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Abstract

In a cyber war game where a network is fully distributed and characterized by resource con-
straints and high dynamics, attackers or defenders often face a situation that may require
optimal strategies to win the game with minimum effort. Given the system goal states of
attackers and defenders, we study what strategies attackers or defenders can take to reach
their respective system goal state (i.e., winning system state) with minimum resource con-
sumption. However, due to the dynamics of a network caused by a node’s mobility, failure
or its resource depletion over time or action(s), this optimization problem becomes NP-com-
plete. We propose two heuristic strategies in a greedy manner based on a node’s two char-
acteristics: resource level and influence based on k-hop reachability. We analyze
complexity and optimality of each algorithm compared to optimal solutions for a small-scale
static network. Further, we conduct a comprehensive experimental study for a large-scale
temporal network to investigate best strategies, given a different environmental setting of
network temporality and density. We demonstrate the performance of each strategy under
various scenarios of attacker/defender strategies in terms of win probability, resource con-
sumption, and system vulnerability.

Introduction

Many natural and man-made systems can be modeled as complex networks consisting of
nodes and links representing the interactions between nodes [1, 2]. One of the most important
property of a network is robustness against random failures and target attacks [3-7], measured
by the giant connected component size after perturbations. The percolation threshold is the
fraction of non-removed nodes (or links) leading to the collapse of the network [1, 4], which is
often predicted by using percolation theory, a method from statistical physics [1, 8]. Increasing
evidence shows that networks interact to each other, resulting in a new research area on inter-
dependent networks [9, 10], interconnected networks [11], multiplex [12], multilayer networks
[13], and a network of networks [14, 15]. Indeed, these systems can not only model interactions
between different networks, but also consider a temporal network [16] in which a network
topology changes over time. Understanding vulnerability of these systems helps design interde-
pendent robust infrastructures.
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Unlike engineering systems, vulnerability of temporal, mobile networks can be modeled as
the cyber games where the attackers intend to compromise users and and the defenders will
recover the compromised users to healthy state under the nodes’ resource restriction such as
battery life, computational power, and/or the network’s limited bandwidth [17]. Furthermore,
an entity often requires decision making based on local information in a fully distributed way
and aims to take optimal strategies to maximize resource efficiency (e.g., complete a task with
minimum effort) when achieving respective goals. For instance, an attacker compromises more
healthy nodes to disrupt a system while a defender recovers compromised nodes to secure the
system. Although many existing approaches consider cyber war games by proposing optimal
strategies of attackers and defenders [17-20], they do not consider optimal strategies with min-
imum resource consumption in temporal networks.

An attacker-defender cyber game has been explored with various approaches such as game
theory [18] or cognitive theory [20]. Zhu and Martinez [18] model a cyber game using a two-
level Stackelberg game (leader-follower) to consider a node’s inherent resource constraints in
discrete-time, linear time-invariant networks. Recently, Ben-Asher and Gonzalez [20] propose
a decision making framework using an instance-based learning technique considering dynam-
ics of a cyber war where multiple attackers and defenders play to maximize their utility. In dis-
tributed cyberspaces, however, a network suffers from resource constraints and faces high
dynamics under varying network temporality and density. In this work, we question a funda-
mental problem: how does the network temporality affect the performance of attackers or
defenders in a cyber war game under resource-constrained, distributed network environments?

To answer this question, we aim to identify optimal strategies of attackers or defenders that
allow a winning in a cyber game with minimum resource consumption in a time-varying, dis-
tributed network. In this environment, each node has a limited resource and its resource level
is updated over time or upon taking actions. Due to the distributed nature of a network, a node
may use local information to make decisions and often can take actions towards its adjacent
nodes. That is, attackers or defenders may select a node to compromise or recover among their
adjacent nodes, respectively. Considering these challenges derived from the unique characteris-
tics of a given network environment, this optimization problem is not solvable in a polynomial
time and known as a NP-complete problem. This work has the following unique contributions:

1. We consider resource efficiency of cyber strategies taken by attackers or defenders in a
resource-constrained, distributed network environment where each attacker or defender
can make a decision based on local information without the knowledge of global network
(e.g., network topology) and node information (e.g., remaining energy).

