
o
lu
ti
o
n

E
C
2
c3

.l
a
rg

e
R
a
te

M
od

u
le

T
yp

e
D
ep
th

S
af
e

W
ar
n
in
g

E
rr
or

T
ot
al

It
er

A
rc
s

S
af
e

W
ar
n
in
g

E
rr
or

Im
p
ro
ve
d

F
ac
to
r

D
u
ra
ti
on

C
os
t

B
en
efi
t

A
rc
/h

r
Im

p
r/
h
r

bx
d
i3
00
24

T
3

5,
80
0

30
1,
89
2

0
30
7,
69
2

4
41
6,
94
4

40
,4
76

26
2,
21
2

5,
00
4

34
,6
76

7.
0

27
.5
46

$2
.9
40

$1
24
,4
32

15
,1
36

1,
25
9

bx
d
i3
00
43

U
3

5,
67
0

29
7,
57
4

0
30
3,
24
4

4
40
9,
83
8

38
,3
98

25
8,
88
6

5,
96
0

32
,7
28

6.
8

25
.0
74

$2
.7
30

$1
17
,4
42

16
,3
45

1,
30
5

T
ot
al
/A

vg
52
.6
20

$5
.6
70

$2
41
,8
74

15
,7
41

1,
28
2

T
ab

le
5:

A
rc
w
ea
ve
r
so
lu
ti
on

d
at
a
fo
r
in
li
n
in
g
d
ep
th

th
re
e.

A
m
az
on

c
3
.
l
a
r
g
e
in
st
an

ce
ty
p
e
vi
rt
u
al

m
ac
h
in
es

at
u
n
it

co
st

of
$0
.1
05
/h

ou
r.

B
en
efi
t
es
ti
m
at
e
u
si
n
g
ve
ri
fi
ca
ti
on

co
n
d
it
io
n
ra
ti
o
m
od

el
at

$4
.9
1
p
er

im
p
ro
ve
d
ve
ri
fi
ca
ti
on

co
n
d
it
io
n
(s
ee

n
ar
ra
ti
ve

fo
r
ex
p
la
n
at
io
n
of

sc
al
in
g
d
i↵
er
en
ce

fo
r
ve
ri
fi
ca
ti
on

co
n
d
it
io
n
va
lu
e
b
et
w
ee
n
d
ep
th

th
re
e
an

d
tw

o)
.
D
at
a
an

d
an

al
ys
is

cu
rr
en
t

th
ro
u
gh

31
A
u
gu

st
20
15
.

264
Approved for Public Release; Distribution Unlimited.

We continue at this writing to experiment with the auto-solver iterators. We believe the
Arcweaver iteration for the largest models terminates too early at a quasi-fixpoint having
to do not with arc stability but with interval stability. We know the resulting verification
shows bu↵ers too narrow because the graph resolution appears incomplete; we summarize
these as verification warnings. This does not a↵ect the results for the other games.

We developed economic models to assess the value of these results. Our main approach
was parametric and based on the cost of obtaining a result for a single verification condition.
A program has a fixed number of verification conditions for the properties of interest. If
we know the dollar cost of verifying the program manually for the same properties, then we
can compute an average dollar cost per verification condition. Our crowd-sourced solution
obtains results for verification conditions for very little cost each, so the di↵erence is an
economic benefit. We show these cost and benefit values in our results. Static analysis
and abstract interpretation in particular, because it o↵ers sound results, o↵er tremendous
economic and verification value.

5.2 Attracting and Retaining Players

Our ability to attract and retain players with the CircuitBot game clearly did not meet our
expectations. Where we envisioned thousands of players engaged in the exploration back-
theme and contributing verification results, only a few dozen turned up. Of the few dozen who
turned up, only a few played seriously for a long time. We later learned these were software
engineering professionals interested in the problem and wanting to make a contribution. Part
of engagement miss might have been the somewhat late and unexpected limitation to the 18-
and older age group we did not anticipate, but we understood the rationale. Other factors in
the engagement miss likely were the somewhat repetitive play experience, browser delivery,
and murky purpose. We did not capture anonymous player results during CircuitBot; we
did capture anonymous player results during Dynamakr so obtained more verification data
this way. Our Dynamakr game improved the delivery and experience and brought-up the
engagement numbers a little, but not to the levels we needed them to reach to achieve
fixpoint iteration on real verification problems. The Dynamakr game dispensed with the
exploration game backstory and chose a more immediate, phase-swapping, game switching
back and forth between work time and play time. The VIPER game clearly was the best of
all, attracting productive workers seemingly regardless of the delivery and play experience,
and it did reach the level of potential fixpoint solutions. The VIPER game stripped way
most of the pretense of the game and revealed the puzzle constraint problem underneath,
asking the worker in a way to marshal the e↵orts of auto-solvers working on the servers. The
VIPER workers seemed not to be motived by the verification or game challenge but by the
monetary reward for solving puzzles.

5.3 Role for Humans

For each of the CircuitBot, Dynamakr, and VIPER games the human reasoning challenge
was essentially the same. From the game player’s perspective, the challenge to game play is
that adding an arc to satisfy a constraint may cause another constraint to become unsatis-
fied. Indeed, a brute force auto-solver could spend an infinite amount of time attempting to

265
Approved for Public Release; Distribution Unlimited.

complete all of the connections. In practice, the size and connectedness of the graph grow
as the game progresses, resulting in ever-more complex interactions between constraints.
Eventually as the solution nears a fixpoint some sections of graph and subset of the con-
straints become idle. Humans notice when the solution gets stuck at quasi-fixpoints that
appear to be near solutions but are in fact fragile and upset by a judicious arc insertion.
The expert move is one that abstracts away a small bit of information (our synergy game
move) in exchange for breaking free from a quasi-fixpoint to make dramatic progress toward
the real fixpoint. Although a solution that abstracts away all of the information (all nodes
are connected to all other nodes) is sound according to our game model, it does not help
improve verification at all. The best solution is one that abstracts away the least amount
of information. Humans are able to do this using intuition, whereas auto-solvers are not yet
clever enough to do this on real programs.

6.0 RECOMMENDATIONS

This section o↵ers a few recommendations to ourselves and for future projects. Section 6.1 is
the recommendation to ourselves to integrate our new verification techniques into mainstream
analyzers. Sections 6.3 on the following page and 6.2 suggest there is more to explore in the
forums of orchestrated verification competitions and the paid crowd source channel. Finally,
Section 6.4 on the following page leaves behind a concept for a new exploration game that
builds upon our lessons learned from three generations of crowd-source verification game
building.

6.1 Verification Integration

Even with no inlining in place our new pointer analysis technique was able to improve the safe
verification condition count by about 11% in programs of typical complexity. With inlining
in place the size of the problem to solve expands accordingly but dramatic improvements in
safe verification condition accounts will be achieved. Whereas CodeHawk already can attain
memory safety proof levels over 80% without pointer analysis capability, another 10-20%
possibly accrued with the support of pointer analysis will be significant.

For the CircuitBot project we forked a branch of the main CodeHawk analyzer software
development tree to create our specialized analyzer. We will re-integrate the project’s new
CodeHawk pointer analysis software branch into the main CodeHawk analyzer software tree
as a mainstream feature of the analyzer. This integration involves adding the constraint
generator, brute-force auto-solver, and pointer analysis domain into the core analysis tool
chain. The project’s auto-solver is written in C# so consequently is less platform agnostic
than other parts of the tool chain. We will investigate various methods for rendering a
di↵erent auto-solver using other more conventional (o↵-the-shelf) solver engines.

6.2 Paid Iterations

As can be seen in the results data, we attracted many more contributors through the paid
crowd source channel than through the unpaid channels. Within the limitations of time

266
Approved for Public Release; Distribution Unlimited.

and money we experimented along the two dimensions of game size and solution reward
to discover how much work we could accomplish per dollar. The platform appears to be a
potentially bountiful and cost-e↵ective way to produce results. Much more experimentation
could be done here. When players are willing to work a puzzle for nearly an hour to earn
a dollar, and there are plenty of puzzle-solvers available, this o↵ers a potentially rewarding
verification-as-a-service opportunity. The size of the puzzle presents a challenge that suggests
a teamwork-like approach would be interesting. One can imagine a vertical teamwork model
in which each contributor builds upon the work of the previous solver, earning rewards
only for improving the result. One can also imagine a horizontal teamwork model in which
multiple concurrent players cooperate on sections of the problem in order to solve a larger
problem than any one individual could solve either because the problem is too large to deliver
to his desktop or because the problem exceeds human performance capabilities.

6.3 Verification Tournaments

One of the authors had several discussions with a member of management of the Program’s
TA3 performer regarding the potential viability of holding verification tournaments with
its crowd source platform. TopCoder already holds design, development, and data science
challenges. The problem of verification is not far removed from either development or data
science problem-solving. Whether packaged as game levels, or unpackaged as constraint
problems, or merely pushed out as proof obligations, it may be more cost- and time-e↵ective
to host a tournament of willing participants to produce verification results. These challenge
problems are more easily explained than design problems. These results are easily measured
and easily checked. Participants can compute when they’re finished, or compute when they
have achieved a good enough or best so far solution. Competing solutions might earn partial
credit for unique results. As we showed with CircuitBot, it is not necessary to reveal the
program under analysis to the verification contributors, so if the target is sensitive it need
not be disclosed.

6.4 Follow-On Exploration Game

We describe here an idea for a follow-on game development project for future consideration.
The game builds upon all the lessons learned stated above, and builds upon the infrastructure
already developed and the theoretical verification problems already under exploration. This
explains where we would take the game were there to be a hypothetical Phase III activity,
unpaid players without AMT support.

