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     This paper addresses the issue of predicting where a boosting threat missile 
will be several minutes in the future. The prediction issue is important for missile 

defense because it can be a key factor in determining how heavy an 
exoatmospheric interceptor has to be. Simplified examples are presented 

comparing the effectiveness of two prediction methods in terms of accuracy and 

robustness. Finally the prediction methods are evaluated in an end-to-end 
engagement simulation to see how they influence the lateral divert requirements 

of a kill vehicle. 

 

Introduction 

 
     Intercepting ballistic missiles in their boost-phase has long been viewed as an 

attractive option because ballistic missiles are easy to detect and track in their boost 

phase and, if the intercept is successful; the entire missile payload is destroyed or 

diverted in a single shot, thus thinning the raid size for subsequent missile defense 

layers. In addition, decoys and other countermeasures generally are more difficult to 

devise for boosting missiles compared to warheads in their midcourse phase of flight. 

However, the primary difficulty for boost-phase ballistic missile defense (BMD) is 

the need to be close enough to the target to destroy it in the short amount of time 

available (60-300 seconds, depending on the ballistic missile’s range, minus the time 

required to detect the missile launch and track the booster with sufficient accuracy to 

engage it). 

     Airborne platforms have distinct advantages for boost-phase defense (as well as 

some  
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liabilities). Being mobile, airborne boost-phase interceptors can be deployed rapidly 

and  

flexibly to a theater of conflict and their deployment can be scaled to match the threat. 

To some extent, the limited carrying capacity of airborne platforms is compensated 

for by the fact that airborne interceptors can be smaller than surface- based 

interceptors because  

they experience less drag during fly out and they may get an initial boost from the 

aircraft’s speed at the time of interceptor launch. 
     In order to fire an interceptor at a boosting target we must first make a prediction 

of where the target will be in the future. Generally we desire to lead the target so that 

if the interceptor is at a velocity disadvantage it will still be kinematically possible to 

reach the intercept point. The amount of error there is in the predicted intercept point 

or PIP is known as the PIP error. It is believed that the larger the PIP error, the more 

divert fuel will be required by the kill vehicle portion of the interceptor to take out the 

error and hit the target. Large divert fuel requirements for the kill vehicle will result in 

a heavier kill vehicle which in turn will result in a heavier and more expensive 

interceptor. The size of the PIP error can be one of the major considerations in 

determining the weight of the kill vehicle. Thus from a system point of view, it 

appears that methods for significantly reducing the PIP error can be very important. In 

this paper two possible methods for  

determining the PIP will be evaluated and compared against three different types of 

boosting targets in terms of the resultant PIP error. The three targets considered are a 

one-stage liquid propellant intermediate range ballistic missile (IRBM), a two-stage 

liquid propellant intercontinental ballistic missile (ICBM) and a three-stage solid 

propellant ICBM. 

     Design is an iterative process. The comparisons done in this paper are performed 

without considering the effects of measurement noise on the prediction errors. This 

assumption is made to make it easier to understand the advantages of one prediction 

method over another. Future iterations in the design process must consider the 

influence of the measurement noise on the state estimates. 
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Possible Prediction Methods 

 

      A physics based method of prediction for a boosting target can be based on a 

constant thrust model. With a constant thrust and time varying weight (due to 

propellant consumption during the boost phase) we can find the derivative of the 

boosting target’s thrust to weight ratio as 
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where T is the thrust and W is the weight in the English system of units. Recall that 

the specific impulse of the rocket’s fuel ISP, in units of seconds, is defined as 
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˙ W  is the rate of change of the weight. Substitution of the preceding expression 

into the equation for the derivative of thrust to weight ratio yields a version of the 

rocket equation or 
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     Since thrust divided by weight is the boosting target’s acceleration aT in units of g, 

we can say that 

! 