2. We consider a time-varying network such as structural and state dynamics and study how
they affect the optimal strategies. Structural dynamic refers to network topology changes
that may be caused by node mobility or failure or terrains while state dynamic means
resource depletion over time or upon action(s). To consider structural dynamics, we intro-
duce a new influence metric called k-hop influence based on the concept of k-hop reachabil-
ity. For state dynamics, we consider dynamic adjustment of each node’s status. Both
dynamics affect decisions by attackers or defenders to reach their respective system goal
state.

3. We conduct comprehensive performance analysis of the proposed strategies by attackers or
defenders which studies the impact of network temporality and density on our performance
metrics such as a win probability, minimum resource consumption, and system
vulnerability.
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System Model

In this section, we explain our network model, node model, and system failure condition con-
sidered in this work.

Network Model

We consider a temporal network whose topology changes over time. In our model, at an initial
time we generate a random arbitrary network using a given degree distribution. Every time
step we randomly select p fraction of link and rewire the nodes between these links randomly.
When p = 0, the network is static; when p = 1, we generate a new random network independent
from the previous step. In addition, nodes’ resource level depletes with more actions and over
time. Given a network with a directed graph G(¢) = (V, £(¢) : W(t)) at time step ¢, V(¢) is a
set of vertices, representing nodes (or entities) and £(¢) is a set of edges, representing connec-
tivity between two vertices. Depending on the existence of an edge between two nodes, i and j,
the weight w;(f) can be in W(t), i.e., w,(t) € W(t).

A given network environment is characterized by: (1) it is highly distributed where each
node can communicate with or take an action towards its adjacent node(s); (2) it is severely
resource-constrained where a node may drain its resource (i.e., battery life or reliability) over
time to maintain normal operations even without interacting with other nodes or may con-
sume resource when it takes an action towards any adjacent node; and (3) it is time-varying,
dynamic in terms of network temporality (i.e., changing network topology) and remaining
resource level of nodes.

We use epidemic spreading based on susceptible-infected-removed (SIR) model [6, 21] to
describe attackers’ compromising behaviors and defenders’ recovering behaviors. If a node is
recovered from being compromised, it is immune to the attack. Thus, in terms of a node’s life-
time except original attackers or defenders seeded in the network deployment, a user node only
experiences one time to be compromised by attackers or recovered by defenders. A network is
initialized with three types of players including attackers, defenders, and users based on their
state (see Fig 1). We assume that a node is equipped with a host-based intrusion detection
mechanism [22], characterized by probabilities of false positives and false negatives, denoted as
Py, and Py, respectively. Each node i is capable of extrapolating neighboring nodes j’s resource
level based on their activities and signal strength. For each node to be aware of partial or com-
plete network topology, a node broadcasts its neighbor information to the network. Obtaining

Quarantined by OD/UD Compromised by OA / UA Recovered by OD / UD

Resource exhausted

Fig 1. Composition of nodes and their dynamic status. OA for original attackers, Q for quarantined original attackers, OU for original users which have
never compromised or recovered before, UA for compromised users becoming attackers, UD for recovered users becoming defenders, OD for original
defenders, and RE for resource exhausted. All nodes except the quarantined attackers are regarded as legitimate member nodes and can become resource-
exhausted, resulting in non-legitimate members. Where N = |C(t)| + |D(t)| + |A(t)| + |ZA(t)|, we can derive D(t) = OD(t) U UD(t), C(t) = OA(t) U UA(t),
A(t) = U(t), and ZA(t) = Q(t) URE(t) attime t > 0.

doi:10.1371/journal.pone.0148674.g001
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a global network topology requires all nodes’ neighboring information which is heavily expen-
sive in resource-constrained environments (e.g., wireless mobile networks). To mitigate this
overhead, we introduce the concept of k-hop reachability, by limiting the geographic area of
disseminating information of adjacent nodes.