The current artifacts of CodeHawk pointer constraint analysis, which we used for all prior
games, could also be used as the source for a Minecraft–style explorable world.3 In this game
concept, the 3-D world uses the developing points-to graph properties to create a dynamic
world the player explores using his keyboard or touch controls. A map builder algorithm
would process related game instances to develop a structural world map, locating adjacent
instances onto a 2-D grid according to properties available in the function call graph and
weightings of shared anchors and function parameters. When complete, a map texturizer

3Minecraft R�/TM & c� 2009-2015 Mojang / Notch, http://minecraft.net

267
Approved for Public Release; Distribution Unlimited.

http://minecraft.net
http://minecraft.net

function would decorate the structural map into a fantasy world, with forests and mountains
and other places to explore. When exploring this world each game instance behaves as a
random seed for a section of the world, using constraints and nodes to define terrain features
and the locations for trees, rocks, shrines, and other elements to be determined. The player’s
location in the world defines a starting point for a simple auto-solver.

In this “Minecraft” world the board sections would be defined by the pointer-flow con-
straints populating the game instances. As the player travels the board, the game generator
will use the analysis artifact’s call graph to identify the relevant game instances for the direc-
tion that they player is heading. If two players visit the same section of a world, the layout
should be consistent, so that even though all players may arrive at the same area of the
map in di↵erent ways, because the terrain is always generated from the same game instance,
all players should be able to navigate through the same environment. Hills might represent
many constraints referring to the same node. Valleys might reflect function parameter node
types leading to neighboring instances. As the player travels forward, the most distance
instances would be unloaded from memory to make room for new ones on the horizon. Indi-
vidual nodes referred to in other instances can represent portals which teleport the player,
possibly randomly, to other instances in the world. They might appear as magical items,
or even just trees and rocks, depending on the number of graph vertices. An additional
piece of magic available to players would be to allow the player to create magical creatures
which they can set loose in the world. These would be di↵erent mini auto-solvers which
the player can engage, aimed at a node, and they will teleport away following the node’s
unique identifier to any referring nodes, solving the related constraints, and then returning
eventually with energy or gold for the player.

The entire milieu would need some overarching game play elements to tie the entire
fantasy role playing package together. Enemies could be spawned in a similar way to the
handling of the Dynamakr arcade game, where constraints which are missing information
would spawn hostile creatures. A player can try to shut down the enemy spawner by creating
their own creature which searches through the game instances for the missing arcs to activate
the specific constraint and shut down the enemy spawner.

A secondary goal in the design is to manage some lingering resource management issues.
By using a horizon-based game system we maintain in memory only the information which is
near enough to the player’s location to be relevant for game rendering purposes. We would
use the same system to reduce the number of solution graph arcs and nodes in memory
concurrently. We would add a new query algorithm for our game content. The new algorithm
would use a time-decay feature to enable recency queries on both graph arcs and pointer
flow constraints, enabling stale content to be presented to players to check the fixpoint
iteration stability. We would also add subsetting tools to enable deeper levels of content
inlining, which dramatically expands the quantity of graph nodes and vertices and imposes
orders of magnitude increasing demand for memory and network tra�c. We want increased
inlining in order to increase verification accuracy. Another resource management tool might
include transient synergy, wherein we apply the synergy move of our earlier games (collapsing
nodes) until achieving an interim fixpoint solution, and then unwind that synergy bundle
and attempt to work the problem locally with a subset of the graph and determine which
points-to arc set results may change as a consequence. A player action might be to define
these synergies then witness the 3-D world changing as a result this mysterious e↵ect. There

268
Approved for Public Release; Distribution Unlimited.

are some technical issues to manage with this approach, such as merging multiple synergy
bundles, de-conflicting adjacent synergy bundles, or propagating synergy constraint and node
list modifications. Again for resource management reasons we would move much of this work
to the backend, where it was not done prior, and so our game model updating and fixpoint
iteration algorithms would require modifications and event-driven triggers.

7.0 REFERENCES

[1] Andersen, L. O. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, 1994.

[2] Bachman, F., Bass, L., and Klein, M. Deriving architectural tactics: A step
toward methodical architectural design. Tech. Rep. CMU/SEI-2007- TR-002, Software
Engineering Institute, 2003.

[3] Bass, L., Clements, P., and Kazman, R. Software Architecture in Practice, second
edition ed. SEI Series in Software Engineering. Addison-Wesley, 2003.

[4] Manna, Z., and Pnueli, A. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

269
Approved for Public Release; Distribution Unlimited.

Appendix A Compute Platform Experiment

We chose to use cloud resources to deploy an array of auto-solvers to run against our game
content. Many of our game content constraint problems are huge from a constraint count and
expected graph size standpoint, and our solver requires that this data be kept in memory.
Consequently we were interested in which virtual machine type would be most cost-e↵ective
for our solver – the compute-optimized type or the memory-optimized type. We ran an
experiment which solved the same challenge problem (module bxdiz0024) on several types
to collect the solution duration. The table below shows the results.

Family Type CPU ECU RAM Store $/hr Time
Compute optimized c3.large 2 7 3.75 2 x 16 SSD $0.105 0:43:37

Compute optimized c3.xlarge 4 14 7.5 2 x 40 SSD $0.210
Compute optimized c3.2xlarge 8 28 15 2 x 80 SSD $0.420 0:43:09

Compute optimized c3.4xlarge 16 55 30 2 x 160 SSD $0.840 0:43:24

Compute optimized c3.8xlarge 32 108 60 2 x 320 SSD $1.680
Compute optimized PG c1.medium 2 5 1.7 1 x 350 $0.130 1:18:30

Compute optimized PG c1.xlarge 8 20 7 4 x 420 $0.520
General purpose m3.medium 1 3 3.75 1 x 4 SSD $0.067 1:30:14

General purpose m3.large 2 6.5 7.5 1 x 32 SSD $0.133
General purpose m3.xlarge 4 13 15 2 x 40 SSD $0.266
General purpose m3.2xlarge 8 26 30 2 x 80 SSD $0.532
General purpose m1.small 1 1 1.7 1 x 160 SSD $0.044 2:45:02

General purpose m1.medium 1 1 3.7 1 x 410 SSD $0.087
General purpose m1.large 2 2 7.5 2 x 420 SSD $0.175
General purpose m1.xlarge 4 4 15 4 x 420 SSD $0.350
Memory optimized m2.xlarge 2 6.5 17.1 1 x 420 SSD $0.245
Memory optimized m2.2xlarge 4 13 34.2 1 x 840 SSD $0.490 1:00:20

Memory optimized m2.4xlarge 8 26 68.4 2 x 840 SSD $0.980 0:57:59

Apple iMac 1:04:33

DARPA PROCEED 1:07:19

In the table the column Type refers to the Amazon Web Services (AWS) label for the EC2
instance type, CPU refers to the AWS notion of a virtual CPU (labeled by AWS as vCPU),
ECU is the equivalent computing units, RAM is random access memory in gigabytes, Store
is instance storage in gigabytes and either fixed (default) or solid state drive (SSD), Price is
the run-time price in dollars per hour, and Time is the solution time for the test problem
in HH:MM:SS. In the type annotations the PG annotation refers to the previous generation
family. Where there is not a time value given we did not run the sample for that particular
configuration.

The table provides two additional reference computer samples. We include an Apple iMac
computer having 3.2 GHz Intel Core i5, and the DARPA PROCEED Death Star computer
which is a special computer containing 64 Intel Xeon cores each at 2.13 GHz, non-hyper-
threaded, sharing 1 TB physical RAM.

Because our auto-solver program is single-threaded we found unsurprisingly that it could
not take advantage of multicore or multiprocessor computers. Consequently our test showed

270
Approved for Public Release; Distribution Unlimited.

that the lowest solution cost was achieved on the compute-optimized virtual machine with
the lowest CPU count and thus lowest lease rate. The c3.large type turned out to be both
the fastest and least expensive choice. We then used this type for our future auto-solver
work in the AWS cloud.

The wide availability of multiprocessor and multicore machines however compelled us to
pursue development of a multithreaded solver. The key to our design is to enable threads to
share the global points-to graph in memory while it is being updated by other threads.

271
Approved for Public Release; Distribution Unlimited.

Appendix B Databases

The following subsections identify the design of each database table for the backend. We used
the same backend for all three editions of our games, and used largely the same tables for data
management. We designed the data tables in Ruby using Sinatra, and included su�cient
annotations in the source code such that the usual documentation tools can produce HTML
or PDF documentation from the source code if desired. Moreover, launching the Ruby-
language models creates the associated collections in the MongoDB server. Each subsection
below corresponds to one such model and collection.

B.1 Awards

Property Type Index Req’d Description Default
award id String true true identifier key for the award N/A
description String award description “”
award type String type of award: resource, badge,

etc
“”

item id String key identifier for award type
lookup

“”

B.2 Badge

Property Type Index Req’d Description Default
badge id String true true identifier key for the badge N/A
description String description of the badge “”
icon String image file name, icon displayed

when badge is displayed in social
interface

“”

B.3 Call Graph

Property Type Index Req’d Description Default
function caller String true game instance identifier source

for this function UID
nil

function callee String true true game instance identifier target
for this function UID

nil

xid String true true an identifier for program under
analysis, non-identifying

“”

continued on following page . . .

272
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Property Type Index Req’d Description Default
function uid String true true the analyzer’s function UID for

the relationship
“”

B.4 Dictionary

Property Type Index Req’d Description Default
uid String true an identifier for the dictionary

element
“”

xid String true an identifier for the program un-
der analysis, non-identifying

“”

entry String the dictionary support in XML nil
references Collection[String] references to game instance

identifiers (unused)

B.5 Factory

Property Type Index Req’d Description Default
factory-
instance id

String true true factory identifier key N/A

player id String true true reference to player identifier “”
game mission id String true true reference to game mission iden-

tifier
“”

factory type String factory type identifier from fac-
tory definition collection

“”

game instance id String game instance identifier “”
location String location for the model “”
creation date Integer date of factory creation in sec-

onds since Jan 1, 1970
0

production-
progress

Integer last time factory produced re-
sources in seconds since Jan 1,
1970

0

satisfied Boolean whether game has been satisfied false
condition String factory condition: e�cient,

damaged, disabled, etc
“”

status String factory status: building, pro-
ducing, idle

“”

continued on following page . . .

