

Malware memory analysis for non-specialists
Investigating publicly available memory image for the Stuxnet worm

R. Carbone
Certified Forensic Hacking Investigator (EC-Council)
GIAC Certified Incident Handler (SANS)
DRDC Valcartier

Defence Research and Development Canada
Scientific Report
DRDC-RDDC-2013-R1
November 2013

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2013.

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2013.

DRDC-RDDC-2013-R1 i

Abstract ……..

This report examines how an investigator can analyse an infected Windows® memory dump. The
author investigates how to carry out such an analysis using Volatility and other investigative
tools, including data carving utilities and anti-virus scanners. Volatility is a popular and evolving
open source-based memory analysis framework upon which the author has proposed a memory-
specific methodology for aiding fellow novice memory analysts. The author examines how
Volatility can be used to find evidence and indicators of infection. This report is the fourth in this
series concerning Windows malware-based memory analysis. This current work examines a
memory image infected with the Stuxnet worm.

Significance to defence and security

Canadian Armed Forces (CAF) networks are targets of choice for malware and directed attacks.
This particular report in a series provides junior incident handlers with the necessary knowledge
to handle and mitigate complex attacks from a memory snapshot. Using these simple, non-expert
level techniques, a larger number of junior incident handlers can help with serious incidents, as
opposed to relying entirely on the CAF’s limited software reverse engineers.

ii DRDC-RDDC-2013-R1

Résumé ……..

Dans ce rapport, on décrit comment un enquêteur procède pour analyser l’image mémoire d’un
système Windows® infecté. L’auteur étudie les techniques d’analyse au moyen de Volatility et
d’autres outils tels que les utilitaires de récupération de données et les scanneurs antivirus.
Volatility est un cadre populaire et évolutif d’analyse de la mémoire de source ouverte sur lequel
l’auteur s’appuie pour proposer une méthodologie propre à la mémoire dans le but d’aider ses
collègues analystes novices. L’auteur examine comment Volatility peut être utilisé pour trouver
des preuves ou des indices d’infection. Ce rapport est le quatrième d’une série consacrée à
l’analyse de la mémoire dans un environnement Windows® infecté par un maliciel. Le présent
ouvrage porte sur l’image mémoire infectée par le ver Stuxnet.

Importance pour la défense et la sécurité

Les réseaux des Forces armées canadiennes (FAC) constituent une cible de choix pour les
maliciels et les attaques dirigées. Dans cette série, le présent rapport fournit aux gestionnaires
d’incidents novices les connaissances nécessaires pour gérer les attaques complexes et les
atténuer à partir d’une image instantanée de la mémoire. L’utilisation de ces techniques simples et
non expertes permet à un plus grand nombre de gestionnaires d’incidents novices d’apporter leur
aide lors d’attaques sérieuses plutôt que de se fier entièrement aux experts limités en rétro-
ingénierie logicielle des FAC.

DRDC-RDDC-2013-R1 iii

Table of contents

Abstract …….. ... i
Significance to defence and security .. i
Résumé …….. ... ii
Importance pour la défense et la sécurité .. ii
Table of contents .. iii
List of tables ... vi
Acknowledgements .. viii
Disclaimer policy ... ix
Requirements, assumptions and exclusions ... x
Target audience .. xi
1 Background ... 1

1.1 Objective .. 1
1.2 Summary .. 1
1.3 Why write new tutorials? ... 2
1.4 Infected memory image metadata .. 2
1.5 Data carving ... 2
1.6 Malware and anti-virus scanners ... 2

1.6.1 Specifics .. 2
1.6.2 Caveat .. 2

1.7 Detailed list of software tools used .. 3
1.7.1 Anti-virus scanners .. 3
1.7.2 Data carving software .. 3
1.7.3 Volatility framework ... 3

1.8 Investigative methodology .. 4
Part 1 - Protecting the disk image: ... 4
Part 2 - Preliminary memory image scanning: .. 4
Part 3 - Data carving of memory image: ... 4
Part 4 - Volatility plugin based memory analysis: ... 6
Part 5 - Windows registry analysis: ... 8
Part 6 - Miscellaneous (optional): ... 9

2 Memory investigation and analysis of Stuxnet ... 10
2.1 Background .. 10

2.1.1 Mise-en-scène ... 10
2.1.2 About Stuxnet .. 10

2.2 Preliminary investigative steps .. 11
2.2.1 Safeguard the memory image .. 11
2.2.2 Preliminary anti-virus scanning results ... 11

iv DRDC-RDDC-2013-R1

2.2.3 Data carving and file hashing .. 11
2.2.4 Anti-virus scanning results for carved memory data files 12
2.2.5 Concerning the discovery of a malicious Flash file .. 13

2.3 Volatility analysis .. 13
2.3.1 Step 1: Background information, process listings and analysis 13

2.3.1.1 Imageinfo plugin .. 13
2.3.1.2 Pslist plugin .. 14
2.3.1.3 Psscan plugin .. 15
2.3.1.4 Differentiating the output between the pslist and psscan plugins 17
2.3.1.5 Psxview plugin ... 17
2.3.1.6 Summary and analysis .. 19

2.3.2 Step 2: State-based information and analysis .. 19
2.3.2.1 Cmdscan and consoles plugins ... 19
2.3.2.2 Connscan plugin ... 19
2.3.2.3 Connections plugin ... 20
2.3.2.4 Sockets and sockscan plugins ... 20
2.3.2.5 Examining the relationship between suspicious ports and

processes ... 21
2.3.2.6 Filescan plugin ... 22
2.3.2.7 Mutantscan plugin .. 24
2.3.2.8 Handles plugin .. 25
2.3.2.9 Threads plugin .. 26
2.3.2.10 Driverscan and DriverIRP plugins ... 28
2.3.2.11 Svcscan plugin .. 30
2.3.2.12 Ldrmodules plugin ... 31
2.3.2.13 Dlllist plugin ... 33
2.3.2.14 Summary and analysis .. 37

2.3.3 Step 3: Detection and analysis of suspicious processes, DLLs and drivers 38
2.3.3.1 Create data directories .. 38
2.3.3.2 Malfind plugin .. 38
2.3.3.3 Dlldump plugin .. 44
2.3.3.4 Moddump plugin .. 48
2.3.3.5 Summary and analysis .. 50

2.3.4 Step 4: Registry ... 50
2.3.4.1 Hivelist plugin .. 50
2.3.4.2 Printkey plugin ... 51
2.3.4.3 Userassist plugin .. 53

2.3.5 Step 5: Miscellaneous.. 53
2.3.5.1 Devicetree ... 53
2.3.5.2 Extract encryption keys .. 56
2.3.5.3 Summary and analysis .. 56

DRDC-RDDC-2013-R1 v

3 Conclusion .. 58
References 59
Annex A Volatility Windows-based plugins .. 63
Annex B NSRL file hash matches for carved memory data files ... 67
Annex C Anti-virus scanner logs for carved memory data files ... 69

C.1 Avast .. 69
C.2 AVG .. 69
C.3 BitDefender ... 70
C.4 Comodo ... 70
C.5 F-Prot ... 71
C.6 McAfee .. 71

Annex D Textual output from the malfind plugin .. 73
Annex E Output of Dlldump plugin for PIDs 668, 868, 940 and 1928 81

E.1 DLLs dumped for services.exe (PID 668) ... 81
E.2 DLLs dumped for lsass.exe (PID 868) .. 83
E.3 DLLs dumped for svchost.exe (PID 940) .. 83
E.4 DLLs dumped for lsass.exe (PID 1928) .. 85

Annex F Fuzzy hash matches for Dlldump-based DLLs ... 87
F.1 Fuzzy hash matches for DLL memory samples .. 87
F.2 Fuzzy hash similarities between DLL memory samples and carved memory data

files .. 90
Annex G Commonly used registry keys in a typical malware infection 95

G.1 Recommended registry keys for use with Volatility ... 95
G.2 Root Registry Keys .. 97

Bibliography .. 99
List of symbols/abbreviations/acronyms/initialisms ... 100
Glossary 102

vi DRDC-RDDC-2013-R1

List of tables

Table 1: Infected memory image metadata. .. 2

Table 2: List of anti-virus scanners and their command line parameters. 3

Table 3: Matching of potentially infected carved memory data files vs. scanner. 12

Table 4: Volatility Pslist plugin output (sorted by PID). ... 14

Table 5: Volatility Psscan plugin output (sorted by PID).. 16

Table 6: Volatility Psxview plugin output (sorted by PID). .. 18

Table 7: Volatility Sockets and Sockscan plugins output (sorted by PID). 20

Table 8: Suspicious Port vs. suspicious PIDs and PPIDs (sorted by PID). 21

Table 9: Volatility Filescan plugin output for suspicious files. ... 22

Table 10: Filenames of past analyses concerning malware processes, configuration files and
dropper. ... 23

Table 11: Volatility Mutantscan plugin output of suspicious mutexes. .. 24

Table 12: Volatility Handles plugin output for suspicious handles (sorted by PID). 25

Table 13: Threads plugin output for BasePriority vs. Priority (sorted by PID/TID). 26

Table 14: Volatility Driverscan plugin output of suspicious drivers. .. 29

Table 15: Volatility Ldrmodules plugin output (sorted by PID). .. 31

Table 16: Verbose listing for plugin Ldrmodules specific to unknown
KERNEL32.DLL.ASLR* filenames (sorted by PID). .. 33

Table 17: Volatility Dlllist plugin output for suspicious DLLs KERNEL32.DLL.ASLR*
(sorted by PID). ... 33

Table 18: Scanners results for Malfind-dumped samples (sorted by scanner). 39

Table 19: File type determination for infected memory samples (sorted by filename). 41

Table 20: PID attribution concerning scanner detected infected files for Malfind-dumped
samples (sorted by PID). ... 41

Table 21: Fuzzy hash matches for Malfind-dumped memory samples (sorted by %). 42

Table 22: Number of DLLs dumped per specified PID for Dlldump plugin (sorted by PID). 44

Table 23: Scanners results for dumped Dlldump-based memory samples (sorted by scanner). ... 45

Table 24: Association between scanner-identified malware for Dlldump-based memory
samples and PID/Process name (sorted by PID). .. 46

Table 25: Metadata concerning Moddump-based driver MRxCls. ... 48

Table 26: Metadata concerning Moddump-based driver MRxNet. ... 48

Table 27: AV scanner detection of Moddump-based driver MRxCls. .. 49

DRDC-RDDC-2013-R1 vii

Table 28: AV scanner detection of Moddump-based driver MRxNet. ... 49

Table 29: Volatility Hivelist plugin output. ... 50

Table 30: List of Volatility 2.2 plugins. .. 63

Table 31: SHA1 hash vs. NSRL filename for carved memory data files. 67

Table 32: Fuzzy hash matches between Dlldump-based memory samples (sorted by %). 87

Table 33: Fuzzy hash similarities between Dlldump-based memory samples and carved
memory data files (sorted by %). .. 91

viii DRDC-RDDC-2013-R1

Acknowledgements

The author would like to thank Mr. Francois Rheaume, Defence Scientist, for conducting a
preliminary review and peer review of this text and providing helpful comments to improve it.
Moreover, the author would also like to extend his thanks to Mr. Martin Salois, Defence Scientist,
for translating portions of this text.

DRDC-RDDC-2013-R1 ix

Disclaimer policy

It must be understood from the outset that this report examines computer malware and that
handling virulent software is not without risk. As such, the reader should ensure that he has taken
all the necessary precautions to avoid infecting his own computer system and those around him,
whether on a corporate network or isolated system.

The reader must neither construe nor interpret the work described herein by the author as an
endorsement of the aforementioned techniques and capacities as suitable for any specific purpose,
construed, implied or otherwise. Moreover, the author does not endorse the specific use of any
specific anti-virus product, the use of Volatility or any data carving technology. Many similar
software tools, utilities and scanners exist beyond those used herein. They may be commercial or
free and open source in nature and as such, the onus is on the reader to determine which software
best suits his specific needs. While the author felt most comfortable working from within a Linux
environment, the author does not specifically recommend the use of such a system for the reader.
Instead, the reader should use the environment in which he is most comfortable.

Furthermore, the author of this report absolves himself in all ways conceivable with respect to
how the reader may use, interpret or construe this report. The author assumes absolutely no
liability or responsibility, implied or explicit. Moreover, the onus is on the reader to be
appropriately equipped and knowledgeable in the application of digital forensics. Due to the
offensive nature of computer malware, the author is no way responsible for the reader’s use of
any malware, whether examined herein or otherwise, in any offensive or defensive nature against
any entity, even against the reader himself, for any purposes whatsoever, for any construed
reasons.

Finally, the author and the Government of Canada are henceforth absolved of all wrongdoing,
whether intentional, unintentional, construed or misunderstood on the part of the reader. If the
reader does not agree to these terms, then his copy of this report must be destroyed. Only if the
reader agrees to these terms should he or she continue in reading it beyond this point. It is further
assumed by all participants that if the reader has not read said Disclaimer upon reading this report
and has acted upon its contents, then the reader assumes all responsibility for any repercussions
that may result from the information and data contained herein.

x DRDC-RDDC-2013-R1

Requirements, assumptions and exclusions

The author assumes that the reader is altogether familiar with digital forensics and the various
techniques and methodologies associated therein. This report is not an introduction to digital
forensics or to said techniques and methodologies. However, the author has endeavoured to
ensure that the reader can carry out his own forensic analysis of a computer memory image
suspected of malware infection based on the information and techniques described herein.

The experimentation conducted throughout this report was carried out atop a Fedora Core 19 64-
bit Linux operating system. Six different anti-virus scanners were used throughout this
investigation. They include, in alphabetical order, Avast, AVG, BitDefender, Comodo, FRISK F-
Prot and McAfee command line scanners. As for data carving tools and utilities, the author used
Photorec version 6.14, part of the Testdisk (version 6.14) suite of data recovery tools.

The reader must have permission to use these tools on his computer system or network. Use of
these tools and the analysis of virulent software always carry some inherent risk that must be
securely managed and adequately mitigated.

An in-depth study of memory analysis techniques is outside the scope of this work, as it requires
a comprehensive study of operating system internals and software reverse engineering techniques,
both of which are difficult subjects to approach. Instead, this work should be considered as a
guide to using the Volatility memory analysis framework with respect to malware infection and
analysis.

When working with or examining files and data generated using various Volatility plugins, the
use of the terms processes, memory sample files and memory dump files are used
interchangeably.

Finally, the use of masculine is employed throughout this text to simplify it.

DRDC-RDDC-2013-R1 xi

Target audience

The targeted audience for this report is the computer forensic investigator who assesses suspect
computer memory images for evidence of infection. Although computer memory analysis is a
new field within the realm of digital forensics, there are those who have been conducting malware
analysis and software reverse engineering for years, long before it came to the attention of today’s
practitioners. Thus, those seasoned veterans are aptly skilled, having taken years to develop their
abilities. As such, the Volatility framework, while capable of providing insight to novices, is all
the more capable in expert hands.

The author has written this report for others who, like himself, are required from time to time to
conduct memory malware assessments and investigations. However, the author, like many others,
is not seasoned enough to take full advantage of Volatility’s capabilities. As such, this report
combines both traditional forensic investigative techniques, coupled with Volatility’s non-expert
(non-reverse engineering) plugins, in order to develop an investigative how-to for non-memory
experts.

xii DRDC-RDDC-2013-R1

This page intentionally left blank.

DRDC-RDDC-2013-R1 1

1 Background

1.1 Objective

The objective of this report is to examine how a computer forensic investigator, without
specialised computer memory or software reverse engineering knowledge, can successfully
investigate a memory image suspected of infection. More specifically, this report provides both a
methodological basis and demonstrable techniques that a novice memory analyst can use as a
basis for investigating suspected memory images.

The work carried out herein is based on the publicly available memory image for Stuxnet. This
document is the fourth in a series of many. Ultimately, these reports will provide a
methodological and foundational framework that novice and experienced investigators alike can
rely on for guidance.

1.2 Summary

While memory analysis has largely been carried out by software reverse engineers and malware
analysts, the advent of memory analysis-based forensic frameworks such as Volatility has made it
possible for non-memory specialists to engage in the forensic analysis of malware-infected
memory images. By combining Volatility, data carving utilities and anti-virus scanners, novice
analysts have all the necessary tools required for conducting non-reverse engineering memory-
based investigations.

This report examines the investigative techniques necessary for an investigator to conduct such
memory analyses on his own. The first report written on this topic by the author examined the
Zeus Trojan horse, found in TM 2013-018 [1], while the second examined the Prolaco worm and
SpyEye Trojan horse, found in TM 2013-155 [2]. The third report examined the R2D2 Trojan
horse; it is available in TM 2013-177 [3].

This specific report examines the Stuxnet worm, a highly complex piece of malware, in order to
complement the ongoing assembly of quality tutorials in order to build a compendium of
knowledge that can be used by the Canadian Armed Forces and our partners as a basis for
conducting their own investigations. This series of reports examines various Windows-based
malware infected memory images. It is hoped that these documents will serve as a learning guide.

Although others have engaged in the analysis of many of these publicly available memory
images, the author is of the opinion that these analyses are insufficient for use as learning guides.
Specifically, these analyses are either too limited in their investigative scope or provide too little
information to be of use to budding memory analysts. Moreover, many of the analyses leave the
reader asking more questions than when he began, due to their overall lack of use of a
comprehensive investigative context. Thus, the author has strived to ensure that his investigative
actions and lines of inquiry were well documented, even if some portions of a given investigation
are unsuccessful, in order to ensure that the investigative context used was coherent.

2 DRDC-RDDC-2013-R1

This work was carried out over a period of several months as part of the Live Computer Forensics
project, an agreement between DRDC Valcartier and the RCMP (SRE-09-015, 31XF20).

The results of this project will also be of great interest to the Canadian Forces Network
Operations Centre (CFNOC), the RCMP’s Integrated Technological Crime Unit (ITCU), the
Sûreté du Québec and other cyber investigation teams.

1.3 Why write new tutorials?

The purpose of writing new tutorials was addressed in the first report of this series. [1]

1.4 Infected memory image metadata

The infected memory image for Stuxnet was procured from the following location:
http://code.google.com/p/volatility/wiki/PublicMemoryImages. Its metadata, in uncompressed
form, is as follows:

Table 1: Infected memory image metadata.

Memory image name Size (in MiB) SHA1 hash value

stuxnet.vmem 512 (exactly) 6783d95883a32762042cae731887ae3693b030c1

1.5 Data carving

An in-depth examination of data carving can be found in two memorandums written by the
author, specifically [1, 4].

1.6 Malware and anti-virus scanners

1.6.1 Specifics

An examination of malware and anti-virus scanner specifics can be found in [1].

However, due to the complex and sophisticated hiding mechanisms of the Stuxnet worm, this
investigation relies more heavily on scanners.

1.6.2 Caveat

An analysis concerning the caveats of using malware and anti-virus scanners was conducted in
[1].

DRDC-RDDC-2013-R1 3

1.7 Detailed list of software tools used

1.7.1 Anti-virus scanners

This report makes use of six anti-virus scanners, the same six as those used in [3]. These six
scanners continue to represent a diverse cross-section of various detection mechanisms necessary
for the detection of diverse malware. Each scanner was updated September 17, 2013; the analysis
was carried out October 2013. Scanner specifics are listed in the following table:

Table 2: List of anti-virus scanners and their command line parameters.

Anti-virus scanner Command line parameters

Avast v.1.3.0 command line scanner avast -c

AVG 2013 command line scanner
version 13.0.3114 avgscan -H -P -p

BitDefender for Unices v7.90123
Linux-amd64 scanner command line bdscan (no parameters used)

Comodo Antivirus Product Version
1.1.268025.1 / Virus Signature
Database Version 16954

cmdscan -v -s

FRISK F-Prot version 6.3.3.5015
command line scanner

fpscan -u 4 -s 4 -z 10 --adware --applications
--nospin

McAfee VirusScan for Linux64
Version 6.0.3.356 command line
scanner

uvscan --RECURSIVE --ANALYZE --
MANALYZE --MIME --PANALYZE --
UNZIP --VERBOSE

1.7.2 Data carving software

Photorec was used for data carving. The specifics concerning program settings were examined in
[1].

1.7.3 Volatility framework

An examination of Volatility, its capabilities, main authors and contributors is found in [1].

A list of Windows-specific plugins currently supported by this version of Volatility is described
in Annex A.

4 DRDC-RDDC-2013-R1

1.8 Investigative methodology

The overall investigative methodology, first proposed in [1] updated in [2], has been further
clarified and lightly amended in this report. It is an approach to handling forensic memory
investigations for non-reverse engineers and memory specialists. As more memory infections are
examined by the author in ensuing reports, this methodology will likely be updated to reflect
additional techniques required to adequately investigate the underlying memory image.

The methodology is both deductive and inductive. Starting with results obtained through
scanning, carving, application of various Volatility plugins and combinations thereof, deductive
reasoning is applied in order to determine the source or trigger of the infection. Inductive
reasoning is then applied to identified (through scanning, string or hexadecimal analysis) malware
to determine how the infection took hold and compromised the memory image.

This methodology can be summarised using the following steps:

Part 1 - Protecting the disk image:

Ensure that the memory image has been set as read-only to prevent accidental changes or
modifications from occurring to the image:

1. This varies according to the operating system used to perform the analysis and the underlying
features of the filesystem that the memory image resides upon.

2. UNIX and Linux provide root-enabled mechanisms for filesystem-based read-only
enforcement.

3. The reader may choose to use non-UNIX/Linux filesystems.

Part 2 - Preliminary memory image scanning:

Analyse the suspect memory image with multiple anti-virus scanners:

1. Some scanners can perform in-depth analysis of memory images and in many instances,
determine the nature of the underlying infection.

a. Some of the scanners require the use of command line parameters while for others it
is either optional or unnecessary. Mileage will vary according to the scanner in
question.

2. Save the output from the various scanners.

Part 3 - Data carving of memory image:

Using an advanced data carving utility, carve all potential data and files from the suspect image:

1. Use one highly capable data-carving tool instead of several mediocre tools.

DRDC-RDDC-2013-R1 5

2. Perform hashing against all carved data memory files:

a. SHA1 hashing:

i. Determine if any SHA1 matches can be identified against known hash-sets (.e.g.,
NSRL or HashKeeper hash-sets). Save any identified hash-set matches.

a) If known “good” files are identified, they can be excluded from subsequent
analysis.

b) If known “bad” files are identified, these may be further examined using
subsequent analyses.

c) The application of “good” and “bad” files is optional. If they are not applied,
then all carved data memory files, upon hashing, are to be subject to further
analyses.

b. Fuzzy (CTPH) hashing:

i. Conduct fuzzy hashing against all carved data files and save the fuzzy hashes for
use in subsequent steps.

3. Run the anti-virus scanners against all carved data and files, with attention focused on
correlating scanner results:

a. Files identified as “good” can be excluded from this step, if such identifications were
made.

b. If multiple scanners indicate a carved data memory file contains suspicious or
malicious content, then it should be considered of interest. The more scanners
corroborate the file’s suspicious or malicious nature, the more it should be considered
relevant to the investigation.

c. Files picked up by only one scanner, especially scanners prone to false positives, can
be considered as false positives, due to the nature of carved data memory files. These
files are often corrupt due to the manner in which carving finds and recovers detected
file signatures and structures.

i. False positives should nevertheless be examined using, at a minimum, strings-
based analysis. If this reveals nothing then the file can be considered “harmless.”
When uncertain, the false positive should be sent for reverse engineering
analysis.

d. Save the results from the various scanners and correlate the results.

6 DRDC-RDDC-2013-R1

Part 4 - Volatility plugin based memory analysis:

If a given memory image continues to remain suspect (i.e., evidence or indications of infection
have been found) then use the Volatility memory analysis framework to determine more about the
infection and possibly how it occurred:

1. For a corrupt or unreadable memory image:

a. It is possible that investigative endeavours using Volatility will not yield tangible
results.

b. All efforts to date (carving, scanning, Volatility, etc.) should be documented as a
Lessons Learned.

c. Terminate the investigation at this point and leave the methodology.

2. For a functional memory image:

a. Using non-reverse engineering Volatility analysis plugins, find and extract as much
information as possible concerning the underlying system, processes and threads that
were running, communications, registry settings (if applicable), open files, mutexes,
handles, etc.

i. There are many plugins to choose from and it is unlikely that they will all be of
use. Start by using plugins that are of immediate use (e.g., imageinfo, pslist,
psxview) before using more advanced plugins.

ii. Plugins in of themselves are not likely sufficient to put together the pieces, unless
something is particularly obvious. Analyses that are more complex will
undoubtedly require that investigative techniques be used to assemble an
understanding of what is infecting the memory image including potentially
piecing together how it occurred.

b. Once one or more suspected processes, threads, DLLs, drivers or data files have been
identified using the various plugins and/or investigative techniques, it is important
they be dumped from memory using appropriate Volatility plugins.

i. Plugins exist to dump DLLs, processes, and process’ memory space and drivers
(currently applies to Volatility 2.2).

ii. All dumped processes, process space, DLLs and drivers are to be scanned by all
available scanners to determine if they are malicious or potentially suspicious.
These files are then to be hashed (SHA1 and fuzzy) and compared against the
hashes of known files and the hashes of the carved data memory files.

a) Using all available scanners, determine which of the dumped memory sample
files (DLLs, process, etc.) are identified as malicious or suspicious. Cross-

DRDC-RDDC-2013-R1 7

scanner correlation is important and more weight should be applied to those
samples detected by more than one scanner.

b) SHA1 and fuzzy hash dumped memory samples are to be compared
appropriate data sources including lists of known files hashes (i.e., NSRL,
HashKeeper, etc.) and the SHA1 and fuzzy hashes of the carved data
memory files.

i) In so doing, it may be possible to corroborate some of the files obtained
through the carving of the memory file, a technique that can be used
against corrupted or unreadable files, and identify the similarities
between the various files (i.e., those carved from the memory image vs.
dumped DLLs vs. dumped processes vs. dumped drivers, etc.).

c) Based on the scanner results, work backwards to identify and correlate
Volatility plugin results to scanner results and dumped memory samples.
This is the basis of inductive reasoning.

iii. Any files dumped that the investigator deems potentially suspicious (i.e., DLLs
linked to a highly suspicious process or a very odd named driver) that were not
identified through scanning should be analysed using alternative means.

a) Alternative means includes string and hexadecimal analysis. Reverse
engineering efforts are not examined in this methodology. Certain file and
hex editors provide the ability to parse and analyse files. Very often,
malicious software (DLLs, drivers and processes) will contain suspicious
keywords, values, strings or Windows API functions.

i) Various whitelists and blacklists for Windows APIs are available. The
user must be aware that these may be pertinent specific versions of
Windows.

b) If nothing is found using strings and hexadecimal analysis, then reverse
engineering efforts may be required.

iv. If no suspicious or malicious content can be found in the dumped memory
samples, whether through scanning, string or hexadecimal analysis and reverse
engineering efforts are not possible, then cease further analysis and ensure that
all work, analyses and results are documented.

a) However, even if the malware is not in memory anymore, sometimes the
cross-correlation of information from the various Volatility plugins may lead
the investigator to suspect or determine that one or more disk-based files or
network connections may have been responsible for the infection (or at least
involved to some extent).

b) Reasons why the malware may no longer be memory-resident:

8 DRDC-RDDC-2013-R1

i) Some malware can force the system to page them out so that they cannot
be dumped or analysed from memory. Direct pagefile analysis, without
memory contents is very difficult and may be a good location to hide.

ii) Some malware guard against memory dumping and have the ability to
unload from memory in the event memory acquisition is detected.

c) Cease further memory analysis and if possible forensically acquire the disk
from whence the memory image was obtained.

i) If it is not possible to obtain the disk image, cease and terminate the
analysis and leave the methodology.

ii) With the disk image in hand, it can be analysed for evidence of infection.
This type of analysis is not examined herein.

Part 5 - Windows registry analysis:

The Windows registry can be long and complex to analyse but Volatility provides various
Windows-specific plugins to aid in its analysis:

1. Extract UserAssist keys from the memory image using the Volatility userassist plugin.

2. Determine which registry hives are available in the memory image.

3. Armed with a list of potential registry keys commonly used by malware, generate a script that
queries the variously identified hives for the presence of these keys. Generating the script
takes only a few minutes using command line data processing tools to create them.

a. This assumes the reader has a thorough understanding of UNIX command line data
processing tools and the piping of output/input between programs in order to auto-
generate functional scripts.

i. This is the approach taken by the author but the reader is free to choose whatever
approach he is most comfortable using.

ii. The author has provided a list of commonly used registry keys targeted by
malware, which is frequently revised.

4. Running the auto-generated script takes a few minutes and requires no user intervention,
assuming the script was produced correctly.

5. Reading the script’s output typically takes only a few minutes. Registry keys containing
evidence or indicators of compromise are not generally difficult to find. However, depending
on the nature of the malware in question, and the manner in which data was encoded into a
given key, it may take more time.

6. If no pertinent registry information can be obtained from the memory image, then strings-
based extraction and analysis can be used:

DRDC-RDDC-2013-R1 9

a. Using strings-based extraction, find and extract all 7, 8, 16 and 32-bit strings from
the memory image and all suspect or infected process-based dumps.

b. This type of analysis can very easily generate millions of strings, even for moderately
sized memory images:

i. In order to readily analyse this quantity of data, relevant and context appropriate
keyword or wordlist searches are required.

a) Selecting or choosing appropriate keywords or wordlists is not necessarily
straightforward. At a minimum, they should be context sensitive and reflect
the evidence thus far obtained.

c. Based on the results from keyword/wordlist searches, establish and determine (if
possible) both the possible presence and behaviour of the malware.

Part 6 - Miscellaneous (optional):

Once Volatility and/or other analyses have been completed, it may be in the interest of the
investigation to conclude by identifying additional information about the memory image and its
contents:

1. Encryption key detection:

a. Various malware utilise various means for encrypting their network communications.
Various FOSS and COTS software exist to identify and extract different types of
encryptions keys embedded within a memory image:

i. These include AES, RSA, Serpent and Twofish, as well as others.

ii. The FOSS tools commonly used are aeskeyfind, rsakeyfind and interrogate.

iii. COTS software typically find the keys and are then used to bypass disk
encryption software.

iv. In theory, any network-encrypted communications could be decrypted with the
correct decryption key:

a) This delves into cryptography and reverse engineering techniques, outside
the scope of the methodology.

2. Establish the Windows devices used by a suspicious or malicious device driver:

a. If a suspicious or malicious device driver is dumped from the memory image, using
Volatility’s devicetree plugin will enable investigators to determine what devices are
used or created by the driver.

10 DRDC-RDDC-2013-R1

2 Memory investigation and analysis of Stuxnet

2.1 Background

2.1.1 Mise-en-scène

This analysis examines a memory image suspected of harbouring the Stuxnet worm, as based on
the methodology put forward in Section 1.8. Much information is available on the web
concerning this specific infection. References [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18]
provide a wealth of information.

However, in contrast to previous reports by the author that used malware reports for information
regarding the underlying infection [1, 2] this report does not. Instead, these reports and other
sources of information are cited for the reader’s use rather than for the author’s investigative
analysis. Moreover, as with previous analyses [1, 2, and 3], no use was made of existing
Volatility analyses.

Specifically, in order to gain practical experience analysing memory images, the author is of the
opinion that there is no substitute for applying keen attention to detail. This approach, while non-
intuitive in nature, is adept at identifying out of the ordinary minutiae. Thus, this specific
investigation, while applying the methodology outlined in Section 1.8, will also point out detected
anomalies that may indicate potential indicators of compromise or other infection-based evidence.