We consider two types of dynamics associated with a node’s characteristics in terms of
structural dynamic and state dynamic as follows:

1. Structural dynamic is reflected based on a node’s temporal location in a network, related to
the work on network of networks [23-25]. We investigate a node’s influence based on the
concept of k-hop reachability [26] in a given time-varying network and employ it as criteria
for an attacker’s or defender’s decision to select a node to take an action (i.e., compromising
or recovering a node). We explain the computation of a node’s influence in Eq (3) below.

2. State dynamic is considered in terms of a node’s resource level representing battery life and/
or reliability. Structural and state dynamics may evolve at the same time [27-29]. The struc-
tural and state dynamics are interwoven and affect to each other, the so called dynamics of
mutualistic interactions [27]. For example, species abundance affects network rewiring
while network structure determines the species abundance. In addition, the coevolution of
state and structural dynamics leads to the nestedness of real mutualistic networks [28].
Other examples can be observed in a collective motion of self-propelled particle systems
[28] or a network of self-propelled agent systems [29]. In our work, a network topology par-
tially relies on state dynamic while the state dynamic fully depends on structural dynamic.

Node Model

Recall that a given cyber war game is played by attackers, defenders, and users. When an
attacker compromises a user, the user is compromised and becomes an attacker who is capable
of attacking another healthy user (i.e., a node which has not compromised in the past). Unless
the compromised user is recovered by a defender, it remains as compromised. A defender is a
node with the capability to recover a compromised user or to quarantine an original attacker. If
a compromised user is recovered by the defender, it is immune to the attack such as SIR [6, 30—
32]. If the recovered node is an original attacker, it is quarantined and cannot perform any
attack while it does not have a capability to recover another node. The defender is robust
against attacks and will never be compromised by an attacker in which the defenders are
trusted entities. Winning a given cyber war depends on whether or not attackers or defenders
reach their system goal state, respectively.

Given an initial number of nodes V in a network, the network has the following four types
of nodes at time ¢ based on their state:

1. Compromised nodes (C()) include original attackers or compromised users;
2. Healthy active user nodes (\A(¢)) are users who have never compromised in the past;
3. Defenders (D(t)) indicate original defenders or recovered users; and

4. Inactive nodes (ZA(t)) are dead nodes due to lack of resources or original attackers being
quarantined.

The total number of nodes initially given A can be derived as
N =|C(t)| + |D(t)| + | A(t)| + |ZA(t)|. We summarize the network node composition and
dynamic status of nodes in Fig 1.
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In a given network, a certain fraction of nodes are compromised by outside attacker(s). We
study how quickly attackers or defenders reach their respective goal state from the initial state
as shown in Fig 1. As time elapses, the compromised nodes start compromising other legiti-
mate member nodes based on their attack strategy to reach the system failure state based on
System Failure Condition (SFC) (see a next subsection, System Failure Condition). We discuss
attacker and defender strategies in Section Attacker and Defender Strategies later. As some
nodes become compromised, defenders detect them and start performing the recovery process
of compromised nodes to prevent or mitigate system failure by eliminating all compromised
nodes from the system.

Next we represent the characteristics of a node as a vector by:

vilt) = [r(8), (), i ()] (1)

where ,(t) is node i’s resource level at time ¢ and d'%)(¢) and d'%), (¢) indicate the in-degree and

i,out
out-degree of node i within k-hop distance from itself at time t, respectively. The out-degree of
node i with a given k indicates the concept of reachability, i.e., how many nodes are reachable
from node i in a network. The in-degree of node i with k-hop distance means how many nodes
can reach node i within k-hop distance. We use k-hop reachability [26] to mitigate the compu-
tation or communication overhead to exchange neighbors information. We use the k-hop dis-
tance in-degree and out-degree of node i to calculate its influence in the network.

Each node disseminates adjacent nodes information in order to provide a global view of the
network. To mitigate high communication overhead, it disseminates neighbors information
within a k-hop distance. Given an adjacency matrix, W(t), for a directed graph
G(t) = (V(t), £(t)), matrix L™(£) consists of elements Ii(t) with a binary value 0 or 1 repre-
senting that node j is reachable from node i within k-hop distance. L(t) is computed based on
the shortest path algorithm for a directed graph considered [33].