273
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Property Type Index Req’d Description Default
auto Integer production cycle state, 1 at end

of cycle
1

efficiency Float e�ciency measure a↵ecting pro-
duction quantity, range 0 to 1

1.0

quantity Float total quantity of goods, used for
transporting goods to and from
Earth

0

B.6 Factory Definition

Property Type Index Req’d Description Default
factory-
definition id

String true true factory definition key N/A

planet id String planet identifier “”
display String whether to display or hide this

factory from this player
“”

name String display name “”
icon String image file name, used in popups “”
image String image file name, image displayed

when resources are displayed or
goal achieved

“”

summary String short description of the factory “”
description String long description of the factory “”
location-
requirements

String some factories need to be built
in specific planet locations based
on geography

“”

build-
requirement id

String player must have already built
this type of factory before this
will become available to build

“”

build-
req quantity

Float how much is needed in order to
build the factory

0

build robot req Float how many robots needed to be-
gin building

0

build-
robot release

Float how many robots will be re-
leased after building

0

continued on following page . . .

274
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Property Type Index Req’d Description Default
build time Integer how long will the building take 0
production-
type id

String resource that will be produced
by the factory, including non-
resources like planetary defense
or units for moving planet

“”

production-
quantity

Float how much will be produced
when production time elapses

0

production time Integer how long factory takes to com-
plete production

0

production-
robot quantity

Float how many robots needed for pro-
duction

0

consumes String how many factories consume a
primary resource each time it
produces one production cycle

“”

consume quantity Float how much of X is required 0
consume-
robot quantity

Float how many robots are consumed
during production

0

level up consumes String to level up a building requires
consuming this resource

“”

level up quantity Float this much of this resource is con-
sumed

0

level up-
robot consume qty

Float how many robots will be con-
sumed to level up

0

level up-
robot produce qty

Float how many robots will be pro-
duced after level up

0

level up id String after level up cycle is complete,
the factory will be transformed
into this new identifier

“”

B.7 Game Instance

Property Type Index Req’d Description Default
instance id String true true game instance identifier N/A
level id String true resource allocator level identi-

fier, same as instance for our im-
plementation

N/A

continued on following page . . .

275
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Property Type Index Req’d Description Default
xid String true true identifier for program under

analysis, non-identifying
“”

model data String game specification in XML nil
dictionary String dictionary support in XML nil
points to String points-to array pairs result of

game play
nil

points to graph String points-to graph with arcs as
written by game model

nil

creation date Date date of creation for this docu-
ment

nil

played count Integer true number of times the game in-
stance has produced results

0

variable count Integer number of variables in the game
instance, used for scoring poten-
tial

0

constraint count Integer true number of constraints in the
game instance, used for scoring
potential

0

complexity Integer true complexity measure, usu-
ally function of variable and
constraint values

0

performance Integer a player performance measure,
used to determine whether solu-
tion improved

-100

priority Integer true resource allocator play priority,
determined by complexity of all
program under analysis func-
tions

0

function uid String true the analyzer’s function UID for
this instance’s model data

nil

fixed count Integer number of times instance played
without generating arcs

0

B.8 Goal

Property Type Index Req’d Description Default
goal id String true true goal identifier key N/A
continued on following page . . .

276
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Property Type Index Req’d Description Default
planet id String true associated planets model identi-

fier
N/A

display String some goals may be hidden as ex-
tra credit goals; which interface
will display each goal

“Resource”

sort order String used to manage order for display “alpha-
betical”

goal title String used to display quick list of tasks
player needs to complete to win
game

“”

goal summary String longer description, why does
player need to do it?

“”

resource def id String key to the resource definitions
model identifier, what is this re-
source?

“”

quantity Float how much of it needs to be gen-
erated?

0

award id String key to an awards model identi-
fier, award or badge will receive
if goal accomplished

“”

B.9 Graph

Property Type Index Req’d Description Default
aid String true an identifier for the graph arc N/A
uid lhs String true true identifier referenced on the left-

hand side
N/A

uid rhs String true true identifier referenced on the
right-hand side

N/A

xid String true true an identifier for the program un-
der analysis, non-identifying

N/A

lhs String the points-to graph in XML “”
rhs String the points-to graph in XML “”

B.10 History

Property Type Index Req’d Description Default
continued on following page . . .

277
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Property Type Index Req’d Description Default
snapshot String name of the snapshot, if any “”
error count Integer number of errors proven 0
safe count Integer number of safe accesses proven 0
warning count Integer number of warning verification

conditions to resolve
0

unreachable count Integer number of unreachable verifica-
tion conditions to resolve

0

player count Integer number of players in player
model

0

games solved Integer number of games solved 0
games unsolved Integer number of games unsolved 0
arc count Integer number of graph arcs 0
worker count Integer number of workers in worker

model
0

B.11 Mission

Property Type Index Req’d Description Default
mission id String true true game mission identifier key N/A
player id String true true player identifier for the mission N/A
planet id String planet identifier key “”
completion String completion percentage “”
arrival Integer arrival date to start mission 0
is complete Integer completion state, 0=not com-

plete, 1=complete
0

name String descriptive name given to this
mission by the game

“”

summary String descriptive text to be used to de-
scribe mission on game mini-site

“”

B.12 Planet

Property Type Index Req’d Description Default
planet id String true true planet identifier key N/A
level id String which internal level to load to

display planet
“”

continued on following page . . .

278
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Property Type Index Req’d Description Default
name String name of the planet “”
description String description of the planet “”
active state String “Available” for planets that are

available to the player, or “Dep-
recated” for planets that are in
use but should no longer be of-
fered as a choice

“Available”

image String image file name, larger view
of planet for selection screens,
planet mission info, completion

“”

icon String image file name, smaller view of
planet for menus, awards

“”

star info String additional information about
the star and space around planet

“”

completion-
message

String message to be displayed when all
goal have been achieved

“”

start message String message to display at beginning
of game

“”

B.13 Player

Property Type Index Req’d Description Default
player id String true true game player identifier key N/A
total points Integer accumulated points awarded 0
level String player level associated with total

points
“”

world clock Integer number of game-world days the
player has been playing

0

games attempted Integer number of games attempted 0
accumulated time Integer accumulated play time in min-

utes
0

solutions found Integer number of solutions found 0
first to play Integer number of times the player was

first to play an instance
0

preferences String specification of player prefer-
ences in JSON

“”

B.14 Player History

279
Approved for Public Release; Distribution Unlimited.

Property Type Index Req’d Description Default
player id String true true player identifier N/A
instance id String true game instance identifier N/A
when started Date when did the player play this in-

stance?
Today

play duration Integer play duration in seconds 0
edges found Integer number of points-to edges found 0
level when played Integer the player’s performance level

when he played this instance
0

play options String snapshot of game options or set-
tings when played in JSON

“”

play metrics String game play performance metrics
in JSON

“”

B.15 Resource

Property Type Index Req’d Description Default
resource-
instance id

String true resource identifier key N/A

player id String true true player identifier N/A
game mission id String true true game mission identifier N/A
resource-
definition id

String true true unique identifier for the resource N/A

quantity Float total quantity of this resource
based on production and use

0

maxquantity Float max quantity is total produced 0

B.16 Resource Definition

Property Type Index Req’d Description Default
resource-
definition id

String true true resource definition identifier key N/A

name String resource name “”
icon String icon file name, icon displayed

when resource is displayed in in-
terface

“”

image String image file name, image is dis-
play when information about
resources is displayed or goal
achieved

“”

continued on following page . . .

280
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Property Type Index Req’d Description Default
displayed Integer whether resource is displayed or

just tracked invisibly
1

description String longer description of the re-
source

“”

unit display String what types of units does this re-
source come in?

“”

price Float price of this resource when sold 1

B.17 Statistics

Property Type Index Req’d Description Default
function id String true function identifier from pre-

analysis
N/A

xid String true true executable identifier of program
under analysis, non-identifying

N/A

error count Integer true number of errors proven 0
safe count Integer true number of safe accesses proven 0
warning count Integer true number of warning verification

conditions to resolve
0

unreachable count Integer true number of unreachable condi-
tions proven

0

total count Integer true number of total verification con-
ditions, sum of above four

0

B.18 UID

Property Type Index Req’d Description Default
gid String true true game instance identifier for this

UID
N/A

xid String true true an identifier for the program un-
der analysis, non-identifying

N/A

uid String true true the analyzer’s UID for any term
in the model data

B.19 Worker

Property Type Index Req’d Description Default
worker id String true true worker identifier key N/A
continued on following page . . .

281
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Property Type Index Req’d Description Default
total points Integer total points awarded, sum of

analysis and dynamo
0

analysis points Integer analysis points awarded 0
dynamo points Integer dynamo points awarded 0
level String worker level associated with to-

tal points
“”

gi seen Integer instances loaded into the analy-
sis stage of the game

0

gi solved Integer instances passed between analy-
sis and dynamo stages

0

gi processed Integer game instances solved by the
game independently of worker

0

gi improved Integer number of instances where
player improved his score

0

first to play Integer number of times the worker was
first to play an instance

0

arcs added Integer cumulative number of arcs
added by player’s dynamo

0

analysis time Integer cumulative seconds in the anal-
ysis stage

0

dynamo time Integer cumulative seconds in the dy-
namo stage

0

tool-
configuration

String tool settings based on last game
setup

“”

preferences String specification of worker prefer-
ences in JSON

“”

B.20 Worker History

Property Type Index Req’d Description Default
worker id String true true worker identifier “”
instance id String true game instance identifier “”
xid String true executable identifier for the

game instance
“”

session id Integer session counter 0
tool setup String tool setup when played “”
continued on following page . . .