2.1.2 About Stuxnet

The Stuxnet worm is an advanced Windows-specific malware that spreads via the network and
USB flash/thumb drives. The origins of the worm are not known with certainty but it is alleged to
be state-sponsored and to have been designed to target Iran’s nuclear program, specifically its
uranium enrichment centrifuges. Although it is not known with certainty who broke the story of
the Stuxnet worm it is known that it was first identified by Belarusian anti-virus company
VirusBlokAda, sometime in June 2010. It is also known that Kaspersky Labs and F-Secure were
one of the very first virus labs to have received samples of the worm. Moreover, there are at least
two known strains of the worm, with the second being more advanced and virulent than the first.
The worm uses four specific Windows-based zero-day exploits to spread and perform privilege
escalation attacks which have since that time been addressed by Microsoft through the application
of various patches. [5, 6, 7, 8, 9 and 10]

The main objective of the worm is to infect Windows computer systems and networks with PLC-
based SCADA systems. More specifically, it is thought that this worm specifically targets the
SCADA control systems used by Iran for its uranium enrichment program, although it is possible
that other non-centrifugal SCADA systems could become infected. [5, 6, 7, 8, 9 and 10]

Stuxnet is a very complex piece of malware, unlike anything else known up until the time of its
discovery. Thus, attempting to define the worm’s capabilities and the various mechanisms it uses
to achieve its objective is complicated due to its many capabilities. However, it is important to

DRDC-RDDC-2013-R1 11

emphasize that the worm is capable of delivering various payloads, some incorporated directly
into the worm while most are downloaded via C&C servers. These payloads are then deployed by
the worm to exploit the variously encountered environments and possible PLC and SCADA
specific capabilities found on target systems and networks. [11, 12, 13, 14, 15, 16, 17 and 18]

2.2 Preliminary investigative steps
The steps examined in this subsection should be considered as required preliminary steps for
examining a potentially infected memory image.

2.2.1 Safeguard the memory image

The memory image stuxnet.vmem was set to immutable atop an Ext4-based filesystem. The
command used to perform this, carried out as the root user, was:

 $ sudo chattr +i stuxnet.vmem

This results in a memory image that can no longer be modified, even by the root user. This is to
prevent accidental modifications from occurring to this file.

2.2.2 Preliminary anti-virus scanning results

Scanning only the memory image itself with the six scanners outlined in Section 1.7.1, the only
scanner that identified the memory image as infected was Avast. Its output was as follows:

./analysis/stuxnet.vmem [infected by Win32:Small-HTYB
[Trj]]

Preliminary anti-virus scanner examination indicates that this memory image is likely infected
with some malware. However, the type, as based on the message from Avast, is too generic for
positive identification. It appears that Avast was the only scanner capable of at least partially
examining the memory image’s internal structures. All anti-virus results were recorded and saved.

2.2.3 Data carving and file hashing

Photorec succeeded in recovering 2,544 files carved from the memory image as per the
recommended Photorec settings put forward in Section 1.7.2. 82 duplicate files were found,
thereby leaving 2,462 unique files recovered. Of the 2,544 recovered files, 864 were identified as
PE-based files. Of those, 524 were identified as Windows 32-bit DLLs, while 340 were identified
as standard Windows 32-bit PEs (no device drivers detected). No 64-bit PE-based files were
identified. Three files were identified as UPX-based. Finally, five files were identified as MS-
DOS 16-bit executables for Windows 3.x and one DOS batch file was identified.

Other file types were detected but were of no immediate use. However, their types were recorded
and saved for possible future use within this analysis.

All recovered files were SHA1-hashed and then validated against NSRL hash-set 2.41 (June
2013). Results were stored for future use. Nineteen unique SHA1 hashes were confirmed as

12 DRDC-RDDC-2013-R1

matching against the NSRL hash-set. However, in all 52 unique SHA1-based NSRL filenames
matches were identified which are found in Annex B.

Finally, CTPH-based hashing (fuzzy hashing) was conducted using the ssdeep tool against the
carved memory data files and the results stored for future use.

UPX-based unpacking failed as the executables were corrupted.

2.2.4 Anti-virus scanning results for carved memory data files

Using the six scanners and combining their output through UNIX command line processing tools
(e.g., cat, sort, find, tr, strings, awk, grep, uniq, etc.), multiple multi-scanner matches were
established. The match involving the most scanners was carved memory data file f0785768.exe. It
was detected by Avast, AVG, BitDefender and Comodo. All matches are shown in the table
below.

Specific logs for each scanner can be found in Annex C and matches are indicated accordingly
therein. Only four of the six scanners (Avast, AVG, BitDefender and Comodo) succeeded in
detecting one or more possible infections in the carved memory data files. In all, nine specific
multi-scanner matches were established based on the scanners’ results.

Table 3: Matching of potentially infected carved memory data files vs. scanner.

Potentially infected file Scanner matching

f0785768.exe Avast

 AVG

 BitDefender

 Comodo

f0843952.swf Avast

 AVG

f0595624.exe AVG

 BitDefender

f0583552.dll BitDefender

 Comodo

 f0573960.dll BitDefender

 Comodo

f0277432.dll BitDefender

 Comodo

DRDC-RDDC-2013-R1 13

Potentially infected file Scanner matching

f0264288.dll Avast

 AVG

f0264240.dll Avast

 AVG

f0262960.dll AVG

 BitDefender

2.2.5 Concerning the discovery of a malicious Flash file

Scanner matching provided by Avast and AVG identified carved memory data file f0843952.swf
as a malicious Flash file. Avast correctly recognized the file as CVE 2007-0071 (details available
in Annex C). Further research has corroborated this file as the aforementioned vulnerability and
reverse engineering efforts have substantiated the file’s maliciousness. It carries out an integer
overflow attack allowing an attacker to execute arbitrary code. However, not all versions of Flash
are affected by this exploit. Modern implementations are no longer susceptible to it.

It is unknown how this file found itself in this infected memory image. The exploit is altogether
unrelated to Stuxnet and no correlation could be found between it and the various malicious
content discovered throughout this investigation specific to Stuxnet.

2.3 Volatility analysis

In order to investigate this specific memory image the use and output of various Volatility plugins
are examined. All plugin-specific output was stored in appropriately named text files for possible
future use, for preserving the analysis workflow and maintaining adequate documentation.

2.3.1 Step 1: Background information, process listings and analysis

This step examines the various Volatility plugins used to provide background information and
context to the memory image. Process-based plugins are often able to provide important
indicators of infection or compromise. However, they are not particularly helpful for determining
if a computer system has been used inappropriately.

2.3.1.1 Imageinfo plugin

The imageinfo plugin is used to provide basic contextual information about a suspect memory
image. This should always be the first Volatility plugin used by an investigator.

Consider this plugin’s output using command “volatility -f stuxnet.vmem imageinfo”:

14 DRDC-RDDC-2013-R1

Determining profile based on KDBG search...

 Suggested Profile(s) : WinXPSP2x86, WinXPSP3x86
(Instantiated with WinXPSP2x86)
 AS Layer1 : JKIA32PagedMemoryPae (Kernel
AS)
 AS Layer2 : FileAddressSpace
(/media/scratch/Stuxnet_Report/stuxnet.vmem)
 PAE type : PAE
 DTB : 0x319000L
 KDBG : 0x80545ae0
 Number of Processors : 1
 Image Type (Service Pack) : 3
 KPCR for CPU 0 : 0xffdff000
 KUSER_SHARED_DATA : 0xffdf0000
 Image date and time : 2011-06-03 04:31:36 UTC+0000
 Image local date and time : 2011-06-03 00:31:36 -0400

This memory image appears to be running atop a 32-bit Windows XP computer system with
Service Pack 3. It is equipped with one PAE-based processor (1 core) and the memory image is
512 MiB in size (based on the memory image’s size determined using ls -l). The memory image
was captured June 3, 2011 at 00:31:36 EDT.

2.3.1.2 Pslist plugin

The next step is to identify which processes are running within the memory image in order to
determine if anything out of the ordinary is immediately visible. The pslist plugin provides a
detailed process listing. It makes use of virtual memory addressing and offsets. This should
always be the first Volatility process listing plugin used.

Consider this plugin’s output using command “volatility -f stuxnet.vmem pslist”:

Table 4: Volatility Pslist plugin output (sorted by PID).

Offset(V) Name PID PPID Thds Hnds Sess Wow64 Start Exit

0x823c8830 System 4 0 59 403 ------ 0

0x8205ada0 alg.exe 188 668 6 107 0 0 2010-10-29 17:09:09

0x81f14938 ipconfig.exe 304 968 0 -------- 0 0 2011-06-03 04:31:35 2011-06-03 04:31:36

0x81e86978 TSVNCache.exe 324 1196 7 54 0 0 2010-10-29 17:11:49

0x820df020 smss.exe 376 4 3 19 ------ 0 2010-10-29 17:08:53

0x821a2da0 csrss.exe 600 376 11 395 0 0 2010-10-29 17:08:54

0x81da5650 winlogon.exe 624 376 19 570 0 0 2010-10-29 17:08:54

0x81c543a0 Procmon.exe 660 1196 13 189 0 0 2011-06-03 04:25:56

0x82073020 services.exe 668 624 21 431 0 0 2010-10-29 17:08:54

0x81e70020 lsass.exe 680 624 19 342 0 0 2010-10-29 17:08:54

0x82279998 imapi.exe 756 668 4 116 0 0 2010-10-29 17:11:54

0x823315d8 vmacthlp.exe 844 668 1 25 0 0 2010-10-29 17:08:55

0x81db8da0 svchost.exe 856 668 17 193 0 0 2010-10-29 17:08:55

DRDC-RDDC-2013-R1 15

Offset(V) Name PID PPID Thds Hnds Sess Wow64 Start Exit

0x81c498c8 lsass.exe 868 668 2 23 0 0 2011-06-03 04:26:55

0x81e61da0 svchost.exe 940 668 13 312 0 0 2010-10-29 17:08:55

0x81c0cda0 cmd.exe 968 1664 0 -------- 0 0 2011-06-03 04:31:35 2011-06-03 04:31:36

0x822b9a10 wuauclt.exe 976 1032 3 133 0 0 2010-10-29 17:12:03

0x822843e8 svchost.exe 1032 668 61 1169 0 0 2010-10-29 17:08:55

0x81e18b28 svchost.exe 1080 668 5 80 0 0 2010-10-29 17:08:55

0x820ec7e8 explorer.exe 1196 1728 16 582 0 0 2010-10-29 17:11:49

0x81ff7020 svchost.exe 1200 668 14 197 0 0 2010-10-29 17:08:55

0x81e6b660 VMwareUser.exe 1356 1196 9 251 0 0 2010-10-29 17:11:50

0x81fee8b0 spoolsv.exe 1412 668 10 118 0 0 2010-10-29 17:08:56

0x81e0eda0 jqs.exe 1580 668 5 148 0 0 2010-10-29 17:09:05

0x81fe52d0 vmtoolsd.exe 1664 668 5 284 0 0 2010-10-29 17:09:05

0x8210d478 jusched.exe 1712 1196 1 26 0 0 2010-10-29 17:11:50

0x821a0568 VMUpgradeHelper 1816 668 3 96 0 0 2010-10-29 17:09:08

0x81fa5390 wmiprvse.exe 1872 856 5 134 0 0 2011-06-03 04:25:58

0x81fc5da0 VMwareTray.exe 1912 1196 1 50 0 0 2010-10-29 17:11:50

0x81c47c00 lsass.exe 1928 668 4 65 0 0 2011-06-03 04:26:55

0x820ecc10 wscntfy.exe 2040 1032 1 28 0 0 2010-10-29 17:11:49

Examining at the above listing, several issues have been highlighted (in red) as they represent
potentially suspicious processes. Specifically, Windows systems should typically only have one
instantiated process of lsass.exe. However, this system has three lsass-based processes running,
specifically PIDs 680, 868 and 1928. Moreover, PIDs 868 and 1928 were spawned by PID 668
(services.exe) while PID 680 was spawned by PID 624 (winlogon.exe). Something may be amiss,
as these two additional processes are not supposed to be spawned by services.exe but instead by
winlogon.exe.

In addition, from a command shell (PID 968) process PID 304 (ipconfig.exe) was spawned.
Finally, PID 660 (Procmon.exe) was spawned from PID 1196 (explorer.exe). These three
processes, cmd.exe, ipconfig.exe and Procmon.exe, respectively, were likely initiated by the
currently logged on user gives the impression that the user was searching for something to do
with IP address configuration information (ipconfig.exe) or process/thread management
(Procmon.exe).

Perhaps the psscan plugin will reveal additionally useful information.

2.3.1.3 Psscan plugin

The psscan plugin uses physical memory addressing and scans memory images for _EPROCESS
pool allocations, in contrast to the pslist plugin that uses virtual memory addressing and scans for
EPROCESS lists. The benefit of using this plugin is that sometimes it succeeds in listing
processes that cannot be found using other process listing plugins (i.e., pslist and pstree).

16 DRDC-RDDC-2013-R1

Consider the following output from this plugin, using command “volatility -f stuxnet.vmem
psscan”:

Table 5: Volatility Psscan plugin output (sorted by PID).

Offset(P) Name PID PPID PDB Time created Time exited
0x025c8830 System 4 0 0x00319000

0x0225ada0 alg.exe 188 668 0x0a940240 2010-10-29 17:09:09

0x02114938 ipconfig.exe 304 968 0x0a940380 2011-06-03 04:31:35 2011-06-03 04:31:36

0x02086978 TSVNCache.exe 324 1196 0x0a940180 2010-10-29 17:11:49

0x022df020 smss.exe 376 4 0x0a940020 2010-10-29 17:08:53

0x023a2da0 csrss.exe 600 376 0x0a940040 2010-10-29 17:08:54

0x01fa5650 winlogon.exe 624 376 0x0a940060 2010-10-29 17:08:54

0x01e543a0 Procmon.exe 660 1196 0x0a940260 2011-06-03 04:25:56

0x02273020 services.exe 668 624 0x0a940080 2010-10-29 17:08:54

0x02070020 lsass.exe 680 624 0x0a9400a0 2010-10-29 17:08:54

0x02479998 imapi.exe 756 668 0x0a940320 2010-10-29 17:11:54

0x025315d8 vmacthlp.exe 844 668 0x0a9400c0 2010-10-29 17:08:55

0x01fb8da0 svchost.exe 856 668 0x0a9400e0 2010-10-29 17:08:55

0x01e498c8 lsass.exe 868 668 0x0a940360 2011-06-03 04:26:55

0x02061da0 svchost.exe 940 668 0x0a940100 2010-10-29 17:08:55

0x01e0cda0 cmd.exe 968 1664 0x0a9403a0 2011-06-03 04:31:35 2011-06-03 04:31:36

0x024b9a10 wuauclt.exe 976 1032 0x0a940340 2010-10-29 17:12:03

0x024843e8 svchost.exe 1032 668 0x0a940120 2010-10-29 17:08:55

0x02018b28 svchost.exe 1080 668 0x0a940140 2010-10-29 17:08:55

0x022ec7e8 explorer.exe 1196 1728 0x0a940280 2010-10-29 17:11:49

0x021f7020 svchost.exe 1200 668 0x0a940160 2010-10-29 17:08:55

0x0206b660 VMwareUser.exe 1356 1196 0x0a9402e0 2010-10-29 17:11:50

0x021ee8b0 spoolsv.exe 1412 668 0x0a9401a0 2010-10-29 17:08:56

0x0200eda0 jqs.exe 1580 668 0x0a9401e0 2010-10-29 17:09:05

0x021e52d0 vmtoolsd.exe 1664 668 0x0a940200 2010-10-29 17:09:05

0x0230d478 jusched.exe 1712 1196 0x0a940300 2010-10-29 17:11:50

0x023a0568 VMUpgradeHelper 1816 668 0x0a940220 2010-10-29 17:09:08

0x021a5390 wmiprvse.exe 1872 856 0x0a9401c0 2011-06-03 04:25:58

0x021c5da0 VMwareTray.exe 1912 1196 0x0a9402c0 2010-10-29 17:11:50

0x01e47c00 lsass.exe 1928 668 0x0a9403c0 2011-06-03 04:26:55

0x022ecc10 wscntfy.exe 2040 1032 0x0a9402a0 2010-10-29 17:11:49

The information presented in this table appears the same as that presented by the pslist plugin.
Differentiating their output may help to determine if there are any differences between them. This
is done in the subsequent step.

DRDC-RDDC-2013-R1 17

2.3.1.4 Differentiating the output between the pslist and psscan plugins

Distinguishing between the output of the pslist and psscan plugins may not be obvious at first
glance. For this task, shell-based text processing is of significant use. By using the following
command, it is readily possible to differentiate between the output of the two plugins:

$ cat pslist.txt psscan.txt | awk '{print $2"\t"$3}' | sort
| uniq –c | grep –v “ 2”

This command results in the following output:

1 -------------------- ------
1 ---------------- ------

Thus, by using these commands, it was determined that there was no discernible difference in
their output. Perhaps the next plugin, psxview, will be of more assistance.

2.3.1.5 Psxview plugin

Volatility offers an additional capability for detecting hidden running processes. The psxview
plugin provides a detailed listing of processes in a memory image by using five specific process
detection methods. These include pslist, psscan, thrdproc, pspcdid and csrss. Moreover, the
plugin makes use of physical memory addressing.

Using this plugin, a process may be considered “hidden” if a given detection mechanism lists it as
FALSE. If it is listed as TRUE then it is visible to that mechanism. For a process to be considered
hidden, it should be invisible to, at a minimum, any non-csrss detection mechanism but it may
also be undetectable by additional mechanisms.

However, if a process is not seen by the pslist or psscan mechanisms then the process is without
doubt hidden. Even so, this is not in of itself indicative of a process being suspicious or malicious.
Instead, sometimes it has to do with how the process was spawned. Those processes listed as
hidden by thrdproc or pspcdid carry far less weight if both pslist and psscan list them as
“visible.” Investigators must consider many factors when deciding whether a given process is
hidden, pseudo-hidden or visible and this will depend on which mechanisms see it and those
which do not.

Sometimes processes may be marked as hidden by the csrss mechanism but they generally are not
hidden. Therefore, any process marked as hidden using this method requires that at least one
other mechanism detects it as hidden too. Consider that for Windows 7 and Vista systems, their
list of internal processes is not generally available for direct consultation. For Windows XP,
sometimes the required memory pages are swapped out. These various factors may affect the
outcome of the csrss mechanism. [19]

For example, consider that PIDs 304 and 968 from the following table are listed as hidden by the
thrdproc and csrss mechanisms but are visible to pslist, psscan and pspcdid. These processes are
therefore considered as visible.

Consider the plugin’s output using command “volatility -f stuxnet.vmem psxview”:

18 DRDC-RDDC-2013-R1

Table 6: Volatility Psxview plugin output (sorted by PID).

Offset(P) Name PID pslist psscan thrdproc pspcdid csrss
0x025c8830 System 4 TRUE TRUE TRUE TRUE FALSE
0x0225ada0 alg.exe 188 TRUE TRUE TRUE TRUE TRUE
0x02114938 ipconfig.exe 304 TRUE TRUE FALSE TRUE FALSE
0x02086978 TSVNCache.exe 324 TRUE TRUE TRUE TRUE TRUE
0x022df020 smss.exe 376 TRUE TRUE TRUE TRUE FALSE
0x023a2da0 csrss.exe 600 TRUE TRUE TRUE TRUE FALSE
0x01fa5650 winlogon.exe 624 TRUE TRUE TRUE TRUE TRUE
0x01e543a0 Procmon.exe 660 TRUE TRUE TRUE TRUE TRUE
0x02273020 services.exe 668 TRUE TRUE TRUE TRUE TRUE
0x02070020 lsass.exe 680 TRUE TRUE TRUE TRUE TRUE
0x02479998 imapi.exe 756 TRUE TRUE TRUE TRUE TRUE
0x025315d8 vmacthlp.exe 844 TRUE TRUE TRUE TRUE TRUE
0x01fb8da0 svchost.exe 856 TRUE TRUE TRUE TRUE TRUE
0x01e498c8 lsass.exe 868 TRUE TRUE TRUE TRUE TRUE
0x02061da0 svchost.exe 940 TRUE TRUE TRUE TRUE TRUE
0x01e0cda0 cmd.exe 968 TRUE TRUE FALSE TRUE FALSE
0x024b9a10 wuauclt.exe 976 TRUE TRUE TRUE TRUE TRUE
0x024843e8 svchost.exe 1032 TRUE TRUE TRUE TRUE TRUE
0x02018b28 svchost.exe 1080 TRUE TRUE TRUE TRUE TRUE
0x022ec7e8 explorer.exe 1196 TRUE TRUE TRUE TRUE TRUE
0x021f7020 svchost.exe 1200 TRUE TRUE TRUE TRUE TRUE
0x0206b660 VMwareUser.exe 1356 TRUE TRUE TRUE TRUE TRUE
0x021ee8b0 spoolsv.exe 1412 TRUE TRUE TRUE TRUE TRUE
0x0200eda0 jqs.exe 1580 TRUE TRUE TRUE TRUE TRUE
0x021e52d0 vmtoolsd.exe 1664 TRUE TRUE TRUE TRUE TRUE
0x0230d478 jusched.exe 1712 TRUE TRUE TRUE TRUE TRUE
0x023a0568 VMUpgradeHelper 1816 TRUE TRUE TRUE TRUE TRUE
0x021a5390 wmiprvse.exe 1872 TRUE TRUE TRUE TRUE TRUE
0x021c5da0 VMwareTray.exe 1912 TRUE TRUE TRUE TRUE TRUE
0x01e47c00 lsass.exe 1928 TRUE TRUE TRUE TRUE TRUE
0x022ecc10 wscntfy.exe 2040 TRUE TRUE TRUE TRUE TRUE

Based on the plugin’s output, no truly hidden processes were found for this memory image.

Although processes cmd.exe and ipconfig.exe are listed as hidden by the thrdproc detection
mechanism no concern should be given here, as it is normal for console-based single-threaded
programs instantiated directly from cmd.exe to be indiscernible via thread-based detection.

DRDC-RDDC-2013-R1 19

2.3.1.6 Summary and analysis

The Volatility pslist and psscan plugins have potentially found indicators of compromise. More
specifically, the detection of three lsass.exe based processes rather than the standard one process
is suspicious. Additional analyses will be conducted in the subsequent step to determine if there
are other indicators of compromise in this memory image.

2.3.2 Step 2: State-based information and analysis

This step examines various state-based plugins that can be used to establish additional evidence
of infection. These plugins often provide information that process-listing plugins cannot.

2.3.2.1 Cmdscan and consoles plugins

The cmdscan and consoles plugins may reveal additional information about commands typed into
a command shell.

The cmdscan plugin is used to query the process memory of csrss.exe or conhost.exe for possible
commands that may have been entered into the system shell (cmd.exe; i.e., PID 968) or through a
backdoor or RDP session by an attacker. Specifically, it looks for COMMAND_HISTORY based
structures left behind in memory. The scanning of csrss.exe applies to Windows XP, 2003, Vista
and Server 2008 while the use of conhost.exe applies to Windows 7. The effect of this plugin
against Windows 2000, 8 and Server 2012 is not currently known and has not been attempted by
the author. [16]

The consoles plugin is similar to cmdscan except that it searches for
CONSOLE_INFORMATION based data structures instead. More specifically, it provides the
command history of commands fed to the system shell (cmd.exe; i.e., PID 968) or through
backdoors and this data structure keeps both the input and output buffers for commands found
using this plugin. [16]

To query a memory image using these two plugins, the following commands are issued:

$ volatility -f stuxnet.vmem cmdscan

$ volatility -f stuxnet.vmem consoles

These two commands resulted in no output whatsoever.

2.3.2.2 Connscan plugin

The first network-based Volatility plugin that should be used is connscan. It is used to verify the
existence of ongoing network connections and scans a memory image for current or recently
terminated connections. This plugin makes uses of physical memory addressing.

Running command “volatility -f stuxnet.vmem connscan” resulted in no output whatsoever.

20 DRDC-RDDC-2013-R1

2.3.2.3 Connections plugin

The connections plugin is used to find evidence of both recently terminated and ongoing
communications. It therefore makes sense to use this plugin as it may reveal additional network-
based information. Moreover, this plugin supports both physical and virtual memory addresses.

Running command “volatility -f stuxnet.vmem connections” resulted no output whatsoever.

2.3.2.4 Sockets and sockscan plugins

Volatility offers two additional network-based plugins, sockets and sockscan. The sockets plugin
lists open sockets and may provide additional information about covert network channels, while
the sockscan plugin scans a suspect memory image for all TCP sockets. Generally, the output is
the same for both plugins with the exception of memory addresses, where the sockets plugin uses
virtual memory addressing while the sockscan plugin uses physical memory addressing.

Thus, using the following commands it will be possible to determine which processes are ready
for an incoming connection:

$ volatility -f stuxnet.vmem sockets > sockets.txt

$ volatility -f stuxnet.vmem sockscan > sockscan.txt

$ cat sockets.txt sockscan.txt | awk ‘{$1=””;print}’ | sort
-n | uniq > sockets_sockscan.txt

The output of these commands appears as shown in the following table:

Table 7: Volatility Sockets and Sockscan plugins output (sorted by PID).

PID Port Proto Protocol Address Create Time
4 445 17 UDP 0.0.0.0 2010-10-29 17:08:53
4 445 6 TCP 0.0.0.0 2010-10-29 17:08:53

188 1025 6 TCP 127.0.0.1 2010-10-29 17:09:09
680 0 255 Reserved 0.0.0.0 2010-10-29 17:09:05
680 4500 17 UDP 0.0.0.0 2010-10-29 17:09:05
680 500 17 UDP 0.0.0.0 2010-10-29 17:09:05
940 135 6 TCP 0.0.0.0 2010-10-29 17:08:55

1032 123 17 UDP 127.0.0.1 2011-06-03 04:25:47
1080 1141 17 UDP 0.0.0.0 2010-10-31 16:36:16
1080 1142 17 UDP 0.0.0.0 2010-10-31 16:36:16
1200 1900 17 UDP 127.0.0.1 2011-06-03 04:25:47
1580 5152 6 TCP 127.0.0.1 2010-10-29 17:09:05

Looking at this data it is not immediately possible for most investigators to discern legitimate
network port usage from suspicious usage. However, several important issues were determined.
Firstly, port 123 is open and attached to PID 1032 (services.exe), a port typically used for NTP-

DRDC-RDDC-2013-R1 21

based network time. This behaviour is not necessarily suspicious on its own. Nevertheless,
caution is advised as NTP is sometimes used for nefarious purposes. [20, 21 and 22]

PID 1080 (svchost.exe) is using ports 1141 and 1142, both of which are not part of the standard
Windows configuration and based on the list of running system processes, should not be in use.
Ports 1141 and 1142 are typically in use by Oracle User Service, not by the Windows svchost.exe
process, unless some specific service was configured. However, since these details are not
known, they may be considered moderately suspicious. [20, 21, 22 and 23]

PID 1580 (jqs.exe) is using port 5152, a port associated to with Java Quick Starter [26]. PID 1200
(svchost.exe) is using port 1900, a port sometimes used for network-enabled Plug’n’Play devices
[21, 22]. These ports and processes are not suspicious, as based on this information.

Finally, PID 188 (alg.exe) has an open port of 1025. This port should not normally be open for a
Windows XP-based system. This port could be in use if the system were a Windows Exchange
Server [24] or running IIS or NFS [25]. However, this system is performing none of duties.

Thus, at a minimum, ports 123 (PID 1032), 1025 (PID 188) and 1141/1142 (PID 1080) are
suspicious. The next subsection will examine the relationship between these processes and their
ports.

2.3.2.5 Examining the relationship between suspicious ports and processes

Based on the information established thus far, as per process-based listings, two additional
instances of process lsass.exe were found (a standard Windows systems should only ever have
one running instance). Moreover, based on the information obtained by examining and correlating
the sockets and sockscan plugins’ output, several suspicious ports were found. All these results
have been compiled into the following table, which paints an interesting story.

Table 8: Suspicious Port vs. suspicious PIDs and PPIDs (sorted by PID).

Port PID Process Name PPID Parent Process Name

1025 188 alg.exe 668 services.exe

N/A 868 lsass.exe 668 services.exe

123 1032 svchost.exe 668 services.exe

1141 1080 svchost.exe 668 services.exe

1142 1080 svchost.exe 668 services.exe

N/A 1928 lsass.exe 668 services.exe

Examining the above table, it is apparent that PID 668 (services.exe) is at the centre of this
system’s odd behaviour. However, it is entirely normal that processes such as svchost.exe and
alg.exe are spawned by services.exe. What is not normal, however, are some of ports, specifically
1025, 1141 and 1142 coupled with the fact that two lsass-based processes were spawned by
services.exe and not winlogon.exe. The issue of NTP time-based services is yet to be considered
suspect as many Windows systems use NTP to synchronize their clocks.

22 DRDC-RDDC-2013-R1

Additional evidence or indicators of compromise are required before proceeding with the
dumping of any specific process, DLLs or drivers from the memory image.

2.3.2.6 Filescan plugin

If an infection is active and does not show itself via the network then the filescan plugin may be
of assistance as it may be able to find open file handles in memory. Unfortunately, no direct link
to these files is possible as a physical disk image is not available for analysis. This plugin makes
use of physical address offsets.

The preferred method for detecting indicators of compromise is twofold. First, using keywords
(e.g., Stuxnet, infection, rootkit, worm, etc.) it may be possible to find the infection, as malware
programmers do not always use innocent looking filenames. Of course, this is at best a hit and
miss approach. Secondly, an investigator can attempt to detect suspicious files based on their
names and locations. However, this requires that the investigator have a very good working
knowledge of the underlying operating system. Just looking at filenames1 and locations will not
produce meaningful results, unless something really sticks out.

For this specific investigation, since emphasis is placed on detecting indicators of compromise
without the use of external documentation (i.e., malware reports), the investigator must studiously
examine this plugin’s output. Thus, running command “volatility -f stuxnet.vmem filescan,” after
extensive verification against the NSRL and after having ruled out various development,
debugging programs and other miscellaneous files found in the plugin’s output, six files stood
out. These files are listed in the following table:

Table 9: Volatility Filescan plugin output for suspicious files.

Offset (P) #Ptr #Hnd Access Name

0x01dfa028 1 0 R--r-- \Device\HarddiskVolume1\WINDOWS\inf\oem7
A.PNF

0x01e0d028 1 0 -WD--- \Device\HarddiskVolume1\WINDOWS\inf\mdm
eric3.PNF

0x021b53c8 1 0 RW---- \Device\HarddiskVolume1\WINDOWS\inf\mdm
cpq3.PNF

0x02340c30 1 0 R--r-d \Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\74ddc49a7c121a
61b8d06c03f92d0c13.exe

0x01eac6c8 1 0 -WD--- \Device\HarddiskVolume1\WINDOWS\system32
\drivers\mrxnet.sys

0x02137d18 1 0 R--r-d \Device\HarddiskVolume1\WINDOWS\system32
\drivers\mrxnet.sys

1 Recall that a reliable source of filenames is the NSRL hash-set. It can be broken down manually (using
command line text processing tools) by software product and operating system.

DRDC-RDDC-2013-R1 23

Offset (P) #Ptr #Hnd Access Name

0x0218a028 1 0 R r d \Device\HarddiskVolume1\WINDOWS\system32
\drivers\mrxcls.sys

0x0219d340 1 0 WD \Device\HarddiskVolume1\WINDOWS\system32
\drivers\mrxcls.sys

The information listed in the above table paints an interesting story. One PNF-based file,
specifically file oem7A.PNF has a very similar name to legitimate file oem7.PNF, as based on the
NSRL. The other two PNF files do not resemble any currently known NSRL-based files;
therefore, they are suspect.

File 74ddc49a7c121a61b8d06c03f92d0c13.exe is a suspiciously long non-descriptive filename
that is reminiscent of a malware dropper. As previously shown in past analyses conducted by the
author ([1, 2]), various malware configuration files and dropper filenames were found, as
examined in Table 10 below.

