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ABSTRACT

A research and development study of stochastic finite element methods (SFEM) for structural
reliability analysis is presented. A detailed state-of-the-art literature review of various SFEM
methodologies and the diverse technical subjects relating to probabilistic finite element analysis is
summarized. Case studies of two existing SFEM-based reliability analysis computer programs were
conducted, with a discussion of the methodology, main features, structure, and capabilities of both
systems. The design and implementation of a software package for random field discretization
(RANFLD) and SFEM-based reliability analysis (STOVAST) is then presented. The package,
developed on the basis of the finite element reliability method (FERM) approach, and designed for
operation with the VAST commercial finite element analysis system, was verified using se'vex.'al
problems. Also, in this work, the quantification and analysis of bias and modelling errors/uncertainties
in engineering analysis are discussed. Sources of bias and modelling errors/uncertainties in SFEM-
based reliability analysis are identified and suggestions are offered for the application of realistic
formulations for accounting for this class of uncertainties. Finally, recommendations are given on
requirements for further development work that will broaden the analysis scope of the STOVAST
system and permit straightforward applications to ship structures.

RESUME

On présente une étude de recherche et développement portant sur
l'application a la fiabilité structurale des méthodes
stochastiques & éléments finis (MSEF). On résume une analyse
bibliographique détaillée des connaissances de pointe sur
diverses MSEF et les divers aspects techniques reliés a 1' analyse
probabiliste par &léments finis. On a effectué des études de cas
de deux programmes lnformathues d'analyse de fiabilité basée sur
les MSEF et on a examiné la méthode, les caractéristiques
principales, la structure et les capacités des deux systémes. On
traite ensuite de la conception et de la mise en application d'un
progiciel de discrétisation & champ aléatoire (RANFLD) et
d'analyse de fiabilité basée sur les MSEF (STOVAST). Le
progiciel basé sur la méthode d'analyse de fiabilité par elements
finis (MFEF) et destiné 3 &tre utilisé avec le systéme commercial
d'analyse par éléments finis VAST a été vérifié par la résolution
de plusieurs problémes. Ce travail traite également de la
quantification et de l'analyse de l'erreur systématique et des
erreurs/incertitudes de modélisation dans l'analyse technique.
Les sources d'erreur systématique et d'erreurs/incertitudes de
modélisation dans l'analyse de fiabilité basée sur les MSEF sont
déterminées et des suggestions sont faites en wvue de
l'application de formules réalistes permettant de tenir compte de
cette classe d'incertitudes. Enfin, on fait des recommandations
au sujet des exigences en matidre de travaux futurs de
développement qui élargiront la portée de lfanalyse du systéme
STOVAST et permettront des applications directes aux structures
des navires.
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1.1

1. BACKGROUND
1.1 General

Issues of structural safety and reliability are of concern to design engineers as well as those
entrusted with the responsibility for developing design criteria and operating/maintenance schedules and
practices. While an engineer’s primary task in designing a component or system is to adequately assure
its satisfactory performance during its useful life, the planning, design, and operation of most (if not
all)y engineering systems are carried out under conditions of uncertainty. This uncertainty arises due
to a myriad of factors. These include loads, structural strength determined by such uncertain parameters
as geometry, material properties and sectional properties, boundary conditions, conditions of
manufacture, fabrication, construction, storage, and environmental conditions. There are also
uncertainties associated with mathematical modelling which usually employ some simplifying
assumptions, the limited accuracy of the numerical methods and computing machines employed, and
unintended human errors. A comprehensive description of various types of uncertainty that may be

associated with structural reliability can be found in the monograph by Melichers [1].

Even though the presence of these uncertainties is well recognized, traditional approaches
to structural design and performance assessment have treated the uncertain parameters as deterministic
constants and accounting for the possible variabilities in these quantities by means of empirical safety
factors. These safety factors are, in many cases, wrongly assumed or wholly unknown and are not
founded on any rational philosophy. Associated with a given nominal safety factor, no matter how
conservative it may be, there is invariably some underlying probability of failure. This is why
engineering structures designed with the safety factor approach are still known to fail. The message
from this is that, because of unavoidable uncertainties, the assurance of structural safety or performance
cannot be absolute and so there is always invariably some 'underlying probability of failure.
Unfortunately, conventional deterministic methods of analysis, hereinafter referred to as the traditional

approach, is not capable of quantifying this probability of failure.

The probabilistic reliability approach is proving to be a very effective and rational

procedure for accounting for the uncertainties inherent in any engineering system. The approach has
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been so successful in the characterization of uncertainties and the prediction of structural behaviour in
the aerospace and nuclear industries that it has formed an important part of design, analysis,
maintenance, and inspection planning strategies. Currently, reliability-based approaches are being
developed and applied by NASA in conjunction with Southwest Research Institute (SWRI) to the design
of the next generation Space Shuttle main engine. There is no doubt that the reliability approach is
gaining wider acceptance in the engineering community, especially as it is capable of assisting in

optimization in design and economization in maintenance practices.

1.2 Reliability of Ship Structures

In the same manner as for aerospace, nuclear, and other structures, reliability concepts offer
the potential for achieving greater understanding of the safety and performance assessment of ship
structures. Although the most obvious source of uncertainties in the case of ship structures is the
random loading induced by the random ocean wave environment, there is no doubt that the structural
systems themselves contain inherent uncertainties in material properties, section properties, structural
geometry, damping, and boundary conditions. Random vibration analysis theory is applicable to cases
in which only the loading is considered to be random. However, when the variabilities in structural

and material properties are significant enough, a full scale probabilistic analysis is called for.

-Mansour [2] was the first to put forward the idea of probabilistic design concepts in marine
structures in his analysis of a Mariner ship. Since then, the field has expanded enormously with the
majority of applications directed to offshore structures. A review of reliability methods as applied to
ship structures up to 1980 was given by Stiansen et al. [3]. In those early applications, probabilistic
analysis and reliability methods were mainly utilized to check and compare the safety level of existing
designs. In more recent times, however, some civil and offshore engineering regulatory bodies and
classification societies have implemented reliability concepts for determining their code requirements.
They are also increasingly relying on the use of probabilistic methods for assessing the uncertainties
underlying the design or performance variables and for selecting the associated partial safety factors
suitable for use in standards and codes. A comparison of various approaches to estimating reliability

(ranging from first order methods to exact (Level III) formulations) was made by Mansour [4] and

- applied to 18 ocean going vessels.
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Interest in ship structural reliability is increasing as evidenced by the level of research
activity in the field. The American Bureau of Shipping (ABS) and the Ship Structure Committee (SSC)
of the United States Coast Guard are good examples of agencies that are continuously working on a
program of action to effect applications of probabilistic techniques for the assessment of ship structural

reliability.

Recently, there has been some interest in developing tools for reliability assessment of ship
structures within a framework that permits detailed three-dimensional analysis. Just like its deterministic
counterpart, the stochastic finite element method is the most viable vehicle for achieving this objective.

This was exemplified in a recent work by Moore [5].

The Defence Research Establishment Atlantic (DREA) has embarked on an impressive
research and development program on the applications of probabilistic mechanics technology to ship
structures in the last four years. These efforts include characterization of the ocean wave environment,
the probabilistic characterization of wave-induced loads within the framework of the finite element
method (FEM), three-dimensional finite element random response computations, stochastic fatigue

damage estimation, and applications of structural reliability theory.

1.3 The Stochastic Finite Element Method

Over the years, the fields of probabilistic mechanics and computational mechanics have
proceeded vigorously to what may be safely referred to as a mature stage of development. Progress
in the two fields, however, has proceeded rather independently for two major reasons. First, until
recently, and except for a few exceptions, research in each of the above fields have been conducted
by separate groups that are essentially mutually exclusive. Secondly, the application of stochastic
methods to engineéring structures generally requires considerable computational resources and resulted
in concerns regarding feasibility of the tool for complex models. The advent of powerful computer
hardware and the development of novel numerical techniques are making it possible to address
problems on a more realistic basis. Furthermore, there is a better exchange among these groups of

researchers through evaluation and verification of ideas on the application of computational methods

to problems in stochastic mechanics.
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The field of computational stochastic mechanics has emerged to provide the marriage of
advanced techniques in probabilistic mechanics and computational mechanics. The finite element
method in conventional deterministic analysis has gained overwhelming acceptance in the mechanics
community because of its robustness and suitability for the modelling of complicated structures. For
the same reason, the stochastic finite element method (SFEM) is emerging as a very powerful tool in
probabilistic structural analysis. The basic objective of SFEM is to compute the probabilistic structural
response in terms of either the response statistics or the probability of failure corresponding to a
particular performance criterion (or set of criteria) from the probabilistic description of the structure.
The latter objective is especially significant from a practical point of view and constitutes the basis of
stochastic finite element based structural reliability analysis. Several important technical issues that
are of direct relevance to the application of stochastic finite elements for structural reliability analysis

were discussed in a recent technical note by the first author [6].

1.4 Scope of the Present Work

The objectives of the current contract work consist of the following:

i. - A state-of-the-art literature review of methodologies for stochastic finite element-based
structural reliability;

ii. Formulation and implementation of a model computer program for demonstrating the best
approaches for SFEM-based reliability analysis; and

iii. Study of bias and modelling errors associated with SFEM-based reliability analysis.

These objectives were met in the work reported in the present document. The report has
seven chapters. Chapter 2 summarizes the literature review effort. As an extension of the literature
review, case studies of two existing SFEM based computer programs are given in Chapter 3. The
design and implementation of the model computer program (STOVAST) for performing SFEM-based

reliability analysis is described in Chapter 4. This also includes the development of the random field

discretization module (RANFLD) which acts as a pre-processor to program STOVAST.
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Some demonstration/verification problems for the model code are presented in Chapter 5.
In Chapter 6, a discussion on bias/modelling errors associated with SFEM-based reliability analysis

is given. Chapter 7 concludes the report with discussions on the level of success achieved in the

project and recommendations for future work that will ensure that the laudable objectives of the project

will be vigorously pursued.
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2.1

2. A STATE-OF-THE-ART REVIEW OF STOCHASTIC FINITE ELEMENT BASED
RELIABILITY ANALYSIS METHODOLOGIES

2.1 Introduction

In this chapter, a comprehensive review of methodologies for stochastic finite element
(SFEM) based reliability analysis is presented. This review covers the pertinent subject areas which
include random field discretization, general approaches for SFEM-based reliability analysis, reliability

analysis algorithms, and utilization of existing FEA computer programs.

2.2 Representation and Discretization of Random Fields
2.2.1 Definition

A random field is a family of random variables depending on more than one deterministic
parameter and, as such, it may be viewed as a multi-dimensional random process. They are used to
represent physical systems that have attributes which exhibit complex patterns of spatial and temporal
variations. Examples of random fields include random pressure loading due to ocean waves, stresses
inauced by turbulent boundary-layer pressure, material property (such as Young’s modulus) with

random spatial variations, and temperature fields in the main engine of a space vehicle.

Random field models of complex stochastic systems serve multiple purposes. They provide
a format for efficient description of the random variation. They provide the basis for predicting system
response and performance. They also permit the assessment of the impact of alternative strategies in
diverse situations (such as in system design or data requisition). In general, it is usually impractical and
uneconomical to sample, for example, material properties of a random medium at all locations.
Therefore, the tasks of prediction, analysis, and decision-making must usually proceed on the basis of
incomplete information about the medium. An important purpose of random field description is to

permit a meaningful representation that can be used for modelling. A detailed exposition of the theory

of random fields and their engineering applications is given in the monograph by Vanmarcke [7].
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2.2.2 Random Field Element Discretization Techniques

2.2.2.1 Obijective of the Discretization Process

The terminology "stochastic finite element analysis” (SFEA) is loosely employed to describe
the explicit stochastic treatment of uncertainty in any system quantity within the framework of the finite
element method. In the strict sense, however, the distinguishing feature of stochastic finite element
analysis is that it involves the discretization of the parameter space of a random field of material

properties and/or loads.

For SFEM-based structural reliability analysis, in particular, discretization is required to
transform the spatial distribution of the field to "point" values, i.e. random variables. The resulting
reliability model then becomes of the (generally correlated) random variable type, for which the vast
majority of existing computational algorithms for reliability analysis were designed for. In this
connection, the primary statistics of the random variables required for the reliability analysis are the

mean values and the covariance matrix which are obtained from the discretization process.

The available techniques may be broadly classified into three groups. In one group of
methods, the domain of the field is discretized into a mesh of random field elements {(not necessarily
coinciding with the finite element mesh) and the value for each element is described by a single random
variable. The spatial averaging methods, the midpoint method, the nodal point method, and the
interpolation method fall into this category. In another approach, the discretization of the domain of
the field is avoided, and instead series expansion methods are used to model the field as a series of
shape functions with random coefficients. Finally, the third group of methods is based on simulation.

The procedures pertaining to each of these groups of approaches are briefly highlighted in what

follows.
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2.2.3 The Spatial Averaging Method

The theory of local averages of homogeneous random scalar fields over rectangular domains
is well established. A detailed discussion on the subject was provided by Vanmarcke in his textbook

[71, and forms the basis of the spatial averaging method.

The spatial averaging method, suggested by Vanmarcke and Grigoriu [8], uses the local
average of the field over a random field element to represent the random quantity for the element. For

a random field W(X), the discretized value for an element is given by:

W, = -;T fwoo Q @.1)

1

1 i

where (; is the domain of the element. For homogeneous fields and rectangular elements whose edges
are parallel to the coordinate axes, expressions for the covariances of the discretized variables W; in

terms of the autocovariance function of W(X) were derived by Vanmarcke [7].

According to Der Kiureghian and Ke [9], the spatial averaging method yields accurate
results (even for coarse meshes) for Gaussian random fields. However, it has two major shortcomings
in the context of application to finite element reliability analysis. First, for a two-dimensional or three-
dimensional continuum of arbitrary shape it is not always possible to discretize the domain into
rectangular elements. Several approximation schemes that have been suggested in the literature to deal
with cases involving non-rectangular elements are knmown to introduce errors in the computed
covariance matrix. These errors may lead to very inaccurate reliability results and are indeed capable

of causing the FORM and SORM algorithms to breakdown in some cases [10].

The efforts of Zhu and coworkers are among the most notable attempts to relax the
restrictioné on the use of local averages. Zhu and Ren [11] extended the theory to deal with
homogeneous and rectangular isotropic random vector fields. A generalization of the work by Zhu and
Wu [12] then followed in which the condition of isotropy was relaxed to one of quadrant symmetry.

In addition, the work provided the capability for modelling nonhomogeneous random vector fields and

permitted application to nonrectangular domains. The allowance for irregular domains was made
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possible by the use of Gaussian quadrature for evaluating the means and covariances of local averages.
The procedure was demonstrated in a recent work involving applications to SFEM analysis of static,

eigenvalue, and stress-intensity factor problems {13].

