
Real Time Filtering of Tweets Using Wikipedia
Concepts and Google Tri-gram Semantic Relatedness

Anh Dang1, Raheleh Makki1, Abidalrahman Moh’d1, Aminul Islam1, Vlado Keselj1, and Evangelos E. Milios1

1{anh,niri,amohd,islam,vlado,eem}@cs.dal.ca
1Dalhousie University, 6050 University Avenue, Halifax, NS, B3H 4R2, Canada

Abstract—This paper describes our participation in the mobile
notification and email digest tasks in the TREC 2015 Mircoblog
track. The tasks are about monitoring Twitter stream and
retrieving relevant tweets to users’ interest profiles. Interest
profiles contain the description of a topic that the user is
interested in receiving relevant posts in real-time. Our proposed
approach extracts Wikipedia concepts for profiles and tweets
and applies a corpus-based word semantic relatedness method
to assign tweets to their relevant profiles. This approach is also
used to determine whether two tweets are semantically similar
which in turn prevents the retrieval of redundant tweets.

I. INTRODUCTION

The rapid growth of microblogs’ popularity greatly pro-
motes the importance of information retrieval systems that
suggest relevant content to users with respect to their interests
in real-time. The TREC 2015 Microblog track presents two
scenarios for the real-time retrieval task: mobile notification
(Scenario A) and email digest (Scenario B). In both scenarios,
the goal is to retrieve interesting and novel tweets relevant to
users’ interests profiles which are the description of the topic
the user is interested in. In the mobile notification scenario,
selected tweets by the system should be pushed to the user’s
mobile phone as notification relatively short after these tweets
are published, while in the email digest scenario, interesting
tweets are accumulated in an email and then delivered to the
user at the end of the day.

This year’s Microblog track guidelines1 specifies that each
team can submit up to three runs per scenario and each run
should be assigned to one of the three different categories of
the amount of human involvement. In the automatic run, no
human intervention is allowed, while in the manual preparation
and manual intervention run, human supervision is acceptable
before the start of the evaluation period and all the time
respectively. We participated in both mobile notification and
email digest scenarios and submitted the runs under our group
name “DALTREC”.

Our proposed approach for this year’s filtering task is based
on using Wikipedia and Google Trigram for calculating the
semantic relatedness between tweets and profiles and also
between tweets themselves. Due to the short and noisy nature
of Twitter posts and the vocabulary mismatch between the
interest profiles and tweets, it is important to consider semantic
similarity of tweets to profiles in order to achieve proper
recall. We apply the proposed approach to both scenarios
considering both automatic and manual preparation runs. In

1https://github.com/lintool/twitter-tools/wiki/TREC-2015-Track-Guidelines

addition, to compare the results of the similarity computation
with a standard Ad Hoc information retrieval method, we
also applied the Lucene2 implementation of unigram language
model to Scenario B and submitted the results.

The rest of this paper is organized as follows. The proposed
strategies are explained in Section II. Section III describes the
evaluation metrics used for ranking participants in this year’s
track. The results of our participation is discussed in Section IV
and conclusions are provided in Section V.

II. METHODOLOGY

This section describes our method for the real-time filtering
task. The first 4 sections describes the core of the system for
both automatic and manual runs. Section II-F describes the
user involvement for our manual run submissions and Sec-
tion II-G explains a language model strategy that we applied
to Scenario B. Our proposed framework and its sections are
shown in Figure 1.

A. Data Preprocessing

For data processing, we filter out all stop words, non-
English tweets, and retweets. After that each tweet and profile
are represented as a bag of concepts based on Wikipedia
entity linking and we compute semantic similarity between
two Wikipedia bags of concepts.

B. Wikipedia Entity Linking

As the tweet content is very sparse and noisy, we try to
capture the most important topics from tweets using Dexter
Wikipedia entity linking [1]. For Dexter Wikipedia linking,
the input is a tweet ti and the output is a list of potential
Wikipedia entity tags. Each tweet ti is represented as a vector
{ci1,ci2, . . . ,cin} where ci j is a concept from Wikipedia ex-
tracted for tweet ti. Furthermore, we filtered all tweets that do
not have any Wikipedia entities.

