
A Guide to Snark

Mark E. Stickel Richard J. Waldinger
Vinay K. Chaudhri

May 12, 2000

Contents

1 Preface 4

2 Getting Started 6
2.1 Snark language and theories 6

2.1.1 The Snark language 6
2.1.2 Snark Theories . 7
2.1.3 Clauses . 9

2.2 Resolution . 9
2.3 Invoking Snark . 10

Exercise: Resolution versus Hyperresolution. 16
2.4 Changing Snark’s Defaults 16
2.5 Basic Answer Extraction . 17

3 Language and Logic 18
3.1 The Syntax of Symbols . 18
3.2 Sorts . 20

Example: Grandmothers. 26
3.3 Skolemization . 26

Remark: Quantifier Force. 29
3.4 Equivalence . 30

Exercise: In-Laws. 30
Hints. 30
Solution. 31

3.5 Equality and Paramodulation 32

1

CONTENTS 2

Example: Grandchildren of Alice. 32

4 Answer Management 34
4.1 Multiple Answers . 34
4.2 Avoiding Duplicate Answers 36
4.3 Constructive Answer Restriction 38

Exercise: Riddle. 40
Hint. 40
Solution. 40
Remark: Skolem functions in answers. 41

Exercise: Cousins. 42
Solution. 42

4.4 Existentially Quantified Variables in Answers 44
4.5 Conditional Answers . 45

5 Efficiency Considerations 47
5.1 Commutative and Associative Symbols 48
5.2 Set of Support . 49
5.3 Recursive-Path Ordering Strategy 52
5.4 Predicate Ordering Strategy 54
5.5 Obtaining Left-to-Right Behavior 55
5.6 Rewrite Rules . 57

5.6.1 Proceed with Caution 59
5.6.2 Rewrite Rules May Be Introduced Automatically . . . 60

Exercise: Efficiency . 61

6 Temporal Reasoning 61
6.1 Time Points . 62
6.2 Time Intervals . 63

6.2.1 Allen Primitives . 64
6.2.2 Nonprimitive Relations 67

6.3 Intermixing Temporal and Relational Reasoning 69
6.4 Mixed Point-Interval Relations 71

6.4.1 Point-Interval Relations 71
6.4.2 Interval-Point Relations 72
6.4.3 Nonprimitive mixed relations 73

6.5 Temporal Functions . 74
6.6 Point-Interval Temporal and Relational Reasoning 74

CONTENTS 3

6.7 Calendar Dates and Clock Times 76
6.8 Dates in Other Time Intervals 77
6.9 Temporal Reasoner Interface 77

7 Procedural Attachment 79
7.1 Rewrite Code . 79

7.1.1 Built-in Rewrite Code 79
7.1.2 User-Supplied Rewrite Code 80
7.1.3 Example: Rewrite Code for mother 82

7.2 Satisfy and Falsify Code . 83
7.2.1 Satisfy Code for mother 83
7.2.2 Falsify code for mother 85

8 Support for kif/okbc Users 86
8.1 Introduction to Kif . 87
8.2 Description of kif+c . 87

8.2.1 Declaring Classes . 88
8.2.2 Declaring Individuals 89
8.2.3 Declaring Relations . 91
8.2.4 Declaring Functions . 93
8.2.5 Declaring Assertions 93

Exercise: Uniqueness of Mothers-in-law. 95
Solution. 95

8.3 Relationship of kif+c with snark 95
8.4 Built-in Number Sorts . 97

1 PREFACE 4

1 Preface

Snark, SRI’s New Automated Reasoning Kit, is a theorem prover intended
for applications in artificial intelligence and software engineering. Snark is
geared toward dealing with large sets of assertions; it can be specialized with
strategic controls that tune its performance; and it has facilities for integrat-
ing special-purpose reasoning procedures with general-purpose inference.

Snark has been used as the reasoning component of SRI’s High Perfor-
mance Knowledge Base (HPKB) system, which deduces answers to questions
based on large repositories of information. It constitutes the deductive core
of the NASA Amphion system, which composes software from components to
meet users’ specifications, e. g., to perform computations in planetary astron-
omy. Snark has also been connected to Kestrel’s specware environment
for software development.

Snark is a resolution-and-paramodulation theorem prover for first-order
logic with equality—in this sense, it is in the same category as Argonne’s
otter ([McCune]). Snark has provisions for both clausal and nonclausal
reasoning, and it has an optional sort mechanism. It incorporates associa-
tive/commutative unification and a built-in decision procedure for reasoning
about temporal points and intervals. It has no special facilities for proof by
mathematical induction. It has some capabilities for abductive reasoning,
which have been used in natural-language applications. Snark is imple-
mented in an easily portable subset of common lisp.

Snark is a refutation system; in other words, rather that trying to show
directly that some assertions imply a desired conclusion, it attempts to show
that the assertions and the negation of the conclusion imply a contradiction.
It is an agenda-based system; that is, in seeking a refutation, it will put the
assertions and the negation of the conclusion on an agenda. An agenda a list
of formulas. When a formula reaches the top of the agenda, snark will per-
form selected inferences involving that formula and the previously processed
formulas. The consequences of those inferences are added to the agenda.
This process continues until the propositional symbol false is derived; this
means that a contradiction has been deduced and the refutation is complete.
The user has considerable control over the position at which a newly derived
formula is placed on the agenda; this is one way in which a knowledgeable
user can tailor snark’s search strategy to a particular application.

This document is an example-driven tutorial introduction to snark that
will allow the reader to experiment with the system. It does not purport

1 PREFACE 5

to introduce mathematical logic or resolution theorem proving; [Chang] pro-
vides an introduction to this style of theorem proving that does not assume
any prior knowledge of logic. The guide also uses some notions introduced
more fully in [Manna] and [Waldinger], particularly nonclausal resolution,
quantifier force, and answer extraction. Knowledge of lisp syntax and ba-
sics is also assumed here (e. g., see [Graham] or [Pitman]). Nevertheless, it
is intended that a reader who is willing to suspend incomprehension will be
able to read this document without consulting other sources.

The guide is divided into several sections. In Getting Started (Section 2)
we give the minimum information necessary to allow a user to get started with
snark. We show how to enter axioms, and pose questions and set snark

parameters. In Language and Logic (Section 3) we introduce the aspects of
the snark language, including sorts, equality, and quantifiers, and we discuss
mechanisms for dealing with them, including the paramodulation rule and
skolemization. In Section 4, Topics in Answer Extraction, we discuss how
snark is used to provide answers to questions (other than a simple Yes),
and how answers are managed. In Efficiency Considerations (Section 5) we
describe snark features that help us direct the search, to find an answer
more quickly.

In Temporal Reasoning (Section 6) we describe the feature that allows
snark to reason efficiently about temporal points and intervals. In Proce-
dural Attachment (Section 7) we talk about how snark can do inferences
using special-purpose external procedures supplied by the user. In Support
for kif/okbc Users (Section 8) we describe kif+c (kif plus Classes), the
facility that enables snark to understand assertions and queries phrased in
kif, the Knowledge Interchange Format, with some extensions from okbc

(“Open Knowledge-Base Connectivity”), an object-oriented framework for
representing knowledge. This dialect was used in the HPKB project and
other knowledge representation efforts.

In future versions of this guide we intend to include a description of
snark’s abduction mechanism, a reference manual, and a description of
snark’s internal workings. The guide is meant to be a living document,
that will change as snark develops.

2 GETTING STARTED 6

2 Getting Started

In this section, we give minimum information necessary to get started with
snark.

2.1 Snark language and theories

We begin by introducing the language of snark and then show how to de-
scribe subject matter as a logical theory. As a running example in this
document, we illustrate of the use of snark to reason in a theory of family
relationships.

2.1.1 The Snark language

Terms stand for entities, such as things and people, while formulas stand for
truth-values, either true or false. Constants, such as carol and variables,
such as ?x, are terms. A constant such as betty or carol refers to only one
thing, while a variable may refer to different things, depending on context.
(Note that snark is usually case-insensitive; it will not distinguish between
the constants carol, CAROL, and CaRoL.)

Function symbols, such as father and mother, can be applied to a term
to yield another term, such as (father carol) and (mother ?x), standing
for the father of Carol and the mother of ?x, respectively. Because these
function symbols take only one argument, we say that are unary, or of arity
1.

Predicate symbols, such as parent or grandparent, are applied to terms
but yield atoms, which are elementary formulas, not terms. Thus

(parent carol ?x)

is an atomic formula that stands for a truth-value, which is true if Carol is
indeed a parent of ?x, and false otherwise. Predicate symbols stand for a
relation between entities; parent stands for the parenthood relation. Be-
cause parent and grandparent take two arguments, we say they are binary
predicate symbols, of arity 2. There are also propositional symbols, such
as it-is-raining, which are themselves atoms, and can be either true or
false. Finally, there are two special propositional symbols, the truth sym-
bols true and false, which always stand for the truth-values true and false,
respectively.

2 GETTING STARTED 7

Other formulas are built up from atoms by successive application of logical
connectives (and, or, not, implies, implied-by, iff, xor nand, and nor),
the universal quantifier forall and the existential quantifier exists. Various
synonyms are accepted for these symbols.

Thus, if <Form1> and <Form2> are formulas, so are (and <Form1> <Form2>),
(exists (?x) <Form1>), and so forth. For example,

(forall (?x)

(implies

(parent ?x (mother carol))

(grandparent ?x carol))

is a formula, which means that anyone who is a parent of the mother of Carol
is a grandparent of Carol. (In the theory we have in mind, this formula stands
for the truth-value true.) We will say that the occurrences of ?x in the above
formula are bound by the quantifier (forall (?x)...). Variables that are
not bound by any quantifier are said to be free.

Any symbol in the list following a quantifier is taken to be a variable,
whether or not it is prefixed by ?. Thus, the above formula could just as well
have been written

(forall (x)

(implies

(parent x (mother carol))

(grandparent x carol))

An occurrence of x not bound by a quantifier is taken to be a constant, while
any symbol prefixed by ? is automatically a variable, whether or not it is
bound by a quantifier; we call these ?-variables.

Together, terms and formulas make up the expressions. No expression is
both a term and a formula. A string of symbols, such as

(father (parent ?y carol))

obtained by applying a function symbol to a formula is not a legal expression
in the snark language.

2.1.2 Snark Theories

A theory, then is a vocabulary of constant, function, and predicate symbols,
and a set of formulas, called assertions, which describe the properties of the

2 GETTING STARTED 8

entities mentioned in the theory. For example, in the family theory we are
discussing, we can introduce the assertion

(parent betty carol)

to say that Betty is a parent of Carol.
The fact that fathers and mothers are parents is expressed by the two

snark assertions

(forall (?x) (parent (father ?x) ?x))

(forall (?x) (parent (mother ?x) ?x))

In other words, the father of ?x is a parent of ?x, and the mother of ?x is a
parent of ?x.

There is a convention that, in assertions, free ?-variables ?x are actually
bound by an invisible universal quantifier (forall (?x)...). Thus, the
above assertions could have been written

(parent (father ?x) ?x)

(parent (mother ?x) ?x).

Had we used variables without question-marks, however, we could not have
omitted the quantifier (forall (x)...); x would have been taken to be a
constant.

The fact that a parent of a parent is a grandparent is expressed by the
following snark assertion:

(implies

(and (parent ?x ?y) (parent ?y ?z))

(grandparent ?x ?z)).

That is, if ?x is a parent of ?y, and ?y is a parent of ?z, then ?x is a grand-
parent of ?z.

Once we have formulated a theory, we can pose a query, which is a snark

formula treated as a question rather than an assertion. Snark will attempt
to show that a query follows from all the assertions of the theory. For exam-
ple, if we want to ask if Carol has a grandparent, we may pose the query

(exists (?z) (grandparent ?z carol)).

2 GETTING STARTED 9

In other words, we want to deduce that there exists ?z such that ?z is a
grandparent of Carol.

The convention for queries is the opposite of that for assertions. In a
query, a free ?-variable ?z is bound by an invisible existential quantifier
(exists (?z)...). Thus, the above query could have been written

(grandparent ?z carol).

In attempting to prove this query, snark will assert the negation of
the query and attempt to derive a contradiction from that and the other
assertions. Thus, snark will assert

(not (grandparent ?z carol))

and attempt to deduce the truth symbol false. If it succeeds, we know that
all the assertions together must be contradictory.

2.1.3 Clauses

Snark is more efficient when dealing with formulas in clausal form. A
clause is a special kind of formula that consists of a disjunction of literals,
where each literal is either an atom or the negation of an atom. For instance,
the formula

(or

(not (parent ?person ?person1))

(not (parent ?person1 ?person2))

(grandparent ?person ?person2))

is in clausal form; it is the disjunction (or-ing) of three literals: one atom
and two negations of atoms. This clause is equivalent to the assertion that
the parent of a parent is a grandparent. Much resolution theorem proving
is based on the fact that the problem of refuting any formula is equivalent
to one of refuting a formula that is in clausal form, i. e., that consists of a
conjunction (and-ing) of clauses. As its default, snark translates all formulas
into clausal form, which it can deal with most efficiently.

2.2 Resolution

In searching for a refutation, snark will apply the resolution rule to the
formulas on its agenda. In its simplest form, the rule can be applied to two
given clauses of form

2 GETTING STARTED 10

(or (not P) Q)

and

(or P R)

and will deduce the corresponding clause of form

(or Q R)

But the rule is more complex than that. The two given clauses do not need
to have identical subatoms P. It is enough if the subatoms are unifiable—
in other words, if one can make them identical by applying a substitution,
replacing their variables by other terms.

The order of the disjuncts is irrelevant; (not P) and P do not need to be
first. Also it is possible that either or both of the other subformulas Q and
R are actually several disjuncts. Or they may be absent (i. e., one or both
may be taken to be false); the given formulas are then simply (not P) or
P, respectively, and the deduced formula will then be R or Q, respectively. If
both Q and R are absent, the deduced formula is false, and the refutation is
complete.

We shall see an application of the resolution rule in the following section.

2.3 Invoking Snark

Let us see how to invoke snark to solve the above problem.
We start with a lisp environment and load the snark system; how to

do this depends on your particular installation. We start by typing:

(initialize)

(use-resolution t)

The initialize function will clear out any previous formulas snark has
derived and ready it to accept a new theory and perform a new proof. After
initialization, we indicate which inference rules we would like to use, in this
case resolution.

We then introduce the assertions of our theory as snark assertions:

2 GETTING STARTED 11

(assert ’(parent (father ?x) ?x) :name ’father-is-parent)

(assert ’(parent (mother ?x) ?x) :name ’mother-is-parent)

(assert

’(implies

(and (parent ?x ?y) (parent ?y ?z))

(grandparent ?x ?z))

:name ’parent-of-parent-is-grandparent)

Note that each assertion is given a name, a string that follows the keyword
:name; these names have no effect on the proof, but will be used in the trace
to indicate where the assertion is used. If the name is omitted, a number
will be used instead. The assertion, its name or number, and some other
information are stored in a structure called a “row.”

A query is initiated by the snark prove function:

(prove ’(grandparent ?z carol)

:name ’does-carol-have-a-grandparent)

Here we have given the query a name, for our own convenience in following
the proof.

The query has the effect of putting the negation of the formula

(grandparent ?z carol)

into a row and then invoking snark to find a refutation.
Snark will respond by first giving a list of the options that have been

selected. Some of these (e. g., resolution) we have selected; most of them are
defaults:

; The current SNARK option values are

; (USE-RESOLUTION T)

; (USE-HYPERRESOLUTION NIL)

; ...

This means that we have selected to use resolution and not hyperresolution.
(Hyperresolution is a variant of resolution that can do several resolution steps
at once and is often more efficient.) Snark will print out a complete list of
the options it offers, and the settings that have been selected. If the user has

2 GETTING STARTED 12

not selected a setting, Snark will choose the default. This printing, and the
other printing reported here, can be altered by the user—we are reporting
Snark’s default behavior.

Snark will then print out the assertions it has been given, and the nega-
tion of the conclusion:

(Row father-is-parent

(parent (father ?x) ?x)

assertion)

(Row mother-is-parent

(parent (mother ?x) ?x)

assertion)

(Row parent-of-parent-is-grandparent

(or (not (parent ?x ?y)) (not (parent ?y ?z))

(grandparent ?x ?z))

assertion)

(Row does-carol-have-a-grandparent

(not (grandparent ?x carol))

~conclusion)

For each row, snark provides its name or number, its formula, and an
explanation of its origin. Snark freely renames variables according to its
own conventions—thus, in the negation of the conclusion, the variable ?z has
been renamed ?x. snark provides control options to suppress the printing
of formulas.

Next, snark gives an account of the steps it takes in searching for the
proof. If it finds a refutation, it will then reprint only those rows that play
a role. Here is the first of these steps:

(Row 12

(or (not (parent ?x ?y))

(not (parent ?y carol)))

(resolve does-carol-have-a-grandparent

parent-of-parent-is-grandparent))

Note that the row contains some information about how its formula was
deduced, if it was not an assertion or the negation of the conclusion. Here
Row 12 was obtained by applying the resolution rule to the negation of the
conclusion and the assertion that the parent of a parent is a grandparent.

2 GETTING STARTED 13

The unifying substitution replaced the variable ?z with the constant carol;
this substitution is reflected in Row 12.

Here is the next step:

(Row 23

(not (parent ?x carol))

(resolve 12 father-is-parent))

Note that the fact that ?x occurs in both Row 12 and in the assertion father-
is-parent is not logically significant—variables are systematically renamed
before unification to avoid such coincidences. Otherwise the two rows would
not be unifiable

Finally, we obtain

(Row 24

false

(resolve 23 father-is-parent))

The formula false indicates that a refution has been obtained. The intuitive
idea behind this proof is that Carol’s father is her parent, Carol’s father’s
father is his parent, and, since the parent of a parent is a grandparent, Carol’s
father’s father is her grandparent.