Based on L®(¢) calculated above, let D®(¢) be a 2 x n matrix for the in-degree and out-
degree of n number of nodes based on k-hop distance. D®)(#) is denoted as each element with

d) (t) and ¥, (t), which are calculated based on L™ (#) with elements Ii(t) for all i and j by:

iout

dn =3 Eo.d0= 3 Ko @)

i1k i1k 5
Jfl‘lijyﬁoc jflﬁlji#oo

The degree of a node’s influence is used as one of criteria attackers or defenders take actions
to minimize the accumulated resource consumption until they reach the respective system goal
state. A node’s influence is calculated by:

Ik(t) _ i,out(t) (3)

I¥(t) implies a node’s influence over other nodes in a network with a given k-hop distance com-
pared to other nodes’ influence over the node itself. A node with high influence, I¥(t), means
that the node has high influence over others while it is not much influenced by other nodes.
For simplicity, we did not include time unit ¢ in the equations above but the influence may be
affected by the dynamics of a network topology which was examined in the simulation experi-
ments by varying network temporality.

We consider the state r,(t) of a node i changes over time according to its incoming neighbor-
ing nodes, strategy chosen, and whether an action is taken or not. r(t) is i’s remaining resource
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level at time ¢. Based on e;() above, node i’s remaining resource level, r(t), is updated as:
r(t—1) — o —e[(¢t) if i takes an action;
r(t) = . (4)
r(t—1)—o otherwise
where r;(t = 0) for all i’s is randomly selected as a real number ranged in [0.5, 1] based on uni-

form distribution and its resource level, r,(t), decreases over time. o denotes a decay of resource
over time to maintain its normal operation, ranged in [0, 1] as a real number. e;(#) is defined as:

ar,(t)
! if i selects j to take an action;
e(t) = q rit) (5)
0 otherwise

e;(t) counts the cost only when node i chooses node j to take an action; 0 otherwise. The above
implies that when node j has a high resource level, an attacker or a defender needs to consume
more resource to take an action towards node j. A is a constant parameter to adjust the speed of
the resource consumption per action. e;(f) implies node i consumes more resource to take an
action towards node j with higher resource level. Note that node i takes an action only when
ri(t—1) — 0 —e;(t)>0.

When node i selects node j to take an action, node 7’s action is effective towards node j with
a probability by:

. [ri(t)
sﬁ(t) = min [r,(—t) , 1] (6)
s;;(t) implies that when node j has high resource, node i’s action is less likely to be effective,
vice-versa.

When r,(f) = 0, it means node i dies due to the lack of resource. This node is not part of legit-
imate members in the network, and accordingly the total number of active nodes at time t,
N (t), decreases. Z.A(t) increments as more inactive nodes exist in the network. In this work,
each attacker or defender can compromise or recover one adjacent node at a time, not allowing
actions towards multiple nodes simultaneously.

System Failure Condition

The goal of attackers is to reach the system state to failure. To model the attackers’ target state
based on the system failure state, we define the system failure condition (SFC) in terms of the
loss of two system security goals: (1) loss of integrity based on the concept of Byzantine Failure
[34] where the system fails with too many compromised entities (e.g., the system with more
than one-third of participating entities being compromised), leading to increased attack sever-
ity due to collusive attack; and (2) loss of availability based on the fact that the system does not
have a sufficient number of healthy, active nodes for mission execution. Some nodes may die
due to lack of resources while other nodes may be compromised due to node capture attack by
attackers. Therefore, the SFC is defined by:

. [C(H)] C(6)| + |ZA(®)]
1if > >
sFc={ " N(t)—pl\/ N =P (7)
0 otherwise;
where |C(t)] is the total number of compromised nodes at time ¢, N(t) refers to the number of

active nodes at time ¢ regardless of their status, either compromised or healthy. |C(¢)| + |ZA(t)]
indicates the total number of inactive nodes including original attackers quarantined plus dead
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user nodes due to lack of resource. Where V is the total number of nodes that are initially
given, p; bounds the maximum number of compromised nodes that can exist without failure
while p, is the fraction of the maximum number of inactive nodes that can exist without failure
in the network.