C. Similarity Calculation Between Tweets and Users’ Profiles

The goal of the system is to recommend interesting content
to users with regard to their interests. We propose the use
of semantic similarity for this task. For example, if a user
is interested in the topic “airline merger”, she may also be
interested in “airline integration”.

2https://lucene.apache.org/core/

Fig. 1: The framework of the proposed methods for the real-time filtering task.

Semantic similary between two texts is computed using
Google Tri-gram Method (GTM) of Aminul et. al [2]. GTM
is an unsupervised corpus-based approach for computing se-
mantic relatedness between texts. It uses the uni-grams and
tri-grams of the Google Web 1T N-grams corpus [3] to
calculate the relatedness between words, and then extends that
to longer texts. The Google Web 1T N-grams corpus contains
the frequency count of English word n-grams (unigrams to
5-grams) computed over one trillion words from web page
texts collected by Google in 2006. To compute the similarity
score between a tweet and a profile, we use Wikipedia entity
linking method and represent them as bag of concepts and then
compute the semantic similarity between two Wikipedia bags
of concepts using GTM.

D. Filtering Semantically Similar Tweets

A satisfactory tweet recommendation system should not
suggest redundant tweets to users. Therefore, this year’s eval-
uation workflow considers penalties for semantically similar
tweets. First, tweets are clustered semantically and within each
cluster, only the earliest tweet is considered novel and other
tweets in the same cluster are considered redundant.

We propose the use of both lexical similarity and seman-
tic similarity for identifying semantically similar tweets. As

described in Section II-B, we represent each tweet with their
Wikipedia concepts. We use the GTM method to calculate the
semantic similarity between two tweets t1 = {c11,c12, ...,c1n}
and t2 = {c21,c22, ...,c2n}. To compute lexical similarity be-
tween two texts, each tweet is represented as a IF-IDF vector,
and their cosine value is considered as their similarity score.
We consider two tweets to be semantically similar if both
their lexical similarity score and semantic similarity score are
more than predefined thresholds, i.e. GTM(t1, t2) >= α and
Cosine(t1, t2)>= β , where α and β are two thresholds for the
semantic similarity and cosine similarity respectively.

E. Automatic Submissions

Having all the modules that calculate the most similar
profile to a tweet and identify semantically similar tweets, we
apply the following strategies for the automatic run submis-
sions of Scenario A and B.

For Scenario A, we compute similarity score between a
tweet content and all 225 interest profiles in the dataset and
assign it to the profile that achieves the highest similarity score
if it is not semantically duplicated with the previously chosen
tweets for that profile. In Scenario B and for each profile, we
collect all the tweets that are related to this profile. Since the
upper limit of the number of tweets for scenario B is 100

tweets for each profile per day, we cluster these tweets into
100 clusters at the end of the day and select a representative
tweet in each cluster to be included in the result (email digest).

F. Manual Preparation

In the manual preparation type, the system can incorporate
the user input before the evaluation period. Interest profiles
contain discriminative keyterms that are good indicators of
their topic. However, all keyterms are not of the same im-
portance. For instance, consider a person who is interested in
Sudoku puzzles. Keyterm “Sudoku” is a better indicator of the
tweets related to this profile rather than keyterm “puzzle” and
therefore should have a higher contribution in the calculations.
Consequently, we manually constructed a list of discriminative
features for each profile. Each feature in this list has a weight
that indicates the importance of that feature for the specific
profile. We use these weights to bias our similarity and
semantically duplicated tweet calculations.

G. Language Model

As an alternative model and for the sake of comparison,
we also submitted the results of applying a unigram language
model to Scenario B. We used the Lucene implementation
of the language model with the Bayesian smoothing using
Dirichlet priors. The value of parameter µ in this smoothing
technique is set to 2100 as it is used by Li et.al. for tweets [4].
In addition, it is shown that although the optimal value of µ
varies between 500 and 10000, it is usually around 2000 [5].
We expect that involving the user and incorporating her knowl-
edge improves the performance of the task. Therefore, we also
consider the list of features-weights which is manually created
in our language model. Consequently, we submitted our results
for Scenario B and under the manual preparation category.

