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Imaging and Non-Imaging Polarimetric Methods for Remote
Sensing

J. Scott Tyo

College of Optical Sciences

University of Arizona

Grant # FA9550-10-1-0114

Period of Performance: April 15, 2010 � December 15, 2015

ABSTRACT

During the lifetime of this project, the research team signi�cantly advanced the state of understanding of modu-
lated polarimeter systems for active and passive, imaging- and non-imaging polarimetry. Modulated polarimeters
infer the polarization state of light by creating a set of polarization-dependent carriers that are modulated by
the intensity signal. These carriers can be created in any independent domain, such as time, space, wavenumber,
angle of incidence, and they can be created in combinations of domains simultaneously. The work supported on
this project has solidi�ed the theory behind such instruments, allowing for new design philosophies that improve
state-of-the-art instruments. When the project began �ve years ago, only a cursory understanding of modulated
instruments existed, and the data reduction matrix was the primary means of processing polarization data. In
this project, the DRM has been expanded to include a full functional formalism, allowing for a range of new
tools in polarimeter design to be brought to bear. During the course of this project, �ve PhD students, seven MS
students, and two undergraduates were trained. Four PhD dissertations were primarily supported by funding
from this project.

1. EXECUTIVE SUMMARY

1.1 Principal Accomplishments

This project was carried out in the Advanced Sensing Laboratory of the College of Optical Sciences at the
University of Arizona. The original project dates were April 15, 2010 - December 15, 2015. The was initiated
based on work that the PI had done under previous USAF funding with microgrid imaging polarimeters.1�3

While the main motivation at the beginning of the project was to improve the performance of microgrid instru-
ments, the project expanded sign�cantly to include all forms of modulated polarimeters such as time modulated
instruments,4 prismatic polarimeters,5 spectrally channeled polarimeters,6 and even instruments modulated in
multiple domains.7,8 It is important to note that much of the progress was achieved in collaboration with Pro-
fessor Russell Chipman of the University of Arizona. Prof. Chipman did not receive any direct funding, from
this project, but he co-supervised one of the students and was an active collaborator on several of the projects.

The progress supported on this grant can be broken down into the following areas:

• Fundamental understanding of modulated instruments: Dr. Charlie LaCasse worked on a basic theory of
modoluated instruments for his PhD dissertation. That work extended our earlier work with microgrids and
coupled it with Prof. Chipman's work on temporally modulated instruments.9,10 Dr. LaCasse extended
this work to cover random signal processing and the associated transfer function formalisms.11

• Scene-Based Nonuniformity Correction for Focal Plane Arrays: Dr. Wiley Black worked on methods to
correct residual calibration errors in the FPA due to nonuniformity in the array response. Much of his work
turned out to be generally applicable to all imagers,12,13 but he also considered its speci�c application to
infrared microgrid instruments14

J. Scott Tyo: E-mail: tyo@ieee.org



• Coherence Manipulation for Sensing : Dr. Oscar Rodrìguez-Herrera developed strategies to be able to
manipulate the coherence of light in order to indirectly sense BRDF from monostatic measurements.15

This was follow-on work from preliminary results obtained under earlier AFOSR funding,16 and continues
in current work.

• Generalized Channeled Polarimetry : Dr. Andrey Alenin developed a general theoretical framework that
allows channeled polarimeters to be designed from a priori information.17 Previous design methods were
ad hoc, and generally resulted in needlessly sub-optimal systems. This work was a direct outgrowth of Dr.
LaCasse's research (mentioned above).

• Partial Mueller Matrix Polarimeters (pMMPs): Dr. Alenin also worked on the development of pMMPs.18

These devices are active instruments that intentionally omit certain Mueller elements in order to improve
bandwidth and were pioneered by the PI and Brian Hoover.19,20 He also developed methods to apply his
generalized channeled polarimeter theory to pMMPs.21 Results from this work were implemented in an
instrument built at AFRL/RYJT by a student from the PI's group.22

• Hybrid Modulated Polarimeters: As part of his research, Dr. LaCasse explored polarimeters modulated in
both space and time.7 Dr. Israel Vaughn extended this work to include the design and optimization of active
spatiotemporally modulated systems,23 and he built a portable polarimeter based on these principles.24

These techniques have also been extended by us to hybrid wavelength and time modulated instruments in
collaboration with Frans Snik and colleagues in the Netherlands for astronomical applications.8

• Other Collaborative Works: The PI and Drs. Vaughn and Rodrìguez-Herrera had an ongoing collaboration
with Prof. Toshitaka Wakayama from Saitama Medical University in Japan. The collaboration began in
2012 when Dr. Wakayama visited the laboratory for three months. Our group worked with Dr. Wakayama
to develop axial waveplates in the terahertz25 and to apply these instruments to angle-modulated sensing.26

1.2 Archival Publications
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and Remote Sensing VII, J. A. Shaw and D. LeMaster, eds., p. 961315, SPIE, (Bellingham, WA), 2015.
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1.3 Researchers Trained on the Project

1.3.1 Postdoctoral Fellows

1. Oscar G. Rodrìguez-Herrera (2011 - 2015)



1.3.2 PhD Students

1. Charles F. LaCasse, 2010 - 2013, Modulated Imaging Polarimetry. Now employed at Sandia National
Laboratories.

2. Gabriel C. Birch, 2011 - 2012, Computational Imaging Methods (secondary support). Now employed at
Sandia National Laboratories.

3. Wiley T. Black, 2010 - 2014, In-Situ Calibration Of Non-Uniformity In Infrared Staring Systems.

4. Andrey S. Alenin, 2010 - 2015, Matrix structure for information-driven polarimeter design. Now with the
University of New South Wales Canberra.

5. Israel J. Vaughn, 2010 - 2015, Bandwidth and noise in spatio-temporally modulated Mueller matrix po-
larimeters (will be available soon from UA Open Repository). Now with the University of New South
Wales Canberra.

1.3.3 MS Students

1. Adoum Mahamat, 2010 - 2014, Now with NAVAIR.

1.3.4 Undergraduates

1. Rafael Rojas, 2012 - 2014.

2. Je�rey Wilhite, 2014 - 2015. Now pursuing MS Degree at Optical Sciences.

1.4 Related projects funded by other agencies that leveraged AFOSR results

1. J. S. Tyo (PI), �Analysis of Polarization and Coherence Properties of Polarization Tags,� Sandia National
Laboratories, $37,000, August 2013 � May 2015

2. J. S. Tyo (PI), �Active SWIR Polarimetry,� SAIC (sub to AFRL/RYJT), March 2012 � December 2012
$39,985

3. J. S. Tyo (PI), �Polarimetric Data Processing for Seeker Applications,� Polaris Sensor Technologies, (Sub
to US Army SMDC SBIR Phase II program), $50,000, March 2011 � March 2013

4. J. S. Tyo, �Visible/NIR/SWIR Imaging Polarimeter for Phenomenology,� FY2011 DURIP, December 2011
� December 2012 ($243,784, December 2011 � November 2012)

5. Brian G. Hoover (PI) and J. S. Tyo, �Optimization of Partial Mueller Polarimeters,� US Army NVESD
Phase I SBIR Program, $150,000, June 2011 � December 2012

6. J. S. Tyo (PI), �Processing of LWIR Polarimetric Imagery to Identify Human Activity,� AFRL/RYJ and
General Dynamics, $24,500, June 2010 � September 2010

2. INTRODUCTION

Optical polarization sensing is an example of an indirect imaging or sensing method,27 since optical detectors
are generally insensitive to the polarization state of the incident radiation. Because of that, the nature of the
performance of polarimeters � including SNR, accuracy, calibration error, etc. � is intrinsically related to the
processing methods used to compute the desired information from the actual measured intensity signals.

A widely used general formalism for describing the polarization state of optical radiation in the partially
coherent case is the Stokes-Mueller calculus.28 in this formalism, the polarization state of light is described by
a set of four Stokes parameters that are related to the second statistical moments of the �eld. These moments

http://hdl.handle.net/10150/247279
http://hdl.handle.net/10150/316895
http://hdl.handle.net/10150/555942


can be related to any radiometric quantity, but for imaging polarimeters, the irradiance is a reasonable quantity
and the Stokes parameters can be de�ned as

S =


I0 + I90
I0 − I90
I45 − I135
IL − IR


T

, (2.1)

where Ix, Iy, I45, and I135 are the observed irradiances through linear polarizers oriented at 0◦, 45◦, 90◦, and
135◦, respectively, and IL and IR are the irradiances observed through left- and right-circular polarizers. Note
that the angles are de�ned with respect to an arbitrary coordinate system. When light interacts with an object
or material, the polarization properties are altered. When the interactions are linear, the changes in the Stokes
parameters can be described by a 4× 4 real matrix called the Mueller matrix

S′
(−→
θ
)
= M

(−→
θ
)

S
(−→
θ
)
=


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

S. (2.2)

The notation
(−→
θ
)
indicates that the polarimetric quantities are functions of some set of independent parameters

that may include spatial coordinates, time, wavenumber, angle of incidence, etc.

2.1 Wavefront Division Polarimeters

A Stokes polarimeter is used to estimate a set of Stokes parameters. There are two broad classes of polarimeters:
wavefront division polarimeters and modulated polarimeters. Wavefront division polarimeters operate by making
multiple copies of the incident wave �eld and relaying them to separate detectors through di�erent polarization
optics. The most common examples of wavefront division polarimeters are Division of Amplitude polarimeters,
which use beam splitters to create the copies of the �eld, and Division of Aperture Polarimeters, which use an
array of optics to split the wavefront in an aperture plane.29 Subsequet to this splitting, both strategies employ
independent polarization optics in each of the channels in order to a�ect the measurement. Each channel is
described by a polarization analyzer vector Ai, and the power measured in the channel is

xi = A · S. (2.3)

The set of measurements can be compiled into a linear system of equations

X =

 x1
...
xN

 =

 A T
1
...

A T
N

 = W · S, (2.4)

and the Stokes parameters are estimated as
Ŝ = W+ ·X. (2.5)

The matrix W+ is a suitable inverse or pseudoinverse, and is often referred to as the data reduction matrix.28

2.2 Modulated Polarimeters

A wavefront division polarimeter splits the light into channels that are measured by di�erent detectors (or subsets
of detector elements in some DoAP systems30). In contrast, a modulated polarimeter uses a single detector or
array of detectors to make all measurements, but uses polarization-dependent carriers to create channels that
carry the polarization information. Most systems have employed purely periodic carriers, which results in an
orthogonal frequency division multiplexed system, though non-periodic carriers can be employed as well.8

The detector output of a modulated polarimeter (which is proportional to irradiance or power received) is

X(t) = A(t) · S(t) = A0(t)s0(t) +A1(t)s1(t) +A2(t)s2(t) +A3(t)s3(t). (2.6)



In Eq. 2.6, we have only indicated temporal modulation, or
(−→
θ
)
= (t). However, the theory is immediately

applicable to any combination of modulation domains. When the analyzer vector is periodic, then the Fourier
transform of Eq. 2.6 produces a set of channels that are orthogonal in the Fourier domain. The Stokes parameters
can then be estimated through a set of demodulation and �ltering operations.

2.3 Mueller Polarimeters

It should be noted that the Stokes polarimeter can be generalized into an active Mueller polarimeter.31 This
instrument includes both a polarization state analyzer (PSA), which is a Stokes polarimeter, and an polarization
state generator (PSG). The PSG is a PSA operated in reverse that generates a controlled illumination state.
The intensity measured for a particular PSG/PSA combination is

xi = AiMGi =
−→
Di ·
−→
M. (2.7)

The vector
−→
Di is a 16 × 1 vector obtained by rearranging the elements of the dyad product GAT, and

−→
M is

obtained by reordering the elements of M. All of the analyses that follow are equally applicable to both Stokes
and Mueller polarimeters.

3. MODULATED POLARIMETER DATA PROCESSING

3.1 Data Reduction Matrix method for DoT Polarimeters

The conventional theory of operation for DoT polarimeters (and for other classes of polarimeter as well) is well
known28 and is brie�y reproduced here. The polarimeter operates by using a collection of retarders and analyzers
that can be changed from measurement to measurement. The most common example is the rotation of a wave
plate in front of a linear analyzer,32 but other optical con�gurations can also be used.33,34 The incident Stokes
vector is altered by the Mueller matrix of the polarization optics, and the modi�ed irradiance is measured by a
polarization-blind detector. This irradiance is given mathematically by taking the inner product of the �rst row
of the system Mueller matrix with the incident Stokes vector as

I(t) = SA(t)
TSin, (3.1)

where SA(t) is the time-varying anaylzer Stokes vector given by the �rst row of the system Mueller matrix. For
the purposes of the present discussion, we will assume that the irradiance is sampled ideally. The e�ects of an
integration time that is comparable to the time variation of SA(t) can be included using standard methods. The
nth sample of the irradiance is then

I[n] = SA[n]
TS = sA0[n]s0 + sA1[n]s1 + sA2[n]s2 + sA3[n]s3. (3.2)

In general practice, it is assumed that the polarimeter modulates the irradiance at rates that are much faster
than the temporal variation of the incident Stokes vector,28,35 and that the Stokes parameters in Eq. 6.1 are
constants. When this is the case, we can take a series of measurements and form a system of linear equations

I =

 I[1]
...

I[N ]

 =

 SA[1]
T

...
SA[N ]T

Sin = WSin. (3.3)

The incident Stokes vector is determined by matrix inversion (or pseudoinversion) as

Ŝin = W−1I =
(
WTW

)−1
WTI, (3.4)

where the hat in Eq. 3.4 indicates that the result is an estimate of the true value. The matrix W−1 is generally
referred to as the data reduction matrix (DRM).28



While the above discussion approaches the problem from a linear algebra perspective, a frequency domain
approach is often more informative. Equation 3.3 is easiest to understand with the simple example of the rotating
analyzer linear polarimeter. If we rotate an ideal linear analyzer at a constant angular frequency ω0 (in units of
degrees per sample) we have

SA[n] =
1

2

[
1 cos(2ω0n) sin(2ω0n) 0

]T
(3.5)

and Eq. 6.1 becomes

I[n] =
1

2
[s0 + cos(2ω0n)s1 + sin(2ω0n)s2] . (3.6)

Equation 3.6 tells us that the irradiance information is carried in the DC term, the s1 information is carried
in the in-phase 2ω0 term, and the s2 information is carried in the quadrature 2ω0 term. Since this polarimeter
does not have a retardance element, it cannot measure s3. The polarization information could be demodulated
using frequency-domain methods, which is done for some systems using photo-elastic modulators operating at
high rates (∼10s of kHz).36 However, the linear algebra formulation of Eq. 3.4 is often preferred since it is easier
to incorporate calibration, error analysis, and other pratical considerations. In principle, only four measurements
are required to uniquely invert Eq. 3.4. However, it is common to employ more than 4 measurements in order
to help improve the accuracy of the polarimeter and reduce the e�ects of noise and systematic errors.4,32,37,38

3.2 Using a Linear Systems Formalism for Processing

With only a few exceptions,4,39 most papers in the polarimetry literature treat Sin as approximately constant in
computing the DRM. Diner, et al., initially make this assumption in their dual-PEM polarimeter. Their device
makes 40 time-sequential measurements to reconstruct s0, s1 and s2, resulting in a highly underdetermined
system of equations with 17 unconstrained degrees of freedom. After initially assuming that the measured
Stokes vector was constant, they then used one of their degrees of freedom to innoculate the DRM to linear
gradients in the underlying Stokes vector.

An examination of Eq. 6.1 or Eq. 3.6 reveals that the constant Stokes vector assumption is overly limiting, and
even the linearly-varying-in-time assumption of Diner, et al., is still unnecessarily limiting. It is apparent that
basic communications systems theory can be employed allowing the Stokes parameters to be functions of time as
well, subject to a bandwidth criterion imposed by the reconstruction process. This result is analagous to earlier
developments for spatially modulated imaging polarimeters3,40 and spectrally modulated spectropolarimeters.41

To introduce this concept for DoT polarimeters, we take the Fourier transform of the signal I(t) in Eq. 3.1,
but now we allow the Stokes parameters to become functions of time as

Ĩ(ω) = s̃A0(ω) ∗ s̃0(ω) + s̃A1(ω) ∗ s̃1(ω) + s̃A2(ω) ∗ s̃2(ω) + s̃A3(ω) ∗ s̃3(ω), (3.7)

where the tilde indicates the Fourier transform and * is the convolution operator.

Equation 3.7 presents a conventional deconvolution problem that can be inverted by careful design of the
analyzer Stokes vector SA(t). The speci�c modulation strategy of Eq. 3.6 creates distinct side bands in frequency
space that carry the polarization information. Using the expressions of Eq. 3.6 in Eq. 3.7 produces

Ĩ(ω) =
1

2

(
s̃0(ω) +

1

2
(s̃1(ω − 2ω0) + s̃1(ω + 2ω0)) +

1

2j
(s̃2(ω − 2ω0)− s̃2(ω + 2ω0))

)
. (3.8)

We see from Eq. 3.8 that forcing the Stokes vector to be constant is a severe, and unnecessary, restriction. If we
assume that s0 is band limited to frequencies below W0 and s1 and s2 are band limited to frequencies below W1,
we can accomplish error-free reconstruction (in the noise-free case) provided that

W0 +W1 ≤ ωs/2, (3.9)

where ωs/2π is the temporal sampling frequency of the polarimeter. Equation 3.9 is the Nyquist sampling
criterion for a rotating analyzer polarimeter. It is worth noting that the band limit requirement is placed on
W0 and W1 together, so it is possible to apportion a given sampling bandwidth among the various channels
in question. Other types of DoT polarimeters with di�erent speci�c modulations will have band limit criteria
modi�ed somewhat from Eq. 3.9, but similar critera can be derived for all modulated polarimeters.



3.3 Unifying the DRM and linear systems methods

In this section we generalize the linear systems formalism to encompass the DRM method. Doing this shows
an immediate drawback of the DRM method that leads to unncessary polarimetric aliasing that can easily be
remedied by choosing a di�erent weighting scheme in formulating the DRM.

Consider a Stokes vector signal to be measured that is a function of space, time, and wavelength Sin(x, y, t, λ).
The system has an impulse response function that is described by h(x, y, t, λ), a detector with a sampling function
d(x, y, t, λ), and a polarimetric modultation described by SA(x, y, t, λ). We also consider a uniform sampling
process in space, time, and wavelength with sampling intervals X, Y , T , and L∗. Nonuniform sampling is
possible as well, but complicates the analysis unnecessarily. With these de�nitions, the modulated irradiance is
given as

I(x, y, t, λ) =
[[

SA(x, y, t, λ)
T (h(x, y, t, λ) ∗ Sin(x, y, t, λ))

]
∗ d(x, y, t, λ)

]
comb

(
x

X
,
y

Y
,
t

T
,
λ

L

)
. (3.10)

In Eq. 3.10 the operator ∗ de�nes convolution; however, the various functions are not necessarily linear, shift-
invariant (LSI) functions in general. When the system is not LSI, the convolution integrals have to take the
more general form

g1(x) =

∫ ∞
−∞

f(α)h(x, α)dα (3.11)

rather than the more familiar form for LSI systems

g2(x) =

∫ ∞
−∞

f(α)h(x− α)dα, (3.12)

where in both cases the input is f(x) and the impulse response is h(x). Furthermore, the point spread function
h(x, y, t, λ) is assumed to be scalar. In reality, the system is really described by a polarimetric impulse response
matrix that describes how the optical system alters the polarization state between object and image plane before
it is ever sampled.42 For convenience we will de�ne our units so that X = Y = 1, T = 1, and L = 1, so we will
be working in normalized frequency space (cycles per sample).

