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Context Aware TCP for Intelligence, Surveillance and 

Reconnaissance Missions on Autonomous Platforms 

Brendon Poland, Michael Muccio, Daniel Hague 

Air Force Research Laboratory, Information Directorate, Rome, NY 13440 
Email: Brendon.Poland@us.af.mil 

Abstract—Transport Control Protocol (TCP) provides 

reliable data transfer for a variety of applications that can be 

found throughout  current deployed environments. Tactical edge 

environments with constrained bandwidth and throughput 

require all that is available of  network capacities, specifically 

those of deployed Remotely Piloted Aircraft (RPA). These RPAs 

are required to collect and disseminate large amounts of 

Intelligence Surveillance and Reconnaissance (ISR) data to 

command and control centers throughout a given theatre of 

operations. RPAs can provide an opportunity to use the 

repeatable nature of flight operations to record and predict the 

performance of TCP. This paper will present the optimization 

opportunity of TCP sessions on RPAs operating ISR missions. 

Additionally  possible techniques will be analyzed for achieving 

improved average throughput of asymmetric links, such as are 

seen in the context of RPA ISR missions.  

Keywords—RPA, UAV, SUAS, TCP, ISR, Prediction, Context 

Aware, Tactical Edge 

I. INTRODUCTION 

Technology acquisition strategy throughout the U.S. 
Department of Defense (DoD) continues to evolve to provide 
solutions to warfighter’s problems as fast as possible. Along 
with this process comes the need for systems to comply with 
commonly accepted systems engineering practices of 
interoperability,  so they can be fielded in a quick and orderly 
manner. One of the products of this requirement is that systems 
are encouraged to utilize widely accepted standards to allow 
for rapid determination of compatibility to other systems. One 
of those standards is the use of Internet Protocol (IP) as a 
network/information transfer interface and therefore TCP or 
User Datagram Protocol (UDP) as a transport mechanism (if 
required). This circumstance places a greater requirement for 
optimization of commercial standards (such as TCP) that are 
currently not of interest to the commercial world due to 
differing technology requirements. 

Full Motion Video (FMV) requirements of the commercial 
world may be satisfied with a UDP stream, under certain 
circumstances the DoD uses TCP for more reliable connection 
that supports more robust target acquisition and continuity. In 
operational scenarios, Remotely Piloted Aircrafts (RPAs) are 
utilized for many different missions, including Counter 
Improvised Explosive Devices (CIED), Counter Indirect Fire 
(CIDF), Pattern of Life (PoL), Base Defense, Convoy Escort 
and others. In these scenarios small RPAs traverse repetitive 

waypoints or loiter at a single waypoint while intelligence 
officers collect and exploit data from sensors on these RPAs.  

Figure 1: Change in SNR is shown by change of color of RPA flight path. 
Green having the highest SNR and red having the lowest. 

It is in these scenarios, that communication connections are 
often interrupted due to the complex geography or obstacles in 
the route, which leads to the loss of packets and consequently a 
decrease in throughput. The implementation of a context-aware 
TCP scheme is expected to provide an increased throughput 
from data source to destination. Figure 1 shows the flight path 
of a small RPA in a PoL flight path scenario. The change of 
SNR magnitude experienced by the receiver is shown by the 
color of the path that the RPA traverses in its flight path. This 
representation of link quality shows the repetitive nature of 
both the flight path of an RPA on mission and the 
electromagnetic characteristics that its data payloads will likely 
experience. The relationship among location, RPA system 
attitude and link quality can be propagated up the network 
stack and be shown to have a direct impact on the TCP session 
that is reliably moving data from air to ground. 

In this paper, a context-aware TCP protocol has been 
proposed to reduce the impacts of diverse electromagnetic 
environments (such as those seen by RPA comm links) on 
network throughput by leveraging the knowledge that RPAs fly 
in repeatable and therefore predictable flight paths. This paper 
will describe an algorithm that has been designed to observe, 
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predict and improve the TCP congestion back off mechanism 
to allow for an overall increase in throughput.  