Files mrxnet.sys and mrxcls.sys, while similar in names to Windows drivers mrxdav.sys and
mrxsmb.sys, are not found in the NSRL, and are therefore suspect.

Thus, six suspicious files have been identified using the filescan plugin. It is possible that others
were present but could not be readily identified. Moreover, the information established thus far
indicates a possible malware dropper, possibly two malicious drivers and three unidentified PNF
files. The case for suspicious file 74ddc49a7c121a61b8d06c03f92d0c13.exe being used as a
malware dropper is seen in the following table:

Table 10: Filenames of past analyses concerning malware
processes, configuration files and dropper.

Report Filename

Zeus analysis [1] ZeuS_binary_5767b2c6d84d87a47d12da03f4f376ad.exe

Prolaco [2] 1_doc_RCData_61

SpyEye [2] \Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye\spyeye\edc7c152759ba0482bd39d
b0ea2c4319

SpyEye [2] \Device\HarddiskVolume1\Documents and
Settings\Administrator\Desktop\spyeye\spyeye\2b8a408b56eaf3ce0198c9d
1d8a75ec0

These filenames demonstrate a tendency for malware to use non-standard naming conventions,
one that should not be ignored.

24 DRDC-RDDC-2013-R1

2.3.2.7 Mutantscan plugin

The mutantscan plugin can sometimes reveal interesting information about Windows thread-
based mutexes in memory. This plugin makes use of physical offset addressing.

Using command “volatility -f stuxnet.vmem mutantscan” yielded the following pertinent
information after hours of pruning the output and validating suspicious mutexes against numerous
web-based searches:

Table 11: Volatility Mutantscan plugin output of suspicious mutexes.

Offset (P) #Ptr #Hnd Signal Thread CID Name
0x01e4dbe0 2 1 1 0x00000000 _!SHMSFTHISTORY!_

0x0205eae0 2 1 0 0x81fd8020 1032:1948 Instance0: ESENT
Performance Data Schema
Version 40

0x020e3980 14 13 1 0x00000000 SHIMLIB_LOG_MUTEX

0x02108bb0 2 1 0 0x81fc0020 668:568 PrefetchFileCacheOwner

0x0217e138 2 1 1 0x00000000 HGFSMUTEX000000000
00003e7

0x0228cb48 3 2 1 0x00000000 HGFSMUTEX000000000
0029b4c

0x023b75f8 2 1 0 0x81c6d180 668:476 {E41362C3-F75C-4ec2-
AF49-3CB6BCA591CA}

Although the output above was thoroughly examined and revised several times, it is likely that
other suspicious mutexes went unrecognized. Recognizing a suspicious mutex is very difficult
without an exceedingly strong knowledge of Windows-based reverse engineering.

A web search for strings “services.exe” and “ESENT Performance Data Schema Version 40”
reveals many virus and malware reports. The same occurred for strings
“_!SHMSFTHISTORY!_”, “SHIMLIB_LOG_MUTEX”, “PrefetchFileCacheOwner”,
“HGFSMUTEX00000000000003e7”, “HGFSMUTEX0000000000029b4c” and “{E41362C3-
F75C-4ec2-AF49-3CB6BCA591CA}”. Many of these searches revealed information about
Stuxnet-specific infections while others were more generic.

When considering that CID 1032 was spawned by PID 668 process services.exe is again at the
centre of things.

While these mutexes are likely indicative of malicious software lurking somewhere in memory,
some are more suggestive than others are. There is no doubt that understanding the various
mutexes in use at any given time within a given Windows system is a complex endeavour.
Unfortunately, there is no available mutex whitelist or blacklist. The investigator, until he has
sufficient reverse engineering skills, will have to rely on various web searches, which can take
many hours to complete and may reveal too much or too little information, all of which must be
evaluated by the investigator given the current investigative context and information on hand.

DRDC-RDDC-2013-R1 25

Running the handles plugin next may identify additional clues that may provide further context to
these suspicious mutexes.

2.3.2.8 Handles plugin

The handles plugin can reveal interesting information about processes and the resources attached
or associated to them that might not be found using the previously examined plugins. This plugin
makes use of virtual memory addressing.

Using command “volatility -f stuxnet.vmem handles,” the following pruned output is of interest to
the investigation and is as follows:

Table 12: Volatility Handles plugin output for suspicious handles (sorted by PID).

 Offset (V) PID Handle Access Type Details

0x82279998 668 0x200 0x1f0fff Process imapi.exe(756)

0x823315d8 668 0x270 0x1f0fff Process vmacthlp.exe(844)

0x81db8da0 668 0x284 0x1f0fff Process svchost.exe(856)

0x81e61da0 668 0x330 0x1f0fff Process svchost.exe(940)

0x822843e8 668 0x33c 0x1f0fff Process svchost.exe(1032)

0x81e18b28 668 0x378 0x1f0fff Process svchost.exe(1080)

0x81ff7020 668 0x38c 0x1f0fff Process svchost.exe(1200)

0x81fee8b0 668 0x398 0x1f0fff Process spoolsv.exe(1412)

0x81fe52d0 668 0x3b8 0x1f0fff Process vmtoolsd.exe(1664)

0x81e0eda0 668 0x3bc 0x1f0fff Process jqs.exe(1580)

0x8205ada0 668 0x49c 0x1f0fff Process alg.exe(188)

0x81c498c8 668 0x654 0x1f0fff Process lsass.exe(868)

0x81c47c00 668 0x660 0x1f0fff Process lsass.exe(1928)

0x8210e3a8 1032 0x870 0x1f0003 Event W32TIME_NAMED_EVENT_
SYSTIME_NOT_CORRECT

0x81dbc7b0 1032 0x888 0x12019f File \Device\NamedPipe\W32TIME

0x81dbc568 1032 0x88c 0x12019f File \Device\NamedPipe\W32TIME

Examining the above table, the many processes associated and instantiated by PID 668
(services.exe) becomes apparent. Handles associated with PID 668 were flagged due to the
evidence thus far accumulated signifying something likely nefarious about it.

Although PID 1032 (svchost.exe) was spawned by PID 668, suspicion is not drawn to it for this
reason but rather due to its handles’ association with NTP (network port 123). The three handles

26 DRDC-RDDC-2013-R1

for this process are indicative of network time-related services. Moreover, handle
W32TIME_NAMED_EVENT_SYSTIME_NOT_CORRECT is synonymous with malware and
Windows errors, as based on various web searches. Thus, this handle should also be flagged. The
two \Device\NamedPipe\W32TIME handles are not particularly worrisome.

It is likely that other suspicious handles were present but were not flagged due to the lack of
appropriate context in which to evaluate them.

2.3.2.9 Threads plugin

Two Volatility plugins are used in this section, specifically the threads. This plugin will be used
to process the results of the mutantscan and handles plugins as more information may be
determined concerning these processes and their threads.

The threads plugin searches for _ETHREADS and _KTHREADS data structures and uses virtual
memory addressing.

Because there are many processes to examine, keen evaluation of these plugins’ output of these is
required as there are potentially hundreds of threads to examine where each thread’s output
consists of many lines of text. Thus, in order to maximize both the use of the threads plugin and
UNIX command line processing tools, the following commands were issued to obtain
information concerning the threads from PIDs 668, 868, 1032 and 1928 (services.exe, lsass.exe,
svchost.exe and lsass.exe, respectively):

$ volatility -f stuxnet.vmem threads –p 668,868,1032,1928 |
grep Priority | grep –v BasePriority > threads_priority.txt

$ volatility -f stuxnet.vmem threads –p 668,868,1032,1928 |
grep BasePriority > threads_basepriority.txt

$ volatility -f stuxnet.vmem threads –p 668,868,1032,1928 |
grep ETHREAD > threads_ETHREAD.txt

$ pr -m -J -t threads_ETHREAD.txt threads_basepriority.txt
threads_priority.txt | awk '{print $2" "$4" "$6" "$8"
"$10}' | grep -v "0x8 0x8" | grep -v "0x9 0x9" | grep
-v "0xf 0xf" > threads_merged_suspicious.txt

The output from these commands has been compiled into the following table:

Table 13: Threads plugin output for BasePriority vs. Priority (sorted by PID/TID).

Offset (V) PID TID BasePriority Priority

0x81fce5e8 668 220 0x9 0xa

0x81fcdda8 668 348 0x9 0x10

0x81fb3448 668 472 0x9 0xa

0x820f0da8 668 824 0x9 0xa

DRDC-RDDC-2013-R1 27

Offset (V) PID TID BasePriority Priority

0x82331858 668 840 0x9 0x10

0x8220e3e8 668 872 0x9 0xa

0x82249658 668 928 0x9 0xa

0x8208f608 668 1088 0x9 0xa

0x82284b58 668 1092 0x9 0xa

0x82126bf0 668 1420 0x9 0xb

0x81dc8478 668 1484 0x9 0xa

0x81f492b0 668 1552 0x9 0x10

0x81deada8 668 1604 0x9 0xa

0x81e0e400 668 1720 0x9 0xa

0x8205a6f8 668 2008 0x9 0x10

0x822bbda8 868 1884 0x8 0x9

0x01e58aa0 1032 732 0x8 0x10

0x81fd6020 1032 744 0x8 0x9

0x021af468 1032 908 0x8 0x10

0x01e63da8 1032 1028 0x8 0x10

0x81ee01d0 1032 1044 0x8 0x9

0x81fa5758 1032 1056 0x8 0x9

0x8226f4d8 1032 1128 0x8 0x9

0x02331ae0 1032 1136 0x8 0x10

0x81c02208 1032 1228 0x9 0xb

0x81fa8858 1032 1304 0x8 0x9

0x81f65548 1032 1312 0x8 0x10

0x81ff8450 1032 1324 0x8 0x9

0x81cb0b30 1032 1388 0x8 0x9

0x81feeda8 1032 1404 0x8 0xa

0x81feeb30 1032 1408 0x8 0x9

0x81e0e020 1032 1576 0x8 0x9

0x821b27f8 1032 1660 0x8 0x10

0x81ca5020 1032 1752 0x8 0x9

28 DRDC-RDDC-2013-R1

Offset (V) PID TID BasePriority Priority

0x81daa668 1032 1796 0x8 0x9

0x81e62668 1032 1800 0x8 0x9

0x81e62240 1032 1804 0x8 0x10

0x821a0c28 1032 1824 0x8 0x10

0x82081460 1032 1828 0x8 0x9

0x81c71b40 1032 1888 0x8 0x9

0x81eebc28 1032 1892 0x8 0x10

0x8205a460 1032 1896 0x8 0x10

0x82270808 1032 1924 0x8 0xa

0x81fd35c8 1032 2000 0x8 0x9

0x821a3da8 1032 2004 0x8 0x9

0x81d9e2d0 1032 2012 0x8 0x9

0x82059c18 1032 2016 0x8 0x9

0x81e14248 1928 416 0x8 0x9

0x81fed2c0 1928 780 0x8 0x10

The objective of this exercise is to determine which threads have had their Priority or
BasePriority modified. Typically, these two values are the same, unless someone (i.e., the user)
or something (i.e., malicious code) changes them. Characteristic values for Priority and
BasePriority are typically 0x8 or 0x9.

Thus, the issued commands have successfully isolated all threads that do not share the same
Priority and BasePriority values. Of course, there are times when these values may legitimately
be different from their typical values. However, looking at the table, especially for PIDs 668 and
1032, there are too many “priority adjustments” to be considered qualitatively “normal.”

While it is not possible to directly dump threads (and even if were possible it would not be
advisable because threads are typically very small units of work) this table provides additional
potential indicators of compromise.

2.3.2.10 Driverscan and DriverIRP plugins

The driverscan plugin scans a memory image for driver objects while the driverirp plugin scans
for IRP hooks, often indicative of malicious software. The former plugin uses physical memory
addressing while the latter uses neither virtual nor physical memory addressing but instead
accepts KDBG and KPCR addresses.

Through these plugins, it may be possible to find the specific driver alluded to by filescan plugin.
The following commands were issued to query for evidence about the two malicious drivers:

DRDC-RDDC-2013-R1 29

$ volatility -f stuxnet.vmem driverscan

$ volatility -f stuxnet.vmem driverirp

The output from these commands was pruned for pertinence.

The following relevant output for the driverscan plugin is as follows:

Table 14: Volatility Driverscan plugin output of suspicious drivers.

Offset (P) #Ptr #Hnd Start Size (in
hex)

Service
Key

Name Driver Name

0x02126870 3 0 0xf895a000 0x4d80 MRxCls MRxCls \Driver\MRxCls

0x022e54f8 14 0 0xb21d8000 0x2980 MRxNet MRxNet \Driver\MRxNet

The following relevant output for the driverirp plugin is as follows:

DriverName: MRxCls
DriverStart: 0xf895a000
DriverSize: 0x4d80
DriverStartIo: 0x0
 0 IRP_MJ_CREATE 0xf895a9e8 mrxcls.sys
 1 IRP_MJ_CREATE_NAMED_PIPE 0x804f354a ntoskrnl.exe
 2 IRP_MJ_CLOSE 0xf895a9e8 mrxcls.sys
 3 IRP_MJ_READ 0x804f354a ntoskrnl.exe
 4 IRP_MJ_WRITE 0x804f354a ntoskrnl.exe
 5 IRP_MJ_QUERY_INFORMATION 0x804f354a ntoskrnl.exe
 6 IRP_MJ_SET_INFORMATION 0x804f354a ntoskrnl.exe
 7 IRP_MJ_QUERY_EA 0x804f354a ntoskrnl.exe
 8 IRP_MJ_SET_EA 0x804f354a ntoskrnl.exe
 9 IRP_MJ_FLUSH_BUFFERS 0x804f354a ntoskrnl.exe
 10 IRP_MJ_QUERY_VOLUME_INFORMATION 0x804f354a ntoskrnl.exe
 11 IRP_MJ_SET_VOLUME_INFORMATION 0x804f354a ntoskrnl.exe
 12 IRP_MJ_DIRECTORY_CONTROL 0x804f354a ntoskrnl.exe
 13 IRP_MJ_FILE_SYSTEM_CONTROL 0x804f354a ntoskrnl.exe
 14 IRP_MJ_DEVICE_CONTROL 0xf895aa04 mrxcls.sys
 15 IRP_MJ_INTERNAL_DEVICE_CONTROL 0x804f354a ntoskrnl.exe
 16 IRP_MJ_SHUTDOWN 0x804f354a ntoskrnl.exe
 17 IRP_MJ_LOCK_CONTROL 0x804f354a ntoskrnl.exe
 18 IRP_MJ_CLEANUP 0x804f354a ntoskrnl.exe
 19 IRP_MJ_CREATE_MAILSLOT 0x804f354a ntoskrnl.exe
 20 IRP_MJ_QUERY_SECURITY 0x804f354a ntoskrnl.exe
 21 IRP_MJ_SET_SECURITY 0x804f354a ntoskrnl.exe
 22 IRP_MJ_POWER 0x804f354a ntoskrnl.exe
 23 IRP_MJ_SYSTEM_CONTROL 0x804f354a ntoskrnl.exe
 24 IRP_MJ_DEVICE_CHANGE 0x804f354a ntoskrnl.exe
 25 IRP_MJ_QUERY_QUOTA 0x804f354a ntoskrnl.exe
 26 IRP_MJ_SET_QUOTA 0x804f354a ntoskrnl.exe
 27 IRP_MJ_PNP 0x804f354a ntoskrnl.exe

DriverName: MRxNet
DriverStart: 0xb21d8000
DriverSize: 0x2980
DriverStartIo: 0x0
 0 IRP_MJ_CREATE 0xb21d8486 mrxnet.sys
 1 IRP_MJ_CREATE_NAMED_PIPE 0xb21d8486 mrxnet.sys

30 DRDC-RDDC-2013-R1

 2 IRP_MJ_CLOSE 0xb21d8486 mrxnet.sys
 3 IRP_MJ_READ 0xb21d8486 mrxnet.sys
 4 IRP_MJ_WRITE 0xb21d8486 mrxnet.sys
 5 IRP_MJ_QUERY_INFORMATION 0xb21d8486 mrxnet.sys
 6 IRP_MJ_SET_INFORMATION 0xb21d8486 mrxnet.sys
 7 IRP_MJ_QUERY_EA 0xb21d8486 mrxnet.sys
 8 IRP_MJ_SET_EA 0xb21d8486 mrxnet.sys
 9 IRP_MJ_FLUSH_BUFFERS 0xb21d8486 mrxnet.sys
 10 IRP_MJ_QUERY_VOLUME_INFORMATION 0xb21d8486 mrxnet.sys
 11 IRP_MJ_SET_VOLUME_INFORMATION 0xb21d8486 mrxnet.sys
 12 IRP_MJ_DIRECTORY_CONTROL 0xb21d84ec mrxnet.sys
 13 IRP_MJ_FILE_SYSTEM_CONTROL 0xb21d8496 mrxnet.sys
 14 IRP_MJ_DEVICE_CONTROL 0xb21d8486 mrxnet.sys
 15 IRP_MJ_INTERNAL_DEVICE_CONTROL 0xb21d8486 mrxnet.sys
 16 IRP_MJ_SHUTDOWN 0xb21d8486 mrxnet.sys
 17 IRP_MJ_LOCK_CONTROL 0xb21d8486 mrxnet.sys
 18 IRP_MJ_CLEANUP 0xb21d8486 mrxnet.sys
 19 IRP_MJ_CREATE_MAILSLOT 0xb21d8486 mrxnet.sys
 20 IRP_MJ_QUERY_SECURITY 0xb21d8486 mrxnet.sys
 21 IRP_MJ_SET_SECURITY 0xb21d8486 mrxnet.sys
 22 IRP_MJ_POWER 0xb21d8486 mrxnet.sys
 23 IRP_MJ_SYSTEM_CONTROL 0xb21d8486 mrxnet.sys
 24 IRP_MJ_DEVICE_CHANGE 0xb21d8486 mrxnet.sys
 25 IRP_MJ_QUERY_QUOTA 0xb21d8486 mrxnet.sys
 26 IRP_MJ_SET_QUOTA 0xb21d8486 mrxnet.sys
 27 IRP_MJ_PNP 0xb21d8486 mrxnet.sys

Upon examination of the plugins’ output, it is not readily possible to determine if these two
drivers, mrxcls.sys and mrxnet.sys, are malicious. However, various details are now known about
them including their location in memory and which driver IRP function codes2 they are using.
However, for non-reverse engineers it is not obvious to determine which codes are typically used
for device drivers and which are used for malware as no whitelist or blacklist is readily available.

2.3.2.11 Svcscan plugin

The svcscan Volatility plugin scans a memory image for Windows services. The drivers for a
typical Windows system are generally registered as services, although valid exceptions exist. For
instance, filter drivers are not commonly registered as services and these can include network
sniffer drivers, certain filesystem drivers and network drivers. Thus, the claim that a driver not
associated to a service is malicious or suspicious is not valid; however, when discovered it may
be worth investigating a little further. Unfortunately, Volatility does not yet provide a plugin that
can differentiate between registered and unregistered driver-based services, thus this remains a
manual analysis.

Running the command “volatility -f stuxnet.vmem svcscan” did not produce any information
concerning the two previously identified suspicious drivers, mrxcls.sys and mrxnet.sys. However,
information concerning valid Windows drivers mrxdav.sys and mrxsmb.sys, which are very
closely related in name to these two suspicious drivers, are registered as Windows services, as
seen from the following output:

Offset: 0x385d28
Order: 112

2 An IRP function code is denoted by IRP_MJ.

DRDC-RDDC-2013-R1 31

Process ID: -
Service Name: MRxDAV
Display Name: WebDav Client Redirector
Service Type: SERVICE_FILE_SYSTEM_DRIVER
Service State: SERVICE_RUNNING
Binary Path: \FileSystem\MRxDAV

Offset: 0x385db8
Order: 113
Process ID: -
Service Name: MRxSmb
Display Name: MRxSmb
Service Type: SERVICE_FILE_SYSTEM_DRIVER
Service State: SERVICE_RUNNING
Binary Path: \FileSystem\MRxSmb

2.3.2.12 Ldrmodules plugin

The ldrmodules plugin scans a memory image for signs of unlinked files (such as DLLs) in
memory. These may be indicative of suspicious or malicious files lurking in memory. Although
no suspicious DLLs have been found thus far, it does not preclude them from existing. Moreover,
this plugin can also find other types of hidden files in memory including executables, libraries
and configuration files.

To find potentially suspicious unlinked files, command “volatility -f stuxnet.vmem ldrmodules |
grep False” was issued which generated the following output:

Table 15: Volatility Ldrmodules plugin output (sorted by PID).

PID Process Base InLoad InInit InMem MappedPath

4 System 0x7c900000 False False False \WINDOWS\system32\ntdll.dll

188 alg.exe 0x01000000 True False True \WINDOWS\system32\alg.exe

324 TSVNCache.exe 0x00400000 True False True \Program
Files\TortoiseSVN\bin\TSVNCache.
exe

376 smss.exe 0x48580000 True False True \WINDOWS\system32\smss.exe

600 csrss.exe 0x00460000 False False False \WINDOWS\Fonts\vgasys.fon

600 csrss.exe 0x00f90000 False False False \WINDOWS\Fonts\vgaoem.fon

600 csrss.exe 0x4a680000 True False True \WINDOWS\system32\csrss.exe

600 csrss.exe 0x01350000 False False False \WINDOWS\Fonts\sserife.fon

624 winlogon.exe 0x01000000 True False True \WINDOWS\system32\winlogon.exe

660 Procmon.exe 0x00400000 True False True \Documents and
Settings\Administrator\Desktop\Sysi
nternalsSuite\Procmon.exe

668 services.exe 0x01000000 True False True \WINDOWS\system32\services.exe

32 DRDC-RDDC-2013-R1

PID Process Base InLoad InInit InMem MappedPath

680 lsass.exe 0x01000000 True False True \WINDOWS\system32\lsass.exe

756 imapi.exe 0x01000000 True False True \WINDOWS\system32\imapi.exe

844 vmacthlp.exe 0x00400000 True False True \Program Files\VMware\VMware
Tools\vmacthlp.exe

856 svchost.exe 0x01000000 True False True \WINDOWS\system32\svchost.exe

868 lsass.exe 0x00080000 False False False -

868 lsass.exe 0x01000000 True False True -

940 svchost.exe 0x01000000 True False True \WINDOWS\system32\svchost.exe

976 wuauclt.exe 0x00400000 True False True \WINDOWS\system32\wuauclt.exe

1032 svchost.exe 0x01000000 True False True \WINDOWS\system32\svchost.exe

1080 svchost.exe 0x01000000 True False True \WINDOWS\system32\svchost.exe

1196 explorer.exe 0x01000000 True False True \WINDOWS\explorer.exe

1196 explorer.exe 0x01760000 False False False \WINDOWS\Resources\Themes\Lun
a\Shell\NormalColor\shellstyle.dll

1200 svchost.exe 0x01000000 True False True \WINDOWS\system32\svchost.exe

1356 VMwareUser.exe 0x00400000 True False True \Program Files\VMware\VMware
Tools\VMwareUser.exe

1412 spoolsv.exe 0x01000000 True False True \WINDOWS\system32\spoolsv.exe

1580 jqs.exe 0x00400000 True False True \Program Files\Java\jre6\bin\jqs.exe

1664 vmtoolsd.exe 0x00400000 True False True \Program Files\VMware\VMware
Tools\vmtoolsd.exe

1712 jusched.exe 0x00400000 True False True \Program Files\Common
Files\Java\Java Update\jusched.exe

1816 VMUpgradeHelp
er

0x00400000 True False True \Program Files\VMware\VMware
Tools\VMUpgradeHelper.exe

1872 wmiprvse.exe 0x01000000 True False True \WINDOWS\system32\wbem\wmipr
vse.exe

1912 VMwareTray.exe 0x00400000 True False True \Program Files\VMware\VMware
Tools\VMwareTray.exe

1928 lsass.exe 0x00080000 False False False -

1928 lsass.exe 0x01000000 True False True -

2040 wscntfy.exe 0x01000000 True False True \WINDOWS\system32\wscntfy.exe

Although most of the relevant output generated by this plugin is typical, four stood out from the
rest (highlighted in red). Flags were raised for the lsass processes (PIDs 868 and 1928) which
again were spawned by services.exe (PID 668), which has already been deemed highly
suspicious. However, the fact that these two instances of lsass have unknown unlinked files
makes them even more suspicious.

DRDC-RDDC-2013-R1 33

Rerunning the plugin using the verbose mode (parameter -v), as per command “volatility -f
stuxnet.vmem ldrmodules -v | grep -v -P ‘(True|False)’| sort | uniq” enables the investigator to list
all detected unlinked files. This command generates lots of output, far more than the standard
ldrmodules plugin command. Thus, a list of known files (i.e., NSRL) is very useful when
examining this output in order to hone in on unknown files. In so doing, three unidentified files
were discovered and they are as follows:

Init Path: C:\WINDOWS\system32\KERNEL32.DLL.ASLR.0360b7ab :
KERNEL32.DLL.ASLR.0360b7ab

Init Path: C:\WINDOWS\system32\KERNEL32.DLL.ASLR.0360c5e2 :
KERNEL32.DLL.ASLR.0360c5e2

Init Path: C:\WINDOWS\system32\KERNEL32.DLL.ASLR.0360c8ee :
KERNEL32.DLL.ASLR.0360c8ee

However, no such Windows files are known to exist. Based on the full output from this command
(not listed here) file KERNEL32.DLL.ASLR.0360c5e2 is associated to PID 668 (services.exe)
while file KERNEL32.DLL.ASLR.0360c8ee is associated to PID 940 (svchost.exe) and file
KERNEL32.DLL.ASLR.0360b7ab is associated to PID 1928 (lsass.exe). Again, all three processes
are interrelated to PID 668. This information is made clearer through the following table:

Table 16: Verbose listing for plugin Ldrmodules specific to unknown
KERNEL32.DLL.ASLR* filenames (sorted by PID).

Suspicious Filename PID PPID

KERNEL32.DLL.ASLR.0360c5e2 668 668

KERNEL32.DLL.ASLR.0360c8ee 940 668

KERNEL32.DLL.ASLR.0360b7ab 1928 668

2.3.2.13 Dlllist plugin

The dlllist plugin is primarily used to determine which DLLs are loaded for a given process.
However, it can also be used to identify all DLLs loaded into a memory image. Running
command “volatility -f stuxnet.vmem dlllist” identified, in total, 1252 DLLs loaded into memory.

Based on the dlllist-determined list of loaded DLLs, suspicious DLLs KERNEL32.DLL.ASLR*
were found within the process space of PIDs 668, 940 and 1928 (services.exe, svchost.exe and
lsass.exe, respectively). These DLLs have the following plugin-related information:

Table 17: Volatility Dlllist plugin output for
suspicious DLLs KERNEL32.DLL.ASLR* (sorted by PID).

Filename PID Base
address

Size (in
hex)

Path

KERNEL32.DLL.ASLR.0360c5e2 668 0x013f0000 0x138000 C:\WINDOWS\system32

KERNEL32.DLL.ASLR.0360c8ee 940 0x00d00000 0x138000 C:\WINDOWS\system32

KERNEL32.DLL.ASLR.0360b7ab 1928 0x00870000 0x138000 C:\WINDOWS\system32

34 DRDC-RDDC-2013-R1

Suspicious process lsass.exe (PID 868) does not show up in the above table because it does not
have an associated KERNEL32.DLL.ASLR* file.

Based on additional information provided by this plugin, further details concerning PIDs 668,
868, 940 and 1928 are shown below. Anomalies and points of interests have been highlighted (in
red).