Referring back to Eq. 3.4, the DRM formalism computes the pseudoinverse as

W−1 =
(
WTW

)−1
WT, (3.13)

and the irradiance I(x, y, t, λ) is rearranged into a column vector that W−1 operates on. The �rst part of the
pseudoinverse in Eq. 3.13 is

Z =
(
WTW

)−1
=

(
N∑
n=1

SA(n)SA(n)
T

)−1
. (3.14)

In this notation, the polarimeter uses N measurements to form the measurement matrix. For example, a rotating
retarder polarimeter might make N = 16 measurements as the retarder is rotated from 0◦ to 360◦, or a DoFP
polarimeter might be decomposed into 4-element (2×2) superpixels. In the linear systems formalism, we propose
a similar formation of Z

Z ≡

 ∑
x,y,t,λ

SA(x, y, t, λ)SA(x, y, t, λ)
T

−1 . (3.15)

The WTW part of the inverse is the integral of the product of the modulation functions contained in SA, so the
inversion of this quantity describes how to separate the polarization signals if their modulation is not completely
orthogonal. For modulation schemes that are orthogonal over the integral the quantity WTW and its inversion
will simply be a diagonal matrix. We refer to Z as The modulator inner product inversion matrix.

∗The system could equivalently be uniformly sampled in wavenumber 1/λ, which is also common.



If the measurement has been taken such that there is an integer number of periods of modulation in all of
the functions contained in a, this quantity will be a constant with respect to the initial phase of the modulation.
However, in cases where the polarimeter varies in time or in space, as would be the case when there is drift in the
absolute angular position of a rotating retarder or in the absolute phase of oscillation of the dual-PEM system,4

then it is possible that Z might need to be computed locally.43

Next we turn to the WT term in Eq. 3.14. To understand this element it is useful to examine how this term
operates on the modulated irradiance in the standard DRM formalism. We have

WTI = WTW Sin. (3.16)

Examining this equation closely in the context of the linear systems formalism reveals that the matrix WT plays
two roles. The �rst role is the homodyne in the demodulation process. The matrix W includes the modulation
strategy of SA(x, y, t, λ), multiplying the input signal by W then WT is equivalent to mixing with a carrier
frequency once to move the base band signal up to the side bands and a second time to create a copy at base
band along with spurious copies at higher frequencies. In communications theory, the next step is to low pass
�lter. This low pass �lter is implicitly included in the matrix multiplication WTW. However, in the matrix
multiplication the low pass �lter has a rectangular footprint (in time, space, wavelength). This rectangular
footprint results in a sing-function low pass �lter that results in leakage of spurious high frequency signals into
the reconstruction as we will see below.

In the linear systems formalism we want to leave ourselves the freedom to use an arbitrary low-pass �lter.
Speci�cally, we want to use band-limited low pass �lters that are designed to only pass the base band signal,
thus eliminating polarimetric aliasing. For the linear systems formalism, we accomplish this by separating the
homodyne from the low pass �lter as

WTI→ m(x, y, t, λ) ∗ SA(x, y, t, λ)I(x, y, t, λ) = w(x, y, t, λ) ∗ SA(x, y, t, λ)SA(x, y, t, λ)
TSin, (3.17)

where w(x, y, t, λ) is the windowing function in the space-time-wavelength domain that corresponds to the desired
low pass �lter in the corresponding frequency domain.

Putting all of the terms together, we can form the linear systems version of the DRM method. The estimated
Stokes vector distribution is

Ŝ = W−1 {I(x, y, t, λ)} = w(x, y, t, λ) ∗ ZSA(x, y, t, λ)I(x, y, t, λ). (3.18)

3.4 Discussion

In order to understand the polarimetric demodulation operation from the linear systems perspective, we consider
the two examples of a rotating retarder polarimeter and a dual-PEM polarimeter.

3.4.1 Rotating Retarder Polarimeter

Consider once again the rotating retarder (RR) polarimeter. We assume that the polarimeter is an ideal linear
retarder of retardance δ followed by an analyzer. Since our reconstruction was designed to be insensitive to
absolute phase, we take the phase to be 0 with respect to t = 0. In this case the modulation term for the kth

temporal sample is

SA[n,m, k, l] = SA[k] =
1
2


1

cos2 4πk
K + cos δ sin2 4πk

K

(1− cos δ) cos 4πk
K sin 4πk

K

− sin δ sin 4πk
K

 = 1
2


1

1+cos δ
2 + 1−cos δ

2 cos( 8πkK )
(1−cos δ)

2 sin 8πk
K

− sin δ sin 4πk
K

 , (3.19)

where there are K samples per 360◦ rotation of the retarder. The modulator inner product inversion matrix is

Z =


12 cos2 δ+8 cos δ+12

(cos δ−1)2 − 16 cos δ+16
(cos δ−1)2 0 0

− 16 cos δ+16
(cos δ−1)2

32
(cos δ−1)2 0 0

0 0 32
(cos δ−1)2 0

0 0 0 8
sin2 δ

 . (3.20)



We begin by assuming that the excitation has the form sinc ()
2
(t) in only one of the four Stokes parameters.

Even though this excitation is non-physical because it only includes one Stokes parameter, we can decompose
an arbitrary physical excitation into these components in order to understand where the information from each
Stokes parameter lies in the side bands. Figure 3.1 shows the measured irradiance for the sinc ()

2 signal in each
parameter.
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Figure 3.1: Shows the components of the irradiance due to S0(a), S1(b), S2(c), and S3(d)

Figure 3.2 shows the measured irradiance and its Fourier transform for the fully polarized signal

S = sinc (t)
2 [ √

3 1 1 1
]T
. (3.21)
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Figure 3.2: (a) shows the measured irradiance for S = [
√
3111] in the temporal domain.and (b) shows

the Fourier Transform of the measured irradiance. Need to explain colors, and real/imag

As expected, the irradiance signal shown in Fig. 3.2a is now all non-negative. Figure 3.2b shows the Fourier
transform of the measured irradiance decomposed into the components that are due to each of the signals from
Fig. 3.1.

The �rst step in the reconstruction process it to multiply the measured irradiance with the functions given
in Eq. 3.19 in order to move the information for the desired Stokes parameters down to base band.
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Figure 3.3: Pre modulation of the measured irradiance in the Fourier Domain by a0(a), a1(b), a2(c),
a3(d)



Figure 3.3 shows the Fourier transform of the modulated irradiance using each of the four modulation functions
in Eq. 3.19. As we can see, the �rst and second modulation functions move the s0 and s1 information to base
band. The third row moves the s2 information to base band, while the fourth row moves the s3 information
to base band. In order to separate s0 and s1, it is still necessary to multiply by the modulator inner product
inversion matrix Z, and the result of that multiplication is shown in Fig. 3.4.
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Figure 3.4: Pre �ltered Sr for Sr0(a), Sr1(b), Sr2(c), Sr3(d)

At this point we can examine Fig. 3.4 and see that the band limited information has been moved to base band
independently for each of the four Stokes paramters. Now the only step left is to select a suitable low-pass �lter
to extract the data. This is the step where virtually all division of time polarimeter reconstruction strategies
make the crucial mistake of using a time-limited reconstruction window w(x, y, t, λ) rather than a band-limited
one. Figure 3.5 shows the e�ect of this when using a standard, 16-element rectangular window for w(x, y, t, λ).
Each of the four panels shows the Fourier transform of one of the Stokes paramters decomposed into the portions
that arise from each of the inputs in Fig. 3.1.
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Figure 3.5: Result of multiplication of a �lter from a 16 element rect window in the Fouerier Domain.
Sr0(a), Sr1(b), Sr2(c), Sr3(d)

We can see that the proper signal is reconstructed at base band in each case, but there is also a form of
polarimetric aliasing error. This error manifests both as self-error (e.g., baseband s0 information aliasing up
to higher frequencies in s0 through the demodulation process) and cross error (e.g., base band s0 information
showing up as high frequency error in the s1 signal). Figure 3.6 shows the reconstructed Stokes parameters in
the time domain, where the high frequency reconstruction error is evident.
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Figure 3.6: Result of multiplication of a �lter from a 16 element rect window in the temporal domain.
Sr0(a), Sr1(b), Sr2(c), Sr3(d)

3.4.2 Performance Issues

The theory presented in section 3.3 along with the example of the RR polarimeter in section 3.4.1 demonstrate
some issues associate with traditional DRM processing of modulated polarimeter data. The conventional DRM
formulation is created assuming that the input Stokes vector is constant in the modulated dimension. For
that reason a standard matrix formalism is obvious that equally weights all of the observations in an N -element
window in performing the inversion. Since the excitation in this case is assumed DC, the analysis only guarantees
proper reconstruction for DC signals. In this paper, we have demonstrated that there is a fundamental band
limit criterion that must be satis�ed for a polarimeter that is related to both the physical sampling frequency
and the modulation frequency that introduces the polarization side bands. So long as Eq. 3.9 is satis�ed, error-
free polarimetric reconstruction is possible. This result relaxes the requirement for extremely high modulation
frequencies that has been used recently to improve error in DoT polarimeters.35,44

The analysis of Section 3.3 used an analysis of the DRM formalism to illuminate the linear systems viewpoint.
However, it is equally possible to to use the knowledge that band limited reconstructions exists to create a DRM
picture that can be used in the traditional linear algebra sense. The two viewpoints must be identical, but some
readers might �nd one easier to implement than the other for their purposes.

In order to construct band-limited DRMs that can reconstruct signals that obey Eq. 3.9, it is necessary to
augment the rows of the instrument matrix with vectors that represent the Fourier components in the base band
used to reconstruct the Stokes parameters.

The theory presented here was focused on DoT polarimeters. However, this scheme applies equally to all
forms of modulated polarimeters. Similar linear systems analyses have been performed for channeled spectropo-
larimeters,3,45 but this paper represents the �rst attempt to unify the two theories. Furthermore, in this and



other analyses, the modulation is always assumed to be in only one domain, i.e. temporal modulation in a DoT
polarimeter, spatial modulation in a DoFP polarimeter, or spectral modulation in a channeled spectropolarime-
ter. Equation 3.10 anticipates the case where the polarimetric modulation represented by SA(x, y, t, λ) actually
modulates across dimensions in a way that allows more accurate reconstruction and/or greater bandwidth in
particular applications.

4. SPECTRAL DENSITY RESPONSE FUNCTIONS FOR MODULATED
POLARIMETERS

4.1 Background

Conventional imaging systems are often described by their point spread function (PSF) or optical transfer function
(OTF) in space and their temporal impulse response. These functions can be used to objectively compare systems
based on criteria that are determined by the speci�c imaging problem. When comparing modulated polarimeters,
transfer functions in their conventional form cannot be employed. This is because modulated polarimeters
multiplex signals in the frequency domain; a single frequency sinusoidal object will result in an image with
multiple frequencies. This ruins the linear shift invariant assumption required for the transfer function formalism
to be valid, since a measurement at a given frequency could have come from a multiplicity of input signals. A
response function for modulated polarimeters is developed here to perform an analogous objective comparison
for polarimetric imaging tasks that the OTF/PSF formalism allows for conventional imaging systems.

The band-limited �lter algorithm presented in section 3 is to establish a method to objectively compare
modulation schemes (spatial, temporal, or some combination) to determine the method that performs �best�
on a polarized object that has �nite bandwidth both in the temporal and spatial domain. This tool is termed
the spectral density response function. The tool is used in Section 4.3 to determine an object-speci�c, optimal
Wiener �lter as an example of the application of the theory.

Power spectral densities (PSDs) are used to describe objects and systems when deterministic properties about
the measurement process are not known, but statistical properties are known or can be reasonably well modeled.
Methods using PSDs describe the performance of the system on average, and any optimization of a system
using such techniques may not be optimal for a speci�c instantiation (i.e., a matched �lter would be best for an
instantiation where the object and any interfering signals are deterministically known).

In remote sensing applications, polarimeters are often used to image large areas of similar terrain, and they
are optimized for measurement of the entire data set as opposed to one particular view. The fact that these
imagers measure large quantities of data, and have prior knowledge of signal statistics for given applications,
makes comparison based on the PSDs a reasonable choice. For instance, in satellite imaging applications, an
existing large pool of data allows estimation of the nominal intensity statistics for a variety of wavelengths, even
if the polarization PSDs are not known.

For Stokes polarimeters, the object to be measured can be represented as a vector, i.e., an image of three
(linear polarimeters) or four (complete polarimeters) Stokes parameters. The power spectrum must therefore be
represented as a spectral density matrix. The spectral density matrix (SDM) is de�ned as the expected value of
the outer product of the Stokes parameters (S(f)) as a function of frequency,

SDM(f) =
〈
S(f)S†(f)

〉
=
〈
‖S(f)‖2

〉
. (4.1)

The SDM contains information about the Fourier transforms of the auto- and cross-correlation functions among
the Stokes parameters.

The goal of this e�ort is to develop a spectral density response function, analogous to the transfer function
of conventional optics. The spectral density response function relates the SDM of the object Stokes parameters
to the spectral densities of the image Stokes parameters. However, the measurement process for modulated
polarimeters is not linear shift invariant (LSI), so the resulting spectral density response function must be
able to characterize the magnitude of response of all output frequencies for a given input frequency, which is
somewhat more complicated than for a LSI system. As an example, consider a pushbroom polarimeters such
as the Multiangle Spectro-Polarimetric Imager (MSPI),4,46 which builds up an image one line at a time as the



platform moves across the scene. For these instruments, spatial variation is translated into the temporal response
of the detector, which causes spatial variations and temporal noise to combine with the temporal modulation
strategy. The formalism presented here can be applied to such imagers.

4.2 Spectral density response

4.2.1 Derivation

Consider designing an imaging polarimeter for an application where the Stokes parameter SDM is known. In
this situation it is desirable to predict the PSDs of the output Stokes parameters and modify the polarimeter
design to optimize the output based on criteria such as the signal to noise ratio (SNR). The polarimeter imaging
operator is de�ned as

Ŝ[nx, ny, nt] = P {S(x, y, t)} , (4.2)

where S(x, y, t) is a continuous incident set of object Stokes parameters and Ŝ[nx, ny, nt] is a discrete estimate
of the incident polarization quantities. The polarimeter operator includes both the physical measurement of the
incident �elds and the reconstruction from that measurement into the �nal estimation of the scene. This operator
is useful because it provides a description of the entire system from measurement to estimation at once, instead
of �rst choosing a measurement scheme and then the estimation algorithm. Optimizing the polarization operator
for an imaging task will potentially lead to di�erent solutions from conventional optimization techniques.27

The operator P is developed from a basic description of the system. This discussion will address time
modulated polarimeters, since such instruments are single variate. However, the approach can be readily applied
to more dimensions, such as spatially modulated polarimeters (microgrids)3 or a system modulated in both space
and time,7 and is directly applicable to all periodically modulated instruments. Generalization to non-periodic
polarimeter modulation schemes47 is left to future work. The optics will be assumed to have an ideal (�at)
transfer function (in�nite aperture di�raction limited optics), but the detector impulse response is explicitly
included and modeled as a �nite integrator:

h(t) = rect
(
t

T

)
, (4.3)

where rect(t) = 1 for |t| < 1/2, rect(t) = 1/2 for |t| = 1/2, and 0 otherwise. The sampling function is de�ned as

X(n, t) = δ(t− nT ), (4.4)

which assumes periodic sampling with a sampling interval of T and sample index n. The �ux that passes through
a time-varying analyzer is given by

P (t) = aT(t)S(t), (4.5)

where a(t) is the analyzer vector (the �rst row of the Mueller Matrix of the polarimeter optics.28 This �ux is
then sampled by the detector

I[n] =

∫ ∞
−∞

(h(t) ∗ P (t))X(n, t)dt, (4.6)

where ∗ is the convolution operator. The band-limited data reduction algorithm proposed in9 is described by

Ŝ[n] = w[n] ∗ Z−1[n]as[n]I[n], (4.7)

where as[n] is a sampled version of the analyzer vector, w[n] is the reconstruction window (which will be discussed
in detail below), and the analyzer inversion matrix is

Z−1[n] =
(
w[n] ∗ aT

s [n]as[n]
)−1

. (4.8)

Equations 4.6, 4.7, and 4.8 constitute the full mathematical model of the polarimeter operator using band-limited
reconstruction. This operator can now be used to compute the spectral density response. This analysis will be
most easily accomplished in the Fourier domain for the periodically modulated polarimeters considered here.



First we note that the integral over all time in Eq. 4.6 can be computed by evaluating the Fourier transform
of the integrand at f = 0:

I[n] =
(
h̃(f)P̃ (f)

)
∗ X̃(n, f)

∣∣∣
f=0

. (4.9)

The Fourier transform of P (t) is found by taking the Fourier transform of Eq. 4.5,

P̃ (f) = ãT(f) ∗ S̃(f). (4.10)

Substituting Eqs. 4.9 and 4.10 into Eq. 4.7 yields

Ŝ[n] = w[n] ∗ Z−1[n]as[n]
((
h̃(f)

(
ãT(f) ∗ S̃(f)

))
∗ X̃(n, f)

)∣∣∣
f=0

. (4.11)

A choice that seems reasonable for the sampled analyzer vector calculation is

as[n] =

∫ ∞
−∞

(h(t) ∗ a(t))X (n, t) dt, (4.12)

since this samples the analyzer vector the same way the �ux is sampled. Another reasonable choice might be
sampling the analyzer with ideal point sampling. The point of this discussion is that this parameter is free for
the algorithm designer to choose to best �t the underlying measurement. In fact, the sampled analyzer vector
can be augmented with additional signals so that the estimation of the Stokes parameters is orthogonal to certain
known sources of error; the authors of4 augmented their conventional data reconstruction matrix (DRM) with
linear gradients to force the system estimation to ignore slowly varying components of the signal.

Equation 4.11 becomes more manageable when we make some simpli�cations to ã(f) and S̃(f). The �rst
simpli�cation is to assume that a(t) has a period B and can be written in terms of its Fourier series48

a(t) =

∞∑
b=−∞

cb exp

(
2πi

b

B
t

)
=

∞∑
b=−∞

cb exp (2πifbt), (4.13)

with fb = b/B. The Fourier transform of this Fourier series is a weighted sum of delta functions

ã(f) =

∞∑
b=−∞

cbδ

(
f − b

B

)
=

∞∑
b=−∞

cbδ(f − fb). (4.14)

We will also assume periodicity of the quantity Z−1[n]as[n], since we have already assumed periodicity of the
analyzer vector. Likewise, the Fourier series of this function is

Z−1[n]as[n] =

P−1∑
p=0

dp exp

(
2πipn

P

)
=

P−1∑
p=0

dp exp (2πiTfpn) , (4.15)

where P is the period of Z−1[n]as[n], p is an integer, and fp = p/PT . Note that P has no units since it is the
period of a discrete set, while B has units of time since it is de�ned in the continuous domain. The summation
only has P elements, i.e., the number of measurements taken over one period of the function in Eq. 4.15.
The period T must be included in the de�nition of fp so that this quantity has units of frequency. Another
simpli�cation made here is the introduction of the quantity

β(f − fo) = S̃(f)δ(f − fo), (4.16)

where β(f−fo) is a frequency-domain function that represents a pure sinusoidal excitation in time at a frequency
given by fo with a Fourier domain amplitude described by S̃(f). This modi�cation is made so that the response
function can be built up by integrating over all fo to �nd the total response to the input.

S̃(f) =

∫ ∞
−∞

β(f − fo)dfo. (4.17)



The function β(f−fo) will replace S̃(f) in the above equations for the derivation of the spectral density response
function.

