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ABSTRACT 
 
As the gathering of information on the prevalence of blast-induced traumatic brain injuries (bTBI) 
continues, there is a need for the development and validation of a physical model (headform) 
reproducing the mechanical response of the human head to the direct loading from a blast wave. The 
chain of events leading to an injuries following direct exposure to a blast wave is very complex and its 
full determination is still the topic of several research efforts. The first step in the injury cascade is 
necessarily the mechanical insult of the blast wave to the human head. With a combination of 
representative anatomical features, adequate material selection and careful instrumentation, a validated 
physical model could measure real external pressure field history and predict resulting intra-cranial 
pressures (ICP) for any blast loading scenario. In addition, a physical model has the unique ability to 
measure quantitatively the effect of protective headwear. The following article discusses the validation 
of the BI2PED (Blast-Induced Brain Injury Protection Evaluation Device) response against post-
mortem human subjects (PMHS). Previously reported PMHS blast wave generator tests were 
methodically replicated in the same facility using the BI2PED. Loading conditions, instrumentation 
type and position as well as the head mounting technique were reproduced to ensure that the only 
difference between the two series of experiments was the model itself. A direct comparison of 
measured ICP histories is presented for two loading orientations and three loading magnitudes. It is 
demonstrated that the physical model response is in good agreement with that of the PMHS response. 
From signal analysis, additional evidences supporting skull deformation as the main contributor to ICP 
variations are discussed. Finally, external pressure fields from the blast wave generator experiments are 
compared to full scale free-field tests.  
      
                            
1. INTRODUCTION 
 
There is a preponderance of clinical and experimental evidences that suggest that traumatic brain 
injury (TBI) can occur as a result of a direct exposure to blast wave [1]. The chain of events leading to 
such injuries is likely very complex and its full determination is still the topic of several multi-
disciplinary research efforts [1]. Highly controlled laboratory experiments on post-mortem human 
subject as well as the development of physical and numerical head models can certainly provide useful 
information on the first step in the cascade of events leading to injury, which is considered to be the 
mechanical insult of the blast wave to the human head. As a thorough understanding of the injury 
mechanism is developed, the need for physical models capable of reproducing the mechanical response 
of the human head under blast loading increases. A validated physical model combining representative 
anatomical features, adequate material selection and careful instrumentation provides three clear 
benefits. First, it can help to characterize the head external pressure field history (i.e. the loading) for 
any blast scenario. Operational blast scenarios are infinite and it is only by characterizing the real 
mechanical input to the head that it will be possible to distinguish between them. Second, a physical 
model can help estimate the magnitude of the stresses developed in the brain. This is essential to 
provide a link between external mechanical insult and the potential for injury. Finally, it can help 
evaluating the performance of protective headwear systems.  
 

The direct exposure of the head to a blast wave creates a very short duration high amplitude 
loading that is very different in nature from loadings resulting from impacts seen in automotive or 
sport accidents. Willinger et al. [2,3] have comprehensively discussed how the duration of a loading on 
the head can determine the nature of the strain and stress fields in the brain. They distinguished 
between three lesion mechanisms, each of which is particular to a range of loading duration. For long 



duration loading above 10-12 ms, distributed lesions throughout the brain are attributed to the 
generation of intra-cranial stresses from inertial forces. In such regime, the whole head is subjected to 
the same translational and rotational acceleration field. For duration between 4-10 ms, the skull motion 
and brain motion are decoupled. This regime has been the subject of numerous studies since the 
development of the rapid skull motion theory by Viano et al. [4]. Willinger stated that for such loading 
durations, the first resonance frequency of the head, which he cites as being between 100-150 Hz, may 
be excited. Skull to brain relative translational and rotational motion can cause bridge vein shearing 
and contusion if direct contact occurs. Finally, for impact duration below 4 ms, the loading can excite a 
second resonant frequency observed between 700-800 Hz [3-6]. This is a wave-dominated regime 
where local skull deformation occurs. In the context of blast TBI research, such mechanism has also 
been referred to as “skull flexure” or simply “direct stress transmission” [7-10]. Flexure happens when 
the loading energy is delivered rapidly enough so that the skull does not have time to reach force 
equilibrium throughout its structure. The skull doesn’t move as a rigid body but rather sustain local 
deformation, which then propagates in the structure as waves. Local deformations in the skull may 
generate compressive and tensile intra-cranial stresses and lesions in nearby brain regions.  
 