Details concerning PID 668 are as follows:

services.exe pid: 668
Command line : C:\WINDOWS\system32\services.exe
Service Pack 3

Base Size Path
---------- ---------- ----
0x01000000 0x1c000 C:\WINDOWS\system32\services.exe
0x7c900000 0xaf000 C:\WINDOWS\system32\ntdll.dll
0x7c800000 0xf6000 C:\WINDOWS\system32\kernel32.dll
0x77dd0000 0x9b000 C:\WINDOWS\system32\ADVAPI32.dll
0x77e70000 0x92000 C:\WINDOWS\system32\RPCRT4.dll
0x77fe0000 0x11000 C:\WINDOWS\system32\Secur32.dll
0x77c10000 0x58000 C:\WINDOWS\system32\msvcrt.dll
0x5f770000 0xc000 C:\WINDOWS\system32\NCObjAPI.DLL
0x76080000 0x65000 C:\WINDOWS\system32\MSVCP60.dll
0x7dbd0000 0x51000 C:\WINDOWS\system32\SCESRV.dll
0x776c0000 0x12000 C:\WINDOWS\system32\AUTHZ.dll
0x7e410000 0x91000 C:\WINDOWS\system32\USER32.dll
0x77f10000 0x49000 C:\WINDOWS\system32\GDI32.dll
0x769c0000 0xb4000 C:\WINDOWS\system32\USERENV.dll
0x7dba0000 0x21000 C:\WINDOWS\system32\umpnpmgr.dll
0x76360000 0x10000 C:\WINDOWS\system32\WINSTA.dll
0x5b860000 0x55000 C:\WINDOWS\system32\NETAPI32.dll
0x5cb70000 0x26000 C:\WINDOWS\system32\ShimEng.dll
0x47260000 0xf000 C:\WINDOWS\AppPatch\AcAdProc.dll
0x77b40000 0x22000 C:\WINDOWS\system32\Apphelp.dll
0x77c00000 0x8000 C:\WINDOWS\system32\VERSION.dll
0x77b70000 0x11000 C:\WINDOWS\system32\eventlog.dll
0x76bf0000 0xb000 C:\WINDOWS\system32\PSAPI.DLL
0x71ab0000 0x17000 C:\WINDOWS\system32\WS2_32.dll
0x71aa0000 0x8000 C:\WINDOWS\system32\WS2HELP.dll
0x76f50000 0x8000 C:\WINDOWS\system32\wtsapi32.dll
0x76c30000 0x2e000 C:\WINDOWS\system32\WINTRUST.dll
0x77a80000 0x95000 C:\WINDOWS\system32\CRYPT32.dll
0x77b20000 0x12000 C:\WINDOWS\system32\MSASN1.dll
0x76c90000 0x28000 C:\WINDOWS\system32\IMAGEHLP.dll
0x01020000 0x2c5000 C:\WINDOWS\system32\xpsp2res.dll
0x68000000 0x36000 C:\WINDOWS\system32\rsaenh.dll
0x5ad70000 0x38000 C:\WINDOWS\system32\uxtheme.dll
0x75150000 0x13000 C:\WINDOWS\system32\Cabinet.dll
0x774e0000 0x13d000 C:\WINDOWS\system32\ole32.dll
0x013f0000 0x138000
C:\WINDOWS\system32\KERNEL32.DLL.ASLR.0360c5e2
0x76f20000 0x27000 C:\WINDOWS\system32\DNSAPI.dll
0x76d60000 0x19000 C:\WINDOWS\system32\IPHLPAPI.DLL

DRDC-RDDC-2013-R1 35

0x77120000 0x8b000 C:\WINDOWS\system32\OLEAUT32.dll
0x7c9c0000 0x817000 C:\WINDOWS\system32\SHELL32.dll
0x77f60000 0x76000 C:\WINDOWS\system32\SHLWAPI.dll
0x771b0000 0xaa000 C:\WINDOWS\system32\WININET.dll
0x71ad0000 0x9000 C:\WINDOWS\system32\WSOCK32.dll
0x773d0000 0x103000
C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.2600.5512_x-
ww_35d4ce83\comctl32.dll
0x5d090000 0x9a000 C:\WINDOWS\system32\comctl32.dll

Details concerning PID 868 are as follows:

lsass.exe pid: 868
Command line : "C:\WINDOWS\\system32\\lsass.exe"
Service Pack 3

Base Size Path
---------- ---------- ----
0x01000000 0x6000 C:\WINDOWS\system32\lsass.exe
0x7c900000 0xaf000 C:\WINDOWS\system32\ntdll.dll
0x7c800000 0xf6000 C:\WINDOWS\system32\kernel32.dll
0x77dd0000 0x9b000 C:\WINDOWS\system32\ADVAPI32.dll
0x77e70000 0x92000 C:\WINDOWS\system32\RPCRT4.dll
0x77fe0000 0x11000 C:\WINDOWS\system32\Secur32.dll
0x7e410000 0x91000 C:\WINDOWS\system32\USER32.dll
0x77f10000 0x49000 C:\WINDOWS\system32\GDI32.dll

Details concerning PID 940 are as follows:
svchost.exe pid: 940
Command line : C:\WINDOWS\system32\svchost -k rpcss
Service Pack 3

Base Size Path
---------- ---------- ----
0x01000000 0x6000 C:\WINDOWS\system32\svchost.exe
0x7c900000 0xaf000 C:\WINDOWS\system32\ntdll.dll
0x7c800000 0xf6000 C:\WINDOWS\system32\kernel32.dll
0x77dd0000 0x9b000 C:\WINDOWS\system32\ADVAPI32.dll
0x77e70000 0x92000 C:\WINDOWS\system32\RPCRT4.dll
0x77fe0000 0x11000 C:\WINDOWS\system32\Secur32.dll
0x5cb70000 0x26000 C:\WINDOWS\system32\ShimEng.dll
0x6f880000 0x1ca000 C:\WINDOWS\AppPatch\AcGenral.DLL
0x7e410000 0x91000 C:\WINDOWS\system32\USER32.dll
0x77f10000 0x49000 C:\WINDOWS\system32\GDI32.dll
0x76b40000 0x2d000 C:\WINDOWS\system32\WINMM.dll
0x774e0000 0x13d000 C:\WINDOWS\system32\ole32.dll
0x77c10000 0x58000 C:\WINDOWS\system32\msvcrt.dll
0x77120000 0x8b000 C:\WINDOWS\system32\OLEAUT32.dll
0x77be0000 0x15000 C:\WINDOWS\system32\MSACM32.dll
0x77c00000 0x8000 C:\WINDOWS\system32\VERSION.dll

36 DRDC-RDDC-2013-R1

0x7c9c0000 0x817000 C:\WINDOWS\system32\SHELL32.dll
0x77f60000 0x76000 C:\WINDOWS\system32\SHLWAPI.dll
0x769c0000 0xb4000 C:\WINDOWS\system32\USERENV.dll
0x5ad70000 0x38000 C:\WINDOWS\system32\UxTheme.dll
0x773d0000 0x103000
C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.2600.5512_x-
ww_35d4ce83\comctl32.dll
0x5d090000 0x9a000 C:\WINDOWS\system32\comctl32.dll
0x76a80000 0x64000 c:\windows\system32\rpcss.dll
0x71ab0000 0x17000 c:\windows\system32\WS2_32.dll
0x71aa0000 0x8000 c:\windows\system32\WS2HELP.dll
0x00670000 0x2c5000 C:\WINDOWS\system32\xpsp2res.dll
0x68000000 0x36000 C:\WINDOWS\system32\rsaenh.dll
0x71a50000 0x3f000 C:\WINDOWS\system32\mswsock.dll
0x662b0000 0x58000 C:\WINDOWS\system32\hnetcfg.dll
0x71a90000 0x8000 C:\WINDOWS\System32\wshtcpip.dll
0x76f20000 0x27000 C:\WINDOWS\system32\DNSAPI.dll
0x76d60000 0x19000 C:\WINDOWS\system32\iphlpapi.dll
0x76fb0000 0x8000 C:\WINDOWS\System32\winrnr.dll
0x76f60000 0x2c000 C:\WINDOWS\system32\WLDAP32.dll
0x76fc0000 0x6000 C:\WINDOWS\system32\rasadhlp.dll
0x76fd0000 0x7f000 C:\WINDOWS\system32\CLBCATQ.DLL
0x77050000 0xc5000 C:\WINDOWS\system32\COMRes.dll
0x00d00000 0x138000
C:\WINDOWS\system32\KERNEL32.DLL.ASLR.0360c8ee
0x5b860000 0x55000 C:\WINDOWS\system32\NETAPI32.dll
0x76bf0000 0xb000 C:\WINDOWS\system32\PSAPI.DLL
0x771b0000 0xaa000 C:\WINDOWS\system32\WININET.dll
0x77a80000 0x95000 C:\WINDOWS\system32\CRYPT32.dll
0x77b20000 0x12000 C:\WINDOWS\system32\MSASN1.dll
0x71ad0000 0x9000 C:\WINDOWS\system32\WSOCK32.dll

Details concerning PID 1928 are as follows:

lsass.exe pid: 1928
Command line : "C:\WINDOWS\\system32\\lsass.exe"
Service Pack 3

Base Size Path
---------- ---------- ----
0x01000000 0x6000 C:\WINDOWS\system32\lsass.exe
0x7c900000 0xaf000 C:\WINDOWS\system32\ntdll.dll
0x7c800000 0xf6000 C:\WINDOWS\system32\kernel32.dll
0x77dd0000 0x9b000 C:\WINDOWS\system32\ADVAPI32.dll
0x77e70000 0x92000 C:\WINDOWS\system32\RPCRT4.dll
0x77fe0000 0x11000 C:\WINDOWS\system32\Secur32.dll
0x7e410000 0x91000 C:\WINDOWS\system32\USER32.dll
0x77f10000 0x49000 C:\WINDOWS\system32\GDI32.dll
0x00870000 0x138000
C:\WINDOWS\system32\KERNEL32.DLL.ASLR.0360b7ab
0x76f20000 0x27000 C:\WINDOWS\system32\DNSAPI.dll
0x77c10000 0x58000 C:\WINDOWS\system32\msvcrt.dll
0x71ab0000 0x17000 C:\WINDOWS\system32\WS2_32.dll
0x71aa0000 0x8000 C:\WINDOWS\system32\WS2HELP.dll

DRDC-RDDC-2013-R1 37

0x76d60000 0x19000 C:\WINDOWS\system32\IPHLPAPI.DLL
0x5b860000 0x55000 C:\WINDOWS\system32\NETAPI32.dll
0x774e0000 0x13d000 C:\WINDOWS\system32\ole32.dll
0x77120000 0x8b000 C:\WINDOWS\system32\OLEAUT32.dll
0x76bf0000 0xb000 C:\WINDOWS\system32\PSAPI.DLL
0x7c9c0000 0x817000 C:\WINDOWS\system32\SHELL32.dll
0x77f60000 0x76000 C:\WINDOWS\system32\SHLWAPI.dll
0x769c0000 0xb4000 C:\WINDOWS\system32\USERENV.dll
0x77c00000 0x8000 C:\WINDOWS\system32\VERSION.dll
0x771b0000 0xaa000 C:\WINDOWS\system32\WININET.dll
0x77a80000 0x95000 C:\WINDOWS\system32\CRYPT32.dll
0x77b20000 0x12000 C:\WINDOWS\system32\MSASN1.dll
0x71ad0000 0x9000 C:\WINDOWS\system32\WSOCK32.dll
0x773d0000 0x103000
C:\WINDOWS\WinSxS\x86_Microsoft.Windows.Common-
Controls_6595b64144ccf1df_6.0.2600.5512_x-
ww_35d4ce83\comctl32.dll
0x5d090000 0x9a000 C:\WINDOWS\system32\comctl32.dll

For three of the above listed outputs (PIDs 668, 940 and 1928) KERNEL32.DLL.ASLR* files
were identified in the list of process-associated DLLs. As for PID 868, too few DLLs were found
associated with it as compared to PID 1928.

Finally, while searching the raw output from this plugin, the following two lines of evidence were
identified as suspicious when considering that all files listed in the output only used one “\”.
Consider the following evidence for PIDs 868 and 1928 where the command lines for
instantiating lsass.exe were found to be:

Command line : "C:\WINDOWS\\system32\\lsass.exe"
Command line : "C:\WINDOWS\\system32\\lsass.exe"

Versus the following command line’s output for PID 680 which thus far is considered uninfected
and uncompromised:

Command line : C:\WINDOWS\system32\lsass.exe

2.3.2.14 Summary and analysis

Based on the information, evidence and various indicators of compromise, there is little doubt
that this memory image is uninfected.

Potentially suspicious network ports have been found associated with Windows processes they
ordinarily would not be.

Furthermore, through the application of various plugins examined in this step, two highly
suspicious device drivers have been identified which closely resemble in name two known
Windows devices drivers. Moreover, a potential malware dropper has been found. In addition,
three unidentified PNF files were discovered; again, one of these files very closely resembles a
known Windows PNF file.

38 DRDC-RDDC-2013-R1

Finally, three very suspicious Windows DLLs have been found associated to three processes
currently under suspicion of infection or compromise and two of the commands used to spawn
lsass.exe were found to be abnormal.

2.3.3 Step 3: Detection and analysis of suspicious processes, DLLs and
drivers

Sufficient evidence has been established indicating that suspicious or possibly malicious
processes, DLLs or drivers are hiding in memory. The next phase is to dump them from memory
so that they can be further analysed. This specific step examines how to dump them from memory
and corroborate them with the evidence thus far obtained.

2.3.3.1 Create data directories

Create directories malfind, dlldump and moddump for storing memory samples that are to be
dumped from the memory image using Volatility. This is done using the following commands:

 $ mkdir malfind

 $ mkdir dlldump

 $ mkdir moddump

2.3.3.2 Malfind plugin

The evidence and potential indicators of compromise thus far demonstrated in Step 2 indicate that
maliciously injected code may be in play, due the identification of various suspicious DLLs. The
use of the malfind plugin and subsequent analysis of dumped memory samples may be able to
identify which processes were subjected to code injection.

2.3.3.2.1 Running the plugin

Volatility’s malfind plugin was specifically designed to search for malicious code hidden through
code injection. If memory address offsets are specified they must be physical memory addresses.

Because many much of the available evidence indicates infection, it makes more sense, from the
perspective of the author, to conduct an at large analysis using this plugin rather than target
several PIDs since so many processes were instantiated by suspicious process services.exe (PID
668).

Thus, the following command was run against the entire memory image to determine which
processes were likely subverted through code injection:

$ volatility -f stuxnet.vmem malfind --dump-dir=malfind

This command succeeded in dumping 14 sample files from memory. Looking at only the textual
output generated by the plugin, as found in Annex D, several are likely indicative of code

DRDC-RDDC-2013-R1 39

injection. Nevertheless, subsequent analyses will confirm or rule them out from involvement in
this investigation.

2.3.3.2.2 AV scanning and file type determination

All 14 samples were scanned using the six aforementioned scanners. Of these 14 samples, eight
were found to be infected by one or more scanners and many multi-scanner matches were
established between samples, as shown in the following table:

Table 18: Scanners results for Malfind-dumped samples (sorted by scanner).

Scanner Filename Infection Identification Matches

Avast process.0x81e61da0.0xd00000.dmp

process.0x81c47c00.0x1000000.dmp
process.0x81c47c00.0x870000.dmp

process.0x82073020.0x13f0000.dmp

process.0x81c498c8.0x80000.dmp
process.0x81c47c00.0x80000.dmp
process.0x81c498c8.0x1000000.dmp

Win32:Duqu-K [Rtk]
Win32:Duqu-F [Rtk]
Win32:Malware-gen
Win32:Stuxnet-C [Wrm]
Win32:Stuxnet [Rtk]
Win32:Duqu-F [Rtk]
Win32:Duqu-K [Rtk]
Win32:Duqu-F [Rtk]
Win32:Malware-gen
Win32:Stuxnet-C [Wrm]
Win32:Stuxnet [Rtk]
Win32:Duqu-K [Rtk]
Win32:Duqu-F [Rtk]
Win32:Malware-gen
Win32:Stuxnet-C [Wrm]
Win32:Stuxnet [Rtk]
Win32:Malware-gen
Win32:Malware-gen
Win32:Duqu-F [Rtk]

Match 1

Match 2
Match 3

Match 4

Match 5
Match 6
Match 7

AVG process.0x81c47c00.0x1000000.dmp
process.0x81e61da0.0xd00000.dmp
process.0x81c47c00.0x870000.dmp
process.0x82073020.0x13f0000.dmp
process.0x81c498c8.0x80000.dmp
process.0x81c47c00.0x80000.dmp
process.0x81c498c8.0x1000000.dmp

Trojan horse Duqu.A
Trojan horse Agent3.CMIC
Trojan horse Agent3.CLEU
Trojan horse Agent3.CITI
Trojan horse Hider.IRJ
Trojan horse Hider.IRJ
Trojan horse Duqu.A

Match 2
Match 1
Match 3
Match 4
Match 5
Match 6
Match 7

40 DRDC-RDDC-2013-R1

Scanner Filename Infection Identification Matches

BitDefender

process.0x81e61da0.0xd00000.dmp
process.0x81c47c00.0x1000000.dmp
process.0x81c47c00.0x870000.dmp
process.0x82073020.0x13f0000.dmp
process.0x81c498c8.0x80000.dmp
process.0x81c47c00.0x6f0000.dmp
process.0x81c47c00.0x80000.dmp
process.0x81c498c8.0x1000000.dmp
process.0x81e61da0.0xb70000.dmp

Gen:Variant.Graftor.Elzob.17846
Trojan.Generic.7868042
Gen:Variant.Graftor.Elzob.17846
Gen:Variant.Graftor.Elzob.17846
Backdoor.Generic.577628
Backdoor.Generic.577628
Backdoor.Generic.577628
Trojan.Generic.8217115
Backdoor.Generic.577628

Match 1
Match 2
Match 3
Match 4
Match 5
Match 8
Match 6
Match 7

Comodo process.0x81e61da0.0xd00000.dmp
process.0x81c47c00.0x1000000.dmp
process.0x81c47c00.0x870000.dmp
process.0x82073020.0x13f0000.dmp
process.0x81c498c8.0x80000.dmp
process.0x81c47c00.0x6f0000.dmp
process.0x81c47c00.0x80000.dmp
process.0x81c498c8.0x1000000.dmp

Packed.Win32.MUPX.Gen
Malware
Packed.Win32.MUPX.Gen
Packed.Win32.MUPX.Gen
Worm.Win32.Stuxnet.K
Malware
Worm.Win32.Stuxnet.K
Malware

Match 1
Match 2
Match 3
Match 4
Match 5
Match 8
Match 6
Match 7

FRISK process.0x81c47c00.0x80000.dmp
process.0x81c498c8.0x80000.dmp

W32/MalwareF.JBBO (exact)
W32/MalwareF.JBBO (exact)

Match 6
Match 5

McAfee process.0x81c47c00.0x80000.dmp

process.0x81c498c8.0x1000000.dmp

process.0x81c498c8.0x80000.dmp

Generic.dx!7CBDEFE442A1
trojan
Generic.dx!1A97C7987EAC
trojan
Generic.dx!7CBDEFE442A1
trojan

Match 6

Match 7

Match 5

Based on these results, both BitDefender and Comodo were the most sensitive to detecting
infections from the dumped samples, each detecting eight of the fourteen as infected and each
detected the very same samples as infected, thereby adding significant credence to their results.

Avast and AVG were close seconds in terms of infection detection, each detecting the same seven
infections. Moreover, these seven correspond to seven of the eight detected by BitDefender and
Comodo, again adding significant weight to these results.

Finally, F-Prot and McAfee detected the fewest infections at two and three, respectively. Their
detected infections corresponded to those already picked by the previous four scanners – that is to
say, they picked up nothing new.

Thus, the following eight dumped samples are very likely infected:

DRDC-RDDC-2013-R1 41

process.0x82073020.0x13f0000.dmp

process.0x81e61da0.0xd00000.dmp

process.0x81c47c00.0x1000000.dmp

process.0x81c47c00.0x870000.dmp

process.0x81c47c00.0x6f0000.dmp

process.0x81c47c00.0x80000.dmp

process.0x81c498c8.0x80000.dmp

process.0x81c498c8.0x1000000.dmp

Of these eight samples, they were examined using the file command to determine their file type.
Based on its results, five were detected as 32-bit UPX compressed executables while two were
detected as standard 32-bit Windows executables and one as an unknown data file, as per the
following table:

Table 19: File type determination for infected memory samples (sorted by filename).

Filename File Type (as per file command)

process.0x81c47c00.0x1000000.dmp 32-bit Windows PE executable

process.0x81c47c00.0x6f0000.dmp Unknown data

process.0x81c47c00.0x80000.dmp 32-bit UPX compressed executable

process.0x81c47c00.0x870000.dmp 32-bit UPX compressed executable

process.0x81c498c8.0x1000000.dmp 32-bit Windows PE executable

process.0x81c498c8.0x80000.dmp 32-bit UPX compressed executable

process.0x81e61da0.0xd00000.dmp 32-bit UPX compressed executable

process.0x82073020.0x13f0000.dmp 32-bit UPX compressed executable

Upon closer inspection, however, file process.0x81c47c00.0x6f0000.dmp was identified as an
UPX compressed executable.

Finally, these samples can be attributed back to known processes as shown below:

Table 20: PID attribution concerning scanner detected infected
files for Malfind-dumped samples (sorted by PID).

Filename Actual Process PID PPID

process.0x82073020.0x13f0000.dmp services.exe 668 668

process.0x81c498c8.0x80000.dmp lsass.exe 868 668

process.0x81c498c8.0x1000000.dmp lsass.exe 868 668

process.0x81e61da0.0xd00000.dmp svchost.exe 940 668

42 DRDC-RDDC-2013-R1

Filename Actual Process PID PPID

process.0x81c47c00.0x1000000.dmp lsass.exe 1928 668

process.0x81c47c00.0x870000.dmp lsass.exe 1928 668

process.0x81c47c00.0x6f0000.dmp lsass.exe 1928 668

process.0x81c47c00.0x80000.dmp lsass.exe 1928 668

The evidence and information presented thus far paint a very compelling image with respect to
this infection.

2.3.3.2.3 UPX decompression and brief analysis

The aforementioned executables identified as UPX-based were passed through a UPX
decompressor. Of the six UPX files, only two were successfully decompressed, specifically files
process.0x81c47c00.0x80000.dmp and process.0x81c498c8.0x80000.dmp.

Scanner identification has confirmed that these two decompressed UPX files are in fact the
Stuxnet worm. Additional analysis by the author, outside the scope of this report, was conducted
against these two files that has confirmed that they are in fact the worm. Moreover, these two
files share the same SHA1 hash.

Further analysis and explanation will not be examined in this report, as the goal is to inform and
guide budding memory analysts how to maximize the use of Volatility in collecting as much
information as possible from a memory image. Cutting the analysis short at this point would not
be, in the opinion of the author, of net benefit. Thus, their SHA1 and fuzzy hash values will not
be included in the remainder of the analysis.

2.3.3.2.4 SHA1 and fuzzy hashes

All 14 dumped files were hashed using the sha1sum command to determine their SHA1
signatures. Files process.0x81c47c00.0x80000.dmp and process.0x81c498c8.0x80000.dmp were
found to be identical (found below in bold). The other 12 dumped samples were unique with
respect to one another.

The malfind-dumped memory samples were then fuzzy hashed against one another to determine
their similarities between one another. This analysis revealed that in all there were 19 matches
between the memory samples, as described in the following table:

Table 21: Fuzzy hash matches for Malfind-dumped memory samples (sorted by %).

Matched Filename #1 Matched Filename #2 Match
(in %)

process.0x81c47c00.0x680000.dmp process.0x81c47c00.0x1000000.dmp 49

process.0x81c498c8.0x1000000.dmp process.0x81c47c00.0x680000.dmp 49

DRDC-RDDC-2013-R1 43

Matched Filename #1 Matched Filename #2 Match
(in %)

process.0x82073020.0x940000.dmp process.0x81c47c00.0x1000000.dmp 52

process.0x82073020.0x940000.dmp process.0x81c498c8.0x1000000.dmp 52

process.0x81e61da0.0xbf0000.dmp process.0x81c47c00.0x1000000.dmp 54

process.0x81e61da0.0xbf0000.dmp process.0x81c498c8.0x1000000.dmp 54

process.0x81e61da0.0xd00000.dmp process.0x81c47c00.0x870000.dmp 66

process.0x82073020.0x13f0000.dmp process.0x81e61da0.0xd00000.dmp 69

process.0x82073020.0x13f0000.dmp process.0x81c47c00.0x870000.dmp 71

process.0x81e61da0.0xbf0000.dmp process.0x81c47c00.0x680000.dmp 96

process.0x82073020.0x940000.dmp process.0x81c47c00.0x680000.dmp 96

process.0x82073020.0x940000.dmp process.0x81e61da0.0xbf0000.dmp 96

process.0x81c47c00.0x80000.dmp process.0x81c47c00.0x6f0000.dmp 99

process.0x81c498c8.0x80000.dmp process.0x81c47c00.0x6f0000.dmp 99

process.0x81e61da0.0xb70000.dmp process.0x81c47c00.0x6f0000.dmp 99

process.0x81e61da0.0xb70000.dmp process.0x81c47c00.0x80000.dmp 99

process.0x81e61da0.0xb70000.dmp process.0x81c498c8.0x80000.dmp 99

process.0x81c498c8.0x1000000.dmp process.0x81c47c00.0x1000000.dmp 100

process.0x81c498c8.0x80000.dmp process.0x81c47c00.0x80000.dmp 100

Note, that for some of these files their similarities were very high, with two of them found to be
100% similar. However, their SHA1 hashes tell a different story. Only the last two files listed in
the above table (last match) are actually identical. The previous 100% match is very similar,
perhaps differing by only a few bytes, but their SHA1 hashes are not identical.

The SHA1 and fuzzy hashes of the malfind-dumped memory samples were then compared
against those of the carved memory data files. No identical SHA1 hashes were established but
two fuzzy hash matches were found:

./malfind/process.0x81c47c00.0x1000000.dmp matches

./carving/f0219248.dll (58)

./malfind/process.0x81c498c8.0x1000000.dmp matches

./carving/f0219248.dll (58)

Finally, the SHA1 hashes were compared against the NSRL 2.41 hash-set but no matches were
identified.

44 DRDC-RDDC-2013-R1

2.3.3.2.5 Summary

The malfind plugin succeeded in identifying multiple instances of code injection with respect to
processes services.exe, lsass.exe, svchost.exe and lsass.exe (PIDs 668, 868, 940 and 1928,
respectively).

Moreover, an identical match was established (see Table 22 for details) between two malfind-
dumped samples. Furthermore, various partial and nearly identical matches were obtained
between many of the dumped samples. Finally, two dumped samples were found partially
matching some of the carved data memory files.

In short, eight samples were found to be infected representing four specific processes, all of
which are associated with PID 668 (services.exe).

2.3.3.3 Dlldump plugin

Based on the evidence and information established thus far, it is clear that PID 668 is the root of
the infection. Moreover, it appears that PIDs 668, 868, 940 and 1928 are infected or have been
compromised through code injection.

Using the dlldump plugin, it will possible to dump all DLLs still resident in memory associated
with suspicious processes to disk for further analysis.

2.3.3.3.1 Running the plugin

Volatility’s dlldump plugin was specifically designed to dump DLLs from memory to disk. If
memory address offsets are specified then they must be physical memory addresses.

The following command was issued to dump DLLs from PIDs 668, 868, 940 and 1928:

$ volatility -f stuxnet.vmem -p 668,868,940,1928 --dump-
dir=dlldump

Upon running this command, the following numbers of DLLs were dumped for the specified
PIDs, as per the following table:

Table 22: Number of DLLs dumped per specified PID for Dlldump plugin (sorted by PID).

PID dumped Number of dumped DLLs

868 8

668 45

940 44

1928 28

In all, 125 DLLs were successfully dumped to disk and none with none of the DLLs having been
paged out from memory. The textual results of this command are found in Annex E.

DRDC-RDDC-2013-R1 45

2.3.3.3.2 AV scanning and result analysis

All 125 samples were scanned using the six aforementioned scanners. Of these samples, eight
were found infected by one or more scanners and many multi-scanner matches were established
between samples, as shown in the following colour-coded table:

Table 23: Scanners results for dumped Dlldump-based memory samples (sorted by scanner).

Scanner Filename Infection Identification Matches

Avast module.668.2273020.13f0000.dll

module.940.2061da0.d00000.dll

module.1928.1e47c00.1000000.dll
module.1928.1e47c00.870000.dll

module.868.1e498c8.1000000.dll

Win32:Duqu-F [Rtk]
Win32:Stuxnet-C [Wrm]
Win32:Malware-gen
Win32:StuxX-A [Wrm]
Win32:Stuxnet [Rtk]
Win32:Duqu-F [Rtk]
Win32:Duqu-F [Rtk]
Win32:Stuxnet-C [Wrm]
Win32:Malware-gen
Win32:StuxX-A [Wrm]
Win32:Stuxnet [Rtk]
Win32:Malware-gen
Win32:Duqu-F [Rtk]
Win32:Duqu-F [Rtk]
Win32:Duqu-F [Rtk]
Win32:Stuxnet-C [Wrm]
Win32:Malware-gen
Win32:StuxX-A [Wrm]
Win32:Stuxnet [Rtk]
Win32:Malware-gen
Win32:Duqu-F [Rtk]
Win32:Duqu-F [Rtk]

Match 1

Match 2

Match 3
Match 4

Match 5

AVG module.1928.1e47c00.1000000.dll
module.1928.1e47c00.870000.dll

module.668.2273020.13f0000.dll

module.868.1e498c8.1000000.dll
module.940.2061da0.d00000.dll

Trojan horse Duqu.A
Trojan horse Generic_r.OD
Trojan horse Generic_r.OD.dropper
Trojan horse Generic_r.OD
Trojan horse Generic_r.OD.dropper
Trojan horse Duqu.A
Trojan horse Generic_r.OD
Trojan horse Generic_r.OD.dropper

Match 3
Match 4

Match 1

Match 5
Match 2

46 DRDC-RDDC-2013-R1

Scanner Filename Infection Identification Matches

BitDefender module.1928.1e47c00.1000000.dll
module.1928.1e47c00.870000.dll
module.868.1e498c8.1000000.dll
module.940.2061da0.d00000.dll

Trojan.Generic.KDV.649803
Trojan.Generic.KDV.564268
Trojan.Generic.KDV.649803
Trojan.Generic.KDV.786223

Match 3
Match 4
Match 5
Match 2

Comodo module.1928.1e47c00.1000000.dll
module.1928.1e47c00.870000.dll
module.668.2273020.1020000.dll
module.868.1e498c8.1000000.dll
module.940.2061da0.d00000.dll

Malware
Malware
Malware
Malware
Malware

Match 3
Match 4

Match 5
Match 2

FRISK module.668.2273020.13f0000.dll
module.1928.1e47c00.870000.dll
module.940.2061da0.d00000.dll

<W32/Dropper.gen8!Maximus>
<W32/Dropper.gen8!Maximus>
<W32/Dropper.gen8!Maximus>

Match 1
Match 4
Match 2

McAfee module.668.2273020.13f0000.dll
module.1928.1e47c00.870000.dll
module.940.2061da0.d00000.dll

Stuxnet trojan
Stuxnet trojan
Stuxnet trojan

Match 1
Match 4
Match 2

In the above listed malware identified by the various scanners, five matches in all were
established between the scanners. Some dumped DLLs were more readily detected by the various
scanners than others, and one specific dumped DLL was only detected by one scanner,
module.668.2273020.1020000.dll by Comodo. Although a strings analysis did not directly reveal
that this file was infected or malicious, the following table reveals the association between the
dumped DLL memory samples, their associated PIDs and the DLL names they represent.

Table 24: Association between scanner-identified malware for
Dlldump-based memory samples and PID/Process name (sorted by PID).

Process
Name

DLL/EXE Name PID Dlldump Memory Sample Name

services.exe xpsp2res.dll 668 module.668.2273020.1020000.dll

services.exe KERNEL32.DLL.ASLR.0360c5e2 668 module.668.2273020.13f0000.dll

svchost.exe KERNEL32.DLL.ASLR.0360c8ee 940 module.940.2061da0.d00000.dll

lsass.exe lsass.exe 868 module.868.1e498c8.1000000.dll

lsass.exe lsass.exe 1928 module.1928.1e47c00.1000000.dll

lsass.exe KERNEL32.DLL.ASLR.0360b7ab 1928 module.1928.1e47c00.870000.dll

Based on these two tables, all dumped DLL memory samples detected by the various scanners as
infected, with the exception of sample module.668.2273020.1020000.dll, fits the current set of
facts. It is very likely that sample module.668.2273020.1020000.dll is a false positive as there is

DRDC-RDDC-2013-R1 47

currently no indication that file xpsp2res.dll is infected, as based on the evidence obtained thus
far in this investigation.

Note that the three suspicious DLL files KERNEL32.DLL.ASLR* have been accurately identified
as malicious by the various scanners. Moreover, even the two suspicious instances of lsass.exe
(PIDs 868 and 1928) were directly identified as infected by the various scanners as per the
information determined through Table 24.

2.3.3.3.3 SHA1 and fuzzy hashes

All 125 dlldump-based memory samples were hashed using the sha1sum command to
identify similarities between each other and the carved memory data files. Files
module.868.1e498c8.77fe0000.dll and module.1928.1e47c00.77fe0000.dll were found to be
identical. The remaining 123 DLLs were found to be distinct from one another.

The SHA1 hashes were then compared against the NSRL but no matches were established. The
hashes were then compared against the carved memory data files and again no matches were
identified.

Fuzzy hashing was then carried out between the dumped DLL memory samples to identify
similarities. In all, six 100% matches were established through fuzzy hashing, but because
only two SHA1 hashes were identical (module.868.1e498c8.77fe0000.dll and
module.1928.1e47c00.77fe0000.dll), the other four fuzzy hash matches were very similar,
perhaps differing only by a few bytes. A full listing of these matches is available in Annex F.1. In
all, 103 matches and partial matches were identified.

Finally, fuzzy hash matching was conducted between the dumped memory samples and the
carved memory data files. No identical matches were found. However, in all, 61 partial matches
were established. A full listing of these matches is available in Annex F.2.

2.3.3.3.4 Summary

As established through DLL-based dumping and analysis of suspicious processes, it has been
determined that the Stuxnet infection had infected four specific processes, specifically PIDs 668,
868, 940 and 1928. As portrayed in Table 24, there is little doubt concerning which DLLs and
executables were directly involved in the infection, with the exception of xpsp2res.dll which was
a false positive.

Moreover, coupled with the information obtained using the malfind plugin and its subsequent
analyses, these four processes contain malicious DLLs. The information and evidence thus paints
a telling story of this particular infection.

Although some may have preferred to dump all drivers from the memory image and then validate
them through AV scanning and hash analysis, this would have introduced a great deal of
analytical overhead. Moreover, the information and evidence established thus far has not
indicated that this was a necessary investigative endeavour.

48 DRDC-RDDC-2013-R1

2.3.3.4 Moddump plugin

Now that the presence of injected code and malicious DLLs has been established for this memory
image, it is time to dump and analyse the two suspicious device drivers identified in Step 2. These
two drivers are using names very similar to known Windows device drivers.

2.3.3.4.1 Running the plugin

Volatility’s moddump plugin was specifically designed to dump drivers from memory to disk. If
memory address offsets are specified then the Start address found in Table 14 obtained from the
driverscan plugin should be used.