In this model, we first use Lucene to index the tweets
posted during the evaluation period, at the end of each day.
Then, for each profile, we create a query from the list of
manually extracted discriminative features of that profile, and
use query level boosting to set a boost for each feature based on
their weights. After that, we use the unigram language model to
retrieve a ranked list of relevant tweets based on their relevance
score. Having the tweets ranked, we start from the top and
include each tweet in the result if they meet both of these
two conditions: 1- the tweet should not be a near-duplicate of
what has already been included in the result list, 2- its score
should be higher than a predefined threshold. If the tweet does
not meet either of these conditions, we ignore it and move to
the next tweet in the ranked list. This is continued until there
are 100 tweets in the results, or there are no more tweets in
the ranked list. Having a threshold prevents retrieving non-
relevant tweets containing only one of the manually extracted
keyterms that are not discriminative enough to be an indicator
of the corresponding topic. For instance, if a tweet contains
keyterm “puzzle” it does not necessarily mean that the tweet
should be recommended to a user who is interested in Sudoku
puzzles.

Although filtering semantically similar tweets is part of the
task, we only applied the lexical similarity calculation to this
model and considered two tweets to be near-duplicate if their
cosine similarity is higher than 0.9.

III. EVALUATION METRICS

This section briefly discusses the evaluation metrics con-
sidered for each scenario. These metrics are explained in detail
in the track guidelines3.

A. Scenario A - Mobile Push Notification

One of the evaluation metrics for Scenario A is Expected
Latency-discounted Gain (ELG). This score is computed based
on the following relation where T is the set of recommended
tweets and gain(ti) indicates the relevance of the tweet to the
corresponding interest profile.

ELG = 1
|T |

|T |

∑
i=1

{gain(ti)}

An explanation of the gain scores is showed in Table I.
It is also important to consider that only the first tweet from
each semantic cluster receives any score [6].

Gain Details

0 Not interesting, spam/junk tweets

0.5 Somewhat interesting tweets

1.0 Very interesting tweets

TABLE I: An explanation of gain scores.

To penalize the late recommendation of tweets, a latency
penalty is applied. This penalty is computed as MAX(0, (100
- delay)/100), where the delay is the difference (in minutes)
between the time the tweet was published and the time the sys-
tem sends the notification. In addition to ELG, the normalized
Cumulative Gain (nCG) is considered as another metric. This
metric is computed based on the following relation, where Z
is the maximum potential gain considering the 10 tweet per
day limit.

nCG = 1
Z

|T |

∑
i=1

{gain(ti)}

The score of each profile for a day is first computed and
the final score of the profiles is an average of their daily scores
across all days in the evaluation period. The score of each run
will be the average of the scores across profiles [6].

B. Scenario B - Email Digest

The evaluation metric considered for profile B is the Nor-
malized Discounted Cumulative Gain (NDCG). This metric is
calculated over k top retrieved results and is one of the metrics
commonly used in evaluation information retrieval systems [7].
In this year’s evaluation, k is set to 10. The following two rela-
tions explains the computation of the Discounted Cumulative
Gain (DCG) and its normalized version (NDCG), where T
is the set of selected tweets and IDCG@k is the maximum
possible DCG for the top k tweets.

DCG@k =
|T |

∑
i=1

2gain(ti)−1

log2(i+ 1)

NDCG@k = DCG@k
IDCG@k

3https://github.com/lintool/twitter-tools/wiki/TREC-2015-Track-Guidelines

For each profile, the value of the NDCG@k is first calcu-
lated per day and its final value is the average over 10 days.
Therefore, the score for a run is calculated by the average over
all profiles.