Using the simpli�cations in Eqs. 4.14 and 4.15, the representation of the sampled �ux in Eq. 4.9 changes to

I[n] =

(
h̃(f)

( ∞∑
b=−∞

cTb δ(f − fb) ∗ S̃(f)

))
∗ X̃(n, f)

∣∣∣∣∣
f=0

. (4.18)

The convolution of S̃(f) with delta functions simply shifts the argument of S̃(f) in frequency, therby creating
side bands in the Fourier domain48

I[n] =

(
h̃(f)

( ∞∑
b=−∞

cTb S̃(f − fb)
))
∗ X̃(n, f)

∣∣∣∣∣
f=0

. (4.19)

When examining the de�nition of I[n] in Eq. 4.6, we �nd that only the sampling function X(n, t) depends on
n. The Fourier transform of X(n, t) over t is

Ft→f {X (n, t)} = exp (2πinTf) , (4.20)

and the discrete Fourier transform (DFT) of the sampling function over index n is

Fn→k
{
X̃ (n, f)

}
=

N−1∑
n=0

exp

(
2πin

[
Tf − k

N

])
=

1− exp (2πiNTf)

1− exp
(
2πiT

[
f − k

NT

]) . (4.21)

Since k is an integer and does not have units of frequency, a useful variable to de�ne is the sampled frequency
fk:

fk =
k

NT
, (4.22)

which relates the sampled frequencies back to the excitation frequencies. Using Eq. 4.22 in Eq. 4.21 yields

X̃ (fk, f) =
1− exp (2πiNTf)

1− exp (2πiT [f − fk])
. (4.23)

The behavior of the sampling function is not ideal; the Fourier transform of the ideal sampling function would
have the form δ(f − fk), where non-zero reconstructed values would only occur exactly when the sampling
frequency equals the incident frequency. The form of Eq. 4.23 allows frequency leakage from frequencies where
fk 6= f . Frequency leakage is a fundamental sampling issue, but is speci�cally discussed here to fully develop a
model of modulated imaging polarimetry. Now we can consider that the sampling delta function is changed to
include two shifts introduced by the modulation of the measuring analyzer vector and the modulation of the data
processing algorithm. When the integers b and p are zero, the sampling occurs exactly at fk = f just as with
a conventional imager. As b and p change they allow the excitation of a pure sinusoidal input with a frequency
f to create a response in the system at a frequency given by fk = f + fb + fp. The sampling still occurs at
speci�c, discrete intervals, but now there is ambiguity in the estimation because multiple excitations can create
overlapping responses.

There are two aspects to consider when dealing with sampling artifacts in polarimeters: aliasing and frequency
leakage. For the examples used in this discussion, the e�ects of aliasing will be shown in the following section.
The response of the real system to frequencies where f 6= fk is given by Eq. 4.23, which, for f su�ciently
close to fk, can be approximated with the function X̃(fk, f) = sinc(T (f − fk)), where the sinc function allows
leakage from a band in f to a particular value fk. The behavior when f = fk is still ideal, but for frequencies
fk−1 < f < fk there is leakage. The frequency leakage behavior can be included by convolving the ideal results
with the sinc function that models the leakage, and will be ignored for now.



With the Fourier transform over f complete, now we need to take the discrete Fourier transform (DFT) of
Eq. 4.11 over the index n. First, substituting the Fourier series of the sampled analyzer vector and Z yields

Ŝ[n] = w[n] ∗
P−1∑
p=0

dp exp

(
2πipn

P

)
I[n]. (4.24)

Taking the DFT of Ŝ[n] and using properties of delta functions48 provides

˜̂
S[fk] =

P−1∑
p=0

dpw̃[fk]Ĩ[fk − fp]. (4.25)

Now that the total polarimeter operator is represented in the Fourier domain, the spectral density response
can be calculated. The set of power spectra for the estimated Stokes parameters (or spectral density response)
is de�ned as the Fourier transform of the auto correlation function. This can be written as

R̂[fk] = Fn→fk
{

Ŝ [n] ? Ŝ [n]
}
=

˜̂
S[fk]

˜̂
S†[fk], (4.26)

where † represents the Hermitian adjoint and ? is the correlation operator.48 This quantity can be calculated in
the Fourier domain as

R̂ [fk] =

P−1∑
p,p′=0

∞∑
b,b′=−∞

h̃(f − fk + fp)h̃
∗(f − fk + fp′) ‖w̃ [fk]‖2

× dpc
T
b R(f − f1, f − f2)c∗b′d†p′ ,

(4.27)

where f1 = fk−fp+fb, f2 = fk−fp′+fb′ , and the object SDM R(f−f1, f−f2) =
〈
S̃(f − f1)S(f − f2)†

〉
describes

the cross spectral density of the Stokes parameters and the cross spectral density of di�erently modulated Stokes
parameters. Note that ∗ denotes the non transposed complex conjugate of a vector. Equation 4.27 provides a
solution to the problem that we set out to solve originally: given a known SDM for the object Stokes parameters,
what is the spectral density response of the estimated Stokes parameters? Using these methods, and with a
known estimate of the incident Stokes parameters, the spectral density response R̃[fk] can be directly computed.

4.2.2 Illustration

To illustrate the concepts leading up to Eq. 4.27, consider the case of a rotating analyzer polarimeter, which can
be described by

a(t) =
1

2


1

cos(2π fs8 t)

sin(2π fs8 t)
0

 , (4.28)

where fs is the sampling rate of the sensor. The Fourier transform of the rotating analyzer vector is shown in
Fig. 4.1. We shall also assume that the system performs ideal periodic point sampling, such that h(t) = δ(t), or
h̃(f) = 1.

Even though the aim of this paper is to describe the operation of a modulated polarimeter on stochastic
signals, the steps from the previous subsection are more easily visualized using a deterministic signal. In this
illustration, we assume that

S(t) =

 √21
1

 sinc2(t), (4.29)

where48

sinc(t) =
sinπt

πt
. (4.30)
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Figure 4.1: Analyzer vector for a rotating polarizer polarimeter in the Fourier domain. Since the analyzer is comprised
of periodic functions, in the Fourier domain it is simply comprised of shifted delta functions.

s0(t) z−1
00 [n]a0[n]I[n]

s1(t) z−1
11 [n]a1[n]I[n]

s2(t) z−1
22 [n]a2[n]I[n]

P(t)→ I[n]

Figure 4.2: The components of the Stokes parameters s0 � s2 modulate the carriers a0 � a2 to produce the �nal sampled
signal I[n]. The demodulation process is composed of remodulation using a0 � a2, then unmixing and equalizing the
channels using Z−1. The colors allow us to track the contributions from s0 � s2 through the modulation and demodulation
processes.

The steps in Eq. 4.5 � Eq. 4.8 in the time domain are shown in Fig. 4.2, and the demodulation steps
are depicted in the frequency domain in Fig. 4.3 with an arbitrary low-pass �lter. The �gure shows how the
information from each Stokes parameter channel maps into the components of the �nal signal.

The computation of the resulting spectral densities for s0, s1, and s2 given in Eq. 4.27 is shown in Fig. 4.4.

s0( f ) z−1
00 ( f )a0( f )∗ I( f )

s1( f ) z−1
11 ( f )a1( f )∗ I( f )

s2( f ) z−1
22 ( f )a2( f )∗ I( f )

P( f )

Figure 4.3: In the frequency domain, the three baseband signals corresponding to the Stokes parameters are placed into
orthogonal channels by the carriers. In the demodulation process, each of the carriers is used to place the corresponding
desired side band at baseband. A �lter is used to isolate the desired signal to create the �nal estimate.
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Figure 4.4: Graphical representation of the estimation of the spectral density response function before �ltering, showing
the contributions due to all three parameters. The total spectral density for each parameter is obtained by summing all
contributions. Note that the signal for s3 is shown with a dashed red line. (a) Reconstruction of s0. (b) Reconstruction
of s1. (c) Reconstruction of s2.
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Figure 4.5: The assumed object SDM for this exercise. The diagonal elements correspond to the spectral density for (a)
S0, (e) S1, and (i) S2. The o� diagonal elements represent the cross-spectral densities, for example (b) is the cross-spectral
density between S1 and S0.

4.3 Example: Computation of the Wiener �lter for modulated polarimeters

Finally, we assume that the SDM for the object to be measured is band-limited and described according to the
equation

R(f) =

 1 0 0
0 1 0
0 0 1

 tri2(f
5

)
. (4.31)

The object SDM is assumed to be uncorrelated for di�erently modulated Stokes parameters f1 6= f2, and the
matrix is shown in Fig. 4.5. Note that because a3(t) = 0, the S3 information is lost, thereby allowing us to
reduce Z−1 and R(f) to 3 × 3 matrices. It would also be possible to retain the dimensionality, but because Z
would no longer be square, we would have to resort to using a pseudoinverse instead.

The classical DRM method28 (referred to here as �the sliding pseudo inverse�) and the ideal band-limited
�lters9 have been presented in the literature, but for practical applications neither �lter performs adequately
for imaging polarimeters.49 The sliding pseudo inverse produces strong artifacts at edges in the object, while
the ideal band-limited �lter only performs well on band-limited, noiseless data; estimation from noisy or non-
band-limited data often produces strong ringing artifacts in the space-time domain. A more �visually pleasing�
band-limited �lter would be one that has a smooth transition to zero, rather than the sharp cuto� that the ideal
band-limited �lter has. One approach to building a smooth band-limited �lter is the Wiener �lter. The Wiener
�lter is well studied; one in-depth version of the Wiener �lter and Wiener-Helstrom theory is in.50 This �lter is



derived for non correlated white noise using the metric of least square error. The Wiener �lter is used here only
as an example to illustrate the application of the current theory, since it is a well-de�ned, optimal linear �lter.
Other �lters or nonlinear reconstruction methods may be more desirable for a particular application, and the
spectral density response formalism developed above can be used for those as well.

The Wiener �lter is designed to solve the estimation problem described by

ŷ(t) = w(t) ∗ g(t), (4.32)

where g(t) is the measured signal
g(t) = s(t) + n(t). (4.33)

In Eq. 4.33, s(t) is the true signal and n(t) is additive, uncorrelated noise. The Wiener �lter is found by solving

w(t) (g(t) ? g(t)) = s(t) ? g(t), (4.34)

and in the Fourier domain the Wiener �lter is

w̃(f) =
‖s(f)‖2

‖s(f)‖2 + ‖n(f)‖2
. (4.35)

The Wiener-Helstrom �lter, which makes use of knowledge of the transfer function h̃(f) of the system (also
derived in50), can be calculated using

w̃(f) =
h̃∗(f) ‖s(f)‖2∥∥∥h̃(f)∥∥∥2 ‖s(f)‖2 + ‖n(f)‖2 . (4.36)

The estimator in Eq. 4.11 unfortunately has two instances of the �lter, the second of which is contained in
the calculation of Z. The analytic calculation of a �lter that minimizes square error is di�cult with the �lter
included in the calculation of the inverse. However, if we impose some loose constraints on w̃(f), the problem
simpli�es, and we can ignore the fact that w̃(f) is included in the calculation of Z. Consider the portion of the
operator inside of the inverse:

Z−1(t) =
(
w(t) ∗A(t)AT(t)

)−1
. (4.37)

To ignore the w(t) in the de�nition of Z(t), the condition

(
w(t) ∗A(t)AT(t)

)
=

∫ ∞
−∞

(
A(t′)AT(t′)

)
dt′ (4.38)

must be satis�ed. If we assume that A(t) is periodic, it can be rewritten in terms of its Fourier series

aj(t) =

∞∑
n=−∞

zjm exp
(
2πi

m

T
t
)
. (4.39)

Using Eq. 4.39 in the right side of Eq. 4.38 yields

Zjj′ =

∞∑
m′=−∞

∞∑
m=−∞

zjmzj′m′δ[m+m′]. (4.40)

Using Eq. 4.39 in the left side of Eq. 4.38 yields

Zjj′(t) =

∞∑
m′=−∞

∞∑
m=−∞

zjmzj′m′w (t) ∗ exp
(
2πi

m+m′

T
t

)
. (4.41)



Taking the Fourier transform of Eq. 4.41 yields

Zjj′(f) =

∞∑
m′=−∞

∞∑
m=−∞

zjmzj′m′w̃ (f) δ

(
f − m+m′

T

)
. (4.42)

For Eqs. 4.40 and 4.42 to be equivalent, the restrictions imposed on the �lter are

w̃ (f) =


1, for f = 0

0, for f = m+m′

T

arbitrary, otherwise

. (4.43)

These restrictions allow us to consider a large set of inverse operators for which the calculation of Z−1 yields
identical results, and we can ignore w̃(f) in its calculation.

For the moment, assume the impulse response functions associated with the system optics and detector are
ideal. With the conditions imposed on w̃(f) in Eq. 4.43, as well as ideal point impulse response functions, the
un�ltered estimate of the Stokes parameters in the Fourier domain can be written as

g̃[fk] =

P−1∑
p=0

∞∑
b=−∞

dpc
T
b S̃(f − f1), (4.44)

with f1 and f2 de�ned in Section 4.2.1. Using this g̃[fk] in the calculation of the Wiener �lter without noise
provides

w̃i[fk] =

∑
p,b zp,ic

T
b

〈
S̃(f − f1)S̃∗i (f)

〉
∑
p,p′,b,b′ zp,ic

T
b

〈
S̃(f − f1)S̃∗(f − f2)

〉
c∗b′z

†
p′,i

. (4.45)

Rewriting this in terms of the cross-spectral density matrix de�ned in Eq. 4.27

w̃i[fk] =

∑
p

∑
b z
∗
p,ic
†
bR
∗(f ; f − f1)∑

p,p′,b,b′ zp,ic
T
b R(f − f1; f − f2)c∗b′z

†
p′,i

. (4.46)

Under the assumption of completely uncorrelated Stokes parameters, the Wiener �lter calculation simpli�es to
the form

w̃i[fk] =

∥∥∥S̃i(f)∥∥∥2∑
p,p′,b,b′ zp,ic

T
b R(f − f1; f − f2)c∗b′z

†
p′,i

. (4.47)

Assuming that the Stokes parameters are completely uncorrelated with one another is a poor assumption from
a physical perspective. Even if the polarization channels of the Stokes parameters are uncorrelated with each
other, S0 must have some degree of correlation with S1, S2, and S3. This is because physically realizable signals
always have DOLP less than 1. However, this assumption led us to a form of the Wiener �lter that compared
well analytically to the known result for conventional imaging, and is useful to discuss this result further.

Consider the system to be corrupted by additive white noise, changing the un�ltered estimation to be

g̃n[fk] =

P−1∑
p=0

∞∑
b=−∞

dp

[
cTb S̃(f − f1) + n(f − fk + fp)

]
. (4.48)

The spectral density response found with only noise (zero contribution from Stokes parameters) will from now
on be referred to as the noise response function (NRF),

NRF(f) = diag

∑
p,p′

dpn(f − fk + fp)n
∗(f − fk + fp′)dp′

 , (4.49)



where the quantity n(f − fk + fp)n
∗(f − fk + fp′), describing the power spectrum of the noise, must be known

or estimated for the application. This de�nition is similar to the required knowledge of the SDM for the Stokes
parameters. With added noise, the Wiener �lter calculation becomes

w̃i[fk] =

∥∥∥S̃i(f)∥∥∥2∑
p,p′,b,b′ zp,ic

T
b R(f − f1; f − f2)c∗b′z

†
p′,i +NRF i(f)

. (4.50)

Once more including the transfer functions of the detector, the un�ltered spectral density response is described
by

‖g̃[fk]‖2 =
∑
p,p′

∑
b,b′

h̃(f − fk + fp)h̃
∗(f − fk + fp′)

× dpc
T
b R(f − f1; f − f2)c∗b′d∗p′ ,

(4.51)

and the Wiener-Helstrom �lter is

w̃i[fk] =
h̃∗(f)

∥∥∥S̃i(f)∥∥∥2
‖g̃i[fk]‖2 +NRFi(f)

. (4.52)

The Wiener-Helstrom �lter has the advantage that it can attempt to recover information that was deterministi-
cally attenuated due to the system transfer function.

4.4 Discussion

4.4.1 In�nitesimally small detector integration time

Spectral Density Response When the statistical object is measured by the rotating analyzer system and subse-
quently estimated as described above, the estimation results in a weighted superposition of shifted copies of the
object SDM (Eq. 4.27). Figure 4.4 shows that the estimation of each Stokes parameter is correctly centered at
the low frequency, but there are also higher frequency copies of all of the other Stokes parameters that interfere
with the estimation; these copies must be �ltered out with a low pass �lter w̃, which will replace the �lter
with uniform frequency response. The spectral density response function using a uniform response �lter allows
us to �nd the Wiener �lter that is optimal for estimating objects that have the same statistical properties as
the object we have modeled. The Wiener �lter calculation is shown in Eq. 4.47; graphically the Wiener �lter
calculation for the ith Stokes parameter will be performed by dividing Rii(f) (the diagonal elements in Fig. 4.5)
by the corresponding spectral density response obtained from Fig. 4.4. The resulting Wiener �lters are shown
in Fig. 4.6. These �lters are band-limited �lters. In fact, the Wiener �lter for a system that has no noise and no
overlapping signals converges to the ideal rectangular band-limited �lter. However, the Wiener �lter smoothly
approaches zero in the presence of overlapping signals, which allows the �lter to minimize undesirable ringing
artifacts in the temporal domain in an objectively determined way.

We can also calculate a Wiener �lter for functions that are assumed to be completly correlated. We will
assume that the Stokes parameters are described by the same power spectra and that di�erently modulated
Stokes parameters are uncorrelated, but that each of the Stokes parameters are completly correlated with each
other. The graphical representation of the spectral density response function estimation for this case is shown
in Fig. 4.7. The e�ect of a given cross-term is cancelled out by the e�ect of its complex conjugate, which is
also added to the spectral density response estimation. This is represented by the magenta line at the bottom
of the �gure. Thus, as long as di�erently modulated parameters remain uncorrelated, the estimation of the
spectral density response remains the same, whether the Stokes parameters are correlated or uncorrelated with
each other.

Frequency-domain map of the SDM To further our understanding of the a system's spectral response, we
note that the SDM in Eq. 4.27 can be represented as a frequency-domain map relating the spectral density
response of the estimated Stokes parameters at di�erent sampled frequencies to the estimated spectral density
response of the continuous Stokes parameters. Figure 4.8 is an example of elements R00, R11, and R22 of the
estimated un�ltered SDM for the object represented in Eq. 4.31. In this case, un�ltered means that the �lter in
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Figure 4.6: Wiener �lters calculated for the assumed Stokes parameters power spectra being measured by the rotating
analyzer polarimeter. The Wiener �lters follow the signal to noise ratio of the estimation as a function of frequency.
These �lters are band-limited, but approach the cuto� smoothly to avoid undesirable temporal ringing artifacts.
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Figure 4.7: Graphical representation of the spectral density response function, assuming a �lter with uniform frequency
response, for (a) S0, (b) S1, and (c) S2, and completely correlated Stokes parameters. Curves in blue, green, and red are
components originally due to S0, S1, and S2, respectively. The e�ect of the cross terms is represented by the magenta
line at the bottom of the �gure. The total spectral density for each parameter is obtained by summing all contributions.

the reconstruction is taken as w̃ = 1 over the whole frequency domain. Since we assumed that di�erent Stokes
parameters are uncorrelated, elements Rij are zero for i 6= j. In these �gures, the vertical axis is the frequency of
the continuous signal, whereas the horizontal axis is the sampled frequency. The total spectral density response
obtained with the superposition of shifted elements from the object SDM represented in Fig. 4.4 is a cross
section of Fig. 4.8 along the line fk = 0. Therefore, the SDM frequency-domain map is a more general way of
representing the system's response, since it contains the response at di�erent sampling frequencies.

The secondary maxima in Fig. 4.8 constitute artifacts that limit our ability to reconstruct the SDM of the
input signal. However, the Wiener �lter presented in Section 4.3 allows us to �lter out the higher frequency
replicas in the un�ltered signal and can also be represented as a frequency-domain map. Figure 4.8 is the
modulus square of the Wiener �lter frequency map for each Stokes parameter. Just as for the SDM frequency
maps, a cross section of this �gure at fk = 0 results in the Wiener �lter results in Fig. 4.6. Applying this �lter
during the estimation of the Stokes parameters represented in Eq. 4.27 results in the �ltered signal that yields
the SDM in Fig. 4.8. The �ltered SDM elements closely resemble a tri2(f) along the diagonal, which would be
the spectral density response function of an ideal system with no polarization artifacts.