282
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Property Type Index Req’d Description Default
played count Integer played count of instance when

read
0

priority start Integer instance priority at start of play 0
priority end Integer instance priority at end of play 0
performance start Integer instance performance at start of

play
0

performance end Integer instance performance at end of
play

0

arcs Integer arcs added based on worker solv-
ing instance

0

extra String space for additional data (un-
used)

“”

283
Approved for Public Release; Distribution Unlimited.

Appendix C Run Book

The CircuitBot Project aims to improve the throughput of program analysis through crowd-
sourcing. The backend project provides a collection of Sinatra-based services to support the
game and program analyzer.

C.1 Technologies

• The CircuitBot project uses a Thin, Unicorn or Rainbows! application server for
scalable multiprocessing on Linux CentOS, Mac OS X, Windows, or Raspbian Wheezy.

• The application server runs a Rack web server and a variety of Sinatra-supported Ruby
classes.

• Several application servers can run in parallel behind an Nginx proxy server for load
allocation.

• The architecture is meant to support both public network and private (no network)
use.

• The project uses the Unity game development and deployment technologies.
• The project uses the CodeHawk static analysis technology.
• The project backend can be deployed to Heroku, but will not support analyzer updates
in that deployment.

C.2 Dependencies

• These instructions presume the target is CentOS 6. Similar instructions are known
to work on other versions of Linux as well as Mac OS X and Windows. The backend
installation package does not currently include analyzers built for the latter targets,
although the analyzer is not needed to run the game and services; the analyzer could
be applied o↵-line after results gathering.

• The backend services require association with a MongoDB NoSQL document store
service.

• The backend analyzer requires installation of OCaml and CIL packages.

C.3 Preparing the Backend Target Platform

These instructions are for building the CircuitBot backend from source on CentOS 6 64-
bit (including Amazon AWS EC2 virtual machines). The CircuitBot backend is written in
Ruby so we install several Ruby packages from repositories. We also install the Ruby Virtual
Machine (RVM) to enable swapping versions and we install bundle to manage Ruby gems.
The prepared installation script installs development tools, Ruby, MongoDB, OCaml, CIL
and some supporting packages all on this single host. These instructions presume access to a
network for reaching Linux installation packages and GitHub repositories. To configure the
backend to use di↵erent hosts (e.g. a separate host for MongoDB) simply edit the installation
script.

1. yum -y install git installs git for reaching GitHub.

284
Approved for Public Release; Distribution Unlimited.

http://www.kestreltechnology.com/codehawk/codehawk.php

2. Change to desired installation directory, e.g. cd circuitbot.
3. git clone --depth 1 https://github.com/mrbkt/circuitbot-dependencies.git

copies install packages and installation script. This is a public repository.
4. git clone --depth 1 https://[user]@github.com/mrbkt/circuitbot-backend.git

copies install packages and installation script. This is a private repository, so replace
user with your user ID and provide the password when prompted.

5. cd circuitbot-dependencies
6. ./install dependencies.sh presuming root privileges; otherwise use sudo. This will

install many Linux packages using yum and will build OCaml and CIL directly from
the dependencies repo. This script checks whether certain files were already installed
and will skip their installation on subsequent runs.

Alternative Manual Methods Several wiki pages are available to guide installations
using more manually-intensive methods. The wiki is alongside the circuitbot repository
at GitHub. Clone the wiki repo as

git clone --depth 1 https://github.com/mrbkt/circuitbot.wiki.git

then find markdown files of interest for manual installations.

C.4 Running the CircuitBot Backend

First Time Configuration

1. cd ../circuitbot-backend continuing from target preparation steps.
2. Edit the backend configuration file config/config.yml to point to the desired hosts

and ports for backend address and backend port. If the analysis products are situ-
ated in the backend then the analysis * folder and export graph file terms should
point to the relative path within the backend. If the products are situated outside the
backend then these terms should point to the absolute path outside the backend.

3. Edit the MongoModel configuration file config/mongomodel.yml to point to the host
and port of the MongoDB database. If you are using MongoLab services then set
the shell environment variable MONGOLAB URI to point to the URI for the MongoLab
services.

4. Run bundle install to install the required gems. If your environment does not find
bundle or complains about a missing rvm then run the RVM configuration script
source /usr/local/rvm/scripts/rvm to set up the RVM environment and then re-
peat this step.

Run the Backend The backend can use bundle or foreman to launch. It can use several
application servers including thin, unicorn and rainbows. The default and most tested
is thin. These instructions show how to run with bundle and thin. bundle will use the
config.ru file, used by rackup to configure and launch the services. If you use foreman
then edit the Procfile to set the desired environment and ports.

1. cd circuitbot-backend run from the backend top-level directory.

285
Approved for Public Release; Distribution Unlimited.

2. bundle exec thin start -e production to start thin in the production environ-
ment running all CircuitBot services. By default thin will use port 3000 but you can
change this in the config.yml file or on the command line with a -p switch. (By
default foreman will use port 5000.)

Check Whether the Backend is Running One easy way to check whether the backend
is running is to ping one of the services. Each service has a ping GET method returning a
one-sentence response if alive. For example use curl --get localhost:3000/api/v0.6/-
admin/ping. If running, the ping will respond Administration service is alive.

Another way to check the backend is running is to hit it from a browser. Use any of the
GET routes from the browser address bar. For example enter http://localhost:3000/-
api/v0.6/admin to receive a simple notification page that the service is running.

Using the Administrative Control Pages The backend provides a simple browser-
based administrative control page for common tasks. From a browser launch http://<host>-
:<port>/api/v0.6/admin/control to open the page. Several links to related service calls
are available, as are some small forms for entering or querying data. Status information is
shown at the bottom.

Logging and Notifications The logging configuration is specified in the file config.yml.
Secondary notification for some important services is available via HipChat. For installations
on a closed network there is no HipChat support and the administrator can disable this in
the config.yml file by deleting the hipchat api token. Contact mrb@circuitbot.net to be
added to the existing HipChat room for CircuitBot notifications, or set up your own with a
di↵erent API token.

Services The following services run as individual applications in the backend and cooper-
ate to provide the full backend experience:

• admin msg for administrative control use
• admin for administrative use
• award for game play awards
• badge for game play badges
• disaster for game play disasters
• factory definition for game play factory definitions
• factory for game play factories
• game instance for game model instance specifications to game
• goal for game play goals
• history for play status snapshots
• mission for game play missions
• planet for game play planets
• player for game play player data
• player history for player game completion history
• resource definition for game play resource definitions

286
Approved for Public Release; Distribution Unlimited.

mailto:mrb@circuitbot.net

• resource for game play resources
• statistics for analysis statistics

Clients The backend uses a browser as its only external client.

API Version Use the API version in the URLs as /api/v0.6

• 0.1 preliminary
• 0.3 pairs testing
• 0.5 for end-to-end integration testing
• 0.6 for load testing and non-AMQP messaging

C.5 Ruby Gem List

The following Ruby gems are cached in the vendor folder of the backend. There are very few
version number restrictions so for the most part we upgrade all gems as new versions appear.
The most significant version restriction at this writing is with the activemodel gem where
we cannot use the more recent version 4.0.0 owing to return message incompatibilities.

activemodel-3.2.13.gem
activesupport-3.2.13.gem
backports-3.3.3.gem
bson-1.8.6.gem
bson_ext-1.8.6.gem
builder-3.0.4.gem
daemons-1.1.9.gem
diff-lcs-1.2.4.gem
eventmachine-1.0.3.gem
haml-4.0.3.gem
hipchat-0.10.0.gem
httparty-0.11.0.gem
i18n-0.6.1.gem
json-1.8.0.gem
mail-2.5.4.gem
mime-types-1.23.gem
mini_portile-0.5.0.gem
mongo-1.8.6.gem
mongomodel-0.4.9.gem
multi_json-1.7.7.gem
multi_xml-0.5.4.gem
nokogiri-1.6.0.gem
polyglot-0.3.3.gem
pony-1.5.gem
rack-1.5.2.gem
rack-cache-1.2.gem

287
Approved for Public Release; Distribution Unlimited.

rack-protection-1.5.0.gem
rack-test-0.6.2.gem
rake-10.1.0.gem
rdiscount-2.1.6.gem
rdoc-3.12.2.gem
rdoc-rake-1.0.1.gem
require_relative-1.0.3.gem
rest-client-1.6.7.gem
rspec-2.13.0.gem
rspec-core-2.13.1.gem
rspec-expectations-2.13.0.gem
rspec-http-0.10.0.gem
rspec-mocks-2.13.1.gem
sinatra-1.4.3.gem
sinatra-advanced-routes-0.5.3.gem
sinatra-contrib-1.4.0.gem
test-unit-2.5.5.gem
thin-1.5.1.gem
tilt-1.4.1.gem
treetop-1.4.14.gem
will_paginate-3.0.4.gem
yajl-ruby-1.1.0.gem
yard-0.8.6.2.gem
yard-rspec-0.1.gem
yard-sinatra-1.0.0.gem

C.6 Building the CodeHawk Analyzer

The CodeHawk analyzer executables are found in the circuitbot-backend repository.
These are already built for the CentOS target platform. If di↵erent platforms are needed
please contact Matt Barry at (832)356-8211.