Cyber War Game

This section discusses how the cyber war game is formulated as an optimization problem. In
addition, we describe attacker and defender strategies proposed in this work and analyze their
solution complexity.

Problem Formulation

We formalize this problem as an optimization problem that minimizes accumulated resource
consumption J until the system goal state reaches by solving the following objective function
as:

T
Minimize J :/ e,(t)dt
L el

ieM(t

(8)

Subject to w,(t) > 0,7,(t) —e,(t) >0

Here M(t) is a set of nodes belonging to a party (i.e., either attackers or defenders) where
M(¢) includes a set of nodes taking actions to reach a respective system target state. M(¢) is
same as C(t) for attackers while it is D(t) for defenders in Fig 1.

For attackers, e(f) is a vector of the resource consumed by attackers successfully where e(t)
=[ey(t), ..., eD), . . ., e(t)] " and m = |C(t)| and e;(t) represents resource consumed by node i
to compromise another node in 2/(¢) at time ¢ (See Eq (5) for ¢;(¢)). Similarly, for defenders, e
(t) is a vector of the resource consumed by the defenders to successfully recover compromised
nodes in C(t), where e(t) = [e;(t), . . ., ei(t), . . ., en()] and m = |D(t)] and e;(t) indicates node
i’s resource consumption to recover a compromised node at time ¢. This problem is to identify
a set of nodes by which attackers or defenders take actions to reach their respective goal state
while minimizing resource consumption. Recall that attackers or defenders can only take
actions towards their adjacent neighbors (i.e., 1-hop neighbor).

In Eq (8) above, a small amount of resource decay over time (i.e., 0) without any additional
activity (e.g., compromising or recovering actions) is omitted. The imposed constraints are: (1)
node i can take an action towards node j only when w;;(t) >0 which means there is a directed
edge from node i to node j; and (2) node i should have sufficient resource to take an action
towards node j (i.e., r,(t) — e;(#)>0).

Attacker and Defender Strategies

In this section, we discuss what strategies attackers or defenders can take to win a cyber war
game with minimum resource consumption, respectively.

Node i, either attacker or defender, selects an adjacent node j (it should be originally a user)
with minimum resource consumption to compromise or recover node j while reaching the tar-
get state as quickly as possible. We propose two heuristic strategies based on a node’s two char-
acteristics as follows: (1) a node’s resource level; and (2) a node’s influence based on k-hop
reachability as shown in Eq (3), called k-hop influence in this work. Therefore, each node i can
have two strategies to select adjacent node j to take an action as follows:
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1. Resource-First (RF): node i selects node j with the minimum resource among all adjacent
nodes.

2. Influence-First (IF): node i selects node j with the maximum influence among all adjacent
nodes.

Both strategies above have the goal to win a game with the minimum resource consumption
by either minimizing resource consumption in each step or maximizing a chance to reach the
goal state with minimum time where both strategies aim to minimize the accumulated resource
consumption until the end state. We denote attackers’ two strategies as Resource-First- Attack
(RF-A) and Influence-First-Attack (IF-A). Similarly, defenders’ strategies are notated as
Resource-First-Defense (RF-D) and Influence-First-Defense (IF-D). In all cases, if node i’s
expected resource consumption by taking an action towards node j exceeds its current remain-
ing resource in Eq (4), node i does not take any action towards node j to save its resource for its
own survival.

Solution Complexity Analysis

In this section, we analyze the solution complexity of three algorithms: optimal solution using
brute-force algorithm (BFA) based on depth-first-search, resource-first (RF) and influence-
first (IF). In particular, we analyze the strategies taken by attackers and how their strategies
affect the resource consumption. In order to find feasible solution space, we relax some condi-
tions defined in this work. The time-varying network condition is relaxed by using a static net-
work to identify optimal solution using BFA. We assume that a static network has nodes
connected to other nodes with a weight e;; where e;; is computed based on e; in Eq (5) where an
edge exists between nodes i and j. Note that e;; is updated whenever node i takes an action with
any adjacent node. For example, i’s resource will be updated as it takes actions towards adjacent
nodes j’s. Accordingly, e;; for all adjacent nodes js is affected by node i’s resource adjustment.
In order to minimize the effect of randomness, we consider s;; = 1. Note that we remove all the
relaxed conditions used above and show simulation results for a large time-varying, dynamic
network later in a next section.