˙ a T =
aT

2

gISP
 

The preceding differential equation is integrated forward from the current time to the 

desired intercept time at each guidance update. In addition, to finding the acceleration 

magnitude of the target, it is also required to assume a direction of the booster’s 

acceleration vector. A common assumption is that the target always flies a gravity 

turn1. Then at each instant of time the differential equations for the acceleration 

components of the booster in an Earth-centered coordinate system are given by 

! 
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( ˙ x 2 + ˙ y 2).5  
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where gm is the universal gravitational constant. The first term in the preceding 

differential equations is due to gravity and the second term is the gravity turn portion 

of the boosting target’s acceleration. The preceding differential equations are 

integrated twice to get the future location (xF, yF) of the target and to monitor the 

acceleration magnitude aT.  If the acceleration magnitude exceeds the assumed 

maximum acceleration limit of the booster aMAX, then the differential equations are 

reinitialized with aT being set to minimum acceleration capability of the booster aMIN. 

If time exceeds the estimated burn time of the booster we assume that the booster is in 

it’s ballistic phase of flight where aT=0. Thus to implement the gravity turn prediction 

method we need to have a priori estimates of the booster’s fuel specific impulse, the 

minimum and maximum acceleration capabilities of the booster and the booster 

burnout time. 

     Another way of predicting the future location of a boosting target is to use a simple 

three-term Taylor series expansion based on the current position, velocity and 

acceleration of the target. Using this method, the future location of the target (xF, yF) 

is given by 

! 

xF = x + ˙ x tgo + 0.5˙ ̇ x tgo
2  

! 

yF = y + ˙ y tgo + 0.5˙ ̇ y tgo
2  

where tgo is the time to go from the desired intercept time to the current time. The 

Taylor series method makes no a priori assumptions concerning the booster 

characteristics or it’s method of guidance.  

 

How Long-Range Boosters Fly 

 

     In order for a booster to hit it’s intended target it must have a feedback method of 

control, as do all guided missiles.  Long-range liquid fueled rockets, where the 

booster portion can thrust terminate, usually employ some form of Lambert guidance 

while solid fueled rockets that do not have a thrust termination system and must 

consume all of their fuel, usually employ some form of General Energy Management 

(GEM) guidance. It is common practice for the these solid propellant long-range 

rockets to fly straight up for a period of time in order to get out of the atmosphere as 

quickly as possible and then, while still in the atmosphere, perform a gravity turn type 

of maneuver in order to reduce the resultant drag and loading effects. Only after the 
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dynamic pressure reduces to a certain level (i.e., booster design dependent and 

different for each type of rocket) does Lambert or GEM guidance begin.  In this paper 

the gravity turn and Taylor series methods of prediction will be compared for a one-

stage IRBM, a two-stage liquid-fueled ICBM, and a three-stage solid-fueled ICBM. 

     Both Lambert and GEM guidance involve the numerical solution to Lambert’s 

problem3,4. Essentially, at each instant of time if you know where you are and where 

you want to go and how long it should take you to get to your destination, the solution 

to Lambert’s problem tells you the magnitude and direction of the required velocity 

vector. If, in two dimensions, the solution to Lambert’s problem yields a velocity 

solution VLAMx and VLAMy we compute a velocity to be gained which is the difference 

between the Lambert solution and our instantaneous velocity (Vx, Vy)or 

! 

"Vx = VLAMx # Vx  

! 

"Vy = VLAMy # Vy  

The total velocity to be gained ΔV can be found from 

! 

"V = "Vx
2 + "Vy

2  

     With Lambert guidance we attempt to align the booster’s thrust vector with the 

velocity to be gained vector yielding acceleration components as 

! 

ax =
"gm  x

(x2 + y 2)1.5 + aT
#Vx
#V

 

! 

ay =
"gm  y

(x2 + y 2)1.5 + aT
#Vy
#V

 

With GEM guidance all of the fuel must be consumed and so excess energy is wasted 

in a circular arc. Detains of both Lambert and GEM guidance can be found in Ref. 5. 