4.4.2 Numerical comparison between �lter types

In this section we quantitatively compare �lter performance for the uncorrelated example using the mean squared
error metric (under which the Wiener �lter is derived). The �lters we use for this section are the sliding pseudo
inverse, the ideal band-limited �lter, and the polarimetric Wiener �lter. The frequency response functions of the
�lters are shown alongside the S0 spectral density response in Fig. 4.9. To begin the numerical comparison, we
generated an object with the statistical properties that were assumed in Eq. 4.31. To do this, many instantiations
of white noise were added to the Stokes parameters of the object to build the desired SDM with a signal-to-noise
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Figure 4.8: Frequency-domain map for the estimated (a) R00, (b) R11, and (c) R22 un�ltered elements of the SDM.
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Figure 4.9: An illustration of the frequency repose of (a) the sliding pseudo inverse, (b) the ideal band-limited �lter, and
(c) a Wiener �lter (smooth band-limited �lter) compared to the graphical representation of the spectral density response
of the S0 channel.

ratio of 20 dB. A single instantiation of the white noise is shown in Fig. 4.10. Note that this simulation does not
guarantee physical results (degree of polarization less than 1); physicality could be enforced by adding a constant
o�set to the S0 object. However, the purpose of this discussion is to describe the method of application of these
techniques.

The matrix obtained after 1000 iterations is shown in Fig. 4.11, which is similar to the ideal SDM in Fig. 4.5
but with added noise. This SDM approximates the desired object, as the o� diagonal elements are approximately
within 2.5% of zero. The object is measured and estimated by the polarimeter using the various �lters in Fig. 4.9.
The mean square error for the estimation across all instantiations is shown in Fig. ??. The two bottom rows
are quite similar and show an overall better performance than the ideal band-limited �lter. The Wiener �lter
distribution is slightly �atter than that of the sliding pseudo inverse, and continues decreasing until the edge of
the frequency region covered by the original Stokes parameters power spectra, whereas the sliding pseudo inverse
reaches a minimum and then rises at the edge of the considered frequency region. Hence, the Wiener �lter
outperforms either of the other two �lters, which was expected since it was designed for optimal performance
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Figure 4.10: Single instantiation of the white noise for (a) S0, (b) S1, and (c) S2. The noise is not guaranteed to produce
a physically realizable signal since the object SDM employed in this problem does not enforce that.
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Figure 4.11: Calculated SDM for the simulated Stokes parameters with added white noise. Here the SDM (diagonal)
elements for (a) S0, (e) S1, and (i) S2 are approximately the desired triangle squared functions. The o� diagonal cross
spectral density elements ideally should be zero, and they are within 2.5% of the correct answer.

under the MSE metric. Note that this analysis is not meant to demonstrate the superiority of the Wiener
�lter, rather to demonstrate that the theory presented here results in a Wiener �lter that is consistent with
expectations.

4.4.3 Finite detector integration time

Now consider a case where there is a non-unity detector transfer function, such that the detector integration
time has a duty cycle of 1 and is described in time as

h(t) = rect
(
t

T

)
. (4.53)

In the Fourier domain, the detector transfer function is written as

h̃(f) = sinc
(
f

fs

)
. (4.54)

The �rst zero of the detector transfer function for this problem is then at fs, while we are concerning ourselves
with signals that oscillate at rates of less than 0.5fs. Figure 4.12 shows the graphical representation of the
spectral density response R00 measured with a detector with �nite integration time, together with the detector
transfer function, compared to the ideally measured spectral density response and the di�erence between these
two responses. We observe that the S0 channel has been symmetrically a�ected by the detector transfer function
since they have the same center of symmetry, but the high frequency shifted S1 and S2 channels have not been
symmetrically a�ected. Many conventional processing techniques for modulated polarimetry implicitly ignore
this non symmetrical e�ect, since conventional calibration is done at the zero frequency. The lower the duty cycle
of the sampling detector, the less e�ect this asymmetry has since the detector is closer to ideal point sampling.
Had the modulation scheme been at a higher frequency, the shifted copies would be further away from the
symmetrical point and the estimation would be further degraded. The Wiener-Helstrom �lter can be computed
in this case, although for this particular polarimeter little advantage is gained. The e�ect of the detector transfer
function being included in the simulation had a maximum e�ect of about 2.5% at certain frequencies, and this
translates to having a maximum e�ect on the �lter of less than 0.5% at those same frequencies. The Wiener-
Helstrom �lter is shown in Fig. 4.12, as well as the di�erence between the Wiener and the Wiener-Helstrom
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Figure 4.12: (a) Graphical representation of the spectral density response of a system with a detector with �nite integration
time of duty cycle 1. The modulus square of the detector transfer function is shown for reference. (b) Graphical
representation of the spectral density response using an ideal detector with uniform frequency response. (c) The di�erence
between the spectral density response with an ideal detector and the detector with �nite integration time in (a), showing
the non symmetrical e�ect on the high frequency copies.



�lters. This di�erence is quite small, but for other applications there may be di�ering results. The importance
of the detector transfer function will increase for applications where the modulation scheme introduces several
side bands, such as the MSPI polarimeter described by Diner, et al.4 Here, the advantage of calculating the
Wiener-Helstrom �lter may lie in helping to control channel cross introduced by the spatial bandwidth (converted
to temporal bandwidth by the moving platform) of the scene being measured.

The techniques presented here provide a way to study the e�ect measurement has given models of the SDM
of objects to be measured. The development of the optimal Wiener �lter for a particular application is highly
dependent on the accuracy of the object models. However, even without accurate object models, rough guesses
of the object model may yield e�ective �rst-guess �lters than can be iteratively improved upon as empirical
data become available. Intuitively we know that a smooth band-limited �lter should provide better results for
periodic analyzer vectors than the ideal band-limited or sliding pseudo inverse: it is band-limited to prevent
channel crosstalk and smooth to prevent ringing in the space time domain. The optimal Wiener �lter will
perform better than the other linear �lters in terms of the mean squared error for a given well de�ned set of
object statistics, because the Wiener �lter is derived by minimizing this metric. The detection task drives the
selection and optimization of the �lter. Therefore, for any given application other �lters than the Wiener �lter
may be more appropriate. The approach developed here allows for the comparison of the performance of di�erent
polarimeter modulation schemes and processing algorithms simultaneously given a de�ned application (object
SDM). The spectral density response presented can be employed to perform objective comparisons between
di�erent polarimeter designs for suitability for an imaging task.

5. CHANNELED POLARIMETERS

In the class of channeled or modulated polarimeters, the polarization states that de�ne the measurement are
modulated either spatially, temporally, or spectrally.9 Every one of those harmonic modulations will split the
information in the corresponding Fourier domains, creating weighted copies of the Fourier Transform of the data
at the modulating frequencies. These multiplexed copies are called channels. Oka and his coworkers40,51,52 have
popularized the design concepts that go into making a channeled system, which were then further developed by
Hagen,45 Kudenov53,54 and their coworkers before going into wide use by many others. In this paper we will
introduce a toolkit to describe, analyze and optimize such systems, and we will use it to investigate channeled
polarimeters from the literature to show how they can be improved.

There has been a number of proposed channeled systems in the past,40,45,51�54 whose designs and the cor-
responding reconstruction techniques were derived by hand. By limiting the number of parameters available
during design, the likelihood of a suboptimal design is inadvertently increased. Lemaillet et al.55 proposed a
way to optimize a spectrally channeled system by introducing linear algebra methods to map the information.
Their e�ort, however, focused on the particulars of one kind of system and stopped short of providing a complete
solution to deal with any channeled polarimeter. This paper describes the generalized methods that can be used
to model channeled information mapping and guide the reconstruction.

A great advantage posed by a channeled system is the possibility of constructing a snapshot system that is
able to simultaneously record information pertaining to di�erent polarization information channels. This removes
the need for complex image registration that would be required in a temporally modulated system. In terms
of object bandwidth, a snapshot channeled system favors temporal resolution at the cost of introducing stricter
band limit constraints in other domains.

We consider a common 2D FPA detector, which enables access to up to two modulation types to be mapped
onto the two orthogonal axes. In addition to having no modulation, we can also map spatial and spectral
modulations into either x- or y-axes of the detector. Although the methods introduced here are general enough
to be used with any channel structure on any orthogonal coordinates systems, this paper will focus on Cartesian
coordinates, implying that the channels lie on a rectangular grid.

For the sake of completeness, we will also consider temporal modulation. Such a system will obviously
lose its snapshot nature, but it is conceivable that some middle ground solution could be found, whereby a
very limited number of temporal measurements are made with intent of balancing the resolution loss among
all possible modulation dimensions.7,9 Thus, using a conventional detector will allow us to split polarization



information into a three dimensional structure of channels that we can manipulate to reconstruct the polarization
information. It is useful to recognize that when we have a small number of temporal measurements, the resultant
temporal frequency channels may contain as few as one data point. In those cases it may be more prohibitive
and unnecessary to work with the data in the Fourier domain. We can instead use measurements as information
�channels� themselves with a clear bene�t that they will contain modulation information more compactly.

5.1 Sinusoidal Channel Splitting

Every sinusoidal modulation in either ai or gj splits the element information in mij into two channels at certain
frequencies within the Fourier domain of the modulation. For the available modulation dimensions of x, y, σ
(wavenumber) and t, we will call the corresponding frequency dimensions ξ, η, τ (OPD) and ν. We will only
show the relevant equations for the x�ξ pair, since all others can be obtained by taking any other sequential
pairing of the above mentioned dimensions. The following transform pairs are well known:56

1(x) ←→ δ(ξ), (5.1a)

cos(2πξix) ←→ 1
2 [δ(ξ + ξi) + δ(ξ − ξi)], (5.1b)

sin(2πξix) ←→ j
2 [δ(ξ + ξi)− δ(ξ − ξi)]. (5.1c)

In the general case, the modulation functions are more complicated and involve more than just one modulating
frequency. The following example is typical of the modulations we encounter and is directly applicable for many
channeled polarimeters,

fM (x) =

M∏
m=1

cos
sin(2πξmx), (5.2)

where cos
sin denotes that the function could either be a cosine or a sine. Since we have M sinusoids multiplied

together, we can create a 2M × 2M matrix that will describe all the possible combinations of either ±ξm of the
δ-function, as well as distinguish between a cosine and a sine. Each sub-function will have a phasor that, when
multiplied together, will yield the net phase of the particular channel-weight. Employing matrix notation, we
can create this �look-up-table� by means of an outer product of two matrices:

FM ≡
[

f 1 f 2 · · · fM
]
, (5.3a)

OM ≡
[

o1 o2 · · · oM
]
, (5.3b)

where fm,k is 0 for cosine and 1 for sine, while om,` is −1 for −ξi and +1 for +ξi. FM and OM are both 2M ×M
in size. The frequency phase matrix (FPM) is then,

PM ≡
1

2M
exp

[−jπ
2

(
FM OT

M

)]
. (5.4)

Cases of M = 1, . . . , 4 can be seen in Figure 5.1.

For some polarimeters the induced modulation may be more complicated than the one prescribed by Equa-
tion 5.2 and the one directly solved by creating a single FPM. In order to treat those modulation schemes, we
can allow for addition of modulating functions, e�ectively treating individual FPMs as a basis set. The total
FPM can be decomposed into L sub-FPMs,

P total = PM 0
+ PM 1

+ · · ·+ PML−1, (5.5)

which can be calculated separately and simply added together. The involved coe�cients will be more complicated,
but they should present no additional challenge within the prescribed methods.
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We have several ways by which to combine multiple dimension modulations into a total structure of channels.
In the case that we have determined each dimension's structure, we can combine them using a Kronecker product,
namely,

q{τ} ⊗ q{ω} ⊗ q{ξ} ⊗ q{η}. (5.6)

On the other hand, if the order of modulation dimensions is alternating between elements, we could use convolu-
tion to create the N -dimensional cloud of channels that we would then unfold into a vector. As an example, we
will consider four polarization modulation elements that operate over x/y/x/y or modulate into ξ/η/ξ/η. The
total vector is then

vec
(

q{ξe1} ∗n q{ηe2} ∗n q{ξe3} ∗n q{ηe4}

)
, (5.7)

where ∗n redundantly implies that the vectors are di�erently oriented or, more generally, can be described as
degenerate N -dimensional structures. In this example, q{ξe1} and q{ξe3} are row vectors, while q{ηe2} and
q{ηe4} are column vectors. The result of the convolution operation is a matrix and needs to be unfolded using
vec operation that we de�ned above. The choice of row/column over column/row addressing is arbitrary at �rst,
but once chosen must be maintained consistently throughout the analysis.

Another way of generating the sought-after total vector is by recognizing that the Mueller element modulation
patterns can be alternately viewed as either a test dyad or a projection target. By treating it as a dyad,
D = A GT, we can look at its Fourier transform, F

{
D
}

= F {A} ∗ F {G}T, with ∗ now being a matrix
convolution (same as multiplication, but every product is replaced with convolution between the same elements
and added as before). That allows us to combine PSA and PSG modulations as

qmij = vec
(
qgi ∗ qaj

)
. (5.8)



Finally, using any of the prescribed methods to construct the Mueller element modulation vectors, we need
to combine all of them into the corresponding Q matrix

Q =



qT
{τ,ω,ξ,η};m00

qT
{τ,ω,ξ,η};m01

qT
{τ,ω,ξ,η};m02

qT
{τ,ω,ξ,η};m03

qT
{τ,ω,ξ,η};m10

qT
{τ,ω,ξ,η};m11

qT
{τ,ω,ξ,η};m12

qT
{τ,ω,ξ,η};m13

qT
{τ,ω,ξ,η};m20

qT
{τ,ω,ξ,η};m21

qT
{τ,ω,ξ,η};m22

qT
{τ,ω,ξ,η};m23

qT
{τ,ω,ξ,η};m30

qT
{τ,ω,ξ,η};m31

qT
{τ,ω,ξ,η};m32

qT
{τ,ω,ξ,η};m33



T

(5.9)

that maps an input Mueller vector into a channel vector,

F{C} = QF{M ′}, (5.10)

where C describes the channels contents. However, we want to perform the opposite operation, since we measure
channels directly. To do that, we can simply take the pseudo inverse of Q , like we do for the DRM in regular
polarimeters,

Q+ = (Q†Q)−1Q† = (Q†Q)\Q†. (5.11)

By correctly arranging Fourier transform operations around the multiplication, we can use that reverse mapping
to get back to the Mueller elements' information,

M ′ = F−1
{

Q+F{C}
}
. (5.12)

An important piece of insight can be obtained if we recognize that Q is not that much di�erent from D ′; however,
if before we relied on constructing multiple dyads against which to test the Mueller object, we can now have
a very limited number of dyads. This is because the particular modulation choices create a multi-dimensional
�pointer� that can be unfolded to the full Q representation.

5.2 Snapshot Channels

A snapshot measurement implies that there is no temporal modulation, which consequently means that no
additional (other than the exposure time) temporal band-limit constraints are placed on the captured scene. If
we consider that each dimension on the 2D detector can carry spatial, spectral or no modulation, we can create
a verbose set of nine snapshot channeled systems that can be seen in Figure 5.2.
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Figure 5.2: Snapshot systems. Case (a) provides no modulation. Case (e) is not straightforward to implement physically.
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5.3 Multiple-Snapshot Channels

Further developing the consideration of physical realizability, we can take several snapshot measurements. This
gives an easy access to a third modulation dimension � time. Provided that the temporal modulation is captured
in even time steps, we can use the Fourier transformation to create our channels. However, since in most cases
this will create more channels than the original data, with all channels being a single pixel, using the Fourier
coe�cients does not present any advantage. Instead, the captured snapshots themselves can be used as �direct
channels�, or simply, projection targets like in the W ′ formalism, namely,

Q total =
[

QT
t0 QT

t1 · · · QT
tN−1

]T
. (5.13)

This removes the need to have evenly spaced samples, yet maintains the compressed nature of Q . Note that even
though we selected direct channels only for temporal modulation, it is possible to treat other domain modulations
similarly.

5.4 Channeled Reconstruction

We use an SVD method to calculate the pseudoinverse for reasons of its numerical stability. First, Q is decom-
posed as

Q = U Q Σ Q V †Q , (5.14)

where the matrices U and V are N × N and 16 × 16 complex, orthogonal matrices, respectively, and Σ is a
N × 16 reduced diagonal matrix containing the N singular values σ1 ≥ σ2 ≥ . . . ≥ σN > 0. The pseudoinverse
can be written as

Q+ = V Q Σ+
Q U†Q , (5.15)

where Σ+ is the 16×N reduced diagonal matrix containing the inverse of the singular values. The rank of the
measurement can be calculated as tr(Q+Q). It is interesting to look at the diagonal elements of this matrix



to see how the information from the N measurements is distributed in the estimated Mueller matrix. We de�ne
the �reconstructables� matrix

B ′ = vec(B) = diag(Q+Q). (5.16)

For each Mueller k-th element,
√
b′k tells us the fraction of energy that is maintained after reconstruction. When

b′k = 0, sensor space and scene space are orthogonal, R ⊥ S. Equivalently, it can be said that the information
lies in the null space of the measurement.9 When b′k = 1, then R ⊆ S and the information can be reconstructed
to within noise limitations.

Although B can be useful, it is a summary metric and does not tell the full story about the polarimeter. If
we investigate the Q+Q multiplication, we can gain more insight, since

Q+Q = V Q Σ+
Q U†Q U Q Σ Q V †Q (5.17)

= V Q Σ+
Q Σ Q V †Q . (5.18)

Σ+
Q Σ Q will reveal a sub-identity matrix that will have �rst R (rank of Q) elements of the diagonal equal to

unity and the remaining 16−R elements equal to zero. This has the e�ect of cropping V into two � the column
space that the polarimeter supports and the null space that the polarimeter rejects. By keeping only the column
space vectors, we can truncate V , namely into V ′, that can be used to rewrite Equation 5.16 as

B ′ = diag
(
V ′Q V ′†Q

)
. (5.19)

A full system will have a reconstructables vector of all ones, while partial systems could design b′k based on prior
knowledge of the scene in question.57 This concept is developed more fully for general pMMPs elsewhere.18

5.5 Examples

By simplifying the generation of a polarimeter design, we can calculate the idealized SNR from Q directly,
without performing full simulations of the system. Simply changing the way the problem is written allows us to
introduce more optimization parameters that can help us �nd an optimal polarimeter. In this section we will
look at systems and see how the introduced concepts could help increase performance.

Sabatke introduced Equally Weighted Variance (EWV) as an appropriate metric to evaluate Stokes polarime-
ters,32 and Twietmeyer later adopted a similar metric for use with Mueller polarimeters.58

EWV = tr
[
K W ′+

]
=
∑15
k=0 1/σ

2
W ′+,k

, (5.20)

with K W ′+ , the covariance matrix, W ′+W ′+T. For the purposes of designing pMMPs, it is necessary to
generalize the combination of Mueller element variances with arbitrary preference. Instead of implying a uniform
weight for all elements, we can introduce a weighing vector, u , to calculate a Weighted Variance (WV),

WV = uT diag
[
K W ′+

]
=
∑15
k=0 uk/σ

2
W ′+,k

. (5.21)

For channeled systems, we can calculate the WV similarly as

WV = uT diag
[
K Q+

]
=
∑15
k=0 uk/σ

2
Q+,k

, (5.22)

with K Q+ = Q+Q+†, the product which contains the Mueller element reconstruction variances within its

diagonal.