Operational blast waves may excite the head structure through more than one frequency band and 
potentially create lesions from a combination of the aforementioned mechanisms. For example, skull 
deformation may occur along with relative brain-skull motion, at different times but still within a 
single event. An important question to answer is which of these mechanisms dominates in the 
generation of brain stresses following blast exposure. Clearly, simple physical models, such as 
automotive test devices (ATD), which only records head global accelerations, cannot provide the 
answer to such question. Even though they can be representative of certain shock severity level and 
therefore certain risk of cerebral lesions, they cannot distinguish between lesion mechanisms [3].  The 
study of the effect of blast on the brain requires a more direct measurement.  
  

When a high-pressure blast wave travels across a body (head), it reflects off and diffracts around 
to form a transient pressure field that is unique to each individual blast scenario. This pressure field is 
influenced by the blast propagation direction, magnitude and duration at the location of interaction, but 
also by surrounding reflecting surfaces, including the ground. The stresses generated within the brain 
following blast exposure therefore also depend on all of these characteristics.  
 

The BI2PED headform shown in Figure 1 has been developed by Defence Research and 
Development Canada (DRDC) Valcartier research center to characterize head external pressure field 
history following any given blast exposure, to predict resulting global head acceleration and brain 
intra-cranial pressure (ICP) variations. It is understood that biological material failure in a real scenario 
may also occur under shear loads, but it is assumed that ICP is representative of the magnitude of 
injurious stresses generated within the brain. Shear stresses or strain within brain or brain-like 
materials would be very difficult to measure experimentally. It has been shown that the BI2PED 
presents the necessary physiological feature and representative selection of material to estimate head 
response to blast [11]. Nevertheless, a critical aspect of this physical model to fully meet its purpose is 
the validation of its response against real human head response (post-mortem). Until this is achieved, 
there is no guarantee the evolution of ICP follows that from a human head.  
 

Bir et al. [10] has recently reported blast wave generator tests where instrumented post-mortem 
human subjects (PMHS) heads were subjected to blast waves of 3 different intensities and in 4 
different orientations. Fluctuation in intra-cranial pressures was monitored at 4 locations within the 
brain and skull strains were measured at 5 locations. This parametric approach rendered a dataset that 
is well fitted to begin the validation process of the BI2PED. It is understood that the full injury cascade 
cannot be assessed using PMHS, but the BI2PED model focuses on reproducing the mechanical 
response of the head and the stress transmission mechanism, not the injury itself. Through a 
collaboration agreement, DRDC Valcartier Research Center and Wayne State University (WSU) 
Biomedical Engineering Department teamed up to replicate the reported PMHS tests using the BI2PED 
headform. Loading conditions, instrumentation type and position as well as head mounting technique 
were reproduced to ensure that the only difference between the two series of experiments was the use 
of BI2PED or PMHS. Direct comparison of measured ICP histories was therefore possible. 
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4. CONCLUSION  
 