  

One-Stage IRBM 
 

     Figure 1 displays the longitudinal acceleration of a generic one-stage IRBM with a 

burn time o 168 s. The IRBM is capable of traveling more than 3000 km. We can see 

that the initial IRBM acceleration starts out at approximately 1.5 g and increases 

parabolically to a maximum of approximately 13 g. The specific impulse of the fuel is 

273 s. 
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Figure 1 One-stage IRBM acceleration 

 
     For academic purposes let us see what happens if the IRBM flies a gravity turn all 

the way through it’s boost phase. In this case, where the IRBM lands depends on it’s 

initial kick angle (angle between horizontal and velocity vector) and many other 

practical considerations. However, for now, we will ignore the other practical 

considerations and assume that the IRBM goes straight up for 10 s and then performs 

a gravity turn with an initial kick angle of 89.8 deg. The resultant one-stage IRBM 

trajectory is shown in Fig. 2. We can see that for the chosen kick angle the IRBM 

travels nearly 900 km with a trajectory apogee of approximately 1300 km. Different 

initial kick angles will yield vastly different trajectories. 
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Figure 2 One-stage IRBM Trajectory performing only a gravity turn 
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     Figure 2 presents the boost phase portion of the IRBM trajectory with 10 s time 

tics. The 170 s time tic is 2 s after the end of the boost phase and the 100 s time is a 

reference point. 
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Figure 3 Boost phase portion of one-stage IRBM trajectory performing only a gravity 

turn 
 

     Consider the case in which the single-stage IRBM goes straight up for 10 s and 

then performs a gravity turn for the remainder of the boost phase. Figure 4 compares 

both prediction methods in terms of the PIP error for a case in which we are 

predicting where the booster will be in 160 s. We can see from Fig. 4 that the Taylor 

series method yields approximately 100 km of prediction error at the beginning of 

flight. The Taylor series prediction error decreases as time increases (or tgo decreases). 

On the other hand, the gravity turn prediction method yields zero PIP error after 10 s 

(after target goes straight up). In this case the gravity turn prediction method is perfect 

because the target is actually performing a gravity turn and it is assumed that the fuel 

specific impulse and target burnout times are known precisely. 
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Figure 4 Gravity turn assumption yields smaller PIP errors if one-stage IRBM is 

actually performing a gravity turn all during boost phase 
 

     The dynamic pressure Q, in lb/ft2, is given by 

! 

Q = 0.5"V 2  

where V is the booster’s velocity in ft/s and ρ is air density in slug/ft3. In the English 

system of units air density ρ can be approximated by 

! 

" = 0.0034e# alt / 22000  

where alt is the booster altitude in ft. 

     The dynamic pressure as a function of altitude for the IRBM performing a gravity 

turn appears in Fig. 4. If we assume that IRBM guidance cannot begin until the 

dynamic pressure drops below 600 lb/ft2 (i.e., actual number depends on booster 

design) then we can say that for this example closed-loop guidance can not begin until 

65 s after the IRBM takes off. 

144



700

600

500

400

300

200

100

0

6050403020100
Altitude (km)

One-Stage IRBM
Gravity Turn Only

89.8 deg Kick Angle
5 s Time Tics

65 s

 
Figure 5 Dynamic pressure drops below 600 lb/ft2 at 14 km altitude or 65 s after 

IRBM takes off 
 

 
     Another case was run in which the IRBM went straight up for 10 s, performed a 

gravity turn until 65 s after launch and then switched to Lambert guidance so that it 

would hit an impact point 2000 km downrange. The entire IRBM trajectory is 

depicted in Fig. 6 and the boost phase portion of the trajectory, with 10 s time tics, 

appears in Fig. 7. We can see that the boost phase portion of the trajectory differs 

considerably from the all gravity turn boost phase trajectory of Fig. 3. 
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Figure 6 One-stage IRBM trajectory due to performing a gravity turn and then 

Lambert guidance 
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Figure 7 Boost phase portion of one-stage IRBM trajectory performing a gravity turn 

and then Lambert guidance 
 

     The PIP errors for the Taylor series and gravity turn methods of prediction are 

compared in Fig. 8. As was mentioned before, the actual specific impulse of the fuel 

is 273 s. For the gravity turn method of prediction we assume that we lack knowledge 

of the fuel specific impulse and consider using 200 s and 300 s (i.e., practical bounds) 

for our estimates. Here we can see that the gravity turn method yield smaller PIP 

errors for the first 65 s when the IRBM is actually flying a gravity turn. For the next 