II. TCP OPTIMIZATION POTENTIAL

A. TCP and Congestion Avoidance 

Reliable information transmission via TCP has been a 
crucial part of the development of the internet and other 
mainstream information transmission systems used to date. [1] 
One of the most commonly discussed topics within TCP is the 
congestion avoidance mechanism. This mechanism started as a 
conservative way to prevent destructive throughput oscillations 
and potential communication blackouts. Over time it has 
evolved to provide stable throughput throttling via additive 
increases and multiplicative decreases (to the congestion 
window size) for TCP sessions. [2] 

B. TCP for wireless environments 

With respect to wireless communication and infrastructure 
TCP has seen a variety of different improvements to deal with 
random errors, high latency and other complications. However, 
TCP still lacks the ability to accelerate and decelerate at the 
same rate as the electromagnetic medium that it is using to 
communicate. Evidence of this statement can be seen in Figure 
2. While the electromagnetic medium (blue line) is healthy at
the beginning of the test, the TCP session maintains a 
conservative growth rate when a more aggressive rate could be 
used. Additionally, near the end of the test when the medium is 
recovering from being submersed below the electromagnetic 
noise floor the window size limits the growth to much less than 
could actually be achieved.  

C. TCP Reno 

TCP Reno represents a very basic yet complete version of 
the congestion control algorithm and a very good benchmark 
[1]. Although other specialized versions of TCP (TCP cubic 
and Compound TCP) are currently being used in many Linux 
and Windows platforms they offer very minor changes and are 
tailored for more specific applications. TCP Reno is a good 
bench mark because it performs “good enough” on good to fair 
wireless links but backs off quickly once more than 1 or 2 
packet losses occur. Figure 2 shows a bench test of TCP Reno 
performance over a couple minutes. The slow build up of the 
congestion window during times of consistent signal strength 
demonstrate opportunities to distinguish between true 
congestion and electromagnetic insufficiencies for data 
transmission. 

Figure 2: TCP Reno congestion window size (packets) is show in purple 
and demonstrates the characteristic additive increase and multiplicative 

decrease. RSSI (dBm)  is shown in blue and slow start threshold (packets) is 
shown in red. 

III. TCP STOCKBRIDGE

It is important to first identify why an improvement to TCP 
is possible and what must be done to accomplish it. In the 
simplest terms, it’s a race between the transport layer and the 
physical layer and TCP has historically been losing. TCP Reno 
cannot vary its window size as fast as the wireless link quality 
can. Therefore, there is wasted time when the link quality is 
good enough to send more data but TCP cannot detect it fast 
enough to take advantage of it. This is where leveraging the 
knowledge that RPAs fly repetitive flight paths can help. If the 
TCP algorithm knows that the link is going to improve or that 
the link has already improved we can change the rules for how 
the window size works and capture this lost transmission time. 
This of course is not a new idea. It is important to note that 
some of the foundation for this work was accomplished and 
published in 2010 under an effort with Harvard University and 
the Office of the Secretary of Defense (OSD) [3]. Based on [3] 
and other RPA link characterization work done at the Air Force 
Research Laboratory (AFRL) owned Stockbridge Research 
Facility in upstate New York [4], [5], the ability to design, 
emulate [5] and flight test new algorithms has become very 
quick and affordable. Due to that history and the current 
capabilities of the test site that is being used for this work, the 
TCP modifications that will be examined in this section will be 
referred to in this document as TCP Stockbridge.  

A. Rationale of Algorithm 

TCP Stockbridge operates under several assumptions. The 
first is that RPAs operate in repetitive flight paths and the 
precision by which they navigate produces reliable metrics by 
which prediction can be accomplished. Figure 3 shows link 
metrics collected on an ISR style RPA flight accomplished in 
2011. The second assumption is that TCP does not need to 
throttle back for random sparse errors that can be determined to 
be related to the nature of wireless links and not network 
congestion or bad link quality. This is done by using a heuristic 
that helps inform TCP of the health of several of the network 
layers. The result of this heuristic is the capability to inform 
TCP of current and future expected wireless performance.  
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Figure 3: RPA link characteristics. Blue is SNR (dBm), Green is packet 
errors (packets/sec) and black is throughput (packets/sec)  

This can be seen visually in Fig. 4 when compared to Fig. 
2. Note that the blue on the bottom of both graphs is the SNR.
Both TCP sessions were exposed to very similar 
electromagnetic characteristics and TCP Stockbridge was able 
to maintain a higher congestion window size despite areas of 
lost packets which caused TCP Reno to throttle back. The 
comparison between figure 2 and figure 4 shows the 
performance differences and how this improvement could 
enhance effective throughput. This scenario was also simulated 
using Matlab and past TCP error distribution data files from 
past flight tests. The outcome of the simulation along with 
bench testing showed a potential TCP rate increase of 2.5 times 
that of TCP Reno. This increase in rate was calculated in 
Maximum Segment Size (MSS) packets per second (due to 
greater window sizes). For both the bench test and the 
simulation the heuristic was employed to evaluate the local 
electromagnetic environment and make decisions on whether 
or not to modify the reaction to a congestion event. The 
heuristic uses a simple linear combination of several statistics 
about the link quality available on the RPA. 