Snark will then report on statistics involved in the proof search, e. g.:

; Summary of computation:

; 15 formulas have been input or derived (from 7 formulas).

; 12 (80%) were retained. Of these,

; 1 (8%) were simplified or subsumed later,

; 0 (0%) were deleted later because

the agenda was full

; 11 (92%) are still being kept.

;

; Run time in seconds excluding printing time:

; 0.01 5% Resolution

; 0.01 5% Forward subsumption

; 0.17 89% Other

; 0.19 Total

;

To conclude, snark will return a value,

2 GETTING STARTED 14

:PROOF-FOUND.

If the desired conclusion does not follow from the assertions, Snark will
fail to find a proof. There are two ways it may behave in this case. It may
exhaust all possible inferences without finding a refutation; in this case it
will report that the agenda is empty, and halt, reporting

; All agendas are empty.

:AGENDA-EMPTY

Or it may continue to run on indefinitely without ever finding a refutation.
For instance, if we do not give Snark the assertion that the parent

of a parent is a grandparent, Snark will print the two assertions and the
negation of the conclusion, give the statistical summary, and then halt with
an empty agenda. In this configuration snark is a logically complete theorem
prover; that is, if conclusion does follow from the assertions, snark will find
a proof. Therefore, we know that in this case the assertions do not imply the
conclusion.

On the other hand, if snark runs on for longer than we expect, there is
no way, in general, to determine if the conclusion is not valid or if we simply
haven’t given it enough time. This is not a particular weakness of snark; it
is a theoretical limitation on all theorem provers that are logically complete
for first-order logic or more expressive logics.

If snark is running longer than we expect, we may interrupt it by typing
a carriage return at the keyboard. (In most implementations we may type
any character for this purpose.) Snark will then ask

Stop now?

We may answer yes, meaning to interrupt the proof, or no, meaning to
continue the proof. Even if we choose to interrupt the proof, we may continue
later by calling the function (closure), the snark function that computes
the logical consequences of the current set of rows. This function is also
invoked automatically when we call prove. We say more about calling it
explicitly in Section 4.1.

Now let us see how to change snark’s strategies and options.
We indicated that snark was to use the (binary) resolution rule by exe-

cuting

(use-resolution t)

2 GETTING STARTED 15

after calling initialize but before calling prove. If we change our mind
and decide to try hyperresolution instead, we can invoke

(use-resolution nil)

(use-hyperresolution t)

before starting the proof.
We have mentioned that clause form is the default for snark. If we

decided to try using nonclausal resolution instead, we may say

(use-resolution t)

(use-clausification nil)

after initialization but before beginning the proof. In this case, snark will
invoke a nonclausal version of the resolution rule. (Caution: no nonclausal
version of hyperresolution has been implemented.)

This illustrates a pattern with setting snark options. Henceforth, when
we say that we select snark option some-option, we shall mean that we
execute

(use-some-option t)

after initializing snark but before beginning the proof. As an abbreviation,
we may simply say

(use-some-option)

to select some-option. To turn the option off, we say

(use-some-option nil).

Most of the options that snark lists when it begins a proof can be turned
on or off in this manner.

If we want to ask snark what its setting is for a particular option
some-option, we may invoke

(use-some-option?)

For instance, if we want to see if snark is currently using the resolution rule,
we invoke

(use-resolution?)

Invoking initialize causes snark to revert to its default options. Later
(in Section 2.4), we shall see how to change those defaults.

2 GETTING STARTED 16

Exercise: Resolution versus Hyperresolution. Run snark on the
problem of finding the grandparents of Carol; compare its performance using
resolution and hyperresolution. Also compare the results using the clausal
and the nonclausal versions of resolution. See what happens if you request
the nonclausal version of hyperresolution, nonexistent at the time of this
writing.

The following section, on how to change snark’s default behavior, may
be omitted on first reading.

2.4 Changing Snark’s Defaults

Each time we initialize snark, we restore the setting of all its options to
its defaults. We have seen how, after initialization, we can reset snark’s
options. This is appropriate if we want to change snark’s behavior for a
particular query, but want it to resume its normal behavior subsequently,
the next time it is initialized. If we want a more permanent change, it is
convenient to change snark’s default behavior; there is a convention about
how to go about this.

Here is an example: as we have seen, use of the resolution rule is not the
default in snark; if we want to turn it on, we must say

(use-resolution t)

after initializing snark and before beginning the proof. Subsequent calls to
(initialize) will restore the default, i. e., will turn resolution back off. If
we normally do want to use resolution (as opposed to hyperresolution, say),
we can change snark’s default; we may invoke

(default-use-resolution t).

This in itself will not change snark’s setting on the resolution option, but
subsequent invocation of initialize will then turn on resolution. Thus,
typically, we will set the default before we invoke initialize.

In general, calling

(default-use-some-option ...)

changes the default setting for some-option. Calling initialize returns
snark to its default setting for all options. Calling

(use-some-option ...)

2 GETTING STARTED 17

changes the setting for some-option temporarily, without changing the de-
fault. Subsequent calls to initialize return the setting to its default again.
This enables us to experiment with different settings for the options without
changing the default.

2.5 Basic Answer Extraction

In the example of Section 2.3, we have established that Carol has at least one
grandparent, but we have not answered the question “Who is Carol’s grand-
parent?” For this purpose, we may use snark’s answer-extraction mecha-
nism. We include in the prove statement an indication of what constitutes
an answer, should the proof succeed:

(prove ’(grandparent ?z carol) :answer ’(ans ?z))

Notice that we have given our query a new component, the answer formula,
which follows the keyword :answer. This means we are asking snark to
tell us what value of ?z will allow us to show that ?z is Carol’s grandfather.
In response, snark proves the conclusion again, reporting in each row what
substitution was made for (ans ?z) at that stage of the proof:

(Refutation

(Row father-is-parent

(parent (father ?x) ?x)

assertion)

(Row parent-of-parent-is-grandparent

(or

(not (parent ?x ?y))

(not (parent ?y ?z))

(grandparent ?x ?z))

assertion)

(Row does-carol-have-a-grandparent

(not (grandparent ?x carol))

~conclusion

Answer (ans ?x))

(Row 12

(or (not (parent ?x ?y)) (not (parent ?y carol)))

(resolve

does-carol-have-a-grandparent

3 LANGUAGE AND LOGIC 18

parent-of-parent-is-grandparent)

Answer (ans ?x))

(Row 23

(not (parent ?x carol))

(resolve 12 father-is-parent)

Answer (ans (father ?x)))

(Row 30

false

(resolve 23 father-is-parent)

Answer (ans (father (father carol))))

At Row 23, we see that if ?x is a parent of Carol, then the father of ?x is
a suitable answer (that is, ?x is a grandparent of Carol.) At the end of the
proof, we see that the father of the father of Carol is a grandparent of Carol.
Later (Section 4.1), we shall see how to obtain more than one answer for a
given query.

Use of the predicate symbol ans is arbitrary; we can give any formula as
the answer formula. We could not, however, say simply

(prove ’(grandparent ?z carol) :answer ’?z)

because the answer must be a formula, not a term.
This concludes the Getting Started section, which acquaints the user with

the bare minimum necessary to experiment with the system. We now give a
more detailed introduction to snark.

3 Language and Logic

In this section we give additional snark language constructs and the mech-
anisms it has for dealing with these constructs. We include the syntax of
symbols, the sort mechanism, equivalence, equality, and quantifiers.

3.1 The Syntax of Symbols

The syntax of the basic snark symbols can be described as follows.
A proposition symbol, predicate symbol, or function symbol can be any

lisp symbol that

• is at least one character long,

3 LANGUAGE AND LOGIC 19

• does not begin with the character “?”,

• is not the symbol NIL,

• is not the (keyword) symbol :none, and

• is not another keyword symbol, such as :name or :answer. 1

A constant symbol can be a lisp number, character, string, or any lisp

symbol that

• is at least one character long,

• does not begin with the character “?”,

• is not the (keyword) symbol :none, and

• is not another keyword symbol. 2

Snark compares constant symbols using the lisp EQL function. Thus, 3 and
3.0 are different constant symbols. Ordinarily, (EQL "ABC" "ABC") may be
false, but snark will use a single copy of string constants so that such tests
will succeed.

A variable symbol can be any lisp symbol that

• is at least two characters long,

• begins with the character “?”, and

• is not a keyword symbol.

A variable symbol bound by a quantifier can also be any lisp symbol that

• is at least one character long,

• does not begin with the character “?”,

• is not the symbol NIL, and

• is not a keyword symbol.

Whether X is a variable symbol or a constant symbol depends on whether
the occurrence of X is bound (or being bound) by a quantifier or not.

1Unless snark option allow-keyword-proposition-symbols,
allow-keyword-predicate-symbols, or allow-keyword-function-symbols is true.

2Unless snark option allow-keyword-constant-symbols is true.

3 LANGUAGE AND LOGIC 20

3.2 Sorts

Sorts provide a mechanism to restrict the possible instantiations of a vari-
able in a formula. Sorts can substantially reduce the cost of inference by
restricting the search space. Using sorts some formulas can be stated more
compactly.

In our theory of family relationships, everything is tacitly assumed to be
a person. If an assertion has a global variable ?x, that variable is assumed
to stand for a person, but that assumption has not been made explicit.

If we were to combine this theory with another theory of, say, inanimate
objects, we would have to differentiate between those assertions that are
meant to apply to people and those that are meant to apply to objects. For
example, the assertion that says that everyone’s father is his parent holds
only for people, not objects.

We could do this by introducing predicate symbols person and object,
and augmenting our axioms with antecedents that classify the variables. For
instance, our axiom that fathers are parents could be written

(assert

’(implies

(person ?x)

(parent (father ?x) ?x))

:name ’father-is-parent)

However, such axioms are more cumbersome to write, particularly if they
contain many variables. Moreover, including conditions such as (person ?x)

makes proofs longer and, consequently, more difficult to find. Every time
snark uses the axiom to prove that a term (father <term>) is a parent, it
must prove (person <term>).

In fact, we might wish to limit the parent and father symbols so that
their arguments are forced to be people. We might choose to make it illegal
to write an assertion that mentioned (father the-maltese-falcon), since
the-maltese-falcon is not a person.

The sort mechanism achieves this by introducing new symbols, called
sorts, which stand for nonempty sets of entities. The terms of our vocabulary
are classified as being of certain sorts.

For instance, we may introduce two new sorts, person and object, stand-
ing for sets of people and inanimate objects, respectively, by the declarations

3 LANGUAGE AND LOGIC 21

(declare-sort ’person)

(declare-sort ’object).

If a term is of sort person, that means that it must stand for a person.
The intersection of two sorts is assumed to be nonempty unless we deny

it explicitly. For instance, to say that no one is both a person and an object,
we must say

(declare-disjoint-sorts ’person ’object)

(If we make this declaration, we may omit the first two.) Otherwise, snark

will assume that some entity is both a person and an object.
Let us suppose that we want a richer sort structure; we want to introduce

sorts for men and women as well as people. Then, instead of (or in addition
to) the earlier declaration for person, we could provide

(declare-subsorts ’person ’man ’woman).

This means that person has subsorts man and woman; every term of sort man
is also of sort person, and similarly for woman.

Finally, if we want to say that man and woman are a disjoint partition of
person, we can say

(declare-sort-partition ’person ’man ’woman).

This means that not only are man and woman disjoint subsorts of person,
but also that every term of sort person must be either of sort man or of sort
woman.

It is also possible to use boolean operators to define new sorts or to express
relationships between sorts. For example, if we want to introduce a new sort
that includes objects and men, we can say

(declare-sort ’object-or-man :iff ’(or object man))

This means that every term of sort object-or-man is of sort object or of
sort man, and every term that is of one of these two sorts is also of sort
object-or-man. Other boolean operators, such as and and not, may also be
used. Snark is able to deduce relationships between sorts declared in this
way. For instance, it will know that the sort object-or-man is the same as
the sort same-sort declared by

3 LANGUAGE AND LOGIC 22

(declare-sort ’same-sort

:iff ’(and (or object person) (not woman)))

In this way, snark’s sort mechanism is unusually versatile.
Once we have established a sort structure, we can classify our vocabulary

accordingly. For instance, we can declare Bob to be a man, Carol to be a
woman, and the-maltese-falcon to be an object:

(declare-constant-symbol ’bob :sort ’man)

(declare-constant-symbol ’carol :sort ’woman)

(declare-constant-symbol ’the-maltese-falcon :sort ’object)

Because we have declared that man and woman are disjoint sorts, this also
means that bob is not of sort woman and carol is not of sort man. Because
both man and woman are subsorts of person, and because we have declared
that person and object are disjoint, this means further that neither bob nor
carol can be of sort object.

We can declare the function symbol father to take a person as an argu-
ment and yield a man as a value, as follows:

(declare-function-symbol ’father 1 :sort ’(man person))

Note that for the declaration of a function, the sort for the value of the
function comes before the sorts of its arguments. This declaration must be
made before we use the symbol father in an assertion or conclusion. Also, it
is required to include the number of arguments (arity) 1 in the declaration,
because if father is sometimes used with more than one argument, those oc-
currences stand for different functions. A separate declaration could be given
for a two-argument symbol father, with different sorts for its arguments.

If we want to give a function or relation an alternative name, we use
the alias mechanism. For instance, we can give the one-argument function
father the alternative name father-1 by providing a declaration

(declare-function-symbol ’father 1 :sort ’(man person)

:alias ’father-1)

Then we can use the name father-1 when we need to refer unambiguously
to the one-argument father. The two-argument father could be given the
alias father-2. Usually, however, we do not need to distinguish between
them because snark can see count how many arguments are provided. In
the trace of the proof, both functions will be represented as father.

3 LANGUAGE AND LOGIC 23

The fact that the predicate symbol parent takes two arguments of sort
person is expressed in its declaration:

(declare-predicate-symbol ’parent 2

:sort ’(boolean person person))

Note that predicate symbols are declared as if they were function symbols
that return a value of sort boolean.

It is also possible to declare the sorts of variables, such as

(declare-variable-symbol ’?some-guy :sort ’man)

If an assertion or query contains free (unquantified) occurrences of the vari-
able ?some-guy, they will then automatically be of sort man.

If a formula contains explicit quantifiers, we can declare the sort of a
variable within the quantifier itself. For example, in a formula

(forall ((?this-man :sort man)

(?that-man :sort man)) ...),

the variables ?this-man and ?that-man are of sort man.
Symbols such as ?man, ?man1, . . . , are automatically variables of sort man.

It is illegal to define certain symbols, such as u, . . . , z, ?u, . . . , or ?z, perhaps
followed by any number of digits, as sorted variables; by convention, these
are reserved to be unsorted.

The syntax of sorts can be described more exactly as follows:
A sort symbol can be any lisp symbol that

• is at least two characters long,

• does not begin with the character “?,

• is not the symbol NIL,

• is not the (keyword) symbol :none, and

• is not a keyword symbol. 3 TRUE and FALSE are predefined as the
topmost bottommost sorts.

3Unless snark option allow-keyword-sort-symbols is true.

3 LANGUAGE AND LOGIC 24

It is permissible to intermix sorted and unsorted symbols; unsorted terms
are implicitly of sort true, and every sort is a subsort of true. Thus the
unsorted version of snark can be regarded as a special case of the sorted
version.

Once a sort structure has been declared, it becomes illegal to apply a
function or a predicate symbol to a term whose argument is of an unsuitable
sort. Thus snark will give an error if we say

(parent the-maltese-falcon bob),

because parent takes arguments of sort person, and the-maltese-falcon

is not of sort person.
Thus, the sort mechanism serves as a debugging aid. In a sorted theory,

many errors in formulating assertions and queries show up as sort errors, and
are easily detected. Without the sort mechanism, some of these conceptual
errors would only become evident when snark failed to find a proof; when
that happens, it is difficult to decide which assertion contains the error that
is the cause of the failure.

A more important effect of the sort structure is that it limits the appli-
cation of resolution and other inference rules. Snark will never allow two
terms to be unified if their sorts are incompatible. For example, the variable
?person1 may be unified with a constant carol of sort woman, because woman
is a subsort of person—we can always take ?person1 to stand for a woman.
But a variable ?woman1 may not be unified with a constant the-president of
sort person, because we cannot be certain that the-president is a woman.

Two variables of different sorts can be unified if we have not declared the
sorts to be disjoint—the unified variable will have as its sort the conjunction
of the two original sorts. A variable ?man1 cannot be unified with a variable
?woman2, because we have declared the sorts man and woman to be disjoint;
no one can be both a man and a woman. But a variable ?person1 can be
unified with a variable ?man2 and vice versa; the unified variable will be of
sort man. Snark will block application of resolution, paramodulation, and
other rules if they violate these restrictions.

The sort mechanism gives us abbreviated ways of saying things about
subsets of our universe of discourse. For example, we can introduce an as-
sertion

(assert ’(not (brother ?woman ?person))

:name ’women-are-not-brothers)

3 LANGUAGE AND LOGIC 25

to mean that a women cannot be the brother of any person. As we indicated
earlier, if we had no sort mechanism, we would be forced to write this in
terms of predicate symbols, as

(assert

’(implies

(and (woman ?x) (person ?y))

(not (brother ?x ?y)))

:name ’women-are-not-brothers)

The restrictions on unification makes snark behave as if the conditions
(woman ?x) and (person ?y) were actually there, when they are not.

Not only is the latter form of assertion more cumbersome to write, but
also it is less efficient for snark. The sort mechanism allows us to make in
one step an inference that would require several steps if people and women
were represented by predicate symbols.

Furthermore, the version of women-are-not-brothers with sorts is a unit
assertion—it has no connectives. Unit clauses have a beneficial effect on the
search space. In particular, applying the resolution rule to a unit and a
formula yields a smaller formula; applying the resolution rule to a nonunit
and a formula may yield a larger formula, and produce a correspondingly
larger search space.