10 s the Taylor series method yields smaller PIP errors (when the IRBM is flying 

Lambert guidance) and then for the remainder of the flight the gravity turn method 

yields smaller PIP errors. After 65 s, the gravity turn method of prediction does not 

appear to be sensitive to the estimate of the fuel specific impulse. In the future we 

shall always assume the estimated fuel specific impulse to be 300 s because that 

seems to yield the smallest PIP errors. 
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Figure 8 It is better to over estimate fuel specific impulse if gravity turn prediction  

method is used 
 

     In the preceding figure it was assumed that the exact burnout time (168 s) of the 

IRBM was known in advance. Figure 9 shows that if we assume that the IRBM 

burnout time is 180 s (rather than 168 s) and we assume that the fuel specific impulse 

is 300 s (rather than 273 s), the gravity turn method still yields smaller PIP errors than 

the Taylor series method. Figure 10 shows that if we assume that the IRBM burnout 

time is 158 s (rather than 168 s) and we assume that the fuel specific impulse is 300 s 

(rather than 273 s), the gravity turn method still yields smaller PIP errors than the 

Taylor series method. 

 

140

120

100

80

60

40

20

0
160140120100806040200

Time (s)

One-Stage IRBM
Gravity Turn Until 65 s
Lambert Rest of Way

Actual Burnout at 168 s
Prediction to 170 s

Taylor Series
MethodGravity Turn

Assumption
Estimated ISP=300 s

Estimated Burnout=180 s

 
Figure 9 Gravity turn method yields smaller PIP errors than Taylor series method if 

burnout time is overestimated 
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Figure 10 Gravity turn method yields smaller PIP errors than Taylor series method if 

burnout time is underestimated 
 

     Another case was run in which it was attempted to see how robust each prediction 

method was for intentional changes in the target trajectory. Figure 11 depicts 

complete trajectories for the nominal case in which the IRBM traveled 2000 km and 

another case in which the IRBM initially guides on the 2000 km impact point but at 

100 s, changes its mind, and heads for an impact point 1000 km downrange.  
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Figure 11 Example of IRBM range-change trajectory starting at 100 s 

 
 

     We can see from Fig. 12 the gravity turn method yields smaller PIP errors than the 

Taylor series method for the first 100 s. However, at 100 s, when the destination of 

the IRBM changes, the Taylor series method yields the smallest PIP errors.  
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Figure 12 Comparison of prediction errors for range-change trajectory 

 
     In this section we have seen that for the single-stage IRBM case, the gravity turn 

prediction method generally yields smaller PIP errors than the Taylor series method. 

We have also seen that the gravity turn method is fairly insensitive to lack of 

knowledge of the IRBM’s specific impulse and burnout time. However a range-

changing trajectory appears to favor the Taylor series method of prediction. Let us 

now see what happens if the booster has multiple stages. 

 
Two-Stage ICBM 
 
     The acceleration profile of a generic two-stage, liquid-fueled ICBM, taken from 

the American Physical Society (APS) report6 on boost phase intercept and appears in 

Fig. 13. Here we can see that the first staging event ends at 120 s and reaches a peak 

acceleration of 6 g while second stage burnout occurs at 240 s with a peak 

acceleration of more than 12 g. We can see from Fig. 13 that the fuel specific 

impulses are slightly different for each stage. 
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Figure 13 Two-stage ICBM acceleration 

 
     Let us pretend that the ICBM goes straight up for 20 s and then flies a gravity turn 

for the entire boost phase with an initial kick angle of 85 deg. We can see from Fig. 

14 that the ICBM travels more than 6000 km with a trajectory apogee of 

approximately 3500 km. 