IV. RESULTS

A. Scenario A

Table II shows the results all participating teams for
Scenario A. In our submitted runs for this scenario, DAL-
TRECMA1, DALTRECMA2 and DALTRECAA1, we set the
threshold α = 0.6 and β = 0.8. We achieved 0.1753 ELG and
0.2426 nCG for the automatic run which is comparable with
other systems. We submitted two manual runs, the first run
achieved 0.1620 ELG, 0.1614 nCG and the second run achived
0.1822 ELG, 0.1814 nCG. One of the possible reasons for
moderate results may be the threshold for the GTM score
which is set to 0.6. We suspect that our system does not
capture potentially interesting tweets that their score is below
this threshold.

B. Scenario B

The results of Scenario B are presented in Table III. For
this scenario, we set the threshold to similar values of Scenario
A, i.e. α = 0.6 and β = 0.8. We submitted two automatic
runs, DALTRECAB1 and DALTRECMB1, and one manual
run, DALTREC B PREP. Automatic systems achieved 0.1339
and 0.1323 for NDCG score and the score for our manual
preparation was 0.2210. It seems that our alternative approach,
language model, is worth investigating further. In addition, we
would like to combine the proposed strategies and examine
whether it leads to better results.

V. CONCLUSION

This paper presents the DalTREC team participation in the
mobile notification and email digest tasks of the TREC 2015
Mircoblog track. We proposed a novel approach for assigning
tweets to profiles and to determine whether two tweets are
semantically similar using Wikipedia as an external knowledge
source and a corpus-based word semantic relatedness method.
Results show that the proposed approach is comparable with
other systems in this competition.

ACKNOWLEDGMENT

The research was funded in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego, and S. Trani, “Dexter:
an open source framework for entity linking,” in Proceedings of the
sixth international workshop on Exploiting semantic annotations in
information retrieval. ACM, 2013, pp. 17–20.

[2] A. Islam, E. Milios, and V. Kešelj, “Text similarity using google
tri-grams,” in Proceedings of the 25th Canadian Conference on
Advances in Artificial Intelligence, ser. Canadian AI’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 312–317. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30353-1 29

[3] T. Brants and A. Franz, “The google web 1t 5-gram corpus version 1.1,”
Technical Report, 2006.

Run Group ELG nCG Type
PKUICSTRunA2 PKUICST 0.3175 0.3127 manual
UWaterlooATDK UWaterlooMDS 0.3150 0.2679 automatic

SNACSA NUDTSNA 0.3086 0.3349 manual
SNACS LA NUDTSNA 0.2863 0.2974 manual
QUBaseline QU 0.2750 0.2347 automatic
udelRun2A udel 0.2670 0.2064 automatic

UWaterlooATEK UWaterlooMDS 0.2654 0.2365 automatic
IRIT-KLTFIDF IRIT 0.2652 0.2600 manual
prnaTaskA2 prna 0.2603 0.2296 automatic
prnaTaskA1 prna 0.2597 0.2348 automatic
prnaTaskA3 prna 0.2566 0.2289 automatic
udelRun1A udel 0.2505 0.2070 automatic

hpclab pi algA HPCLAB PI 0.2477 0.2472 manual
umd hcil run01 umd hcil 0.2471 0.2471 automatic

UWaterlooATNDEK UWaterlooMDS 0.2470 0.2170 automatic
UWCMBP1 WaterlooClarke 0.2450 0.2035 automatic

ECNURUNA1 ECNU 0.2314 0.2314 automatic
ECNURUNA2 ECNU 0.2314 0.2314 automatic
ECNURUNA3 ECNU 0.2314 0.2314 automatic

udelRun3A udel 0.2259 0.1910 automatic
IritSigSDA IRIT 0.2122 0.2043 automatic

umd hcil run02 umd hcil 0.2020 0.2020 automatic
IRIT-RTNotif.33 IRIT 0.1950 0.1834 automatic

QUDyn QU 0.1850 0.1762 automatic
QUDynExp QU 0.1848 0.1763 automatic

DALTRECMA2 DalTREC 0.1822 0.1814 manual
CLIP-A-DYN-0.5 CLIP 0.1753 0.2426 automatic
DALTRECMA1 DalTREC 0.1620 0.1614 manual
CLIP-A-5.0-0.5 CLIP 0.1753 0.2426 automatic
CLIP-A-5.0-0.6 CLIP 0.1753 0.2426 automatic
DALTRECAA1 DalTREC 0.1753 0.2426 automatic