In this section, we analyze the complexity of solution search in three algorithms including
BFA, RF and IF. We analyze the complexity in terms of attackers’ perspective where the attack-
ers require compromising more nodes to reach their goal state as defenders recover the com-
promised nodes over time. We approximate the complexity of solution search algorithms
where a graph has n vertices and each vertex has an average of m out-degrees.

1. Brute Force Attack (BFA): we simply calculate the combination of choosing ¢ out of # where
n is the total number of nodes and c is the number of nodes required to be compromised to
meet SFC. Since the loss of integrity failure is a more tight condition than the loss of avail-
ability failure unless many nodes quickly drain their resources, we treat ¢ as the minimum
number of compromised nodes to make the system failure in this case. This is computed by
selecting ¢ number of compromised nodes out of n which is the initial number of nodes
given, denoted as C(n, ¢) = O(n2") where ¢ < n/2 (i.e., p; < 1/2) and n! = o(n"). Since each
node computes this brute-force solution, resulting in O(n2") and there is the overhead to
obtain global network topology, O(1), the complexity of brute-force optimal solution is O
(n2"+n), leading to O(n2").

2. Resource-First-Attack (RF-A): it is linear proportional to n as each attacker chooses one
among multiple adjacent nodes based on the minimum resource. Given an initial number
of attackers ¢, and the average out-degrees m, the maximum round of compromising
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actions by all attackers, h, each attacker compromises another healthy node. It is estimated
by:

h
2'me, + 2'me, + 2°me, + ... + 2"me, = Z:Tm(:0 < h2"mc,

i=0

where 2"mc, < n < hn = O(n) for h << n

Therefore, RF-A has a complexity of O(n?) where each node runs O(n).

3. Influence-First-Attack (IF-A): it is similar to RE-A for the compromising process, O(n?), but
it has the overhead to compute k-influence, leading to O(n*).

Experiments and Analysis

We show the results and analyze their trends under two network environments: (1) a static net-
work to identify optimal solutions; and (2) a temporal network by varying network temporality
p and nodes’ average degree d.

Metrics

The following performance metrics are used:

1. Win probability (P,,) refers to attackers’ average win probability. Attackers win when SFC
is met; defenders win when there exist no compromised nodes in a network.

2. Resource Consumption(.7) is the average accumulated resource consumed by either attack-
ers or defenders until time T which is the time that they attain their respective goal based on
Eq (8).

3. System Vulnerability (V(¢)) refers to the degree of the system vulnerability in terms of the
number of compromised nodes and the number of inactive nodes, as addressed in SFC.
When V() > 1, this indicates the system failure state. This is estimated by: n

L[ ICO] [C@)+[ZA()]

Vi) = ma pN (1) PN ®)

where p1 N (t) is the maximum number of compromised nodes allowed in the system with-
out failure at time ¢ and |C(#)| is the number of compromised nodes in the system at time t.
poV indicates the maximum number of members that are not committing for mission exe-
cution and is the maximum bound tolerated by the system. |C(¢)| 4+ |ZA(#)| is the number
of inactive or compromised members currently in the network.

Result Analysis under a Small-Scale Static Network

Experimental Setting. Since it is not feasible to obtain optimal solution(s) of a given prob-
lem under a time-varying network consisting of a large number of nodes (i.e., NP-Complete),
we first validate the optimality of the given problem by comparing the three algorithms in a
static network consisting of 20 nodes. In the next section below, we will discuss results under
temporal networks. We use an environment setting with A = 0.05, o = 0.001 (i.e., in resource
calculation in Eq (4)), and k = 2 (i.e., in k-hop influence in Eq (3)). Resource levels of nodes are
assigned as a real number ranged in [0.5, 1] based on the uniform distribution in order to
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consider vastly different resource levels of nodes in a network. We set up the network based on
Erdos-Rényi (ER) model with a different probability, g, given for two nodes to be randomly
connected in the network deployment. To make the given network have vastly different degrees
in a directed network, we randomly select a pair of nodes to remove an edge (i.e., when edges
exist between nodes i and j in both directions such as i to j or vice-versa, we keep one edge
while removing the other edge).