 

 
3500

3000

2500

2000

1500

1000

500

0
6000500040003000200010000

Downrange (km)

2-Stage ICBM
Gravity Turn Only
85 deg Kick Angle

 
Figure 14 Two-stage ICBM Trajectory performing only a gravity turn 

 
     Figure 15 presents the boost phase portion of the two-stage ICBM trajectory with 

10 s time tics. The 240 s time tic is the end of the boost phase and the 100 s time tic is 

for reference purposes. 
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Figure 15 Boost phase portion of 2-stage ICBM Trajectory performing only a gravity 

turn 
 

     The dynamic pressure as a function of altitude for the two-stage ICBM performing 

a gravity turn appears in Fig. 16. If we assume that ICBM guidance cannot begin until 

the dynamic pressure drops below 600 lb/ft2 (i.e., actual number depends on booster 

design) then we can say that for this example closed-loop guidance can not begin until 

65 s after the two-stage ICBM takes off. 
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Figure 16 Dynamic pressure drops below 600 lb/ft2 at 19 km altitude or 65 s after 

two-stage ICBM takes off 
 

     Another case was run in which the two-stage ICBM went straight up for 20 s, 

performed a gravity turn with an initial kick angle of 85 deg until 65 s after launch 
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and then switched to Lambert guidance so that it would hit an impact point 8000 km 

downrange. The entire ICBM trajectory is depicted in Fig. 17.  
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Figure 17 Two-stage ICBM Trajectory performing with gravity turn and Lambert 

guidance 
 

 
     The Taylor series method of prediction remains the same for the two-stage ICBM 

but the gravity turn method has to be modified for multiple stage boosters. Recall that 

the differential equation used to find the booster acceleration magnitude aT is given by 

! 

˙ a T =
aT

2

gISP
 

where ISP is the estimated fuel specific impulse. The fragment of code used to limit 

and reset the magnitude of booster acceleration is given by 

 

IF(AT>XNLIM)THEN 

 AT=ATIC 

 ATOLD=ATIC 

ELSEIF(T>TPZ)THEN 

 ATP=0. 

 ATPOLD=0. 

ENDIF 
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In the above logic AT represents the booster acceleration magnitude aT, XNLIM 

represents the maximum expected booster acceleration aMAX, and ATIC represents the 

minimum expected booster acceleration aMIN. The estimated booster burnout time is 

represented by TPZ. For multiple stage rockets XNLIM is set to 10 g and ATIC is set 

to 2 g. The estimated burnout time is set to the actual value of 240 s for this example. 

     The PIP errors for the Taylor series and gravity turn methods of prediction appear 

in Fig. 18. For the gravity turn method of prediction we assume that we lack 

knowledge of the fuel specific impulse and, based on the IRBM results of the 

previous section, assume a fuel specific impulse of 300 s for both stages (i.e. actual 

values are 277 s for first stage and 284 s for second stage). Here we can see that the 

gravity turn method yields smaller PIP errors for the first 65 s (when IRBM is actually 

performing a gravity turn) and then the Taylor series method yields smaller PIP errors 

until 110 s. After 110 s the PIP errors are slightly smaller for the gravity turn method 

and after 180 s both methods yield comparable PIP errors.  Thus the results of this 

section indicate that for the two-stage liquid-fueled ICBM both methods of prediction 

are comparable. 
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Figure 18 Gravity turn prediction method is slightly better for 2-stage ICBM when 

burn time is known 
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Three-Stage ICBM 

 
     The acceleration profile of a generic three-stage, fast burning solid-fueled ICBM, 

taken from the APS report6 appears in Fig. 19. Here we can see that the first staging 

event ends at 65 s and reaches a peak acceleration of 10 g, the second staging event 

ends at 130 s and reaches a peak acceleration of 10 g, while the third staging event 

occurs at 170 s with a peak acceleration of more than 6 g. Figure 19 indicates that the 

fuel specific impulses are slightly different for each stage. 
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Figure 19 Three-stage ICBM acceleration profile 

 
     Let us pretend that the ICBM goes straight up for 20 s and then flies a gravity turn 

with an initial kick angle of 80 deg. We can see from Fig. 20 that for the 80 deg kick 

angle the ICBM only travels 3500 km with a trajectory apogee of approximately 4500 

km. 