5.5.1 Spectrally Channeled Polarimeter

Consider the spectral-none channeled polarimeter proposed by Hagen,45 an example of a system in Figure 5.2d.
The measured intensity can be written as

I(~ϑ) =

3∑
i=0

3∑
j=0

fai(
~ϑ)mij(~ϑ)fgj (

~ϑ), (5.23)

where ~ϑ is used to denote a set of domains where the information is modulated. For this system, there is only
modulation in wavenumber, meaning ~ϑ = {σ} and

f A (σ) =


1

cos(c4σ)
sin(c3σ) sin(c4σ)
cos(c3σ) sin(c4σ)

 , (5.24a)

f G (σ) =


1

cos(c1σ)
sin(c1σ) sin(c2σ)
sin(c1σ) cos(c2σ)

 , (5.24b)

The argument
ciσ = 2πτiσ = 2πdodiλoBσ, τi = dodiλoB (5.25)

contains the global thickness factor, do, individual retarder thickness factor, di, center wavelength, λo, and
birefringence, B. The vector d contains all the modulation information and will be our optimization target.
Hagen chooses d = ( 1 2 5 10 ), with the resulting channels and the proposed reconstruction scheme.

From the proposed reconstruction, we see that some measurements are ignored for the sake of algebraic
simplicity � only channels c0 � c10 are referenced, with real and imaginary operators constituting the use of
conjugates. Thus, instead of using all 37 channels, only 21 are used. An alternative method would be to recognize
the modulation induced by retarders, construct an appropriate FPM, look up the coe�cients and construct Q

by placing them at the contributing frequencies. The resultant Q and its inverse can be seen in Figure 5.3.

cn Channel Content ×(64/Sin,0)
0 16m00

±1 8m01 + 4m02 ± 4im03

±2 −m22 ± im23 ∓ im32 −m33

±3 −4m02 ∓ 4im03

±4 2m21 +m22 ∓ im23 ± 2im31 ± im32 +m33

±5 4m20 ± 4im30

±6 2m21 +m22 ± 1m23 ± 2im31 ± im32 −m33

±7 −2m12 ± 2im13

±8 −m22 ∓ im23 ∓ im32 +m33

±9 4m11 + 2m12 ∓ 2im13

±10 8m10

±11 4m11 + 2m12 ± 2im13

±12 m22 ∓ im23 ∓ im32 −m33

±13 −2m12 ∓ 2im13

±14 −2m21 −m22 ± im23 ± 2im31 + im32 +m33

±15 −4m20 ± 4im30

±16 −2m21 −m22 ∓ im23± 2im31 ± im32 −m33

±18 m22 ± im23 ∓ im32 +m33

Table 1: Hagen polarimeter's channels.



mij(σ)
m00(σ) = 4c0
m01(σ) = 8(c1 + c3)
m02(σ) = −16<[c3]
m03(σ) = 16<[c1]
m10(σ) = 8c10
m11(σ) = 16(c7 + c9)
m12(σ) = −32<[c7]
m13(σ) = 32=[c7]
m20(σ) = 16<[c5]
m21(σ) = 32<[c2 + c4]
m22(σ) = −32<[c2 + c8]
m23(σ) = 32=[c2 − c8]
m30(σ) = 16<[c5]
m31(σ) = 16=[c2 + c4 + c6 + c8]
m32(σ) = −32=[c2 + c8]
m33(σ) = 32<[c8 − c2]

Table 2: Hagen's proposed reconstruction.
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Figure 5.3: Hagen's spectropolarimeter, d = ( 1 2 5 10 ). The matrix containing 21 cropped channels can be seen
between the two horizontal lines and has an EWV of 355; including the other 16 channels lowers the EWV to 187. Note
that these extra channels must be measured in order to prevent aliasing. The distinction is whether the data contained
within these channels is used in reconstruction, after the Fourier transform of the measured intensity was determined.
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Figure 5.4: By swapping the �rst two elements, i.e., d = ( 2 1 5 10 ), we can lower the EWV down to 130 4
7
.

The system in Figure 5.4 was found by trial-and-error to see if any other arrangement of exactly the same
elements will produce better results. The system in Figure 5.4 was found by optimizing EWV with the preference
towards fewer channels. Changing to d = ( 2 1 4 11 ) has the e�ect of �orthogonalizing� the channels in a way
that the PSA-channels are available independently from PSG-channels, a characteristic that we have empirically
observed to be indicative of optimality. Considering all the channels in Figure 5.3 lowers EWV by 47.3%, while
the systematic approach to measurement selection brings another 35.3% reduction to EWV. In total, EWV was



reduced to 34.1% of its original value, suggesting that the polarimeter's SNR is almost three times higher. Since
the number of channels did not increase, no spectral resolution was lost.

5.5.2 Spatially Channeled Polarimeter

Next consider the spatial-spatial channeled polarimeter described by Kudenov,54 an example of a system in
Figure 5.2i. The modulation is achieved via polarization gratings that separate the di�erent Mueller matrix
elements onto patterns of frequencies that are determined by the spacing of the elements. The intensity can be
similarly represented as in Equation 5.23 with ~ϑ = {x, y}. Kudenov used the following modulations:

f A (x, y) =


1

cos(4πx)
sin(4πx) cos(4πy)
sin(4πx) sin(4πy)

 , (5.26a)

f G (x, y) =


1

cos(2πy)
sin(2πy) cos(2πx)
sin(2πy) sin(2πx)

 . (5.26b)

(c) ax = ay =
2gx = 2gy = 2,
x/y/y/x, 33/49
channels used,
EWV = 209

(d) ax = ay =
2gx = 2gy = 2,
x/y/x/y, 35/49
channels used,
EWV = 151

(e) a1 = 2a2 =
g1 = 2g2 = 2,
x/x/y/y, 49/49
channels used,
EWV = 121

Figure 5.5: Top row shows the ξ/η plane of channels of each con�guration. Bottom row shows K Q+ .

Figure 5.5 shows a comparison between three systems with the only di�erence being the order of modulation.
The merit of introducing Q is clear; better performance is achieved virtually for free, using the same polarization
elements in a di�erent order. Systems in Figure 5.5 were found by optimizing using genetic algorithm, while
continuously relaxing the design restrictions.



Figure 5.6: Frequency grid of the Mueller modulation. ξ and η are the x- and y-axes, respectively.
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Figure 5.7: Optimal Spatial�Spatial Polarimeter.

Although a symmetrical (x/y/y/x) modulation design may seem intuitively logical, it is possible to improve



the design as evidenced by the polarimeter in Figure 5.5e, which is shown in greater detail in Figure 5.6 and
Figure 5.7. First, in Figure 5.5d, an asymmetrical order of modulations improves EWV by 27.8%. Then, in
Figure 5.5e, it is improved by another 19.9% by splitting the modulation into one dimensional structures for
the PSG and the PSA. In total, EWV was reduced to 57.9% of its original value. Although not as large of an
improvement as in the previous example, it is, nonetheless, signi�cant.

The reason for the EWV improvements lies in how the channels interfere. From the comparison of Figure 5.5
we can note that the better systems �focus� the reconstruction into the diagonal of K Q . Upon further investiga-
tion, it is possible to make a general statement that we want Q to be a matrix that is unitary through a scalar.
When this condition holds, the channel structures created for each of the Mueller elements forms an orthogonal
basis set, which will force all the variances to lie on the diagonal, thereby ensuring the minimum achievable EWV
for the number of modulations introduced. In fact, we can calculate the minimum EWV simply as

EWVmin =
∑

nG ⊗ nA, (5.27)

where n is a vector that contains the number of channels that the PSG's and the PSA's Stokes parameters are
split into. If we are to assume a spherical modulation, i.e.,

f A =


1

cos(2πxξ1)
sin(2πxξ1) cos(2πxξ2)
sin(2πxξ1) sin(2πxξ2)

 , (5.28a)

f G =


1

cos(2πyη1)
sin(2πyη1) cos(2πyη2)
sin(2πyη1) sin(2πyη2)

 , (5.28b)

then nA = nG =
[
1 2 4 4

]T
and the minimum EWV is 121, like in Figure 5.5e. A better EWV is math-

ematically possible if for example, nA = nG =
[
1 2 2 4

]T
, in which case EWVmin = 81. However, there

appears to exist no such physically realizable modulation scheme as it would require analyzing and generating
vectors to reach a DoP of

√
2.

5.5.3 Multiple Snapshot Polarimeter

As mentioned before, our matrix Q is nothing more than a dyad that contains modulations within each Mueller

channel projection target. Thus, once we determine the system's spectral and/or spatial modulations, we can
rotate the channel structures via a unitary transformation that will remix the channel structures in PSG and
PSA

Qθ =

[
UAF {A}

]
∗
[
F {G}T UG

]
. (5.29)

Applying UG and UA will keep the channels' relative orientation, thereby maintaining the EWV. Looking
at the Mueller matrix of a linear retarder28 we can show that |det(LR(δ, θ))| = 1, which means a unitary
transformation. Thus, we can construct a multiple snapshot system simply by enclosing the system between two
retarders that have di�erent orientations for each measurement. Using Equation 5.13 gives us the total Q .



1 2 1 2
1 1 2 2

1 1 441.0000 171.6667 214.9412 151.0000
2 1 171.6667 121.0000 147.6667 147.6667
1 2 214.9412 147.6667 133.0000 214.9412
2 2 151.0000 147.6667 214.9412 441.0000

(a) One snapshot � 49 channels

1 2 1 2
1 1 2 2

1 1 59.9992 53.5044 53.5987 53.5987
2 1 53.5044 53.5667 54.2778 53.5044
1 2 53.5987 54.2778 56.2201 59.0824
2 2 53.5987 53.5044 59.0824 59.9992

(b) Two snapshots � 98 channels

1 2 1 2
1 1 2 2

1 1 36.2603 35.5047 35.3180 34.9990
2 1 35.5047 34.0003 34.4980 34.7655
1 2 35.3180 34.4980 35.2025 35.9454
2 2 34.9990 34.7655 35.9454 36.4899

(c) Three snapshots � 147 channels

1 2 1 2
1 1 2 2

1 1 25.3344 25.4774 25.5234 25.6483
2 1 25.4774 25.2196 25.6139 25.6146
1 2 25.5234 25.6139 25.7783 26.1636
2 2 25.6483 25.6146 26.1636 25.9362

(d) Four snapshots � 196 channels

Table 3: Optimization results for di�erent number of temporal snapshots

We ran optimizations of 64 di�erently con�gured spatial�spatial channeled polarimeters. The distinction is
in the frequencies used for a1, a2, g1, g2 and the corresponding dimension into which the data was mapped.
Retardances and orientations of the retarders were the other variables. A genetic algorithm was used to �nd the
lowest EWV.

From these results we gather that as the number of temporal measurements grows, the importance of the
spatial frequencies and order of modulations diminishes. This bodes well if we are to understand this phenomenon
as a continuously growing temporal bandwidth constraint allowing us to simplify the spatial multiplexing.

5.6 Conclusion

Introducing Q and methods for generating it automatically allows us to describe a wide range of similar systems
with a handful of parameters and removes the need to handle reconstruction by hand. Furthermore, analysis of
Q reveals certain design metrics immediately instead of having to run an elaborate simulation. The end result is
that a more optimal system can be found often without requiring the use of any extra elements, while injecting
the optimization procedure before element selection will allow us to choose better elements.



6. PARTIAL POLARIMETERS

Numerous authors have studied the structure of the Mueller matrix, and much is known about how the various
Mueller matrix elements relate to the physical properties of diattenuation, retardance, and depolarization.31,59

It should be clear that not all 4× 4 real matrices are physically realizable. A physical Mueller matrix must map
real sets of Stokes parameters into real sets of Stokes parameters, but there are other conditions that must also
be met as recently discussed by Gil.59

Much of the literature on Mueller matrices is concerned with methods to decompose the Mueller matrix in
order to understand its structure and relate it to scattering properties. In the class of series decompositions,
the Mueller matrix is broken up into discrete diattenuating, retarding, and depolarizing layers, and the result
is a product of Mueller matrices that describe the e�ects of the whole. Lu and Chipman60 developed a series
decomposition that writes the Mueller matrix as a non-unique cascade of pure diattenuation, retardance, and
depolarization Mueller matrices. Ossikovski and colleagues developed a di�erent decomposition that eliminated
the order-dependence of the Lu-Chipman decomposition by creating a decomposition that is symmetric through
the Minkowski metric tensor G = diag(1,−1,−1,−1).61 It's clear that while one can use either of these
decompositions (or any other), they may not actually represent the physics of any particular process.

The limit of series decompositions is the class of di�erential decompositions.62 These split the Mueller matrix
into di�erential slices in an attempt to identify its fundamental characteristics. Noble and Chipman31,63 use the
method of matrix roots to uncover a fundamental di�erential Mueller matrix that can be written in terms of 15
Mueller matrix generators - three for retardance, three for diattenuation, and nine for depolarization. Ossikovski
developed a logarithmic decomposition of the Mueller matrix64 that operates using a di�erent formalism, but
produces an equivalent outcome to that of the matrix roots decomposition.62

A third class of decomposition is the class of additive decompositions that consider the Mueller matrix as
an ensemble average of parallel scattering processes that are added incoherently. Gil provides a recent review
that covers the general cases of the trivial, spectral, and arbitrary decompositions.59 The most famous parallel
decomposition is that of Cloude, who demonstrated that an arbitrary Mueller matrix could be written as a
superposition of not more than four pure Mueller-Jones matrices.65 Ossikovski has demonstrated rigorously that
in the limit of weakly depolarizing Mueller matrices, all decompositions return identical polarization properties
to �rst order.62 However, for more general depolarizing matrices, the various methods return di�erent results
for the �fundamental� properties or retardance and diattenuation of a Mueller matrix under test.

All of these classes of decompositions are important for understanding the fundamental properties of the
Mueller matrix. However, measurement of the Mueller matrix requires us to consider a di�erent basis set
altogether. A Mueller matrix polarimeter operates by using a polarization state generator (PSG) to illuminate
the sample with a controlled state of polarization. The polarimeter then measures the irradiance passed through a
polarization state analyzer (PSA) set to a second polarization state. Through a suitably diverse set of illumination
and analysis states, the elements of the Mueller matrix can be determined.28 Much as is the case in Stokes
polarimetry,37 the measurement corresponding to each pair of PSG/PSA states can be thought of as a projection
onto a basis vector, and then the unknown Mueller matrix can be estimated through a least-squares inversion
process that produces an additive decomposition. Once the problem is cast in this manner, the design of a
measurement system then becomes an optimization problem where a particular measurement basis is chosen
in order to highlight speci�c aspects of the Mueller matrix. At least 16 measurements are needed in order to
reconstruct the full Mueller matrix in general,28 while the choice of speci�c illumination states can help balance
the signal-to-noise ratio (SNR) and/or error in particular Mueller matrix elements.58,66 Going one step further,
we can even design a partial Mueller matrix polarimeter (pMMP) that allows certain elements or combinations
of elements of the Mueller matrix to be recovered with fewer than 16 measurements while ignoring other elements
that might not be necessary for a particular sensing problem.20 Hoover and his coworkers19,57 have demonstrated
that reduced dimensionality subspaces of Mueller matrix space can be used to perform invariant target detection
through nonlinear model �tting. Goudail and his coworkers67�69 have demonstrated that a single-measurement
pMMP is optimal for maximizing polarization contrast in a two-class detection problem with known class Mueller
matrices.

In this paper we consider the design of pMMPs that seek to measure certain aspects of the Mueller matrix
that might be dictated by a particular sensing task. The pMMP could be an imaging or non-imaging device, but



the design of the instrument proceeds from knowledge of linear combinations of Mueller matrix elements that
allow a particular task to be performed.19,20 It is well known that it is not possible to measure a single Mueller
matrix element or a single arbitrary combination of Mueller matrix elements in a single measurement due to
the restrictions on the structure of the Stokes parameters of the PSG and PSA states. Previous authors20,70

have considered speci�c optimization strategies designed to maximize performance on a particular task. In this
paper we approach the more general two-part problem of a) identifying the proper subspace in which to make a
detection decision and b) designing a pMMP to get as close as possible to a speci�ed subspace of Mueller matrix
space through careful selection of measurement states. In order to accomplish this, we discuss some of the details
of the structure of the Mueller matrix and how it interacts with the PSG and PSA before developing a numerical
optimization method that produces the desired pMMP design.

The remainder of this manuscript is organized as follows. Section 6.1 reviews the mathematics of Mueller
matrix polarimetry and discusses the modi�cations necessary to consider pMMPs. Section 6.2 considers the
structure of a few pMMPs in a way that allows us to understand how the PSG and PSA interact with the
Mueller matrix to build up a pMMP basis. In Section 6.3 we generalize patterns seen in Section 6.2 to a general
class of 4ij pMMP systems, as well as develop various metrics by which to evaluate the noise resilience and the
proximity of a K-dimensional subspace of Mueller matrix space to an N -measurement pMMP. In Section 6.4
we apply the developed concepts to an object discrimination task from the literature19 and discuss the results.
Section 6.5 concludes the paper.

6.1 Notation Overview

Before discussing the topics of pMMP design, we must �rst review the concepts of polarimetric sensing and
expand them in a way so as to expose its structure and thereby give us tools to handle the information mapping
successfully.

Mueller Matrix Polarimetry
Consider an unknown Mueller matrix M that modi�es the Stokes parameters. The system PSG generates an
incident beam with Stokes parameters G and the PSA analyzes the scattered light by taking a projection of the
scattered Stokes parameters onto the state described by the Stokes parameter set A . The nth measurement of
irradiance in the polarimeter is

In = AT
n M Gn = D ′

T
n M ′. (6.1)

In Eq. 6.1 we de�ne the 16× 1 vectors:

D ′n = vec(AnGT
n ) = An ⊗ Gn, (6.2)

and
M ′ = vec(M), (6.3)

where ⊗ is the Kronecker (direct) product, and vec(M) creates a column vector by reordering the matrix M
into a vector in a row-by-row fashion. Eq. 6.1 shows that a single measurement of the pMMP is a projection of
the unknown Mueller matrix onto a known basis vector in R16. By taking a collection of such projections, the
unknown matrix � or portions of it in the case of a pMMP � can be determined in a least-squares sense. The
series of N measurements in a polarimeter is

I =


I1
I2
...
IN

 =


D ′

T
1 M ′

D ′
T
2 M ′

...
D ′

T
N M ′

+ ~n = W M ′ + ~n . (6.4)

In Eq. 6.4, the N × 16 measurement matrix W is

W =
(

D ′1 D ′2 · · · D ′N
)T
, (6.5)



and ~n is considered to be additive noise with variance $2. The Mueller matrix estimation is typically accom-
plished by using the pseudoinverse:

M̂
′
= W+ I = W+W M ′ + W+~n . (6.6)

The performance of M̂
′
in Eq. 6.6 is dictated by how close W+W is to the identity matrix and how the

pseudoinverse operates on the noise.

Structure of Partial Mueller Matrices
In the case of partial polarimeters, N < 16, and the maximum rank that the polarimeter can achieve is N . It is
easy to demonstrate

tr
(
W+W

)
= rank

(
W
)
= R. (6.7)

In this paper we will use the singular value decomposition (SVD)71 to compute the pseudoinverse. The SVD of
W yields

W = U Σ VT. (6.8)

The matrices U and V are R×R and 16×16 real, orthogonal matrices, respectively, and Σ is a R×16 reduced
diagonal matrix containing the R singular values σ1 ≥ σ2 ≥ . . . ≥ σR > 0. The columns of U span the range
of the pseudoinverse, and the columns of V span Mueller matrix space. The �rst R columns correspond to the
non-zero singular values and span the portion of Mueller matrix space that the pMMP can reconstruct. The
pseudoinverse can be written as

W+ = V Σ+UT, (6.9)

where Σ+ is the 16 × R reduced diagonal matrix containing the inverse of the singular values. The SVD
pseudoinverse creates a �maximally orthogonal� inverse.