C.7 Game and Web Server Files

The CircuitBot game file is a web browser game and requires the Unity3D browser plugin.
The player is available for the following web browsers: Internet Explorer, FireFox, Chrome,
Safari, Opera - on Windows and Mac OS X. The plugin is available from the Unity web site.

The game and the supporting files will be copied to a web server which supports PHP 5.3
or later (with cURL library 7.10.5 or later). The game will run in a web browser and expects
to communicate with the PHP scripts in the same location that the game launches from.
The PHP scripts will communicate with our backend services as well as services provided
by TopCoder (Resource Allocator API and Game API). The host and port address for each
of the services is stored in the file cbconfig.txt. Although this file is included in the git
repository, it will need to be edited to set the proper host and port values. We’ve created
a browser page for doing this, admin inputconfigvalues.php. This script will attempt to

288
Approved for Public Release; Distribution Unlimited.

http://unity3d.com/webplayer

set the file permissions of the file (0666), but depending on the server configuration may not
succeed. Set the file permissions to rw-rw-rw-.

Another admin tool is admin main.php, used primarily as a development aid, provides
access to the admin inputconfigvalues.php page, displays achievement information, and
provides access to a page for purging player information.

289
Approved for Public Release; Distribution Unlimited.

Appendix D Source Lines of Code

The following table identifies our count of the lines of analyzable C-language source code for
the various directories of the BIND 9.9.3-P2 distribution.

Directory SLOC
bin 79,331
contrib 55,498
doc 0
docutil 0
lib/bind 92,878
lib/export 2,563
lib/isc 42,644
lib/isccfg 5,219
lib/tests 669
lib/dns 99,405
lib/dns/rdata 16,742
lib/dns/tests 3,041
lib/dns/win 3270
lib/irs 2,552
lib/isccc 1,936
lib/lwres 7,353
lib/win32 25
unit 12,233
util 0
win32utils 0
Total 332,159

290
Approved for Public Release; Distribution Unlimited.

Appendix E Game Statistics: BIND Inlining Level 0

The statistics in Table 26 pertain to the game level collection CodeHawk generated for the
BIND modules using zero levels of inlining. During the CircuitBot game development our
team initially was concerned that game levels that were too “complex” by some measure
would be too dense to display in the player’s browser and too cumbersome to play and to
distribute well across the network. Initially we determined that about 36 constraints was a
playable number, so these statistics revealed that nearly 85% of the generated game levels
would be playable under that threshold. Unfortunately these also turned out to be tedious
for the player. Later we determined that a much larger value could be tolerated. During the
Dynamakr game development we in fact required to auto-solvers to play these smaller (less
interesting) games and we presented the larger games in di↵erent ways to the humans.

Complexity Variables Constraints Score
Mean 245.0 20.3 21.7 50.5

Median 116.0 10.0 11.0 50.0
Standard Deviation 602.4 67.8 47.6 28.9

Minimum 3.0 0.0 0.0 0.0
Maximum 30348.0 3886.0 2190.0 100.0

Percentile 10% 32.0 2.0 3.0 11.0
Percentile 25% 52.0 4.0 5.0 26.0
Percentile 50% 116.0 10.0 11.0 50.7
Percentile 75% 207.0 16.0 19.0 70.7
Percentile 95% 834.0 67.0 75.0 95.0
Percentile 100% 30358.0 3886.0 2190.0 100.0
Percent Rank 36 15.0% 87.8% 84.6%
Percent Rank 100 44.5% 97.3% 96.7%

Games 154,424

Table 26: Game level statistics for BIND with zero inlining. Complexity is the number of
nodes in the constraint definition. Variables is the number of game model variables in the
constraint. Constraints is the number of flow constraints in the function. Score is the play
priority value assigned to the game level according to its complexity.

291
Approved for Public Release; Distribution Unlimited.

Appendix F Backend Transactions

The following table illustrates the use of APIs across the TA3, game, and backend services.
For each phase of game play it shows which service is performing a function and using a
particular API.

Phase N Game TA3 Host Game API Achievement
API

Backend Status

Prelude P1 Read XML
and extract
game
instances.
Write game
instance to
document
store.
Performed in
game model
client.

Done in
back-
end.

P2 For each
instance,
extract its
variable
count,
constraint
count, and
complexity.
Compute a
priority
value, write
these as
priority and
parameters
array and
parameters
array to the
game API
using declare
level
metadata
API 6.1.
Performed in
game model
client.

Done in
back-
end.

continued on following page . . .

292
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Phase N Game TA3 Host Game API Achievement
API

Backend Status

P3 Stores level
metadata
description.
Creates level
if not
defined.

P4 Import task
knows when
level
generation is
complete.
Activate all
levels API
5.10.
Performed in
game model
client.

Done in
back-
end.

P5 Activates all
levels. Levels
should be
ready to be
assigned
upon player
request.

Initialize I1 Delivers
game to
player’s
browser.
Game
includes
configuration
for address
and port of
Game API
services, and
address and
port of
CircuitBot
backend.

continued on following page . . .

293
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Phase N Game TA3 Host Game API Achievement
API

Backend Status

I2 Launches in
browser

I3 Requests au-
thentication
of player
from TC
services.

I4 Authenticates
with Oauth,
passes token
to game.

I5 Receives
token for
player

I6 Create player
if necessary.
Passes same
player ID
from TA3
host to
CircuitBot
backend as
player ID.

I7 Creates new
player using
given ID.
Create new
blank player
API 7.3.
Performed in
the player
services.

Done in
back-
end.

I8 Creates a
new player
with given
ID.

I9 Activate
player for
the allocator,
calling game
API 5.4.

continued on following page . . .

294
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Phase N Game TA3 Host Game API Achievement
API

Backend Status

I10 Activates
player API
5.4

Startup S1 Request
player’s
score,
awards, by
player ID
using
achievement
API

S2 Returns
player’s
score, awards

S3 Request
game
instance
from
backend
game
instance
service.

S4 Requests
match for
player given
player ID
calling API
5.2.
Performed in
game
instance
service for
player ID.

Done in
back-
end.
Changed
route
for
earlier
matcher
to use
incom-

plete

for

player-

id

seg-
ment.

continued on following page . . .

295
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Phase N Game TA3 Host Game API Achievement
API

Backend Status

S5 Returns
match for
player, which
provides a
level ID.

S6 Find
instance by
level ID.
Return
instance to
game.
Performed in
game
instance
service.

Not
needed.
The in-
stance
ID and
level ID
are the
same
value.

S7 Read game
instance ID
response
from
backend.
Request
game
instance data
from
backend.

S8 Returns
game
instance data
from
document
store given
game
instance ID.

Not
changed.

S9 Retrieve
game data
from
backend.

S10 Return
instance and
play support
data from
document
stores.

Not
changed.

continued on following page . . .

296
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Phase N Game TA3 Host Game API Achievement
API

Backend Status

Play P1 Play game.
Notify level
started API
5.8.

P2 Receive level
started.

P3 Write result
back to game
instance and
increase play
count.

P4 Store game
instance
data.
Decrease the
priority by
10% down to
1 minimum.
Implemented
in game
instance
update and

increment

play count

route only.

Done in
back-
end.

P5 Notify level
stopped API
5.9.

P6 Receive level
stopped.

Wrap-
Up

W1 De-activate
all levels API
5.12.

Provided
in
admin
control
service.

W2 De-activate
all players
API 5.13.

297
Approved for Public Release; Distribution Unlimited.

Appendix G Backend Service Routes

The following table identifies the backend API’s HTTP service routes and the application
providing the corresponding service. Each service is a subclass of the CircuitbotService
Sinatra service.

Verb Route Application
GET /admin/ping AdminService
GET /help AdminService
GET /admin/help AdminService
GET /admin/? AdminService
GET /admin/routes AdminService
GET / AdminService
POST /admin/control/email AdminService

GET /admin/analyzer/analysis AdminMessageService
GET /admin/analyzer/preanalysis AdminMessageService
GET /admin/control AdminMessageService
GET /admin/control/notify/games/hipchat AdminMessageService
GET /admin/control/notify/players/hipchat AdminMessageService
GET /admin/control/notify/statistics/hipchat AdminMessageService
GET /admin/control/notify/workers/hipchat AdminMessageService
GET /admin/control/test/populate AdminMessageService
GET /admin/environment AdminMessageService
GET /admin/generate AdminMessageService
GET /admin/production/start AdminMessageService
GET /admin/production/stop AdminMessageService
GET /admin/reset/played count AdminMessageService
GET /admin/snapshot AdminMessageService
GET /admin/snapshot/start AdminMessageService
GET /admin/snapshot/stop AdminMessageService
GET /admin/statistics/gather AdminMessageService
GET /admin/statistics/stop AdminMessageService
POST /admin/control/notify AdminMessageService

PUT /award/:award id AwardService
GET /award/help AwardService
GET /award/peek AwardService
GET /award/view AwardService
GET /award/ping AwardService
GET /award/awards AwardService
GET /award/award ids AwardService
GET /award/:award id AwardService
GET /award AwardService
continued on following page . . .

