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ABSTRACT

As part of a development project sponsored by DRDM and DMCS on Spectra Fiber composite
sonar domes, DREA has been tasked to provide data on the acoustic properties of glass and
Spectra Fiber based composite panels in a 2 - 10 kHz range. The low frequency and high level
of accuracy desired presented a number of challenges for carrying out insertion loss
measurements. This paper introduces the use of parametric arrays to generate broad frequency
responses off sonar dome materials. Particular attention is placed on the generation of low kHz
signals in a laboratory limited tank setting and the resultant measurements produced.

INTRODUCTION

The two main functions of a sonar dome are to protect hull-mounted sonar equipment from
physical damage as a ship moves through the water, and to displace the turbulent boundary layer
away from the ship hull to reduce flow noise. Ideally, the dome should have a minimal effect on
the propagation of sound from the target to the ship and from the ship to the target. This may be
achieved by using materials for dome construction that have a low insertion loss, I, defined as
the reduction in sound pressure resulting from insertion of a test panel between a source and a
receiver. Unfortunately, materials which have low insertion losses, such as elastomers, are
usually not stiff enough to be self-supporting and do not have the required strength for sonar
domes. One solution is to use fibre-reinforced plastic (FRP) composite materials with high
strength-to-weight ratios, which epable thin panels with relatively low insertion loss to be used.
In addition to low insertion loss, FRPs may offer better noise characteristics than metallic
structures due to higher internal damping, since the dome itself may contribute to the noise level
via flow excitation at resonnances within the structure.

This paper focuses on the acoustic characterization of several candidate materials being considered
as sonar dome construction materials. In addition to metallic-based panels and glass-reinforced
materials, composites reinforced with Spectra Fiber were examined. Spectra Fiber, from Allied
Signal Corporation, is polyethylene prepared in such a manner that it is highly crystalline, with
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the crystals aligned along the fiber axis. Examination of the acoustic properties of Spectra Fiber
panels is part of a larger effort to develop Spectra Fiber sonar domes, sponsored by Chief
Research and Development and Director Maritime Combat Systems.

COMPOSITE PANELS

Spectra Fiber composite panels were prepared by Advanced Composite Technology (ACT),
Sparks, Nevada using two different resin systems and two different weaves, Table 1. The resin
systems used for the prepregs were based either on a cyanate ester (BTCY-3) or an epoxy, Shell
EPON 828 (BT250F). The plasma treated Spectra Fiber reinforcing fibres were configured in
either a 985-8H satin weave or a 988-4H satin weave, as shown in Table 1. In each case, the
panels contained 50% =+ 2% by weight resin, and were 1 m x 1 m x 10 mm in size.

Glass reinforced composite panels were fabricated by ACT using the same resin systems (cyanate
and epoxy) as the Spectra Fiber panels, using an 8H satin weave.

TABLE 1
SAMPLE IDENTIFICATION DIMENSION (MM)
tra Fiber Composite Panel Weave
985PT/BT250E (Epoxy-based) 8H 1005 x 1005 x 10
988PT/BT250E (Epoxy-based) 4H - 1005 x 1005 x 10
985PT/BTCY-3 (Cyanate-based) 8H - 1005 x 1005 x 10
988PT/BTCY-3 (Cyanate-based) 4H 1005 x 1005 x 10
RP Panel
7H5100LN016/001 (Epoxy-based) 8H | 1020 x 1080 x 10
7H5100LLN016/002 (Cyanate-based) 8H ~~ 1010x 1255x 10
tandard Calibration Panel
Stainless Steel Plate 1219 x 1168 x 0.92
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EXPERTMENTAL FACILITY

This investigation required acoustic measurements of sound, propagated at normal incidence to
a panel immersed in water. The use of a parametric source was strategic to the study. With
conventional sources, measurements on panels of limited size are affected by diffraction from the
edges of the test panels. At low frequency ranges, approaching 1 kHz, diffraction is most
pronounced, making it difficult to resolve the diffracted signal from the main transmitted signal.
To minimize such effects, the energy at the edge must be reduced. With conventional acoustic
transmission, it is very difficult to generate small spot insonification at low frequencies;
directionality is a function dictated by frequency.

In view of this, a parametric source was designed and developed with a small beam cross-section.
The basic principles of a parametric source can be found in Westervelt (1963), Clay and Medwin
(1977), Berktay et al. (1979) and Humphrey (1985). Briefly, when two intense sound waves of
slightly different frequencies are generated coaxially in water, they interact to produce secondary
signals that contain a band of frequencies. These include both the sum and difference frequencies.
Of particular importance are the low difference frequency signals generated. These signals
possess many attractive attributes suited for material testing which include narrow beamwidth, no
sidelobes, and broadband capabilities even at the lower kHz range. Therefore, material testing
in a small tank is possible with parametric arrays since diffraction and sidelobe interference
problems are made negligible. In addition, the broad bandwidth inherent in the parametric source
allows material testing over a wide range of frequencies to be executed with a single small
transducer.

In the experiments, a process called "self-demodulation” was used to create the secondary signals
of the parametric array. In this method, a pulse-modulated carrier wave is radiated from the
acoustic transducer with nonlinear interactions occurring in the water between all the frequencies
radiated to yield a band of secondary frequencies.