Another drawback of the spatial averaging method is that the probability distribution of W;
is difficult or impossible to obtain, except when the underlying random field is Gaussian, in which case

W, is also Gaussian. Essentially, therefore, the use of this method is restricted to Gaussian fields.

2.2.4 The Midpoint Method and the Nodal-point Method

The midpoint and nodal-point methods are two point discretization methods which represent
the uncertainties of a random field by the values at some specific points. In the midpoint method [9,
14], the element random variable is defined as the value of the random field at the centroid of the

element. Hence, the randomness in a random field element i is represented by the random variable:

W, = WX) (2.2)
in which,
NNODE
< 1 5 x4 2.3)

i " NNODE ju % |

are the coofdinates of the centroid, where NNODE is the number of nodes of the random field element,

and de are the nodal coordinates.

The nodal-point method represents the random field in terms of the values at the nodal

points of the finite element mesh. In this method, the randomness of the field at node i is represented

by:
W, = W(X) @.4)
where:

2.5)

P
i
4
a

are the coordinates of node i.
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In both the midpoint method and the nodal-point method, the mean, variance, and marginal

distribution of W; are the same as those of the process at point 5{1- The correlation coefficient matrix
of W, is directly computed in terms of the auto-correlation coefficient function of the random field,

pwgwj = Pww o-'(p}.(j) (26)

and the joint distribution for any set of W; is given by the specified distribution of the random field.

As pointed out by Der Kiureghian and Ke [9], the midpoint method tends to overrepresent
the variability of the field within each element, and it does not provide as accurate a result as the
spatial averaging method for a coarse random field mesh. However, these point discretization methods
have three advantages. First, no complicated computations are required for the covariance matrix and
the method is easy to implement. Second, the correlation coefficient matrix obtained by Equation (2.6)‘
is always positive-definite, provided a valid autocorrelation function is specified. Hence, the numerical
stability problem arising in the spatial averaging method does not exist in this case. Most importantly,
the distribution information on the discretized variables W, is retained and the method is not restricted

to Gaussian random fields.

225 The Interpolation Method

The approach employed in the interpolation method suggested by Liu et al. [15] is to
represent the random field in terms of an interpolation rule involving a set of deterministic shape
functions and the random nodal values of the field. Thus, the random field W(X) is discretized into
q random variables, W, i = 1, ..., q. The value at an arbitrary point is obtained by the following

interpolation rule:

N q
W) = T NOW, @7
i=1
where W, is the value of W(X) at node X;, and N;(X) are shape functions. The number q is not
necessarily equal to the number of finite elements and the shape functions Ny(X) need not be the same
as the finite element interpolation functions for the displacement field. Since the choice of the g nodal

points and shape functions is arbitrary, the interpolation method constitutes a class of random field

discretization methods. In particular, it is easy to observe that if the nodes are chosen to be the
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centroids of the random field elements and the shape functions are assumed to be unity inside each
element and zero elsewhere, the interpolation method becomes identical to the midpoint method
described in Section 2.2.4.

Liu et al. [15] further suggested a method to reduce the number of random variables W;.

The random vector W is transformed into an uncorrelated random vector C by:
C = ¥W 2.8)

such that the covariance matrix of C, i.e. Cov (C, C), is diagonal. The orthogonalization matrix ¥ is

obtained by solving the eigenproblem:
Cov(W. W) = JA 2.9)

where A is the eigenvalue matrix containing the variances of C. Liu et al. [15] noted that a good
approximation (within the context of second-moment analysis) of the random field can be obtained by
retaining only the C; with large variances, thus reducing the number of random variables. It should be
emphasized, however, that this reduction is only applicable to Gaussian random fields. This is because

the distribution of C is generally unknown or difficult to obtain unless W(X) is Gaussian.

2.2.6 Series Expansion Methods

Two series expansion methods have been suggested for second-moment stochastic finite
element analysis. One is the basis random variable method proposed by Lawrence [16], and the other

is the kernel expansion method proposed by Spanos and Ghanem [17].
In the first method, the random field is expanded into a double series in the form:

WX = I T Wed® 2.10)
i=0 j=1

in which ¢,(X) are a set of linearly independent shape functions, e; are independent basis random

variables having the properties:
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Ele/]

1]

1 i= (2.1Da
i=1.2....

(2.11)b

]
(=2

Eleg] = 6

in which & is the Kronecker delta, and the coefficients W; are determined by least-square fitting to the
moment functions of the function field. In reference [16], Legendre polynomials were suggested for

the shape functions, ¢,(X). In applications, only a few dominant terms are included in the expansion.

The kernel expansion method [17] employs the Karhunen-Loeve orthogonal expansion to
decompose a one-dimensional random field. The random field is expanded into the sum of its mean

function and a single series:

W) = 1y + T W, [ 60 2.12)
i=0

where W, are random coefficienis independent of X, and \; and ¢(X) are the eigenvalues and
eigenfunctions of the covariance kernel, respectively. The latter are obtained as the solutions of the

eigenvalue problem:
f COV(XH$,00dt = A, (2.13)

* The series in Equation (2.12) are truncated after the first few dominant terms just as in the
basis random variable method. Since this series has a zero mean and the eigenfunctions are orthogonal,
the random coefficients W, have properties similar to the basis random variables, i.e. Equations (2.11)a
and (2.11)b. One major obstacle of this method is the difficulty in solving the eigenvalue problem in
Equation (2.13) for arbitrary geometry and boundary conditions. As noted by Liu and Der Kjureghian
[10], this would be a particularly difficult task if the method is to be extended to two-dimensional or
three-dimensional random fields. Details of this method are exténsively discussed and exemplified in

a recent monograph by Ghanem and Spanos [18].

Both series expansion methods described above are strictly applicable only to Gaussian

random fields by virtue of the central-limit theorem. Therefore, they are appropriate for second-

moment analysis, or for reliability analysis when the random fields are truly Gaussian.
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2.2.7 Simulation Methods

Digital simulation is a technique of last resort to solve complex engineering problems
involving random variation. Assuming a deterministic solution method is available, the simulation
technique consists of repeatedly generating sets of observations of all the random variables or functions
involved in the calculation, solving the deterministic problem associated with each set of the

observations, and evaluating appropriate statistics of response and performance measures.

Shinozuka has developed and advocated the use of Monte Carlo simulation techniques in
the field of engineering mechanics over the last two decades. A synopsis of his works in this regard
is well documented in a recent review article co-authored with Deodatis [19]. In particular, Yamazaki
and Shinozuka [20] proposed an interactive procedure to simulate non-Gaussian stochastic fields and

later introduced statistical preconditioning to reduce the sample size in another work [21].

Recently, Fenton and Vanmarcke [22] presented a method of generating realizations of a
discrete "local average" Gaussian random process using a local average subdivision technique. One of
the advantages cited by the authors is the suitability for finite element models that employ efficient low-
order interpolation functions in which each local average becomes an element property. No structurat

applications of this technique has been reported in the open literature.

More recent contributions in connection with the application of simulation schemes for
modelling and discretization of random fields include the works of Bielewicz et al. [23] on
nonhomogeneous scalar fields, Grigoriu [24] on the application of the sampling theorem and Poirion

[25] on the simulation of non-Gaussian fields.

A major disadvantage of simulation schemes is the enormous amounts of computation times

associated with their application. For a large scale structure like a ship, therefore, these procedures are

not recommended.
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2.2.8 Other Methods' for Random Field Discretization

A new technique was recently introduced for random field discretization by Li and Der
Kiureghian [26]. The technique is referred to as the optimal linear estimation (OLE) method. For a
random field defined in a domain Q, a linear function of the nodal values W(x;) is proposed in the

form:

N
W@ = a® + Zb®T v(x) , xeQ (2.14)
i=1

where N denotes the number of nodal points in the domain. The functions a(x) and by(x) are

determined optimally by minimizing the variance of the error W(x) - W(x). The minimization is

subject to the condition that Wi(x) is an unbiased estimator in the mean, that is,

EW® - Wx)] = 0. (2.15)

This results in the representation:

W@ = p®) + Sgmw Suw (W-p),xeQ (2.16)

in which W denotes the vector of nodal values (i.e. the random variables) and Iy, denotes an Nx1

vector containing the covariances of W(x) with the elements of W.

The OLE method is believed to be always superior to the midpoint, spatial averaging, and
shape function methods, and its efficiency can be further improved by using eigenvalue expansion.
The OLE method can also be applied for non-Gaussian random fields by utilizing the Nataf model of
Liu and Der Kiureghian [27]. The Nataf model assumes that a transformed process z(x) can always
be found such that

W) = 7 [Fz)] , 2.17)

where @ is the standard normal cumulative distribution function. The key to the superior accuracy and

efficiency of this method lies in the utilization of shape functions that take the correlation structure of

the random field into account. The technique, therefore, appears to be a very promising tool in
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stochastic finite element analysis where it is always desirable to represent a random field with as few

random variables as possibie.

2.3 Methodologies for SFEM-Based Structural Reliability Analysis
2.3.1 Merit of SFEM-Based Approach

In a stochastic finite element based approach to structural reliability analysis, the methods
of structural reliability provide the basis for modelling and analysis of uncertainties and computation
of probabilities, while the finite element method provides the necessary computational framework for
analyzing complex structures. The application of these two concepts in a closely integrated fashion is
the basis of SFEM-based reliability analysis, and results in a powerful tool for realistically dealing with

practical engineering problems.

The merit of the SFEM-based approach was clearly demonstrated by Orisamolu et al. [28]
in a recent Martec study. In that study, one of the most powerful and internationally recognized
general purpose commercial probabilistic analysis programs (PROBAN®) was applied for the systems
reliability analyses of the two-storey braced frame, and then the tubular steel jacket offshore platform
whose finite element models are shown in Figures 2.1a and 2.2a, respectively. The external loads (as
shown in Figures 2.1b and 2.2b) and some other strength and modelling parameters were considered
to be stochastic. Details of the description and analysis of this problem are given in reference [28]. The
offshore platform problem is discussed further below since it sufficiently illustrates the merit of the

integrated approach.
For the offshore platform problem, three failure modes were considered for the two-
dimensional tubular members. These include yielding, stability, and punching. Performance functions

corresponding to these failure modes are described below.

The performance function, g,, corresponding to yielding failure of a two-dimensional

tubular element is given by:
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2
g, =7, - (%) ; Jﬁh{[ (2.18)

where Z, is a modelling uncertainty variable. N is the axial force on the element defined as:

NLOAD
N= 3 aP 2.19)
o

where NLOAD is the number of independent loads acting, a; are force coefficients of influence and P,
P,,..., Puioap are the external loads modelled as stochastic variables. Figure 2c shows the section
forces used in modelling this type of failure element. The two end-moments M, and M, are determined

from:

NLOAD
M, = Z bpP ,i=12 (2.20)
j=1

where b; are moment coefficients of influence. The resultant moment in the actual end is, for end I,
M =M, @2.21)
anfl for end J,
M=M, (2.22)
Ng in Equaiion (2.18) is determined from the relation:
Np = Yr (d% - (d-t)?)/4 (2.23)
while M; is given by
M, =Y @® - @d-v’)6 2.24)
where Y is the yielding stress, d is the tubular diameter and t is the tubular thickness. This failure is

assumed to have a brittle behaviour, i.e. it is assumed that the element is removed by failure.

For stability failure, the performance function, g,, for a two-dimensional tubular element

is given by:




2.12

-z - N___ M
800 =% - ( _N) (2.25)
1- — | M,
NB
where:
N = YA = Yrdt 2.26)a
2.
M, = Yd% (2.26)b
2.26)c
N - A(-2AY4) ,Asy2 (2.26)
7 lvame A>3
2.26)d
N, = AY
2.2

The buckling parameter (A) is determined by the expression:

PR S b @.27)
Y nm \E

In the above relations, Y is the yielding stress, Z, is a model uncertainty variable for this mode of
failure, Z; is a model uncertainty variable associated with modeiling effective column lengths, A is the
section area, d is the tubular diameter, t is the tubular thickness, Y is the cross-section radius of
gyration, L is the column length, and E is the Young’s modulus. Again, the section forces used in

modelling this failure element are as shown in Figure 2.2c. The axial force N and the two moments

M, and M, are determined by:
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NLOAD (2.28)
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NLOAD \
3 bP, @.28)b
j=1
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Z b @.28)c

where by;, by;, and by, are coefficients of influence and Py, P,,...,Pyoap are the external loads modelled

as stochastic variables. The moment M is defined as:
M = Max (Mp Mz) (2.29)

The punching failure element has the performance function, g,, given by:

1.2
g, = Z, - N, (M (2.30)
ZSNU Z6MU'
where:
2
N, = 25 (34 + 19B)u 2.31)a
sin
2
M, = XX 084 (3.4 + 19B)p @.31)b
sin@
N
p = min (1, 1.22 - #l__) 2.31)c
2YnDT

in which Y is the yielding stress, and Z, , Z;, and Z4 are modelling uncertainty variables. This failure
element models punching failure of the plane K-joint shown in Figure 2.2d. It is assumed that the
punching failure of each branch can be considered separately. The brace has a diameter d and thickness
t, while the chord has a diameter D and thickness T. The angle between the brace and the chord is 6.

These parameters defining the geometry of the joint are shown in Figure 2.2d. The axial force in the

brace, N,, and in the chord, N,, are given, respectively, as:
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Np = L %P (2.32)

NLOAD (2.33)

Z,
n
Ane
<4

)

The moment in the actual branch is given as:

NLOAD
Y, bpP (2.34)

j=1

M

In the application of PROBAN for the probabilistic analysis of this offshore platform, each
of the above failure modes had to be coded and linked into the PROBAN limit state function library.
1t can be seen from the above limit state equations that the force and moment influence coefficients are
involved. For this complicated structure, these coefficients are best determined by performing a linear-
elastic finite element analysis. For this case the Martec FEA code (VAST) was used to determine these
influence coefficients. They are to be supplied as part of the input data for each of the components that
makeup the structural system in the description of the probabilistic model to PROBAN. Now, for this
offshore platform, a total of about 62 failure elements consisting of 36 yielding elements, 18 stability
eléments, and eight punching elements are involved. If all these 62 failure elements are to be accounted
for in the evaluation of systems reliability, there is a lot of tedium associated with the process of
preparing the enormous amount of input data required. This is especially so since, for the punching
failure function, the calculation of angles between the members (which is not an output of the FEA
results) is required. All these efforts are required because PROBAN does not include finite element
analysis. The computer program is aimed at the analysis of problems whose probabilistic models are
well defined in terms -of explicit limit state functions and statistical characteristics of the random

variables.