Figure 4: TCP Stockbridge congestion window size (packets) shown in 
Green, RSSI is shown in blue (dBm) and slow start threshold (packets) in 

shown in red.  

B. Algorithm Description 

The statistics used to generate the heuristic include SNR, 
retransmit timeout, round trip time, round trip time variance, 
time since last ACK received, time since last data sent, and 

ACKs per second. A bias and scale was applied to each factor 
and the resulting values were combined into a single value 
useful for decision making purposes. SNR and ACK’s per 
second were weighted the highest as they are first order 
feedback on the link health, while the other statistics are mostly 
seen as confirming variables. Figure 5 shows SNR (RSSI), 
RTT, RTT variance, ACKs/second and the heuristic in yellow. 
This information is used in the algorithm to know when errors 
can be ignored (High SNR) and when errors need to be allowed 
to decrement the congestion window (Low SNR or bad current 
throughput). As the RPA flies its path for the first time, TCP 
Stockbridge collects the metrics described and makes decisions 
on 200ms intervals based on current (200ms old) data. Once 
the RPA begins passing over its original path it begins to use 
data from the “future” (200ms in the future) to decide how 
aggressively it will ignore the normal TCP back-off 
mechanism.  

Figure 5: TCP Stockbridge congestion window size (packets) shown in 
Green, RSSI (dBm)  is shown in blue, slow start threshold (packets) is shown 

in red and the heuristic (unitless) is shown in yellow. 

C. TCP Stockbridge Psuedo Code 

User Space pseudo code 

list := vector[data] 

lookup := rtree[gps,index] 

every 200ms 

  # get and store location, RSSI, and tcp info 

  APPEND(list, READ_DATA()) 

  # smooth the noisy data 

  if LENGTH(list) >= SMOOTHING then 

    target := LENGTH(list) - SMOOTHING / 2 

    list[target] = AVERAGE_LAST(list, SMOOTHING) 

    # insert smoothed data into the rtree 

    INSERT(lookup, list[target].GPS, target) 

  end 

  # find nearby smoothed samples 

  results := QUERY(lookup, LAST(list).GPS) 

  # attempt to time shift along the repeating orbit 
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  foreach result in results 

    result += LOOK_AHEAD 

  # find the average RSSI of the nearby points 

  rssi := AVERAGE_INDEXED(list, results).RSSI 

  if rssi < RSSI_LOW_THRESHOLD then 

    # default to Reno 
    SET_RF_QUALITY(BAD) 

  else if rssi < RSSI_MODERATE_THRESHOLD then 

    # forgive some packet losses 
    SET_RF_QUALITY(POOR) 

  else if rssi < RSSI_GOOD_THRESHOLD then 

    # forgive a few packet losses 
    SET_RF_QUALITY(FAIR) 

  else 

    # open the congestion window to discovered maximum 
    SET_RF_QUALITY(GOOD) 

  end 

end 

Kernel Space pseudo code 

initial_window <- /proc/stockbridge/initial_window 
rf_quality <- /proc/stockbridge/rf_quality 

on new connection 

  SET_CONGESTION_WINDOW(initial_window) 

end 

on congestion event 

  # there is no way to avoid this happening in the Linux kernel 
  SET_CONGESTION_WINDOW(GET_CONGETSION_WINDOW() / 2) 

  # change behavior based the RF quality 
  forgive := 0 

  switch(rf_quality) 
    case(BAD) 

  # do nothing 

    end 

    case(POOR) 

   forgive = FORGIVE_WHILE_POOR 
    end 

    case(FAIR) 
   forgive = FORGIVE_WHILE_FAIR 

    end 

    case(GOOD) 

 forgive = FORGIVE_WHILE_GOOD 

    end 
  end 

  # only additively decrease if the losses are spread out temporally 
  if CONSECUTIVE_LOSSES() <= forgive then 

SET_CONGESTION_WINDOW(PREVIOUS_CONGESTION_WINDOW() 
- 1) 