Result. In Fig 2, we show the minimum resource consumed by three algorithms including
two strategies and one optimal solution based on BFA. In order to demonstrate the optimality
of the given problem, we use a simplified cyber war scenario. The scenario is that an attacker
compromises user nodes while a defender may recover compromised user nodes. Thus, in Fig
2, we show the number of compromised nodes as x-axis while plotting the resource consump-
tion in y-axis. Each strategy shown here is a strategy taken by an attacker, such as brute-force-
attack (BFA), resource-first-attack (RF-A), or influence-first-attack (IF-A).

As shown in Fig 2(a) and 2(b), although BFA performs the best consuming the minimum
resource among three in both network conditions (i.e., sparse with g = 0.4 and dense with
q =0.7), it occurs prohibitively high overhead for solution search as shown in Fig 2(c). For the
other two strategies, RF-A or IF-A, we notice IF-A becomes outperforming RF-A as attackers
compromise more nodes particularly under a sparse network. Lastly we experiment the impact
of varying the total number of nodes, NV, in a network. In Fig 2(d), we investigate the impact of
N on resource consumption of the two strategies. We set the number of compromised nodes
to A x 2/3.1n this case, IF-A outperforms RF-A as a network size becomes larger. In a net-
work with higher node density but less network density (i.e., sparse with g = 0.5 in this case),
attackers prefer IF-A over RF-A in compromising a large number of nodes in the network.

Result Analysis under a Large-Scale Temporal Network

Experimental Setting. For a large-scale temporal network, we use a random network
based on ER network model where network temporality p is used as a rewiring probability that
two nodes i and j are connected at time £. We consider the total number of nodes, N' = 1000
where the nodes consists of the initial number of attacker, |OA| = 1, the initial number of
defenders, |OD| = 50, and the initial number of users, |OU| = 949. We set 4 = 0.05, 6 = 0.001,
and k = 6. For network environmental conditions, network temporality p and nodes’ average
degree d (i.e., higher d indicates higher network density) are varied to observe their impact on
performance. All data points shown in the results are collected based on 100 of realizations.
We summarize all key design parameters, their meanings and corresponding default values in
Table 1. For dependent variables, we note dependent under ‘Value’ in Table 1.

Result. Fig 3 shows how network temporality p and network density d affect attackers’ win
probability. We vary p to see its impact on P,, under sparse or dense network with d = 0.5 or
d = 2.5, respectively, as shown in Fig 3(a) and 3(b). In a sparse network of Fig 3(a), regardless
of defenders’ strategies, attackers’ IF outperforms among others. In addition, higher pin a
sparse network helps attackers to win. In a dense network of Fig 3(b), although attackers’ IF
outperforms the RF counterpart, when defenders choose RF, attackers have higher chances to
win the game. More interestingly, in this dense network, higher network temporality p deterio-
rates attackers’ chances to win. Fig 3(c) shows the effect of varying d on attackers’ P,,. In all
strategy scenarios, higher d does not help attackers to win because higher network density will
increase a chance for a node to be recovered by defenders.

Fig 4 shows how network temporality and density impact attackers’ resource consumption
(J). In a sparse network of Fig 4(a), higher J occurs as p increases and when attackers take IF
strategy. Higher P,, leads to higher [ because attackers should take more actions. For a dense
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doi:10.1371/journal.pone.0148674.g002

network of Fig 4(b), higher P,, does not necessarily lead to higher 7. This case is shown when
attackers use RF (i.e., red and green curves). This is because choosing a node with low remain-

ing resource does not lead to a higher chance to compromise more nodes in next decision

rounds. In Fig 4(c), a critical point of d exists in maximizing 7. A network with smaller d helps
attackers to win quickly due to a less chance to be recovered by defenders in a sparse network.
On the other hand, a dense network with high d allows compromised nodes to be easily recov-
ered. Thus, there exists a balance point of d maximizing 7.
The trends of defenders” J observed are also very similar to the ones observed in attackers’

J in Fig 4. Due to the space constraint, we do not show the results here. The reason is that
defenders basically follow attackers’ actions as they should recover the compromised nodes.
However, in our results, defenders’ 7 is significantly lower than attackers’ because attackers

consume more resource than defenders by taking actions to compromise user nodes.
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Table 1. Key design parameters, their meanings and default values.