 

 

154



4000

3000

2000

1000

0
300025002000150010005000

Downrange (km)

3-Stage ICBM
Gravity Turn Only
80 Deg Kick Angle

 
Figure 20 Three-stage ICBM trajectory performing only a gravity turn 

 

    Figure 21 presents the boost phase portion of the ICBM trajectory with 10 s time 

tics. The 170 s time tic is the end of the boost phase and the 50 s time tic represents 

another reference point. 
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Figure 21 Boost phase portion of 3-stage ICBM Trajectory performing only a gravity 

turn 
 

     The dynamic pressure as a function of altitude for the three-stage ICBM 

performing a gravity turn appears in Fig. 22. If we assume that ICBM guidance 

cannot begin until the dynamic pressure drops below 600 lb/ft2 (i.e., actual number 

depends on booster design) then we can say that for this example closed-loop 

guidance can not begin until 50 s after the three-stage ICBM takes off. 
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Figure 22 Dynamic pressure drops below 600 lb/ft2 at 32 km altitude or 50 s after 

three-stage ICBM takes off 
 

     Another case was run in which the three-stage ICBM went straight up for 20 s, 

performed a gravity turn until 50 s after launch and then switched to GEM guidance 

so that it would hit an impact point 8000 km downrange. The entire ICBM trajectory 

is depicted in Fig. 23.  
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Figure 23 Three-stage ICBM trajectory performing with gravity turn and GEM 

guidance 
 
 

    The PIP errors for the Taylor series and gravity turn methods of prediction appear 

in Fig. 24. For the gravity turn method of prediction we assume that we lack 

knowledge of the fuel specific impulse and, based on previous results, assume a fuel 
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specific impulse of 300 s for all three stages (i.e. actual values are 266 s for first stage, 

277 s for the second stage and 279 s for the third stage). Here we can see that the 

gravity turn method yield smaller PIP errors for the first 70 s and then the Taylor 

series method yields smaller PIP errors for most of the remainder of the flight. 
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Figure 24 Taylor series prediction method is slightly better for 3-stage ICBM – even 

when burn time is known 
 

Thus for the three-stage solid-fueled propellant ICBM, where GEM guidance is used, 

the Taylor series approach to prediction appears to be superior to the gravity turn 

method 

 

Engagement Simulation Results 

 

     So far we have seen that sometimes the gravity turn method of prediction yields 

smaller PIP errors and sometimes the Taylor series method of prediction yields 

smaller PIP errors. So far the results have shown that the superiority of one method 

over the other depended on the threat and when the prediction was made relative to 

the threat launch time. In practice, one does not have to choose between the two 

methods but can develop a hybrid scheme that makes use of the best features of both 

methods. 

     To make matters even more confusing it is sometimes possible to have a case in 

which the PIP errors with one scheme are smaller but the actual divert requirements 

157



of the kill vehicle are larger. To illustrate that the PIP errors are only one of the 

contributors to the overall kill vehicle divert requirements we need an engagement 

simulation. 

     A two-dimensional, end-to-end (i.e., from target launch to intercept) engagement 

simulation was used to evaluate the effectiveness of the two different PIP calculations 

in terms of the resultant lateral divert requirements for the kill vehicle. The notional 

interceptor considered had a burnout velocity of 4 km/s that was reached 20 s after 

launch from an aircraft platform at 15 km altitude. It is assumed that the notional 

interceptor guides towards the PIP using Lambert guidance while it is burning and 

APN guidance is used by the kill vehicle for pursuing the boosting target after the 

interceptor has burned out. The simulation is deterministic and it is assumed that the 

current position, velocity and acceleration of the target are known perfectly.  

     If the only error source in the simulation was PIP error then either the proportional 

navigation (PN) guidance law or APN guidance law could be used and both would 

yield identical results. However, since the boosting target appears as a target 

maneuver to the interceptor, the APN guidance law should do better since APN 

relaxes the interceptor acceleration requirements due to a maneuvering target. If the 

interceptor under question could not do APN guidance because of lack of range 

information than the conclusions reached in this section might change. 