PKUICSTRunA1 PKUICST 0.1753 0.2426 automatic
PKUICSTRunA3 PKUICST 0.1753 0.2426 automatic

UWCMBP2 WaterlooClarke 0.1753 0.2426 automatic
MPII HYBRID PW MPII 0.1753 0.2426 automatic
MPII LUC SORT MPII 0.1753 0.2426 automatic

MPII COMB SORT MPII 0.1753 0.2426 automatic

TABLE II: Results of Scenario A from [6].

[4] C. Li, Y. Wang, P. Resnick, and Q. Mei, “Req-rec: High recall retrieval
with query pooling and interactive classification,” in Proceedings of the
37th international ACM SIGIR conference on Research & development
in information retrieval. ACM, 2014, pp. 163–172.

[5] C. Zhai and J. Lafferty, “A study of smoothing methods for language
models applied to ad hoc information retrieval,” in Proceedings of the
24th annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 2001, pp. 334–342.

[6] M. W. Y. S. G. Lin, Jimmy Efron and E. Voorhees, “Overview of the
trec-2015 microblog track,” in Proceedings of the Twenty-Fourth Text
REtrieval Conference (TREC 2015). Gaithersburg, Maryland: ACM,
November, 2015.

[7] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender, “Learning to rank using gradient descent,” in Proceed-
ings of the 22nd international conference on Machine learning. ACM,
2005, pp. 89–96.

Run Group nDCG@10 Type
SNACS LB NUDTSNA 0.3670 manual

SNACS NUDTSNA 0.3345 manual
CLIP-B-0.6 CLIP 0.2491 automatic

umd hcil run03 umd hcil 0.2471 automatic
CLIP-B-0.5 CLIP 0.2420 automatic

PKUICSTRunB3 PKUICST 0.2343 automatic
PKUICSTRunB2 PKUICST 0.2228 manual
PKUICSTRunB1 PKUICST 0.2226 automatic

DALTREC B PREP DalTREC 0.2210 manual
UWaterlooBT UWaterlooMDS 0.2200 automatic

UWaterlooBTTND UWaterlooMDS 0.2196 automatic
CLIP-B-0.4 CLIP 0.2117 automatic

MPII COM MAXREP MPII 0.2093 automatic
hpclabpibm25mod HPCLAB PI 0.2046 manual
UNCSILS WRM UNCSILS 0.2045 automatic

udelRun2B udel 0.2026 automatic
umd hcil run04 umd hcil 0.2020 automatic

udelRun1B udel 0.1966 automatic
UNCSILS HRM UNCSILS 0.1902 automatic
UNCSILS TRM UNCSILS 0.1890 automatic

IRIT100KLTFIDF IRIT 0.1784 manual
udelRun3B udel 0.1778 automatic

IRIT-RTDig.33 IRIT 0.1680 automatic
ECNURUNB1 ECNU 0.1610 automatic

prnaTaskB2 prna 0.1463 automatic
ECNURUNB3 ECNU 0.1416 automatic
DALTRECAB1 DalTREC 0.1339 automatic

BJUTllyQE BJUT 0.1334 automatic
IritSigSDB IRIT 0.1329 automatic

ECNURUNB2 ECNU 0.1327 automatic
DALTRECMB1 DalTREC 0.1323 automatic
QUBaselineB QU 0.1288 automatic
UWCMBE1 WaterlooClarke 0.1232 automatic
QUFullExpB QU 0.1196 automatic

QUExpB QU 0.1180 automatic
UWCMBE2 WaterlooClarke 0.1035 automatic
BjutNMF1 BJUT 0.1008 automatic
BjutNMF2 BJUT 0.0685 automatic
prnaTaskB1 prna 0.0641 automatic
prnaTaskB3 prna 0.0533 automatic

MPII LUC MART MPII 0.0310 automatic
MPII COMB MART MPII 0.0275 automatic

TABLE III: Results of Scenario B from [6].