Examining the diagonal elements of W+W matrix tells how the information from the N measurements
contributes to the rank and how that information is distributed in the estimated Mueller matrix. De�ne the
reconstructables matrix as:

B ′ = vec(B) = diag
(
W+W

)
. (6.10)

We will consider examples of this matrix in subsequent subsections, but at this point we can say that B relates
the percentage of each Mueller matrix element that is reconstructed in the pMMP. In the limit of N = 16, the
pMMP becomes a full polarimeter, W+W = I16×16, and B is a 4 × 4 matrix of all ones; all elements of the
Mueller matrix can be reconstructed.

To understand the function of the pMMP, consider the multiplication of the matrix and its pseudoinverse

W+W = V Σ+U+U Σ V+ = V Σ+Σ V+. (6.11)

The matrix Σ+Σ is diagonal with the �rst R elements equaling unity and the last 16− R equaling zero. This
permits the claim made in Equation 6.7. Thus,

W+W = V ′V
′T, (6.12)

where V ′ is the 16×R matrix composed of the �rst R columns of V . Another way of interpreting the SVD of
W is that V ′ forms an orthogonal basis that spans the subspace of Mueller matrix space that forms the domain
of the particular pMMP represented by W . Likewise, the columns of V discarded by the SVD (corresponding
to singular values of zero) span the null space of the particular pMMP. However, as shown later, knowledge of
the domain alone is not su�cient to predict performance, as the conditioning of the matrix W is important in
the presence of noise and error.



6.2 Examples of Partial Mueller Matrix Polarimeters

This analysis is restricted to pMMPs that use fully polarized PSG and PSA states. Goudail and Tyo69 demon-
strated that partially polarized PSG and PSA states never improve contrast. Below we will consider cases where
one or more PSG or PSA state is unpolarized, allowing reconstruction of particular elements of the Mueller
matrix with fewer measurements than would be necessary if all PSG and PSA states were fully polarized.

Canonical 4-Measurement pMMP
Consider the simple N = 4 measurement pMMP that measures the co-polarized and cross-polarized return for
both vertically and horizontally polarized illumination. For compactness, we introduce the following notation
for the analyzer and generator matrices

A ⇒ 1
2

[ ]
, (6.13a)

G ⇒
[ ]

, (6.13b)

where =
[
1 1 0 0

]T
is the set of Stokes parameters for ideally horizontally polarized light and =[

1 −1 0 0
]T

is the set of Stokes parameters for ideally vertically polarized light. The presence of 1
2 in the

de�nitions of the analyzing vector is needed for rigor � the polarization sensing systems in consideration dismiss
half of the light if the input is unpolarized. The set of four PSG/PSA pairs in Eqs. 6.13a and 6.13b results in
the instrument matrix

W =
1

2


1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 1 −1 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 −1 1 0 0 0 0 0 0 0 0 0 0

 (6.14)

and the reconstructables matrix

B =


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 . (6.15)

This is the well known result that four measurements are needed to reconstruct four Mueller matrix elements,
and that these four elements must come in a �block� pattern within the Mueller matrix.20 A similar polarimeter
could be obtained with a 4-measurment combination of any two of the six canonical states , , , ,
, , where and represent 45◦ and −45◦, and and represent right- and left circular polarization,
respectively.

While this well-known result tells how to design a pMMP to reconstruct one of these groupings of four
elements, it is not obvious how to add additional measurements to reconstruct additional elements or how to
design a pMMP to reconstruct linear combinations of elements rather than isolated elements within the pMMP.

Diagonal Depolarization Elements
Depolarization is a rich physical process that contains signi�cant information about the random scattering
properties.72 Noble and Chipman31,63 recently described the nine degrees of freedom for depolarization. Three
of these correspond to randomness in the diattenuation properties of the Mueller matrix, three to randomness
in the retardance properties of the Mueller matrix, and three to �diagonal depolarization,� which is related to
randomness in geometric transformations as would happen in multiple scattering or rough surface scattering
processes. Often, the diagonal depolarization elements are important for discrimination in both optical and
radar tasks.73

Subsection 6.2 shows that each canonical four-measurement polarimeter provides one diagonal element (in
addition to m00, which is involved in all pMMPs). One obvious way to reconstruct the diagonal elements then
would be to use a 12-measurement pMMP de�ned by the analyzer and generator matrices

A ⇒ 1
2

[ ]
, (6.16a)

G ⇒
[ ]

, (6.16b)



which produces the following reconstructables matrix

B =


1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

 . (6.17)

In addition to the desired diagonal elements, the diattenuation and polarizance vectors60 are also measured. This
12-measurement pMMP only reconstructs 10 Mueller matrix elements, since each of the three canonical pMMPs
redundantly reconstructs m00.

We can address this redundancy by eliminating one of the cross-polarized measurements in two of the canonical
pMMPs so that

A = 1
2

[ ]
, (6.18a)

G =
[ ]

, (6.18b)

which produces the same reconstructables matrix as Eq. 6.17. In this case the elimination of redundancy allows
10 Mueller matrix elements to be reconstructed from 10 measurements.

The matrix of Eq. 6.17 still unnecessarily reconstructs the �rst column and the �rst row of the Mueller matrix.
The number of measurements can be lowered by further reducing two of the three canonical 4-measurement
pMMPs to two-measurement pMMPs that make co-polarized measurements only, e. g.

A ⇒ 1
2

[ ]
, (6.19a)

G ⇒
[ ]

, (6.19b)

which produces the reconstructables matrix

B =


1 1 1

2
1
2

1 1 0 0
1
2 0 1 0
1
2 0 0 1

 . (6.20)

Examination of V can help to determine how the elements of B correspond to reconstructed Mueller matrix
channels as discussed in section 6.3. This pMMP can reconstruct the diagonal elements m00,m11,m22,m33 as
well as the elements m10 and m01. In addition to these individual elements, the polarimeter can also reconstruct
the linear combination channels (m20 +m02)/

√
2 and (m30 +m03)/

√
2. Note that existence of reconstruction

channels does not guarantee that these channels will have acceptable SNR. These items are discussed in greater
detail below.

The polarimeter described by Eq. 6.19a and Eq. 6.19b is the lowest dimensionality that we have been able
to �nd that reconstructs all three of the diagonal elements with fully polarized analyzer and generator states.
However, use of unpolarized measurements adds another degree of freedom and provides capacity for fewer
measurements. Consider a system that makes six canonical, co-polarized measurements and one unpolarized
measurement

A ⇒ 1
2

[ ]
, (6.21a)

G ⇒
[ ]

, (6.21b)

where =
[
1 0 0 0

]T
. The reconstructables matrix for this polarimeter is

B =


1 1

2
1
2

1
2

1
2 1 0 0
1
2 0 1 0
1
2 0 0 1

 . (6.22)

The addition of the one unpolarized measurement allows the m00 term to be reconstructed directly, obviating
the need for the cross-polarized measurements indicated in Eq. 6.19a and Eq. 6.19b.



6.3 Partial Mueller Matrix Polarimeter Design

Based on the understanding gained in Section 6.2, we can remove some prior constraints, and generalize pMMP
systems to have arbitrary fully polarized PSG and PSA states within the requirement that N = R.

Interpreting the Reconstructables Matrix
It is unclear from B alone, which Mueller elements are grouped together into combinatorial channels. When a
particular element of B is unity, then we can reconstruct the corresponding Mueller matrix element. But when
it is other than unity, the element must appear in combination with other Mueller matrix elements. However, the
fact that B is derived from the columns of V ′ provides insight into the overall subspace spanned by the pMMP.
If two or more columns of V ′, say vn and vm correspond to equal singular values σn = σm, then they span a
hyperplane with identical geometrical characteristics in the context of W . In this case, any set of orthogonal
basis vectors in that hyperplane can be used, allowing for a more intuitive grouping of Mueller matrix elements
if desired.

All of the previous examples featured four-block measurements. Prior work was already familiar with
m00/mi0/m0j/mij measurement, but a similar reconstruction exists for o�-Mueller grid measurement. Con-
sider the arbitrary analyzing and generating vectors:

A± =
[
1 ±a1 ±a2 ±a3

]
, (6.23a)

G± =
[
1 ±g1 ±g2 ±g3

]
. (6.23b)

A four-block polarimeter would go through the following four combinations of measurements:

A4 ⇒ 1
2

[
A+ A+ A− A−

]T
, (6.24a)

G4 ⇒
[

G+ G− G+ G−
]T
. (6.24b)

The resulting measurement matrix is

W4 =


(A+ ⊗ G+)

T

(A+ ⊗ G−)
T

(A− ⊗ G+)
T

(A− ⊗ G−)
T

 , (6.25)

The SVD of W4 in Eq. 6.25 will have four column-space vectors with four identical singular values. If a particular
representation of V is chosen, then there is only one U to go along with it. A linear combination of these vectors
corresponds to rotation of the underlying vectors. This operation does not alter the space, but merely rotates
the axes by which that space is described. We will show that we can write down a particular decomposition that
is relatively easy to treat analytically. When faced with more complex V matrices that have non-equal singular
values, adding and subtracting the underlying vectors is also possible, but special care needs to be taken.

For the four-block polarimeter, the column space can be described with the following set of vectors

V ′4 =



1 0 0 0
0 g1 0 0
0 g2 0 0
0 g3 0 0
0 0 a1 0
0 0 0 a1g1
0 0 0 a1g2
0 0 0 a1g3
0 0 a2 0
0 0 0 a2g1
0 0 0 a2g2
0 0 0 a2g3
0 0 a3 0
0 0 0 a3g1
0 0 0 a3g2
0 0 0 a3g3



, (6.26)
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Figure 6.1: Possible sets of measurements that maintain the optimal N = R.

that correspond to four unity singular values and

U =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . (6.27)

The corresponding reconstructables matrix is

B4 =


1 g1

2 g2
2 g3

2

a1
2 a1

2g1
2 a1

2g2
2 a1

2g3
2

a2
2 a2

2g1
2 a2

2g2
2 a2

2g3
2

a3
2 a3

2g1
2 a3

2g2
2 a3

2g3
2

 . (6.28)

Additional Measurements
In order to expand the space coverage, we need to add more measurements. To do so while keeping system rank
equal to the number of measurements means that each additional column in V ′ needs to be orthogonal to every
pre-existing one. If we are limited by the assumption of fully-polarized measurements, then the new analyzing
vector pair A2,± needs to be orthogonal to the pre-existing analyzing vector pair A1,± in the Poincaré sphere
space. Thus, once the �rst pair is selected, the new pair is bound to the space of the orthogonal circle. Once
A2,± is chosen, there is only one more orthogonal set of vectors A3,± that can be added.

It is important to make the connection between this general case and the one discussed in Subsection 4.B. If
we make four measurements from each combination in A1,±, A2,± and A3,±, then we will end up with N = 12
and R = 10. This is because each block is capable of reconstructing m00 on its own and measuring it three
times will have the e�ect of averaging, and thereby lowering the noise in its reconstruction. In order to keep
N = R we must make only one four-measurement set speci�ed by A1,± and up to two additional fewer-than-four
measurements speci�ed by A2,± and A3,±. This produces 16 possible measurement schemes. By denoting the
set as 4ij and requiring that 4 > i ≥ j, we can ignore the six redundant schemes as can be seen in Fig. 6.1.

Purely for purposes of simplifying the notation, we de�ne the analyzing and generating vectors of the one-,
two- and three-measurement cases as:

A3 ⇒ 1
2

[
A+ A− A−

]T
, (6.29a)

G3 ⇒
[

G+ G+ G−
]T
, (6.29b)

A2 ⇒ 1
2

[
A+ A−

]T
, (6.29c)

G2 ⇒
[

G+ G−
]T
, (6.29d)

A1 ⇒ 1
2

[
A+

]T
, (6.29e)

G1 ⇒
[

G+

]T
. (6.29f)



It can be shown that this selection considers all possible combinations. The ± only denotes the operation on
the a1/g1, a2/g2, and a3/g3, but a selection of a di�erent vector can e�ectively construct all other combinations
within the syntax implied by ±.

The denoted characteristics of these measurements are only correct if m00 is known. Thus, they can only be
used as additional measurements and their measurement sub-matrices are:

W3 =

 (A+ ⊗ G+)
T

(A− ⊗ G+)
T

(A− ⊗ G−)
T

 , (6.30a)

W2 =

[
(A+ ⊗ G+)

T

(A− ⊗ G−)
T

]
, (6.30b)

W1 =
[
(A+ ⊗ G+)

T
]
, (6.30c)

and the sub-reconstructables matrices are:

B3 =


0 g1

2 g2
2 g3

2

a1
2 a1

2g1
2 a1

2g2
2 a1

2g3
2

a2
2 a2

2g1
2 a2

2g2
2 a2

2g3
2

a3
2 a3

2g1
2 a3

2g2
2 a3

2g3
2

 , (6.31a)

B2 =
1

2


0 g1

2 g2
2 g3

2

a1
2 2a1

2g1
2 2a1

2g2
2 2a1

2g3
2

a2
2 2a2

2g1
2 2a2

2g2
2 2a2

2g3
2

a3
2 2a3

2g1
2 2a3

2g2
2 2a3

2g3
2

 , (6.31b)

B1 =
1

3


0 g1

2 g2
2 g3

2

a1
2 a1

2g1
2 a1

2g2
2 a1

2g3
2

a2
2 a2

2g1
2 a2

2g2
2 a2

2g3
2

a3
2 a3

2g1
2 a3

2g2
2 a3

2g3
2

 . (6.31c)

The total measurement matrix of a 4ij system is

W4ij =
[

WT
4 WT

i WT
j

]T
. (6.32)

The constraints placed on A2,± and A3,± mean that the reconstructables matrix is the sum of the sub-matrices

B4ij = B4 + B i + B j . (6.33)

Structured Decomposition
As before, we can perform SVD on the matrix to �nd the space coverage and noise resilience of any given
polarimeter. However, in the case of being limited to the de�ned class of 4ij pMMP systems, we can introduce
a structured decomposition

W4ij = Us,4ijΣs,4ijV
T
s,4ij , (6.34)

where s di�erentiates this decomposition from the typical SVD. The goal of this decomposition is to be easily
parsable by a human and provide an intuitive view of pMMP properties. The following are the structured
matrices for any 4ij system:

Us,4ij =

 [√ 1
N

]
N×1

U ′4 04×i 04×j
0 i×3 U ′i 0 i×j
0 j×3 0 j×i U ′j

 , (6.35)

Σs,4ij =

√
1

4
diag( N ~ς4 ~ςi ~ςj ), (6.36)

V s,4ij =
[

V ′4 V ′i V ′j
]
, (6.37)



where the left structured sub-matrices are:

U ′4 =
1√
4


1 1 1
−1 1 −1
1 −1 −1
−1 −1 1

 , (6.38a)

U ′3 =
1√
3

 1 1 1
1 −1 −1
−1 −1 1

 , (6.38b)

U ′2 =
1√
2

[
1 1
−1 1

]
, (6.38c)

U ′1 =
1√
1

[
1
]
, (6.38d)

the e�ectively rotated singular values are:

~ς4 = {4, 4, 4} , (6.39a)

~ς3 = {3, 3, 3} , (6.39b)

~ς2 = {4, 2} , (6.39c)

~ς1 = {3} , (6.39d)

while the right structured sub-matrices can be de�ned in terms of Eq. 6.26. If we write V ′4 =
[

v1 v2 v3 v4

]
,

then the corresponding structured sub-matrices are:

V ′4 =
[

v1 v2 v3 v4

]
, (6.40a)

V ′3 =
[

v2 v3 v4

]
, (6.40b)

V ′2 =
[

1√
2
(v2 + v3) v4

]
, (6.40c)

V ′1 =
[

1√
3
(v2 + v3 + v4)

]
. (6.40d)

Procedures de�ned above create matrices that are orthogonal in both dimensions, but normalizable only in one.
To quantify noise resilience, we need to know the product Σ+

s,4ijU
+
s,4ij . Calculating Σ+

s,4ij is trivial because
Σs,4ij is diagonal, while calculating U+

s,4ij is more challenging. However, for 4ij systems, we can show that

U+
s,4ij =



[√
N
16

]
1×4

01×i 01×j

U ′4
+

03×i 03×j
R i U ′i

+
0 i×j

R j 0 j×i U ′j
+

 (6.41)

is a correct inverse, where

U ′4
+
= U ′4

T
, (6.42a)

U ′3
+
=

√
3

2

 1 1 0
0 −1 −1
1 0 1

 , (6.42b)

U ′2
+
= U ′2

T
, (6.42c)

U ′1
+
= U ′1

T
, (6.42d)



and

R3 =

√
3

16

 −1 −1 −1 −1
1 1 1 1
−1 −1 −1 −1

 , (6.43a)

R2 =

√
2

16

[
0 0 0 0
−1 −1 −1 −1

]
, (6.43b)

R1 =

√
1

16

[
−1 −1 −1 −1

]
. (6.43c)

Noise Resilience
Following the same additive noise model as prescribed by Eq. 6.4, we can project the noise into the respective
directions of the sensor space,74 V:

~n ′ = W+
4ij ~n , (6.44)

where the pseudoinverse can be written within the context of 4ij systems as

W+
4ij = V s,4ijΣ

+
s,4ijU

+
s,4ij = V s,4ijL V s,4ij . (6.45)

L V s,4ij
contains the mapping weights of information for each of the vectors of V s,4ij :

L V s,4ij =
[
`Tv 1

`Tv 2
· · · `TvN

]T
. (6.46)

Since the pMMP's sensor space contains N vectors, L V s,4ij
also contains N channels. The Euclidean length of

each of those vectors represents the noise magnitude in each of the vectors of V s,4ij ,

pv = ||` v ||2. (6.47)

For each measurement set, the matrix multiplications reveal that each of the vectors making up V s,4ij will have
easily identi�able noise magnitudes:

P V 4
=
[
1 1 1 1

]T
, (6.48a)

P V 3
=
[ √

3
√
3
√
3
]T
, (6.48b)

P V 2
=
[
1
√
3
]T
, (6.48c)

P V 1 =
[ √

5
3

]T
. (6.48d)

Finally, the total noise magnitude vector is the concatenation of the ones de�ned above,

P V s,4ij
=
[

PT
V 4

PT
V i

PT
V j

]T
. (6.49)

However, since the intent of this exercise is to build systems that perform the best for a given task, it also follows
that it would be desired to evaluate system performance not for the entire sensor space, but for the scene space
instead.74 We will denote that space Y to match its computational representation, Y . We can then de�ne a
transformation,

T = Y\V s,4ij , (6.50)

which can be used to combine N measurements into the vectors approaching Y or estimating Y ,

Ŷ = T VT
s,4ij . (6.51)



Note that while P V s,4ij represents the noise magnitude for the reconstructable vectors represented by V s,4ij , it
would be incorrect to use these absolute magnitudes to map noise from reconstructables to the desired channels.
Instead, the noise characteristics contained within L V s,4ij

need to be similarly mapped:

L Y = T L V s,4ij =
[
`Ty 1

`Ty 2
· · · `TyK

]T
, (6.52)

where K is the total number of vectors in Y . The resulting noise magnitudes within those vectors can be
evaluated in a philosophically equivalent way,

py = ||` y ||2, (6.53)

and then can be combined into a total magnitude vector

P Y =
[
py 1

py 2
· · · pyK

]T
. (6.54)

Space Coverage
To properly evaluate a given partial system, it is important to know not only the system's noise resilience, but
also the closeness of the sensor space to the scene space, which can be described by K ordered canonical angles
ζ1 ≤ ζ2 ≤ . . . ≤ ζK .75 The �rst canonical angle ζ1 is

ζ1 = cos−1

(
min

v̂ 1∈V, ŷ 1
∈Y

(
v̂1 · ŷ1

))
. (6.55)

Subsequent canonical angles are computed by evaluating Eq. 6.55 with the portions of subspace V remaining
after the elimination of v̂1. The best case scenario is when ζK = 0, which means Y ⊂ V, and the pMMP spans
the desired channels.