To dump drivers MRxCLS and MRxNet from the memory image, the following two commands
were issued:

$ volatility -f stuxnet.vmem moddump -b 0xf895a000 --dump-
dir=moddump

$ volatility -f stuxnet.vmem moddump -b 0xb21d8000 --dump-
dir=moddump

The two dumped drivers, files driver.f895a000.sys and driver.b21d8000.sys had the following
metadata:

Table 25: Metadata concerning Moddump-based driver MRxCls.

Filename moddump/driver.f895a000.sys

Size 19,840 bytes

SHA1 hash a83a1b3d565611d68a3ab8b93648d30bf715f56a

Fuzzy hash 384:GHjgXHujOpb6Rl3qdcr7mj3eSW0lGYaWd7pxW3KzM:5XHL
pO/+0mTeSJ/7p+K

Table 26: Metadata concerning Moddump-based driver MRxNet.

Filename moddump/driver.b21d8000.sys

Size 10,624 bytes

SHA1 hash 7918300a71a9c5bf55fbe95b93fd8d2b79a7cf97

Fuzzy hash 96:myL+XFVckoY+H0Si6R2HOzopMZG4+oGYZsYoDKMRV7/t
sM/JfNvRc7d5DNSdMe4:mg+X5/OzoIVFZsheCVxNZUDNTL

2.3.3.4.2 AV scanning

Using the aforementioned AV scanners against the dumped drivers, four and two of the six
scanners detected them as infected, respectively. Specifics are listed in the following table:

DRDC-RDDC-2013-R1 49

Table 27: AV scanner detection of Moddump-based driver MRxCls.

Scanner Detected as
Avast Win32:Duqu-K [Rtk]
AVG Trojan horse Rootkit-Pakes.AJ

Scanner Detected as
BitDefender Rootkit.51232
Comodo TrojWare.Win32.Rootkit.Stuxnet.A
F-Prot N/A
Mcafee N/A

Table 28: AV scanner detection of Moddump-based driver MRxNet.

Scanner Detected as
Avast N/A
AVG N/A
BitDefender Trojan.Generic.6534646
Comodo TrojWare.Win32.Rootkit.Stuxnet.B
F-Prot N/A
Mcafee N/A

Based on the scanner analyses, these two drivers are associated with the infection. Although
driver MRxCls was detected by four of the six scanners whereas driver MRxNet was identified by
only two of the scanners, the information provided by these scanners ties them in with the
malfindand dlldumpdumped samples thus far established.

2.3.3.4.3 SHA1 and fuzzy hashes

The SHA1 hashes for the two malicious drivers were compared against those of the NSRL and
the carved memory data files but no matches were identified.

Fuzzy hash comparisons against the carved memory data files yielded two partial matches:

 ./moddump/driver.b21d8000.sys 41% match ./carving/f0174648.exe

 ./moddump/driver.f895a000.sys 36% match./carving/f0933680.exe

2.3.3.4.4 Summary

The two suspicious drivers identified in Step 2 have been found to not only be malicious but are
part of the infection plaguing this memory image.

50 DRDC-RDDC-2013-R1

2.3.3.5 Summary and analysis

This step confirms the variously identified suspicious processes (Step 1) and files, DLLs, drivers,
and threads (Step 2). The existence of injected code can be inferred from the presence of
suspicious DLLs coupled with the fact that suspicious handles, threads, and mutexes have been
identified. Whether these inferences are certain will not be known until a full reverse engineering
effort is undertaken including a full analysis of the underlying disk image.

The objective of the two device drivers is not yet known although it is likely they play a role in
code injection. To better understand the role of the drivers a reverse engineering is required.

One false positive was found in file xpsp2res.dll identified solely by Comodo.

Finally, it has been ascertained that process services.exe (PID 668) is at the heart of the infection
and that one malicious DLL (KERNEL32.DLL.ASLR.0360c5e2) was subverting it through code
injection. The other affected processes PIDs 868, 940 and 1928 followed suite.

2.3.4 Step 4: Registry

The Windows registry serves to both complicate and facilitate the investigator’s work. It is
commonly used by malware to configure system settings for permanent infection. However, the
difficulty in working with the registry lies in knowing where to look. The registry is spread out
across many data files (commonly known as registry hives) in various locations and each serves a
specific purpose with respect to system, application and user configurations. Annex G provides a
listing of registry keys commonly used by malware. The list has had several entries added to it
since report [3].

2.3.4.1 Hivelist plugin

The purpose of using the hivelist plugin is to determine which registry hives3 are available in the
memory image.

Consider the plugin’s output, using command “volatility -f stuxnet.vmem hivelist”:

Table 29: Volatility Hivelist plugin output.

Virtual
Address

Physical
Address

Filename and Location

0xe1069008 0x14b8d008 \Device\HarddiskVolume1\Documents and
Settings\Administrator\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

0xe1077758 0x152b7758 \Device\HarddiskVolume1\Documents and
Settings\Administrator\NTUSER.DAT

0xe1bdb9e8 0x0e1959e8 \Device\HarddiskVolume1\Documents and
Settings\LocalService\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

3 A registry hive denotes the actual disk file and its location on disk.

DRDC-RDDC-2013-R1 51

Virtual
Address

Physical
Address

Filename and Location

0xe1bd5b60 0x0e027b60 \Device\HarddiskVolume1\Documents and
Settings\LocalService\NTUSER.DAT

0xe1bc26d8 0x0de626d8 \Device\HarddiskVolume1\Documents and
Settings\NetworkService\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat

0xe1bb5758 0x0df10758 \Device\HarddiskVolume1\Documents and
Settings\NetworkService\NTUSER.DAT

0xe1628b60 0x0a768b60 \Device\HarddiskVolume1\WINDOWS\system32\config\software

0xe16386b8 0x0a7a06b8 \Device\HarddiskVolume1\WINDOWS\system32\config\default

0xe1638b60 0x0a7a0b60 \Device\HarddiskVolume1\WINDOWS\system32\config\SAM

0xe1628008 0x0a768008 \Device\HarddiskVolume1\WINDOWS\system32\config\SECURITY

0xe13feb60 0x02e6ab60 [no name]

0xe1035b60 0x02a9eb60 \Device\HarddiskVolume1\WINDOWS\system32\config\system

0xe102e008 0x02a98008 [no name]

0x80670a0c 0x00670a0c [no name]

2.3.4.2 Printkey plugin

Using all proposed registry keys identified in Annex E, 1120 Volatility printkey commands were
issued via a script to query the memory image for information pertaining to traces of this
malware’s activities. Building such a script takes only a few minutes. Based on the physical
memory addresses listed in the above table, used in conjunction with various command line tools
including cat, awk and sed, it is quickly assembled.

All output generated by the script was captured and stored to a text file for subsequent analysis.

After running the script, the following pertinent information was identified:

Registry: User Specified
Key name: MRxNet (S)
Last updated: 2011-06-03 04:26:47

Subkeys:
 (V) Enum

Values:
REG_SZ Description : (S) MRXNET
REG_SZ DisplayName : (S) MRXNET
REG_DWORD ErrorControl : (S) 0
REG_SZ Group : (S) Network
REG_SZ ImagePath : (S) \??\C:\WINDOWS\system32\Drivers\mrxnet.sys

52 DRDC-RDDC-2013-R1

REG_DWORD Start : (S) 1
REG_DWORD Type : (S) 1
Legend: (S) = Stable (V) = Volatile

Registry: User Specified
Key name: MRxCls (S)
Last updated: 2011-06-03 04:26:47

Subkeys:
 (V) Enum

Values:
REG_SZ Description : (S) MRXCLS
REG_SZ DisplayName : (S) MRXCLS
REG_DWORD ErrorControl : (S) 0
REG_SZ Group : (S) Network
REG_SZ ImagePath : (S) \??\C:\WINDOWS\system32\Drivers\mrxcls.sys
REG_DWORD Start : (S) 1
REG_DWORD Type : (S) 1
REG_BINARY Data : (S)
0x00000000 8f 1f f7 6d 7d b1 c9 09 9d cc 24 7a c6 9f fb 23 ...m}.....$z...#
0x00000010 90 bd 9d bf f1 d4 51 92 2a b4 1f 6a 2e a6 4f b3 Q.*..j..O.
0x00000020 cb 69 7c 0b 92 3b 1b c0 d7 75 17 a9 e3 33 48 dc .i|..;...u...3H.
0x00000030 ad f6 da ea 2f 87 10 c4 21 81 a5 75 68 00 2e b1 /...!..uh...
0x00000040 c2 7b eb dd bb 72 47 dc 87 91 14 a5 f3 c4 32 b0 .{...rG.......2.
0x00000050 cc 93 38 36 6b 49 0a f2 6f 1f 1d a1 4a 15 05 80 ..86kI..o...J...
0x00000060 4b 13 a8 aa 82 41 4b 89 dc 89 24 a2 ed 16 37 f3 K....AK...$...7.
0x00000070 42 a9 a0 6a 7f 82 cd 90 e5 3c 49 cc b2 97 ca cb B..j.....<I.....
0x00000080 7b 64 c1 48 b2 4c f5 ae 54 42 74 0f 00 31 fd 80 {d.H.L..TBt..1..
0x00000090 e8 7e 0e 69 12 42 3a ec 0f 6f 03 b8 46 9c 68 97 .~.i.B:..o..F.h.
0x000000a0 ac 62 16 fb 1a 1b d9 33 6c e8 f9 93 c3 56 54 a1 .b.....3l....VT.
0x000000b0 89 7a 7b 77 ce ba 0d 95 a7 0f ab 5e 1c 3c 18 63 .z{w.......^.<.c
0x000000c0 ae 3e 60 a6 81 bc fa 85 fb 37 a0 0a 57 f9 c9 d3 .>`......7..W...
0x000000d0 cf 6b 41 d9 6d cd 39 71 c5 11 83 f1 d9 f3 7d b7 .kA.m.9q......}.
0x000000e0 91 f7 70 46 c2 24 f7 b9 0f 2d b2 60 72 1c 8f f9 ..pF.$...-.`r...
0x000000f0 98 16 34 52 4b 7d 5f 81 5f 35 fd 8b 3e 78 b1 0b ..4RK}_._5..>x..
0x00000100 0a 90 5a d8 30 5a 56 90 9a c0 c1 0f eb 95 d5 2f ..Z.0ZV......../
0x00000110 b7 c5 8d 2b 3f 49 41 8b 86 b4 db 71 67 69 e6 e8 ...+?IA....qgi..
0x00000120 69 77 29 77 18 82 11 8b d7 5d 26 e4 5a 5c 2c 46 iw)w.....]&.Z\,F
0x00000130 c2 f0 02 28 d8 ea 4b 95 9c 3a 3c 12 da c4 87 21 ...(..K..:<....!
0x00000140 91 4f d0 6e fa c4 dd b7 c9 af e2 ae fe 14 0f 53 .O.n...........S
0x00000150 c4 ba dd 31 1a 38 7b 37 c0 9e 83 ff 2c b2 4c 88 ...1.8{7....,.L.
0x00000160 33 c1 89 e5 ca 68 31 2d 20 ce 50 64 7b 39 c7 fb 3....h1-..Pd{9..
0x00000170 b1 9f a9 0d 6c 2a 82 ae 7f 25 43 a7 a2 28 eb 27 l*...%C..(.'
0x00000180 73 c9 45 f9 fd 53 a8 f4 a7 fd b4 90 b2 28 d8 0c s.E..S.......(..
0x00000190 5a a8 84 d0 7f ed 99 25 18 fe b8 4c 48 66 8d 59 Z......%...LHf.Y
0x000001a0 40 f6 cc 30 a6 f4 04 e8 76 9c ea 0e f6 a4 4a ce @..0....v.....J.
0x000001b0 d2

DRDC-RDDC-2013-R1 53

These registry entries pertain to the two malicious device drivers, MRxNet and MRxCls. No
information could be found concerning malicious DLLs KERNEL32.DLL.ASLR*, indicating that
these DLLs are likely loaded into memory by one or both of these drivers in order to carry out
code injection.

Thus, the persistence of this infection was made possible through the Windows registry which
loads these two device drivers in order to perpetuate the infection.

2.3.4.3 Userassist plugin

The final registry-based Volatility plugin run against the memory image was userassist. This
plugin has the potential to provide, among other things, registry-based information pertaining to
programs run and files opened by the user.

This plugin identified the following information likely relevant to the infection:

REG_BINARY UEME_RUNPATH:C:\Documents and
Settings\Administrator\Desktop\74ddc49a7c121a61b8d06c03f92d
0c13.exe :
ID: 6
Count: 1
Last updated: 2011-06-03 04:26:46
0x00000000 06 00 00 00 06 00 00 00 80 1e e0 72 a6 21 cc 01
...........r.!..

This UserAssist key is reminiscent of the output identified by the filescan plugin in Step 2. This
highly suspicious executable is likely the malware dropper responsible for the infection.

2.3.5 Step 5: Miscellaneous

This final step examines two additional lines of inquiry, although they are optional.

Specifically, it may be possible to determine if encryption was used by the malware to secure its
communications and to identify specifics concerning the two malicious device drivers.

2.3.5.1 Devicetree

The Volatility devicetree plugin is used to determine the relationship between drivers and their
required Windows devices. In so doing, it may be possible to determine what device, and hence
purpose, of a malicious device driver.

Running command “volatility -f stuxnet.vmem devicetree,” after pruning, generated the following
output:

DRV 0x0205e5a8 \FileSystem\vmhgfs
---| DEV 0x820f0030 hgfsInternal UNKNOWN
---| DEV 0x821a1030 HGFS FILE_DEVICE_NETWORK_FILE_SYSTEM
------| ATT 0x81f5d020 HGFS - \FileSystem\FltMgr
FILE_DEVICE_NETWORK_FILE_SYSTEM

54 DRDC-RDDC-2013-R1

---------| ATT 0x821354b8 HGFS - \Driver\MRxNet
FILE_DEVICE_NETWORK_FILE_SYSTEM

DRV 0x020d2f38 \FileSystem\FltMgr
---| DEV 0x8206b628 FILE_DEVICE_CD_ROM_FILE_SYSTEM
---| DEV 0x81ead318 FILE_DEVICE_DISK_FILE_SYSTEM
---| DEV 0x81f47020 FILE_DEVICE_DISK_FILE_SYSTEM
------| ATT 0x81fb9680 - \Driver\MRxNet
FILE_DEVICE_DISK_FILE_SYSTEM
---| DEV 0x81e859c8 FILE_DEVICE_DISK_FILE_SYSTEM
------| ATT 0x81f0ab90 - \Driver\MRxNet
FILE_DEVICE_DISK_FILE_SYSTEM
---| DEV 0x81fac548 FILE_DEVICE_CD_ROM_FILE_SYSTEM
------| ATT 0x8226ef10 - \Driver\MRxNet
FILE_DEVICE_CD_ROM_FILE_SYSTEM
---| DEV 0x81f5d020 FILE_DEVICE_NETWORK_FILE_SYSTEM
------| ATT 0x821354b8 - \Driver\MRxNet
FILE_DEVICE_NETWORK_FILE_SYSTEM
---| DEV 0x81bf1020 FILE_DEVICE_NETWORK_FILE_SYSTEM
------| ATT 0x81f0fc58 - \Driver\MRxNet
FILE_DEVICE_NETWORK_FILE_SYSTEM
---| DEV 0x82135d10 FILE_DEVICE_NETWORK_FILE_SYSTEM
------| ATT 0x81c0a910 - \Driver\MRxNet
FILE_DEVICE_NETWORK_FILE_SYSTEM
---| DEV 0x8226ccd0 FltMgrMsg UNKNOWN
---| DEV 0x8233d390 FltMgr FILE_DEVICE_DISK_FILE_SYSTEM

DRV 0x02126870 \Driver\MRxCls
---| DEV 0x81bdbeb0 MRxClsDvX FILE_DEVICE_UNKNOWN

DRV 0x02296b20 \FileSystem\sr
---| DEV 0x8228c6b0 FILE_DEVICE_DISK_FILE_SYSTEM
------| ATT 0x81f47020 - \FileSystem\FltMgr
FILE_DEVICE_DISK_FILE_SYSTEM
---------| ATT 0x81fb9680 - \Driver\MRxNet
FILE_DEVICE_DISK_FILE_SYSTEM
---| DEV 0x81eecdd0 FILE_DEVICE_DISK_FILE_SYSTEM
------| ATT 0x81e859c8 - \FileSystem\FltMgr
FILE_DEVICE_DISK_FILE_SYSTEM
---------| ATT 0x81f0ab90 - \Driver\MRxNet
FILE_DEVICE_DISK_FILE_SYSTEM
---| DEV 0x823df450 SystemRestore FILE_DEVICE_UNKNOWN

DRV 0x022e1c08 \FileSystem\MRxDAV
---| DEV 0x81caca58 WebDavRedirector
FILE_DEVICE_NETWORK_FILE_SYSTEM
------| ATT 0x82135d10 WebDavRedirector -
\FileSystem\FltMgr FILE_DEVICE_NETWORK_FILE_SYSTEM
---------| ATT 0x81c0a910 WebDavRedirector - \Driver\MRxNet
FILE_DEVICE_NETWORK_FILE_SYSTEM

DRDC-RDDC-2013-R1 55

DRV 0x022e54f8 \Driver\MRxNet
---| DEV 0x82125f10 FILE_DEVICE_DISK_FILE_SYSTEM
---| DEV 0x81dc49c0 FILE_DEVICE_DISK_FILE_SYSTEM
---| DEV 0x81fd59c0 FILE_DEVICE_CD_ROM_FILE_SYSTEM
---| DEV 0x81c8b500 FILE_DEVICE_CD_ROM_FILE_SYSTEM
---| DEV 0x821354b8 FILE_DEVICE_NETWORK_FILE_SYSTEM
---| DEV 0x81f0fc58 FILE_DEVICE_NETWORK_FILE_SYSTEM
---| DEV 0x81c0a910 FILE_DEVICE_NETWORK_FILE_SYSTEM
---| DEV 0x8226ef10 FILE_DEVICE_CD_ROM_FILE_SYSTEM
---| DEV 0x81f0ab90 FILE_DEVICE_DISK_FILE_SYSTEM
---| DEV 0x81fb9680 FILE_DEVICE_DISK_FILE_SYSTEM
---| DEV 0x82104700 FILE_DEVICE_DISK_FILE_SYSTEM

DRV 0x023ae880 \FileSystem\MRxSmb
---| DEV 0x81da95d0 LanmanDatagramReceiver
FILE_DEVICE_NETWORK_BROWSER
---| DEV 0x81ee5030 LanmanRedirector
FILE_DEVICE_NETWORK_FILE_SYSTEM
------| ATT 0x81bf1020 LanmanRedirector -
\FileSystem\FltMgr FILE_DEVICE_NETWORK_FILE_SYSTEM
---------| ATT 0x81f0fc58 LanmanRedirector - \Driver\MMRxNet
FILE_DEVICE_NETWORK_FILE_SYSTEM

DRV 0x02476da0 \FileSystem\Cdfs
---| DEV 0x81e636c8 Cdfs FILE_DEVICE_CD_ROM_FILE_SYSTEM
------| ATT 0x81fac548 Cdfs - \FileSystem\FltMgr
FILE_DEVICE_CD_ROM_FILE_SYSTEM
---------| ATT 0x8226ef10 Cdfs - \Driver\MRxNet
FILE_DEVICE_CD_ROM_FILE_SYSTEM

DRV 0x02526f38 \FileSystem\Fs_Rec
---| DEV 0x8205ac78 FatCdRomRecognizer
FILE_DEVICE_CD_ROM_FILE_SYSTEM
------| ATT 0x81c8b500 FatCdRomRecognizer - \Driver\MRxNet
FILE_DEVICE_CD_ROM_FILE_SYSTEM
---| DEV 0x81d9e5c0 FatDiskRecognizer
FILE_DEVICE_DISK_FILE_SYSTEM
------| ATT 0x81dc49c0 FatDiskRecognizer - \Driver\MRxNet
FILE_DEVICE_DISK_FILE_SYSTEM
---| DEV 0x81d9ef08 UdfsDiskRecognizer
FILE_DEVICE_DISK_FILE_SYSTEM
------| ATT 0x82125f10 UdfsDiskRecognizer - \Driver\MRxNet
FILE_DEVICE_DISK_FILE_SYSTEM
---| DEV 0x81e5d428 UdfsCdRomRecognizer
FILE_DEVICE_CD_ROM_FILE_SYSTEM
------| ATT 0x81fd59c0 UdfsCdRomRecognizer - \Driver\MRxNet
FILE_DEVICE_CD_ROM_FILE_SYSTEM
---| DEV 0x81e63ae0 CdfsRecognizer
FILE_DEVICE_CD_ROM_FILE_SYSTEM

56 DRDC-RDDC-2013-R1

DRV 0x0253d180 \FileSystem\Ntfs
---| DEV 0x82166020 FILE_DEVICE_DISK_FILE_SYSTEM
------| ATT 0x8228c6b0 - \FileSystem\sr
FILE_DEVICE_DISK_FILE_SYSTEM
---------| ATT 0x81f47020 - \FileSystem\FltMgr
FILE_DEVICE_DISK_FILE_SYSTEM
------------| ATT 0x81fb9680 - \Driver\MRxNet
FILE_DEVICE_DISK_FILE_SYSTEM
---| DEV 0x8224f790 Ntfs FILE_DEVICE_DISK_FILE_SYSTEM
------| ATT 0x81eecdd0 Ntfs - \FileSystem\sr
FILE_DEVICE_DISK_FILE_SYSTEM
---------| ATT 0x81e859c8 Ntfs - \FileSystem\FltMgr
FILE_DEVICE_DISK_FILE_SYSTEM
------------| ATT 0x81f0ab90 Ntfs - \Driver\MRxNet
FILE_DEVICE_DISK_FILE_SYSTEM

The above output demonstrates how pervasive the Stuxnet infection was. The infection has
embedded itself into many various filesystem and network related system services. Moreover,
device driver MRxNet appears to redefine the system’s usage of disk, network and optical
devices, probably for the purposes of hiding data and spreading the infection. This specific device
driver is particularly prevalent.

Device driver MRxCls make use of some unknown device whose purpose is not entirely clear at
this point.

2.3.5.2 Extract encryption keys

While the documentation detailing the Stuxnet infection provided herein [5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17 and 18] does not specify the use of encryption keys, nevertheless an AES 256-
bit key was identified within this memory image. Of course, it is possible that the Stuxnet
infection does not use encryption and that it is the result of some other application that was in use
within this memory image.

Two readily useable FOSS-based encryption detection and extraction tools include aeskeyfind4
and interrogate5. Both tools are easy to use. Running either command will reveal that an AES
encryption key that was in use is readily identifiable and has been identified as:

000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1
d1e1f

2.3.5.3 Summary and analysis

Although this step was brief, it was demonstrated that AES encryption can be detected and
extracted from memory. However, it cannot be readily confirmed whether the Stuxnet infection
made use of AES encryption.

4 Aeskeyfind can be found at https://citp.princeton.edu/research/memory/code/.
5 Interrogate can be found at https://github.com/carmaa/interrogate.

DRDC-RDDC-2013-R1 57

Finally, using the Volatility devicetree plugin it was possible to determine that malicious device
driver MRxNet made significant changes to the operating system’s use of file, network and optical
filesystems. Moreover, device driver MRxCls introduced an unknown file-based device of
unknown capability.

58 DRDC-RDDC-2013-R1

3 Conclusion

It can be concluded from this work that using sound investigative footwork, combined with the
capabilities of the Volatility memory analysis framework, investigators can readily analyse and
investigate suspected memory-based infections.

The Stuxnet worm is a persistent, readily replicating advanced malware. Its intentions are known
- it actively seeks out and targets SCADA-based systems. However, its origins are not known
with certainty. The malware has demonstrated its ability to infect multiple processes and take
hold of the operating system soon after system boot through the loading of two malicious device
drivers.

In comparison to past investigations conducted by the author in this series of reports, Stuxnet was
by far the most complex to analyse. However, it did not make any particular effort to hide itself as
it left two highly suspicious processes (lsass.exe) running which had the potential to draw
unwanted attention to the infection. As advanced as the claims concerning this infection have
made it out to be, it did not succeed in camouflaging itself very well.

Throughout this document, based on the clarified methodology put forward in Section 1.8, the
author has demonstrated the manner in which a forensic memory analysis can be conducted by
non-memory specialists. Thus, even novice memory investigators can successfully conduct
complex memory analyses, when equipped with a straightforward methodology, techniques and
tools.

Although much information was available concerning Stuxnet, investigators will not always be
able to rely on such well-prepared reports. This is why this investigation did not make direct use
of them during the analysis of this memory image. The techniques and methodology presented
herein will be of use, to varying extents, against newer and more difficult to analyse malware.

This document is the fourth in a series of many. It is hoped that subsequent reports will be
possible in order to continue building a sufficient compendium of knowledge for memory
analysis for use by novice and expert memory analysts alike. While the degree of difficulty varies
substantially from case to case, the Volatility framework, when combined with investigative
knowhow, tools, techniques and methodology is a highly adept analysis-based framework.

DRDC-RDDC-2013-R1 59

References

[1] Carbone, Richard. Malware memory analysis for non-specialists: Investigating a publicly
available memory image of the Zeus Trojan horse. Technical Memorandum. Defence R&D
Canada – Valcartier. TM 2013-018. April 2013.

[2] Carbone, Richard. Malware memory analysis for non-specialists: Investigating publicly
available memory images for Prolaco and SpyEye. Technical Memorandum. Defence R&D
Canada – Valcartier. TM 2013-155. October 2013.

[3] Carbone, Richard. Malware memory analysis for non-specialists: Investigating publicly
available memory image 0zapftis (R2D2). Technical Memorandum. Defence R&D Canada
– Valcartier. TM 2013-177. October 2013.

[4] Carbone, Richard. File recovery and data extraction using automated data recovery tools: A
balanced approach using Windows and Linux when working with an unknown disk image
and filesystem. Technical Memorandum. TM 2009-161. Defence R&D Canada –
Valcartier. January 2013. http://cradpdf.drdc-rddc.gc.ca/PDFS/unc122/p531895_A1b.pdf.

[5] Kushner, David. The Real Story of Stuxnet: How Kaspersky Lab tracked down the malware
that stymied Iran’s nuclear-fuel enrichment program. Online article. IEEE Spectrum
Magazine. February 2013. http://spectrum.ieee.org/telecom/security/the-real-story-of-
stuxnet.

[6] Wikipedia. Stuxnet. Online encyclopaedic entry. Wikipedia. Wikimedia Foundation Inc.
October 2013. http://en.wikipedia.org/wiki/Stuxnet.

[7] Wikipedia. VirusBlokAda. Online encyclopaedic entry. Wikipedia. Wikimedia Foundation
Inc. May 2013. http://en.wikipedia.org/wiki/VirusBlokAda.

[8] Keizer, Gregg. Is Stuxnet the ‘best’ malware ever? Online article. Infoworld.com.
September 2010. http://www.infoworld.com/print/137598.

[9] Albright, David; Brannan, Paul and Walrond, Christina. Did Stuxnet Take Out 1,000
Centrifuges at the Natanz Enrichment Plant? Assessment/Position paper. Institute for
Science and International Security. December 2010. http://isis-online.org/uploads/isis-
reports/documents/stuxnet_FEP_22Dec2010.pdf.

[10] Albright, David; Brannan, Paul and Walrond, Christina. Stuxnet Malware and Natanz:
Update of ISIS December 22, 2010 Report. Assessment/Position paper. Institute for
Science and International Security. February 2011. http://isis-online.org/uploads/isis-
reports/documents/stuxnet_update_15Feb2011.pdf.

[11] Matrosov, Aleksandr; Rodionov, Eugene, et al. Stuxnet Under the Microscope. Technical
report. Revision 1.31. Unknown date. http://www.eset.com/us/resources/white-
papers/Stuxnet_Under_the_Microscope.pdf.

60 DRDC-RDDC-2013-R1

[12] Falliere, Nicolas; O Murchu, Liam, and Chien, Eric. W32.Stuxnet Dossier. Technical
report. Version 1.4. Symantec. February 2011.
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w
32_stuxnet_dossier.pdf.

[13] Cyber Security Forum Initiative. Preliminary Stuxnet Report v.1.0. Technical report.
Version 1.0. Cyber Security Forum Initiative. Unknown date.
http://www.iamit.org/blog/wp-content/uploads/2010/10/CSFI_Stuxnet_Report_V1.pdf.

[14] Mueller, Paul and Yadegari, Babak. The Stuxnet Worm. Technical report. Department of
Computer Science, University of Arizona. April 2012.
http://www.cs.arizona.edu/~collberg/Teaching/466-
566/2012/Resources/presentations/2012/topic9-final/report.pdf.

[15] McDonald, Geoff; O Murchu, Liam; et al. Stuxnet 0.5: The Missing Link. Technical
report. Symantec. Unknown date.
http://www2.gwu.edu/~nsarchiv/NSAEBB/NSAEBB424/docs/Cyber-088.pdf.

[16] Byres, Eric; Ginter, Andrew, and Langill, Joel. How Stuxnet Spreads – A Study of
Infection Paths in Best Practice Systems. White paper. Tofino Security, Abterra
Technologies and ScadaHacker.com. February 2011. http://abterra.ca/papers/How-
Stuxnet-Spreads.pdf.

[17] Ginter, Andrew. The Stuxnet Worm and Options for Remediation. Technical report.
Industrial Defender. August 2010.
https://www.scadahacker.com/library/Documents/ICS_Events/Stuxnet%20Worm%20and%
20Options%20for%20Remediation%20(Industrial%20Defender).pdf.

[18] Thabet, Amr. Stuxnet Malware Analysis Paper. Technical report. Codeproject.com.
Unknown date. http://www.codeproject.com/KB/web-
security/StuxnetMalware/Stuxnet_Malware_Analysis_Paper.pdf.

[19] Volatility. CommandReference: Example usage cases and output for Volatility 2.0
commands. Online command reference. Volatility. February 2012.
http://code.google.com/p/volatility/wiki/CommandReference.

[20] AnswersThatWork. List of Common TCP/IP port numbers. Technical reference.
AnswersThatWork.com. September 2008.
http://www.answersthatwork.com/Download_Area/ATW_Library/Networking/Network__2
-List_of_Common_TCPIP_port_numbers.pdf.

[21] Microsoft TechNet. Network Ports Used by Key Microsoft Server Products. Support
article. Microsoft. 2013. http://technet.microsoft.com/en-us/library/cc875824.aspx.

[22] Microsoft TechNet. Port Assignment for Commonly-Used Services. Support article.
Microsoft. 2013. http://technet.microsoft.com/en-us/library/cc959833.aspx.

DRDC-RDDC-2013-R1 61

[23] Oracle. Oracle User Messaging Service. Chapter 56: Oracle Fusion Middleware
Developer’s guide for Oracle SOA Suite 11g Release 1 (11.1.1). Oracle product
documentation. Oracle.
http://docs.oracle.com/cd/E15523_01/integration.1111/e10224/ns_intro.htm.

[24] Microsoft Support. Exchange Server static port mappings. Support article. Microsoft.
2013. http://support.microsoft.com/kb/270836.

[25] Wikipedia. List of TCP and UDP port numbers. Online encyclopaedic entry. Wikimedia
Foundation Inc. October 2013.
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers.

[26] OTN Community. JQS “Java Quick Starter.” Technical blog/question and answer. March
2009. Oracle.com. https://forums.oracle.com/thread/1240373.

62 DRDC-RDDC-2013-R1

This page intentionally left blank.

DRDC-RDDC-2013-R1 63

Annex A Volatility Windows-based plugins

The following is a complete list of the default Windows-based plugins provided with Volatility
version 2.2:

Table 30: List of Volatility 2.2 plugins.