Previously reported PMHS blast tests were methodically replicated using the DRDC Valcartier 
research center physical head model named BI2PED. The loading conditions, instrumentation type and 
position as well as head mounting technique were reproduced to ensure that the only difference 
between the two series of experiments was the use of BI2PED or PMHS. The loading obtained from 
the blast wave generator was compared to free-field blast loading and it was confirmed that the 
generator produced relevant loading magnitude and duration for the study of blast-induced TBI. 
Excellent reproducibility was obtained on the BI2PED intra-cranial pressure measurements. A direct 
comparison of measured occipital ICP revealed good agreement between the headform and PMHS for 
three blast intensities (80, 100 and 120 kPa) and two blast orientations (parallel and perpendicular). 
The ICP magnitudes were particularly close to the PMHS ones, while the frequency of the oscillations 
was slightly higher in the headform. The BI2PED exhibited specific ICP oscillations around 1000-1200 
Hz in both orientations while the PMHS ICP oscillations were respectively around 700 Hz and 500 Hz 
in the parallel and perpendicular orientations. Based on previous work correlating skull local 
deformation to early-time ICP variations, these frequencies are linked to the skull natural resonance 
frequencies. The results suggest that the BI2PED skull assembly may be slightly too stiff compared 
with the chosen PMHS. The design of the BI2PED skull could be refined but matching its response of a 
very limited amount of PMHS specimen should be avoided and a survey on the variability of human 
skull modal response should be done first. There were a few discrepancies on the longer duration ICP 
variations. However, those variations are not believed to be representative of real human response 
since the head is no longer attached to the neck and body. The neck provides a compliance that is very 
different from the soft net in which the heads were mounted for the tests. Lower frequency ICP 
variations are associated with skull-brain relative motion and head global motion. The BI2PED brain is 
currently not attached to any spine-like structure in the cranial cavity and its movement is only 
constrained by the CSF and membranes so it is not currently designed to replicate relative brain-skull 
relative motion. However, the representative mass and center of gravity of the headform should ensure 
that a representative global motion can be obtained in an ideal test configuration. Overall, the BI2PED 
was in very good agreement with the PMHS on the early-time ICP variations, which is where the 
highest pressure peaks are observed. Assuming that blast-induced TBI may be correlated with these 
early peaks in ICP, the BI2PED would represent a very useful tool to assess the severity of different 
blast scenarios and help with the performance evaluation of protective headwear systems.   
 
5. REFERENCES  
 
[1] Bass C.R., Panzer M.B., Rafaels K.A., Wood G., Shridharani J., Capehart B., Brain injury from 

blast, Annals of biomed Eng., 40(1) (2012), 185-202. 
[2] Willinger R., Taleb L., Kopp C., J of Neurotrauma,12(4) (2012), 743-754 
[3] Willinger R., Biomechanical aspects of head trauma, Schmidt-Romhild, Lubeck, 1997, p29-57 
[4] Viano D.C, Biomechanics of head injury: Towards a theory linking head dynamic motion. Brain 

tissue deformation and neural trauma. Proceedings of the Stapp Car Crash Conf. 32: 1-20, 1988 
[5] Hodgson V.R., Gurdjian E.S., The response characteristics of the head with emphasis on 

mechanical impedance., Proceedings of the Stapp Car Crash Conference 11: 79-83, 1967  
[6] Stalnaker R.L., Fagel J.L., Driving point impedance characteristics of the head, J. of biomech., 4 

(1971), 127-139. 
[7] MossWC. King MJ, Blackman EG, Skull flexure from blast waves: a mechanism for brain injury 

with implication on for helmet design, Phys Rev Let, 103(2009), 108702. 
[8] Ganuple S., Alai A.,Plougonven E., Chandra N., Mechanics of blast loading on the head models in 

the study of traumatic brain injury using experimental and computational approaches, 
Biomechanics and Modelling in Mechanobiology, Springer, 2012.  

[9] Gupta R.K., Przekwas A., Mathematical models of blast-induced TBI, Frontiers in neurology, 4 
(2013). 

[10] Bir C., Bolander R., Leonardi A., Ritzel D., Vandevord P., Dingell J.D., A biomechanical 
prospective of blast injury neurotrauma, NATO RTO HFM-207 Symposium on A survey of Blast 
Injury across the full landscape of military operations, Halifax, 2010. 

[11] Ouellet S., Bouamoul A., Gauvin R., Binette J.S., Williams K.V., Martineau L. "Development of a 
Biofidelic Head Surrogate for Blast-Induced Traumatic Brain Injury Assessment", Proceedings of 
the Personal Armor System Symposium, Nuremberg, Germany, 2012 

[12] Leaonardi A., Bir C., Ritzel D., VandeVord P., Intracranial pressure increases during exposure to 
shock wave. J of Neurotrauma, 28 (2011), p.85-94.  