While Eq. 6.55 provides an intuitive interpretation of the canonical angles, there are more e�cient ways of
computing the angles. We form the auxiliary matrix

X = Y − V(VTY ) =
[

x1 x2 · · · xK
]
. (6.56)

and compute the canonical angles from the singular values of this auxiliary matrix as

ζk = arcsin(σxk
). (6.57)

6.4 Example of pMMP Optimization

To �nd the best pMMP design for a given task, we need to optimize for both noise resilience and space coverage.
Because those properties are not inherently guaranteed to have overlapping minimums, we are invariably bound
for the solution to be a point on the Pareto surface of a multi-objective optimization problem. We have found
that the following metric

argmin
~ξ


K∑
k=1

(αkpyk
)2︸ ︷︷ ︸

ε1

+w

K∑
k=1

(βkσxk
)2︸ ︷︷ ︸

ε2

 (6.58)

successfully �nds appropriate pMMP designs. The choice of w, {αk} and {βk} provides handles to adjust the
importance of all the various parameters, while the optimization variable vector ~ξ contains six values to construct
three generating and three analyzing vector pairs. The �rst four variables de�ne φG1

, θG1
, φA1

and θA1
to

produce vectors G1,± and A1,±, while the second two variables de�ne ψG and ψA to prescribe where G2,±,
A2,±, G3,± and A3,± reside on the orthogonal circles with respect to G1,± and A1,±.

To illustrate the design of pMMPs, we consider the example presented in Hoover and Tyo.19 Four di�erent
coupons of an ABS plastic material were exposed to di�erent �uences of high energy laser energy, and the



resulting damaged samples had their monostatic Mueller matrices measured at a range of angles from −20◦ to
20◦. Performing SVD of the data reveals that the most fundamental three measurement channels are

Y =



−0.9204 0.3097 0.2378
−0.0347 0.0410 −0.2480
−0.0010 0.0034 −0.0136
−0.0003 0.0007 0.0088
−0.0318 0.0524 −0.2356
−0.2757 −0.4730 −0.4418
−0.0010 −0.0043 −0.0050
−0.0004 0.0033 −0.0085
0.0035 −0.0039 0.0207
0.0013 −0.0043 0.0138
0.2703 0.4860 0.3996
−0.0019 −0.0033 −0.0220
−0.0004 0.0008 −0.0008
0.0001 0.0023 −0.0037
0.0028 0.0017 0.0292
0.0398 0.6630 −0.6850



. (6.59)

Note that the original paper used covariance matrix principal component analysis that resulted in a di�erent set
of channels, which did not include m00 in any of the measurements. If we add m00 back, then the maximum
canonical angle between the two spaces is 3.1011◦. The di�erence is small enough to be accounted for by the
extra idealization step taken in Hoover and Tyo.19

We used MATLAB's built-in genetic algorithm routine together with Eq. 6.58 to optimize each of the 4ij
pMMP designs with αk = βk = 1 and w = 25. Note that there is nothing fundamental about our choice of w
� we tried a number of di�erent weights between 1 and 100, and found that for this data set the value of 25
provided a good solution where the space coverage penalty was just signi�cant enough for the reconstruction of
relevant information to be prioritized over the noise resilience.

Table 4 shows the system performances that we were able to �nd for each of the de�ned classes of polarimeters.
We can point out that the space coverage seems to be marginally better for the 422 system than it is for the 432
or the 433, despite the latter two making more measurements and having a capacity only to expand the space
coverage if the 422 design is used as the base. That, however, is purely an artifact of our choice of w, which
leads to the optimizer �nding a solution with slightly better noise resilience by sacri�cing some space coverage.
Practically, the designs should be evaluated on whether or not they can separate the di�erent objects classes. To
determine which of these pMMPs accomplish that, it is necessary to look at the object projections onto Ŷ. We
can capture this by looking at how the proximity of each of the 25 objects from each of the four types of objects
to the nearby classes changes. Instead of comparing data points directly, we will instead piece-wise interpolate
the comparison class and determine the separation for each object/class both in Y and Ŷ:

dα,β,γ,δ =
|(~rα,γ − ~rβ,δ)× (~rα,γ − ~rβ,δ+1)|

|~rβ,δ+1 − ~rβ,δ|
, (6.60a)

d̂α,β,γ,δ =
|(~̂rα,γ − ~̂rβ,δ)× (~̂rα,γ − ~̂rβ,δ+1)|

|~̂rβ,δ+1 − ~̂rβ,δ|
, (6.60b)

where α and β represent the object classes, γ represents one of the 25 points within class α, and δ represents
one of the 24 line segments created for class β. We evaluate the geometric mean of the ratios of least separation,

hα,β =

[
25∏
γ=1

d̂α,β,γ,min

dα,β,γ,min

] 1
25

. (6.61)

When hα,β = 0, classes α and β have collapsed to lie on top of each other, while when hα,β = 1, the separation
between classes α and β has remained unchanged. In the case that hα,β > 1, the separation within the recon-
struction is greater than the original separation. Although this presents a seemingly interesting scenario, this



Design N ε1 ε2 ε1 + wε2 ζK h1,2 h2,3 h3,4 h1,3 h2,4 h1,4
400 4 1.911 1.089 29.142 89.65◦ 0.0003 0.0006 0.0006 0.0001 0.0001 0.0000
410 5 2.546 0.717 20.475 56.90◦ 0.1747 0.2207 0.2698 0.3144 0.1922 0.0355
411 6 2.669 0.556 16.569 47.53◦ 0.1770 0.2417 0.4435 0.2232 0.4506 0.1438
420 6 3.520 0.469 15.247 43.18◦ 0.5305 0.4743 0.5594 0.2750 0.5191 0.5163
421 7 3.528 0.248 9.727 29.78◦ 0.5184 0.2960 0.8056 0.2087 0.8787 0.5441
422 8 3.967 0.002 4.011 2.32◦ 1.0852 0.9811 0.9652 0.9893 0.9922 0.9851
430 7 3.318 0.469 15.042 43.17◦ 0.5133 0.4793 0.5625 0.2705 0.5435 0.5151
431 8 3.493 0.249 9.713 29.84◦ 0.5155 0.3029 0.8132 0.1998 0.8583 0.5302
432 9 3.932 0.002 3.987 2.60◦ 1.0940 0.9921 0.9632 0.9893 0.9914 0.9869
433 10 3.897 0.002 3.949 2.57◦ 1.1676 0.9966 0.9637 0.9925 1.0005 0.9863

Table 4: Optimization results for the 10 pMMP system classes. The optimization targets, ε1 and ε2, are de�ned in
Eq. 6.58, while ζK represents the largest canonical angle. The values for hα,β are calculated via Eq. 6.61. Because of the
way that the four classes are distributed in Y, knowledge of h1,2, h2,3 and h3,4 may su�ce.

result is attributable to non-linearities introduced by the averaging of di�erent space projections and would be
compensated by another hα,β elsewhere.

Examining the performance of each of the ten pMMPs optimized designs in Table 4 and Fig. 6.2, it becomes
clear that the 422 system is the �rst design of the de�ned range of systems that accomplishes the task of matching
the space coverage and thereby separating the object projections adequately for object detection.

There is room to make the optimization routine more elaborate. For example, instead of matching the scene
and sensor spaces of any given pMMP class, object identi�cation can be done in the measurement space itself.
This would require constructing a manifold as a model for the object distribution in the N -dimensional space,
applying the proper noise model and looking at the separability of the classes within the measurement space.
Performing all of this in each of the optimization instantiations is computationally intensive, as well as outside
the scope of this development. A separate discussion is warranted to address that level of optimization properly.

6.5 Conclusions

Mueller matrix polarimeters have demonstrated utility recently to assist in target identi�cation, and the use of
partial Mueller matrix polarimeters provides a way to develop a sensor that measures the polarization featured
needed for a particular detection or classi�cation task without having to measure the full Mueller matrix. Previous
designs of pMMPs have been ad hoc, in that the polarimeters were developed by hand. In some instances, there
was no real attention paid to whether or not the pMMP was even physically realizable.

We have developed a theory of pMMPs that enables the structure of a pMMP to be determined from the
actual generator/analyzer pairs used to form its instrument matrix W . By proper analysis of W , it is possible
to determine the portion of Mueller matrix space that a particular pMMP measures. We developed metrics of
optimality for pMMPs that are based on balancing their SNR performance with their closeness to the particular
scene space at hand. The performance of this optimization method was demonstrated for a case previously
presented in the literature.19

7. HYBRID DOMAIN MODULATED POLARIMETERS

Channeled Mueller matrix polarimeters and the concept of using these channels was �rst introduced by Azzam.76

Azzam published a very speci�c case, 1) a speci�c temporal framework was analyzed, 2) an implicit assumption
about the object was made, the object had no temporal bandwidth, i.e., the object was stationary in time. Oka,
Sabatke, Derniak, Kudenov, and Hagen then demonstrated both spectrally channeled and spatially (over spec-
trum) channeled systems,40,41,45,77�80 mostly Stokes polarimeters. Dubreuil et al81 then presented a spectrally
channeled Mueller matrix polarimeter, which of course is non-imaging since the focal plane array is used to resolve
the spectrum. LaCasse, Chipman, Tyo, and LeMaster and Hirakawa9,10,82 then described micropolarizer array
partial Stokes polarimeters as channeled systems, and LaCasse et al presented a spatio-temporally modulated
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Figure 6.2: Space coverage of various optimized pMMP designs. Circles represent perfect Mueller matrix object projection,
while lines are the approximation that each pMMP achieves. Note that the 400 pMMP collapses all measurements onto a
single line, while the space coverage for 432 and 433 are virtually identical to that of 422, coupled with slightly improved
noise resilience.



hybrid channeled Stokes system,7 and subsequently both Myhre et al83 and Zhao et al84 presented spatially
modulated full Stokes polarimeters. Finally Alenin and Tyo17 formalized a general framework which describes
channeled polarimeters almost completely, both Mueller and Stokes.

Prior to the work by LaCasse et al ,7,9, 10 bandwidth in channeled polarimetric systems had not been ad-
dressed, or only addressed as a consequence of instrumental �error." Additionally, prior to Alenin and Tyo17

channeled systems were designed in an ad-hoc manner. In this communication we address bandwidth using the
systematic design tools introduced by Alenin and Tyo17 for a hybrid spatio-temporally modulated channeled
active polarimetric system.

7.1 Formalism and channels

Note that this section originally appeared in our other publication in this conference proceeding24 and is de-
rived/adapted from that section to address the topic of this communication for ease of reference. Portions may
be reproduced verbatim, however quotes will not be used.

We use the Mueller-Stokes mathematical formalism here, as it is most commonly used in instrumental polar-
ization and polarimeter design. This analysis is, however, agnostic to the formalism used, a coherence formalism85

with periodic modulators could also be used and would have similar results. In the next sections, it should be
kept in mind that modulations are done in some physical domain, they are periodic, i.e., a superposition of
sinusoidal functions, and the "channels" are the resultant δ-functions which ensue from the Fourier transform of
the sinusoidal modulations.

7.1.1 Modulated Mueller formalism

The Stokes parameters are described by

s =


s0
s1
s2
s3

 ∝

〈|Ex|2〉+ 〈|Ey|2〉
〈|Ex|2〉 − 〈|Ey|2〉

2<〈ExE∗y〉
2=〈ExE∗y〉

 =


 , where s0 > 0, s20 ≥ s21 + s22 + s23 (7.1)

where 〈·〉 denotes the time average, s0 is proportional to the total irradiance, s1 is proportional to the preva-
lence of horizontal (0◦) over vertical (90◦) polarization, s2 is proportional to the prevalence of +45◦ over −45◦
polarization, and s3 is proportional to the prevalence of right circular over left circular polarization.86 Because
optical sensors measure a quantity proportional to the time averaged Poynting vector, the phase information is
lost, and only the incoherent time averaged polarization information can be obtained.85,86

For materials which can be described via linear optical interactions, we can use the Mueller-Stokes formalism.
A Mueller matrix, M, is a matrix which linear transforms one set of Stokes parameters, sin, into another set of
Stokes parameters, sout:

sout = M · sin (7.2)

Notice that M ∈ R4×4 but not every 4 × 4 real valued matrix is a Mueller matrix due to the constraints in
Eqn.7.1, see Gil87 for details.

With an active, or Mueller matrix, polarimeteric instrument, we must modulate in irradiance to infer the
Mueller matrix of an object, M(x), where x =

[
x y z t σ

]T
. We can then rewrite Eqn. 7.2 to have

Mueller matrices and Stokes parameters be functions of space, time, and wavelength or wavenumber. Eqn.7.2
then becomes 

s0,out(x)
s1,out(x)
s2,out(x)
s3,out(x)

 =


m00(x) m01(x) m02(x) m03(x)
m10(x) m11(x) m12(x) m13(x)
m20(x) m21(x) m22(x) m23(x)
m30(x) m31(x) m32(x) m33(x)

 ·

s0,in
s1,in
s2,in
s3,in

 (7.3)



where for simplicity we �x sin. Our detector then measures a quantity proportional to s0,out(x). For a Mueller
matrix measuring instrument, we have an unknown object Mueller matrix, M

obj
(x), and we write down the

instrument equation which modulates Stokes parameters:31

sout(x) = A(x) ·M
obj

(x) ·G(x) · sin (7.4)

= A(x) ·M
obj

(x) · sG(x) (7.5)

where G(x),A(x) are the generator and analyzer Mueller matrices respectively, known and modulated via the
physical instrument. The generator modulation can then be thought of as only a Stokes parameter modulation,
sG(x).

7.1.2 Channels

Eqn.7.5 can be expanded to obtain a linear equation86 for s0,out(x).

s0,out(x) =

3∑
i=0

3∑
j=0

a0i(x)sj(x)mij(x) (7.6)

where a0i(x) are the elements of the �rst row of A(x), sj(x) are elements of sG(x), and mij(x) are elements of
M

obj
(x). We can then take the Fourier transform of s0,out(x) to obtain

S0,out(ρ) =

3∑
i=0

3∑
j=0

A0i(ρ) ∗ Sj(ρ) ∗Mij(ρ) (7.7)

Where x→ ρ in the Fourier transform, ∗ denotes convolution, and the shift to capital letters indicates a function
has been Fourier transformed. If a0i(x) and sj(x) are superpositions of sinusoidal functions, then A0i(ρ) ∗ Sj(ρ)
is a set of δ-functions, and each Mij(ρ) is then convolved with each δ-function in the set. The complete set of
δ-functions for the system

3∑
i=0

3∑
j=0

A0i(ρ) ∗ Sj(ρ) (7.8)

are de�ned as the channels of the system, or the system's channel structure.17

7.1.3 System equation

All examples in this communication will assume a quad-retarder + micropolarizer array Mueller matrix polarime-
ter system. This results in a spatio-temporally modulated system channel structure. The details of the design
and an actual instrument implementation are in Vaughn et al24 and the system equation is reproduced below:

sout = P(x, y) ·R(ν4, ε4, δ4) ·R(ν3, ε3, δ3) ·Mobj
(x, y, t) ·R(ν2, ε2, δ2) ·R(ν1, ε1, δ1)sin (7.9)

where

P(x, y) = micropolarizer array Mueller matrix (7.10)

R(νj , εj , δj) = retarder Mueller matrix (7.11)

νj = retarder frequency in 2π
radians

s
(7.12)

εj = retarder start position in 2π radians (7.13)

δj = retarder retardance in radians (7.14)

M
obj

(x, y, t) = Mueller matrix of the object (7.15)

Where of course only the �nal irradiance value, proportional to the s0,out(x) element of sout(x) is sampled. The
channels are encoded in s0,out(x).



7.2 Channel design

Designing polarimetric instruments using a channeled framework is somewhat new in the �eld, especially for
instruments which are not spectrally modulated. Spectral instrument designers have, however, utilized channel
design in an iterative way, tweaking the system designs and then observing the channels which result, then again
tweaking the system design. Here, we specify constraints and needs, and then optimize the system directly in the
channel space for some cost function dependent on those speci�cations. This design paradigm allows for faster
and (sometimes) conceptually simpler system con�guration.

We will only address spatio-temporally modulated systems here, and we assume modulations are of the type

f(x, y, t) = h(x, y) · g(t), (7.16)

i.e., that any modulation is mathematically separable between time and space. Non-separable modulations
can be constructed (envision a rotating focal plane array with a micropolarizer, or a spatial light modulator
modulating in time and spatially), but we will address these in a future publication. A separable system only
allows for bandwidth improvements from channel cancellations or combinations, while a non-separable system
may allow for improvements from rotations of the channel structure, however the latter remains an open question.
We emphasize once again that the channels are δ-functions in the Fourier domain which result from sinusoidal
modulations of irradiance in the physical domain, i.e. space, time, wavelength, etc.

7.2.1 Notation

Visualization of channel structures can be accomplished by graphing the sets of channels, or δ-functions over the
Fourier domain dual to the physical modulation domain. Another systematic way of graphing the modulations
is the frequency phase matrix (FPM), introduced by Alenin and Tyo,17 which is a book keeping method for
the channel splitting behavior, the signs, and real and imaginary components of the δ-functions. In this com-
munication we will graph the channels as they actually appear in the channel space to reinforce intuition and
understanding.

positive negative

re
a
l

im
a
g
.

Table 5: Notation for channels.

A δ-function can be characterized by its position, and its complex magni-
tude. Table 5 outlines the graphical notation that we will use, the blue triangles
represent the real part of the magnitude, red triangles represent the imaginary
part of the magnitude, the directions that the triangles point represent whether
the magnitude is positive or negative, and size of each triangle represents the
absolute value of the real part or the imaginary part. Note that we will only
show the channels for a single Mueller matrix element for each visualization,
with the channels for all other Mueller matrices represented by light gray-blue
circles. Keep in mind that many channels, for each Mueller matrix element,
end up being added together at the locations shown. Again, the relationship
between the channels of di�erent Mueller matrices is additive. An example of

the channel structure for a spatio-temporally modulated system for m23 is shown in Fig.7.1.

Some of the examples presented here will be normalized to a temporal frequency range of [−1, 1], this is because
for instrument design only the relative frequencies are important, we are always limited by some maximum
sampling rate in practice, so relative bandwidth with respect to a maximum absolute frequency of 1 is what
must be optimized for. Due to the assumption of separable modulation functions for space and time and Mueller
matrix physicality conditions, channels are �xed to travel along constrained paths in the Fourier domain.

7.2.2 Optimization

Once some spatio-temporal modulation scheme is selected, and the free parameters of that scheme are known,
an optimization over the parameters for some speci�c cost function can be carried out. Alenin and Tyo17,88

have used cost functions which optimize the spectral channel structure for noise performance, but other cost
functions may be used. In this communication, we jointly optimize for bandwidth and noise using the following
cost function:

O(p) = [CN(p)]n

dist(p)
. (7.17)
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Figure 7.1: Example of a spatio-temporal channel structure with δ-functions speci�c to m23. The maximum bandwidth
corresponds to the minimum distance between two adjacent channels, taken over all possible adjacent channel pairs.

where p is a vector of free parameters which control the channel structure, the dist(p) function quanti�es the
distance between channels, i.e., bandwidth, CN(p) is the condition number of the �mixing matrix" Q (details

about Q are in Alenin and Tyo17), and n ∈ R+ is a weighting parameter for condition number corresponding to

noise optimization. This is valid since CN ≥ 1 by de�nition. The optimization then minimizes O(p) over p. Note
that as we increase n, the optimization tends to favor noise performance over bandwidth. A system conditioning
metric must be included in the cost function to ensure reconstructablility of the full Mueller matrix, i.e., higher
bandwidths can be found which result in some partial Mueller matrix polarimeter (pMMP) reconstruction, but
the system conditioning would be in�nite for the full Mueller matrix reconstruction. This fact has utility for
pMMP designs, but will not be addressed here.