In declaring a sort structure, we are saying what expressions in the lan-
guage are meaningful, not what expressions are true. For instance, we do
not declare the predicate symbol brother with the sort declaration

(declare-predicate-symbol ’brother 2

:sort ’(boolean man person)).

Even though we expect that someone’s brother will always be a man, we do
not want to exclude from the language formulas in which the first argument
of brother is of sort woman; otherwise, we would have no way of saying
that the expression (brother betty bob) is false. Merely being false is not
the same as being meaningless. We declare brother on sorts for which the
brother relationship is meaningful, certainly on all people.

Note that there is no way to include in an assertion the explicit condition
that something is of a particular sort, or that it is not of a particular sort.
For instance, we cannot say something like

3 LANGUAGE AND LOGIC 26

(implies

(brother ?person1 ?person2)

‘‘?person1 is of sort man’’)

in the snark language. In choosing to represent gender as a sort, we have
decided that we will know in advance whether a person is male or female,
and it won’t be necessary to deduce such things.

Note that is it permissible to use the same symbol to stand for a sort and
a predicate symbol; however, snark will regard that as a coincidence; it will
not ensure that there is any relationship between the meanings of the two
symbols. (Kif+c, the kif-okbc dialect of snark, described in Section 8,
does enforce a relationship between sorts and predicate symbols of the same
name.)

Example: Grandmothers. In Section 2.5, we showed how to find a
grandparent of Carol. Suppose we would like to find a grandmother of Carol,
not just any grandparent. Assume we have introduced sorts man and woman

and have declared the sorts for father and mother accordingly, so that they
yield people of sorts man and woman respectively. Then we may pose the
query

(prove ’(grandparent ?woman carol) :answer ’(ans ?woman)).

In other words, we are asking for a person of sort woman who is a grandparent
of Carol. We will then obtain an answer, either (mother (father carol))

or (mother (mother carol)), depending on which proof is found first. (In
Section 4.1, we shall see how to obtain more than one answer to such queries.)

3.3 Skolemization

If a formula contains explicit quantifiers, snark will remove the quantifiers
by skolemization. In particular, existentially quantified variables in assertions
will be replaced by functional terms, where the function is a newly introduced
skolem function or skolem constant. We shall call the entire functional term
a skolem term. Universal quantifiers will be removed too, but their variables
will remain variables. (Actually, whether a quantifier is treated as univer-
sal or existential depends on whether it appears within a negation in the
assertion—see the remark on Quantifier Force on Page 29).

3 LANGUAGE AND LOGIC 27

For example, in Section 2.1 we introduced an assertion, later called par-
ent-of-parent-is-grandparent, that said that any parent of a parent is a
grandparent. Suppose now we need to state the converse, that any grand-
parent is the parent of a parent. Then we may formulate this assertion in
terms of an explicit existential quantifier, as (in the sorted theory)

(assert

’(implies

(grandparent ?person1 ?person2)

(exists (?person)

(and

(parent ?person1 ?person)

(parent ?person ?person2))))

:name ’grandparent-is-parent-of-parent)

Note that we cannot omit the existential quantifier, because unquantified
variables have tacit universal quantification. If the quantifier were missing,
we would be saying that every grandparent is a parent of every person, and
that every person is in turn the parent of the grandchild.

The new assertion will be translated by snark (if we turn off the clausi-
fication option, Section 2.3) into

(Row grandparent-is-parent-of-parent

(implies

(grandparent ?person1 ?person2)

(and (parent ?person1 (#:person-sk1 ?person1 ?person2))

(parent (#:person-sk1 ?person1 ?person2) ?person2)))

assertion)

Here #:person-sk1 is the skolem function snark introduced in replacing
the existential quantifier. Intuitively speaking, if ?person1 is a grandparent
of ?person2, then

(#:person-sk1 ?person1 ?person2)

is the child of ?person1 who is a parent of ?person2. Skolem function
symbols are prefixed by the sort of the variable whose quantifier is being
removed—in this case person. Note again that snark renames the variables
in a row as it sees fit.

Note that, instead of using an explicit existential quantifier, we could
have phrased the assertion as follows:

3 LANGUAGE AND LOGIC 28

(assert

’(implies

(grandparent ?person1 ?person2)

(and (parent ?person1 (link ?person1 ?person2))

(parent (link ?person1 ?person2) ?person2)))

:name ’grandparent-is-parent-of-parent)

Here link is our own name for the skolem function that snark introduced
automatically. This formulation may be more mnemonic—the link is the
person who connects a grandparent and grandchild in the family tree (either
the grandchild’s mother or father). Also, we are free to use the function link

in other assertions and queries, if we so choose.
It is possible to provide snark with a name to use when it skolemizes a

quantifier, using the keyword conc-name in the quantifier, as follows:

(assert

’(implies

(grandparent ?person1 ?person2)

(exists ((?person :conc-name link))

(and

(parent ?person1 ?person)

(parent ?person ?person2))))

:name ’grandparent-is-parent-of-parent)

(Note that the double parentheses in the list of quantified variables are re-
quired; otherwise, snark will expect :conc-name and link to be additional
variables of the quantifier and report an error.) This formula will be skolem-
ized (assuming clausification is turned off) as

(Row grandparent-is-parent-of-parent

(implies

(grandparent ?person ?person1)

(and

(parent ?person (#:link1 ?person ?person1))

(parent (#:link1 ?person ?person1) ?person1)))

assertion)

Here snark has not used the exact name we have provided, but it has
incorporated the string link into the name #:link1 it has constructed. This
is because snark needs to invent a unique symbol every time it constructs a

3 LANGUAGE AND LOGIC 29

skolem function. If we gave the same conc-name link to another quantifier
as well, snark would invent a different skolem function symbol for the new
quantifier, but both symbols would incorporate the string link.

If an existential quantifier to be removed is within the scope of some uni-
versal quantifiers, the new skolem function will have arguments—the vari-
ables of those quantifiers. (We include the invisible quantifiers that bind the
free variables of the assertion.) Otherwise, we introduce skolem constants,
not skolem functions. For example, if we introduce the assertion

(assert

’(exists (?person) (parent betty ?person))

:name ’betty-has-a-child),

snark will transform this into the assertion

(Row betty-has-a-child

(parent betty #:person-sk9)

assertion)

Here snark has made up its own name, the skolem constant #:person-sk9,
for Betty’s child.

Remark: Quantifier Force. If an existential quantifier is within the scope
of a single negation, it will behave as a universal quantifier and will be treated
accordingly. In particular, during skolemization, its variables will remain as
variables. This happens even if the negation is only implicit, when the quan-
tifier is in a query or in the antecedent of an implication, say. A quantifier
that behaves as a universal, even if it is syntactically an existential, is said
to have universal force.

Similarly, it can happen that a universal quantifier will have existential
force if it is within the scope of a single explicit or implicit negation—in this
case, its variable will be replaced by a skolem term during skolemization.

Thus, the way quantifiers are treated in queries is precisely the reverse
of the way they are treated in assertions—universally quantified variables
are replaced by skolem terms, while existentially quantified variables remain
variables when quantifiers are removed. Additional negations reverse the
force of the quantifiers yet again; thus, an existential quantifier that is within
the scope of precisely two explicit or implicit negations does have existential
force.

3 LANGUAGE AND LOGIC 30

The skolemization procedure is justified by showing that a set of rows is
contradictory precisely when the skolemized version of those rows is contra-
dictory.

3.4 Equivalence

We could have combined the two assertions that defined the notion of a
grandparent into a single snark assertion using equivalence, as follows:

(assert ’(iff

(grandparent ?person1 ?person2)

(exists (?person)

(and (parent ?person1 ?person)

(parent ?person ?person2))))

:name ’grandparent-iff-parent-of-parent)

Snark will break this down into two implications; if clausification has not
been turned off, these will then be transformed into clauses.

Exercise: In-Laws. In a sorted theory of families, introduce predicate
symbols for the relationships siblings, sister, brother, spouse, wife,
husband, sister-in-law, and brother-in-law. Introduce assertions that
relate these notions to each other. Prove that if a man is a woman’s brother-
in-law, she is his sister-in-law. (In other words, the brother-in-law and
sister-in-law relations are inverses.)

Hints. A man is a brother-in-law to another person if he is husband
to a sibling of that person, or if he is brother to a spouse of that person.
Similarly for sister-in-law.

You may introduce assertions to express the following facts:

A husband is a spouse; a wife is a spouse.

A male spouse is a husband; a female spouse is a wife.

A brother is a sibling; a sister is a sibling.

A male sibling is a brother; a female sibling is a sister.

3 LANGUAGE AND LOGIC 31

Solution. The brother-in-law relation is defined by the assertion

(assert

’(iff

(brother-in-law ?person1 ?person2)

(or

(exists (?person)

(and (husband ?person1 ?person)

(sibling ?person ?person2)))

(exists (?person)

(and (brother ?person1 ?person)

(spouse ?person ?person2)))))

:name ’brother-in-law)

The definition of sister-in-law is analogous.
The problem is stated as follows:

(prove

’(forall (?man ?woman)

(implies

(brother-in-law ?man ?woman)

(sister-in-law ?woman ?man)))

:name ’brother-and-sister-in-law-are-inverses)

Note that we cannot omit the universal quantifier (forall (?man ?woman)

...) here, because then the query would be treated as if it were surrounded
by an invisible existential quantifier (exists (?man ?woman)...), which
would change its meaning.

The fact that all husbands are spouses is expressed by the assertion

(assert

’(implies (husband ?person1 ?person2)

(spouse ?person1 ?person2))

:name ’husbands-are-spouses)

The fact that male spouses are husbands is expressed by the assertion

(assert

’(iff (spouse ?man ?person)

(husband ?man ?person))

:name ’male-spouses-are-husbands)

3 LANGUAGE AND LOGIC 32

Similar assertions apply to wives, and to brothers, sisters, and siblings. There
are other assertions that could be made (e. g., the definition of sibling),
but they are not necessary to solve this problem.

3.5 Equality and Paramodulation

The equality relation (= ?x ?y) means that ?x and ?y stand for the same
thing.

Although it is possible to describe the equality relation by giving its
axioms as snark assertions, if we want to reason about the relation it is
usually best to include the paramodulation rule among our rules of inference.
The rule allows us to replace equals with equals. In its simplest form, the
rule can be applied to two clauses of form

(or P[s])

and

(or (= s t) Q),

where s and t are terms and the clause (or P[s]) contains at least one
occurrence of s. Then the paramodulation rule will deduce the corresponding
clause of form

(or P[t] Q),

where the literals P[t] are obtained from the literals P[s] by replacing all
occurrences of s with t. The roles of s and t may be reversed, so that the
rule is applied right to left to replace occurrences of t with s. As with the
resolution rule, the order of literals is not meaningful, and the replaced terms
need not be identical to s or t, but merely unifiable.

We can include paramodulation in our arsenal by selecting the option
use-paramodulation. Then no axioms for equality need be provided by the
user.

Let us look at an example of the application of the paramodulation rule.

Example: Grandchildren of Alice. Suppose we wish to tell snark that
Carol’s mother is Betty and Betty’s mother is Alice; then we may add the
new assertions

3 LANGUAGE AND LOGIC 33

(assert ’(= (mother carol) betty))

(assert ’(= (mother betty) alice))

We assume that we have previously declared alice, betty, and carol to be
constants of sort woman, and mother to be a function that takes a person

into a woman.
If we then want to ask who is a grandchild of Alice, we may invoke snark

with the query

(prove ’(grandparent alice ?person) :answer ’(ans ?person)).

If paramodulation has been selected, snark will complete the proof with
the answer carol. Here is the entire refutation:

(Refutation

(Row mother-is-parent

(parent (mother ?person) ?person)

assertion)

(Row mother-of-carol-is-betty

(= (mother carol) betty)

assertion)

(Row mother-of-betty-is-alice

(= (mother betty) alice)

assertion)

(Row who-is-the-grandchild-of-alice?

(not (grandparent alice ?person))

~conclusion

Answer (ans ?person))

(Row grandparent-iff-parent-of-parent-39

(or (not (parent ?person ?person1))

(not (parent ?person1 ?person2))

(grandparent ?person ?person2))

assertion)

(Row 42

(parent betty carol)

(paramodulate mother-is-parent mother-of-carol-is-betty))

(Row 43

(parent alice betty)

4 ANSWER MANAGEMENT 34

(paramodulate mother-is-parent mother-of-betty-is-alice))

(Row 90

(or (not (parent alice ?person))

(not (parent ?person ?person1)))

(resolve who-is-the-grandchild-of-alice?

grandparent-iff-parent-of-parent-39)

Answer (ans ?person1))

(Row 277

false

(rewrite (resolve 90 42) 43)

Answer (ans carol))

)

The derivations of Rows 42 and 43 illustrate the use of paramodulation.
For instance, Row 42 has been obtained by applying paramodulation to the
assertion that a mother is a parent,

(parent (mother ?person) ?person),

and the assertion that the mother of Carol is Betty,

(= (mother carol) betty).

The variable ?person has been unified with carol.
The final step, which actually combines two resolution steps, will be ex-

plained in a later discussion on rewrite rules (Section 5.6.2).

4 Answer Management

We have seen (in Section 2.5) how answers to queries may be extracted
from proofs. In this section, we consider some of the nuances of answer
extraction—how to obtain multiple answers and conditional answers, and
how to restrict snark to avoid unwanted answers.

4.1 Multiple Answers

In Section 2.5 we saw how to use snark to answer the query “Who is Carol’s
grandfather?” obtaining a single answer, such as

(father (father carol))

4 ANSWER MANAGEMENT 35

Of course, Carol has more than one grandparent. To find the others, we may
reinvoke snark to find a different proof. For this purpose, we execute the
function

(closure).

This is the function that computes computes logical consequences of the
current set of rows, stopping when snark finds a new proof. In calling
prove, we have implicitly been invoking closure on the initial set of rows.
If we call closure after a proof has been interrupted, it will pick up where
it left off and try to complete the proof, as we mentioned in Section 2.3. But
if we call closure after a proof has been completed, snark will try to find
a different proof.

Since the example was introduced in the unsorted version of the family
theory, we continue in that version here. Snark finds a second proof, which
differs from the first only at the last step:

(Refutation

...

(Row mother-is-parent

(parent (mother ?x) ?x)

assertion)

...

(Row 23

(not (parent ?x carol))

(resolve 12 father-is-parent)

Answer (ans (father ?x)))

(Row 31

false

(resolve 23 mother-is-parent)

Answer (ans (father (mother carol))))

)

In the last step, we have used the assertion that a mother is a parent—in the
first proof, we used the assertion that a father is a parent instead.

This new proof gives us a different answer: the father of the mother of
Carol. Repeated invocation of snark via closure gives another two answers:
(mother (father carol)) and (mother (mother carol)). We have thus
found four grandparents for Carol.

4 ANSWER MANAGEMENT 36

There is no guarantee, however, that a different proof will yield a dif-
ferent answer. If we reinvoke snark once more, we find yet another proof,
but the answer, (father (father carol)), is the same as the first one we
discovered. Reinvoking snark again yields more duplicate answers.

4.2 Avoiding Duplicate Answers

If we want to avoid this sort of duplication, we may rely on snark’s sub-
sumption mechanism. Subsumption is a strategic control mechanism which
avoids duplication of effort. If the subsumption strategy is in operation (and
it is the default) and two formulas are derived such that one is logically more
general than the other, the less general formula is discarded. In the clausal
case, this happens when the subsumed clause contains an instance of the
subsuming clause among its disjuncts.

For example, if we have derived the two clauses

(parent ?x carol)

and

(or (parent (father ?y) carol)

(grandparent ?w ?z)),

the latter (“subsumed”) clause will be discarded; only the former clause
will be retained. This is because one of the disjuncts of the latter clause,
(parent (father ?y) carol) is an instance of the former; any proof that
uses the latter clause will correspond directly to a proof that uses the former,
so there is no need to retain both.

If one clause subsumes another and both have answer formulas, we cannot
discard the subsumed clause without risking loss of answers; a proof using
the subsumed clause may yield a different answer from a proof using the
subsuming clause. For example, if we pay no attention to answers, a row

(Row 12

(or (not (parent ?x ?y)) (not (parent ?y carol)))

. . .

Answer (ans ?x))

is subsumed (as snark observes) by the row

4 ANSWER MANAGEMENT 37

(Row 23

(not (parent ?x carol))

(resolve 12 father-is-parent)

Answer (ans (father ?x)))

; Subsumed 12

However, if we discard Row 12, we may be losing proofs which yield answers
other than (father ?x); Row 23 may be more general but its answer is not.

If we want to get multiple answers for our query, we must be sure that
the option use-answers-during-subsumption is selected; in fact, this is the
default. In this case, the subsumed clause will be discarded only if its answer
is also a special case of the answer associated with the subsuming clause. In
the preceding example, if answers are used during subsumption, Row 23 will
not be regarded as subsuming Row 12.

Snark does not normally do subsumption on the final formula false; this
formula would subsume all the formulas derived previously or subsequently.
However, if we are interested in extracting multiple answers from proofs
without duplicating answers, we must select the option use-subsumption-by-
false; this option is not selected by default. Then the final false formula
of the first proof will subsume all derived rows whose answer formula is an
instance of (or identical to) the answer already found; formulas with different
answers will be retained.

If we select the option use-subsumption-by-false for the problem of
finding Carol’s grandparents, the final row of the first proof,

(Row 30

false

...

Answer (ans (father (father carol))))

will subsume any row with the answer (father (father carol)). All these
rows will be discarded. However, rows that contain distinct answers, such as
?x, (father ?x), and (father (mother ?x)), will be retained. If we invoke
snark four times, we get the four different grandparents of Carol, as before.
If we have not introduced any assertions other than the ones presented in
Section 2.5, we exhaust the agenda with the fifth invocation of snark. All
the duplicate answers have been subsumed.