Plugin Capability (as per Volatility -help output)

apihooks Detect API hooks in process and kernel memory

atoms Print session and window station atom tables

atomscan Pool scanner for _RTL_ATOM_TABLE

bioskbd Reads the keyboard buffer from Real Mode memory

callbacks Print system-wide notification routines

clipboard Extract the contents of the windows clipboard

cmdscan Extract command history by scanning for _COMMAND_HISTORY

connections Print list of open connections [Windows XP and 2003 Only]

connscan Scan Physical memory for _TCPT_OBJECT objects (tcp connections)

consoles Extract command history by scanning for _CONSOLE_INFORMATION

crashinfo Dump crash-dump information

deskscan Poolscaner for tagDESKTOP (desktops)

devicetree Show device tree

dlldump Dump DLLs from a process address space

dlllist Print list of loaded dlls for each process

driverirp Driver IRP hook detection

driverscan Scan for driver objects _DRIVER_OBJECT

envars Display process environment variables

eventhooks Print details on windows event hooks

evtlogs Extract Windows Event Logs (XP/2003 only)

filescan Scan Physical memory for _FILE_OBJECT pool allocations

gahti Dump the USER handle type information

gditimers Print installed GDI timers and callbacks

gdt Display Global Descriptor Table

64 DRDC-RDDC-2013-R1

Plugin Capability (as per Volatility -help output)

getservicesids Get the names of services in the Registry and return Calculated SID

getsids Print the SIDs owning each process

handles Print list of open handles for each process

hashdump Dumps passwords hashes (LM/NTLM) from memory

hibinfo Dump hibernation file information

hivedump Prints out a hive

hivelist Print list of registry hives

hivescan Scan Physical memory for _CMHIVE objects (registry hives)

idt Display Interrupt Descriptor Table

imagecopy Copies a physical address space out as a raw DD image

imageinfo Identify information for the image

impscan Scan for calls to imported functions

kdbgscan Search for and dump potential KDBG values

kpcrscan Search for and dump potential KPCR values

ldrmodules Detect unlinked DLLs

lsadump Dump (decrypted) LSA secrets from the registry

malfind Find hidden and injected code

memdump Dump the addressable memory for a process

memmap Print the memory map

messagehooks List desktop and thread window message hooks

moddump Dump a kernel driver to an executable file sample

modscan Scan Physical memory for _LDR_DATA_TABLE_ENTRY objects

modules Print list of loaded modules

mutantscan Scan for mutant objects _KMUTANT

patcher Patches memory based on page scans

printkey Print a registry key, and its subkeys and values

procexedump Dump a process to an executable file sample

procmemdump Dump a process to an executable memory sample

DRDC-RDDC-2013-R1 65

Plugin Capability (as per Volatility -help output)

pslist Print all running processes by following the EPROCESS lists

psscan Scan Physical memory for _EPROCESS pool allocations

pstree Print process list as a tree

psxview Find hidden processes with various process listings

raw2dmp Converts a physical memory sample to a windbg crash dump

screenshot Save a pseudo-screenshot based on GDI windows

sessions List details on _MM_SESSION_SPACE (user logon sessions)

shimcache Parses the Application Compatibility Shim Cache registry key

sockets Print list of open sockets

sockscan Scan Physical memory for _ADDRESS_OBJECT objects (tcp sockets)

ssdt Display SSDT entries

strings Match physical offsets to virtual addresses (may take a while, VERY
verbose)

svcscan Scan for Windows services

symlinkscan Scan for symbolic link objects

thrdscan Scan physical memory for _ETHREAD objects

threads Investigate _ETHREAD and _KTHREADs

timers Print kernel timers and associated module DPCs

userassist Print userassist registry keys and information

userhandles Dump the USER handle tables

vaddump Dumps out the vad sections to a file

vadinfo Dump the VAD info

vadtree Walk the VAD tree and display in tree format

vadwalk Walk the VAD tree

volshell Shell in the memory image

windows Print Desktop Windows (verbose details)

wintree Print Z-Order Desktop Windows Tree

wndscan Pool scanner for tagWINDOWSTATION (window stations)

yarascan Scan process or kernel memory with Yara signatures

66 DRDC-RDDC-2013-R1

This page intentionally left blank.

DRDC-RDDC-2013-R1 67

Annex B NSRL file hash matches for carved memory
data files

This annex provides a listing of those carved memory data files obtained in Section 2.2.3 that
matched the SHA1 hashes of the NSRL hash-set 2.41 (June 2013). In total, nineteen unique
NSRL SHA1 hashes were found matching the various carved memory data files. However, based
on these hashes, it was established that the NSRL contained 52 unique SHA1-filename matches
as shown in the following table:

Table 31: SHA1 hash vs. NSRL filename for carved memory data files.

SHA1 Filename

016C1CE4119A884C002C83D40B3D8B73648E9FC3 _endian.py.0160FC08_F3D9_4869_9D41_C611C16F42D5

059EDA50F187D66B3E47A391359099B72576C7A1 comctl.man

15740B197555BA8E162C37A60BA655151E3BEBAE index.dat

417F05853C3816F74D6E965694ECA28BCC72AC6F _0E9D9F5076994D5FA6E423CC70A0C264

417F05853C3816F74D6E965694ECA28BCC72AC6F _2DB29F1250A3472AA2BC66491ACE1A5A

417F05853C3816F74D6E965694ECA28BCC72AC6F _51C3399A8598E1CC1A30AFAB6B273444

417F05853C3816F74D6E965694ECA28BCC72AC6F _7354554BF43E4E4D81AA053284C7ECA3

417F05853C3816F74D6E965694ECA28BCC72AC6F flavormap.properties

417F05853C3816F74D6E965694ECA28BCC72AC6F flavormap.properties1

417F05853C3816F74D6E965694ECA28BCC72AC6F flavormap.properties.134A883B_933C_41F1_9DC7_72713714
86B8

417F05853C3816F74D6E965694ECA28BCC72AC6F flavormap.properties.2B708BC3_5B4D_47C0_BCC5_3E1BD2C
51E5B

417F05853C3816F74D6E965694ECA28BCC72AC6F flavormap.properties.2DA786B9_56F1_4FBC_B649_5C771125
2559

417F05853C3816F74D6E965694ECA28BCC72AC6F PTC24.F

5082B30587F959A74C2BC359502F12454B1697A5 __0X0050

59903E96E1EDC257A4850D45AD8C63F17454AE9D riched32.dll

59903E96E1EDC257A4850D45AD8C63F17454AE9D RICHED32.DLL

6475D55C14B2DE8F2EDD558C728F1FD41FB63F16 controls.man

6F9F663CDFBC2592EAB4C43FEE359EFFD37D60F2 dxgthk.sys

6F9F663CDFBC2592EAB4C43FEE359EFFD37D60F2 DXGTHK.SYS

80EB8A76E5579B0136281E4DD4E2D4E56B249E4C null.sys

80EB8A76E5579B0136281E4DD4E2D4E56B249E4C NULL.SYS

9B4081066DE8FDBEF545D4B5DB62538B2A8A6538 policy.30729.4974.policy_9_0_Microsoft_VC90_CRT_x86.QFE

68 DRDC-RDDC-2013-R1

SHA1 Filename

9B4081066DE8FDBEF545D4B5DB62538B2A8A6538 ul_policy.30729.4974.policy_9_0_Microsoft_VC90_CRT_x86.Q
FE

A8139A5A5BCC413090176ECAF41510AA0FFBB987 Windows Catalog.lnk

B70BAFF604434E0485A28660535764C55176C925 _171A289D2DFB4F40989EDF4E6A83AA76

B70BAFF604434E0485A28660535764C55176C925 _2A25C71D65FD247CF791F3263F21771E

B70BAFF604434E0485A28660535764C55176C925 _48844EAD7DD64BD486DC283B761DF04A

B70BAFF604434E0485A28660535764C55176C925 _6E6756BD6BF24A588F7AB18B55524BBA

B70BAFF604434E0485A28660535764C55176C925 _7060DD9824C94DA5B35173482221E1DD

B70BAFF604434E0485A28660535764C55176C925 _79DD1B5FA6B548F78FE66C71C084A18B

B70BAFF604434E0485A28660535764C55176C925 cfbddd223bc84ff401e9d37367c36b40

B70BAFF604434E0485A28660535764C55176C925 cursors.properties

B70BAFF604434E0485A28660535764C55176C925 cursors.properties1

B70BAFF604434E0485A28660535764C55176C925 cursors.properties.134A883B_933C_41F1_9DC7_7271371486
B8

B70BAFF604434E0485A28660535764C55176C925 cursors.properties.2B708BC3_5B4D_47C0_BCC5_3E1BD2C51E
5B

B70BAFF604434E0485A28660535764C55176C925 cursors.properties.2DA786B9_56F1_4FBC_B649_5C77112525
59

B70BAFF604434E0485A28660535764C55176C925 F2978_cursors.properties

B70BAFF604434E0485A28660535764C55176C925 PTC35.F

BDB6DB39832DF1DCE10E8050E04AD3FCECCCFA30 __0X0054

C75D4C6E53A497C4DC1DF1F50BBEF08AC625A3D8 hosts

C75D4C6E53A497C4DC1DF1F50BBEF08AC625A3D8 HOSTS

C75D4C6E53A497C4DC1DF1F50BBEF08AC625A3D8 x86_microsoft windows w..nfrastructure
other_31bf3856ad364e35_6.0.5384.4_none_3285630929235
d47_hosts_d78df635

D1531EAABD403C811DFBFB17985A97DBB0C3E534 kbdclass.sys

DF9E8A2D18AEDD359476C1A45877F0614ECF4993 fdc.sys

DFC37F6C15612F7AB155E53A028A69FB5987199A Program Compatibility Wizard.lnk

E07EE000BC06B455534D8A517305C1208D30306B audstub.sys

FB33FD00711440B9D0F3B3D526A753ED75640797 navstart.wav

FB33FD00711440B9D0F3B3D526A753ED75640797 Windows Navigation Start.wav

FB33FD00711440B9D0F3B3D526A753ED75640797 Windows XP Start.wav

FB33FD00711440B9D0F3B3D526A753ED75640797 xpstart.wa!

FB33FD00711440B9D0F3B3D526A753ED75640797 xpstart.wav

FB33FD00711440B9D0F3B3D526A753ED75640797 XPStart.wav

DRDC-RDDC-2013-R1 69

Annex C Anti-virus scanner logs for carved memory
data files

In all, nine virus matches were identified between the various scanners. These matches are
indicated below.

C.1 Avast

./recup_dir.5/f0972904.exe [infected by: Win32:Duqu F [Rtk]]

./recup_dir.5/f0841616.exe [infected by: Win32:Duqu F [Rtk]]

./recup_dir.5/f0898328.dll [infected by: Win32:Duqu K [Rtk]]

./recup_dir.5/f0869280.dll [infected by: Win32:Duqu F [Rtk]]

./recup_dir.4/f0809656.pyc [infected by: Win32:Duqu F [Rtk]]

./recup_dir.4/f0843952.swf [infected by: SWF:CVE 2007 0071 [Expl]] < Match 2

./recup_dir.4/f0861008.exe [infected by: Win32:Duqu K [Rtk]]

./recup_dir.6/f0161192.exe [infected by: Win32:Duqu F [Rtk]]

./recup_dir.6/f0163032.dll [infected by: Win32:Duqu F [Rtk]]

./recup_dir.6/f0165472.dll [infected by: Win32:Duqu F [Rtk]]

./recup_dir.6/f0262544.dll [infected by: Win32:Duqu F [Rtk]]

./recup_dir.1/f0277688.dll [infected by: Win32:Duqu K [Rtk]]

./recup_dir.1/f0304160.dll/[Embedded_Ix#296e8] [infected by: Win32:MalOb GX [Cryp]]

./recup_dir.1/f0264240.dll [infected by: Win32:Duqu F [Rtk]] < Match 8

./recup_dir.1/f0264288.dll [infected by: Win32:Duqu F [Rtk]] < Match 7

./recup_dir.1/f0225968.exe [infected by: Win32:Duqu K [Rtk]]

./recup_dir.3/f0785768.exe [infected by: Win32:StuxX B [Wrm]] < Match 1

C.2 AVG

recup_dir.5/f0903856.dll Virus found Win32/Heur
recup_dir.5/f0890376.exe Virus found Win32/Heur
recup_dir.5/f0889112.dll Virus found Win32/Heur
recup_dir.5/f0893696.exe Virus found Win32/Heur
recup_dir.5/f0933680.exe Trojan horse Rootkit Pakes.AJ
recup_dir.4/f0816768.exe Virus found Win32/Heur
recup_dir.4/f0806584.exe Virus found Win32/Heur
recup_dir.4/f0843952.swf Virus identified SWF/Exploit.F < Match 2
recup_dir.4/f0842256.exe Virus found Win32/Heur
recup_dir.4/f0832936.exe Virus found Win32/Heur
recup_dir.4/f0865624.exe Virus found Win32/Heur
recup_dir.4/f0805448.exe Virus found Win32/Heur
recup_dir.4/f0805968.dll Virus found Win32/Heur
recup_dir.4/f0825728.dll Virus found Win32/Heur
recup_dir.6/f0161784.dll Virus found Win32/Heur

70 DRDC-RDDC-2013-R1

recup_dir.2/f0563568.exe Virus found Win32/Heur
recup_dir.2/f0341176.exe Trojan horse Rootkit Pakes.AJ
recup_dir.2/f0608344.dll Virus found Win32/Heur
recup_dir.2/f0572856.dll Virus found Win32/Heur
recup_dir.2/f0595624.exe Trojan horse Rootkit Pakes.AE < Match 3
recup_dir.2/f0459912.exe Trojan horse Rootkit Pakes.AJ
recup_dir.1/f0262712.dll Virus found Win32/Heur
recup_dir.1/f0245496.dll Virus found Win32/Heur
recup_dir.1/f0262960.dll Virus found Win32/Heur < Match 9
recup_dir.1/f0277128.exe Virus found Win32/Heur
recup_dir.1/f0262824.dll Virus found Win32/Heur
recup_dir.1/f0262944.dll Virus found Win32/Heur
recup_dir.1/f0264240.dll Virus found Win32/Heur < Match 8
recup_dir.1/f0263040.dll Virus found Win32/Heur
recup_dir.1/f0262632.dll Virus found Win32/Heur
recup_dir.1/f0226264.dll Virus found Win32/Heur
recup_dir.1/f0264288.dll Virus found Win32/Heur < Match 7
recup_dir.1/f0262728.dll Virus found Win32/Heur
recup_dir.1/f0172584.dll Virus found Win32/Heur
recup_dir.1/f0182168.dll Virus found Win32/Heur
recup_dir.1/f0262792.dll Virus found Win32/Heur
recup_dir.3/f0743744.dll Virus found Win32/Heur
recup_dir.3/f0626480.dll Virus found Win32/Heur
recup_dir.3/f0640880.exe Virus found Win32/Heur
recup_dir.3/f0654984.dll Virus found Win32/Heur
recup_dir.3/f0785768.exe Trojan horse SHeur3.XLI < Match 1
recup_dir.3/f0646224.exe Virus found Win32/Heur

C.3 BitDefender

recup_dir.3/f0785768.exe infected: Gen:Variant.NSAnti.1 < Match 1
recup_dir.3/f0770824.exe infected: Trojan.Zlob.1.Gen
recup_dir.1/f0264256.exe infected: Gen:Variant.FakeAlert.47
recup_dir.1/f0262960.dll infected: Gen:Heur.Conjar.5 < Match 9
recup_dir.1/f0277432.dll infected: Gen:Variant.Graftor.Elzob.17846 < Match 6
recup_dir.2/f0573960.dll infected: Gen:Variant.Graftor.Elzob.17846 < Match 5
recup_dir.2/f0583552.dll infected: Gen:Variant.Graftor.Elzob.17846 < Match 4
recup_dir.2/f0595624.exe infected: Gen:Variant.NSAnti.1 < Match 3

C.4 Comodo

recup_dir.4/f0857456.exe Found Virus, Malware Name is TrojWare.Win32.FraudPack.P
recup_dir.6/f0582768.dll Found Virus, Malware Name is TrojWare.Win32.FraudPack.P
recup_dir.2/f0436400.exe Found Virus, Malware Name is TrojWare.Win32.FraudPack.P

DRDC-RDDC-2013-R1 71

recup_dir.2/f0420688.exe Found Virus, Malware Name is TrojWare.Win32.FraudPack.P
recup_dir.2/f0573960.dll Found Virus, Malware Name is Packed.Win32.MUPX.Gen <
Match 5
recup_dir.2/f0583552.dll Found Virus, Malware Name is Packed.Win32.MUPX.Gen <
Match 4
recup_dir.1/f0093328.exe Found Virus, Malware Name is TrojWare.Win32.FraudPack.P
recup_dir.1/f0277432.dll Found Virus, Malware Name is Packed.Win32.MUPX.Gen <
Match 6
recup_dir.1/f0263784.dll Found Virus, Malware Name is TrojWare.Win32.FraudPack.P
recup_dir.3/f0719832.dll Found Virus, Malware Name is TrojWare.Win32.FraudPack.P
recup_dir.3/f0750168.dll Found Virus, Malware Name is Heur.Packed.Unknown
recup_dir.3/f0613336.dll Found Virus, Malware Name is TrojWare.Win32.FraudPack.P
recup_dir.3/f0785768.exe Found Virus, Malware Name is Worm.Win32.Stuxnet.a < Match
1
recup_dir.3/f0730008.dll Found Virus, Malware Name is TrojWare.Win32.FraudPack.P

C.5 F-Prot

F-Prot was the first of two anti-virus scanners unable to detect any malware whatsoever for the
carved memory data files recovered.

C.6 McAfee

McAfee was the second of two anti-virus scanners unable to detect any malware whatsoever for
the carved memory data files recovered.

72 DRDC-RDDC-2013-R1

This page intentionally left blank.

DRDC-RDDC-2013-R1 73

Annex D Textual output from the malfind plugin

The following output was generated by the malfind plugin having been run against the Stuxnet
memory image, Stuxnet.vmem. The output is as follows:

Process: csrss.exe Pid: 600 Address: 0x7f6f0000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6

0x7f6f0000 c8 00 00 00 1f 01 00 00 ff ee ff ee 08 70 00 00 p..
0x7f6f0010 08 00 00 00 00 fe 00 00 00 00 10 00 00 20 00 00
0x7f6f0020 00 02 00 00 00 20 00 00 8d 01 00 00 ff ef fd 7f
0x7f6f0030 03 00 08 06 00 00 00 00 00 00 00 00 00 00 00 00

0x7f6f0000 c8000000 ENTER 0x0, 0x0
0x7f6f0004 1f POP DS
0x7f6f0005 0100 ADD [EAX], EAX
0x7f6f0007 00ff ADD BH, BH
0x7f6f0009 ee OUT DX, AL
0x7f6f000a ff DB 0xff
0x7f6f000b ee OUT DX, AL
0x7f6f000c 087000 OR [EAX+0x0], DH
0x7f6f000f 0008 ADD [EAX], CL
0x7f6f0011 0000 ADD [EAX], AL
0x7f6f0013 0000 ADD [EAX], AL
0x7f6f0015 fe00 INC BYTE [EAX]
0x7f6f0017 0000 ADD [EAX], AL
0x7f6f0019 0010 ADD [EAX], DL
0x7f6f001b 0000 ADD [EAX], AL
0x7f6f001d 2000 AND [EAX], AL
0x7f6f001f 0000 ADD [EAX], AL
0x7f6f0021 0200 ADD AL, [EAX]
0x7f6f0023 0000 ADD [EAX], AL
0x7f6f0025 2000 AND [EAX], AL
0x7f6f0027 008d010000ff ADD [EBP-0xffffff], CL
0x7f6f002d ef OUT DX, EAX
0x7f6f002e fd STD
0x7f6f002f 7f03 JG 0x7f6f0034
0x7f6f0031 0008 ADD [EAX], CL
0x7f6f0033 06 PUSH ES
0x7f6f0034 0000 ADD [EAX], AL
0x7f6f0036 0000 ADD [EAX], AL
0x7f6f0038 0000 ADD [EAX], AL
0x7f6f003a 0000 ADD [EAX], AL
0x7f6f003c 0000 ADD [EAX], AL
0x7f6f003e 0000 ADD [EAX], AL

Process: services.exe Pid: 668 Address: 0x940000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6

0x00940000 90 06 94 00 c6 07 94 00 24 00 94 00 a5 04 00 00 $.......
0x00940010 f2 04 94 00 48 06 00 00 c9 04 94 00 29 00 00 00 H.......)...
0x00940020 00 00 c5 00 e8 13 00 00 00 5a 77 4d 61 70 56 69 ZwMapVi
0x00940030 65 77 4f 66 53 65 63 74 69 6f 6e 00 5a 51 81 c1 ewOfSection.ZQ..

0x940000 90 NOP
0x940001 06 PUSH ES
0x940002 94 XCHG ESP, EAX
0x940003 00c6 ADD DH, AL
0x940005 07 POP ES
0x940006 94 XCHG ESP, EAX
0x940007 002400 ADD [EAX+EAX], AH
0x94000a 94 XCHG ESP, EAX
0x94000b 00a5040000f2 ADD [EBP-0xdfffffc], AH
0x940011 0494 ADD AL, 0x94
0x940013 004806 ADD [EAX+0x6], CL

74 DRDC-RDDC-2013-R1

0x940016 0000 ADD [EAX], AL
0x940018 c9 LEAVE
0x940019 0494 ADD AL, 0x94
0x94001b 0029 ADD [ECX], CH
0x94001d 0000 ADD [EAX], AL
0x94001f 0000 ADD [EAX], AL
0x940021 00c5 ADD CH, AL
0x940023 00e8 ADD AL, CH
0x940025 1300 ADC EAX, [EAX]
0x940027 0000 ADD [EAX], AL
0x940029 5a POP EDX
0x94002a 774d JA 0x940079
0x94002c 61 POPA
0x94002d 7056 JO 0x940085
0x94002f 6965774f665365 IMUL ESP, [EBP+0x77], 0x6553664f
0x940036 6374696f ARPL [ECX+EBP*2+0x6f], SI
0x94003a 6e OUTS DX, BYTE [ESI]
0x94003b 005a51 ADD [EDX+0x51], BL
0x94003e 81 DB 0x81
0x94003f c1 DB 0xc1

Process: services.exe Pid: 668 Address: 0x13f0000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6

0x013f0000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ..............
0x013f0010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 @.......
0x013f0020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x013f0030 00 00 00 00 00 00 00 00 00 00 00 00 08 01 00 00

0x13f0000 4d DEC EBP
0x13f0001 5a POP EDX
0x13f0002 90 NOP
0x13f0003 0003 ADD [EBX], AL
0x13f0005 0000 ADD [EAX], AL
0x13f0007 000400 ADD [EAX+EAX], AL
0x13f000a 0000 ADD [EAX], AL
0x13f000c ff DB 0xff
0x13f000d ff00 INC DWORD [EAX]
0x13f000f 00b800000000 ADD [EAX+0x0], BH
0x13f0015 0000 ADD [EAX], AL
0x13f0017 004000 ADD [EAX+0x0], AL
0x13f001a 0000 ADD [EAX], AL
0x13f001c 0000 ADD [EAX], AL
0x13f001e 0000 ADD [EAX], AL
0x13f0020 0000 ADD [EAX], AL
0x13f0022 0000 ADD [EAX], AL
0x13f0024 0000 ADD [EAX], AL
0x13f0026 0000 ADD [EAX], AL
0x13f0028 0000 ADD [EAX], AL
0x13f002a 0000 ADD [EAX], AL
0x13f002c 0000 ADD [EAX], AL
0x13f002e 0000 ADD [EAX], AL
0x13f0030 0000 ADD [EAX], AL
0x13f0032 0000 ADD [EAX], AL
0x13f0034 0000 ADD [EAX], AL
0x13f0036 0000 ADD [EAX], AL
0x13f0038 0000 ADD [EAX], AL
0x13f003a 0000 ADD [EAX], AL
0x13f003c 0801 OR [ECX], AL
0x13f003e 0000 ADD [EAX], AL

Process: svchost.exe Pid: 940 Address: 0xb70000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6

0x00b70000 29 87 7f ae 00 00 00 00 ff ff ff ff 77 35 00 01)...........w5..
0x00b70010 4b 00 45 00 52 00 4e 00 45 00 4c 00 33 00 32 00 K.E.R.N.E.L.3.2.
0x00b70020 2e 00 44 00 4c 00 4c 00 2e 00 41 00 53 00 4c 00 ..D.L.L...A.S.L.
0x00b70030 52 00 2e 00 30 00 33 00 36 00 30 00 63 00 38 00 R...0.3.6.0.c.8.

0xb70000 29877fae0000 SUB [EDI+0xae7f], EAX

DRDC-RDDC-2013-R1 75

0xb70006 0000 ADD [EAX], AL
0xb70008 ff DB 0xff
0xb70009 ff DB 0xff
0xb7000a ff DB 0xff
0xb7000b ff7735 PUSH DWORD [EDI+0x35]
0xb7000e 0001 ADD [ECX], AL
0xb70010 4b DEC EBX
0xb70011 004500 ADD [EBP+0x0], AL
0xb70014 52 PUSH EDX
0xb70015 004e00 ADD [ESI+0x0], CL
0xb70018 45 INC EBP
0xb70019 004c0033 ADD [EAX+EAX+0x33], CL
0xb7001d 0032 ADD [EDX], DH
0xb7001f 002e ADD [ESI], CH
0xb70021 0044004c ADD [EAX+EAX+0x4c], AL
0xb70025 004c002e ADD [EAX+EAX+0x2e], CL
0xb70029 004100 ADD [ECX+0x0], AL
0xb7002c 53 PUSH EBX
0xb7002d 004c0052 ADD [EAX+EAX+0x52], CL
0xb70031 002e ADD [ESI], CH
0xb70033 0030 ADD [EAX], DH
0xb70035 0033 ADD [EBX], DH
0xb70037 0036 ADD [ESI], DH
0xb70039 0030 ADD [EAX], DH
0xb7003b 006300 ADD [EBX+0x0], AH
0xb7003e 3800 CMP [EAX], AL

Process: svchost.exe Pid: 940 Address: 0xbf0000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6

0x00bf0000 90 06 bf 00 c6 07 bf 00 24 00 bf 00 a5 04 00 00 $.......
0x00bf0010 f2 04 bf 00 48 06 00 00 c9 04 bf 00 29 00 00 00 H.......)...
0x00bf0020 00 00 b7 00 e8 13 00 00 00 5a 77 4d 61 70 56 69 ZwMapVi
0x00bf0030 65 77 4f 66 53 65 63 74 69 6f 6e 00 5a 51 81 c1 ewOfSection.ZQ..

0xbf0000 90 NOP
0xbf0001 06 PUSH ES
0xbf0002 bf00c607bf MOV EDI, 0xbf07c600
0xbf0007 002400 ADD [EAX+EAX], AH
0xbf000a bf00a50400 MOV EDI, 0x4a500
0xbf000f 00f2 ADD DL, DH
0xbf0011 04bf ADD AL, 0xbf
0xbf0013 004806 ADD [EAX+0x6], CL
0xbf0016 0000 ADD [EAX], AL
0xbf0018 c9 LEAVE
0xbf0019 04bf ADD AL, 0xbf
0xbf001b 0029 ADD [ECX], CH
0xbf001d 0000 ADD [EAX], AL
0xbf001f 0000 ADD [EAX], AL
0xbf0021 00b700e81300 ADD [EDI+0x13e800], DH
0xbf0027 0000 ADD [EAX], AL
0xbf0029 5a POP EDX
0xbf002a 774d JA 0xbf0079
0xbf002c 61 POPA
0xbf002d 7056 JO 0xbf0085
0xbf002f 6965774f665365 IMUL ESP, [EBP+0x77], 0x6553664f
0xbf0036 6374696f ARPL [ECX+EBP*2+0x6f], SI
0xbf003a 6e OUTS DX, BYTE [ESI]
0xbf003b 005a51 ADD [EDX+0x51], BL
0xbf003e 81 DB 0x81
0xbf003f c1 DB 0xc1

Process: svchost.exe Pid: 940 Address: 0xd00000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6

0x00d00000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ..............
0x00d00010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 @.......
0x00d00020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00d00030 00 00 00 00 00 00 00 00 00 00 00 00 08 01 00 00

76 DRDC-RDDC-2013-R1

0xd00000 4d DEC EBP
0xd00001 5a POP EDX
0xd00002 90 NOP
0xd00003 0003 ADD [EBX], AL
0xd00005 0000 ADD [EAX], AL
0xd00007 000400 ADD [EAX+EAX], AL
0xd0000a 0000 ADD [EAX], AL
0xd0000c ff DB 0xff
0xd0000d ff00 INC DWORD [EAX]
0xd0000f 00b800000000 ADD [EAX+0x0], BH
0xd00015 0000 ADD [EAX], AL
0xd00017 004000 ADD [EAX+0x0], AL
0xd0001a 0000 ADD [EAX], AL
0xd0001c 0000 ADD [EAX], AL
0xd0001e 0000 ADD [EAX], AL
0xd00020 0000 ADD [EAX], AL
0xd00022 0000 ADD [EAX], AL
0xd00024 0000 ADD [EAX], AL
0xd00026 0000 ADD [EAX], AL
0xd00028 0000 ADD [EAX], AL
0xd0002a 0000 ADD [EAX], AL
0xd0002c 0000 ADD [EAX], AL
0xd0002e 0000 ADD [EAX], AL
0xd00030 0000 ADD [EAX], AL
0xd00032 0000 ADD [EAX], AL
0xd00034 0000 ADD [EAX], AL
0xd00036 0000 ADD [EAX], AL
0xd00038 0000 ADD [EAX], AL
0xd0003a 0000 ADD [EAX], AL
0xd0003c 0801 OR [ECX], AL
0xd0003e 0000 ADD [EAX], AL

Process: explorer.exe Pid: 1196 Address: 0x2550000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 1, MemCommit: 1, PrivateMemory: 1, Protection: 6

0x02550000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x02550010 00 00 55 02 00 00 00 00 00 00 00 00 00 00 00 00 ..U.............
0x02550020 10 00 55 02 00 00 00 00 00 00 00 00 00 00 00 00 ..U.............
0x02550030 20 00 55 02 00 00 00 00 00 00 00 00 00 00 00 00 ..U.............