Param.

N
o
A

prs an
P1

P2

k
|OA]|
|oD|
Q()

uD(t)
RE(t)
N(t)
ct)
D(t)
TA(t)
Alt)
vi(t)

ri(t)
din
di(:?ut
e(t)
ei(t)

sii(t)

Meaning

Number of nodes deployed in a network
Decay of resource over time to maintain its normal operations ranged in [0, 1]

A constant parameter value to adjust the speed of the resource consumption per
action

False positives and false negatives probabilities of a host-based IDS preinstalled in
each node

Fraction used to determine the maximum number of compromised nodes allowed in
the system without failure

Fraction used to determine the maximum number of members that are not
committing for mission execution

Number of distance hops to consider k-hop reachability
Initial number of attackers

Initial number of defenders

Quarantined original attackers at time ¢

A set of recovered users becoming defenders at time t
A set of nodes with resource exhausted at time t

A set of active nodes in a network at time t

A set of compromised nodes in a network at time ¢

A set of defender nodes in a network at time ¢

A set of of inactive nodes in a network at time ¢

A set of healthy active nodes in a network at time t

A vector of a node’s state at time t in terms of resource consumption, in-degree and
out-degree

Node i’s remaining resource at time t

Node i’s in-degree using k-hop reachability

Node i’s in-degree using k-hop reachability

A vector of resource consumed by attackers or defenders taking actions
Resource consumed when node i takes an action towards node j
Probability that node /’s action is effective against node j at time t

doi:10.1371/journal.pone.0148674.t001

Value

1000
0.001
0.05

0.05
1/3

2/3

50
dependent
dependent
dependent
dependent
dependent
dependent
dependent
dependent
dependent

dependent
dependent
dependent
dependent
dependent
dependent

Lastly, Fig 5 shows how system vulnerability V(¢) evolves over time under different network
temporality and density. Comparing Fig 5(a) & 5(b) and 5(c) & 5(d) for a sparse network vs. a
dense network, there exists a critical point that maximizes system vulnerability but three cases
out of four do not experience system failure where V(¢) = 1 implies system failure. That is,
although the system has a higher chance to be endangered by system vulnerability, it can sur-
vive over time by reducing the vulnerability. However, for a dense network, the system ulti-
mately fails due to a high chance for nodes to be compromised by attackers. On the other
hand, comparing Fig 5(a) & 5(c) and 5(b) & 5(d) for high temporality vs. low temporality, a
longer time is taken to experience high vulnerability or failure under low temporality (i.e., Fig 5
(a) & 5(c)) than under high temporality (i.e., Fig 5(b) & 5(d)).

Conclusion

Given a cyber war game for a resource-constrained, temporal, distributed network, we studied
how each party can win the game with minimum resource consumption. We devised two heu-
ristic strategies in a greedy manner based on a node’s influence and resource level to maximize
a win probability while minimizing resource consumption. We investigated the effect of the
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doi:10.1371/journal.pone.0148674.9005

probability under a dense network due to a higher chance for them to be recovered by defend-
ers. Although a higher win probability generates higher resource consumption, a certain point
of node degree exists to maximize resource consumption. In addition, system vulnerability is
significantly affected by network temporality and density because the network characteristics
are critical for a node to reach its system goal state with minimum resource consumption.

Our work may raise the following open research questions: how can network temporality be
described in real networks?; how can the proposed work be validated with a real network data-
set?; If each node is modeled as an agent using game theory, how can Nash Equilibrium be
identified in a cyber war game?; and how do heterogeneous network or node characteristics
affect optimal strategies of attackers and defenders in a cyber war game?
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