On the other hand, if we have introduced the assertion

4 ANSWER MANAGEMENT 38

(assert

’(implies

(grandparent ?x ?z)

(and (parent ?x (link ?x ?z))

(parent (link ?x ?z) ?z)))

:name ’grandparent-is-parent-of-parent)

as in Section 3.3, we will obtain an endless stream of additional answers, such
as

(father (link (father (father carol)) carol))

This is another way of describing Carol’s paternal grandfather,

(father (father carol)).

It is not a new answer, just a different representation for one of the answers
we have seen previously. We shall call this sort of repetition of answers
semantic duplication, to distinguish it from syntactic duplication, in which
literally the same answer appears more than once.

Of course, we could simply remove the assertion grandparent-is-parent-
of-parent, but it may be necessary for some other proofs. In Section 4.3,
which follows, we shall see a mechanism for avoiding this sort of duplication.

4.3 Constructive Answer Restriction

There is no way of eliminating semantic duplication of answers altogether, but
Snark’s “constructive-answer restriction” mechanism is one way of reducing
semantic duplication. More important, it ensures that answers are provided
in terms of a useful vocabulary. Let us see how this mechanism operates.

Suppose, in the theory we have been developing, we have provided the
assertion that Carol’s mother is Betty, i. e.,

(assert ’(= (mother carol) betty))

If we want to ask who is Carol’s mother, our query is then

(prove ’(= ?person (mother carol)) :answer ’(ans ?person))

4 ANSWER MANAGEMENT 39

As it stands now, we will get two answers, betty and (mother carol). The
second answer is correct but unhelpful—if we ask “Who is the mother of
Carol?”, we are not happy to be told “the mother of Carol,” even though
the mother of Carol is certainly the mother of Carol. One way to avoid such
unhelpful answers is to indicate that the answer must be expressed without
mentioning the function symbol mother. To do this, we select the option
use-constructive-answer-restriction (as in Section 2.3) and, after ini-
tialization but before beginning the proof, we make the declaration

(declare-function-symbol ’mother 1 :allowed-in-answer nil)

This means that we will reject all rows that contain the function symbol
mother in the answer formula. If we like, we can combine this declaration
with the sort declaration:

(declare-function-symbol ’mother 1 :sort ’(woman person)

:allowed-in-answer nil)

If we ask who is the mother of Carol with the above declarations, we
get only the single answer betty. The proof-steps that lead to the answer
(mother carol) are rejected because their answer contain the forbidden
symbol mother.

The example in Section 4.2 affords another example of the use of the
constructive answer restriction to avoid semantically duplicated answers. In
finding the grandparents of Carol, we obtain an endless stream of answers,
such as

(father (link (father (father carol)) carol)),

in terms of the function link. If we use the constructive answer restriction
and prohibit the function symbol link to appear in an answer, we obtain
only the four distinct grandparents of Carol.

Constants and predicate symbols may also be declared to be disallowed
in the answer, although the reason for disallowing a predicate symbol in the
answer will not become apparent until we discuss conditional answers (Sec-
tion 4.5). If a symbol has no declaration, the default is that it is permitted
in the answer.

Whether a symbol is allowed in the answer or not is a context-dependent
decision. If we were to ask who a person’s grandparents are, we might be
perfectly happy to learn that their mother’s mother is one of them; in that
case, we would not declare that the symbol mother is not allowed in the
answer.

4 ANSWER MANAGEMENT 40

Exercise: Riddle. There is an old riddle

Brothers and sisters have I none,
But this man’s father is my father’s son.

Who am I?

Using the vocabulary we have already introduced, formulate this as a snark

problem, add any missing knowledge about family relations as assertions,
and use snark to solve the riddle.

Hint. Define two people to be siblings if they are distinct and have at
least one parent in common.

Phrase “Brothers and sisters have I none” as an assertion “I have no
siblings.” (Declare i to be a constant that is not allowed in the answer.)

Phrase “This man’s father is my father’s son” as an assertion “My father
is a parent of this man’s.” (Declare this-man to be a constant symbol of
sort man.)

Express as an assertion the fact that “The male parent is the father.”
Phrase “Who am I?” as the conclusion to be proved, “I am equal to

?person1”, where ?person1 is the answer.

Solution. Here are the declarations of i and this-man:

(declare-constant-symbol ’i

:allowed-in-answer nil

:sort ’person)

(declare-constant-symbol ’this-man :sort ’man)

The first verse “Brothers and sisters have I none” is expressed by the assertion

(assert ’(not (sibling i ?person))

:name ’brothers-and-sisters-have-i-none)

The second verse, “This man’s father is my father’s son” is expressed by the
assertion

(assert ’(parent (father i) (father this-man))

:name ’this-mans-father-is-my-fathers-son)

The fact that a male parent is the father is expressed by the assertion

4 ANSWER MANAGEMENT 41

(assert

’(implies

(parent ?man ?person)

(= ?man (father ?person)))

:name ’male-parent-is-father)

The definition of sibling is given by

(assert

’(iff

(sibling ?person1 ?person2)

(and

(not (= ?person1 ?person2))

(exists (?person)

(and

(parent ?person ?person1)

(parent ?person ?person2)))))

:name ’siblings-share-a-parent)

Note that is is necessary to state explicitly that siblings are distinct; even
though I have the same parents as myself, I am not my own sibling. Note also
that the solution doesn’t work if we insist that siblings means full siblings—
we must include half siblings.

The question is phrased as the conjecture

(prove ’(= i ?person1)

:name ’who-am-i

:answer ’(ans ?person1))

Note that if we hadn’t declared i to be disallowed in the answer, we could
have obtained i as the answer—correct but not helpful.

Remark: Skolem functions in answers. In the preceding riddle
exercise (Section 4.3), suppose we had included the assertion grandparent-
iff-parent-of-parent, with the explicit existential quantifier. If we invoked
snark again, we could have obtained the additional answer

(#:person-sk1 (father (father this-man)) this-man)

4 ANSWER MANAGEMENT 42

In other words, I am the person who is the parent of this man and the child
of his grandfather. Another answer we can obtain by a further invocation of
snark is

(#:person-sk1 (mother (father this-man)) this-man).

Here #:person-sk1 is the skolem function that resulted when snark re-
moved the existential quantifier from the assertion. These answers are se-
mantic duplicates—they are both equal to (father this-man).

If we prefer that a particular skolem function not be allowed in the an-
swer, we may mark the variable of the quantifier in the same way that
we would mark a constant, function, or predicate symbol. For instance,
if we replaced the existential quantifier exists (?person) of the assertion
grandparent-iff-parent-of-parent with

exists ((?person :allowed-in-answer nil))

we would obtain only the first answer (father this-man), not the other
two, in answering the riddle. (Note again that the double parentheses are
required.) On there other hand, there will be times when we do want to have
skolem functions in answers; see, for example the problem of the red-headed
grandmother, in the forthcoming Section 4.5.

Exercise: Cousins. Introduce assertions that define notions of siblings
and cousins. These should express the facts that siblings have at least one
parent in common, as in the riddle exercise, Section 4.3) and that cousins
are children of siblings. (We consider only first cousins here.) Use snark to
prove that cousins have a grandfather in common.

Solution. The definition of sibling is given by the assertion

(assert

’(iff

(sibling ?person1 ?person2)

(and

(not (= ?person1 ?person2))

(exists (?person)

(and

(parent ?person ?person1)

(parent ?person ?person2)))))

:name ’siblings-share-a-parent).

4 ANSWER MANAGEMENT 43

The definition of cousin is given by the assertion

(assert

’(iff

(cousin ?person1 ?person2)

(exists (?person3 ?person4)

(and

(parent ?person3 ?person1)

(parent ?person4 ?person2)

(sibling ?person3 ?person4))))

:name ’cousins-are-children-of-siblings)

The conclusion to prove is

(prove

’(forall (?person1 ?person2)

(implies

(cousin ?person1 ?person2)

(exists (?person)

(and

(grandparent ?person ?person1)

(grandparent ?person ?person2)))))

:name ’cousins-share-a-grandparent)

Note that we cannot omit the existential quantifier

(exists (?person)...),

because it is within the scope of the universal quantifier

(forall (?person1 ?person2)...).

Omitting the explicit existential quantifier would create an invisible existen-
tial quantifier that would surround the entire query—the order of the quanti-
fiers would be reversed and the meaning of the query would be changed. We
would be trying to prove the existence of a single person who is a common
grandparent of all pairs of cousins, but no such person exists.

4 ANSWER MANAGEMENT 44

4.4 Existentially Quantified Variables in Answers

Normally the answer field contains question-mark variables that are unquan-
tified in the query. Although these variables have tacit existential quantifi-
cation, they are not inside the scope of any explicit quantifier.

Sometimes, however, we would like to have the variable of an explicit
existential quantifier in a query appear in an answer. A special mechanism
is required to do this, because the answer formula is not within the scope of
the existential quantifier.

For instance, in the Cousins exercise (Section 4.3), suppose we would like
to find the cousins’ common grandparent, as well as to prove that this person
exists. We might be tempted to phrase the query like this:

(prove

’(forall (?person1 ?person2)

(implies

(cousin ?person1 ?person2)

(exists (?person)

(and

(grandparent ?person ?person1)

(grandparent ?person ?person2)))))

:name ’cousins-share-a-grandparent

:answer ’(ans ?person))

However, because the variable person in the answer is outside the scope of
the existential quantifier, it does not refer to the same person.

To remedy this, we may mark the variable as global, by writing it as
(?person :global t). The query is then phrased as

(prove

’(forall (?person1 ?person2)

(implies

(cousin ?person1 ?person2)

(exists ((?person :global t))

(and

(grandparent ?person ?person1)

(grandparent ?person ?person2)))))

:name ’cousins-share-a-grandparent

:answer ’(ans ?person))

4 ANSWER MANAGEMENT 45

This tells snark that the variable ?person refers to the same thing through-
out the row, whether it is inside or outside the scope of the existential quan-
tifier.

From this query, we obtain the answer

(ans

(#:common-parent1

(#:a-parent2 #:person-sk8 #:person-sk9)

(#:b-parent3 #:person-sk8 #:person-sk9)))

Here we have used the :conc-name feature to give names to the skolem
functions in the assertions. Thus #:common-parent1 is the common parent
of two siblings; we have rephrased the assertion as

(assert

’(iff

(sibling ?person1 ?person2)

(and

(not (= ?person1 ?person2))

(exists ((?person :conc-name common-parent))

(and

(parent ?person ?person1)

(parent ?person ?person2)))))

:name ’siblings-share-a-parent)

Similarly, #:a-parent2 and #:b-parent3 are the siblings who are parents
of two cousins, in the assertion cousins-share-a-grandparent. The skolem
constants #:person-sk8 and #:person-sk9 are the two given cousins.

4.5 Conditional Answers

Sometimes it is not possible to find a single definite answer to a query, but it
can be shown that one of several entities will satisfy the query, depending on
contingencies. In this case, snark can produce a conditional answer. This
is particularly useful if we are using snark to construct a program, because
it allows for the introduction of conditional expressions, or tests, into the
program being constructed.

For example4, in the theory of family relations, suppose we are told that
Alice is a grandparent of Carol, that Alice is red-headed, but that Carol is

4This is a reformulation of a blocks-world problem of Robert C. Moore.

4 ANSWER MANAGEMENT 46

not red-headed. We would like to find a pair ?person1 and ?person2 such
that ?person1 is a parent of ?person2, where ?person1 is red-headed but
?person2 is not.

Recall that (in Section 3.3) we introduced an assertion that a grandparent
is always the parent of a parent, or, more precisely,

(assert

’(implies

(grandparent ?person1 ?person2)

(and (parent ?person1 (link ?person1 ?person2))

(parent (link ?person1 ?person2) ?person2)))

:name ’grandparent-is-parent-of-parent)

This version of the assertion uses the explicit function link; later we shall
consider what happens if we use the version with the existential quantifier.

The assertion tells us that if Alice is a grandparent of Carol, there is a link
between them, a child of Alice who is a parent of Carol. The answer to our
query then depends on whether this link is red-headed or not. If so, the link
and Carol satisfy the query, because the link is red-headed but Carol is not.
Otherwise, Alice and the link satisfy the query, because Alice is red-headed
and the link is not. Thus, a conditional answer is called for.

To construct conditional answers, we must select the snark option use-
conditional-answer-creation (See Section 2.3); it is not the default. We
introduce the assertions that specify the situation:

(assert ’(grandparent alice carol)

:name ’alice-is-grandparent-of-carol)

(assert ’(red-headed alice)

:name ’alice-is-red-headed)

(assert ’(not (red-headed carol))

:name ’carol-is-not-red-headed)

Then we pose the query:

(prove ’(and

(parent ?person1 ?person2)

(red-headed ?person1)

(not (red-headed ?person2)))

5 EFFICIENCY CONSIDERATIONS 47

:name ’red-headed-parent

:answer ’(parent ?person1 ?person2))

Snark proves the conclusion and yields that answer

(answer-if

(red-headed (link alice carol))

(parent (link alice carol) carol)

(parent alice (link alice carol)))

In other words, if the link between Alice and Carol is red-headed, then the
link and Carol are the desired pair; otherwise, Alice and the link are the pair.
This agrees with our informal reasoning.

If we fail to invoke use-conditional-answer-creation, snark will not
form a conditional answer. Instead it will form a disjunction of the instances
of the answer formula that satisfy the query, without indicating which in-
stance holds in which situation. In this case, it will produce the answer

(or

(parent (link alice carol) carol)

(parent alice (link alice carol))))

5 Efficiency Considerations

In this section we discuss several mechanisms for improving snark’s per-
formance, including associative and commutative unification (Section 5.1),
the set-of-support strategy (Section 5.2), the recursive-path and predicate
ordering strategies (Sections 5.3 and 5.4), and rewrite rules (Section 5.6).

When appropriate options are selected, Snark is a logically complete
theorem prover; in other words, if a conclusion follows from the assertions,
snark, equipped with the appropriate inference rules, will eventually find
a proof. However, as the length of the proof or the number of assertions
grows, the truth of the preceding sentence relies more and more on the word
“eventually”.

Snark’s strategic mechanisms allow us to tune its performance for a
particular subject domain or theory. If used properly, they can have a dra-
matic effect on the size of the search space and on the time necessary to
discover a proof. Whereas none of them is necessary for the examples in this
guide, their use is essential if we are dealing with a large theory or searching

5 EFFICIENCY CONSIDERATIONS 48

for a long or difficult proof. However, some care is required in the use of
control strategies. Subtle misuse of rewrite rules, for example, can lead to
incompleteness or even infinite looping. While the set-of-support and the
recursive-path ordering strategies retain completeness when used separately,
the two can cause loss of completeness when used together. Any of them may
be incompatible with hyperresoluton or the constructive answer restriction.
While it may be justifiable to sacrifice completeness for the sake of improved
performance, the user should be aware that if snark fails to find a proof,
the cause may be unforeseen interactions with control strategies. In such a
case, we can experiment with disengaging the strategies.

5.1 Commutative and Associative Symbols

Snark has special-purpose unification algorithms that allow us to reason
about symbols with special properties, without introducing assertions that
express these properties.

For example, the sibling relation we introduced in the riddle exercise
(Section 4.3) is commutative: if Arthur and Susan are siblings, then so are
Susan and Arthur. The order is irrelevant.

We could express this property by an assertion

(assert

’(iff

(sibling ?person1 ?person2)

(sibling ?person2 ?person1))

:name ’symmetry-of-sibling).

(It would suffice to use implies rather than iff here.) However, that as-
sertion would have many consequences; the resolution rule applies to it and
any formula that mentions the sibling relation. Most of these consequences
would be irrelevant to the problem at hand, and each of them would have
its own consequences in turn, and so on. We could be swamped by the
proliferation of irrelevant clauses.

Instead we choose to declare that sibling is a commutative predicate,
and drop the assertion. For this purpose, we include the declaration

(declare-predicate-symbol ’sibling 2 :commutative t)

anywhere after initialization and before use of the symbol. This means that
the commutative unification algorithm will be used when we attempt to

5 EFFICIENCY CONSIDERATIONS 49

unify two atoms with the predicate symbol sibling. Although commutative
unification is slower than ordinary unification, its employment here prevents
snark from generating lots of unnecessary consequences.

We can declare function symbols as well as predicate symbols to be com-
mutative. Function symbols can also be declared to be associative. For
associativity, we use the keyword :associative.

If snark sees an assertion that is an instance of associativity or com-
mutativity, it will remove the assertion automatically and instead declare
the appropriate symbol to be associative or commutative. Thus, if we did
chose to include the assertion symmetry-of-sibling as an assertion, snark

would simply remove the assertion and declare the relation sibling to be
commutative.

5.2 Set of Support

The set-of-support strategy causes snark to pay special attention to a par-
ticular subset of the rows derived in searching for a proof. Typically this set
of support includes the desired (negated) conclusion, and often it includes
special hypotheses required for that conclusion to hold, but it may exclude
all the other assertions. In observing the strategy, we only apply a rule of
inference to a set of rows if at least one of the rows is supported, i. e., belongs
to the set of support. The newly inferred row is then added to the set of
support.

If we have a large set of assertions and the set of support is relatively
small, applying the strategy may allow us to ignore most of the assertions
and help us focus our attention on inferences that are related to the desired
conclusion.

Selecting the set of support strategy is a bit different from the selection
of other snark options. The strategy is always turned on—there is no way
to turn it off—but initially every row is included in the set of support, which
means that the strategy has no effect; no inferences are excluded.

To actually benefit from the strategy, we must indicate some rows to be
excluded. Normally, we choose the option

(assert-supported nil)

to exclude all the assertions from the set of support. The option must be
selected before any assertions are made. Inferences can still be made from
these assertions, but only if some member of the set of support takes part

5 EFFICIENCY CONSIDERATIONS 50

in the inference step. For instance, we can apply the resolution rule to any
assertion and a member of the set of support, but not to two assertions.