A fully integrated and coupled finite element reliability analysis program is the most suitable
for the analysis of the offshore platform problem described above, and even more so for continuum
structures. For such an integrated program, the statistical properties of the random variables are merely

supplied as additional information to the finite element input data and the probabilistic analysis proceeds

automatically. The user is, therefore, alleviated of the tedium involved in the detailed description of
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the probabilistic model. In addition, the risk of errors in defining the input data is considerably
reduced. For example, the calculation of the influence coefficients will be unnecessary as this operation

will be internally taken care of.

Furthermore, in the use of SFEM-based reliability analysis programs for problems involving
semi-ductile or ductile elements (such as the stability failure element described above) the redefinition
of the loads is automatically accounted for. The use of semi-ductile or ductile elements, in strictly
probabilistic analysis programs involves the tedious operation of analysis, input data definition, then
re-analysis and redefinition of input data, and so on. Also, for continuum structures (or even for
discrete structures subjected to distributed random loads) the calculation of the random loads acting at
several locations is best achieved via deterministic or stochastic finite element discretization procedures.
Also, this scheme is indispensable if the tubular members were to have stochastic spatial variability in
the Young’s modulus or yield stress. Thus, it is obvious that problem formulation and analysis can be
more efficiently performed within the framework of an integrated finite element reliability analysis

computer package.

The merit of SFEM-based reliability analysis is well recognized in the research community.
As such, it represents a very active area of investigation. Currently available methodologies may be
classified into four major groups. These include the perturbation-based SFEM approach, the reliability-
based SFEM approach, response surface methods, and Monte Carlo simulation methods. The weighted
integral method has also recently been introduced [29, 30] to avoid a direct discretization of the random
fields during a stochastic finite element analysis. The basic features pertaining to each of these groups
of techniques are briefly highlighted in what follows. With the exception of the Monte Carlo simulation
and the weighted integral techniques, these methods are generally based on the combination of
stochastic finite element discretization techniques and the well known first order reliability methods
(FORM) and second order reliability methods (SORM).

2.3.2 Perturbation-Based SFEM Approach

The perturbation approach to probabilistic structural analysis was introduced about two

decades ago. Initial applications were directed at the study of the eigenvalue problem related to the free
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vibration of structures with stochastic mass and stiffness matrices and the solutions of linear static
problems involving loading and system stochasticity. The work of Hisada and Nakagiri [14] represents
one of the modern applications of this approach to structural safety and reliability analysis. In that
work, SFEM was applied for the evaluation of the reliability index and design point within the
framework of the Advanced First-Order Second Moment (AFOSM) method.

Consider the linear finite element equation
KU =F (2.35)

where K is the global stiffness matrix, U is the vector of nodal displacement and F is the global nodal

load vector. These stochastic quantities can be expressed as

K = K, + AK (2.36)a
U =10, + AU (2.36)b
F =F, + AF (2.36)c

where K,, U, and F, are considered to be deterministic parts and the increments AK, AU and AF are
considered to be the stochastic parts of K, U, and F, respectively. Substituting Equations (2.36)a-c
into (2.35) gives

[Ko + AK] [Up + AU] = [F, + AF] . 2.37)

on neglecting the product (AKAU) and separating the deterministic and stochastic parts of Equation
(2.37) gives:

KU, = F, | (2.38)

and
KOAU = AF—AKU0 2.39

Equation (2.38) gives the finite element solution at the deterministic expansion point. From the

solution of Equation (2.39), the second-order variation of the response may be computed.
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A more rigorous and general formulation of the perturbation approach can be constructed
using Taylor series expansion. This also paves the way for higher-order approximations. The stiffness

matrix in Equation (2.35) may be expanded about a deterministic stake as:

n o n
K=K, +2K'xx) ++ 3 2 K/(x-x)(x-X), (2.40)
i=1 2 s je1y O !

where K;’ and K’ are the first-order and second-order partial derivatives of the stiffness matrix with
respect to the basic variables X. The displacement and load vectors in Equation (2.35) may be

. expanded in a similar fashion and the response computed as previously described.

When the mean state is chosen as the expansion point the approach is referred to as the
mean-centred perturbation approach. Using mean-centred perturbation results in the computation of
reliability indices according to the First-Order Second Moment (FOSM) approach of structural
reliability analysis. In the AFOSM, however, the performance function is expanded not about the mean
values of the basic variables, but about the most probable failure point. Hisada and Nakagiri utilized
this approach and also presented a second-order perturbation formulation in reference [14]. A notable
feature of the formulations is that the stiffness matrix is inverted only once in contrast to simulation
or response surface methods in which many inversions of the stiffness matrix are required. The key
to successful solution using the perturbation approach is the ability to compute and assemble partial
derivative matrices for stiffness, displacements, and loads. Second-order approximations are obviously
more accurate than the first-order approximations; however, these involve the computation and

assembly of second-order partial derivative matrices.

Numerous applications of the perturbation approach have been reported in the open
literature. Prominent in this connection are the works of Liu et ai. [15, 31, 32], in which applications
were investigated for linear and nonlinear structural dynamics and a variational formulation of

probabilistic finite elements established.

Although the formulation of the perturbation approach is mathematically elegant, its
application to reliability analysis has several disadvantages. The mean-centred perturbation method

suffers from the well known invariance problem associated with FOSM. Furthermore, the perturbation
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methods do not use the distribution information about the basic random variables, even if it is
available. This is a serious limitation, unless for the exceptional cases in which all the variables are
normally distributed. The method is also not capable of producing accurate results when there are

large variations in the random variables defining a problem.

2.33 The Reliability-Based SFEM_Approach

Current methods for reliability analysis compute the reliability index 8 by solving the limit
state equation g(X)=0 explicitly. However, search algorithms that do not rely on an explicit solution
of the limit state equation are available. These algorithms only need the value and the gradient of the

performance function at each iteration point.

The reliability approach has been formulated and applied for several structural problems
by Der Kiureghian and his co-workers. In [9, 33] the first-order reliability method was used for static
analysis of linear structures with random properties and in [16] for dynamic analysis. In a more recent
work [10], a general framework for finite element reliability analysis based on FORM and SORM was
presented. New expressions for the required gradients of the response of geometrically nonlinear
structures were derived and implemented. This work represents the first application of the finite
element reliability method (FERM) in conjunction with SORM with non-Gaussian random fields, and
with system reliability analysis. Arnbjerg-Nielsen and Bjerager [35] and Mahadevan [36] has also
developed and implemented a reliability-based SFEM approach and applied it to the modelling of frame

structures.

The reliability approach has a significant advantage over the perturbation approach in that
information about the distribution of the random variable is used. Furthermore, in the reliability
approach, the probability density function of the response variable (not just second moment statistics)
can be obtained. Since the computation of response gradients is a key operation in the implementation
of this procedure, the use of the adjoint method has been recommended for this operation [10, 37].

This technique is estimated to be capable of reducing computation times by a factor equal to the

number of random variables.
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The reliability-based approach to SFEM structural reliability analysis is especially
compatible with the algorithmic structure of existing FEA codes and is about the best strategy of all

presently available methodologies.

2.3.4 Response Surface Methods

The response surface method is a classical statistical technique in which a complex

(computer) model is approximated by a simple functional relationship between the output quantities and

the input (basic) variables. The approximation is usually based on polynomial functions and, often,

linear or quadratic response functions are applied. Adopting the simpler response functions allows an

+efficient repeated computation, for example, as may be needed in simulations or parameter studies in
structural reliability analysis. This is because the approximation to the response surface rather than the

original limit state function is used in the calculation of failure probabilities.

The concept of response surface methods has been used when approximating costly to
compute and/or non-differentiable limit state functions. Within the framework of the stochastic finite
element method, the steps required for the implementation of the response surface technique were
described by Favavelli [38]. This involves the application of regression analysis to obtain the
polynomial coefficients involved in the representation of the limit state function using the results of

several numerical experiments.

The explicit representation of the limit state function g(x), for the quadratic approximation

for example, takes the form:

—_ n n
gx) =a+ Ibx; + T I cxx (2.41)
i=1 i=1 j=1 )

where n is the number of basic random variables (x;) and the coefficients a, b, and c are to be

determined from numerical experiments.

The works of Schuéller et al. [39], Bucher and Bourgund 40{] and B6hm and Briickner-Foit

f41] are among recent efforts at promoting the application of response surface methods. The work of
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Bhm and Briickner-Foit [41], in particular, introduced a special lack of fit measure and formulated
criteria for accepting response surface models in structural reliability analysis. Ghanem and Spanos
[42] proposed a Galerkin-based response surface approach in which the surface is approximated by its
projection onto a complete set of polynomials that are orthogonal to the Gaussian ‘measure. These
polynomials are known as polynomial chaos functions and are believed to be capable of yielding

accurate approximations of the response surface.

So far, no general scheme has been developed to efficiently establish linear and quadratic
response surfaces for reliability computations. Further research is needed to establish general, efficient,
and robust response surface methods for reliability analysis. Nevertheless, this methodology appears
to be a promising tool for large scale structures as recently demonstrated in a study dealing with the

fatigue reliability of a container ship structure [43].

2.3.5 Monte Carlo Simulation Methods

The direct Monte Carlo simulation method was used in many early works in stochastic finite
element analysis. In this brute force method, deterministic analysis is carried out for a series of
parameters generated in accordance with their probability distribution. The desired statistics of the
response quantities, such as the mean, variance, and exceedance probabilities, are then evaluated based
on the generated sample. Applications of this procedure can be found in Vanmarcke et al. [44] and
Takada {45].

The Monte Carlo simulation method has the advantage that it is adaptable to all types of
problems and the results can be obtained to desired accuracy. However, for practical problems with
many random variables or small failure probabilities this procedure is usually too expensive, since a
large number of solutions are needed to obtain reliable results. Shinozuka and his co-workers [46]
have introduced the Neumann (Monte Carlo simulation) expansion technique. Computation time for
this technique is reduced significantly since only the mean stiffness matrix needs to be decomposed with

this formulation. Other schemes have also been proposed to improve the efficiency of the simulation

method. However, for ship structures, this procedure is not recommended.
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2.3.6 The Weighted Integral Method

Under certain conditions, discretization of the random fields in SFEM may be avoided
through the application of the weighted integral method. This method was recently introduced by
Deodatis [29]. It was applied by Deodatis and Shinozuka [30] for the calculation of the response
variability and reliability of stochastic frame structures and the calculation of the response variability

of two-dimensional stochastic systems by Deodatis et al. [47].

Basically, the method assumes that the elastic constitutive matrix (D) in the element stiffness
formulation can be expressed as a product of a scalar random field E(x) and a deterministic matrix D,
that is:

D = Ex)D, (2.42)

Then, due to the polynomial nature of the strain matrix, B, the element stiffness matrix can be written

as:
K =3 XK, (2.43)

where n denotes the number of distinct polynomial terms in the coordinates x in the matrix product

BB, K, are deterministic matrices, and X; are random variables defined by:

X, = [P(x) E® dQ, (2.44)
Q

in which Pi(x) denotes the i-th distinct polynomial term in the coordinates x. The random variables X;
are interpreted as "weighted integrals" for all elements and completely define the SFEM problem

without the need to discretize the random fields.

The major advantage of this procedure has been cited as the circumvention of the restriction
(in random field discretization) that the finite element size has to be a fraction of the correlation

distance of the stochastic field involved in the problem. This restriction makes necessary the use of a

fine mesh to accurately describe stochastic fields characterized by short correlation distances.
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The method, however, has two main disadvantages. First, the assumption of a product form
assumed in Equation (2.42) is generally difficult to realize in practice. Secondly, the method assumes
a Gaussian random field which is a serious drawback in reliability analysis where probabilities are

sensitive to tails of the underlying distributions.

2.3.7 Utilization of Commercial FEA Programs

A few applications involving the use of existing general purpose commercial finite element
programs for reliability analysis have been reported. Gopalakrishna and Donaldson [48] utilized
ANSYS within the framework of the advanced first-order second moment (AFOSM) method to estimate
failure probabilities. The work took advantage of the response surface based design optimization
routine already available in ANSYS. The solution of the reliability problem is constructed such that
the basic random variables represent the design variables, the limit state function constitutes the

constraint function and the reliability index is treated as the objective function.

Riha et al. [49] also presented a coupling of a fast probability integration scheme with the
finite element code MSC/NASTRAN. Again, in this work, advantage was taken of the capability for
design sensitivity analysis (DSA) available in the finite element system for the computation of structural
response derivatives. The DSA capability however, is not applicable to some boundary condition and
load variables and so cannot be used for the calculation of the partial derivatives of such random

variables. Provision was made, however, for the use of the finite difference scheme.

The probabilistic analysis capabilities described in the preceding couple of paragraphs do

not fall into the general framework of stochastic finite element methods. This is because there is no

capability for characterizing or discretizing random fields.
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FIGURE 2.1a: Finite Element Model of a Two-Storey Braced Frame
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FIGURE 2.1b: External Concentrated Loads on the Two-Storey Braced Frame
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FIGURE 2.1c: Failure Elements and Section Forces for the Two-Storey Braced Frame
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FIGURE 2.2a: Finite Element Model of an Offshore Platform
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FIGURE 2.2¢: Section Forces for a Tubular Member
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3. CASE STUDIES OF SFEM-BASED COMPUTER PROGRAMS
3.1 Introduction

As of the time of writing this document, there are only a few computer programs available
in the public domain for performing SFEM-based reliability analysis. The two most prominent are
NESSUS developed by Southwest Research Institute (SWRI) in San Antonio, Texas on behalf of NASA
(Lewis Research Center) and the CALREL-FEAP system developed at the University of California at
Berkeley. In this chapter, a discussion of the main features, structure, and capabilities of both systems

are discussed.

3.2 The NESSUS® System

3.2.1 General Description

The NESSUS® software system (acronym for Numerical Evaluation of Stochastic Structures
Under Stress) is a general purpose probabilistic computer program for predicting stochastic structural
response due to random loads, material properties, part geometry, and boundary conditions. This
program is the outcome of an ongoing effort at Southwest Research Institute, San Antonio, Texas under
contract to the National Aeronautics and Space Administration, Lewis Research Center (NASA/LeRC).
The project, referred to as "Probabilistic Structural Analysis Methods" (PSAM) for Select Space
Propulsion System Components is being carried out in two five-year phases. The first five-year PSAM
program (1985-1989) developed tools for predicting the probabilistic structural response of large scale
structural components. The second five-year program (1990-1994) is extending this capability to
include more general failure definitions, and addressing more complicated issues such as reliability

analysis for structural systems, certification, and health monitoring [50].