     Figure 25 presents an engagement geometry in which the notional interceptor is 

launched at the one-stage IRBM described earlier. The notional interceptor is 

launched 80 s after the target takes off and the desired intercept time is 160 s.  Notice 

that the interceptor trajectory using the gravity turn prediction method leads the target 

more than does the Taylor series approach trajectory.  
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Figure 25 IRBM engagement geometry for interceptors using different PIP algorithms 

 

     According to Fig. 8 the PIP error in this IRBM example, using the Taylor series 

method should be much larger than the PIP error using the gravity turn prediction 

method. Figure 26 displays the PIP error perpendicular to the line-of-sight (LOS) for 

both prediction methods. Here we can see that the magnitude of the PIP errors are 

consistent with those of Fig. 8 between 80 s (when interceptor is launched) to 100 s 

(when  the notional 4 km/s interceptor burns out). We can see that the Taylor series 

method yields substantially larger PIP errors for the case examined. 
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Figure 26 PIP errors are much larger for the Taylor series prediction algorithm 
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     Figure 27 displays the resultant kill vehicle acceleration for taking out the PIP 

error and chasing the boosting target. If the only source of error in the engagement 

simulation was PIP error we would expect to see a large acceleration when the kill 

vehicle initiates APN guidance which would then decrease as the flight progresses. 

However we can see from Fig. 27 that the acceleration increases as the flight 

progresses and only decreases near the end of the flight. This type of behavior 

indicates that the kill vehicle is responding to an apparent target maneuver induced by 

the accelerating target. As a result of this extra error source, the divert used by the 

interceptor employing the gravity turn prediction is only slightly less than the one use 

the Taylor series method.  Therefore in this particular engagement, the apparent target 

maneuver is the biggest contributor to the interceptor’s divert requirements. It is 

important to note that the divert requirements for both engagements appear to be 

small. When noise and filtering effects (i.e., target states have to be estimated based 

on sensor measurements) are considered the divert requirements can be several times 

the size indicated in the figure. 
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Figure 27 Slightly less acceleration and divert is required when gravity turn PIP 

method is used 
 

     The 2-stage ICBM example was chosen next in order to confirm the importance of 

the apparent target maneuver. Here an engagement was selected where we launch the 

notional 4 km/s interceptor with a 20 s burn time 110 s after the target takes off and 

intercept is desired at 230 s or 10 s before target burnout. Figure 28 displays two 

interceptor trajectories, each one using a different PIP algorithm. We can see that the 
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gravity turn assumption again causes the notional interceptor to lead the target more – 

thus lengthening the flight time. 
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Figure 28 Two-stage ICBM engagement geometry for interceptors using different PIP 

algorithms 
 

     Figure 29 indicates that the Taylor series method yields substantially higher PIP 

errors than the gravity turn method for the time the interceptor is launched at 110 s 

and getting up to speed at 130 s while guiding on the PIP. The PIP error numbers for 

the 110 s to 130 s time frame in Fig. 29 are consistent with those of Fig. 18. 
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Figure 29 PIP errors are much larger for the Taylor series prediction algorithm 
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     However, Fig. 30 shows that although the PIP errors for the Taylor series method 

are higher – the resultant acceleration and divert requirements are lower for the Taylor 

series approach. Again the reason for this anomaly is due to the fact that the apparent 

target maneuver due to the boosting ICBM is more important than the PIP error in this 

example. 
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Figure 30 Acceleration and divert are slightly smaller using Taylor series PIP 

algorithm even though PIP errors are much larger 
 

 

Summary 
 

     This paper compares the gravity turn and Taylor series method of predicting where 

a boosting target will be in the future. It was shown that the superiority of one method 

over the other was dependent on how many stages the threat had and whether 

Lambert or GEM guidance was used by the threat. It was shown that the gravity turn 

method of prediction causes the interceptor to lead the target by a larger amount than 

if the Taylor series method of prediction was used. The longer lead lengthens the time 

to intercept which can lead to larger divert requirements of a pursuing interceptor 

because of the apparent target maneuver of the boosting target. Under these 

circumstances it is possible that a prediction method which yields smaller PIP errors 

may in fact yield larger interceptor divert requirements. 
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