The negation of the conclusion (obtained from the argument of the prove
function) will normally be included in the set of support. If there are certain
special assertions that we wish to to include in the set of support, even if
assertions are generally excluded, we can assert them by saying (for a formula
<Form>)

(assert <Form> :supported t)

This will override the general policy that assertions are not to be supported.
For instance, if we execute

(assert

(implies

(and

(parent ?person1 ?person2)

(parent ?person2 ?person3))

(grandparent ?person1 ?person3))

:name ’parent-of-parent-is-grandparent

:supported t)

then this assertion will be supported. We might do this because we want
believe this assertion will be relevant to the proof, or class of proofs, we are
seeking.

If there are two unsupported assertions,

(parent alice betty)

and

(parent betty carol),

we can still use resolution and the assertion parent-of-parent-is-grand-
parent to deduce

(grandparent alice carol).

If none of these assertions were supported, the inference would be illegal.
Normally a formula that is deduced from a supported formula is also

supported; in other words, being supported is inherited. For example, the

5 EFFICIENCY CONSIDERATIONS 51

formula (grandparent alice carol) we just deduced will be supported,
even though the two facts it was deduced from, (parent alice betty) and
(parent betty carol), are not. We can declare that a formula is to be
supported but that its supportedness is not to be inherited by tagging it
with the keywords

:supported :uninherited

instead of

:supported t

If the assertion parent-of-parent-is-grandparent were so tagged, the new
deduced formula would not be supported.

Another way to force a particular assertion <Form> to belong to the set
of support is to execute

(assume <Form>)

in place of

(assert <Form>).

The construct assume is synonymous with assert, but when we exclude
assertions made via assert from the set of support by saying

(assert-supported nil),

we have no effect on those assertions made via assume; they will still be sup-
ported. Typically, these assumptions are special hypotheses for the theorem
being proved, and hence are particularly likely to be relevant to the proof.

If we choose to, we can even exclude assertions made via assume from
the set of support by saying

(assume-supported nil).

This is unusual because the point of having two synonymous constructs, as-
sertions and assumptions, is that we can support assumptions while excluding
ordinary assertions. We can even exclude the negation of the conclusion from
the set of support by saying

(prove-supported nil).

5 EFFICIENCY CONSIDERATIONS 52

The reason for doing this sort of thing is to explore the effect of different
search strategies on the same problem.

In some theorem provers and other rule-based systems, a distinction is
made between forward- and backward chaining rules. Forward-chaining rules
allow us to reason forward from assertions; backward-chaining rules allow us
to reason backward from the desired conclusion. The support mechanism
in snark allows us to mimic the behavior of forward and backward chain-
ing. When we applied the assertion parent-of-parent-is-grandparent to
two other assertions, we were using it as a forward-chaining rule. In gen-
eral, forward-chaining behavior is obtained by supporting assertions and as-
sumptions; backward-chaining behavior is obtained by supporting the desired
conclusion.

The set-of-support strategy is complete if the complement of the set of
support is satisfiable, that is, if the complement contains no contradictory
formulas. For instance, if all of our assertions are consistent (satisfiable), the
strategy will be complete if only the desired conclusion is supported. Caution
must be exerted in using the strategy, however, because it is incompatible
with other strategies, as mentioned in the introduction to this section (Section
5). The default in snark is that all assertions, assumptions, and desired
conclusions are supported—in other words, the set-of-support strategy does
not impede any inference. This is a conservative choice—completeness will
not be lost because of incompatibilities between set-of-support and other
strategies—but for some problems it may not be the most efficacious decision.

The value of the set-of-support strategy is illustrated by the proof for
the riddle exercise of Section 4.3, which puts 218 rows on the agenda if the
default settings are used, but only 50 rows if assertions are excluded from
the set of support and only the negation of the conclusion is included; the
time required is less than half. Exact figures depend on how many assertions
are in the theory, of course. The more irrelevant assertions in the theory, the
more important the strategy becomes.

5.3 Recursive-Path Ordering Strategy

Snark has a number of mechanisms by which we can impose an ordering
on the symbols in our vocabulary, which can give snark a sense of direction
in searching for a proof. These orderings say that certain expressions are
preferable to certain others, and will restrict the action of snark’s rules
so that they will tend to remove the less favored expressions. We discuss

5 EFFICIENCY CONSIDERATIONS 53

two ordering strategies: the recursive-path ordering strategy, which restricts
application of the paramodulation rule, and the predicate ordering strategy,
which restricts application of the resolution rule. Both of these are referred
to as symbol-ordering strategies.

The recursive-path ordering strategy uses an ordering on the constant
and function symbols of our vocabulary. It is invoked by

(use-term-ordering :recursive-path).

The format of this command is unusual because snark also allows other
such “term-ordering” strategies, which may be stipulated here instead.

As we have observed, the paramodulation rule can be applied in two
directions; if the equality is (= s t), it can be used left-to-right to replace
s with t or right-to-left to replace t with s. If we do not select an ordering
strategy, snark will attempt applying the rule in both directions, with some
redundancy. If we employ the recursive-path ordering strategy, snark can
often avoid one of these two directions and hence reduce the branchiness of
the search space.

The recursive-path ordering strategy compares s and t according to an
ordering before allowing a replacement. If s is greater than t, it will not allow
us to replace t with s; we will only be permitted to apply paramodulation
in left-to-right order. If t is greater than s, we will only be allowed to apply
the rule right-to-left. In either of these cases, we say that the equality can
be ordered. Otherwise, if no order exists between s and t, the strategy will
allow us to apply the rule in either direction. For example, the recursive-path
ordering will not allow us to order a commutativity axiom, such as

(= (f ?x ?y) (f ?y ?x)).

As we have seen (Section 5.1), Snark deals with associativity and com-
mutativity, in particular, by invoking a special-purpose unification algorithm,
but other equalities may be unorderable as well.

To define the ordering on terms, we declare an ordering on the constant
and function symbols. For instance, suppose we prefer that when we have
assertions such as

(assert ’(= (mother carol) betty))

we always wish to replace the constant betty with the term (mother carol)

so that we can use properties of the function mother. If so, we can declare
the orderings

5 EFFICIENCY CONSIDERATIONS 54

(declare-ordering-greaterp ’betty ’mother)

(declare-ordering-greaterp ’betty ’carol)

With this declaration, the equality will be applied in the right-to-left direc-
tion.

The precise definition of recursive-path ordering is complicated—see, for
example, [Dershowitz]—but to order a ground (variable-less) equality it suf-
fices that all the constant and function symbols on one side precede all the
constant and function symbols on the other.

If (for ordering other equalities) we want to say that carol is also to be
preferred to mother, we can do it in a single declaration,

(declare-ordering-greaterp ’betty ’carol ’mother).

The ordering we provide on symbols must be loop-free, and every symbol
must previously be declared—otherwise snark will give an error message.
Also, the name must be unambiguous. If we have introduced a constant
betty and a function symbol betty, snark will not know which one we
mean and will give an error message. For this purpose, we should use the
alias mechanism (Section 3.2) to give the two betty’s distinct aliases, e. g.,
betty-con and betty-fun. The declaration can then refer unambiguously
to betty-con.

5.4 Predicate Ordering Strategy

The predicate ordering strategy, which controls the resolution rule, uses an
ordering on the predicate symbols of our vocabulary and extends the order-
ing on terms to apply to atomic formulas. It is selected by use-literal-
ordering-with-resolution. (There is also a version of the restriction that
applies to the paramodulation rule.)

Let us give an example: consider the exercise (Section 4.3) in which we
showed that cousins have a common grandparent. Let us see how to introduce
an ordering on the predicate symbols.

We use four predicate symbols here, parent, sibling, cousin, and grandparent.
Note that grandparent and sibling are defined in terms of parent, and
cousin is defined in terms of sibling and parent. Therefore, it makes
sense during a proof to paraphrase cousin in terms of sibling and parent.
Then grandparent and sibling can be paraphrased in terms of parent.

For example, we include the declaration

5 EFFICIENCY CONSIDERATIONS 55

(declare-predicate-symbol ’parent 2).

We can then include the ordering

(declare-ordering-greaterp ’cousin ’sibling ’parent)

(declare-ordering-greaterp ’grandparent ’parent)

This means that we will favor inferences that replace cousin with sibling

or parent, that replace sibling with parent, or that replace grandparent

with parent. (We do not say whether we prefer cousin or sibling to
grandparent, since we have no opinion on that at this time.)

In proving this result without a symbol ordering, snark may generate
more than a thousand rows before discovering a proof. Selecting this ordering
will allow snark to find the proof after generating fewer than a hundred
rows. The time required was about about a twentieth of the time without
the ordering strategy.

In comparing two formulas which have the same predicate symbol, the
ordering restriction will use the recursive-path ordering to compare the argu-
ment terms of the two predicate symbols. It is possible to control the order in
which the arguments are compared, but we shall not discuss this technicality
here.

If we want to use an ordering strategy but want snark to invent an
ordering for us, we can select the option use-default-ordering. Snark’s
ordering will agree with any orderings we have chosen, but snark will fill in
its own ordering when we have not made any decision. For example, since
we have not decided whether we prefer sibling or grandparent, snark will
decide one way or another, according to its own criteria. Even if we do not
indicate any ordering at all, we may get improved performance if we use the
ordering strategy and the default ordering, because the search space will be
narrower: fewer inferences are legal at each step.

These ordering restrictions must be used with some care. They are logi-
cally complete in isolation, but they are not in general complete when used
in combination with other strategies, or even with the constructive answer
restriction.

5.5 Obtaining Left-to-Right Behavior

Snark inference rules can operate on any atom in a formula. Logic-programming
languages, such as prolog, on the other hand, commonly operate on a for-
mula in left-to-right order. This behavior can be mimicked in snark by

5 EFFICIENCY CONSIDERATIONS 56

tagging a formula to be sequential. If a formula is sequential, only its left-
most atom is available to be operated on.

We can indicate that a formula is to be processed sequentially by a key-
word argument, as in

(assert

(implied-by

(grandparent ?person1 ?person3)

(and

(parent ?person1 ?person2)

(parent ?person2 ?person3)))

:sequential t).

This means that to apply the resolution rule, say, to this formula, we must
unify the leftmost atom,

(grandparent ?person1 ?person3),

rather than either of the two subsequent atoms. If we do succeed in deriving
a consequence from this formula, the derived formula is also sequential. In
particular, the instance of the second atom

(parent ?person1 ?person2)

must be operated on before the instance of the third atom

(parent ?person2 ?person3)

can be. If we do not want formulas derived from a sequential formula to be
inherited, we can tag it

:sequential :uninherited

instead of t.
If the keyword :sequential is not specified, whether a formula is to be

treated sequentially is determined by the current value of assert-sequential,
assume-sequential, or prove-sequential. For instance, if we declare

(assert-sequential t),

5 EFFICIENCY CONSIDERATIONS 57

all assertions will be sequential. Snark’s default value is nil for all these
options.

To approximate the behavior of prolog—backward chaining and left-
to-right solution of goals, we declare all assertions to be sequential and un-
supported and we specify

(prove goal :supported t :sequential t).

Because sequentiality is inherited, all the formulas we derive will then be
treated in left-to-right order, as in prolog.

Like the support restriction, the sequentiality restriction must be used
with care to preserve completeness; it is only complete in special cases. When
using sequentiality, the user is viewing the assertions as programs, to be exe-
cuted in order. Predicate-ordering strategies provide a safer way of indicating
which atoms of a formula to operate on first.

5.6 Rewrite Rules

Snark has a rewrite rule mechanism that allows us to treat certain desig-
nated equalities or equivalences as rewrite rules. This means that whenever
an occurrence of the left side of the rule appears in a row (henceforth called
the target), it will be replaced by the corresponding instance of the right side
of the rule, immediately and automatically.

For example, in Section 3.4, we used an assertion to define the grandpar-
ent relation:

(assert

’(iff

(grandparent ?person1 ?person2)

(exists (?person)

(and (parent ?person1 ?person)

(parent ?person ?person2))))

:name ’grandparent-iff-parent-of-parent)

If we chose to represent the same equivalence by a rewrite rule, we would
instead say

(assert-rewrite

’(iff

(grandparent ?person1 ?person2)

5 EFFICIENCY CONSIDERATIONS 58

(exists (?person)

(and (parent ?person1 ?person)

(parent ?person ?person2))))

:name ’grandparent-iff-parent-of-parent)

There are several differences between these two statements in the way
they are treated by snark. The rewrite rule will immediately replace any
subformula of form (grandparent ?person1 ?person2), in any snark row,
with a corresponding formula

(and (parent ?person1 term) (parent term ?person2))

where term is either a variable ?person or a skolem term, depending on the
force of the quantifier (see Section 3.3). The assertions and proof will appear
as if the grandparent symbol did not exist.

Phrasing the statement as an assertion, on the other hand, will not in-
terfere with snark’s usual operation. Formulas involving the grandparent

relation will be placed on the agenda to be processed in due course. Resolu-
tion with the assertion that defines the relation will not cause the symbol to
be replaced—instead, new rows will be created and added to the agenda.

The fact that rewrite rules cause a replacement instead of an addition
to the agenda means that they can drastically reduce the search space. In
the problem of showing that cousins have a grandparent in common (Section
4.3), if we replace the assertions that define grandparents, cousins and siblings
with rewrite rules, we obtain a proof in a quarter of the time, generating a
third the number of rows.

Another difference between a rewriting and an ordinary inference is that
snark will only do one-way matching, not full unification, in performing
a rewriting. It will instantiate variables in the left side of the rule to force
them to be identical to terms in the target formula, but it will not instantiate
variables in the target formula to force them to be identical to terms in the
rule.

For example, suppose we have an ordinary assertion (not a rewrite rule)

(assert ’(= (mother carol) betty)).

If we also have in our theory the assertion

(assert ’(parent (mother ?person) ?person)

:name ’mother-is-parent),

5 EFFICIENCY CONSIDERATIONS 59

Then we can apply paramodulation to the two assertions, instantiating per-
son be carol, to obtain

(parent betty carol),

The instantiation was discovered by the unification algorithm, in unifying
the left side of the equality, the term (mother carol), with the subterm
(mother ?person) of the target assertion, mother-is-parent.

Now suppose we rephrase the theory so that the fact that Carol’s mother
is Betty is expressed instead by the rewrite rule

(assert-rewrite ’(= (mother carol) betty)).

Then we cannot apply the rewrite rule to the assertion mother-is-parent,
because snark will not instantiate the variable ?x in the assertion to create
an instance of the left side of the rule.

5.6.1 Proceed with Caution

Rewrite rules can replace one formula with another, rather than merely
adding a new row, because they do not instantiate variables in the target
formula; this means that no proof that requires a different instantiation is
being lost due to the replacement. However, caution must be exercised in
using rewrite rules instead of assertions. Poor choice of a rewrite rule can
lead to incompleteness—snark may fail to prove valid conclusions if a fact
is represented as a rewrite rule rather than as an assertion.

For example, in the theory in which the fact that Betty is Carol’s mother
is represented by an assertion, snark can answer the query

(prove ’(parent betty ?person) :answer ’(ans ?person)

:name ’who-is-bettys-child?).

The negation of the conclusion directly contradicts the assertion

(parent betty carol),

which was obtained by the paramodulation step, giving the answer carol.
But if the fact that Betty is Carol’s mother is represented by a rewrite

rule, we cannot deduce that Betty is a parent of Carol, and we cannot answer
the query.

Another caution on the use of rewrite rules is that it is the user’s respon-
sibility to see that they terminate. If we chose to represent the symmetry of
the sibling relation by a rewrite rule

5 EFFICIENCY CONSIDERATIONS 60

(assert-rewrite

’(iff (sibling ?person1 ?person2)

(sibling ?person2 ?person1))

:name ’symmetry-of-sibling)

we would have an infinite computation whenever we used the sibling relation.
Finally, even if the use of a rewrite rule does not lead to incompleteness

or to an infinite loop, there is no guarantee that it will speed up the search.
For instance, if a rewriting replaces a simple atomic formula with a complex
sentence, it may even make some proofs more complex.

5.6.2 Rewrite Rules May Be Introduced Automatically

Snark will sometimes introduce rewrite rules automatically, to increase its
efficiency, when it observes a suitable opportunity. If we select the option use-
simplification-by-equalities, Snark will introduce rewrite rules from
asserted or deduced equalities. For example, if we are using the recursive-
path ordering strategy and deduce an equality that can be ordered by the
strategy, snark will introduce a rewrite rule that will have the same effect.

Snark, in contrast with a human being, will never introduce rewrite rules
that lead to incompleteness or looping. Therefore, rather than introducing a
rewrite by hand, it is usually preferable for a user to introduce an ordinary
assertion and to provide a symbol ordering that will cause snark to introduce
the rewrite automatically, if it is safe.

Even if we have not selected special options, if we have a unit assertion
P, snark will introduce a rewrite rule

(assert-rewrite (iff P true)).

Application of the rewrite rule will produce some of the effects of the resolu-
tion rule; for instance, if we have a clause

(or (not P’) Q),

where P’ is an instance of P, applying the rule will (after simplification)
yield the clause Q; this same clause would ultimately have been obtained by
resolution with the unit clause P, if the rewrite rule had not been in place.
But the rewrite rule will be applied immediately and automatically, when it
becomes applicable as the result of applying other rules.

6 TEMPORAL REASONING 61

This explains why we have seen snark traces in which rewriting has been
applied, even when we have not introduced any rewrite rules. For example,
the last step of the proof in the Grandchildren-of-Alice example, Section 3.5,
is a resolution followed by a rewrite that has the effect of a second resolution
with a unit assertion—snark has effectively combined two resolution steps
into one.