  end 

end 

IV. EXPERIMENTAL STUDY

A. Initial Test Setup 

Once the first version of the algorithm (pseudo code seen in 
section III.C) was finalized it was installed on an Artigo 
standalone computer. Attached to it was a Wi-Fi adapter 
running in infrastructure mode. A Linksys WRT54G AP was 
setup as the destination. To make sure the link was being 
exercised to its fullest, the source’s (on the RPA) buffer was 
being kept 95% full so there was no chance of it not having 
anything to transfer. The ability of the wireless interface is of 
course limited by the media access control (MAC) mechanism 
for Wi-Fi, which reduces the signaling rate depending on RSSI. 
CSMA/CA (medium collision avoidance) was also running but 
due to the rural nature of the test location no other wireless 
networks were competing for spectrum. This payload was 
ground tested on a small UTV with varying distances and 
terrain.  

During preliminary ground tests both TCP Reno and TCP 
Stockbridge experienced timeouts due to high latency 
conditions of long distances and mobile Wi-Fi clients. The 
standard Wi-Fi function “TCP_Low_Latency” was turned on 
to allow for more time before TCP timeout would be triggered. 
Once this option was turned on both links were relatively 
reliable. A Linux computer attached to the AP was set up to 
receive the stream from the source (on the aircraft) and log 
data. TCP dump was also implemented as an additional method 
for data logging. During the testing there was no control of the 
airborne payload as not to interfere with the data being sent 
through the network. Upon landing SSH was used to transfer 
log files from the source and data graphs were generated to 
show performance. 

B. Flight Operations/Facilities 

The data shown in this paper was collected over the 

course of several weeks at the Stockbridge Research facility 

located just south of Oneida, New York (Fig. 6). The Facility 

is a satellite site of the Air Force Research Laboratory’s 

Information Directorate which is located in Rome, NY.  

Figure 6: Stockbridge Research Facility on left and test aircraft on right. 

The flight tests done for this effort were accomplished under 

the Unmanned Vehicle Experimental Communications 

Testbed (UVECT) flight test plan and were done over the 

Stockbridge Research Facility in the National Air Space. The 
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Threshold (packets) in blue 

test site consists of 300 acres with 30 distributed ground nodes 

connected by terrestrial fiber and power. The site also has 2 

600 foot runways for small RPA operations. The flight path 

was controlled by the onboard autopilot with an on hand flight 

crew of 3. 

C. Initial results 

Once Electromagnetic Interference (EMI) and 

Electromagnetic Compatibility (EMC) testing was complete to 

make sure the payload did not interfere with the command and 

control systems of the aircraft several flight paths were 

selected to exert the link and the TCP session running on top 

of it. A flight path that had varying distances from the AP was 

constructed and can be seen in Fig 7. This flight path was 

designed to degrade the link to approximately 50% of its 

capacity in one direction and 25% in the other. It provided a 

great scenario for varying conditions pertinent to potential 

operational ISR scenarios. 

Figure 7: RPA flight path at 150 meters altitude intended to cause partial 
link loss to the north and almost complete loss to the west. There are 4 
overlapping flight paths on this graph. 

Baseline testing of TCP Reno was accomplished first and 

is shown in Fig 8. It is easy to see that the large peaks are the 

time the aircraft spent on the southeast corner of pattern, 

closest to the AP. The smaller peaks are the time the aircraft 

spent in the inside “elbow” of the pattern also relatively close 

to the AP. You can also see the repetitive nature of the TCP 

session in the transport layer as we assumed we would. 

Figure 8: TCP Reno Congestion Window in Red (packets) and Slow Start 

Following the TCP Reno baseline collections, TCP 

Stockbridge was tested over the same flight path for the same 

number of laps. The results can be seen in Fig 9. Once again, 

the red line is the TCP window size and the blue line is the 

Slow Start Threshold (SST). The reason the SST is graphed 

with the window size is that each time the magnitude of the 

SST line changes value it means a perceived congestion event 

(Actually an RF event) was experienced and the slow start 

threshold was adjusted to half the current congestion window 

size. This helps us understand what events we were actually 

able to completely avoid through implementation of the new 

algorithm (change in Blue but no change in red) and which 

events were bad enough that we had to back off anyway due to 

no ACKs being received by the destination.  