0x2550000 0000 ADD [EAX], AL
0x2550002 0000 ADD [EAX], AL
0x2550004 0000 ADD [EAX], AL
0x2550006 0000 ADD [EAX], AL
0x2550008 0000 ADD [EAX], AL
0x255000a 0000 ADD [EAX], AL
0x255000c 0000 ADD [EAX], AL
0x255000e 0000 ADD [EAX], AL
0x2550010 0000 ADD [EAX], AL
0x2550012 55 PUSH EBP
0x2550013 0200 ADD AL, [EAX]
0x2550015 0000 ADD [EAX], AL
0x2550017 0000 ADD [EAX], AL
0x2550019 0000 ADD [EAX], AL
0x255001b 0000 ADD [EAX], AL
0x255001d 0000 ADD [EAX], AL
0x255001f 0010 ADD [EAX], DL
0x2550021 005502 ADD [EBP+0x2], DL
0x2550024 0000 ADD [EAX], AL
0x2550026 0000 ADD [EAX], AL
0x2550028 0000 ADD [EAX], AL
0x255002a 0000 ADD [EAX], AL
0x255002c 0000 ADD [EAX], AL
0x255002e 0000 ADD [EAX], AL
0x2550030 2000 AND [EAX], AL
0x2550032 55 PUSH EBP
0x2550033 0200 ADD AL, [EAX]
0x2550035 0000 ADD [EAX], AL
0x2550037 0000 ADD [EAX], AL
0x2550039 0000 ADD [EAX], AL
0x255003b 0000 ADD [EAX], AL

DRDC-RDDC-2013-R1 77

0x255003d 0000 ADD [EAX], AL
0x255003f 00 DB 0x0

Process: lsass.exe Pid: 868 Address: 0x80000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6

0x00080000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ..............
0x00080010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 @.......
0x00080020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00080030 00 00 00 00 00 00 00 00 00 00 00 00 08 01 00 00

0x80000 4d DEC EBP
0x80001 5a POP EDX
0x80002 90 NOP
0x80003 0003 ADD [EBX], AL
0x80005 0000 ADD [EAX], AL
0x80007 000400 ADD [EAX+EAX], AL
0x8000a 0000 ADD [EAX], AL
0x8000c ff DB 0xff
0x8000d ff00 INC DWORD [EAX]
0x8000f 00b800000000 ADD [EAX+0x0], BH
0x80015 0000 ADD [EAX], AL
0x80017 004000 ADD [EAX+0x0], AL
0x8001a 0000 ADD [EAX], AL
0x8001c 0000 ADD [EAX], AL
0x8001e 0000 ADD [EAX], AL
0x80020 0000 ADD [EAX], AL
0x80022 0000 ADD [EAX], AL
0x80024 0000 ADD [EAX], AL
0x80026 0000 ADD [EAX], AL
0x80028 0000 ADD [EAX], AL
0x8002a 0000 ADD [EAX], AL
0x8002c 0000 ADD [EAX], AL
0x8002e 0000 ADD [EAX], AL
0x80030 0000 ADD [EAX], AL
0x80032 0000 ADD [EAX], AL
0x80034 0000 ADD [EAX], AL
0x80036 0000 ADD [EAX], AL
0x80038 0000 ADD [EAX], AL
0x8003a 0000 ADD [EAX], AL
0x8003c 0801 OR [ECX], AL
0x8003e 0000 ADD [EAX], AL

Process: lsass.exe Pid: 868 Address: 0x1000000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 2, Protection: 6

0x01000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ..............
0x01000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 @.......
0x01000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x01000030 00 00 00 00 00 00 00 00 00 00 00 00 d0 00 00 00

0x1000000 4d DEC EBP
0x1000001 5a POP EDX
0x1000002 90 NOP
0x1000003 0003 ADD [EBX], AL
0x1000005 0000 ADD [EAX], AL
0x1000007 000400 ADD [EAX+EAX], AL
0x100000a 0000 ADD [EAX], AL
0x100000c ff DB 0xff
0x100000d ff00 INC DWORD [EAX]
0x100000f 00b800000000 ADD [EAX+0x0], BH
0x1000015 0000 ADD [EAX], AL
0x1000017 004000 ADD [EAX+0x0], AL
0x100001a 0000 ADD [EAX], AL
0x100001c 0000 ADD [EAX], AL
0x100001e 0000 ADD [EAX], AL
0x1000020 0000 ADD [EAX], AL
0x1000022 0000 ADD [EAX], AL
0x1000024 0000 ADD [EAX], AL
0x1000026 0000 ADD [EAX], AL

78 DRDC-RDDC-2013-R1

0x1000028 0000 ADD [EAX], AL
0x100002a 0000 ADD [EAX], AL
0x100002c 0000 ADD [EAX], AL
0x100002e 0000 ADD [EAX], AL
0x1000030 0000 ADD [EAX], AL
0x1000032 0000 ADD [EAX], AL
0x1000034 0000 ADD [EAX], AL
0x1000036 0000 ADD [EAX], AL
0x1000038 0000 ADD [EAX], AL
0x100003a 0000 ADD [EAX], AL
0x100003c d000 ROL BYTE [EAX], 0x1
0x100003e 0000 ADD [EAX], AL

Process: lsass.exe Pid: 1928 Address: 0x80000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6

0x00080000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ..............
0x00080010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 @.......
0x00080020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00080030 00 00 00 00 00 00 00 00 00 00 00 00 08 01 00 00

0x80000 4d DEC EBP
0x80001 5a POP EDX
0x80002 90 NOP
0x80003 0003 ADD [EBX], AL
0x80005 0000 ADD [EAX], AL
0x80007 000400 ADD [EAX+EAX], AL
0x8000a 0000 ADD [EAX], AL
0x8000c ff DB 0xff
0x8000d ff00 INC DWORD [EAX]
0x8000f 00b800000000 ADD [EAX+0x0], BH
0x80015 0000 ADD [EAX], AL
0x80017 004000 ADD [EAX+0x0], AL
0x8001a 0000 ADD [EAX], AL
0x8001c 0000 ADD [EAX], AL
0x8001e 0000 ADD [EAX], AL
0x80020 0000 ADD [EAX], AL
0x80022 0000 ADD [EAX], AL
0x80024 0000 ADD [EAX], AL
0x80026 0000 ADD [EAX], AL
0x80028 0000 ADD [EAX], AL
0x8002a 0000 ADD [EAX], AL
0x8002c 0000 ADD [EAX], AL
0x8002e 0000 ADD [EAX], AL
0x80030 0000 ADD [EAX], AL
0x80032 0000 ADD [EAX], AL
0x80034 0000 ADD [EAX], AL
0x80036 0000 ADD [EAX], AL
0x80038 0000 ADD [EAX], AL
0x8003a 0000 ADD [EAX], AL
0x8003c 0801 OR [ECX], AL
0x8003e 0000 ADD [EAX], AL

Process: lsass.exe Pid: 1928 Address: 0x1000000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: CommitCharge: 2, Protection: 6

0x01000000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ..............
0x01000010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 @.......
0x01000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x01000030 00 00 00 00 00 00 00 00 00 00 00 00 d0 00 00 00

0x1000000 4d DEC EBP
0x1000001 5a POP EDX
0x1000002 90 NOP
0x1000003 0003 ADD [EBX], AL
0x1000005 0000 ADD [EAX], AL
0x1000007 000400 ADD [EAX+EAX], AL
0x100000a 0000 ADD [EAX], AL
0x100000c ff DB 0xff
0x100000d ff00 INC DWORD [EAX]

DRDC-RDDC-2013-R1 79

0x100000f 00b800000000 ADD [EAX+0x0], BH
0x1000015 0000 ADD [EAX], AL
0x1000017 004000 ADD [EAX+0x0], AL
0x100001a 0000 ADD [EAX], AL
0x100001c 0000 ADD [EAX], AL
0x100001e 0000 ADD [EAX], AL
0x1000020 0000 ADD [EAX], AL
0x1000022 0000 ADD [EAX], AL
0x1000024 0000 ADD [EAX], AL
0x1000026 0000 ADD [EAX], AL
0x1000028 0000 ADD [EAX], AL
0x100002a 0000 ADD [EAX], AL
0x100002c 0000 ADD [EAX], AL
0x100002e 0000 ADD [EAX], AL
0x1000030 0000 ADD [EAX], AL
0x1000032 0000 ADD [EAX], AL
0x1000034 0000 ADD [EAX], AL
0x1000036 0000 ADD [EAX], AL
0x1000038 0000 ADD [EAX], AL
0x100003a 0000 ADD [EAX], AL
0x100003c d000 ROL BYTE [EAX], 0x1
0x100003e 0000 ADD [EAX], AL

Process: lsass.exe Pid: 1928 Address: 0x6f0000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6

0x006f0000 29 87 7f ae 00 00 00 00 ff ff ff ff 77 35 00 01)...........w5..
0x006f0010 4b 00 45 00 52 00 4e 00 45 00 4c 00 33 00 32 00 K.E.R.N.E.L.3.2.
0x006f0020 2e 00 44 00 4c 00 4c 00 2e 00 41 00 53 00 4c 00 ..D.L.L...A.S.L.
0x006f0030 52 00 2e 00 30 00 33 00 36 00 30 00 62 00 37 00 R...0.3.6.0.b.7.

0x6f0000 29877fae0000 SUB [EDI+0xae7f], EAX
0x6f0006 0000 ADD [EAX], AL
0x6f0008 ff DB 0xff
0x6f0009 ff DB 0xff
0x6f000a ff DB 0xff
0x6f000b ff7735 PUSH DWORD [EDI+0x35]
0x6f000e 0001 ADD [ECX], AL
0x6f0010 4b DEC EBX
0x6f0011 004500 ADD [EBP+0x0], AL
0x6f0014 52 PUSH EDX
0x6f0015 004e00 ADD [ESI+0x0], CL
0x6f0018 45 INC EBP
0x6f0019 004c0033 ADD [EAX+EAX+0x33], CL
0x6f001d 0032 ADD [EDX], DH
0x6f001f 002e ADD [ESI], CH
0x6f0021 0044004c ADD [EAX+EAX+0x4c], AL
0x6f0025 004c002e ADD [EAX+EAX+0x2e], CL
0x6f0029 004100 ADD [ECX+0x0], AL
0x6f002c 53 PUSH EBX
0x6f002d 004c0052 ADD [EAX+EAX+0x52], CL
0x6f0031 002e ADD [ESI], CH
0x6f0033 0030 ADD [EAX], DH
0x6f0035 0033 ADD [EBX], DH
0x6f0037 0036 ADD [ESI], DH
0x6f0039 0030 ADD [EAX], DH
0x6f003b 006200 ADD [EDX+0x0], AH
0x6f003e 37 AAA
0x6f003f 00 DB 0x0

Process: lsass.exe Pid: 1928 Address: 0x680000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6

0x00680000 90 06 68 00 c6 07 68 00 24 00 68 00 a5 04 00 00 ..h...h.$.h.....
0x00680010 f2 04 68 00 48 06 00 00 c9 04 68 00 29 00 00 00 ..h.H.....h.)...
0x00680020 00 00 6f 00 e8 13 00 00 00 5a 77 4d 61 70 56 69 ..o......ZwMapVi
0x00680030 65 77 4f 66 53 65 63 74 69 6f 6e 00 5a 51 81 c1 ewOfSection.ZQ..

0x680000 90 NOP
0x680001 06 PUSH ES

80 DRDC-RDDC-2013-R1

0x680002 6800c60768 PUSH DWORD 0x6807c600
0x680007 002400 ADD [EAX+EAX], AH
0x68000a 6800a50400 PUSH DWORD 0x4a500
0x68000f 00f2 ADD DL, DH
0x680011 0468 ADD AL, 0x68
0x680013 004806 ADD [EAX+0x6], CL
0x680016 0000 ADD [EAX], AL
0x680018 c9 LEAVE
0x680019 0468 ADD AL, 0x68
0x68001b 0029 ADD [ECX], CH
0x68001d 0000 ADD [EAX], AL
0x68001f 0000 ADD [EAX], AL
0x680021 006f00 ADD [EDI+0x0], CH
0x680024 e813000000 CALL 0x68003c
0x680029 5a POP EDX
0x68002a 774d JA 0x680079
0x68002c 61 POPA
0x68002d 7056 JO 0x680085
0x68002f 6965774f665365 IMUL ESP, [EBP+0x77], 0x6553664f
0x680036 6374696f ARPL [ECX+EBP*2+0x6f], SI
0x68003a 6e OUTS DX, BYTE [ESI]
0x68003b 005a51 ADD [EDX+0x51], BL
0x68003e 81 DB 0x81
0x68003f c1 DB 0xc1

Process: lsass.exe Pid: 1928 Address: 0x870000
Vad Tag: Vad Protection: PAGE_EXECUTE_READWRITE
Flags: Protection: 6

0x00870000 4d 5a 90 00 03 00 00 00 04 00 00 00 ff ff 00 00 MZ..............
0x00870010 b8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 @.......
0x00870020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x00870030 00 00 00 00 00 00 00 00 00 00 00 00 08 01 00 00

0x870000 4d DEC EBP
0x870001 5a POP EDX
0x870002 90 NOP
0x870003 0003 ADD [EBX], AL
0x870005 0000 ADD [EAX], AL
0x870007 000400 ADD [EAX+EAX], AL
0x87000a 0000 ADD [EAX], AL
0x87000c ff DB 0xff
0x87000d ff00 INC DWORD [EAX]
0x87000f 00b800000000 ADD [EAX+0x0], BH
0x870015 0000 ADD [EAX], AL
0x870017 004000 ADD [EAX+0x0], AL
0x87001a 0000 ADD [EAX], AL
0x87001c 0000 ADD [EAX], AL
0x87001e 0000 ADD [EAX], AL
0x870020 0000 ADD [EAX], AL
0x870022 0000 ADD [EAX], AL
0x870024 0000 ADD [EAX], AL
0x870026 0000 ADD [EAX], AL
0x870028 0000 ADD [EAX], AL
0x87002a 0000 ADD [EAX], AL
0x87002c 0000 ADD [EAX], AL
0x87002e 0000 ADD [EAX], AL
0x870030 0000 ADD [EAX], AL
0x870032 0000 ADD [EAX], AL
0x870034 0000 ADD [EAX], AL
0x870036 0000 ADD [EAX], AL
0x870038 0000 ADD [EAX], AL
0x87003a 0000 ADD [EAX], AL
0x87003c 0801 OR [ECX], AL
0x87003e 0000 ADD [EAX], AL

DRDC-RDDC-2013-R1 81

Annex E Output of Dlldump plugin for PIDs 668, 868,
940 and 1928

The various DLLs dumped for PIDs 668, 868, 940 and 1928 using the dlldump plugin have been
broken down by PID.

E.1 DLLs dumped for services.exe (PID 668)

The following DLLs were dumped for services.exe:

0x82073020 services.exe 0x001000000 services.exe
OK: module.668.2273020.1000000.dll

0x82073020 services.exe 0x07c900000 ntdll.dll
OK: module.668.2273020.7c900000.dll

0x82073020 services.exe 0x077f60000 SHLWAPI.dll
OK: module.668.2273020.77f60000.dll

0x82073020 services.exe 0x077b70000 eventlog.dll
OK: module.668.2273020.77b70000.dll

0x82073020 services.exe 0x076360000 WINSTA.dll
OK: module.668.2273020.76360000.dll

0x82073020 services.exe 0x05ad70000 uxtheme.dll
OK: module.668.2273020.5ad70000.dll

0x82073020 services.exe 0x068000000 rsaenh.dll
OK: module.668.2273020.68000000.dll

0x82073020 services.exe 0x07dba0000 umpnpmgr.dll
OK: module.668.2273020.7dba0000.dll

0x82073020 services.exe 0x0771b0000 WININET.dll
OK: module.668.2273020.771b0000.dll

0x82073020 services.exe 0x077dd0000 ADVAPI32.dll
OK: module.668.2273020.77dd0000.dll

0x82073020 services.exe 0x077fe0000 Secur32.dll
OK: module.668.2273020.77fe0000.dll

0x82073020 services.exe 0x077c00000 VERSION.dll
OK: module.668.2273020.77c00000.dll

0x82073020 services.exe 0x076f20000 DNSAPI.dll
OK: module.668.2273020.76f20000.dll

0x82073020 services.exe 0x077b40000 Apphelp.dll
OK: module.668.2273020.77b40000.dll

0x82073020 services.exe 0x001020000 xpsp2res.dll
OK: module.668.2273020.1020000.dll

0x82073020 services.exe 0x0773d0000 comctl32.dll
OK: module.668.2273020.773d0000.dll

0x82073020 services.exe 0x05b860000 NETAPI32.dll
OK: module.668.2273020.5b860000.dll

82 DRDC-RDDC-2013-R1

0x82073020 services.exe 0x077e70000 RPCRT4.dll
OK: module.668.2273020.77e70000.dll

0x82073020 services.exe 0x076080000 MSVCP60.dll
OK: module.668.2273020.76080000.dll

0x82073020 services.exe 0x0013f0000 KERNEL32....0360c5e2
OK: module.668.2273020.13f0000.dll

0x82073020 services.exe 0x071ab0000 WS2_32.dll
OK: module.668.2273020.71ab0000.dll

0x82073020 services.exe 0x071ad0000 WSOCK32.dll
OK: module.668.2273020.71ad0000.dll

0x82073020 services.exe 0x0774e0000 ole32.dll
OK: module.668.2273020.774e0000.dll

0x82073020 services.exe 0x077120000 OLEAUT32.dll
OK: module.668.2273020.77120000.dll

0x82073020 services.exe 0x076f50000 wtsapi32.dll
OK: module.668.2273020.76f50000.dll

0x82073020 services.exe 0x076d60000 IPHLPAPI.DLL
OK: module.668.2273020.76d60000.dll

0x82073020 services.exe 0x05cb70000 ShimEng.dll
OK: module.668.2273020.5cb70000.dll

0x82073020 services.exe 0x077c10000 msvcrt.dll
OK: module.668.2273020.77c10000.dll

0x82073020 services.exe 0x0769c0000 USERENV.dll
OK: module.668.2273020.769c0000.dll

0x82073020 services.exe 0x07c800000 kernel32.dll
OK: module.668.2273020.7c800000.dll

0x82073020 services.exe 0x07dbd0000 SCESRV.dll
OK: module.668.2273020.7dbd0000.dll

0x82073020 services.exe 0x076bf0000 PSAPI.DLL
OK: module.668.2273020.76bf0000.dll

0x82073020 services.exe 0x07e410000 USER32.dll
OK: module.668.2273020.7e410000.dll

0x82073020 services.exe 0x077f10000 GDI32.dll
OK: module.668.2273020.77f10000.dll

0x82073020 services.exe 0x076c30000 WINTRUST.dll
OK: module.668.2273020.76c30000.dll

0x82073020 services.exe 0x07c9c0000 SHELL32.dll
OK: module.668.2273020.7c9c0000.dll

0x82073020 services.exe 0x047260000 AcAdProc.dll
OK: module.668.2273020.47260000.dll

0x82073020 services.exe 0x05f770000 NCObjAPI.DLL
OK: module.668.2273020.5f770000.dll

0x82073020 services.exe 0x075150000 Cabinet.dll
OK: module.668.2273020.75150000.dll

0x82073020 services.exe 0x077a80000 CRYPT32.dll
OK: module.668.2273020.77a80000.dll

DRDC-RDDC-2013-R1 83

0x82073020 services.exe 0x076c90000 IMAGEHLP.dll
OK: module.668.2273020.76c90000.dll

0x82073020 services.exe 0x071aa0000 WS2HELP.dll
OK: module.668.2273020.71aa0000.dll

0x82073020 services.exe 0x0776c0000 AUTHZ.dll
OK: module.668.2273020.776c0000.dll

0x82073020 services.exe 0x05d090000 comctl32.dll
OK: module.668.2273020.5d090000.dll

0x82073020 services.exe 0x077b20000 MSASN1.dll
OK: module.668.2273020.77b20000.dll

E.2 DLLs dumped for lsass.exe (PID 868)

The following DLLs were dumped for lsass.exe:

0x81c498c8 lsass.exe 0x001000000 lsass.exe
OK: module.868.1e498c8.1000000.dll

0x81c498c8 lsass.exe 0x07c900000 ntdll.dll
OK: module.868.1e498c8.7c900000.dll

0x81c498c8 lsass.exe 0x077e70000 RPCRT4.dll
OK: module.868.1e498c8.77e70000.dll

0x81c498c8 lsass.exe 0x077f10000 GDI32.dll
OK: module.868.1e498c8.77f10000.dll

0x81c498c8 lsass.exe 0x077dd0000 ADVAPI32.dll
OK: module.868.1e498c8.77dd0000.dll

0x81c498c8 lsass.exe 0x07c800000 kernel32.dll
OK: module.868.1e498c8.7c800000.dll

0x81c498c8 lsass.exe 0x07e410000 USER32.dll
OK: module.868.1e498c8.7e410000.dll

0x81c498c8 lsass.exe 0x077fe0000 Secur32.dll
OK: module.868.1e498c8.77fe0000.dll

E.3 DLLs dumped for svchost.exe (PID 940)

The following DLLs were dumped for svchost.exe:

0x81e61da0 svchost.exe 0x001000000 svchost.exe
OK: module.940.2061da0.1000000.dll

0x81e61da0 svchost.exe 0x07c900000 ntdll.dll
OK: module.940.2061da0.7c900000.dll

0x81e61da0 svchost.exe 0x077be0000 MSACM32.dll
OK: module.940.2061da0.77be0000.dll

0x81e61da0 svchost.exe 0x077f60000 SHLWAPI.dll
OK: module.940.2061da0.77f60000.dll

0x81e61da0 svchost.exe 0x05ad70000 UxTheme.dll
OK: module.940.2061da0.5ad70000.dll

84 DRDC-RDDC-2013-R1

0x81e61da0 svchost.exe 0x068000000 rsaenh.dll
OK: module.940.2061da0.68000000.dll

0x81e61da0 svchost.exe 0x0769c0000 USERENV.dll
OK: module.940.2061da0.769c0000.dll

0x81e61da0 svchost.exe 0x0771b0000 WININET.dll
OK: module.940.2061da0.771b0000.dll

0x81e61da0 svchost.exe 0x076fc0000 rasadhlp.dll
OK: module.940.2061da0.76fc0000.dll

0x81e61da0 svchost.exe 0x077dd0000 ADVAPI32.dll
OK: module.940.2061da0.77dd0000.dll

0x81e61da0 svchost.exe 0x077a80000 CRYPT32.dll
OK: module.940.2061da0.77a80000.dll

0x81e61da0 svchost.exe 0x077fe0000 Secur32.dll
OK: module.940.2061da0.77fe0000.dll

0x81e61da0 svchost.exe 0x077c00000 VERSION.dll
OK: module.940.2061da0.77c00000.dll

0x81e61da0 svchost.exe 0x076f20000 DNSAPI.dll
OK: module.940.2061da0.76f20000.dll

0x81e61da0 svchost.exe 0x076b40000 WINMM.dll
OK: module.940.2061da0.76b40000.dll

0x81e61da0 svchost.exe 0x071a50000 mswsock.dll
OK: module.940.2061da0.71a50000.dll

0x81e61da0 svchost.exe 0x05b860000 NETAPI32.dll
OK: module.940.2061da0.5b860000.dll

0x81e61da0 svchost.exe 0x000670000 xpsp2res.dll
OK: module.940.2061da0.670000.dll

0x81e61da0 svchost.exe 0x06f880000 AcGenral.DLL
OK: module.940.2061da0.6f880000.dll

0x81e61da0 svchost.exe 0x071a90000 wshtcpip.dll
OK: module.940.2061da0.71a90000.dll

0x81e61da0 svchost.exe 0x071ab0000 WS2_32.dll
OK: module.940.2061da0.71ab0000.dll

0x81e61da0 svchost.exe 0x076f60000 WLDAP32.dll
OK: module.940.2061da0.76f60000.dll

0x81e61da0 svchost.exe 0x071ad0000 WSOCK32.dll
OK: module.940.2061da0.71ad0000.dll

0x81e61da0 svchost.exe 0x0774e0000 ole32.dll
OK: module.940.2061da0.774e0000.dll

0x81e61da0 svchost.exe 0x07e410000 USER32.dll
OK: module.940.2061da0.7e410000.dll

0x81e61da0 svchost.exe 0x000d00000 KERNEL32....0360c8ee
OK: module.940.2061da0.d00000.dll

0x81e61da0 svchost.exe 0x077f10000 GDI32.dll
OK: module.940.2061da0.77f10000.dll

0x81e61da0 svchost.exe 0x077120000 OLEAUT32.dll
OK: module.940.2061da0.77120000.dll

DRDC-RDDC-2013-R1 85

0x81e61da0 svchost.exe 0x076fd0000 CLBCATQ.DLL
OK: module.940.2061da0.76fd0000.dll

0x81e61da0 svchost.exe 0x076d60000 iphlpapi.dll
OK: module.940.2061da0.76d60000.dll

0x81e61da0 svchost.exe 0x05cb70000 ShimEng.dll
OK: module.940.2061da0.5cb70000.dll

0x81e61da0 svchost.exe 0x076fb0000 winrnr.dll
OK: module.940.2061da0.76fb0000.dll

0x81e61da0 svchost.exe 0x07c9c0000 SHELL32.dll
OK: module.940.2061da0.7c9c0000.dll

0x81e61da0 svchost.exe 0x07c800000 kernel32.dll
OK: module.940.2061da0.7c800000.dll

0x81e61da0 svchost.exe 0x0773d0000 comctl32.dll
OK: module.940.2061da0.773d0000.dll

0x81e61da0 svchost.exe 0x076bf0000 PSAPI.DLL
OK: module.940.2061da0.76bf0000.dll

0x81e61da0 svchost.exe 0x0662b0000 hnetcfg.dll
OK: module.940.2061da0.662b0000.dll

0x81e61da0 svchost.exe 0x077c10000 msvcrt.dll
OK: module.940.2061da0.77c10000.dll

0x81e61da0 svchost.exe 0x077e70000 RPCRT4.dll
OK: module.940.2061da0.77e70000.dll

0x81e61da0 svchost.exe 0x077050000 COMRes.dll
OK: module.940.2061da0.77050000.dll

0x81e61da0 svchost.exe 0x076a80000 rpcss.dll
OK: module.940.2061da0.76a80000.dll

0x81e61da0 svchost.exe 0x05d090000 comctl32.dll
OK: module.940.2061da0.5d090000.dll

0x81e61da0 svchost.exe 0x071aa0000 WS2HELP.dll
OK: module.940.2061da0.71aa0000.dll

0x81e61da0 svchost.exe 0x077b20000 MSASN1.dll
OK: module.940.2061da0.77b20000.dll

E.4 DLLs dumped for lsass.exe (PID 1928)

The following DLLs were dumped for lsass.exe:

0x81c47c00 lsass.exe 0x001000000 lsass.exe
OK: module.1928.1e47c00.1000000.dll

0x81c47c00 lsass.exe 0x07c900000 ntdll.dll
OK: module.1928.1e47c00.7c900000.dll

0x81c47c00 lsass.exe 0x077f60000 SHLWAPI.dll
OK: module.1928.1e47c00.77f60000.dll

0x81c47c00 lsass.exe 0x0771b0000 WININET.dll
OK: module.1928.1e47c00.771b0000.dll

0x81c47c00 lsass.exe 0x077dd0000 ADVAPI32.dll
OK: module.1928.1e47c00.77dd0000.dll

86 DRDC-RDDC-2013-R1

0x81c47c00 lsass.exe 0x077a80000 CRYPT32.dll
OK: module.1928.1e47c00.77a80000.dll

0x81c47c00 lsass.exe 0x077fe0000 Secur32.dll
OK: module.1928.1e47c00.77fe0000.dll

0x81c47c00 lsass.exe 0x077c00000 VERSION.dll
OK: module.1928.1e47c00.77c00000.dll

0x81c47c00 lsass.exe 0x076d60000 IPHLPAPI.DLL
OK: module.1928.1e47c00.76d60000.dll

0x81c47c00 lsass.exe 0x05b860000 NETAPI32.dll
OK: module.1928.1e47c00.5b860000.dll

0x81c47c00 lsass.exe 0x071ab0000 WS2_32.dll
OK: module.1928.1e47c00.71ab0000.dll

0x81c47c00 lsass.exe 0x071ad0000 WSOCK32.dll
OK: module.1928.1e47c00.71ad0000.dll

0x81c47c00 lsass.exe 0x0774e0000 ole32.dll
OK: module.1928.1e47c00.774e0000.dll

0x81c47c00 lsass.exe 0x07e410000 USER32.dll
OK: module.1928.1e47c00.7e410000.dll

0x81c47c00 lsass.exe 0x077f10000 GDI32.dll
OK: module.1928.1e47c00.77f10000.dll

0x81c47c00 lsass.exe 0x077120000 OLEAUT32.dll
OK: module.1928.1e47c00.77120000.dll

0x81c47c00 lsass.exe 0x0769c0000 USERENV.dll
OK: module.1928.1e47c00.769c0000.dll

0x81c47c00 lsass.exe 0x07c800000 kernel32.dll
OK: module.1928.1e47c00.7c800000.dll

0x81c47c00 lsass.exe 0x0773d0000 comctl32.dll
OK: module.1928.1e47c00.773d0000.dll

0x81c47c00 lsass.exe 0x076bf0000 PSAPI.DLL
OK: module.1928.1e47c00.76bf0000.dll

0x81c47c00 lsass.exe 0x077c10000 msvcrt.dll
OK: module.1928.1e47c00.77c10000.dll

0x81c47c00 lsass.exe 0x077e70000 RPCRT4.dll
OK: module.1928.1e47c00.77e70000.dll

0x81c47c00 lsass.exe 0x000870000 KERNEL32....0360b7ab
OK: module.1928.1e47c00.870000.dll

0x81c47c00 lsass.exe 0x076f20000 DNSAPI.dll
OK: module.1928.1e47c00.76f20000.dll

0x81c47c00 lsass.exe 0x07c9c0000 SHELL32.dll
OK: module.1928.1e47c00.7c9c0000.dll

0x81c47c00 lsass.exe 0x071aa0000 WS2HELP.dll
OK: module.1928.1e47c00.71aa0000.dll

0x81c47c00 lsass.exe 0x05d090000 comctl32.dll
OK: module.1928.1e47c00.5d090000.dll

0x81c47c00 lsass.exe 0x077b20000 MSASN1.dll
OK: module.1928.1e47c00.77b20000.dll

DRDC-RDDC-2013-R1 87

Annex F Fuzzy hash matches for Dlldump-based DLLs

F.1 Fuzzy hash matches for DLL memory samples

This sub annex lists all fuzzy hash matches for the dlldump-based memory samples for PIDs 668,
868, 940 and 1928. The matches are as follows:

Table 32: Fuzzy hash matches between Dlldump-based memory samples (sorted by %).