In cases in which snark invents a rewrite rule corresponding to an as-
sertion, it will also leave the assertion in place, so that other rules, such as
paramodulation and resolution, can be applied.

Exercise: Efficiency Experiment with the previous exercises to see if you
can improve the time required or the number of rows produced by using the
set-of-support strategy, symbol orderings, or rewrite rules.

6 Temporal Reasoning

Reasoning about time plays a central role in many knowledge-representation
applications. snark’s temporal representation supports two kinds of tempo-
ral entities, time points and time intervals, and relationships between them,
and is an extension of the temporal interval logic of Allen [Allen]. It also
supports times of day and calendar dates. Many of the relation names in
snark’s temporal representation were adapted from Cyc’s upper ontology
[Cyc-UL].

A possible approach to reason with time is to provide the axioms for the
desired temporal inferences, and rely on snark’s general-purpose inference
methods, such as resolution and paramodulation, to draw conclusions. This
approach can involve a good deal of time-consuming search. Alternatively,
one may use special-purpose inference methods for reasoning with temporal
knowledge. A special-purpose reasoner can significantly improve the speed of
inference, but a suitable interface to the general-purpose inference procedure
must be designed. Snark supports a time and date procedure with an
interface to the ordinary resolution rule, based on the constraint resolution
framework [Burckert].

The snark temporal reasoning facility is switched on by selecting the
option use-temporal-reasoning, e. g., by evaluating

(default-use-temporal-reasoning)

6 TEMPORAL REASONING 62

before initialization; henceforth, in this section, we assume that the facility
has been turned on. When using temporal reasoning, special meaning is
given to certain symbols, such as time-point; it is possible for the user to
rename these symbols.

We begin with the relations that apply to time points; later we will con-
sider time intervals and relations between time points and intervals.

6.1 Time Points

A time point is a single moment of time; these are of sort time-point. Terms
of this sort can be treated like any other terms; they may be arguments
of predicate and function symbols, for example. There are some built-in
operations that are already declared on time points.

There are three primitive relations between pairs of time points:

• (before ?time-point1 ?time-point2):

s?time-point1 s?time-point2
?time-point1 is (strictly) earlier than ?time-point2.

(In general, we use the word strict to apply to relations that do not
allow time points to occur simultaneously.) Here moving from left to
right corresponds to the passing of time.

• (after ?time-point1 ?time-point2):

s?time-point1s?time-point2
?time-point1 is later than ?time-point2.

• (simultaneous-with ?time-point1 ?time-point2):

s?time-point1s?time-point2
?time-point1 is simultaneous with ?time-point2.

Note that these three relations are mutually exclusive and exhaustive: for
any two time points, precisely one of these is true. Also note that the relation
simultaneous-with is not the same as ordinary equality: one could have two
time points that occur simultaneously but are different in other respects, e.g.,

6 TEMPORAL REASONING 63

one is the beginning of a new millennium and the other is the end of the old
one. One of these time points could be regarded as happy, the other as sad, so
they are not equal. Temporally, however, they are treated as identical. If one
wants true equality, one should use instead the relation =, which is stronger
than simultaneous-with and has the same effect in temporal reasoning.

Given a set of temporal relations between time points, snark will be able
to draw conclusions from them. For example, suppose we are given four time
points such that

(before time1 time2)

(simultaneous-with time2 time3)

(after time4 time3).

This situation can be depicted as follows:stime1 stime2stime3 stime4
Then the temporal reasoning component within snark will be able to con-
clude that

(before time1 time4).

Snark is complete and efficient for this kind of reasoning; in other words,
if a conclusion about time points follows from a set of facts asserted using
only the above three temporal relations, snark will be able to deduce the
conclusion.

6.2 Time Intervals

A time interval is a finite connected region of time. Time intervals are of
sort time-interval, which is disjoint from time-point; that is, no entity is
both a time point and a time interval.

A time interval has end-points, which are time points, and it also has
interior time points, which occur during the time interval. As in the Allen
logic, we do not identify a time interval with a set of time points. The Allen
logic is even agnostic about whether the end-points are part of the interval;
that is not a meaningful question, because the original logic does not mention
time points.

6 TEMPORAL REASONING 64

Each time interval has a start-point and an end-point, which are time
points. Time intervals are always thought of as being nonempty, in the sense
that the start-point is always strictly earlier than the end-point.

6.2.1 Allen Primitives

There are thirteen fundamental relations, known as the Allen primitives,
between pairs of time intervals. We say that the relation is strict if it does
not allow the start- or end-points to be identical.

• (before ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The end-point of ?time-interval1 is (strictly) earlier than the start-
point of ?time-interval2.

• (meets ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The end-point of ?time-interval1 is simultaneous with the start-point
of ?time-interval2.

• (overlaps ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The start-point of ?time-interval1 is earlier than the start-point of
?time-interval2, but the end-point of ?time-interval1 is (strictly)
between the start- and end-points of ?time-interval2

• (starts ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The start-point of ?time-interval1 is simultaneous with the start-
point of ?time-interval2, but the end-point of ?time-interval1 is
earlier than the end-point of ?time-interval2.

6 TEMPORAL REASONING 65

• (during ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The start-point of ?time-interval1 is later than the start-point of
?time-interval2, but the end-point of ?time-interval1 is earlier
than the end-point of ?time-interval2.

• (finishes ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The end-point of ?time-interval1 is simultaneous with the end-point
of ?time-interval2, but the start-point of ?time-interval1 is later
than the start-point of ?time-interval2.

The next six Allen primitives are the inverses of the first six.

• (after ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The start-point of ?time-interval1 is later than the end-point of
?time-interval2.

• (met-by ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The start-point of ?time-interval1 is simultaneous with the end-point
of ?time-interval2.

• (overlapped-by ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The start-point of ?time-interval1 is between the start- and end-

6 TEMPORAL REASONING 66

points of ?time-interval2, but the end-point of ?time-interval1 is
later than the end-point of ?time-interval2.

• (started-by ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The start-point of ?time-interval1 is simultaneous with the start-
point of ?time-interval2, but the end-point of ?time-interval1 is
later than the end-point of ?time-interval2.

• (contains ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The start-point of ?time-interval1 is earlier than the start-point of
?time-interval2, but the end-point of ?time-interval1 is later than
the end-point of ?time-interval2.

• (finished-by ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The end-point of ?time-interval1 is simultaneous with the end-point
of ?time-interval2, but the start-point of ?time-interval1 is earlier
than the start-point of ?time-interval2.

The thirteenth Allen primitive is the equality relation for time intervals.

• (cotemporal ?time-interval1 ?time-interval2):

?time-interval1

?time-interval2

The start- and end-points of ?time-interval1 and ?time-interval2

are respectively simultaneous. The relation is also called temporal-
bounds-identical.

6 TEMPORAL REASONING 67

As with the relations on time points, the Allen primitives are mutually
exclusive and exhaustive: between any two time intervals, precisely one of
these relations holds. Again, the relation cotemporal behaves like equality
on time intervals for temporal reasoning, but it is not a true equality relation.
In particular, it is possible for a non-temporal relation to be true for one
time interval but false for another cotemporal one; two time-intervals can be
cotemporal without being equal.

As with time points, snark can efficiently draw conclusions about time
intervals from assertions expressed in terms of the Allen primitives. For
example, suppose time-interval1 meets time-interval2, which in turn
contains time-interval3. The situation is illustrated as follows:

?time-interval1

?time-interval2

?time-interval3

Then snark can deduce that time-interval1 is before time-interval3.
Note that if one time interval meets another, the end-point of the first

interval must be simultaneous-with the start-point of the second. Because
snark doesn’t identify a time interval with a set of points, it is not meaning-
ful to ask whether that time point is a member of either interval, or whether
those intervals have a point in common.

6.2.2 Nonprimitive Relations

There are relations between time intervals other than the thirteen Allen prim-
itives in snark. The ones listed here are defined as disjunctions of the Allen
primitives, and hence are not logically necessary. However, they provide a
useful and convenient abbreviation for commonly used notions; we used them
in our HPKB work. The names are obtained from the CYC ontology [Lenat].

• (temporally-subsumes ?time-interval1 ?time-interval2):

Holds if ?time-interval2 is a (not necessarily strict) subinterval of
?time-interval1, that is, if any of the following conditions holds:

(finished-by ?time-interval1 ?time-interval2)

(contains ?time-interval1 ?time-interval2)

(cotemporal ?time-interval1 ?time-interval2)

(started-by ?time-interval1 ?time-interval2)

6 TEMPORAL REASONING 68

In other words, it is defined as the disjunction of finished-by, con-
tains, cotemporal, and started-by.

• (temporally-subsumed-by ?time-interval1 ?time-interval2):

The inverse of temporally-subsumes, it holds if ?time-interval1 is
a subinterval of ?time-interval2. It is defined as the disjunction of
starts, cotemporal, during, and finishes, the inverses of the Allen
primitives in the definition of temporally-subsumes.

• (starts-during ?time-interval1 ?time-interval2):

Holds if the start-point of ?time-interval1 is (strictly) during ?time-
interval2. It is defined as the disjunction of during, finishes and
overlapped-by.

• (ends-during ?time-interval1 ?time-interval2):

Holds if the end-point of ?time-interval1 is during ?time-interval2.
If is defined as the disjunction of overlaps, starts, and during.

• (starts-after-starting-of ?time-interval1 ?time-interval2):

Holds if the start-point of ?time-interval1 is later than the start-
point of ?time-interval2. If is defined to be the disjunction of during,
finishes, overlapped-by, met-by, and after.

• (ends-after-ending-of ?time-interval1 ?time-interval2):

Holds if the end-point of ?time-interval1 is later than the end-point
of ?time-interval2. It is defined to be the disjunction of contains,
started-by, overlapped-by, met-by, and after.

• (ends-after-starting-of ?time-interval1 ?time-interval2):

Holds if the end-point of ?time-interval1 is later than the start-point
of ?time-interval2. It is defined to be the disjunction of all the Allen
primitives except before and meets.

• (temporally-cooriginating ?time-interval1 ?time-interval2):

Holds if the start-points of ?time-interval1 and ?time-interval2

are simultaneous. It is defined to be the disjunction of starts, cotem-
poral, and started-by.

6 TEMPORAL REASONING 69

• (temporally-coterminal ?time-interval1 ?time-interval2):

Holds if the end-points of ?time-interval1 and ?time-interval2

are simultaneous. It is defined to be the disjunction of finishes,
cotemporal, and finished-by.

• (temporally-disjoint ?time-interval1 ?time-interval2):

Holds if ?time-interval1 and ?time-interval2 have no interior points
in common. It is defined to be the disjunction of the Allen primitives
before, meets, met-by, and after.

• (temporally-intersects ?time-interval1 ?time-interval2):

Holds if ?time-interval1 and ?time-interval2 are not disjoint, i.e.,
if they have some interior points in common. It is defined to be the
disjunction of all the Allen primitives except those in the definition of
disjoint. It is also called temporal-bounds-intersect.

6.3 Intermixing Temporal and Relational Reasoning

While it may be interesting to infer facts about temporal points and intervals,
the primary reason for including temporal reasoning in snark is to allow
us to combine reasoning about temporal and other relations to describe a
changing world. In particular, we want to be able to talk about relations
that are true at some times and false at others. One way to do this is to
allow those relations to have arguments that are time points or time intervals.
For example, we might introduce a relation

(possesses ?person ?object ?time-point)

to mean the ?person owns ?object at ?time-point, and

(possesses ?person ?object ?time-interval)

to mean the ?person owns ?object during ?time-interval.
Snark allows any relation to have arguments that are time intervals or

time points, but that is not necessarily interpreted to mean that the relation
is true at that time point or during that time interval. For instance, we might
introduce a relation

(hour-long ?time-interval)

6 TEMPORAL REASONING 70

to mean that ?time-interval is an hour long, not to mean that some relation
hour-long is true during ?time-interval.

Furthermore, Snark does not assume that, if a relation holds for a time
interval, it necessarily holds for any of the time points that occur during that
interval, or for its end-points. Nor does it mean that the relation holds for
any subinterval of that interval. For instance, suppose the relation

(profitable ?company ?time-interval)

holds if ?company makes a profit over the period ?time-interval. But
that does not necessarily imply that ?company makes a profit over every
subinterval of ?time-interval. For instance, a company can be profitable
over a year but have lost money for the first quarter of that year.

Let us say that a relation is inherited by subintervals if, whenever it holds
for a time interval, it holds for every subinterval of that interval. Thus, the
relation possesses is inherited by subintervals but the relation profitable

is not. Snark will not assume that a relation is inherited by subintervals
unless we introduce an assertion that says so. To say that possesses is
inherited by subintervals, we may introduce the assertion

(assert

’(implies

(temporally-subsumes ?time-interval1 ?time-interval2)

(implies

(possesses ?person ?object ?time-interval1)

(possesses ?person ?object ?time-interval2)))

:name

’possession-inherited-by-subintervals)

Now suppose we would like to say that George possessed the Maltese
Falcon during a certain period of time, say “the good old days.” Then we
can give the assertion

(possesses george the-maltese-falcon good-old-days).

Because possesses is inherited by subintervals, this will imply that George
possessed the Maltese Falcon during every subinterval of the good old days.

Now suppose we want to say that the good old days is the only time in
which George possessed the Falcon. To say this in terms of the Allen logic,
mentioning time intervals but not time points, we may say that George did

6 TEMPORAL REASONING 71

not possess the Falcon in any time interval other than the subintervals of the
good old days.

(assert

’(implies

(not (temporally-subsumes good-old-days ?time-interval))

(not (possesses george the-maltese-falcon ?time-interval)))

:name ’george-does-not-possess-maltese-falcon-other-times)

Then if a period of hard times occurred later than the good old days, that
is, if we have

(assert ’(before good-old-days hard-times)

:name ’good-old-days-before-hard-times)

then snark will be able to establish

(prove

’(not (possesses george the-maltese-falcon hard-times)))

6.4 Mixed Point-Interval Relations

We have talked about temporal relations between pairs of time points and
temporal relations between pairs of time intervals. In snark there are also
mixed temporal relations, between time points and time intervals and be-
tween time intervals and time points. This is a useful extension of the Allen
temporal logic.

The mixed relations have the same names as some of the point-point and
interval-interval relations. Their meanings are analogous.

6.4.1 Point-Interval Relations

Some of these mixed relations hold only between a time point and a time
interval, where the time point must be the first argument.

• (starts ?time-point ?time-interval):

Holds if ?time-point is simultaneous with the start-point of ?time-
interval.

6 TEMPORAL REASONING 72

• (finishes ?time-point ?time-interval):

Holds if ?time-point is simultaneous with the end-point of ?time-
interval.

• (during ?time-point ?time-interval):

Holds if ?time-point is strictly between the start- and end-point of
?time-interval.

6.4.2 Interval-Point Relations

The inverses of the point-interval relations hold only between an interval and
a point, where the point must be the second argument.

• (started-by ?time-interval ?time-point):

Holds if ?time-point is simultaneous with the start-point of ?time-
interval.

• (finished-by ?time-interval ?time-point):

Holds if ?time-point is simultaneous with the end-point of ?time-
interval.

• (contains ?time-interval ?time-point):

Holds if ?time-point is strictly between the start- and end-points of
?time-interval.

Of the mixed relations, before and after allow points and intervals in
either argument.

• (before ?time-point ?time-interval):

Holds if ?time-point is strictly earlier than the start-point of ?time-
interval.

• (before ?time-interval ?time-point):

Holds if the end-point of ?time-interval is strictly earlier than ?time-
point.

• (after ?time-point ?time-interval):

Holds if ?time-point is strictly later than the end-point of ?time-
interval.

6 TEMPORAL REASONING 73

• (after ?time-interval ?time-point):

Holds if the start-point of ?time-interval is strictly later than ?time-
point.

Some of the temporal primitives have no corresponding mixed relations.
The equality relations cotemporal and simultaneous-with are not defined
on mixed arguments, because a time point can never be temporally equal to a
time interval. The relations meets, met-by, overlaps, and overlapped-by

are not necessary for mixed arguments, because the concepts they would
stand for are either nonsensical or already have other names. For instance,
to say that a time point meets a time interval would be equivalent to saying
that it starts the time interval. And it doesn’t make sense for a time point
to overlap a time interval.

6.4.3 Nonprimitive mixed relations

Some of the nonprimitive temporal relations can be used between an interval
and a point, or between a point and an interval, including

• (temporally-intersects ?time-interval ?time-point):

• (temporally-intersects ?time-point ?time-interval):

These relations are inverses. Both hold if ?time-point occurs, not nec-
essarily strictly, in ?time-interval. That is, ?time-point is simul-
taneous with the start- or end-point of ?time-interval or is between
those two time-points.

To summarize, a single Allen-style temporal reasoning system is used for
all relations among points and intervals.

• There are three exhaustive, mutually exclusive relations between time
points (simultaneous-with, before, and after).

• There are thirteen exhaustive, mutually exclusive relations between
time intervals, given in Section 6.2.1.

• There are five exhaustive, mutually exclusive relations between a time
point and a time interval (before, starts, during, finishes, and
after), and their five inverses, which are relations between a time in-
terval and a time point (after, started-by, contains, finished-by,
and before).

6 TEMPORAL REASONING 74

Thus, all in all there are twenty-six primitive relations between temporal
entities.

6.5 Temporal Functions

The temporal reasoning package defines functions that are useful for mapping
time intervals and time-points into others. They include

• (start-fn ?time-interval):

The start-point of ?time-interval.

• (end-fn ?time-interval):

The end-point of ?time-interval.

• (time-interval ?time-point1 ?time-point2):

The time interval from ?time-point1 to ?time-point2. That is, the
start-point of the interval is ?time-point1 and the end-point is ?time-
point2. Here ?time-point1 must be before ?time-point2.