298
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Verb Route Application
GET /award/ AwardService
POST /award/:award id AwardService
DELETE /award/all AwardService
DELETE /award/:award id AwardService
PUT /badge/:badge id AwardService

GET /badge/help BadgeService
GET /badge/peek BadgeService
GET /badge/view BadgeService
GET /badge/ping BadgeService
GET /badge/badges BadgeService
GET /badge/badge ids BadgeService
GET /badge/:badge id BadgeService
GET /badge BadgeService
GET /badge/ BadgeService
POST /badge/:badge id BadgeService
DELETE /badge/all BadgeService
DELETE /badge/:badge id BadgeService

GET /call graph/arc/count CallGraphService
GET /call graph/dot/xid/:xid CallGraphService
GET /call graph/dot/xid/uid/:xid/:uid CallGraphService
GET /call graph/peek CallGraphService
GET /call graph/ping CallGraphService
GET /call graph/view CallGraphService
DELETE /call graph/all CallGraphService

PUT /dictionary/:uid/:xid DictionaryService
GET /dictionary/:uid/:xid DictionaryService
GET /dictionary/field/:part id/:xid/:uid DictionaryService
GET /dictionary/peek DictionaryService
GET /dictionary/ping DictionaryService
GET /dictionary/view DictionaryService
DELETE /dictionary/all DictionaryService
DELETE /dictionary/:uid/:xid DictionaryService
POST /dictionary/:uid/:xid DictionaryService

PUT /disaster/:disaster id DisasterService
GET /disaster/help DisasterService
GET /disaster/peek DisasterService
GET /disaster/view DisasterService
GET /disaster/ping DisasterService
GET /disaster/disasters DisasterService
GET /disaster/disaster ids DisasterService
continued on following page . . .

299
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Verb Route Application
GET /disaster/:disaster id DisasterService
GET /disaster DisasterService
GET /disaster/ DisasterService
POST /disaster/:disaster id DisasterService
DELETE /disaster/all DisasterService
DELETE /disaster/:disaster id DisasterService

PUT /game instance/:instance id GameInstance
PUT /game instance/log/error GameInstance
PUT /game instance/log/warn GameInstance
PUT /game instance/log/info GameInstance
GET /game instance/help GameInstance
GET /game instance/view GameInstance
GET /game instance/peek GameInstance
GET /game instance/statistics/complexity GameInstance
GET /game instance/statistics/constraints GameInstance
GET /game instance/ping GameInstance
GET /game instance/instances GameInstance
GET /game instance/played/:instance id GameInstance
GET /game instance/played count GameInstance
GET /game instance/unplayed count GameInstance
GET /game instance/all played ids GameInstance
GET /game instance/all unplayed ids GameInstance
GET /game instance/:instance id GameInstance
GET /game instance/for/:player id GameInstance
GET /game instance GameInstance
GET /game instance/ GameInstance
GET /game instance/export/graph GameInstance
POST /game instance/increment/:instance id GameInstance
POST /game instance/clear/:instance id GameInstance
POST /game instance/up and inc pc/:instance id GameInstance
POST /game instance/:instance id GameInstance
DELETE /game instance/all GameInstance
DELETE /game instance/:instance id GameInstance

PUT /goal/:goal id GoalService
GET /goal/help GoalService
GET /goal/peek GoalService
GET /goal/view GoalService
GET /goal/ping GoalService
GET /goal/goals GoalService
GET /goal/goal ids GoalService
continued on following page . . .

300
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Verb Route Application
GET /goal/:goal id GoalService
GET /goal GoalService
GET /goal/ GoalService
POST /goal/:goal id GoalService
DELETE /goal/all GoalService
DELETE /goal/:goal id GoalService

PUT /graph/:uid lhs/:uid rhs/:xid GraphService
GET /graph/:uid lhs/:uid rhs/:xid GraphService
GET /graph/arc/count GraphService
GET /graph/arc/count/subset/:xid GraphService
GET /graph/export GraphService
GET /graph/node/:uid/:xid GraphService
GET /graph/peek GraphService
GET /graph/ping GraphService
GET /graph/region/both/:xid/:hops/:uid GraphService
GET /graph/region/left/:xid/:hops/:uid GraphService
GET /graph/region/right/:xid/:hops/:uid GraphService
GET /graph/view GraphService
DELETE /graph/all GraphService
DELETE /graph/bundle/:xid GraphService
DELETE /graph/:uid lhs/:uid rhs/:xid GraphService

PUT /history/compute HistoryService
PUT /history HistoryService
GET /history/help HistoryService
GET /history/peek HistoryService
GET /history/view HistoryService
GET /history/ping HistoryService
GET /history HistoryService
GET /history/ HistoryService
DELETE /history/all HistoryService
DELETE /history HistoryService

PUT /mission/new MissionService
PUT /mission/:mission id MissionService
GET /mission/help MissionService
GET /mission/peek MissionService
GET /mission/view MissionService
GET /mission/ping MissionService
GET /mission/missions MissionService
GET /mission/mission ids MissionService
GET /mission/playermissions/:player id MissionService
continued on following page . . .

301
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Verb Route Application
GET /mission/:mission id MissionService
GET /mission MissionService
GET /mission/ MissionService
POST /mission/:mission id MissionService
DELETE /mission/all MissionService
DELETE /mission/:mission id MissionService
DELETE /mission/player/:player id MissionService

PUT /player/:player id PlayerService
GET /player/help PlayerService
GET /player/view PlayerService
GET /player/peek/attempted PlayerService
GET /player/peek/solved PlayerService
GET /player/peek/points PlayerService
GET /player/attempted count PlayerService
GET /player/solved count PlayerService
GET /player/scored count PlayerService
GET /player/peek PlayerService
GET /player/ping PlayerService
GET /player/players PlayerService
GET /player/player ids PlayerService
GET /player/:player id PlayerService
GET /player PlayerService
GET /player/ PlayerService
POST /player/:player id PlayerService
POST /player/gameupdate/:player id PlayerService
POST /player/increment/attempted/:player id PlayerService
POST /player/increment/solutions/:player id PlayerService
POST /player/increment/first/:player id PlayerService
POST /player/add/points/:player id PlayerService
POST /player/add/time/:player id PlayerService
POST /player/append/history/:player id PlayerService
DELETE /player/all PlayerService
DELETE /player/:player id PlayerService

PUT /planet/:planet id PlanetService
GET /planet/help PlanetService
GET /planet/peek PlanetService
GET /planet/view PlanetService
GET /planet/ping PlanetService
GET /planet/planets PlanetService
GET /planet/planet ids PlanetService
continued on following page . . .

302
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Verb Route Application
GET /planet/:planet id PlanetService
GET /planet PlanetService
GET /planet/ PlanetService
POST /planet/:planet id PlanetService
DELETE /planet/all PlanetService
DELETE /planet/:planet id PlanetService

PUT /resource definition/:resource definition id ResourceDefinitionService
GET /resource definition/help ResourceDefinitionService
GET /resource definition/peek ResourceDefinitionService
GET /resource definition/view ResourceDefinitionService
GET /resource definition/ping ResourceDefinitionService
GET /resource definition/resources ResourceDefinitionService
GET /resource definition/resource definition ids ResourceDefinitionService
GET /resource definition/:resource definition id ResourceDefinitionService
GET /resource definition ResourceDefinitionService
GET /resource definition/ ResourceDefinitionService
POST /resource definition/:resource definition id ResourceDefinitionService
DELETE /resource definition/all ResourceDefinitionService
DELETE /resource definition/:resource definition id ResourceDefinitionService

PUT /resource/new ResourceService
PUT /resource/:resource instance id ResourceService
GET /resource/help ResourceService
GET /resource/peek ResourceService
GET /resource/view ResourceService
GET /resource/ping ResourceService
GET /resource/resources ResourceService
GET /resource/resource instance ids ResourceService
GET /resource/instances ResourceService
GET /resource/player/:player id ResourceService
GET /resource/game mission/:game mission id ResourceService
GET /resource/resource definition/:resource definition id ResourceService
GET /resource/playerresources/:player id ResourceService
GET /resource/:resource instance id ResourceService
GET /resource ResourceService
GET /resource/ ResourceService
POST /resource/:resource instance id ResourceService
DELETE /resource/all ResourceService
DELETE /resource/:resource instance id ResourceService
DELETE /resource/player/:player id ResourceService

PUT /statistics/:function id StatisticsService
continued on following page . . .

303
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Verb Route Application
GET /statistics/help StatisticsService
GET /statistics/peek StatisticsService
GET /statistics/view StatisticsService
GET /statistics/ping StatisticsService
GET /statistics/functions StatisticsService
GET /statistics/total/:function id StatisticsService
GET /statistics/:function id StatisticsService
GET /statistics StatisticsService
GET /statistics/ StatisticsService
POST /statistics/add/:function id StatisticsService
POST /statistics/clear/:function id StatisticsService
POST /statistics/:function id StatisticsService
DELETE /statistics/all StatisticsService
DELETE /statistics/:function id StatisticsService

GET /uid/count UidService
GET /uid/peek UidService
GET /uid/view UidService
GET /uid/ping UidService
DELETE /uid/all UidService

PUT /worker/:worker id WorkerService
GET /worker/attempted count WorkerService
GET /worker/help WorkerService
GET /worker/peek WorkerService
GET /worker/peek/arcs WorkerService
GET /worker/peek/seen WorkerService
GET /worker/peek/solved WorkerService
GET /worker/pink WorkerService
GET /worker/scored count WorkerService
GET /worker/solved count WorkerService
GET /worker/view WorkerService
GET /worker/:worker id WorkerService
GET /worker/worker ids WorkerService
GET /worker/workers WorkerService
POST /worker/:worker id WorkerService
POST /worker/add/analysis points/:worker id WorkerService
POST /worker/add/analysis time:worker id WorkerService
POST /worker/add/dynamo points/:worker id WorkerService
POST /worker/add/dynamo time/:worker id WorkerService
POST /worker/gameupdate/:worker id WorkerService
POST /worker/increment/first/:worker id WorkerService
continued on following page . . .