Matched Filename #1 Matched Filename #2 Match
(in %)

module.668.2273020.773d0000.dll module.1928.1e47c00.773d0000.dll 100

module.868.1e498c8.1000000.dll module.1928.1e47c00.1000000.dll 100

module.868.1e498c8.77fe0000.dll module.1928.1e47c00.77fe0000.dll 100

module.940.2061da0.5b860000.dll module.1928.1e47c00.5b860000.dll 100

module.940.2061da0.773d0000.dll module.1928.1e47c00.773d0000.dll 100

module.940.2061da0.773d0000.dll module.668.2273020.773d0000.dll 100

module.668.2273020.5d090000.dll module.1928.1e47c00.5d090000.dll 99

module.668.2273020.71ab0000.dll module.1928.1e47c00.71ab0000.dll 99

module.668.2273020.771b0000.dll module.1928.1e47c00.771b0000.dll 99

module.940.2061da0.5cb70000.dll module.668.2273020.5cb70000.dll 99

module.940.2061da0.5d090000.dll module.1928.1e47c00.5d090000.dll 99

module.940.2061da0.5d090000.dll module.668.2273020.5d090000.dll 99

module.940.2061da0.71aa0000.dll module.668.2273020.71aa0000.dll 99

module.940.2061da0.71ad0000.dll module.668.2273020.71ad0000.dll 99

module.940.2061da0.771b0000.dll module.1928.1e47c00.771b0000.dll 99

module.940.2061da0.771b0000.dll module.668.2273020.771b0000.dll 99

module.940.2061da0.774e0000.dll module.1928.1e47c00.774e0000.dll 99

module.940.2061da0.77b20000.dll module.1928.1e47c00.77b20000.dll 99

module.940.2061da0.77c00000.dll module.668.2273020.77c00000.dll 99

module.940.2061da0.77f10000.dll module.668.2273020.77f10000.dll 99

module.940.2061da0.77fe0000.dll module.668.2273020.77fe0000.dll 99

module.668.2273020.13f0000.dll module.1928.1e47c00.870000.dll 97

88 DRDC-RDDC-2013-R1

Matched Filename #1 Matched Filename #2 Match
(in %)

module.668.2273020.77120000.dll module.1928.1e47c00.77120000.dll 97

module.668.2273020.77f10000.dll module.1928.1e47c00.77f10000.dll 97

module.940.2061da0.77a80000.dll module.1928.1e47c00.77a80000.dll 97

module.940.2061da0.77f10000.dll module.1928.1e47c00.77f10000.dll 97

module.940.2061da0.d00000.dll module.1928.1e47c00.870000.dll 97

module.940.2061da0.d00000.dll module.668.2273020.13f0000.dll 97

module.668.2273020.76f20000.dll module.1928.1e47c00.76f20000.dll 96

module.940.2061da0.7c9c0000.dll module.1928.1e47c00.7c9c0000.dll 96

module.668.2273020.71ad0000.dll module.1928.1e47c00.71ad0000.dll 94

module.668.2273020.76d60000.dll module.1928.1e47c00.76d60000.dll 94

module.668.2273020.77f60000.dll module.1928.1e47c00.77f60000.dll 94

module.868.1e498c8.77dd0000.dll module.1928.1e47c00.77dd0000.dll 94

module.940.2061da0.71ad0000.dll module.1928.1e47c00.71ad0000.dll 94

module.868.1e498c8.7e410000.dll module.1928.1e47c00.7e410000.dll 93

module.940.2061da0.77f60000.dll module.1928.1e47c00.77f60000.dll 93

module.940.2061da0.77f60000.dll module.668.2273020.77f60000.dll 93

module.668.2273020.774e0000.dll module.1928.1e47c00.774e0000.dll 91

module.940.2061da0.68000000.dll module.668.2273020.68000000.dll 91

module.940.2061da0.774e0000.dll module.668.2273020.774e0000.dll 91

module.940.2061da0.7c800000.dll module.1928.1e47c00.7c800000.dll 91

module.868.1e498c8.77f10000.dll module.1928.1e47c00.77f10000.dll 90

module.868.1e498c8.7c800000.dll module.1928.1e47c00.7c800000.dll 90

module.940.2061da0.77c00000.dll module.1928.1e47c00.77c00000.dll 90

module.668.2273020.77c00000.dll module.1928.1e47c00.77c00000.dll 88

module.868.1e498c8.7c900000.dll module.1928.1e47c00.7c900000.dll 88

module.940.2061da0.769c0000.dll module.1928.1e47c00.769c0000.dll 88

module.940.2061da0.77120000.dll module.1928.1e47c00.77120000.dll 88

module.940.2061da0.77120000.dll module.668.2273020.77120000.dll 88

module.940.2061da0.77dd0000.dll module.668.2273020.77dd0000.dll 88

DRDC-RDDC-2013-R1 89

Matched Filename #1 Matched Filename #2 Match
(in %)

module.868.1e498c8.77f10000.dll module.668.2273020.77f10000.dll 85

module.940.2061da0.77f10000.dll module.868.1e498c8.77f10000.dll 85

module.940.2061da0.77c10000.dll module.668.2273020.77c10000.dll 83

module.940.2061da0.7c900000.dll module.668.2273020.7c900000.dll 83

module.940.2061da0.76bf0000.dll module.1928.1e47c00.76bf0000.dll 82

module.940.2061da0.7c800000.dll module.868.1e498c8.7c800000.dll 82

module.940.2061da0.7e410000.dll module.1928.1e47c00.7e410000.dll 82

module.940.2061da0.76bf0000.dll module.668.2273020.76bf0000.dll 80

module.668.2273020.7c9c0000.dll module.1928.1e47c00.7c9c0000.dll 79

module.940.2061da0.77e70000.dll module.668.2273020.77e70000.dll 79

module.940.2061da0.7c9c0000.dll module.668.2273020.7c9c0000.dll 79

module.940.2061da0.7e410000.dll module.868.1e498c8.7e410000.dll 79

module.668.2273020.71aa0000.dll module.1928.1e47c00.71aa0000.dll 77

module.940.2061da0.71aa0000.dll module.1928.1e47c00.71aa0000.dll 77

module.940.2061da0.76f20000.dll module.1928.1e47c00.76f20000.dll 77

module.940.2061da0.76f20000.dll module.668.2273020.76f20000.dll 77

module.940.2061da0.77c10000.dll module.1928.1e47c00.77c10000.dll 77

module.940.2061da0.7e410000.dll module.668.2273020.7e410000.dll 77

module.668.2273020.7c800000.dll module.1928.1e47c00.7c800000.dll 74

module.868.1e498c8.77e70000.dll module.1928.1e47c00.77e70000.dll 72

module.940.2061da0.670000.dll module.668.2273020.1020000.dll 72

module.940.2061da0.769c0000.dll module.668.2273020.769c0000.dll 72

module.940.2061da0.7c800000.dll module.668.2273020.7c800000.dll 72

module.940.2061da0.76d60000.dll module.668.2273020.76d60000.dll 71

module.668.2273020.77c10000.dll module.1928.1e47c00.77c10000.dll 69

module.940.2061da0.76d60000.dll module.1928.1e47c00.76d60000.dll 69

module.668.2273020.76bf0000.dll module.1928.1e47c00.76bf0000.dll 66

module.668.2273020.7e410000.dll module.1928.1e47c00.7e410000.dll 66

module.868.1e498c8.7c800000.dll module.668.2273020.7c800000.dll 66

90 DRDC-RDDC-2013-R1

Matched Filename #1 Matched Filename #2 Match
(in %)

module.868.1e498c8.7e410000.dll module.668.2273020.7e410000.dll 66

module.940.2061da0.7c900000.dll module.1928.1e47c00.7c900000.dll 66

module.940.2061da0.5ad70000.dll module.668.2273020.5ad70000.dll 65

module.668.2273020.769c0000.dll module.1928.1e47c00.769c0000.dll 63

module.940.2061da0.5b860000.dll module.668.2273020.5b860000.dll 63

module.668.2273020.5b860000.dll module.1928.1e47c00.5b860000.dll 61

module.940.2061da0.77dd0000.dll module.868.1e498c8.77dd0000.dll 61

module.668.2273020.77dd0000.dll module.1928.1e47c00.77dd0000.dll 60

module.668.2273020.77e70000.dll module.1928.1e47c00.77e70000.dll 60

module.668.2273020.77fe0000.dll module.1928.1e47c00.77fe0000.dll 60

module.868.1e498c8.77dd0000.dll module.668.2273020.77dd0000.dll 60

module.868.1e498c8.77fe0000.dll module.668.2273020.77fe0000.dll 60

module.940.2061da0.77dd0000.dll module.1928.1e47c00.77dd0000.dll 60

module.940.2061da0.77fe0000.dll module.1928.1e47c00.77fe0000.dll 60

module.940.2061da0.77fe0000.dll module.868.1e498c8.77fe0000.dll 60

module.668.2273020.7c900000.dll module.1928.1e47c00.7c900000.dll 58

module.940.2061da0.7c900000.dll module.868.1e498c8.7c900000.dll 55

module.940.2061da0.71ab0000.dll module.1928.1e47c00.71ab0000.dll 49

module.940.2061da0.71ab0000.dll module.668.2273020.71ab0000.dll 49

module.940.2061da0.77e70000.dll module.1928.1e47c00.77e70000.dll 49

module.868.1e498c8.7c900000.dll module.668.2273020.7c900000.dll 47

module.668.2273020.77b20000.dll module.1928.1e47c00.77b20000.dll 46

module.940.2061da0.77b20000.dll module.668.2273020.77b20000.dll 46

F.2 Fuzzy hash similarities between DLL memory samples
and carved memory data files

This sub annex lists all fuzzy hash matches between the dlldump-based memory samples for PIDs
668, 868, 940 and 1928 and the carved memory data files. The matches are as follows:

DRDC-RDDC-2013-R1 91

Table 33: Fuzzy hash similarities between Dlldump-based memory
samples and carved memory data files (sorted by %).

Matching Carved
Filename

Matching Dlldump Memory
Sample Filename

Match
(in %)

f0263096.dll module.940.2061da0.76fd0000.dll 83

f0264224.dll module.868.1e498c8.7e410000.dll 68

f0263824.dll module.1928.1e47c00.77c10000.dll 66

f0278312.dll module.668.2273020.776c0000.dll 66

f0162672.dll module.940.2061da0.68000000.dll 65

f0291256.dll module.940.2061da0.76fc0000.dll 61

f0282544.exe module.668.2273020.5cb70000.dll 60

f0282544.exe module.940.2061da0.5cb70000.dll 60

f0163032.dll module.668.2273020.68000000.dll 58

f0219248.dll module.1928.1e47c00.1000000.dll 58

f0219248.dll module.868.1e498c8.1000000.dll 58

f0264224.dll module.1928.1e47c00.7e410000.dll 58

f0264224.dll module.940.2061da0.7e410000.dll 57

f0264320.dll module.668.2273020.77dd0000.dll 57

f0263824.dll module.668.2273020.77c10000.dll 54

f0263824.dll module.940.2061da0.77c10000.dll 54

f0264320.dll module.940.2061da0.77dd0000.dll 54

f0270696.dll module.1928.1e47c00.5d090000.dll 52

f0270696.dll module.668.2273020.5d090000.dll 52

f0270696.dll module.940.2061da0.5d090000.dll 52

f0263288.exe module.668.2273020.7dba0000.dll 50

f0161872.dll module.1928.1e47c00.76bf0000.dll 47

f0163032.dll module.940.2061da0.68000000.dll 47

f0163816.dll module.940.2061da0.71a90000.dll 47

f0263736.dll module.668.2273020.5b860000.dll 47

f0283192.ttf module.940.2061da0.76f20000.dll 47

92 DRDC-RDDC-2013-R1

Matching Carved
Filename

Matching Dlldump Memory
Sample Filename

Match
(in %)

f0268288.dll module.940.2061da0.77120000.dll 46

f0161872.dll module.940.2061da0.76bf0000.dll 44

f0263736.dll module.1928.1e47c00.5b860000.dll 44

f0263736.dll module.940.2061da0.5b860000.dll 44

f0264280.dll module.1928.1e47c00.7c800000.dll 44

f0264280.dll module.868.1e498c8.7c800000.dll 44

f0264280.dll module.940.2061da0.7c800000.dll 44

f0283624.exe module.668.2273020.47260000.dll 43

f0264224.dll module.668.2273020.7e410000.dll 41

f0263784.dll module.668.2273020.77a80000.dll 40

f0267264.dll module.940.2061da0.77e70000.dll 40

f0161872.dll module.668.2273020.76bf0000.dll 38

f0580472.exe module.940.2061da0.76fb0000.dll 38

f0264280.dll module.668.2273020.7c800000.dll 38

f0267264.dll module.668.2273020.77e70000.dll 38

f0270664.exe module.668.2273020.7e410000.dll 36

f0268288.dll module.1928.1e47c00.77120000.dll 35

f0162672.dll module.668.2273020.68000000.dll 33

f0163960.dll module.668.2273020.76f50000.dll 33

f0181384.dll module.668.2273020.776c0000.dll 33

f0268288.dll module.668.2273020.77120000.dll 33

f0161912.dll module.940.2061da0.71aa0000.dll 32

f0840616.pyc module.940.2061da0.77e70000.dll 32

f0702416.exe module.940.2061da0.1000000.dll 32

f0282048.dll module.1928.1e47c00.773d0000.dll 32

f0282048.dll module.668.2273020.773d0000.dll 32

f0282048.dll module.940.2061da0.773d0000.dll 32

f0283624.exe module.668.2273020.5cb70000.dll 32

DRDC-RDDC-2013-R1 93

Matching Carved
Filename

Matching Dlldump Memory
Sample Filename

Match
(in %)

f0283624.exe module.940.2061da0.5cb70000.dll 32

f0161912.dll module.668.2273020.71aa0000.dll 30

f0161912.dll module.1928.1e47c00.71aa0000.dll 29

f0263776.dll module.668.2273020.77a80000.dll 29

f0831408.exe module.1928.1e47c00.77c10000.dll 27

f0840616.pyc module.668.2273020.77e70000.dll 25

f0245488.dll module.668.2273020.7dba0000.dll 21

94 DRDC-RDDC-2013-R1

This page intentionally left blank.

DRDC-RDDC-2013-R1 95

Annex G Commonly used registry keys in a typical
malware infection

G.1 Recommended registry keys for use with Volatility

Based on the author’s own use and research of various Windows registry keys commonly used by
malware, the following keys are recommended for evaluation. These keys are readily integrated
into scripts using appropriate Volatility-based printkey plugin commands.

The reader’s success in using these keys will undoubtedly vary based on the underlying Windows
platform to be analysed and the malware’s propensity for using the registry.

The proposed keys have been aggregated and their preceding HKLM\Software, HKLM\System,
HKCU\Software and HKCU based information were stripped so that they can be readily used by
Volatility.

The following keys have been used for evaluation in this work against Stuxnet. Two registry keys
in the list below have been highlighted in red because they refer to likely locations for the two
malicious device drivers, MRxCls and MRxNet:

 Classes\Local Settings\Software\Microsoft\Windows\Shell\MuiCache
 Control Panel\Desktop
 Control Panel\Desktop\ScreenSaveActive
 ControlSet001\Enum\Root\LEGACY_malware\0000
 ControlSet001\services\MRxNet
 ControlSet001\Services\SharedAccess\Parameters\FirewallPolicy\StandardProfile\Auth
orizedApplications\List

 ControlSet001\services\MRxCls
 CurrentControlSet\Control\Session Manager\AppCertDlls
 CurrentControlSet\Control\Session Manager\AppCompatCache\AppCompatCache
 CurrentControlSet\Control\Session Manager\AppCompatibility\AppCompatCache
 CurrentControlSet\Control\SessionManager\Memory Management
 CurrentControlSet\Services
 Microsoft\Active Setup\Installed Components
 Microsoft\DirectPlugin
 Microsoft\Internet Explorer\CustomizeSearch
 Microsoft\Internet Explorer\Main
 Microsoft\Internet Explorer\Main\Default_Page_URL
 Microsoft\Internet Explorer\Main\Default_Search_URL
 Microsoft\Internet Explorer\Main\HomeOldSP
 Microsoft\Internet Explorer\Main\Local Page
 Microsoft\Internet Explorer\Main\Search Bar
 Microsoft\Internet Explorer\Main\Search Page

96 DRDC-RDDC-2013-R1

 Microsoft\Internet Explorer\Main\SearchAssistant
 Microsoft\Internet Explorer\Main\SearchURL
 Microsoft\Internet Explorer\Main\Start Page
 Microsoft\Internet Explorer\Main\Use Search Asst
 Microsoft\Internet Explorer\PhishingFilter
 Microsoft\Internet Explorer\Recovery
 Microsoft\Internet Explorer\Search
 Microsoft\Internet Explorer\Search Bar
 Microsoft\Internet Explorer\Search\CustomizeSearch
 Microsoft\Internet Explorer\Search\SearchAssistant
 Microsoft\Internet Explorer\SearchURL
 Microsoft\Internet Explorer\Toolbar
 Microsoft\Internet Explorer\TypedURLs
 Microsoft\Windows Defender\Real Time Protection\EnableKnownGoodPrompts
 Microsoft\Windows Defender\Real Time Protection\EnableUnknownPrompts
 Microsoft\Windows Defender\Real Time Protection\ServicesAndDriversAgent
 Microsoft\Windows NT\CurrentVersion\Terminal
Server\Install\Software\Microsoft\Windows\CurrentVersion\Run

 Microsoft\Windows NT\CurrentVersion\Terminal
Server\Install\Software\Microsoft\Windows\CurrentVersion\Runonce

 Microsoft\Windows NT\CurrentVersion\Terminal
Server\Install\Software\Microsoft\Windows\CurrentVersion\RunonceEx

 Microsoft\Windows NT\CurrentVersion\Windows
 Microsoft\Windows NT\CurrentVersion\Windows\AppInit_DLLs
 Microsoft\Windows NT\CurrentVersion\Windows\Load
 Microsoft\Windows NT\CurrentVersion\Winlogon
 Microsoft\Windows NT\CurrentVersion\Winlogon\Notify
 Microsoft\Windows NT\winlogon\userinit
 Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects
 Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\LastVisitedMRU
 Microsoft\Windows\CurrentVersion\Explorer\ComDlg32\OpenSaveMRU
 Microsoft\Windows\CurrentVersion\Explorer\RecentDocs
 Microsoft\Windows\CurrentVersion\Explorer\RunMRU
 Microsoft\Windows\CurrentVersion\Explorer\SharedTaskScheduler
 Microsoft\Windows\CurrentVersion\Explorer\ShellExecuteHooks
 Microsoft\Windows\CurrentVersion\Explorer\UserAssist
 Microsoft\Windows\CurrentVersion\Internet Settings
 Microsoft\Windows\CurrentVersion\Internet Settings\EnableAutodial
 Microsoft\Windows\CurrentVersion\Internet Settings\EnableHttp1_1
 Microsoft\Windows\CurrentVersion\Internet Settings\MaxConnectionsPer1_0Server
 Microsoft\Windows\CurrentVersion\Internet Settings\MaxConnectionsPerServer
 Microsoft\Windows\CurrentVersion\Internet Settings\ProxyEnable
 Microsoft\Windows\CurrentVersion\Internet Settings\ProxyHttp1.1

DRDC-RDDC-2013-R1 97

 Microsoft\Windows\CurrentVersion\Internet Settings\ProxyOverride
 Microsoft\Windows\CurrentVersion\Internet Settings\ProxyServer
 Microsoft\Windows\CurrentVersion\Internet Settings\Zones\0
 Microsoft\Windows\CurrentVersion\Internet Settings\Zones\1
 Microsoft\Windows\CurrentVersion\Internet Settings\Zones\2
 Microsoft\Windows\CurrentVersion\Policies\Explorer\Run
 Microsoft\Windows\CurrentVersion\Run
 Microsoft\Windows\CurrentVersion\RunOnce
 Microsoft\Windows\CurrentVersion\RunOnce\Setup
 Microsoft\Windows\CurrentVersion\RunOnceEx
 Microsoft\Windows\CurrentVersion\RunServices
 Microsoft\Windows\CurrentVersion\RunServicesOnce
 Microsoft\Windows\CurrentVersion\SharedDLLs
 Microsoft\Windows\CurrentVersion\ShellServiceObjectDelayLoad
 Microsoft\Windows\CurrentVersion\URL
 Microsoft\Windows\CurrentVersion\URL\DefaultPrefix
 Microsoft\Windows\CurrentVersion\URL\Prefixes
 Microsoft\Windows\ShellNoRoam\MUICache

These keys can be readily integrated into scripts. For example, consider the following Volatility
printkey command:

$ volatility -f stuxnet.vmem printkey -o 0xe1991b60 -K
Microsoft\Windows\CurrentVersion\RunServices

A script built such commands requires only a few minutes to construct, based on the physical
memory addresses listed in the above Table 29, used in conjunction with various command line
tools including cat, awk and sed.

G.2 Root Registry Keys

The author proposed registry keys are based on the following root registry keys:

 HKEY_CURRENT_USER

HKEY_CURRENT_USER\Software

HKEY_LOCAL_MACHINE\Software

HKEY_LOCAL_MACHINE\System

98 DRDC-RDDC-2013-R1

This page intentionally left blank.

DRDC-RDDC-2013-R1 99

Bibliography

Carbone, Richard. Malware memory analysis for non-specialists: Investigating a publicly
available memory image of the Zeus Trojan horse. Technical Memorandum. Defence R&D
Canada – Valcartier. TM 2013-018. April 2013.

Carbone, Richard. Malware memory analysis for non-specialists: Investigating publicly available
memory images for Prolaco and SpyEye. Technical Memorandum. Defence R&D Canada –
Valcartier. TM 2013-155. October 2013.

Carbone, Richard. Malware memory analysis for non-specialists: Investigating publicly available
memory image 0zapftis (R2D2). Technical Memorandum. Defence R&D Canada – Valcartier.
TM 2013-177. October 2013.

Volatility. CommandReference: Example usage cases and output for Volatility 2.0
commands. Online command reference. Volatility. February 2012.
http://code.google.com/p/volatility/wiki/CommandReference.

100 DRDC-RDDC-2013-R1

List of symbols/abbreviations/acronyms/initialisms

AES Advanced Encryption Standard

API Application Programming Interface

ASCII American Standard Code for Information Interchange

AV Anti-Virus or Antivirus

C&C Command & Control

CFNOC Canadian Forces Network Operations Centre

CORFC Centre d’opérations des réseaux des Forces canadiennes

COTS Commercial Off The Shelf

CTPH Context Triggered Piecewise Hash
Sometimes known as fuzzy hash or ssdeep hash

CVE Common Vulnerabilities and Exposures

DLL Dynamically Loaded Library

DND Department of National Defence

DRDC Defence Research & Development Canada

DRDKIM Director Research and Development Knowledge and Information
Management

EDT Eastern Daylight Time

EXT4 Fourth Extended Filesystem

FOSS Free and Open Source Software

FTP File Transfer Protocol

GICT Groupe intégré de la criminalité technologique

GRC Gendarmerie Royale du Canada

HKCU HKEY_LOCAL_USER

HKLM HKEY_LOCAL_MACHINE

ID Identification

IP Internet Protocol

ITCU Integrated Technological Crime Unit

MAC Mandatory Access Control

MD5 Message Digest Algorithm 5

MiB Mebibyte

DRDC-RDDC-2013-R1 101

N/A Not Available

NIST National Institute of Standards and Technology

NSRL National Software Reference Library

NTP Network Time Protocol

PAE Physical Address Extension

PE Portable Executable

PID Process ID

PPID Parent Process ID

R&D Research & Development

RAM Random Access Memory

RCMP Royal Canadian Mounted Police

RDDC Recherche et Développement pour la Défense Canada

RDP Remote Desktop Protocol

RSA Ron Rivest, Adi Shamir and Leonard Adleman

SHA1 Secure Hash Algorithm-1

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

TID Thread ID

UDP User Datagram Protocol

UPX Ultimate Packer for eXecutables

URL Uniform Resource Locator

UTC Coordinated Universal Time

VAD Virtual Address Descriptor

VMEM Virtual Memory

102 DRDC-RDDC-2013-R1

Glossary

_Eprocess

See Eprocess.

_Ethread

See Ethread.

_Kthread

See Kthread.

Anti-Virus

An Anti-virus, AV, or AV scanner is a software system or framework which is used to, at a
minimum, scan a given system for signs of malware infection. This software may not just be
a scanner but may also include system-protection and anti-malware detection and prevention
capability.

AV Scanner

See Anti-Virus.

Computer Memory Image

See Memory Image.

Context Triggered Piecewise Hash

See Fuzzy Hash.

Data Carving

Commonly known as file carving, data carving is the process or act of recovering known data
structures, generally based on recognized file patterns. Data carving only works on
contiguous data structures as the recovery of fragmented data is not supported by most data
recovery software and those that do only support a very limited number of file formats.

DLL Injection

DLL injection is a method for forcing programs to run in a manner their programmers did not
design for or foresee. Under Windows, there are various methods for implementing this,
some through the registry while others are carried out using APIs.

Eprocess

The Eprocess is a kernel-based process-specific data structure that encompasses a process’
state-based information. This structure has a forward and backward pointer to active
processes.

DRDC-RDDC-2013-R1 103

Ethread

An Ethread is used to identify threads to be worked on. Its structure describes the various
aspects of the process or thread to be worked such as thread starting address and thread ID. It
is also is a semi-opaque data structure. Unlike a Kthread structure, it is processor agnostic.

Ext4

Ext4 is the latest Ext-based filesystem of the Linux operating system that supersedes Ext2/3.
It continues providing filesystem journaling. It also provides greater performance, reliability
and allows for much larger file and filesystem sizes. This filesystem is natively supported by
Linux.

Fuzzy Hash

This is a specific type of file hashing which has the ability to identify file similarities, usually
represented as a percentage.

Handle

A handle is a pointer-like resource-based reference used to a specific system resource.
Handles are abstract references to resources available within a given computer system. Under
Windows, many types of handles exist but common examples pertain to files, directories, the
registry and system based devices. It should not be confused with file handles.

Hash

A hash, commonly referred to as a file hash, is a reduced representation of some arbitrary
data file by passing it through some cryptographic hashing algorithm. In so doing, a unique
hash value should be emitted by the hashing program that can be used to identify and
authenticate a given file’s integrity and uniqueness against a set of hashes, commonly known
as a hash-set. SHA1 and CTPH hashes are examples of hashing algorithms.

HashKeeper

HashKeeper is an MD5-based investigative signature file that was developed and maintained
by the National Drug Intelligence Center. It contains known good and bad signatures for an
array of files, including illicit images. Developed by the law enforcement community, various
agencies, nationally and internationally contributed signatures. However, the source of many
of the incorporated signatures are either not known or arrived at by non-forensic means; as
such, these signatures are not accepted in a court of law.

IRP Hook

An IRP Hook is a kernel-based interception technique some rootkits, viruses and Trojan
horses use in order to hide themselves from detection.

104 DRDC-RDDC-2013-R1

Kthread

A Kthread is a thread/process-based management kernel-specific data structure. It is similar
to an Ethread but contains processor-specific data structures such as stack limit, lock and
thread states. It also describes various aspects of the underlying processor-specific features
and it is more opaque than an Ethread data structure.

Memory Image

A memory image or computer memory image is a bit-copy of a system’s RAM. For physical
computer systems, it is acquired through a memory-imaging program. In virtualized
environments, memory can be acquired by an imaging program or by saving or dumping the
virtual machine’s memory state.

Mutex

A mutex is a Windows-based object used to provide exclusive access to a shared system
resource. These resources can only be accessed one at a time, thus by issuing a mutex or
mutual exclusion, a process or thread can be allocated said resource when it becomes
available for use.

Pagefile

The pagefile is the operating system’s swap file, swap device or swap space.

Privilege Escalation Attack

This type of attack takes advantage of bugs or errors in software and various operating
system components that allow an attacker to run arbitrary code that runs at the system
privilege of the exploited program. For example, if Windows program running with Local
System is successfully exploited and the attacker is able to run or feed arbitrary code through
that exploited program, then it will run at the system level of privilege.

Process Injection

See DLL Injection.

SHA1 (Secure Hash Algorithm-1) Hash

The SHA1 hash is a 160-bit cryptographic hash commonly used for forensic file
identification and authentication.

SSL (Secure Sockets Layer)

SSL is a client-server TCP/IP Application Layer protocol. It is commonly used for the
exchange of cryptographic keys that will be used to establish a “secure” communications
channel between two systems.

DRDC-RDDC-2013-R1 105

Strings Command

The strings command is capable of extracting 7, 8, 16 and 32-bit text patterns from an
arbitrary data file which can be text or binary based. 7-bit extraction represents the first 128
ASCII characters while 8-bit extraction represents the extended ASCII character set. 16 and
32-bit strings are typically reserved for Unicode-based text. Thus, the command line
parameters required to instruct the strings command to perform 7, 8, 16 or 32-bit text
extraction is -s, -S, -l and -L, respectively.

Thread

A thread is typically a subset process. A thread contains only the code necessary to perform a
set of instructions. In single-threaded programs, a thread represents the program’s executable
code and stack while in multi-threaded applications a thread performs just one piece of the
work that is distributed across multiple threads. These threads then typically communicate
with each other through various inter-process mechanisms.

Trojan horse

A Trojan horse is a malicious non-replicating infectious computer program. It infects a
computer when the delivery software is run at which time a payload is instantiated that does
the actual infecting. However, Trojan’s do not typically infect computers the way viruses do.
As such, they do not generally infect computer files. The program delivering the payload is
known as a dropper. The payload achieves its objective by gaining some form of
administrative level privileges in the target’s operating system, typically through subversion.
A Trojan’s typical objective is to provide backdoor access but it can also be used for other
capabilities including data and information theft, arbitrary or specific data file encryption,
inflict damage to the operating system or its data files, and in rare cases, even attempt to
damage a system’s hardware components.

Unlinked DLL (or file)

Unlinking a DLL or other file such as an executable or library is a common method malware
and other malicious processes use to hide the fact that they may be using one of these
resources covertly. Volatility’s ldrmodules plugin supports several unlinked validation tests.
It should be used to test for the existence of unlinked files associated to a process.

UPX

UPX is an open source data compression algorithm used to compress executable files. UPX
executable file packers exist for Windows, Linux, Mac OS X and other platforms.

UserAssist

It is a series of user-based Windows registry keys containing information about various
actions undertaken by a user (e.g., launching a specific program).

Vmem

A Vmem file is a VMware virtual machine-based paged memory file. It is generated when a
virtual machine’s state is saved containing the entire RAM allocated to that virtual machine.

106 DRDC-RDDC-2013-R1

Worm

Sometimes known as a computer or network worm, a worm is a malicious program designed
to spread to as many computer systems as possible, usually by means of a network. Worms
do not typically cause much, if any, damage to the underlying computer system. Instead, due
to their need to replicate often consume not only a network’s available bandwidth but crash
underlying computer systems as they sometimes overwhelm the resources of those system as
they attempt to propagate. Worms typically spread only to systems susceptible to the
vulnerabilities necessary for their infection. Thus, unaffected systems do not become
infected.

Zero-day Exploit (sometimes referred to as Zero-day Attack)

This is an attack or exploit carried out against a system or application that is currently
unknown to others. Because the exploit is unknown, there would be no known patches or
fixes for it, until information or news about it becomes known.

DOCUMENT CONTROL DATA
(Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated)

 1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g., Centre sponsoring a
contractor's report, or tasking agency, are entered in Section 8.)

Defence Research and Development Canada –
Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

 2a. SECURITY MARKING
(Overall security marking of the document including
special supplemental markings if applicable.)

UNCLASSIFIED

 2b. CONTROLLED GOODS

(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC APRIL 2011

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U) in

parentheses after the title.)

Malware memory analysis for non-specialists : Investigating publicly available memory image for
the Stuxnet worm

 4. AUTHORS (last name, followed by initials – ranks, titles, etc., not to be used)

Carbone, R.

 5. DATE OF PUBLICATION
(Month and year of publication of document.)

November 2013

 6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

122

 6b. NO. OF REFS
(Total cited in document.)

26
 7. DESCRIPTIVE NOTES (The category of the document, e.g., technical report, technical note or memorandum. If appropriate, enter the type of report,

e.g., interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Scientific Report

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

 31XF20 « MOU RCMP "Live Forensics" »

 9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

 10a. ORIGINATOR’S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC-RDDC-2013-R1

 10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

 12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

 13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that
the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the
information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in
both official languages unless the text is bilingual.)

This report examines how an investigator can analyse an infected Windows® memory dump.
The author investigates how to carry out such an analysis using Volatility and other
investigative tools, including data carving utilities and anti-virus scanners. Volatility is a
popular and evolving open source-based memory analysis framework upon which the author has
proposed a memory-specific methodology for aiding fellow novice memory analysts. The
author examines how Volatility can be used to find evidence and indicators of infection. This
report is the fourth in this series concerning Windows malware-based memory analysis. This
current work examines a memory image infected with the Stuxnet worm.

Dans ce rapport, on décrit comment un enquêteur procède pour analyser l’image mémoire d’un
système Windows® infecté. L’auteur étudie les techniques d’analyse au moyen de Volatility et
d’autres outils tels que les utilitaires de récupération de données et les scanneurs antivirus.
Volatility est un cadre populaire et évolutif d’analyse de la mémoire de source ouverte sur
lequel l’auteur s’appuie pour proposer une méthodologie propre à la mémoire dans le but
d’aider ses collègues analystes novices. L’auteur examine comment Volatility peut être utilisé
pour trouver des preuves ou des indices d’infection. Ce rapport est le quatrième d’une série
consacrée à l’analyse de la mémoire dans un environnement Windows® infecté par un maliciel.
Le présent ouvrage porte sur l’image mémoire infectée par le ver Stuxnet.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be helpful
in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation,
trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus,
e.g., Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select indexing terms which are
Unclassified, the classification of each should be indicated as with the title.)

Antivirus; Anti-virus; Computer forensics; Digital forensics; Digital forensic investigations;
Forensics; Infection; Malware; Memory analysis; Memory image; Rootkit; Scanners; Stuxnet;
Virus scanner; Volatility; Windows; Worm