The NESSUS system has several software components. These include an EXPERT system,
a probabilistic finite element code (PFEM), a probabilistic boundary element code (PBEM), a fast

probability integrator (FPI) module, and a pre-processor module.




3.2

The NESSUS/EXPERT meodule is an interactive menu driven expert system that provides
information to assist in the use of the probabilistic finite element code NESSUS/PFEM and the fast
probability integrator NESSUS/FPI. This module has the objective of capturing and utilizing PSAM
knowledge and experience for guiding and assisting the engineer in the effective and efficient use of

probabilistic structural analysis technology.

Since the PSAM project is designed to perform probabilistic structural analysis on realistic
engineering structures under complex loading environments, finite element analysis has a key role to
play. The NESSUS/FEM module is a nonlinear probabilistic finite element code for determining
structural response and sensitivities. This program module is based on a mixed finite element
variational formulation in which the nodal degrees of freedom includes stresses, strains, as well as
displacements. NESSUS/FEM includes special "perturbation” algorithms to obtain the response to a
perturbed set of random variables. Perturbation algorithms provide efficient ways (compared to the
finite difference method) of computing the sensitivity of the structural response to small fluctuations
of the random variables about a deterministic value. Analysis types that can be handled by this program
module include static, natural frequency, buckling, harmonic excitation, and random vibration. The
element library includes beam, plate, plane stress, plane strain, axisymmetric, and 3-D solid elements.
Random variables may include geometry parameters, loads, and material properties. The program also

has the capability to deal with material and geometric nonlinearities.

NESSUS/FPI is a fast probability integration analysis program that evaluates point
probability estimates and cumulative probability distributions (CDF) for selected structural response
variables. The FPI procedure implemented in NESSUS is based on an extension of the Rackwitz-
Fiessler algorithm [51]. A procedure called the Advanced Mean Value First Order Method (AMVFO)
is used to couple the finite element and FPI codes to efficiently obtain CDF’s of large scale complex
engineering structures whose solution times are computationally expensive. Improved versions of this
procedure (such as the AMV+ method) have also being developed and implemented into NESSUS by
SwRI personnel. The AMV + method is an iterative algorithm designed to improve the accuracy of the
advanced mean value method. This is achieved by using the exact most probable point locus (MPPL)

to define the higher order terms in the Taylor series expansion of the performance function about the
mean value [50]. Two different AMV + algorithms are available in NESSUS. The AMV + p-level
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procedure is used to compute the response corresponding to a specified probability, while the AMV +
z-level procedure is for the computation of the probability corresponding to a prescribed overall
response z(x). NESSUS/FPI also includes a Monte-Carlo simulation scheme. Further details of the
AMV/AMV + algorithms are given in Subsection 3.2.2.

A schematic representation of the NESSUS (Version 5.0) code structure is shown in Figure
3.1. In addition to a library of precoded functions, user programmable subroutines are provided to
allow any performance function to be defined. The user has an option of selecﬁing the method of
structural response calculation (NESSUS/FEM, user subroutine, user input, etc.). One of the new

features of NESSUS is the facility to store probabilistic results in a database for later post-processing.

New features of NESSUS include systems reliability analysis, adaptive importance sampling
and probabilistic fault tree analysis. A facility for probabilistic fracture mechanics analysis is also under

development [52].

The NESSUS system is available from SwRI for a yearly license fee of about $20,000
(Cdn.). An additional first time installation fee of about $3,600 applies to all licenses. The annual

license includes usage, maintenance, and support of the software. Two variations of the annual license

are:

i. Maintenance and telephone support license, which includes software usage, unlimited
telephone support, and periodic code update and enhancements; and

ii. Maintenance and engineering support license, which includes software usage, 120 hours

of SWRI engineering (including telephone) support and periodic code updates and
enhancements. This second option is available in the first year only.

There was no access to this code during the course of this work. However, its theoretical
foundation and some of its applications are documented in conference proceedings and journal articles,

many of which were thoroughly studied by the principal investigator prior to and during the course of

the present contract.
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NESSUS is a probabilistic finite element analysis package that permits an integrated
response analysis and reliability analysis of complicated structures. The AMV algorithm developed at
SwRI is unique to NESSUS and has the major advantage that it efficiently performs probabilistic
analysis by a procedure that minimizes the number of limit state function evaluations in comparison
with conventional optimization schemes. The algorithm has been successfully applied to many practical
problems in the aerospace industry. However, further rigorous applications are required to fully

establish the robustness of the AMV algorithm.

3.2.2 NESSUS AMV/AMV + Algorithms

As was pointed out in the preceding subsection the so-called AMV/AMYV + algorithms were
developed at SWRI and are unique to the NESSUS system. In this subsection, these algorithms are

elaborated upon.

Consider a response (or performance) function g=g(x), where x is a vector of N random
variables and g is either explicit or implicit. The function g(x) is usually implicit when dealing with
complex structures where structural response is evaluated by means of the finite element method. The
AMYV procedure has the fundamental objective of constructing reasonably accurate cumulative
distribution functions (CDFs) of g, namely F,, with a very minimum number of performance function

evaluations. A description of the iterative procedure follows:

i Approximate g as a linear function of X via a Taylor series expansion about a representa-
tive point, usually taken as the mean value;

ii. Based on the approximate explicit function obtained in step (i), use reliability methods to
approximate probabilities in selected points in the sample space of g. This first
approximation to F, is called the mean-value first-order (MVFO) method, which is usually
inaccurate;

iii. Evaluate the function g at each design point to improve the estimate of F, obtained in step
(iD). This is referred to as the "first move" in the AMV method;

iv. a. Obtain a linear approximation (Taylor’s series) to g at each of the updated design
points, and
b. Use a fast probability integration (FPI) scheme to obtain point probability estimates

in the "next move" to construct F,;
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V. Evaluate the g function at the design points computed in step (iv); and

vi. Repeat steps (iv) and (v) to improve the estimate of g until desired accuracy is achieved.

When the algorithm is terminated at step (iii), it is referred to as the AMV method (or
AMVFO, i.e. AMV first-order, the first-order referring to the linear approximation in step (v)). For
a problem in which M points are selected for the CDF construction (i.e. M probability levels) in the

sample space of g, the AMVFO method requires a total of J;*MV function evaluations where

M =N+M+1. G-D

This number is based on the assumption that the gradients of the performance function are
computed using the perturbation method as is done in NESSUS. When the algorithm includes steps
(iv-vi), the procedure has been referred to as the AMV + algorithm based on the most probable point
locus (MPPL). The number of g-function evaluations for the AMV + procedure in a solution requiring
L full iterations is given by

T = (N+M+1) + LM(N+2) . (3.2)

A‘full iteration here is defined as an iteration required to update the linear approximation to g at the
most current design points, the calculation of point probability estimates corresponding to this
approximafion, and "moves" to correct the g-function values corresponding to the probability estimates.
The process is referred to as the p-level version of the AMV+ algorithm because probability levels

are selected and appropriate response values are determined for the probability levels.

The z-level AMV+ algorithm, on the other hand, is for estimating probabilities

corresponding to given response levels, Z,. The steps involved may be summarized as follows:

i. Use the mean-value first-order (MVFO) method to obtain the intercept and slope of the
cumulative distribution function (CDF) curve at the 50% probability level;

ii. Let z,(x) = Z, and compute the MPP and CDF using MVYFO method;

iii. Recompute Z, at the most probable point (MPP);




iv. Use corrected CDF point and information from step (i) to fit a quadratic CDF curve, and
then use this curve to predict the probability level P, for specified Z,;

v. Set the value of the CDF to P, and use z,(x) to find the corresponding response value Z,
and the MPP; and

vi. Use the MPP found as a starting point for repeated iterations about Z, until the probability
converges; the solution is expected to converge quickly because of the quadratic curve
fitting scheme. '

The main attractive feature of the AMV/AMV + algorithm is the relatively small number
of FE calculations required to establish the CDF of a given performance function as compared to
conventional FORM/SORM algorithms. The algorithm may, however, have difficulties in the analysis
of problems involving non-monotonic or highly nonlinear performance functions. Some thoughts on
how to exploit the nice features of the AMV algorithms in conjunction with schemes to improve the
robustness of the algorithms were generated during the course of this work. These ideas form the basis

of some of the recommendations for future work given in Chapter 7.

3.3 The CALREL-FEAP System
3.3.1 General Description

‘The CALREL-FEAP system is a combined package for performing integrated finite
element/probabilistic modelling of the reliability analysis of stochastic structures. CALREL is a
general purpose structural reliability analysis program that has been developed by Prof. A. Der
Kiureghian and his research group at the University of California, Berkeley [53]. FEAP is a finite
element analysis package developed by Prof. R.L. Taylor also of the University of California at
Berkeley. The two programs are connected via user defined subroutines for limit state function
evaluations, the gradients of the limit state functions, and the possibility of user provided probability
distributions. The development of the integrated CALREL-FEAP system was directed by Prof. Der
Kiureghian [10] based on the finite element reliability method (FERM). Figure 3.2 illustrates the
structure of the CALREL-FEAP system.
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3.3.2 CALREL-FEAP Algorithms

CALREL has four general techniques for computing the failure probability corresponding
to a given performance function. These include FORM, SORM, directional simulation (with exact or
approximate surfaces), and Monte-Carlo simulation. The second-order component reliability analysis
is performed by means of either the point fitting method or the curvature fitting method, or both, in
the standard normal space. Facilities are available for the computation of first-order reliability bounds
and PNET approximation for series systems, first-order reliability sensitivity analysis with respect to
probability distribution functions and limit-state function parameters, and Monte-Carlo simulation for

general systems.

The program has a library of 11 standard probability distribution functions and provision
is made for user-defined subroutines for the addition of other distribution functions. Correlations

between the basic random variables are permitted.

The calculation of gradients in the CALREL-FEAP system is based on the adjoint variable
method in conjunction with the use of analytically derived partial derivative element matrices and load

vectors. There is provision for user-supplied gradients in the system.

Current features include the finite element reliability analysis of geometrically nonlinear
stochastic structures using the wide variety of the finite elements that are available in the FEAP

program which serves as a subroutine in this system. The SORM procedure for this system is based

on the point-fitting paraboloid method developed by Der Kiureghian et al. [S4]. Further details on
CALREL-FEAP algorithms can be found in reference [10].
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4.1

4. DESIGN AND IMPLEMENTATION OF THE MODEL SFEM COMPUTER PROGRAMS

4.1 Basic Requirements of Computer Programs for SFEM-Based Structural Reliability Analysis

There are several components of analysis capabilities required of any SFEM-based
reliability analysis software package. In the present work, the finite element reliability method (FERM)
developed by Der Kiureghian and his coworkers [9, 10], was selected because of its generality and the
other advantages alluded to in Chapter 2. The specific components that constitute a FERM analysis
capability are highlighted below.

One of the first requirements is the capability for discretizing random fields into random
variables. This is a necessary pre-processing step as the most advanced reliability analysis algorithms
are formulated on the basis of random variable models. A main program is required to drive the entire
probabilistic finite element analysis process. This module will accept input, control the flow of the

various modules and algorithms, and control analysis output.

A finite element analysis (FEA) platform is required for the calculation of the structural
responses. In addition to this, a module for the computation of response gradients is required. This
is a requirement of virtually all strategies for SFEM-based reliability analysis, except the Monte Carlo

simulation scheme.

The next major module is the reliability analysis module, which performs the calculation
of failure probabilities and probabilistic sensitivity factors. This module requires the capability of
transforming generally correlated non-Gaussian random variables to uncorrelated standard normal
variables. Then a fast probability integration (FPI) scheme is required to evaluate the integral that

defines the failure probability, P;, namely:
Pe= [~ [£®dx, .1

where f,(x) is the joint probability density function of the random variables x. Also, the scope of the

present work includes the calculation of various probabilistic sensitivity measures.




Finally, a limit state function library is required for the definition of typical failure modes

of interest. However, in addition to this, a provision could be made for a user to program limit state

functions of interest.

In the following sections, the design and computer implementation of the above
requirements are presented. The design of the overall computer program was done in a way that
ensures easy enhancements and implementation of new strategies in the future. The selection of
specific algorithms was also done with careful considerations of extension to more advanced capabilities

that are likely to be of interest in the future.

4.2 The Random Field Discretization Module (RANFLD)

Program RANFLD is an important pre-processor for stochastic finite element analysis
involving random fields. Two discretization procedures were implemented in RANFLD: these are the
midpoint method and the nodal point method. These techniques were selected because they are the
most versatile as they are applicable to all types of random fields. It is recommended that material
property fields (namely: Young’s modulus, Poisson’s ratio, and density) be discretized using the
midpoint method, while distributed random load fields could employ the nodal point method. This
scheme is the most compatible with the VAST FEA system.

Stochastic finite element (SFE) meshes are similar to conventional finite element meshes
in that they are used to discretize a given domain. SFE meshes are recommended to be generally
coarser (or at least not finer) than the mechanical finite element mesh. RANFLD is designed on the
basis that the finite element model generation program VASGEN [55] will be utilized for the generation
of stochastic finite element meshes. Provision is made, however, for the user to manually define an

SFE mesh in terms of a conventional finite element mesh without a physical domain discretization of

the random field.

For the midpoint method, the centroids of the stochastic finite elements are automatically
computed. The user has the options of specifying the centroidal point or the preferred location for

computing the correlation matrix. This point may be specified in terms of a node number of a FE
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mesh or in terms of the global (Cartesian) coordinates. Provision is made in RANFLD for the use of
the same mesh for the SFEM and the FEM. Multiple random fields are permitted but, in the present
version, there is the restriction of using the same SFEM mesh for material property fields. The

material properties are classified into four types as follows:

i Type 1: Young’s modulus;
ii. Type 2: Poisson’s ratio;
iii. Type 3: mass density; and
iv. Type 4: any other type.

This classification is mainly for the information of the gradient calculation programs and the "type"

of every random variable generated by RANFLD is tagged to that variable throughout the analysis.

The input to RANFLD consists of probabilistic descriptions of all the random fields and
the descriptions of the stochastic finite element meshes to be used for discretization. Each random field
is defined via the speciﬁcation' of the probability distribution function, mean function, variance
function, and the correlation functibn. Acceptable probability distribution functions include any of the
16 distributions available in the COMPASS [56] library and also in the FORMREL module. Four
commonly used analytical correlation function models were implemented as a start-up library in
RANFLD. It should be noted that random fields can also be described in terms of the variance
function (5(t)) and the scale of fluctuation (6) instead of the correlation function. However, the former
framework’ is usually employed in conjunction with spatial averaging techniques. The RANFLD
requirement is based on practical information availability considerations and is by no means a
restriction on its capabilities. This is especially so as there exists a well defined analytical relationship

between the variance function and the correlation function [7].