• (time-interval-ip ?time-interval ?time-point):

The time interval from the start-point of ?time-interval to ?time-
point. It is assumed that the start-point is before ?time-point.

• (time-interval-pi ?time-point ?time-interval):

The time interval from ?time-point to the end-point of ?time-inter-
val. It is assumed that ?time-point is before the end-point.

• (time-interval-ii ?time-interval1 ?time-interval2):

The time interval from the start-point of ?time-interval1 to the end-
point of ?time-interval2. It is assumed that the start-point comes
before the end-point.

6.6 Point-Interval Temporal and Relational Reasoning

The reason to introduce the mixed point-interval temporal relations is that
reasoning about a changing world is more natural if we can talk about both
points and intervals. For instance, it made sense (in Section 6.3) when we
asserted that George possessed the Maltese Falcon during the good old days,

6 TEMPORAL REASONING 75

but it was a bit artificial when we said that George did not possess the Falcon
during any time interval not temporally subsumed by the good old days.

It might have been more natural to use mixed time intervals and time
points to express the same properties. For instance, let us say that a relation
is inherited by sub-points if, whenever that relation holds for a time interval,
it also holds for every time point that temporally intersects that interval.
Note that a relation may be inherited by subintervals, as we discussed in 6.3,
but not inherited by sub-points, and vice versa.

We can say that the relation possesses is inherited by sub-points by
introducing the assertion

(assert

’(implies

(temporally-intersects ?time-interval ?time-point)

(implies

(possesses ?person ?object ?time-interval)

(possesses ?person ?object ?time-point)))

:name

’possession-inherited-by-sub-points)

And we can say further that George does not possess the Falcon at any time
point that does not occur during the good old days:

(assert

’(implies

(not (temporally-intersects good-old-days ?time-point))

(not (possesses george the-maltese-falcon ?time-point)))

:name ’george-doesnt-possess-maltese-falcon-other-times

And finally we can say that the special time point now is later than the good
old days:

(assert ’(before good-old-days now)

:name ’good-old-days-before-now)

Note that all these assertions use temporal relations between time intervals
and time points. From these assertions snark can establish

(prove ’(not (possesses george the-maltese-falcon now))).

6 TEMPORAL REASONING 76

6.7 Calendar Dates and Clock Times

Snark has a built-in representation of dates on the calendar and times on
the clock, and this representation is integrated into the temporal inference
procedure. For example, snark knows that December 31, 1999 meets Jan-
uary 1, 2000, in Allen’s sense of “meets”, and that 11PM on the former date
is before 1AM on the latter date.

Snark supports the following date functions, which are based on the Cyc
ontology [Cyc-UL].

• (year-fn ?integer):

The time interval corresponding to the year ?integer. For example,
(year-fn 1999) is the time interval with start-point 00:00:00 hours on
January 1, 1999, and end-point 00:00:00 hours on January 1, 2000.

• (month-fn ?integer ?year):

The time interval corresponding to the month numbered ?integer,
between 1 and 12; e. g., (month-fn 5 (year-fn 1999)). The month-
fn function also accepts the names of the months, e. g. (month-fn May

(year-fn 1999)).

• (day-fn ?integer ?month):

The time interval corresponding to the calendar day ?integer of ?month.
For example, (day-fn 10 (month-fn 5 (year-fn 1999))) represents
the time interval corresponding to May 10, 1999. Here integer must
be at least 1; no promises are made about what happens if ?integer
is larger than the number of days in the month.

• (hour-fn ?integer ?day):

The time interval corresponding to the hour ?integer of ?day. For ex-
ample, (hour-fn 11 (day-fn 10 (month-fn 5 (year-fn 1999))))

represents the interval defined by 11:00 AM, May 10, 1999. Snark

uses a 24-hour day; ?integer should be between 0 and 23. Snark

does not know about time zones; all times should be in the same time
zone, but it does not matter which.

• (minute-fn ?integer ?hour):

The time interval corresponding to the minute ?integer of ?hour,
where ?integer is between 0 and 59. For example, (minute-fn 12

6 TEMPORAL REASONING 77

(hour-fn 11 (day-fn 10 (month-fn 5 (year-fn 1999))))) repre-
sents the interval defined by 11:12 AM, May 10, 1999. The interval
starts at 12 minutes after the hour, and continues until 13 minutes
after the hour.

• (second-fn ?integer ?minute):

The time interval corresponding to the second numbered ?integer of
?minute, where ?integer is between 0 and 59. For example, (second-fn
13 (minute-fn 12 (hour-fn 11 (day-fn 10 (month-fn 5 (year-fn

1999)))))) represents the interval starting 11:12:13 A.M., May 10,
1999 and continuing until 11:12:14 on the same day.

6.8 Dates in Other Time Intervals

It is quite common to specify dates in a non-calendar time interval; for exam-
ple, “The President made a statement on the third day of the war.” Snark

supports such reasoning by an extension of the function day-fn, described
as follows:

• (day-fn ?integer ?constant):

The fifth day of the time interval corresponding to ?constant. For
example, (day-fn 5 scenario) represents the fifth day in scenario.
It is understood that scenario is supposed to correspond to a time
interval, but snark does not enforce that. The date reasoning pro-
cedure is unable to compare dates between two different non-calendar
time intervals, even if temporal relations are known between the two
intervals. For instance, even if we assert (before the-civil-war

the-age-of-aquarius), snark will not know that (before (day-fn

1 the-civil-war) (day-fn 2 the-age-of-aquarius)).

6.9 Temporal Reasoner Interface

The interface between snark and the Allen temporal-reasoning procedure
uses constraint resolution [Burckert]. Each row is split between ;

If a pure temporal relation between two ground (i. e., variable-less) terms
is asserted or deduced, it is introduced into a graph representation of all
known temporal relations. If the relation already follows from the relations
in the graph, the graph is not changed. If the relation contradicts what is

6 TEMPORAL REASONING 78

already known in the graph, a contradiction has been deduced and the proof
is complete.

If a more complex formula is asserted of deduced, it is split between a
logical part and a temporal constraint, which are kept in the same row. The
constrained row means that if some instance of the temporal constraint is
satisfied, the corresponding instance of the logical part is true.

For example, suppose a proof contains the row

(Row 137

(possesses george the-maltese-falcon ?time-interval)

Temporal-Constraint

(ii%temporally-subsumes good-old-days ?time-interval)).

Here ii%temporally-subsumes is the graph representation of the relation
temporally-subsumes. This row means that if the good-old-days interval
temporally subsumes ?time-interval, then George possesses the Maltese
Falcon during ?time-interval.

Deduction rules applied to constrained rows generate a new row, which
contains both a logical part and a temporal constraint. When the temporal
constraint is ground, the graph representation of all known temporal con-
straints is used to see if the constraint is satisfied; if so, the constraint is
removed. If the constraint contradicts the known temporal relationships, the
entire row is discarded.

The link between the Allen relations that appear in formulas and their
corresponding graph representations is achieved by a number of assertions
that are added automatically by snark. For example:

(Row ~ii%temporally-subsumes

(not (temporally-subsumes ?time-interval ?time-interval1))

assertion

Temporal-Constraint

(not

(ii%temporally-subsumes ?time-interval ?time-interval1))).

This asserts that if the graph representation of the relation temporally-
subsumes is satisfied, the relation itself holds. Applying the resolution rule
to this assertion and a formula that mentions the relation will have the effect
of removing the relation from the formula and adding it to the temporal
constraint.

7 PROCEDURAL ATTACHMENT 79

The proof is complete when snark has discovered a contradiction in the
logical parts of the rows, and when the corresponding temporal constraints
are also satisfied. Should snark deduce a contradictory row false whose
corresponding temporal constraints cannot be satisfied, the row is discarded
and the search continues.

7 Procedural Attachment

We have seen that, for some areas such as temporal reasoning, it is advan-
tageous to use special-purpose inference procedures rather than to rely on
only snark’s general-purpose inference rules. It is impossible, however, for
snark to include every special-purpose procedure that may be useful for
some application. Instead, snark includes a procedural attachment facil-
ity that allows a user to invoke external procedures as part of the standard
resolution.

There are two principal ways to introduce procedural attachments, by
intervening in either the rewriting mechanism or the resolution mechanism.
We treat each separately. (There is also a way to use procedural attachment
via the paramodulation rule.)

7.1 Rewrite Code

The rewrite-code mechanism allows the user to provide external code to
rewrite expressions, much as a rewrite rule does. This code is associated
with particular function or predicate symbols.

7.1.1 Built-in Rewrite Code

Snark already has built-in procedural attachments, in the form of rewrite
code, for important arithmetical, symbolic, and list-processing functions. For
instance, if there were no procedural attachment mechanism, the only way
we would be able to add two numbers would be to reason from the axioms
for addition, a rather ponderous business. However, if we select the option
use-code-for-numbers, arithmetic operations will be carried out by the cor-
responding lisp code. In particular, a term (+ 2 2) will be immediately
rewritten as 4, without invoking any axioms or inference rules. Snark has
procedural attachments for the principal arithmetic function and predicate

7 PROCEDURAL ATTACHMENT 80

symbols in the ansi kif common lisp library. Similarly, selecting the op-
tions use-code-for-lists and use-code-for-characters will give snark

access to ansi kif common lisp’s list and character libraries.
The snark equality function is also rewritten by a built-in procedural

attachment. For instance, a formula of form (= <term> <term>), where
both arguments are alike, will be automatically rewritten to true.

A procedure can be attached to a user-defined snark function or pred-
icate symbol by means of its declaration. Some built-in procedures can be
attached to user-defined symbols. For example, suppose we wish to declare
that the relation near is reflexive, that is, that a place is to be regarded as
near to itself. Then we may include the declaration

(declare-predicate-symbol

’near 2 :rewrite-code ’reflexivity-rewriter)

in addition to whatever other declarations are given for the predicate symbol
near. The program reflexivity-rewriter is lisp code built into snark

that performs a rewriting analogous to the one we have described for equality.
In using this rewriting in the course of a proof, snark will report rewrite

. . . :code-for-near in the explanation.

7.1.2 User-Supplied Rewrite Code

Let us look at the program reflexivity-rewriter described in the previous
section; then we can describe the constructs necessary to understand it and
to build analogous rewrite code for our own theories.

(defun REFLEXIVITY-REWRITER (atom subst)

(let ((args (args atom)))

(if (equal-p (first args) (second args) subst) true none)))

This program tests if, after applying the substitution subst, the two
arguments of the formula atom are equal; if so, it returns true; otherwise, it
returns the special symbol :none, which indicates that the formula is not to
be rewritten. (The lisp variable none has value :none.)

Every piece of rewrite code has two arguments, an expression and a substi-
tution, here called atom and subst respectively. The actual expression being
simplified is the result of applying subst to atom. For example, if atom is
(near ?place ohio) and subst is a substitution that replaces ?place with

7 PROCEDURAL ATTACHMENT 81

ohio, the actual expression being substituted is (near ohio ohio). For rea-
sons of efficiency, Snark sometimes carries around the substitution rather
than applying it.

The following lisp functions are defined in snark and are useful for
writing procedural attachments.

:none:

As mentioned above, a special symbol that can be returned by a rewrite
rule to indicate that the expression is not to be rewritten by that rule.
The lisp variable none is assigned the value :none.

(head exp):

The principal function or predicate symbol of the expression exp.

(args exp):

The argument list of the expression exp.

(equal-p exp1 exp2 subst):

A test which is true if applying the substitution subst to the expres-
sions exp1 and exp2 yields identical expressions, false otherwise.

A more complex construct is

(dereference exp subst

:if-constant const-code

:if-variable var-code

:if-compound comp-code)

The construction applies the substitution subst to the expression exp and
evaluates exp. Then

If the result is a constant, it evaluates the lisp expression const-code.

If the result is a variable, it evaluates the lisp expression var-code.

If the result is a compound expression, such as the application of a function
symbol to arguments, it evaluates the lisp expression comp-code.

In each case, the value of the entire dereference expression is the value
of the evaluated subexpression. Any of the keyword cases can be omitted,
and their order is inconsequential. In case none of the given keywords is
applicable, the value of the dereference expression is nil.

7 PROCEDURAL ATTACHMENT 82

7.1.3 Example: Rewrite Code for mother

Let us use some of these constructs in the family theory to introduce rewrite
code for the function mother. Suppose there is a lisp function mother-fun

that can compute the mother of any constant of sort person; for instance,
mother-fun might consult external geneological tables for this purpose. We
would like to attach this program to the function symbol mother in our family
theory.

First we indicate that the symbol mother is to be given a procedural
attachment in the form of rewrite code.

(declare-function-symbol ’mother 1

:rewrite-code ’mother-rewriter)

Then we define the function mother-rewriter to extract the argument arg
from terms of form (mother arg), where arg is a constant, and to invoke
mother-fun on that constant:

(defun MOTHER-REWRITER (term subst)

(let ((child (first (args term))))

(dereference child subst

:if-constant

(mother-fun child)

:if-variable none

:if-compound none)))

Note that this will have no effect on terms of form (mother arg), where
arg is a variable or a compound term. Also, we are assuming that all the
constant symbols returned by mother-fun have already been declared to be of
sort woman (and hence person); if new names are introduced by mother-fun,
they must be declared by mother-rewriter.

Given this procedural attachment, snark can answer queries such as

(prove

’(and (= ?woman (mother ?person))(parent ?person carol))

:answer ’(ans ?woman)

where all the information it has about the mothers of individual constants is
given by the function mother-fun. Snark will behave as if all this informa-
tion was stored as rewrite rules. For instance, suppose

7 PROCEDURAL ATTACHMENT 83

(mother-fun carol) = betty

and

(mother-fun betty) = alice.

Then snark will include alice among its answers for the above query.
Use of mother-fun in the proof will be justified by the annotation rewrite

. . . :code-for-mother in the explanation.

7.2 Satisfy and Falsify Code

The same limitations that apply when information is represented by rewrite
rules also applies when information is stored in rewrite code. For instance,
we cannot use the rewrite code for mother to answer the query

(prove

’(= betty (mother ?person))

:answer ’(ans ?person)

:name ’whose-mother-is-betty?).

Although the procedural attachment can rewrite (mother carol) to betty,
it has no effect on the term (mother ?person). In fact, because of the
one-way nature of a function, we cannot use a procedural attachment to a
function symbol to answer this kind of question. We can, however, use the
satisfy- and falsify-code mechanisms, which allow a procedural attachment to
intervene in the resolution mechanism. We introduce these with an example.

7.2.1 Satisfy Code for mother

Suppose that, in addition to the mother function symbol, we also introduce a
two-place mother predicate symbol. Imagine that we have a table of mother-
child pairs, e.g.,

(defvar MOTHER-TABLE

’((alice betty)

(alice barbara)

(betty carol)

(betty claudia)

))

7 PROCEDURAL ATTACHMENT 84

In other words, Alice is the mother of Betty, Alice is the mother of Barbara,
and so forth. Then we can use the satisfy-code mechanism to make snark

behave as if it had been given the corresponding atomic assertions

(assert ’(mother alice betty))

(assert ’(mother alice barbara))

(assert ’(mother betty carol))

(assert ’(mother betty claudia))

We do this by attaching to the predicate symbol mother a procedure that,
whenever snark is trying to establish the truth of a formula of form (mother

person1 person2), will cycle through mother-table and attempt to unify
the pair (person1 person2) with successive pairs of the table.

First we indicate that the predicate symbol mother is given a procedural
attachment in the form of satisfy code:

(declare-predicate-symbol ’mother 2

:satisfy-code ’mother-satisfier)

Then we provide a lisp function mother-satisfier that will attempt to
unify the arguments of the formula against the successive pairs of the table:

(defun MOTHER-SATISFIER (cc atom subst)

(let ((args (args atom)))

(mapc

(lambda (pair) (unify cc args pair subst))

mother-table)))

Here each pair in mother-table is unified with the pair of arguments of the
formula under consideration. Note that mother-satisfier, like all satisfy
code, has a continuation cc as its first argument. The continuation is a func-
tion that, when called, will attempt to complete the rest of the proof. If
unify succeeds in unifying args with pair, it will then invoke the continu-
ation cc, passing on whatever substitutions unify has discovered.

Once we have provided this procedural attachment, snark can use the
table to provide answers to the query

7 PROCEDURAL ATTACHMENT 85

(prove

’(mother betty ?person)

:answer ’(ans ?person)

:name ’who-is-bettys-child?).

Invoking this query once will provide one answer, Carol. Then executing
(closure) will send snark back into the table to find another answer, Clau-
dia.

While introducing a procedural attachment for such a small table gives
no benefit, it is reasonable to introduce procedural attachments for large
tables and it is unavoidable if the table can only be accessed via an external
function call or a web access.

7.2.2 Falsify code for mother

Satisfy code allows us to establish that a relation is true as the result of
executing a procedure. Sometimes, however, a procedure can tell us that the
relation is false. To invoke such a procedure, we use falsify code.

For instance, suppose we want to introduce code to embody the idea
that the relation mother is irreflexive, i. e., that a person cannot be her own
mother. One could do this by introducing an assertion

(assert

’(not (mother ?person ?person))

:name ’mother-is-irreflexive)

Alternatively, we can introduce falsify code to have the same effect as reso-
lution against the above assertion.

For this purpose, we declare the predicate symbol mother to have falsify
code mother-falsifier:

(declare-predicate-symbol ’mother 2

:falsify-code ’mother-falsifier)

Note that the same symbol can have satisfy code, falsify code, and rewriting
code.