The source for the study involved a wideband transducer resopant at 500 kHz, driven by a
modulated carrier waveform obtained from the transmitting electronics. A short carrier pulse with
a smooth envelope was transmitted. A "raised cosine bell" was generated as the modulating
function. For our application, the parametric source was deliberately truncated within the
Rayleigh distance by placing a "low-pass acoustic filter" across the primary beam at one metre
from the transducer. This approach attenuated the higher frequency primary waves while
transmitting the low-frequency secondary waves without significant loss. The truncator design
was not a trivial task, but involved careful matching of characteristics of the primary beam to
minimize spreading of the secondary wave after termination. Distances between hydrophones and
panels had to be considered in the design of the truncator panel. A plate made of 20 gauge
stainless steel was used as truncator.

Newfoundland's Marine Institute's flume laboratory was the site for the tests. Its dimensions
consisted of a large, rectangular concrete windowed tank; 21.5 metres long, 8 metres wide and
4 metres deep, ideal for low frequency material evaluation.
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The general geometry used in the study is shown in Figure 1A with a time history example of a
signal received after the test panel exhibited in Figure 1B.

MEASUREMENTS

The setup for making the loss measurements is shown in Figure 2. A reference signal was first
acquired; the transmitted signal was then recorded with the test panel placed between the
truncator and hydrophone. The echo reduction measurements utilized a similar experimental
setting (see Figure 3). Once a reference signal was recorded without the panel being present,
then reflected signals could be captured with the same hydrophone placed in front of the test
panel.

The insertion loss of a panel was defined in terms of the complex incident sound pressure and
complex transmitted sound pressure:

€y

incident sound pressure p, l

IL = 20log,, l
ltransmiz‘tted sound pressure p,

l = 20log,, %l

T is the complex transmission coefficient.

The echo reduction (ER) of a panel was also defined in terms of its complex incident sound
pressure and complex reflected sound pressure:

)

lz’ncident sound pressure pil
ER = 20log,,

= 20log,,

H

R is the complex reflection coefficient and the function | « | represents the magnitude.

Ireﬂected sound pressure prI

Computations of the complex reflection and transmission coefficient were performed in the
frequency domain via the Fast Fourier Transform (FFT). In each case, the complex Fourier
coefficients for each pulse were used in the division. In addition, the Hilbert Transform was
employed to better display and calculate changes in the waveform. Such a response analysis
involves taking the imaginary part of the signal along with the real part. The resulting analytic
signal is displayed as time or frequency envelopes. Such transformed data allows for precise time
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representation of both the peak values and instantaneous phases of the signal. The Hilbert-
transformed series were detrended and the energy envelopes were log transformed (see Figure
1B). (Guigné er al. (1991) and Guigné and Chin (1989) provide details on the application of the
Hilbert Transform to underwater acoustics).

- RESULTS

Ideally, the properties of a sonar dome would be such as to allow the propagation of acoustic
radiation through with minimal reflection, absorption, or distortion. Examination of the Hilbert
Transforms is one way of determining the amount of distortion due to the panel. The shape of
the transmitted waveforms for the cyanate-based Spectra Fiber panels (Figures 4A, 5A and 6A)
are very close to those of the Reference waveforms, while the epoxy-based Spectra Fiber and GRP
panel waveshapes are slightly more distorted (Figures 7A, 8A and 9A). The Hilbert Transform
of a thin (0.92 mm) stainless steel panel is shown for comparison in Figure 10A. Note how the
waveshape is altered considerably more than for the composite panels.

The amount of reflection and absorption may be quantified by their echo reduction and insertion
loss spectra, shown in Figures 11 and 12 for the panels listed in Table 1. The Spectra Fiber
panels had relatively flat insertion loss spectra of less than 1dB up to 35 kHz (Figure 12),
whereas the GRP panels had losses that increased more sharply with frequency, with values of 2.5
- 3.5 dB at the higher end of the freuency range examined (40kHz). The cyanate-based panels had
slightly better (lower insertion losses) performance than the epoxy-based panels for Spectra Fiber
panels, but the opposite was true for the GRPs (i.e. the epoxy resins were superior). The 8H
weave was found to have slightly lower insertion losses than the 4H weave for the Spectra
Fiber/cyanate resin system. The Spectra Fiber panels also had low reflectivity, or high echo
reduction, in the 1 - 40 kHz frequency range (Figure 11). The least reflective panel was the 8H
cyanate resin Spectra Fiber panels, which had echo reductions of 15 - 22 dB.

SUMMARY

From the data collected, it is clear that the Spectra Fiber Composite Panels have very low
insertion losses compared to the glass fiber composites of the same thickness. In particular, the
988 PT/BT250E epoxy-based panel and 985PT/BTCY3 cyanate-based panel have remarkable
responses producing very little waveshape distortion and losses (see Figure 12). The Spectra
Fiber echo reduction characteristics also concurred with the goal for the sonar dome material to
remain low in reflectivity.

Overall, it would appear that significant gains would be made using Spectra Fiber Composite
materials over glass fiber and metallic composite sonar domes. In addition to being non-corroding
and having high strength to weight ratio, their acoustic properties appear well-matched in
impedance to water, and also appear well suited to low frequency propagation.
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Setup for Insertion Loss Measurements
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Reference and Transmitted Signal Envelope for Panel #388PT/BTCY3
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Reference and Transmitted Signal Envelope for Panel #985PT}'BT250E
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Reference and Transmitted Signal Envelope for GRP Panel #2
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Echo Reduction Measurements on Test Panels
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Insertion Loss Measurements on Test Panels
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