The correlation function models implemented in RANFLD during the present work include
the exponential, Gaussian, triangular and the second-order autoregessive process models. These
schemes were implemented assuming the fields to be homogeneous. (A random field is called
homogeneous if all the joint probability distribution functions remain the same when the set of
locations, 9,, 6,, ..., d, is translated (but not rotated) in the parameter space.) A homogeneous random

field is the spatial counterpart of a stationary random process.




The exponential correlation function model is associated with a first-order autoregessive (or

Markov) process and has the form:
p(z) = exp(-|t|/d) , @.2)
where T = [£, - Izl is the distance between points £, and r,, and d is the correlation distance. The

Gaussian (or squared exponential) model has the form

p(t) = exp [-(I'r:[/d)z] ] 4.3)
The triangular correlation function decreases linearly from 1 to O as ]1: | goes from O to d,
1 - d ,
o(c) = <1/ It| < d @.4)
|t > d

The second-order autoregessive process correlation model has the mathematical representation:

o(z) = [1 : -‘;—'] exp(- |7 |/d) @.5)

A_nother important capability that was provided for the RANFLD program is the spectral decomposition
of the covariance matrix. This procedure (which is used by NESSUS) is only applicable to Gaussian
fields. However, it has the advantage in SFEA of being able to reduce the number of random variables
by truncaﬁng the probabilistic correlation modes. Two eigenvalue orthogonalization subroutines

(SPECD1 and SPECD2) were implemented to achieve this.

Also in RANFLD, names are automatically assigned to every random variable generated.
Apart from the fact that the variable names are used by the reliability analysis module, they serve as

useful identification for the element groups and property type (eg. E, v or o).

Figure 4.1 illustrates the schematic flow of program RANFLD. The input file format is
described in Appendix Al and is named PREFX.RFD, where, as in other VAST analysis files,
"PREFX" is a five-character prefix prompted for at the beginning of the program run. Necessary files

are opened and the centroids of the stochastic finite element meshes are computed (if required) using
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the main subroutines CENTRD. This subroutine, in turn, has several subsidiary subroutines for

dealing with each element.

The current capability is available for seven elements in the VAST finite element library.
These include the 8-noded thick/thin shell element (IEC=1), the two-noded general beam element
(AEC=3), the three-noded triangular plate element (IEC =4), the four-noded quadrilateral shell element
(IEC=5), the two-noded bar element (IEC = 8), the three-noded triangular membrane element IEC=9),

and the eight-noded isoparametric membrane element (IEC =20).

The output of program RANFLD consists of the following:

i. An echo of the random field description;

ii. Upper triangular portion of the correlation matrix printed row-wise; and

iii. Eigenvalues and eigenvectors of the covariance matrix, arranged in descending order of
eigenvalues.

Two input files are produced. A formatted output file PREFX.LPD perrriits the user to
view the results of the random field discretization. A binary file PREFX.RVB contains essentially the
same information and is the file utilized by the stochastic finite element program (STOVAST) for the

definition of random variables generated from random fields.

4.3 Algorithms for Gradient Computation

The most important feature of a stochastic finite element based reliability analysis program
is the calculation of the gradients of finite element structural responses which appear in the performance
functions. This is because algorithms for first-order reliability methods (FORM) and second-order
reliability methods (SORM) which are efficiently utilized for the approximate evaluation of failure

probabilities rely on the accurate (repeated) calculation of gradients of the limit state functions.

Several strategies are available for the computation of the gradients of finite element

responses. These include the finite difference method, perturbation method, and the adjoint method.




For the present work, the adjoint method first suggested by Arora and Haug [57] and discussed
extensively in the monograph by Haug et al. [58] was the selected strategy for gradient computation.
This method is superior in terms of both computational efficiency and accuracy to the perturbation
method used by Hisada and Nakagiri [14] and Liu et al. [15, 31}, the iterative perturbation algorithm
proposed by Dias and Nakazawa [59], and of course the finite difference method. The merit of the
adjoint method was emphasized in the work of Liu and Der Kiureghian [10] and was implemented in
the CALREL-FEAP system. The efficiency of the adjoint method was also demonstrated by Reh et

al. [371, especially for problems involving a large number of random variables.

Consider the most general representation of the limit state function, g, defined in terms of
response variables, namely: displacements (U), strains (¢) and stresses (o), and additionally some (finite

element or non-finite element) basic (primitive) variables (v). The mathematical representation of g

is then given by:

= g(v,U,,0) (4.6)
or
= gv,UW),ev, UMW), o(v,e(v,UM)) “.7)
T};e gradient of g with respect to a basic random variable (v), V.g, is then given by:
veg = %vg + g'{g} VU + -g—ge- Ve + g—cg’- v, 0 (4.8)

where V,U, V.e, and V.o are the gradients (with respect to v) of the displacement, strain and stress

fields, respectively. Using the chain rule of differentiation and the respective functional dependencies

of U, € and g, it is easily shown that
) dg Oe dg Jo e} 80
vg=E v B e 22l = 25
4.9)
+—a-g-+§§—(?—€—iv+ig——a—(’-vﬁilvVvU
U ©oe dU do de dU
Equation (4.8) is the most general representation of the gradient of typical performance functions of

interest in structural mechanics. It may be more compactly represented as:
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Vg =1f, +f; VU, (4.10)
where
fv=—a§+-a'gélu+_a§"@'lg+'a_g'@'v'a_€'ltr’ “.11)
ov  Je ov da ov do de = oOv
and
- 9% , % %, g ds O, 4.12)
Y aU 3 aUY 8 a0V U
For the special case of displacement-type limit states the functional representation of g is
of the form:

g = gv,UW) *.13)

and f, and f;; in Equations (4.11) and (4.12), respectively reduce to:

£ =98 (4.14)
v oy
and
£, = 9 (4.15)
au

Similarly, stress-type limit state conditions in engineering practice are usually defined in
terms of a stress threshold (typically yield stress of the material) and some other stress components.

The functional representation then takes the form:
g = g(v, a(v,U(W)) , 4.16)

and f, and fy in Equations (4.11) and (4.12), respectively reduce to:

@.17)

and




dg Jdo
f === — . (4.18)
U 36 dU"

It can be appreciated from the above equations that the calculation of the gradients of limit
state functions within the framework of a finite element analysis procedure is a very complicated
process. A major requirement of the procedure laid out above is the calculation of the gradients of the

displacement vector with respect to the basic random variables, that is V,U.

The direct method of evaluating Vg is to compute f,, fy, V,U and then the product f;V,U
as ~required in Equations (4.10), (4.11) and (4. 12). For a linear static formulation of the finite element

method (which is the scope of this contract), the assembled equilibrium equations appear in the form:
KU =F, (4.19)

where K is the assembled stiffness matrix and F is the assembled force vector, both random in general.

From this equation, it follows that:

gkvu - E|, -y (4.20)
ov ov

The direct computation of V,U from Equation (4.20) is very time consuming. For a structure with m
degrees-of-freedom and n basic random variables, this approach requires n solutions of m simultaneous

equations for each limit state function of interest.

The adjoint method avoids the above costly computations by solving the adjoint equation:
ATK = £y, 4.21)

only once for an adjoint displacement vector N. The product f;V,U required in Equation (4.10) is then

directly computed from the expression

AKV,U = £,Y,U = AT (%IS‘U —%f—@) , (4.22)

in which advantage of Equations (4.20) and (4.21) have been taken.




4.9

The evaluation of f,V,U then requires the solution of one equilibrium-type equation in
which the stiffness matrix involved is the same stiffness matrix for the structural response in the current
reliability iteration, the computation of load gradients, and the gradients of the stiffness matrix with
respect to the basic random variables. For this reason, two major modules for gradient computations
were designed and developed in this work for the calculation and assembly of stiffness and load
gradients. A summary of the entire adjoint method procedure for the calculation of limit state function

gradients is schematically illustrated in Figure 4.2.

] The element gradient module ELEMGD (similar to ELEMS1 in VAST) directs the
computation of the gradients of element matrices, with element-specific subroutines implemented in a
submodule ELGRAD (similar to ELSUBI1/ELSUB2 in VAST). The assembly of the element partial
derivative matrices is performed by a module ASSEMG (similar to ASSEM1 in VAST), and the
solution of the adjoint problem is computed using a module called STODIS (similar to DISP1 in

VAST).

The second gradient module is LOADGD for the calculation of load gradients, with
element-specific subroutines for calculating element distributed loads assembled in a submodule
LDGRAD.

The computation of gradients of concentrated nodal loads and the assembly of all load
gradients ié done within the load gradient module. Both of these modules (i.e. ELEMGD/ELGRAD
and LOADGD/LDGRAD) are driven by a subprogram called GRADEN. Subprogram GRADEN
includes a facility for computing the required adjoint force and displacement vectors for displacement

limit states, and directs the calculation of gradients in the entire reliability analysis process.

Three elements were implemented in the gradient modules. These are the two-noded
general beam element (IEC=3), the four-noded quadrilateral shell element JEC=5) and the three-
noded triangular membrane element IEC=9). The formulation of the element and load gradients are

element-specific. However, a typical finite element has a stiffness matrix representation of the form:

K =f BTD B 4V, (4.23)
s Qe
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where B is the strain-displacement matrix, D is the constitutive matrix, V is the volume and @, is the
domain over which the element is defined. The gradient with respect to random material property v;

can be expressed as:

K,
avi

- [ BT L Bav, (4.24)
Qe avi

since B is generally independent of material properties.

- For element IEC=5, for example, the (isotropic) constitutive matrix, D, has the form

1 v 0 0 0]
vi 0 0 0
o0 l1Y o o
D= _E 2 (4.25)
_y2 - ?
1-v* 150 0o 1 o
2k
00 o o 1IN
i 2k |

where E is the Young’s modulus, » is the Poisson’s ratio, and k is the shear displacement factor. This

leads to the following gradients:
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b 1
E _E o1,
r 2
2v 1+v 0 0 0
(1-v)? (1-v®?
2
1+v 2v 0 0 0
(1-v)? (1-v¥H?
(4.26)
9P _ E 0 0 . 0 0
dv 2(1+v)?
0 0 R S
2k(1+v)?
0 0 0 0 U S
] 2k(1+v)?]

For the beam element, the gradients are computed with respect to E, », p, A, L, I, and
I, The gradients of the element loads are similarly computed with respect to distributed load
parameters. The use of the above direct differentiation technique for gradient calculation ensures the

accuracy and efficiency especially when used in conjunction with the adjoint method.

The finite difference scheme for gradient calculation was also implemented in the reliability
analysis module (RELAMM) during this work.

4.4 Reliability Analysis Algorithms

The general reliability problem is usually formulated in terms of a finite set of basic random
variables X = (X, X,, ..., X.) and a limit state function g = g(X) in which g is the failure or
performance function. Failure is defined by the event {g(X) < 0}, while {g(X) > 0} identifies a safe

state. The probability of failure, P;, is defined as:




P - Probe0<0} = |  fmdx , @.27)
£ obig(X)< 200 <0 (X

where f,(x) is the multivariate joint probability density function of X.

The integral in Equation (4.27) is in general very difficult to evaluate and approximate
procedures have evolved as practical tools for efficiently calcula;ing the integral. Prominent examples
in this connection include the first-order reliability methods (FORM) and the second-order reliability
methods (SORM) which are well discussed in classical monographs on structural reliability; see, for
example, Madsen et al. [60] and Melchers [1]. These procedures are based on the evaluation of a
reliability index (8) from which the failure probability (P)) can then be computed. The failure

probability is related to the reliability index (which is the widely accepted probabilistic measure of

safety) through the expression:

P, = 2(-B) @28)

where Pfl is the FORM failure probability, and @ is the standard normal cumulative distribution
function (CDF). The relationship in Equation (4.28) is an important one and must be available in any

reliability analysis program. This relationship is graphically illustrated in Figure 4.4.

The scope of the present work is limited to FORM computations. The FORM algorithm
(FORMREL) implemented in the reliability analysis module (RELAMM) follows the one implemented
in the Martec reliability analysis package COMPASS [56]. The main steps in the FORM-based

computation of @ are as follows:
i Transformation of the vector of basic random variables from the original x-space to the
standard normal u-space as shown in Figure 4.5;

ii. A search (usually in the u-space) for the point (u”) on the limit state surface g(u) = 0 that
has the highest joint probability density; this point is popularly referred to as the design
point, failure point, or the most probable point (MPP);

An approximation at the MPP of the failure surface in u-space; and
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iv. A computation of the distance from the origin to the MPP called 8 and hence the failure
probability.

The probability transformation (step (i) above) is presently accomplished in four substeps.

First, there is a transformation from the x-space to an (generally non-Gaussian) intermediate y-space

of equivalent normal variables y; by equating their CDFs and PDFs, that is:

(

Yi— By .
o |—2| = . =12,...
o J F(xl) b 1 1>2’ ’n (4,29)8,
\ i
(v. -1 ) (4.29)b
b Vi Myl _ f(x) , i=1,2,..n
o
\ %

where & is the standard normal PDF, F(x,) is the marginal CDF of the basic random variable x, and
f(x) is the corresponding PDF. Equations (4.29)a and (4.29)b lead to the evaluation of the mean value

and standard deviation of the resulting equivalent normal distribution; namely:

By, =% - o, @7 [Fx)] (4.30)a
s = & F&D) 4.30)b
% f(x)

The next substep then is to transform the correlation matrix from the x-space to the y-space.
This correlation matrix is then, in turn, transformed to independent standard normal variables via an

orthogonal transformation:

y =Ty, 4.31)

in which T, is the orthogonal matrix of eigenvectors (R) of the correlation matrix in the intermediate

space.

(Please note that the superscript T in Equation (4.31) denotes the matrix transpose operator.) Finally,

the normalized variables y’ are transformed to the required standard normal u-space via a linear

transformation:




U = [S]_‘1 H vy, (4.32)

where H is the nxn matrix of scaled eigenvectors R and [S] is the diagonal matrix of the eigenvalues.

The resultant transformation from the original x-space to the u-space is usually denoted by the

transformation operator T such that:
U=TX . (4.33)

The above probability transformation scheme (illustrated schematically in Figure 4.5) has been verified
to yield very accurate results in COMPASS as is also demonstrated in Chapter 5. A more robust
algorithm that has been recommended by Liu and Der Kiureghian [27] will be considered in future

work.