304
Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Verb Route Application
POST /worker/increment/improved/:worker id WorkerService
POST /worker/increment/processed/:worker id WorkerService
POST /worker/increment/seen/:worker id WorkerService
POST /worker/increment/solved/:worker id WorkerService
DELETE /worker/all WorkerService
DELETE /worker/:worker id WorkerService

PUT /worker history/:worker id WorkerHistoryService
GET /worker history/:worker id WorkerHistoryService
GET /worker history/help WorkerHistoryService
GET /worker history/instance/:instance id/:xid WorkerHistoryService
GET /worker history/peek WorkerHistoryService
GET /worker history/ping WorkerHistoryService
GET /worker history/view WorkerHistoryService
GET /worker history/worker history/:worker id/:instance id/:xid WorkerHistoryService
DELETE /worker history/:worker id WorkerHistoryService
POST /worker history/:worker id/:instance id/:xid WorkerHistoryService

305
Approved for Public Release; Distribution Unlimited.

Appendix H Game Feedback

The following pages are a database report representing some of the VIPER player feedback.
The Amazon Turk players report good and bad experiences at a third-party forum web
site Turkopticon4. We collected for our own information the reports for the VIPER human
intelligence tasks (HITs) which TA3 published under the name “Mark Felix.” We did not
initiate contact with these players, but we did use the insights gained from these reports to
adjust the di�culty of future HITs. The HIT feedback for this site is not exclusively for
VIPER because all of the games were published under the same name, so the reports must be
taken in general. However VIPER saw some of the highest tra�c levels because we pushed
several HITs. Throughout the AMT period we were experimenting with two dimensions
of the HIT problem (payout and di�culty) to learn the size of the problem we could push
out through this channel, and what payout would be required for this community to work
on di�cult problems. The verbal feedback and measured production rates helped with this
experiment. Our measured di�culty and payout results are shown with the game results
in Section 4.4 on page 183. Judging from the episodes of wavering positive and negative
responses it is clear we were exploring the boundaries of the dimensions of interest. One
normally would not expect many positive reviews on a site like this because it would tip o↵
other workers to capture lucrative opportunities one might one to keep to oneself. We paid
out all of our budget, so all of the games that could have been played within budget were
played.

4http://turkopticon.ucsd.edu

306
Approved for Public Release; Distribution Unlimited.

http://turkopticon.ucsd.edu
http://turkopticon.ucsd.edu

Search results for mark felix:

AMT Requester Rating [info] Description

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

4 / 5

FAST:

5 / 5

PAY:

4 / 5

COMM:

4 / 5

updated review: requestor reversed the rejection
with a note saying the server-generated code
requires manual acceptance. Still only giving it a 4
since it shouldn't reject in this scenario. The other
hits (the U of Washington ones) have been fine.
-------- original -----------
I've tried these Verification Game tasks several
times. They're slow, and I've never gotten the
requested number of points before I saw time
running out, so I returned them. This time around,
for whatever reason, I got about 12-13 points (out of
25) and suddenly got a completion code about 20
minutes before time ran out. I submitted - and was
almost immediately rejected. That seems to be a
common issue with these hits - perhaps there's an
auto-reject set up? If so, boo.

The pay (2.00) won't make you rich, but for
something that's outside the box, and doesn't require
too much hands-on attention, it's not bad (if I get
paid!). I'll update the "responsive" rating if I can,
once I hear back.

I agree that the whole thing is confusing. You know
nothing about the constraints, just that there are
some.

For his other HITs (the ones where you resolve
conflicts in dot size/color) are more of a direct
challenge to the intellect (though the GUI for those
needs improvement). Pay is low (10 cents) but I've
always gotten a bonus of 75 cents to 1.25, which is
quite nice. Those usually approve and pay+bonus
within 2-3 days. Given their more complex nature,
that's reasonable.

This review was edited by the author Fri Sep 11 13:35 PDT.

Sep 11 2015 | mama...@g... | flag | comment | flags,
comments »

Mark Felix FAIR:

4 / 5

I played the game about an hour.Got the completion
code,and submitted,as soon as submitted got

307

Approved for Public Release; Distribution Unlimited.

ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAST:

4 / 5

PAY:

2 / 5

COMM:

4 / 5

immediate rejection.Mailed him no response yet.

Updated Review

He reversed rejection,with a note it's a server
problem.It needs manual approval.So he approved
manually.

This review was edited by the author Fri Sep 11 19:56 PDT.

Sep 11
2015 | sreeniv...@g... | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

NO DATA

FAST:

NO DATA

PAY:

1 / 5

COMM:

NO DATA

TERRIBLE HIT.

1. Requires UNITY. Chrome does not work, so
firefox it is. Unity means that it's quite slow. No
biggie.

2. Instructions are...well, I've read it in detail 3
times already and I STILL don't have a clue what
I'm supposed to do. They explain how it works, but
not exactly what you're supposed to do at all. They
just say, "This connects to this. Ok good luck."

Took me about an hour to finally get enough points
to complete.
Sep 11 2015 | andro...@g... | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

5 / 5

FAST:

4 / 5

PAY:

4 / 5

COMM:

5 / 5

This hit broke 3 times trying to use it, and the
requester immediately rejected it. He reversed the
rejection the next day. Updated scores to reflect.

This review was edited by the author Sat Sep 05 09:04 PDT.
This review was edited by the author Fri Sep 04 17:15 PDT.
This review was edited by the author Fri Sep 04 17:14 PDT.

Sep 05 2015 | Howard | flag | comment | flags,
comments »

308

Approved for Public Release; Distribution Unlimited.

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

5 / 5

FAST:

5 / 5

PAY:

1 / 5

COMM:

NO DATA

"Crowd Source Verification Game Task Viper
1/25". $1.00, 55 min. As others have said, I played
while doing other hits. Some of the bigger 'arcs'
take a minute or to to load and another couple of
minutes to get. My game had a goal of 25, but I won
at 13, luckily. Otherwise it might have taken 2
hours! Approved as I was writing this review.
Sep 04
2015 | jessema...@g... | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

5 / 5

FAST:

5 / 5

PAY:

1 / 5

COMM:

NO DATA

Crowd Source Verification Game Task - Viper 2/20
on 9/3/15: 40 min, $2.00. Still have no clue how to
play, but easy to set in the background during the
loading parts.

This review was edited by the author Fri Sep 11 00:16 PDT.

Sep 03 2015 | worry | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

5 / 5

FAST:

5 / 5

PAY:

1 / 5

COMM:

NO DATA

It appears the code issue is fixed for this HIT since I
received a regular completion code at the end. I
spent 5-minutes completing the task, which is
extremely poor pay for the time invested. The bait
of future higher paying work had me biting the
hook. Approval was received within minutes
following completion.

This review was edited by the author Sun Aug 30 15:30 PDT.
This review was edited by the author Sun Aug 30 14:25 PDT.

Aug 30 2015 | NurseRachet | flag | comment | flags,
comments »

309

Approved for Public Release; Distribution Unlimited.

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

3 / 5

FAST:

NO DATA

PAY:

1 / 5

COMM:

1 / 5

Same as others, null code then rejected. Have
contacted with no response. Avoid if possible.

Edit: Rejection reversed but no response from
requester.

This review was edited by the author Mon Aug 10 08:52 PDT.

Aug 07 2015 | lrgi...@g... | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

1 / 5

FAST:

1 / 5

PAY:

1 / 5

COMM:

1 / 5

I did this hit, spent about 7 minutes on it, suddenly
the test ended and I got a null code, which I entered
and he rejected me soon after. I wrote him asking to
reverse it but got no reversal yet.
Aug 06 2015 | melle224 | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

3 / 5

FAST:

NO DATA

PAY:

NO DATA

COMM:

1 / 5

Like others, I was rejected with no reason
explained. I have a feeling it has to do with the
completion code issue. I have messaged him,
waiting to hear back.

Edit: Requester reversed my rejection. Did not
respond to my email, however.

This review was edited by the author Mon Aug 10 08:42 PDT.

Aug 06 2015 | Vpakzu | flag | comment | flags,
comments »

310

Approved for Public Release; Distribution Unlimited.

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

1 / 5

FAST:

1 / 5

PAY:

1 / 5

COMM:

1 / 5

I did this qualifier and it broke, so I submitted it
with what I thought was the code. I emailed him
and told him and he still rejected me. Over a penny!
AVOID!
Aug 06 2015 | chris...@y... | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

1 / 5

FAST:

NO DATA

PAY:

1 / 5

COMM:

1 / 5

I completed a qualification HIT and submitted my
completion code. I received a rejection quickly with
no explanation. I emailed the requester and will
update if they respond.

This review was edited by the author Fri Aug 07 03:22 PDT.

Aug 06
2015 | superhpbunny | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

3 / 5

FAST:

3 / 5

PAY:

3 / 5

COMM:

3 / 5

Spent just shy of 7 minutes on a $0.01 qualifier.
Received code at the end that said "null" pasted it in
- Rejected without explanation. Contacted
requester, awaiting response.

UPDATE: 8/10 Rejection reversed with note
"undefined", however, still no response to any
emails.

This review was edited by the author Mon Aug 10 08:34 PDT.
This review was edited by the author Thu Aug 06 09:27 PDT.

Aug 06 2015 | kitten...@h... | flag | comment | flags,
comments »

Mark Felix FAIR: Total waste of time.

311

Approved for Public Release; Distribution Unlimited.

ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

NO DATA

FAST:

NO DATA

PAY:

NO DATA

COMM:

NO DATA

Aug 03 2015 | james...@y... | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

5 / 5

FAST:

5 / 5

PAY:

3 / 5

COMM:

NO DATA

I will agree that the "Crowd Source Verification
Game" is a waste of time, buggy, confusing, and
prone to hanging completely when you're well into
the task, at which point you can only start over
again. Don't waste your time with that one.

However, the "University of Washington
Verification Game" is easy, fast, kind of fun, and
pays a bonus. Those are worth the time---as long as
they continue to pay a bonus (if they did not pay a
bonus they would not be very worth it at 10 cents
per).

Fast approval, fast bonuses (on the ones that pay a
bonus).