Figure 9: TCP Stockbridge Congestion Window (packets) in Red and 
Slow Start Threshold in blue 

It is important to note a few success and failures with this 

data. First, if we simply calculate the area under the 

congestion window curve we observe an increase of 2.58 

times the “opportunity” to send data. That is actually very 

close to what our analysis predicted it would be. However 

when we pulled our TCP dump data down we were shocked to 

see that with all that extra opportunity to send data we actually 

transferred less data during the course of the test than standard 

TCP Reno did. Figure 10 shows that TCP Reno transferred 

875MBs over the course of the test and TCP Stockbridge 

transferred 825MBs. We of course began to analyze how this 

could be. We realized that when the link was failing under 

control of TCP Stockbridge the number of packets that were 

becoming lost was huge. This was causing a very large 

number of unacknowledged packets and therefore a large 

amount of back and forth (Once the link improved) for those 

packets to be finally acknowledged before we could begin to 

send new packets. This was causing goodput to be low despite 

the bursts of high throughput that were being provided. This 

caused us to rethink out heuristic metric and how we would 

implement this prediction algorithm.  
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Figure 10: Average data rate for Reno and Stockbridge over the course of 
the whole test. Y Axis is mistakenly showing total Bytes for the test 

D. Second Test Setup 

Once we realized we were wasting all our opportunities to 
send more data due to the clean up we needed to accomplish, 
we decided to take our payload out of the aircraft and go back 
to the bench. We then took some of our TCP Reno baseline 
data and begin to analyze it for new opportunities to more 
effectively predict performance. We found that the SNR was 
incredibly volatile and was causing our heuristic to thrash up 
and down in magnitude. However the SNR was the key to 
knowing what kind of communication trend we were on. We 
therefore implemented a simple convolution or moving average 
to smooth the data. Starting with SNR data that was sampled 
several hundred times each 200ms, a Matlab moving average 
was implemented using a moving convolution function. Figure 
11 shows a moving convolution of 75 200ms samples (That 
themselves contained hundreds of samples) and  

Figure 11: 200ms averaged SNR (dBm)  in blue and 15second averaged 
SNR (dBm)  in red 

shows a very smooth function that shows great potential for 
our SNR trend line. If we then import the corresponding 

window size for this SNR data we can see the relationship 
between actual window size and a smoothed version of what 
the physical layer was experiencing. Figure 12 shows TCP 
Reno window sizes in blue and shifted and smoothed SNR in 
red from the last flight test we did.  

Figure 12: TCP Reno window size in Blue and SNR in Red 

We changed the prediction algorithm to continue with the 

heuristic as a health metric but to trigger TCP Stockbridge 

behavior when upward trends (slope detection) in SNR are 

detected and a threshold SNR is reached. On the transition 

down (where we were very inefficient before) the heuristic 

reverts back to TCP Reno behavior just before the 

multiplicative decrease from the last pass. This will reduce 

outstanding unacknowledged packets and the ensuing 

overhead of cleaning them up. With these changes the payload 

was redeployed and another flight test was accomplished. 

Figure 13 is the TCP Reno baseline and Figure 14 is the TCP 

Stockbridge data from this test. Almost immediately it can be 

seen that TCP Stockbridge is much more stable. This change 

prevented the heuristic from thrashing the window size up and 

down but also unfortunately eliminated much of the increase 

in window size that was expected. This is due to the 

conservative and somewhat arbitrary initial thresholds that 

were put on the algorithm.  

Figure 13: TCP Stockbridge Congestion Window in Red and Slow Start  
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Figure 14: TCP Stockbridge Congestion Window in Red and Slow Start 
Threshold in blue 

This being the case it is important to note that over the 
course of several tests that even with the very conservative 
slope detection thresholds in place (which eliminated almost all 
potential increases) TCP Stockbridge outperformed TCP Reno 
with respect to goodput as seen in figure 15. 

Figure 15: Average data rate for Reno and Stockbridge over the course of 
the whole test. Y Axis is mistakenly showing total Bytes for the test 

It is assumed that with more development time the margin 
between TCP Reno and TCP Stockbridge will widen to a 
significant improvement. 

V. CONCLUSIONS 

This research area still has much to offer for continued 

network characterization and network improvements. Figure 9 

and Figure 14 side by side show the potential for more 

improvements in throughput.  

Future work will include optimizing the slope detection 

portion of the TCP Stockbridge algorithm and collecting more 

data from operationally relevant scenarios for TCP 

Stockbridge to be tested against. It will also be important to 

develop metrics to describe the variance and frequency of the 

physical layer for TCP calibration to different electromagnetic 

and network conditions. In conclusion, as RPAs continue to 

take on more and more missions, the DoD has much to benefit 

from an optimized version of TCP for these autonomous yet 

predictable platforms. 
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