7.3 Bandwidth

The treatment of bandwidth for channeled systems is mature and well known in information and communications
theory.89�91 The di�culties of using a channeled systems framework for polarimetric instruments are primarily
1) constructing channels in 2 or more dimensions (many systems in communications theory are 1 dimensional),
2) addressing physicality constraints in an analytical way, and 3) addressing the complicated channel mixing
behavior that is inherent to polarimetric instruments. 3) has mostly been addressed by Alenin and Tyo.17 2)
is a complicated subject and we will not delve into details here, but we emphasize again that these constraints
must be enforced when optimizing for some cost function.

We will discuss a spatio-temporal system, with modulation in the domain

x =

xy
t

 (7.18)

and examples will be from a quad-retarder + micropolarizer array system.24 First we will brie�y review convolu-
tion. Given some unknown quantity, m(t), this quantity can be modulated with a sinusoidal function. Without
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Figure 7.2: An example of convolution of data with a channel. The gray band represents the range of εc, resulting in data
being outside of the εc range for −0.5 < ν < 1.5. This implies a bandwidth of 2 arb. units for the Mueller data.

loss of generality, we choose cosine here:

f(t) = cos 2πν0t ·m(t) (7.19)

=⇒ F {f(t)}t→ν = F {cos 2πν0t ·m(t)}t→ν (7.20)

=⇒ F (ν) = F {cos 2πν0t}t→ν ∗ F {m(t)}t→ν (7.21)

=⇒ F (ν) =
1

2

[
δ(ν − ν0) + δ(ν + ν0)

]
∗M(ν) (7.22)

=⇒ F (ν) =
M(ν − ν0)

2
+
M(ν + ν0)

2
(7.23)

where F {·} is the Fourier transform, ∗ is convolution, and δ(ν) is the Dirac delta function. The last line is
due to property of convolution with delta functions. This gives us some tools for conceptual descriptions for
the forward problem and hence the bandwidth. There will exist a set of channels (δ-functions) for each Mueller
matrix element Mij(ρ) in the Fourier domain. For each channel in that set, Mij(ρ) will be copied at that
channel's location with Mij(0) being located precisely where the delta function is located. We can then de�ne
the bandwidth of Mij for some threshold εc ≥ 0 as the values of ρ where |Mij(ρ)| > εc. Fig.7.2 clari�es these
concepts.

The polarimetric system channel structure contains constraints on bandwidth because there is a �nite dis-
tance between channels as shown in Fig.7.1. The channel structure determines the bandwidth available for
reconstruction. When the bandwidth of the data becomes greater than the available bandwidth, then channel
crosstalk occurs.

7.3.1 Crosstalk

Crosstalk is similar to aliasing, but not the same phenomenon. Crosstalk is the result of limited channel band-
width, and information (convolutions of data) in the channel exceeding the bandwidth of that channel and
"spilling or bleeding" over to an adjacent channel. Crosstalk is a result of the choice of channel structure, as
opposed to the sampling rate (aliasing), even a continuously sampled channeled (unaliased) system can have
crosstalk. An example of crosstalk is shown in Fig.7.3.
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Figure 7.3: An example of channel crosstalk. Mueller data is placed at two channels, with the distance (bandwidth)
between them less than the bandwidth of the Mueller data. When added, the Mueller data from di�erent channels
adds together, leaving no remedy to di�erentiate data between channels in the region of bandwidth crossover when given
arbitrary Mueller data.

7.3.2 Filtering

Typically crosstalk can be �mitigated" by using �lters around the channels to suppress or apodize the region
where crosstalk occurs. This does not fully mitigate the corruption from crosstalk however because

• Filters which apodize in some way result in smoothing of the data, essentially removing information.

• Similar to the above, apodization or cuto� from the �lters essentially reduces the bandwidth of the resulting
Mueller data.

• Filters won't help much in the case where a great deal of crosstalk is present.

Filtering is needed, but cannot fully alleviate the crosstalk issue. Filtering will not be addressed in depth here;
the literature on �ltering is vast and mature in control theory and electrical engineering. Keep in mind, however,
that if the statistics of the objects being measured are known, then optimal �lters can be designed.49

7.3.3 Maximizing bandwidth

Our focus will be on increasing relative bandwidth to reduce crosstalk, and subsequently increasing the system
resolution or speed for spatio-temporally modulated active polarimetric systems. In order to maximize the
relative bandwidth, we must think about the system in a way which addresses e�ciency, otherwise an optimizer
will increase the maximum frequency (and hence the relative frequency distance between channels) ad in�nitum
until a speci�cation is met. We also don't have instruments with arbitrary measurement bandwidth. In order
to constrain the bandwidth maximization to relative frequencies, we can normalize all of the channels to be
contained in a cube (or rectangular prism in certain cases) where the maximum frequency is normalized to be
some �xed value. We can choose di�erent norms to accomplish this as long as we are consistent. The two
simplest methods are 1) normalize in a 2-norm way, that is your maximum frequency is taken as a vector and
normalized by its 2-norm length, and all other channels are also normalized by this same length, or 2) normalize
in an ∞-norm way, that is normalize each frequency domain coordinate by the respective maximum frequency
channel domain coordinate. This is what we do for our system examples here. To clarify with an example,



Figure 7.4: An example of varying frequency parameters to move channels around in the channel space. Note the
cancellation/addition at certain parameter values which opens up more bandwidth between the channels. Animated in
the electronic version, use the controls displayed to view.

suppose that our maximum frequency channel is located at [0.5, 0.5, 60]T , then the normalization factors would
be

n2-norm =
√
0.52 + 0.52 + 602 (7.24)

n∞-norm,0 = 0.5 (7.25)

n∞-norm,1 = 0.5 (7.26)

n∞-norm,2 = 60 (7.27)

(7.28)

and for an arbitrary channel located at carb =
[
ξarb ηarb νarb

]T
the two normalizations would be

carb,2-norm =
carb√

0.52 + 0.52 + 602
and carb,∞-norm =


ξarb
0.5

ηarb
0.5

νarb
60

 (7.29)

In the examples here, we only normalize the locations of frequency corresponding to the temporal domain, ν,
because the examples assume a �xed micropolarizer array which cannot be changed.24 This results in normal-
ization of the spatial frequency coordinates having no e�ect on the analysis, but in general, if optimization over
spatial frequency is an option, the spatial frequency channel coordinates would also need to be normalized. Nor-
malization ensures that for a relative bandwidth optimization we are making an oranges to oranges comparison
as channel location changes. Note that the use of di�erent normalization types will lead to di�erent optimization
outcomes.

7.3.4 Channel cancellation

The next step is to attempt to maximize the relative channel bandwidth, now that the channels are all normalized
to a maximum frequency. This maximization can typically be accomplished by optimizing over the system channel



structure's free parameters p as described in Eqn. 7.17. Typical parameters for a spatio-temporally modulated
polarimeter (which is not spectrally modulated) include

• retardance and retarders, spatially or temporally modulated.

• spatial or temporal analyzer/diattenuator modulation.

• rotation or rotators; these elements are typically combined with one of the types listed above to achieve a
modulation.

For a separable channel structure, only channel cancellation/combination or reduction of overall channels may
be used to increase the relative bandwidth. Fig. 7.4 shows channel combination as relative retarder frequency
is changed for a quad-retarder + micropolarizer array system. At certain relative frequencies, channels combine
or cancel depending on their magnitudes, providing larger distance (bandwidth) between channels. Running an
optimizer over a cost function can then �nd an optimal channel structure, given your free parameters p. An
example of an optimal (to the best of our knowledge) channel structure for the quad retarder + micropolarizer
array system is shown in Fig.7.5.
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Figure 7.5: Optimal channel structure for a speci�c quad retarder + micropolarizer channel structure form23. Reproduced
from a �gure in Vaughn et al .24



7.3.5 Discussion

Once the channeled system framework is understood, and the free parameters, p of a spatio-temporally modulated
system are speci�ed or known, then it is straightforward to design a cost function and run an optimizer over that
function to optimize for bandwidth or jointly for bandwidth, noise, and other constraints. The most di�cult part
of directly optimizing in the channel space is not, however, de�ning a cost function and running an optimization
against the cost function. The di�cult task is designing a model which properly describes the channel structure
itself, with proper physical constraints. We have designed a model for the speci�c case of a quad-retarder +
micropolarizer array system, but we hope to adapt our current model to generate generic spatio-temporally
modulated systems in the near future.

Additionally, if the statistics of an object or set of objects are known, then non-uniform bandwidth can be
maximized. All of the examples shown in this communication optimize for an equal channel bandwidth between
all channels. In certain cases, more bandwidth may be wanted for certain sets of channels over other sets of
channels and for certain Mueller matrix elements. This can all be accomplished by using the appropriate cost
function, but is non-trivial due to the channel mixing which occurs between Mueller matrix elements.

7.4 Noise and sytematic error

The channel bandwidth optimization discussed in the previous section must be paired with the sensitivity of the
system to deviations from the ideal optimized parameters, i.e., an actual system will have non-ideal modulations
and modulator elements. We present some preliminary results on systematic deviations here, but we have not
fully worked out how to measure the sensitivity of a system's channel structure to systematic deviations (often
called systematic error in the literature). The sensitivity to random noise sources is also discussed here, but again
we have not worked out a general systematic way to compute the sensitivity of channel structures to random
noise when bandwidth is taken into account (including �ltering e�ects). Noise e�ects from the inversion of the
Q matrix, however, have been addressed.17

7.4.1 Systematic error

Systematic error will occur when the actual system deviates from the designed system, or when there is some
consistent bias due to physical instrument details. Here systematic error for a channeled system refers to the
di�erences between the real system's channels as compared with the ideal channels from some designed channel
structure. Issues arise for a separable channeled system when channel cancellation/combination has been used
as a tool to increase system bandwidth.

For separable channeled systems a potentially serious problem arises: at the locations in the frequency space
where the channel cancellation(s) occurred, channels will again be present due to deviations of real components.
These spurious channels will be convolved with Mueller data, and introduce channel crosstalk. We really only
have one option available, to minimize the magnitude of these spurious channels so that the crosstalk into the
adjacent channels is low. An example of is shown in Fig. 7.6, the small triangles represent the spurious channels.

We have found a way to reduce the e�ects of the spurious channels for the quad retarder + micropolarizer
system, which was to re-optimize over our channels using the remaining free parameters available while �xing
the ones constrained by the physical instrument components. In our quad-retarder + micropolarizer system
example, once our actual retardances were �xed, we re-optimized using the starting position of each retarder and
added a parameter to our cost function which characterized the magnitudes of the spurious channels compared
with the magnitudes of the adjacent channels. For general spatio-temporal systems this kind of method will
work after some of the physical components are speci�ed, if there are any free parameters left to optimize over.

In fact, an iterative approach would likely yield the best results with a single component at a time be-
ing sourced, measured and characterized, then the system can be re-optimized to reset the other components
speci�cations to minimize the crosstalk, and then the process is repeated.8
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Figure 7.6: An example of systematic error in a real instrument, the small triangles represent channels which are present
due to retardance deviation from the speci�cations.



Gaussian detector noise

Figure 7.7: Gaussian detector noise e�ects on channel structure. Note that these are the same channels as shown in Fig.
7.6, but plotted along the ν lines. The left column is the real part, the right column is the imaginary part, there are 16
colors in each graph representing each Mueller matrix element. The �rst row is ν at ξ = 0, η = −0.5, the second row is ν
at ξ = −0.5, η = 0 and the third row is ν at ξ = 0, η = 0. Animated in the electronic version.

7.4.2 Noise

The other impacts to real channeled systems are random noise, for instance detector noise. The results presented
here are preliminary, and we only modeled detector Johnson (Gaussian like) noise for the detector. The results
are simulated, but show that the channel structure itself is quite robust to detector noise. Here we switch to a
di�erent view of the channels to better view the noise e�ects. Each line of channels in the ν direction is plotted
in Fig. 7.7 and Gaussian noise is added in a simulation to the �nal irradiance for this result. The SNR is shown
in the �gure, and it appears that the channel structure is stable for an SNR above somewhere between 1 and 2.
This result will need to be validated on the real instrument, and we plan on testing this in the near future.

We have not modeled the e�ects of noise on the reconstruction for our speci�c system yet, but noise e�ects
have been addressed for channeled systems by others.17,32,88

7.5 Conclusion

Channeled polarimeter design has changed the way that instrument designers approach the design process, and
allows engineers to systematically design both general and task speci�c polarimeters. We have presented examples
and some general insight into using channeled system design for spatio-temporally modulated Mueller matrix
polarimeters. We also address some of the intricacies of channeled design, and give some preliminary examples
of possible systematic errors and noise e�ects on channel structures. Furthermore, we give an example of how
to mitigate some of the systematic errors, and in the future will use a di�erent approach when building a real
instrument by re-optimizing the channel structure after each instrument component is sourced. In the future we
hope to build a fully generic channeled system model for spatio-temporally modulated instruments, so that the



community can design their own instruments in a systematic way. We also need to validate our systematic error
mitigation on our real instrument, and validate the e�ects of noise on the channel structure of a real instrument.

8. COHERENCE MANIPULATION

8.1 Polarization and its Intrinsic Relation to Coherence

Current design philosophy treats conventional imaging, polarimetry, spectrometry, depth imaging, etc., as sepa-
rate sensing architectures. However, they are all fundamentally linked through the statistical description of the
optical �eld embodied in the mutual coherence function at the sensor aperture. Once the optical �eld passes the
system collection aperture, the information available to the observer has been fully determined; were it possible
to know the full spatiotemporal distribution of the �eld on the aperture, then the output of any conventional
sensor could be computed. Unfortunately, for a wide class of sensing systems that rely on incoherent or partially
coherent radiation, this complete knowledge is impossible to obtain at optical wavelengths for any meaningful
aperture size.92 Since current optical detectors measure second moments of the optical �eld, the best the designer
can hope to accomplish is to measure some meaningful projection of the �eld's mutual coherence function across
the aperture.

High resolution imagers, spectrometers, light �eld imagers, polarimeters, and other current systems use
�eld transducers (lenses, gratings, polarizers, etc.) to choose the projection of mutual coherence to measure.
Lens-based imaging systems convert spatial Fourier modes on the aperture into irradiance measurements in the
focal plane; spectrometer systems convert temporal Fourier modes into irradiance measurements on the detector
plane; extended depth-of-�eld imagers use aperture coding to control the projections of the light �eld; and
various �eld modulation strategies allow spectral, polarization, and depth information to be demodulated from
channeled intensity data. Recently several advanced computational and compressive sensing strategies that are
more closely tied to the coherence properties have emerged.

A key aspect of our research program is study of the theoretical fabric that uni�es these apparently diverse
sensing strategies through the theory of mutual coherence. Little is known about how to e�ciently measure
speci�c projections of the �eld coherence, and even less is known about how to control the mutual coherence
properties of illumination systems. While classical statistical optics theory describes how the coherence properties
propagate through space, the tools do not currently exist to describe the transformation of coherence upon
interactions after scattering.

Variable coherence tomography (VCT) was developed as a method for directly measuring the second-order
statistical properties of quasi-homogeneous media.93,94 VCT uses an incident wave �eld with a speci�c mutual
coherence structure that allows the average coherent two-point scattering from the medium to be probed. VCT
develops a speckle �eld that is uncorrelated except at speci�c lateral o�sets. The spatial correlation structure of
the incident beam can be shaped by changing the parameters of the source, allowing a tomographic reconstruction
of the spatial correlation of the scattering potential. As originally developed, VCT is based on scalar scattering
by weak, quasi-homogeneous, isotropic scattering media. However, the underlying theory is equally valid for
isotropic and anisotropic scatterers.95 Variable coherence polarimetry (VCPol) was introduced by our group
as an extension of the theory behind VCT to include polarimetric information.16 VCPol makes it possible to
probe the second-order statistics of the scattering object from monostatic measurements, which provides greater
capabilities for the identi�cation and classi�cation of scene abnormalities in remote sensing applications.

8.1.1 Mutual Coherence Matrix

The second-order correlation properties of a stochastic, statistically stationary electromagnetic beam are rep-
resented by the 2 × 2 mutual coherence matrix. This matrix is the electromagnetic equivalent to the mutual
coherence function of the scalar theory,96 which is important in the study of imaging systems with partially coher-
ent illumination. The generalized van Cittert�Zernike theorem is a fundamental result in statistical optics that
relates the spatial coherence properties and irradiance distribution of a beam with the irradiance distribution and
spatial coherence properties of the quasi-homogeneous source, respectively, via a Fourier transform. Equivalent
results in the context of the joint theory of coherence and polarization have been proposed recently.97�99 The
generalized van Cittert�Zernike theorem for the cross-spectral density matrix developed in our group states that



Figure 8.1: Diagram of a source designed using the generalized van Cittert-Zernike theorem for the cross-spectral density
matrix and the resulting propagated �eld.

the spatial coherence and polarization properties in the far-�eld of a quasi-homogeneous electromagnetic source
are given by the Fourier transform of the functions that describe its polarization and spatial coherence properties.
The importance of this theorem in both the scalar and vectorial theories is that it allows the design of sources
with prescribed spatial coherence distributions. In the case of the vectorial theory, this capability is further
extended to the polarization state of the beam.98 Therefore, knowledge of the propagation relations followed
by the mutual coherence matrix is fundamental in the design of sources with prescribed spatial coherence and
polarization properties that can be used in the implementation of the VCPol technique. Fig. 8.1 provides an
example of a source with such characteristics. The cross-spectral density matrix depicted in the �gure represents
a beam that is unpolarized in the usual one-point sense but polarized in the two-point sense.98

8.1.2 Statistical description of scattering

The study of the interaction between an incident �eld and a random object is often carried out in a deterministic
way for a pair of single realizations of the �eld and object and then repeated for a large number of di�erent
realizations. In this Monte Carlo approach, the �nal result is obtained as the ensemble average of the results
obtained for the di�erent realizations. An alternative strategy is to describe both the �eld and the random object
as ensemble averages from the beginning and �nd the scattering relation that they satisfy. A �rst approximation
to the description of this interaction between a stochastic, statistically stationary �eld and a random object, based
on the �rst Born approximation, can be found in the literature for the scalar case.92�94,100 The corresponding
result for the electromagnetic case has been addressed in earlier work by our group.16 This approach to the
calculation of the scattered �eld in statistical optics is more computationally convenient than the Monte Carlo
method because it uses the statistical properties of the random object and stochastic incident �eld to predict
the scattered �eld directly. The main inconvenience of this approach is that the scattering potential and cross-
spectral density matrix of the incident �eld must have a relatively simple mathematical representation in order
to compute the scattered �eld in closed form. Examples of such relatively simple representations are the quasi-
homogeneous �elds and media, which constitute a good approximation in many applications.95,101 To account
for situations in which the �rst Born approximation is not applicable (e.g., multiple scattering and scattering
in the near-�eld) the scattering theory must be extended. The extension of the statistical scattering theory to
cover these situations is part of the work that will be done in future research.

We have developed a design for a novel active sensing system able to measure the elements of the mutual
coherence matrix, allowing us to obtain a proof of concept of VCPol. Fig. 8.2 is an example of a sensing systems
able to control the second order statistical properties of the illumination and measure the elements of the mutual
coherence matrix resulting from its interaction with a specimen. The system combines a subsystem to control
the second order statistical properties of the illumination with a Stokes polarimeter formed by variable retarders
VR1 and VR2, and linear polarizer P4. Measurements with di�erent second-order correlation properties of the
source may be used to compute the elements of the mutual coherence matrix. The system in Fig. 8.2 is not
the only con�guration able to measure these quantities and we must examine other possibilities to determine an
accurate and e�cient way to measure the elements of the mutual coherence matrix. Furthermore, an analysis
of the amount of data required and the development of the methods necessary to reconstruct the VCPol results
from measurements of the mutual coherence matrix are two of our ongoing and future research objectives.



Figure 8.2: Diagram of a novel sensing system to indirectly measure the elements of the mutual coherence matrix.
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