The search referred to in step (i) above is conducted by means of the solution of an
optimization problem. The optimization problem pertaining to the calculation of the Hasofer-Lind

reliability index in the u-space may be posed as follows:

minimize D = \/uiT u, = B, A (4.34)a
subject to g(u,) =0 . (4.34)b

The solution of this problem locates the MPP and the n-dimensional position vector of this point, U,
is given by:

U* = -a*p , 4.35)
where o is the unit normal vector at the MPP, i.e.

o = vg@n (4.36)
[Vg(U |

The optimization algorithms implemented include the HL-RF algorithm originally proposed
by Hasofer and Lind [61] and later extended by Rackwitz and Fiessler [51] to include distribution

information. This is currently the most widely used method for solving the constrained optimization

problem in structural reliability [62]. The method is based on the recursive formula:
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1 |
U, = Vg T(UPU, -g(U)Ve(U 4.37)
1 Vg TUVeUY (¥ (U0 -8 U Ve (0

Experience shows that for most situations the HL-RF algorithm converges rapidly.

Liu and Der Kiureghian [62] introduced a modified HL-RF procedure, referred to hereafter
as the MHL-RF algorithm, which introduces a merit function m(U) to monitor the convergence of the

scheme. The non-negative merit function proposed has the form:

1 Vi U 1
m@®) = +U - 2 gy . Ly, @39
2 V2| 2
where c is a positive constant. In the MHL-RF procedure, the new iteration point is selected by a line

search along the direction vector

1

% = Ve(UY?

[Ve(UU, - g(Uy] VaUT - U, (4.39)

until a sufficient decrease in m(U) is achieved. The merit function defined in Equation (4.38) is
believed to be a convenient guide for selecting the step size. Numerical examples were given in
reference [62] to illustrate the improved robustness of the MHL-RF method over the original HL-RF
algorithm. The MHL-RF algorithm was implemented in this work because of this robustness property
especially for finite element limit state functions. The implementation of the algorithm is schematically

illustrated in Figure 4.6.

4.5 Computation of Sensitivity Measures

Modern probabilistic reliability analysis programs must include capabilities for computing
sensitivity measures. This is because the identification of the main sources of uncertainty which have

significant influences on the reliability of a system is as important as the calculation of failure

probabilities. The importance of probabilistic sensitivity estimation was demonstrated in a recent work
by the authors [63].




Sensitivity measures are utilized for two major purposes in reliability analysis. First, they
can be used to identify the variables or distribution parameters (such as means, standard deviations and
correlations) which have major influences on failure probability. Second, they may be used to gain
insight into the complex behaviour of structural systems. In the first connection, especially, these
quantitative measures provide guidance in the assessment of the validity of reliability estimates and in
the definition of the roles of the random variables in subsequent analysis. The first-order reliability
method (FORM) provides an excellent tool for assessing sensitivities because they can be determined

with relatively little extra computational effort, once the failure probability has been computed.

Parametric sensitivity factors express the sensitivity of the reliability to small changes in
statistical parameters that define the distribution of the basic random variables X or deterministic
parameters of the performance function. The FORM expressions for parametric sensitivities of the first-

order reliability index (8) and failure probability (Py) are as follows [60, 63]:

i. For a distribution parameter w;,

B _ 1,roux 1, 2TxH (4.40)

____.=_..u*

30, P O, B o,

ii. For a performance function parameter p;,
r?]
—g(ux)
OB . Lyt oux _ 9 (4.41)
op; B ap; |Ve@®)|

In the above, u* is the point in the standard normal space (u-space) on the limit state surface that has

the highest joint probability density: the most probable failure point (MPP).
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iii. For any parameter q; (w; or p),
| aP; e ap
— = — O(-B) = -$p(p)==, (4.42)
g YO = o

where ¢ is the standard normal probability density function and & is the normal cumulative distribution

function.

Importance factors express the relative importance of the different sources of uncertainty
associated with the basic random variables that define a problem. The scaled and normalized sensitivity
of the reliability index with respect to the design point in the space of the original basic random

variables is mathematically expressed as [9]:

DV, Da(ux)™J ux

- (4.43)
DVl [Dacux)T, |

y(x) =

where D is the diagonal matrix of standard deviations of X, V@ is the gradient of # with respect to x
at the linearization point, c(u*) is the unit vector normal to the limit state surface at the MPP directed
towards the failure set, and J,, is the Jacobian of the probability transformation from the u-space to
the x-space. The importance factor, ;> for each random variable X; is defined as the square of the

corresponding component of the unit vector defined in the preceding equation.

The above sensitivity measures were implemented in the COMPASS reliability analysis
computer program developed at Martec Limited and were made available to the reliability analysis
module of program STOVAST: RELAMM/FORMREL in a submodule called SENSCMP.

4.6 Other Development Efforts

In a SFEM-based structural reliability analysis program, the finite element analysis is driven
by the reliability algorithm. For this reason, the VAST FEA program was converted to a subroutine
(VASTM) so that VAST is the FEA module of the main SFEM program STOVAST. The programs

developed during the course of this work should, therefore, not be looked upon as providing a

stochastic finite element analysis capability for VAST. Rather, a stochastic finite element analysis




program (STOVAST) has been developed in which VAST is used as the finite element solver. This
point is raised here to emphasize that although developments in STOVAST will be geared towards
compatibility with the VAST system, they will remain as two separate programs, each with its own
user manual. This situation will most probably remain so until, hopefully, stochastic finite element

analysis becomes the accepted standard for FEA.

In order to make VAST serve as the platform for FEA in this work, certain modifications
were required in existing VAST modules. First the geometry input file had to be modified to permit
the specification of random element properties and random loads. This triggered modifications to the

element subroutines (ELEMS1/ELSUBI/ELSUB2) and the load module and its element library
(LOADI).

It was also necessary to transfer some computation parameters to the various modules and
to suppress printout of intermediate (FE) reliability iteration results. Limit state functions for

displacements and stresses were also made available in program STOVAST.

4.7 Input Requirements for Running Program STOVAST

Detailed descriptions of the input formats for running the random field pre-processing
program RANFLD and SFEM-based reliability analysis program (STOVAST) are described in
Appendix Al and A2, respectively. For STOVAST, the input data files required consists of all VAST
FEA input files (modified as described in Appendix A2) and the main input file PREFX.SFE. If

random fields have been discretized using RANFLD, then the random variables generated in file

PREFX.RVB must also be available.
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(x-space) to Standard Normal Variables (u-space)
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5. VERIFICATION PROBLEMS FOR PROGRAMS RANFLD AND STOVAST
5.1 Random Field Discretization for a Stochastic Beam

Consider a stochastic beam of length L whose Young’s modulus is best modelled as a

Gaussian random field, with a correlation function:

Ax
p(x; X;) = exp (-TL) , 6.1

where Ax is the distance between points x; and X;, and X is a dimensionless cofrelation parameter. The
random field has a mean value (RMV) of 2.90E+04 ksi and a standard deviation (STD) of 1.74E+03
ksi. It may be recalled (see Chapter 4) that Equation (5.1) corresponds to the exponential correlation
function model with a correlation distance d = AL. For a value of A = 0.25 used by Mahadevan {36]
and a beam length of 192", this gives a correlation distance d = CORD = 48" for the preparation of
the preparation of the PREFX.RFD file. Program VASGEN [55] was used to prepare the stochastic

finite element mesh used for the random field discretization.

The output of program RANFLD (PREFX.LPD file) for this problem is shown in Table
5.1, where it may be noted that the midpoint method was used. The variable names for the four
random variables corresponding to the four SFEMs are given in the output file as YM-G#001, YM-
G#002, YM-G#003, YM-G#004, respectively. These names indicate that in the SFEA that may later
be required, all deterministic finite elements within SFEM no. 1 are best grouped together as the first
element group (hence the designations G#001, etc.). The YM is a reminder that this random variable

represents a Young’s modulus.

The correlation coefficient matrix is printed row-wise as noted and shown in Table 5.1.
These results agree, of course, with those of Mahadevan [36]. Only the upper triangular portion is
printed because a correlation matrix is symmetric. Further down the table, eigenvalues and

eigenvectors of the covariance matrix (not correlation matrix) are also printed in descending order of

the magnitude of the eigenvalues.




5.2 Random Field Discretization of a Stochastic Plate

The second random field discretization example is a stochastic rectangular plate. The
Young’s modulus of the plate is modelled as a homogeneous, lognormal field with a mean value of
1 .0E +06 units and coefficient of variation of 10%. The autocorrelation coefficient function is assumed

to have the isotropic form:

p(Ax) = exp (_A_ii_é_i) , (5.2)
(0.25L)*

where L is the width of the plate (=16 units). Equation (5.2) represents the Gaussian correlation
model with a correlation distance of 4.0. This random field is discretized using a mesh of 64 stochastic
finite elements as shown in Figure 5.1. (This utilized the VAST four-noded quadrilateral shell element
(EC=5).) The result includes a correlation matrix (64 x 64) written into the binary output file used

in the stochastic finite element analysis problem described under Section 5.4.

5.3 SFEM Reliability Analysis of a Stochastic Beam

The stochastic beam shown in Figure 5.2 was first analyzed for the verification of program
STOVAST. The beam has a random Young’s modulus, cross-sectional area and second moment of
area and is subjected to a random field load. The random field has properties earlier described in
Section 5.1 above. The beam was first analysed using a single stochastic finite element to discretize
the load field. This is the same as considering the random field as a random variable (WLOAD).
Table 5.2(a) gives a summary of the basic variables involved in this problem. The cross-sectional area
is Gaussian with a mean value of 7.68 in? and a coefficient of variation (COV) of 5 %, the second
moment of area L, is also normally distributed with a COV of 5%. The Gaussian load has a mean
value of 0.08 k/in and a COV of 20%. The stochastic finite element reliability analysis is conducted

with reference to the limit state that the vertical deflection at the free end of the beam exceeds 0.5%

of the beam length. This translates to a limit state function
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y (5.3)

where uy, (= 0.5% of L) is the displacement threshold and uy denotes the vertical displacement at
node 5 of the structural finite element mesh. The results shown in Table 5.2b, indicate a reliability
index, B8, of 1.8627 and a failure probability of 0.31253E-01. Importance factors are also shown in
Table 5.2b. These answers are exact (as demonstrated below) indicating the STOVAST solution is

perfect. Four finite elements were used to model the beam.

The closed-form expression for the tip deflection of a cantilever beam of length L subjected

to a uniform distributed load w unit length is given by:

_ wLt | (5.4)

u’ ,
8EI

where E is the Young’s modulus and I is the second moment of area. A reliability analysis was earlier
conducted for this beam using COMPASS based on the same limit state condition defined in Equation
(5.3) but with the tip displacement computed using the explicit representation in Equation (5.4). The
results are exactly the same as those summarized above and detailed in Table 5.2(b) for both 8 and the
probabilistic sensitivity factors. A detaited STOVAST output for the 4-SFEM case is shown in
Appendix B1.

This STOVAST result not only illustrated the successful solution of a stochastic finite
element problem but demonstrates two important points in the development and application of SFEM
procedures. The first point is that if accurate (deterministic) FEA solutions can be found (as was the
case for this beam problem), then for well-behaved limit state functions such as the present one, very
accurate reliability estimates can be expected. The other notable point is the power and utility of
response surface méthods. Eqﬁation 6] .45 is a response surface representation of the finite element
random variable ug’ - i.e. the vertical displacement of node 5. Thus, for more complicated models,

if reliable (i.e. reasonably accurate) response surfaces can be constructed in the neighbourhood of

critical structural locations, then reliability analysis results obtained can be depended upon.




5.4 SFEM Reliability Analysis of a Stochastic Plate

The stochastic plate described in Section 5.2 was also analyzed for STOVAST verification.
The plate with a lognormal homogeneous random field Young’s modulus is subjected to two random
point loads in the global x and y directions [64]. The loads have mean values: j, and p, of 4,000 and
1,000 units, respectively and COVs of 10% each. Both loads are assumed to be normally distributed
but statistically independent. The Poisson ratio is assumed to be deterministic (i.e. fixed) with a value
of 0.2. The failure criterion examined was the exceedance of the horizontal displacement at the point

of load application above a threshold of 0.03 units.

Three analyses were conducted for this problem, all utilizing a mechanical FE mesh of 64
quadrilateral shell elements. The first analysis considered the Young’s modulus random field as a
single random variable and yielded a reliability index, 8, of 1.7714 with a corresponding failure
probability of 3.825%. A detailed printout of STOVAST output file, PREFX.LPT for this analysis
is provided in Appendix B2. This output contains the description of the input random variables, finite
element input data, intermediate FE reliability iteration results for both structural response, loads, and
response gradients, and the reliability analysis results. (Please note that some of the output data were
printed out to monitor the convergence performance of the FPI algorithms and a provision would be

made in future (i.e. release) versions to suppress some of the output information.)

The second analysis was conducted to check the robustness of the probability transformation
scheme for highly correlated random variables. To achieve this, the random field was discretized using
64 SFEMs but assuming perfect correlation structure (i.e. py = 1.0) between the resulting random
variables. This correlation option is the null correlation choice in the RANFLD correlation function
library and may be selected by setting the parameter ICOREM (see Appendix Al) to zero. This
analysis gave exactly the same reliability results (as it should) as obtained in the first analysis,
demonstrating that RELAMM can adequately handle very closely correlated (in this case perfectly

correlated) random variables.

The third analysis conducted for this problem used a 64 SFEM mesh to discretize the

Young’s modulus random field but this time util izing the actual correlation function model described
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in Section 5.2, that is Equation (5.2). This analysis yielded a reliability index of 8 = 2.1139 or P, =
1.726%. We note, as expected, that the value of the reliability index has gone up with reference to
the other analyses. This is because the single random variable model of the random field over-
represents the variability in the parameter and hence a higher féilure probability. This last analysis also
demonstrates that random variable models of parameters that are truly random fields give very
conservative estimates of safety. The example also underlines the importance of random field
discretization capabilities and the merit of the SFEM approach itself. All the above problems were
solved using both the HL-RF and MHL-RF algorithms.

5.5 SFEM Reliability Analysis of a Perforated Stochastic Plate

Figure 5.3 shows a quarter finite element model of a stochastic plate with a circular hole.
The square plate is of dimensions 24" x 24" with a central hole of radius 2". The plate is subjected
to a random distributed load at the edges. This load is assumed to be normally distributed with a mean
value of (2 ksi and a cov of 20%). The Young’s modulus of the plate is considered to be a
homogeneous random field with a mean value of 0.290E+05 ksi and a cov of 10%. The correlation

of the field is assumed to be Gaussian, with a correlation distance of §".

The discretization (mechanical and stochastic) was performed with the four-noded
quadrilateral shell element as shown in Figure 5.3. The four bold elements denote the stochastic finite
elements used for random field discretization, while the 24 lighter elements denote the mechanical finite

elements used for discretizing the continuum structure.