EDITED: I did 15 "University of Washington
Verification Game" tasks today and they were all
very difficult, hard to solve, and time consuming.
Even with the bonuses (smaller this time because I
couldn't get to 100% on most) they are much less
worth it for the time invested compared to prior
versions.

This review was edited by the author Mon Aug 03 17:03 PDT.
This review was edited by the author Mon Aug 03 17:02 PDT.
This review was edited by the author Mon Aug 03 16:14 PDT.

Jul 30
2015 | VvAndromedavV | flag | comment | flags,
comments »

312

Approved for Public Release; Distribution Unlimited.

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

NO DATA

FAST:

NO DATA

PAY:

1 / 5

COMM:

NO DATA

Returned at 30 minutes into this buggy HIT. Game
would freeze and go unresponsive. Not worth the
frustration or pay.
Jul 28 2015 | taylore | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

5 / 5

FAST:

5 / 5

PAY:

2 / 5

COMM:

5 / 5

I played the game for at least 30 minutes and it still
as not finished. Some parts of the game are broken
and buggy. The instructions also don't make sense.
Not worth the time for the pay of only $1!

Update: requester reversed rejection and payed

This review was edited by the author Tue Jul 28 20:49 PDT.
This review was edited by the author Tue Jul 28 20:46 PDT.

Jul 25 2015 | brantle...@g... | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

NO DATA

FAST:

NO DATA

PAY:

1 / 5

COMM:

NO DATA

1 hour in at 13/15 and unity crashes. waste of time
and all for nothing, HIT returned.
Jul 25 2015 | crappy...@y... | flag | comment | flags,
comments »

313

Approved for Public Release; Distribution Unlimited.

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

5 / 5

FAST:

5 / 5

PAY:

5 / 5

COMM:

NO DATA

I really enjoyed this HIT. I thought the games were
interesting. They paid almost instantly and bonuses
came very soon after. With the bonuses, the pay
was good.
Jul 25 2015 | MaGra | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

5 / 5

FAST:

5 / 5

PAY:

5 / 5

COMM:

NO DATA

Interesting game. Nice bonuses. Total pay for 18
hits was almost $8 for less than an hour of work
Jul 25
2015 | michellech...@g... | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

5 / 5

FAST:

5 / 5

PAY:

5 / 5

COMM:

NO DATA

Fun to do and paid quickly.
Jul 25 2015 | kjre...@y... | flag | comment | flags,
comments »

314

Approved for Public Release; Distribution Unlimited.

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

5 / 5

FAST:

5 / 5

PAY:

4 / 5

COMM:

NO DATA

I completed all 17 of these hits today. They all
involved playing a game of some sort. I never could
understand the rules exactly, but I eventually
fiddled with it enough to pass the levels.

All of the hits paid .10 for around a minute or less
of work. The hits wouldn't let you submit until after
2 minutes had passed, but I just left them open until
the time had passed and the code generated.

What really made these decent hits were the
bonuses. From what I understand these were
granted based on how many moves/time it took to
complete the game.

Regardless the hits approved instantly, the bonuses
were immediately sent out and all in all I made
almost $15 in total from all of the work.

*Side note: I will mention that there were some
other "game" hits from this same requester that I
attempted. However the directions were unclear, the
tasks were quite difficult and without knowing what
kind of bonuses might arise from the work I didn't
feel comfortable putting in that kind of time.

This review was edited by the author Fri Jul 24 17:55 PDT.

Jul 25 2015 | holst...@g... | flag | comment | flags,
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

NO DATA

FAST:

NO DATA

PAY:

NO DATA

COMM:

NO DATA

Can't even get this HIT to work regardless of
browser choice. Unity is awful. Not worth the time,
returned the HIT. Maybe he'll fix it at some point
and I can try again.
Jul 16 2015 | Shadow | flag | comment | flags,
comments »

315

Approved for Public Release; Distribution Unlimited.

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

5 / 5

FAST:

5 / 5

PAY:

1 / 5

COMM:

1 / 5

One of the worst HITs I've done on mTurk. I don't
even know why I decided to finish it. It took over 1
hour for 50 cents. I emailed him but he hasn't
responded yet. Approved quickly though.
Jul 15 2015 | raji...@g... | flag | comment | flags, 1
comments »

Mark Felix
ADDH0F0VQP5LI
Averages »
HIT Group »
Review Requester
»

FAIR:

NO DATA

FAST:

NO DATA

PAY:

1 / 5

COMM:

NO DATA

.50

Bad enough that it requires Unity.

But it's one of those hits with unclear and
complicated instructions.

I would consider mastering the instructions for no
less than $5.00.

But as is often the case with Unity the interface for
the game itself is poor.

DON'T WASTE YOUR TIME.

This review was edited by the author Wed Jul 15 08:28 PDT.
This review was edited by the author Wed Jul 15 08:27 PDT.
This review was edited by the author Wed Jul 15 08:26 PDT.

Jul 15 2015 | mtur...@y... | flag | comment | flags,
comments »

25 results

Query time: 0.11563

Render time: 0.00010

316

Approved for Public Release; Distribution Unlimited.

LIST OF ABBREVIATIONS AND ACRONYMS

Term Description
ADD Architecture Description Document
AMI Amazon Machine Instance
AMT Amazon Mechanical Turk
API Application Program (or Programming) Interface
AWS Amazon Web Services
BIND Berkeley Internet Name Domain
BSON Binary structured object notation
CSFV Crowd-Sourced Formal Verification
CWE Common Weakness Enumeration
DNS Domain Name System
EC2 Elastic Compute Cloud
GNU GNU’s Not Unix
HIT Human Intelligence Task; an AMT assignment; a VIPER game
HTTP Hypertext Transfer Protocol
HUP Human Use Protocol
IRB Institutional Review Board
ISC Internet Software Consortium
JSON JavaScript object notation
KT Kestrel Technology, LLC
LBG Left Brain Games, Inc
MT Mechanical Turk, here as Amazon’s artificial artificial intelligence service
NEIRB New England IRB
PCS Paid crowd source, a catch-all term including AMT
PDF Portable Document Format
PHP Personal home page
PTA Points-to arcs
PTG Points-to graph
RA Resource allocator
REST Representational state transfer, an architectural style
S3 Simple Storage Service
SLOC Source lines of code
continued on following page . . .

317

Approved for Public Release; Distribution Unlimited.

. . . continued from previous page

Term Description
SNS Simple Notification Service
TA1 Technical area 1, the CSFV game performers
TA2 Technical area 2, the CSFV defensive compiler team
TA3 Technical area 3, the CSFV integration performer
TTU Texas Tech University
UID Unique identifier, a CodeHawk identifier for model elements
URI Uniform resource identifier
URL Uniform resource locator
VC Verification condition
VIPER Verification improvement by PCS-enhanced results; our AMT game
VPC Virtual Private Cloud
XML Extensible markup language
YARD Yay! A Ruby Documentation Tool

318

Approved for Public Release; Distribution Unlimited.

	SUMMARY
	INTRODUCTION
	Proof Obligations
	Example
	Proof Obligations
	Invariants and Remaining Proof Obligations
	Function Preconditions
	Counterexample
	Constraints on User Input
	Summary

	Challenges with BIND
	Initial Manual Review
	Overview of Approach
	Technical Challenges

	METHODS, ASSUMPTIONS, AND PROCEDURES
	Semantics of Pointer Constraints
	Syntax of Constraints
	Semantic Domains
	Semantics of Constraints
	Fixpoint Semantics of the Game

	Procedure Example
	Memory Model
	Generation of Points-To Constraints
	Resolution of Points-To Constraints
	Verifying the Array-Bound Checks

	Formalization of the Game Model
	Representation
	Internal State
	Visualization
	Constraints in the Game Play
	Game Rules
	Production of Results

	Design of the Game Model
	Definitions
	Objective
	Representation
	Example: Definitions
	Basic Assignments
	Representation
	Example: Basic Assignments
	Function Calls
	Example: Function Calls
	Operational Description
	Organization of the Game
	Example: Game Play
	Verification Conditions
	Representation
	Example: Verification Conditions
	Example: Communication with CodeHawk
	A Larger Example

	Implementation of the Game Model
	Test Suite
	Ordering Strategy
	Scoring of a Game Instance

	Implementation of the Analyzer
	Anchors File
	Detailed Example

	Software Architecture
	Backend Services
	Web Services
	CircuitBot Game
	Design Goals
	Resource Allocation Integration
	Launch
	Lessons Learned

	Dynamakr Game
	Design Goals
	Launch
	Lessons Learned

	VIPER Game
	Design Goals
	Lessons Learned

	RESULTS AND DISCUSSION
	Economic Model
	CircuitBot Results
	Dynamakr Results
	VIPER Results
	Combined Results
	Arcweaver Results
	Solution Data

	CONCLUSIONS
	Verification Improvement and Valuation
	Attracting and Retaining Players
	Role for Humans

	RECOMMENDATIONS
	Verification Integration
	Paid Iterations
	Verification Tournaments
	Follow-On Exploration Game

	REFERENCES
	Appendix Compute Platform Experiment
	Appendix Databases
	Awards
	Badge
	Call Graph
	Dictionary
	Factory
	Factory Definition
	Game Instance
	Goal
	Graph
	History
	Mission
	Planet
	Player
	Player History
	Resource
	Resource Definition
	Statistics
	UID
	Worker
	Worker History

	Appendix Run Book
	Technologies
	Dependencies
	Preparing the Backend Target Platform
	Running the CircuitBot Backend
	Ruby Gem List
	Building the CodeHawk Analyzer
	Game and Web Server Files

	Appendix Source Lines of Code
	Appendix Game Statistics: BIND Inlining Level 0
	Appendix Backend Transactions
	Appendix Backend Service Routes
	Appendix Game Feedback
	Appendix Human Use Protocol
	LIST OF ABBREVIATIONS AND ACRONYMS