We define the lisp function falsify-code as

(defun MOTHER-FALSIFIER (cc atom subst)

(let ((args (args atom)))

(unify cc (first args) (second args) subst)))

8 SUPPORT FOR KIF/OKBC USERS 86

Here, again, cc is continuation code that attempts to complete the proof.
This function will be invoked when a formula (mother person1 person2)

occurs in a context in which we are trying to prove that it is false, e. g., in a
query of form

(prove

’(not (mother person1 person2))),

where person1 and person2 are terms that may have variables. It will
attempt to unify person1 and person2. If it succeeds, unify will call the
continuation code cc, passing on whatever substitutions it has discovered, in
an attempt to complete the proof. If unify fails, mother-falsify returns
and other avenues to complete the proof are sought.

Actually, snark has general-purpose code for declaring a relation to be
irreflexive and introducing the appropriate falsify code. So, to declare the
predicate mother to be irreflexive, we could obtain the same effect simply by
introducing the declaration

(declare-predicate-symbol ’mother 2

:falsify-code ’irreflexivity-falsifier).

8 Support for kif/okbc Users

Knowledge Interchange Format (kif) is a language designed for use in the
interchange of knowledge amongst disparate computer systems [Genesereth].
Kif was a result of a community effort and a draft of the kif specification is
under consideration as an ansi standard. Open Knowledge Base Connectiv-
ity (okbc) is an application programming interface for accessing knowledge
representation systems. Okbc interfaces to many popular knowledge repre-
sentation systems exist.

Given such a broad base of kif and okbc users, snark supports input of
axioms in a language called kif+c(“kif plus Classes”). kif+c uses the ansi

draft kif syntax for writing axioms, and recognizes some standard relation
names from the okbc knowledge model.

The kif+c not only makes it easier for snark to do knowledge sharing
with other systems, but also implements a connection between three ways
of representing classes of entities in snark: through sorts, through sets,
and through predicate symbols. In this section we introduce this way of
presenting information to snark.

8 SUPPORT FOR KIF/OKBC USERS 87

8.1 Introduction to Kif

Kif has declarative semantics, is logically comprehensive with its support for
arbitrary logical sentences, and supports representation of knowledge about
knowledge.

Kif accepts sentences built up of constants, function and predicate sym-
bols, logical connectives, and quantifiers. Kif accepts the equality symbol =,
the connectives and, or, not, and the quantifiers forall and exists.

Function and relation symbol may occur with different arities. kif as-
sumes that if the same symbol occurs with varying arity, all those occurrences
stand for the same function, and the function itself has variable arity.

Kif has three directions of implication connective, =>, <= and <=>.
Free variables in assertions have tacit universal quantification, while free

variables in queries have tacit existential quantification.
Kif has four constructs for defining new symbols:

defobject Introduces a new constant, standing for a thing or entity.

defrelation Introduces a new predicate symbol, standing for a relation.

deffunction Introduces a new function symbol, standing for a function.

deflogical Introduces a new propositional symbol, standing for a truth-
value.

8.2 Description of kif+c

The domain of discourse for the kif+c consists of individuals, relations, func-
tions, and assertions. Unary relations are identified with classes. We consider
each of these, beginning with classes, which are given special treatment in
kif+c because they are tied to snark’s sort mechanism.

To enable the kif+c interface, we place the following statement at the
top of our source files:

(in-language :hpkb-with-ansi-kif)

or

(in-language :hpkb-with-kif-3.0)

All the examples in this section will work with either version of the kif

interface.

8 SUPPORT FOR KIF/OKBC USERS 88

8.2.1 Declaring Classes

A class in kif+c corresponds to a set, and a unary predicate symbol (i. e., a
predicate symbol of arity 1). It is declared with the construct defrelation.

For instance, to declare a class, person, we execute

(defrelation person

(class person))

The relation name class is a standard name derived from the okbc

knowledge model.
The declaration constructs each allow an optional string as their first

argument, which can be used for documentation:

(defrelation object

"Collection of all objects."

(class object))

Specifying documentation string as an optional first argument is allowed
in the ansi version of kif, but not in kif 3.0.

Within the defrelation construct we can provide many declarations and
axioms related to the class being declared. For instance, we can declare that
one class is a subclass of another:

(defrelation man

"Collection of all men."

(class man)

(subclass-of man person))

This construct introduces a new class man and declares that man is a
subclass of person, i. e., that every man is also a person. The relation name
subclass-of is a standard relation name based on the okbc knowledge
model.

It is a convention (which snark does not enforce) that the statements
included in a declaration be relevant to the entity being declared; in particu-
lar, it is recommended that a subclass declaration (subclass-of man ...)

should appear in the declaration for the class man, rather than elsewhere.

8 SUPPORT FOR KIF/OKBC USERS 89

8.2.2 Declaring Individuals

If we want to introduce an individual that is not itself a set, we use the
construct defobject. For instance,

(defobject george

(instance-of george man))

introduces a constant george that is of sort man and an element of the
set man. Here instance-of corresponds to the set membership relation, and
is a standard relation name derived from the okbc knowledge model.

The predicate symbols subclass-of and instance-of are given special
treatment in snark. In particular, when the class person is declared, an
assertion

(instance-of ?person person)

is automatically introduced; in other words, any term of sort person

stands for an element of the set person. Also, any formula of form

(person <term>)

where <term> is a term, is automatically rewritten as

(instance-of <term> person).

Thus, any use of person as a predicate symbol is automatically translated
into a use of person as a set.

Special procedures are built into snark to take into account the class,
subclass, and object declarations during a proof. For instance, with the above
declarations, that george is a man and that man is a subclass of person,
snark will be able to prove immediately that george is a person, i. e., that

(person george).

This is rewritten as

(instance-of george person).

8 SUPPORT FOR KIF/OKBC USERS 90

The proof is carried out simply by examining the declared sorts and
objects, without invoking any axioms. Because man is a subset of person,
any member of man is also a member of person.

It is possible to use the relation instance-of to assert that a class, rather
than an individual, is a member of another class. For instance, here is a
declaration of the class woman.

(defrelation woman

"Collection of all women."

(class woman)

(instance-of woman biological-classification-type))

The statement

(instance-of woman biological-classification-type)

says that the class of women is a biological classification type, a kind of
class. This is quite different from saying that the class of women is a subclass
of the biological classification type—that would imply that every woman is
herself a class.

It is natural to make assertions about the properties of a class as follows.

(defrelation person

(class person)

(average-age person 70))

The average-age statement says something about the entire class of
people, not about individual members of the class. If we really want to
say something about each element of the class, we can use the construct
template-slot-value, another standard relation name from the okbc knowl-
edge model:

(defrelation person

(class person)

(template-slot-value ancestor person adam))

Here

(template-slot-value ancestor person adam)

says that an ancestor of every person is Adam. This is equivalent to the
following snark assertion:

(ancestor ?person adam).

8 SUPPORT FOR KIF/OKBC USERS 91

8.2.3 Declaring Relations

We have seen that when we declare a class we are simultaneously declaring
a unary predicate symbol, which stands for a unary relation. Let us consider
the declaration of n-ary relations.

For example, suppose we want to declare a relation possesses, which
takes two arguments, a person and an object. Then we may say

(defrelation possesses

"a ?person possesses an ?object if he or she owns it."

(relation-arity possesses 2)

(nth-domain possesses 1 person)

(nth-domain possesses 2 object))

An alternative, and equivalent, way to make the same declaration would
be

(defrelation possesses

"a ?person possesses an ?object if he or she owns it."

(relation-arity possesses 2)

(domain possesses person)

(slot-value-type possesses object))

This last formulation is acceptable only for binary relations, of arity 2.
The relation names domain, and slot-value-type are derived from the
okbc knowledge model.

The assertions involving the relations can be included in a defobject

construct.

(defobject the-maltese-falcon

"the-maltese-falcon is an object possessed by George."

(instance-of the-maltese-falcon object)

(possesses george the-maltese-falcon))

There are many relations, for example, average-age, that apply to classes.
The arguments of such relations are constant symbols that represent classes.
While declaring such relations, the relevant arguments should be restricted
to be classes. This can be accomplished as follows.

8 SUPPORT FOR KIF/OKBC USERS 92

(defrelation average-age

"Average age of the members of a collection of objects’’

(relation-arity average-age 2)

(nth-domain-subclass-of average-age 1 physical-object)

(nth-domain average-age 2 integer))

The relation name nth-domain-subclass-of restricts the first argument
to only those constant symbols that represent classes that are subclasses
of physical-object. The relation names range-subclass-of, slot-value-
type-subclass-of and domain-subclass-of may also be used.

To support the implementation of the type restriction when the arguments
of a relation are restricted to the constant symbols representing classes, for
every kif+c class, we automatically declare a class of subclasses of that
class. For example, because we have declared a class person, we declare
subclass-of-person as a class as well. Every subclass-of person will
be an instance-of subclass-of-person. Internally, snark reduces the
nth-domain-subclass-of restriction to an nth-domain restriction on class
of subclasses. For example,

(nth-domain-subclass-of average-age 1 physical-object)

is internally represented as

(nth-domain average-age 1 subclass-of-physical-object)

The objective of declaring the class of all subclasses was to take advantage
of the sort system in snark to deal with meta-classes. The sort names such as
subclass-of-person are not meant to be visible to the user, and are outside
the scope of kif+c. It is, however, possible to use them while writing axioms.
For example, snark will recognize ?subclass-of-person as a variable of
sort subclass-of-person. Quantification over classes is not a well explored
area for kif+c and is open for future research.

Any of the keyword arguments accepted by the snark relation declara-
tions can be supplied through kif+c. For example, the following snark

declaration

(declare-function-symbol ’mother 1

:rewrite-code ’mother-rewriter)

8 SUPPORT FOR KIF/OKBC USERS 93

can be written in kif+c as follows:

(deffunction mother

(function-arity mother 1)

(rewrite-code mother mother-rewriter))

The snark keyword arguments are recognized as kif+c relation names.

8.2.4 Declaring Functions

Kif function declarations are similar to the relation declarations. For exam-
ple, suppose we want to declare the function mother, which takes a person

as its argument and yields a woman as its value. Then we may use the kif

construct deffunction, which is analogous to defrelation:

(deffunction mother

"the mother of a person."

(function-arity mother 1)

(nth-domain mother 1 person)

(range mother woman)

(parent (mother ?person) ?person))

8.2.5 Declaring Assertions

The assertion declaration is an extension to kif, included to allow one to
make snark assertions with kif syntax, outside of declarations. Assertions
may be given a name and a documentation string. For example, to say that
everyone has at most one spouse (at a given time), we can make the assertion

(assertion

(forall ((?x1 person)

(?x2 person)

(?x person))

(=>

(and (spouse ?x ?x1)

(spouse ?x ?x2))

(= ?x1 ?x2)))

:name uniqueness-of-spouse

:documentation

"A person may have only one spouse at a time.")

8 SUPPORT FOR KIF/OKBC USERS 94

Note that snark accepts kif syntax for logical symbols, such as => in-
stead of implies. Also note that kif does not have the convention that
?person1 is a variable of sort person, say. Therefore we have spelled out
explicitly the sort of each variable:

(forall ((?x1 person)

(?x2 person)

(?x person)) ...)

Snark allows automatic coercion of variable types. For example, if the
above assertion were written as

(assertion

(=>

(and (spouse ?x ?x1)

(spouse ?x ?x2))

(= ?x1 ?x2))

:name uniqueness-of-spouse

:documentation

"A person may have only one spouse at a time.")

and the arguments of spouse were declared to be of type person, snark

could automatically coerce ?x, ?x1, and ?x2 to be of types person. To enable
such automatic sort coercion, one select the option use-well-sorting.

The uniqueness-of-spouse axiom can also be written as

(assertion

(=>

(and (person ?x)

(person ?x1)

(person ?x2)

(spouse ?x ?x1)

(spouse ?x ?x2))

(equal ?x1 ?x2))

:name uniqueness-of-spouse

:documentation

"A person may have only one spouse at a time.")

8 SUPPORT FOR KIF/OKBC USERS 95

Exercise: Uniqueness of Mothers-in-law. Within the kif extension
of snark introduce a relation mother-in-law. Using your definition and
the kif family theory introduced in this section, use snark to prove that
everyone has at most one mother-in-law.

Solution. The definition of a mother-in-law is given within the kif

declaration

(defrelation mother-in-law

"?x1 is the mother-in-law of ?x2

if ?x1 is the mother of the spouse of ?x2."

(relation-arity mother-in-law 2)

(domains mother-in-law person person)

(forall ((?x1 person)

(?x2 person)

(?x person))

(<=>

(mother-in-law ?x1 ?x2)

(exists ((?x person))

(and

(spouse ?x1 ?x)

(equal ?x2 (mother ?x)))))))

To prove the uniqueness of the mother-in-law, we give snark the task

(prove ’(forall ((?x1 person)

(?x2 person)

(?x person))

(=>

(and

(mother-in-law ?x ?x1)

(mother-in-law ?x ?x2))

(equal ?x1 ?x2))))

8.3 Relationship of kif+c with snark

It is helpful to consider the equivalence between the kif+c constructs and
the native snark constructs.

8 SUPPORT FOR KIF/OKBC USERS 96

In both snark and kif the same function and relation symbol may occur
with different arities. However, in snark there is no assumption that the
meaning of a symbol with arity 2, say, has any relation at all to the meaning
of the same symbol with arity 3. In kif, on the other hand, the assumption
is that if the same symbol occurs with varying arity, all those occurrences
stand for the same function, and the function itself has variable arity.

For example, in snark we could introduce a unary function minus and
a binary function minus, without the idea that both of these are instances
of the same function. In kif, we would need to represent these functions by
different symbols. If we talk about plus with two arguments in one place
and three arguments in another in kif, it is understood that these are the
same function.

Kif has two directions of implication connective, => and <=, analogous to
the snark implies and implied-by. However, while the snark connectives
accept exactly two arguments, the kif connectives accept two or more. The
kif

(=> <Form1> ... <Formn> <Form>)

is equivalent to the snark

(implies (and <Form1> ... <Formn>) <Form>)

and the kif

(<= <Form> <Form1> ... <Formn>)

is equivalent to the snark

(implied-by <Form> (and <Form1> ... <Formn>))

The declaration

(defrelation person

(class person))

makes the following declarations in snark

• the sort person.

• a constant person, which stands for the set of all people.

8 SUPPORT FOR KIF/OKBC USERS 97

• a unary predicate symbol person, which stands for the relation that is
true for people and false for other entities.

Thus the kif class declaration has more effects than the simple snark

declaration

(declare-sort ’person).

The following declaration

(defrelation possesses

"a ?person possesses an ?object if he or she owns it."

(relation-arity possesses 2)

(nth-domain possesses 1 person)

(nth-domain possesses 2 object)

is equivalent to the snark declaration

(declare-predicate-symbol ’possesses 2

:sort ’(boolean person object))

8.4 Built-in Number Sorts

Snark has some built-in sorts of numbers. The number sorts in snark

are based on the ansi kif specification. Snark recognizes the following
number sorts: number, complex, real, rational, integer, natural, zero,
positive, negative, odd, and even. The sort number is declared to be
a subsort of complex, real a subsort of complex, rational a subsort of
real, and integer a subsort of rational. The sort real is partitioned into
three disjoint subsorts: negative, zero, and positive. The sort integeris
partitioned into even and odd, with zero included as a subsort of even. The
sort natural comprises the nonnegative integers. To enable the automatic
declaration of these number sorts, one must select the option use-number-
sorts.

Snark’s number sorts are based on those of kif, which are based in turn
on common lisp’s number types.

8 SUPPORT FOR KIF/OKBC USERS 98

Acknowledgment of Support

The research reported here has been partly supported by DARPA under
Contracts N66001-97-C-8550 (HPKB) and N66001-97-8551-00-SC-01, Sub-
contract PSRW-97-8551-00-SC-01 (Genoa).

REFERENCES 99

References

[Allen] J. F. Allen, Time and Time Again: The Many Ways to
Represent Time, International Journal of Intelligent Sys-
tems, Vol. 6, No. 4 (July 1991), pp. 341–355.

[Burckert] H.-J. Bürckert, A Resolution Principle for a Logic with Re-
stricted Quantifiers, Lecture Notes in Artificial Intelligence
No. 568, Springer Verlag, Berlin (1991).

[Chang] C. L. Chang and R. C. T. Lee, Symbolic Logic and Me-
chanical Theorem Proving, Academic Press, New York, NY
(1973).

[Chaudhri] V. K. Chaudhri, A. Farquhar, et al., Okbc: A Pro-
grammatic Foundation for Knowledge Base Interoperabil-
ity, Proceedings of the AAAI-98, Madison, WI (1998).

[Dershowitz] N. Dershowitz and J.-P. Jouannaud, “Rewrite Systems,” in
J. van Leeuwen (editor), Handbook of Theoretic Computer
Science, Elsevier, Amsterdam, The Netherlands (1989), pp.
241–320.

[Genesereth] M. R. Genesereth and R. E. Fikes, Knowledge Inter-
change Format, Version 3.0 Reference Manual, (Logic-92-
1) (1992).

[Graham] P. Graham, ansi Common Lisp, Prentice Hall, Englewood
Cliffs, NJ (1996).

[Lenat] D. Lenat and R. V. Guha, Building Large Knowledge Based
Systems, Addison-Wesley, Reading, MA (1990). See also
http://www.cyc.com.

[Cyc-UL] D. Lenat, Cyc Upper Ontology, See

http://www.cyc.com/cyc-2-1/index.html

[McCune] W. McCune, Otter 3.0 User’s Guide, Technical

Report ANL-94/6, Argonne National Laboratory,

Argonne, IL (1994).

REFERENCES 100

[Manna] Z. Manna and R. Waldinger, Deductive Foundations

of Computer Programming, Addison-Wesley,

Reading, MA (1993).

[Waldinger] Z. Manna and R. Waldinger, ‘‘Fundamentals of

Deductive Program Synthesis,’’ IEEE Transactions

on Software Engineering, Vol. 18, No. 8 (August

1992), pp. 674--704.

[Pitman] K. Pitman, Common Lisp HyperSpec, Harlequin

Group, Cambridge, UK (1996).