Stochastic finite element reliability analysis of the plate is conducted with reference to the

displacement limit state function:

() = uy, - u ©-2)

where u,, is the displacement threshold of 0.600E-02" and u5x denotes the horizontal displacement at

finite element node number 20 (see Figure 5.3) of the plate. The reliability analysis results are:




B 2.5746
P, =  0.50183E-02

The importance factors are 27.71% for the combined random variables describing the Young’s modulus

and 72.29% for the random load.




TABLE 5.1: RANFLD Output for Stochastic Beam Problem

* xor RANDOM FIELD CISCREITIZATION x %

PREFIX DEFINING SFEM-REL. ANALYSIS FILES : WALSS
STOCHASTIC BEAM WITH RANDOM YOUNGS MCDULUS
TOTAL NO. OF RANDOM FIELDS = 1

NO. OF SFEM MESHES USED - <

*** DISCRETIZATION OF RANDOM FIELD NO. 1

ICATFL =~ 1 ITYPE = 1

RANDOM VARIABLE CLASSIFICATION : XRVT = 2

ICoF - 2

RMV = 0.290000E+03 STD = 0.174000E+04

ICOREM - 1 IRHOSP =~ 1 CORD = 0.48CE-02
PREFIX DEFINING SFEM MESH FOR THIS FIELD : WALSS
CENTROIDAL COORDS. OF SFEMs COMPUTED AUTOMATICALLY
CORRELATION COEFFICIENT MATRIX PRINTED ROWWISE

NOTE : ONLY UPPER TRIANGULAR PORTION IS PRINTED

VARIABLE NUMBER : 1
VARIABLE NAME @ YM-G#001
ROW & 1 HAS 4 MEMBERS

0.100000E+01 0.367879E+00 0.135335E+00 0.487871E-01

VARIABLE NUMBER : 2
VARIABLE NAME 3 YM~G#002
ROW ¥ 2 HAaS 3 MEMBERS

0.100000E+01 0.367879E+00 0.135335E+00

VARIABLE NUMBER : 3
VARIABLE NAME : YM-G§003
ROW # 3 HAS 2 MEMBERS

0.100000E+01 0.367879E+00

VARIABLE NUMBER : 4
VARIABLE NAME : YM-G#004
ROW # 4 HAS 1 MEMBERS

0.100000E+01

EIGENVALUES AND EIGENVECTORS OF COVARIANCE MATRIX :
*+* PROBABILISTIC MODE NC. *** 1
EIGENVALUE = 0.525768E+07
CORRESPONDING EIGENVECTOR :
0.417922E+00
0,570387E+00
0.570387E+00
0.417922E+00
*** PROBABILISTIC MODE NO. === 2
EIGENVALUE ~ 0.324831E+07
CORRESPONDING EIGENVECTOR :
-0.625406E+00
~0.329950E+00
0.329950E+00
0.625406E+00
*** PROBABILISTIC MODE NO. *»x 3
EIGENVALUE - 0.206208E+07
CORRESPONDING EIGENVECTOR :
~0.570387E+00
0.417922E+00
0.417922E+00
-0.570387E+00
*** PROBABILISTIC MODE NO. #** 4
EIGENVALUE = 0.154237E+07

CORRESPONDING EIGENVECTOR, :

0.329950E+00
~0.625406E+00
0.625406E+00
~0.329950E+00C
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TABLE 5.2a: Random Variables Describing the Stochastic Beam Problem
(RELAMM is the Reliability Analysis Module of STOVAST)

RELAMM VARIABLE LISTING

| i
| |
|

| NO.| NAME | DISTR.TYPE | MEAN | STAND.DEV. | DISTR.PAR. |
| 1
| 11 YMOD | NORMAL | 0.2900E+05 | 0.1740E+04 | 0.2900E+05 |
| ] | i | | 0.1740E+04 |
| 2 1 AREA | NORMAL | 0.7680E+01 | ©.3840E+00 | 0.7680E+01 |
| i | | ] | 0.3B40E+00 |
| 3| AIz | NORMAL | 0.3010E+03 | 0.1505E+02 | 0.3010E+03 |
i | | { ! | 0.1508E+02 |
| 4| PR | FIXED | 0.3000E+00 | { 0.3000E+00 |
| 5 | DEN | FIXED { 0.1000E+01 | | 0.1000E+01 |
| 6 | ZERO | FIXED | 0.0O000E+00 | | 0.0000E+00 |
b7 WLOAD | NORMAL | 0.8000E-01 | 0.1600E-~0L | 0.8000E-01 |
| | ] | i | 0.1600E-01 |
i 8 | UTHR | FIXED | 0.9600E+00 | { 0.9600E+00 |
| |




TABLE 5.2b: Finite Element Reliability Analysis Results
for Stochastic Beam Problem

COMPASS Solution | STOVAST (FERM) STOVAST (FERM)
(Analytical Limit Solution With Solution With
State Function) [1 SFEM for [4 SFEMs for
Random Field] Random Field]
B8 1.8627 1.8627 2.3887
P; 0.31253 E-01 0.31253 E-01 0.84537 E-02
EPF 3.32% 3.32% 5.56%
LF 2.33% 2.33% 3.93%
WFE 94.34% 94.35% 90.52%
(i.e. sum of all the
Werem PIFS)
W™ | N/A N/A 0.26%
Wz F | N/A N/A 63.18%
Werems ™ | N/A N/A 2.01%
Wermenad™ | N/A N/A 25.07%

Note: PIF denotes probabilistic importance factors of random variables.

5.9




P152713.PDF [Page: 96 of 174]




STOCHASTIC FINITE ELEMENT DISCRETIZATION TESTING

81 STRUCTURAL
FINITE ELEMENT
MODEL

ELEMENT GROUPS:
ALL

— 3

4 .978E+00

FIGURE 5.1: Random Field Discretization of a Stochastic Rectangular Plate
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6. BIAS AND MODELLING ERRORS IN SFEM-BASED RELIABILITY ANALYSIS

6.1 Classification of Uncertainties

There are several possible sources of uncertainty when dealing with stochastic structures
for which we have highly recommended the application of stochastic finite-element methodologies.
These include inherent randomness, estimation errors, model imperfections and human error. Inherent
randomness is usually due to natural variabilities in physical phenomena or processes. Examples of
these include environmental loads imparted on marine structures by the inherently random ocean
environment, material properties, member sizes and geometry. This class of uncertainties is usually
referred to as Category I or aleatory uncertainties. The other class of uncertainties called Category 11
or epistemic uncertainties encompasses estimation errors, model imperfections, and human errors.
They are generally due to lack of sufficient data, knowledge or understanding of a complex
phenomenon (i.e. ignorance), or use of simplified models. Examples of this latter category include
errors in analysis results due to inadequate analytical procedures for load/response computation and

human errors induced during finite element model generation or other input descriptions.

There exists a fundamental distinction between aleatory and epistemic uncertainties.
Whereas inherent randomness is intrinsic to nature and usually beyond the engineer’s control, epistemic
uncertainties are extrinsic and to some extent reducible. Reducibility in the latter class stems from the
fact that an analyst may choose to obtain additional information to improve the accuracy of the
estimation procedures. This may be in the form of gathering more data for more accurate probabilistic
characterization of governing engineering parameters, the execution of appropriate experiments to gain
a better understanding of the relevant phenomena, or the development and application of more
sophisticated models for analysis. Uncertainty due to human error may also be reduced by
implementing rigorous quality control measures in the analysis process [65]. It is pertinent to point

out that the avenues for reducing epistemic uncertainties are associated with costs in terms of money

and time. However, epistemic uncertainties are information sensitive, unlike aleatory uncertainties.




6.2 Quantification of Uncertaintieg

Two important measures of uncertainties are the bias factor and the coefficient of variation

(COV). The bias factor for a parameter X with a true value x, is defined as:

B=-2. 6.1)

%

where x, is the predicted value of the parameter. This parameter measures the systematic error in the
prediction of the average value of the desired quantity. The bias factor is often applied constantly to
predicted values and may be considered to be a random variable. The COV, §, is the ratio of the

standard deviation, g,, to the mean value, -JE, and relates to the standard error pertaining to the

statistical imperfection in the estimated control value (i.e. mean or median):

6.2)

o
i
1,0

The credibility of uncertainty measures is important for the obvious reason that the validity

of calculated structural responses or failure probabilities depend on these measures.

6.3 Analysis of Uncertainties

The bias factor corrects predicted results to give:
x, = Bx, 6.3)

This model is popularly referred to as the Ang-Cornell model [66]. Ditlevsen’s model [67] has a more

general representation of the form:
x, = Bx, + b 6.4

where b is a Gaussian random variable which is statistically independent of x. The Ang-Cornell model
is, nevertheless, often preferred in the propagation of uncertainties because it is simpler and requires

less information in order to determine the statistics of its parameters. The Ang-Cornell model is

particularly suitable for lognormal random variables, especially when expressed as a product of several




6.3

other variables. Detailed illustrations and applications of this application can be found in the works

of Nikolaidis and Kaplan [68] and Bea [69]. However, the basic principle for propagating uncertainties

using the first-order second moment method is summarized below following the work of Bea [69].

For the addition or subtraction of two normal random variables, X + Y) = Z, the mean
of the resultant distribution can be calculated as:

Z-%:Y 6.5)

The standard deviation of the resultant distribution can be calculated as:

G, = ‘/0§c+031¢2pcxoy ©.6)

For the multiplication of two random variables, (X Y) = Z, the mean of the resultant
distribution can be calculated as:

Z-XY ©7)

The standard deviation of the resultant distribution can be calculated as:

oy =X Y (1 + p? [Va+vi + (VEvI)] (6.8)
forp=20.
V= Vi + Vi + (VaVY) ©6.9)

For the division of two random variables, (X / Y ) = Z, the mean of the resultant

distribution can be calculated as:

(6.10)

z-2
Y

The standard deviation of the resultant distribution can be calculated as:




6.11)

orforp=0

6.12)

When the random variables X and Y can be considered independent (0=0), and Vx and V¢

are small (V < < 1), then for either the multiplication or quotient of two random variables:

Vy = Vi + Vx €13

For the square of X (Z = X%

Z=-X+ oy
(6.14)

oz=\/;5_(20;+2o;

More generally, if Z = X Y*
Z=XY
6.15)

= Jg? 2
0, = |ox + a0Y

For lognormal distributed variables (logarithms of the variables are normally distributed):

6.16)

Oy = Oyy and X = X, exp (0.5 of‘nx)

and relations similar to the above can be utilized for propagating uncertainties.

A framework for incorporating model uncertainties in advanced reliability methods

employing full distributional information was developed by Der Kiureghian [70]. This work,

model

formulated on the Bayesian approach, derived simple formulas that show the effect of
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uncertainty on the reliability index. The Der Kiureghian model is more general than both the Ang-
Cornell and Ditlevsen models and permits the calculation of the variance of the reliability index to

reflect the influence of modelling errors or uncertainties.

In our opinion, the Der Kiureghian model is the most realistic vehicle for accounting for
bias and modelling uncertainties in SFEM-based structural reliability analysis. This is for the obvious
reason that stochastic finite element analysis is a sophisticated process that is difficult to express in

simple analytical forms such as are required by the Ang-Cornell and Ditlevsen models.

6.4 Sources of Bias and Modelling Errors

The sources of bias and modelling errors in SFEM-based structural reliability analysis

include the following:

i. Data collection/characterization for material properties and structural geometry;

ii. Probabilistic description of random fields, i.e. whether the most suitable probability
distribution function or correlation function has been used to define the field. Errors in
these can be reduced by collecting more data and by validation of the stochastic character
of the field. Validation can be accomplished by the reverse process of generating Monte
Carlo simulations of the random field and comparing these to measured values of this field
at selected locations;

iii. Discretization of random fields. Some probabilistic information is lost when the field over
a domain is represented by pointwise values (i.e. random variables);

iv. Probability transformation scheme. The transformation of generally correlated variables
to standard normal (statistically independent variables) involve approximations, and hence
some information is also lost in this process;

V. Finite element model generation. Discretization errors are incurred in the process of
converting a continuum structure into several discrete elements;

vi. Finite element formulation. These are errors due to inappropriate use of finite elements
or boundary conditions. This may also be due to inadequate modelling of the physical
phenomena, for example, using linear instead of nonlinear finite element analysis, failing
to utilize inappropriate constitutive models, or failing to account for interaction of certain
phenomena (eg. thermomechanical coupling in processes involving large inelastic
deformations);




vii. Calculation of FE structural response such as displacements and stresses. These are the
solution errors in FEA which may sometimes be significant (eg. in nonlinear FE analysis);

viii. Calculation of gradients of the structural response;

ix. Calculation of the failure probability (and hence the reliability). These calculations usually
employ approximate procedures which introduce errors in the computed reliability indices;

X. Mathematical definition of the failure conditions (i.e. limit states) of interest;
Xi. Definition of loads; and
Xii. Human error.

For marine structures, Nikolaidis and Kaplan conducted [68] a study dealing with
uncertainties in stress analysis on behalf of the U.S. Ship Structure Committee. The study dealt mainly
with load characterization and responsé computation, but did not deal with reliability estimation. The
above list, although generic in form, is therefore, more comprehensive as the scope of stochastic finite

element analysis is much broader than the focus of the study in reference [68].

As we pointed out in the preceding subsection, the work of Der Kiureghian [70] is
recommended as a framework for realistically accounting for model uncertainties in SFEA. Another
strategy that is worthy of consideration is the use of confidence bounds on the computed values of

failure probabilities (or reliability indices). This is clearly an area that would benefit from further

research investigations.
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7. CONCLUSIONS AND RECOMMENDATIONS

A research and development program for the application of stochastic finite element-based
reliability analysis has been successfully executed in this work. The detailed state-of-the-art literature
review of various SFEM methodologies permitted a solid background for the evaluation of the different
strategies and substrategies pertaining to the diverse technical requirements of a probabilistic finite
element analysis. Case studies of the CALREL-FEAP system and the NESSUS system permitted

practical evaluation of some of the available strategies.

The random field modelling capabilities implemented in RANFLD are the most versatile
because they are applicable to non-Gaussian ﬁelds and have no restrictions on the geometrical shape
of the stochastic finite element meshes. A respectable library of correlation models were made
available to permit easy applications. Furthermore, the RANFLD strategy does not suffer from
numerical stability problems that may result in the reliability analysis module because the correlation

coefficient matrix is always positive definite.

The finite element reliability method (FERM) implemented in program STOVAST under
this contract was demonstrated to efficiently give very accurate results. The verification problems
solved in Chapter 5 demonstrate not only the overall proper operation of program STOVAST but its
various algqrithms such as those for gradient computations, fast probability integration, and sensitivity
computations. Also very important, program STOVAST was designed to permit easy extension of its
capabilities either in terms of additional reliability analysis procedures or the implementation of new
SFEM strategies.

The sources of bias/modelling errors and uncertainties in the application of SFEM-based
structural reliability analysis were also examined during this work. Available procedures for
propagating uncertainties in engineering analysis were briefly reviewed and some suggestions were

made on a suitable approach for the SFEM process.

The verification of program STOVAST and the research studies conducted in this work

have produced very encouraging results. Based on this observation, and noting the unique promise of




the stochastic finite element method as the most viable strategy for realistically accounting for the

various uncertainties present in ship structural analysis, it is recommended that further work be

pursued.

First, it is desirable to consolidate, expand, and further verify the existing capabilities of
program STOVAST. This will include the addition of more elements to the stochastic finite element
library and the upgrading of the routines in both RANFLD and STOVAST for compatibility with the
nonlinear version of VAST (Version 7). The capability for modelling random nodal coordinates was
not implemented because of the additional complications in the calculation of the partial derivative of
load vectors and element matrices. This capability should be provided in future work so that a full
stochastic structural geometry representation of the mechanical finite elements will be permitted. A
more fully automated facility for the creation of modified (STOVAST) PREFX.GOM files from results

of random field discretization and the conventional VAST geometry files will also be useful.

Further enhancements to the reliability analysis algorithms would also be beneficial. We
believe the development of the Nataf model for the probability transformation from x-space to u-space
will provide a more robust platform. An additional optimization algorithm suitable for locating the
MPP for large scale problems should be implemented. This will further complement the existing HL-
RF and MHL-RF algorithms. Also, information on probabilistic sensitivity factors could be used to

speed up the reliability iterations.

The second area that would require further work is the development of a new (alternative)
SFEM strategy. Some advanced algorithmic concepts which have been developed, tested, and (in some

cases) commercialized by other leading researchers should be seriously considered for implementation

in STOVAST.

Recent and current DREA research efforts in the area of probab ilistic mechanics in general
and in the subject of SFEM-based reliability analysis in particular represent novel attempts to apply this
new technology to ships. However, several technical issues that are unique to the size scale,
operational environment, and specialized architecture of ship structures need to be researched.

Included in this last are topics such as various procedures for the optimization of computational
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efficiency, efficient implementation of ship-specific engineering failure modes (both serviceability and

ultimate) and development of time-dependent reliability models.

Overall, we believe the execution of this project is a major step towards the practical
application of SFEM-based reliability analysis to ship structural integrity assessment. It is hoped that

the scientific authority continues to maintain interest and give the dedicated commitment and support

for the vigorous pursuit of this laudable objective.
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INPUT FORMAT FOR THE RANDOM FIELD DISCRETIZATION PROGRAM: RANFLD
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Card 1 (A72)

Al-1

FORMAT OF RANFLD INPUT DATA: PREFX.RFD

Title describing the random field problem

TITLE =
Card 2 (I5)
NRFLDS = Number of random fields involved in the problem
Card 3 (5)
NMESH = Number of stochastic finite element meshes used
Cards 4-11 are.to be provided NRFLDS times.
Card 4 (A8)
RANFIELD = Eight character literal constant as header for the beginning of a random

Card 5 (315)

ICATFL

ITYPE

ISORT

T (T I

FENE U IS

[

field description

Category of field

for material property random field
for distributed random load field
for random structural geometry*
for random boundary conditions*

Note: * not presently available

for Young’s modulus random field
for Poisson’s ratio random field

for mass density random field

for any other material property type

BV N -

0 not to sort
1 to sort eigenvalues

(parameter for classifying material property random fields)

Card 6 (I5)

ICDF

Marginal cumulative distribution function (CDF) defining the
probabilistic character of the random field




ICDF Values Corresponding to Various
Probability Distributions
ICDF Value Probability Distribution
1 Fixed-valued variable
2 Normal
3 One-sided normal
4 Lognormal
5 Uniform
6 Triangular
7 Exponential
8 Beta
9 Chi-square
10 Gamma
11 Gumbel (EVD-Type I)
12 Maxwell (not presently
available)
13 Rayleigh
14 Student-t
15 Weibull
16 Evd Type II maximum
(Fréchet)
17 EVD Type Il maximum
Note: EVD = Extreme Value Distribution

Card 7 (2E10.3)

Mean value of the field
Standard deviation of the field

RMV
STD

Card 8 (215, E10.3)

ICOREM Correlation function type for this random field
0 for fully correlated field
1 for exponential correlation

2 for Gaussian correlation




IRHOPS

CORD
Card 8 (AS, I5)

PREFX

IPRF

Card 9 (2I5)

ICENT

NSFEM

it il o Il hn
PN

I

RN o O

[\ JrSeY

Al1-3

for triangular correlation
for second-order autoregessive process correlation

Parameter that defines the space in which the correlation coefficient
function is defined :

for original space of basic random variables (x-space)

for transformed standard normal space (u-space)

Correlation distance characterizing the random field

Five character prefix describing the SFEM mesh (i.e. geometry file) to
be used for discretizing this field

no physical geometry file available for describing this SFEM mesh
PREFX.GOM file to be used for the SFEM mesh (i.e. identical to
mechanical FE mesh)

PREFX.GOM file to be used for the SFEM mesh

for automatic computation of the centroidal coordinates the SFEMs

for user-supplied centroidal node number

for user-supplied global coordinates of the centroid or some preferred
location for discretization

Number of stochastic finite elements

Card 10 to be provided NSFEM times.

Card 10a (I6I5) (provide only if IPRF=2) ( omit if ICENT=0 and IPRF= 1

JSFE
NFE
IGRP
JFEM(K)

k=1,2,
...,NFE)

SFEM number
Number of mechanical finite elements in this stochastic finite element
Element group number of the mechanical finite elements involved

Element numbers for the (NFE) mechanical finite elements

Card 10b (16I5) (provide only if IPRF=0)

IJSFE

SFEM number




Al-4

NNODES = Number of nodes defining the boundary of the stochastic finite element
NBOUND(k) = Node numbers defining the NNODES boundary nodes

k=1,2,

NNODES)

Card 11a (I5) (provide only if ICENT=1)

INODE = Node number to be used as discretization reference point (representing
a SFEM centroid or some other preferred location within the SFEM)

Card 11b (3E10.3) (provide only if ICENT=2)

XCO = Global x-coordinate of discretization point
YC{) = Global y-coordinate of discretization point
ZCO) = global z-coordinate of discretization point
Note: as in Card 11a, the discretization point is a point representing a SFEM centroid

or some other preferred location within the SFEM.
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INPUT FORMAT FOR THE SFEM-BASED RELIABILITY
ANALYSIS PROGRAM: STOVAST
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A2-1

INPUT FORMAT OF PROGRAM STOVAST: PREFX.SFE

Card 1 (A72)
. TITLE = Master title of the SFEM-based reliability analysis
Card 2 (715)

Seven parameters for defining the master control codes:

IRANFLD

i

0 No random field definition or discretization involved in this analysis
= 1 Random field discretization involved in this analysis

IVBLDFN = 0 No definition of random variables required other than those generated
from random fields

= 1 Random variables are defined in addition to those generated from
random fields

IRESPNS = 1 Limit state functions (LSF) or response functions defined in terms of
VAST finite element analysis

= 2 LSF defined via RESLIB library

ISYSDEF*

]
<

No systems defined in this analysis
= 1 Some systems are defined for analysis

ICOMREL = 1 Component reliability analysis via FORM

ISENSTY = ( Probabilistic sensitivities not of interest

= 1 Computation of probabilistic sensitivities of the reliability index or
failure probability are of interest

ISYSREL* = 0 No systems reliability analysis required
= 1 Systems reliability analysis required

*Please note that these systems are not yet available in STOVAST. Provisions were made in the code
to permit these definitions for easy extensions of STOVAST capabilities in future work.

Omit Card 3 if IRANFLD = 0




A2-2

Card 3a (A7)
HEADR = Seven character literal constant TRANFLD’
Card 3b (I5)
10PT = 1 Random variables generated from random fields are available in
PREFX.RVB file
Omit Cards 4 and 5 if IVBLDFN=0
Card 4a (A7)
HEADR —  Six character literal constant ‘TVBLDFN’
Card 4b (I5)
NBRV = No. of basic random variables defined for this analysis

Provide Card 5 NBRYV times)

Card 5a (AB)
VNAME = Variable name (maximum of eight characters)
Card 5b (215)

ICDF =  Probability distribution function for this random variable

(Admissible values of ICDF are shown below)




A2-3

ICDF Values Corresponding to Various
Probability Distributions
ICDF Value Probability Distribution
1 | Fixed-valued variable
2 Normal
3 One-sided normal
4 Lognormal
5 Uniform
6 Triangular
7 Exponential
8 Beta
9 Chi-square
10 Gamma
11 Gumbel (EVD-Type I)
12 Maxwell (not presently
available)
13 Rayleigh
14 Student-t
15 Weibuil
16 Evd Type II maximum
(Fréchet)
17 EVD Type Il maximum
Note: EVD = Extreme Value Distribution

0 Fixed variable (i.e. deterministic constant)

1 FE geometrical nodal coordinates random variable
2 FE material property random variable (eg. E, », p)
3 FE size property random variable (eg. A, I, t)

4 FE distributed load parameter random variable
5
6
7

KRVT

Fe concentrated load parameter random variable
Non-finite element threshold random variable
Any other type of random variable

1 T 1 VI I I |




A2-4

Card 5c (I5)

IOPX 1 Random variables defined in terms of mean values (n), standard

deviations (o), and bounds

= 2 Random variables defined in terms of p, coefficient of variation (COV),
and bounds

= 3 Random variables defined in terms of distribution parameters
Card 5d (3E10.3) (required only if KRVT #0)

RMVL = Mean value (or other distribution parameter)

STDV Standard deviation
BOUND = Bounds

Card 5e (E10.3) (required only if KRVT =0 or ICDF=1)

FIXVAL = Fixed value of the variable
Card 5f (2IS)
ICOREL = 0 No correlation between the basic random variables

1 Correlations between random variables defined in the original x-space

= 2 Correlations between random variables defined in the transformed
standard normal u-space

ICOPT = 1 Correlation described in terms of the upper triangular portion of the
correlation matrix

= 2 Correlation defined in terms of correlation pairs
Card 5g (omit if OCOREL =0 or ICOPT=2) (provide J times: J=1,2,...,NBRV)

Card 5g.1

MM = No. of terms in row number J of the correlation matrix starting from the
diagonal term and going only up to the last non-zero term)




A2-5

Card 5g.2 (free format)

ACK) = Values for the current row of the correlation matrix
kk=1,...,mm)

Card 5h (omit if OCOREL =0 or ICOPT=1)
Card 5h.1 (I5)
NCORPS = Number of correlation pairs

Card 5h.2 (free format) (provide NCORPS times)

KI = First variable number in the current correlated pair
KJ =  Second variable number in this pair
RHO = Correlation coefficient value
Card 6a (A7)
HEADR = Seven character literal constant ‘IRESPNS’

Card 6b (I5)
I0PT = 1 For limit state (i.e. component) definition
Card 6¢ (I5)

NCOMPS = Total number of components to be defined in this problem

Card 6d to be provided NCOMPS times.

Card 6d (A20)
COMPNAME = Component name (maximum of 20 characters)

Card 6e (415)

NUMC Identification number of the current component

LSFT

1 For displacement-type limit state function
2 For stress-type limit state function
3 For buckling limit states (not presently available)




NAVS = Number of additional random variables (i.e. in addition to those
generated from random fields) to be used for defining this limit state

LTHR = Number of the random variables defining the limit state threshold

Card 6f (16I5)

JVN() = Variable numbers of the NAVS random variables for the limit state
k=1,2,

NAVS)
Card 6g (215)
LSDNN = Limit state node number

LSDOF = Limit state degree-of-freedom number for displacements or stress compo-
nent number for stresses

Note: The convention used is as follows:

Displacements Stresses
u=1 Lo =1
v =2 Oy =2
w =23 Oy =3
o, = 4 0y = 4
o, =5 0p =5
g, =06 O =6

Omit Card 7 for ISYSREL=0.

Card 7a (A7)

HEADR = Seven character literal constant ‘ISYSDEF’
Card 7b (I5)
NSYS = Number of systems defined in this analysis

Provide Card 7¢ NSYS times.




Card 7c.1 (A20)

SYSNAME System name (maximum of 20 characters)

NCOMS

Number of components defining this system

Card 7c.2 (2I5)

ISYST = 1 For series system

= 2 For parallel system
JSYS(k) = Component numbers of the components that define this system
(k=1, NCOMS)

Card 8a (A7)

HEADR = Seven character literal constant ‘ICOMREL’
Card 8b (I5)
IOPT = 1 Component reliability analysis based on the Rackwitz-Ang-Tang FORM

algorithm (not presently active in STOVAST)
= 2 Component reliability analysis based on the HL-RF FORM algorithm
= 3 Component reliability analysis based on the MHL-RF FORM algorithm

Card 8b (free format)

TOL = Tolerance of the reliability index to be used for consequence
ITERMAX = Maximum number of iterations permitted
Card 8c (free format) (omit if IOPT=1 or 2)

CMERIT = Constant ¢ in the definition of the merit function (MHL-RF algorithm).

Omit if ISENSXTY =0.

Card 9a (A7)

HEADR = Seven character literal constant ‘ISENSTY”




Card 9b (free format)

Card 10b (I5)

NSAN

PP = 1 Compute parametric sensitivities of 8 and P, for distribution parameters
only
= 2 Compute sensitivities for mean values and standard deviations
= 3 Compute 1 and 2 above
Omit if ISYSREL =0.
Card 10a
HEADR = Seven character literal constant ‘ISYSREL’

Number of systems to be analyzed

Cards 10 to 10e are to be provided NSAN times.

Card 10c (16I5)
NSYS(D)
=12,
...,NSAN)

Card 10d (317)
IB1

B2

IPNT

RHODEM

System numbers of selected systems to be analyzed

1 Perform systems reliability analysis using the uni-modal bound technique
1 Compute relaxed bi-modal bounds

2 Compute regular bi-modal bounds

3 Compute improved bi-modal bounds

4 Compute all of the above

1 Compute PNET estimation of the failure probability for this system

Card 10e (E10.3) (omit if IPNET 1)

Demarcation correlation coefficient to be used in the PNET procedure
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A2-9

(Note that systems reliability analysis capabilities are currently not available in STOVAST. So the
parameters ISYSDEF and ISYSREL should be set equal to zero for all STOVAST analyses.)
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APPENDIX B1

STOVAST OUTPUT FILE FOR STOCHASTIC BEAM PROBLEM
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APPENDIX B2

STOVAST OUTPUT FILE FOR STOCHASTIC PLATE PROBLEM
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