
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
NOVEMBER 2015

2. REPORT TYPE
TECHNICAL PAPER (Post Print)

3. DATES COVERED (From - To)
SEP2013 – SEP 2014

4. TITLE AND SUBTITLE

CONTEXT AWARE TCP FOR INTELLIGENCE, SURVEILLANCE AND
RECONNAISSANCE MISSIONS ON AUTONOMOUS PLATFORMS

5a. CONTRACT NUMBER
NA

5b. GRANT NUMBER
NA

5c. PROGRAM ELEMENT NUMBER
62788F / 625315

6. AUTHOR(S)

Brendon Poland, Michael Muccio, and Daniel Hague

5d. PROJECT NUMBER
T2SA

5e. TASK NUMBER
IN

5f. WORK UNIT NUMBER
H1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site/RITF
525 Brooks Road
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/Information Directorate
Rome Research Site/RITF
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

 AFRL/RI
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2015-005

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA Case Number: 88ABW-2014-4340
DATE CLEARED: 12 SEP 2014
13. SUPPLEMENTARY NOTES
Proceedings Military Communications (MILCOM) Conference, Baltimore, MD, 6-8 Oct 2014. This is a work of the United
States Government and is not subject to copyright protection in the United States.

14. ABSTRACT
Transport Control Protocol (TCP) provides reliable data transfer for a variety of applications that can be found throughout
current deployed environments. Tactical edge environments with constrained bandwidth and throughput require all that
is available of network capacities, specifically those of deployed Remotely Piloted Aircraft (RPA). These RPAs are
required to collect and disseminate large amounts of Intelligence Surveillance and Reconnaissance (ISR) data to
command and control centers throughout a given theatre of operations. RPAs can provide an opportunity to use the
repeatable nature of flight operations to record and predict the performance of TCP. This paper presents the optimization
opportunity of TCP.

15. SUBJECT TERMS
Transport Control Protocol (TCP), Remotely Piloted Aircraft (RPA), Intelligence Surveillance and Reconnaissance (ISR)

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
BRENDON POLAND

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

8

Context Aware TCP for Intelligence, Surveillance and

Reconnaissance Missions on Autonomous Platforms

Brendon Poland, Michael Muccio, Daniel Hague

Air Force Research Laboratory, Information Directorate, Rome, NY 13440
Email: Brendon.Poland@us.af.mil

Abstract—Transport Control Protocol (TCP) provides

reliable data transfer for a variety of applications that can be

found throughout current deployed environments. Tactical edge

environments with constrained bandwidth and throughput

require all that is available of network capacities, specifically

those of deployed Remotely Piloted Aircraft (RPA). These RPAs

are required to collect and disseminate large amounts of

Intelligence Surveillance and Reconnaissance (ISR) data to

command and control centers throughout a given theatre of

operations. RPAs can provide an opportunity to use the

repeatable nature of flight operations to record and predict the

performance of TCP. This paper will present the optimization

opportunity of TCP sessions on RPAs operating ISR missions.

Additionally possible techniques will be analyzed for achieving

improved average throughput of asymmetric links, such as are

seen in the context of RPA ISR missions.

Keywords—RPA, UAV, SUAS, TCP, ISR, Prediction, Context

Aware, Tactical Edge

I. INTRODUCTION

Technology acquisition strategy throughout the U.S.
Department of Defense (DoD) continues to evolve to provide
solutions to warfighter’s problems as fast as possible. Along
with this process comes the need for systems to comply with
commonly accepted systems engineering practices of
interoperability, so they can be fielded in a quick and orderly
manner. One of the products of this requirement is that systems
are encouraged to utilize widely accepted standards to allow
for rapid determination of compatibility to other systems. One
of those standards is the use of Internet Protocol (IP) as a
network/information transfer interface and therefore TCP or
User Datagram Protocol (UDP) as a transport mechanism (if
required). This circumstance places a greater requirement for
optimization of commercial standards (such as TCP) that are
currently not of interest to the commercial world due to
differing technology requirements.

Full Motion Video (FMV) requirements of the commercial
world may be satisfied with a UDP stream, under certain
circumstances the DoD uses TCP for more reliable connection
that supports more robust target acquisition and continuity. In
operational scenarios, Remotely Piloted Aircrafts (RPAs) are
utilized for many different missions, including Counter
Improvised Explosive Devices (CIED), Counter Indirect Fire
(CIDF), Pattern of Life (PoL), Base Defense, Convoy Escort
and others. In these scenarios small RPAs traverse repetitive

waypoints or loiter at a single waypoint while intelligence
officers collect and exploit data from sensors on these RPAs.

Figure 1: Change in SNR is shown by change of color of RPA flight path.
Green having the highest SNR and red having the lowest.

It is in these scenarios, that communication connections are
often interrupted due to the complex geography or obstacles in
the route, which leads to the loss of packets and consequently a
decrease in throughput. The implementation of a context-aware
TCP scheme is expected to provide an increased throughput
from data source to destination. Figure 1 shows the flight path
of a small RPA in a PoL flight path scenario. The change of
SNR magnitude experienced by the receiver is shown by the
color of the path that the RPA traverses in its flight path. This
representation of link quality shows the repetitive nature of
both the flight path of an RPA on mission and the
electromagnetic characteristics that its data payloads will likely
experience. The relationship among location, RPA system
attitude and link quality can be propagated up the network
stack and be shown to have a direct impact on the TCP session
that is reliably moving data from air to ground.

In this paper, a context-aware TCP protocol has been
proposed to reduce the impacts of diverse electromagnetic
environments (such as those seen by RPA comm links) on
network throughput by leveraging the knowledge that RPAs fly
in repeatable and therefore predictable flight paths. This paper
will describe an algorithm that has been designed to observe,

1

mailto:Brendon.Poland@us.af.mil

predict and improve the TCP congestion back off mechanism
to allow for an overall increase in throughput.

II. TCP OPTIMIZATION POTENTIAL

A. TCP and Congestion Avoidance

Reliable information transmission via TCP has been a
crucial part of the development of the internet and other
mainstream information transmission systems used to date. [1]
One of the most commonly discussed topics within TCP is the
congestion avoidance mechanism. This mechanism started as a
conservative way to prevent destructive throughput oscillations
and potential communication blackouts. Over time it has
evolved to provide stable throughput throttling via additive
increases and multiplicative decreases (to the congestion
window size) for TCP sessions. [2]

B. TCP for wireless environments

With respect to wireless communication and infrastructure
TCP has seen a variety of different improvements to deal with
random errors, high latency and other complications. However,
TCP still lacks the ability to accelerate and decelerate at the
same rate as the electromagnetic medium that it is using to
communicate. Evidence of this statement can be seen in Figure
2. While the electromagnetic medium (blue line) is healthy at
the beginning of the test, the TCP session maintains a
conservative growth rate when a more aggressive rate could be
used. Additionally, near the end of the test when the medium is
recovering from being submersed below the electromagnetic
noise floor the window size limits the growth to much less than
could actually be achieved.

C. TCP Reno

TCP Reno represents a very basic yet complete version of
the congestion control algorithm and a very good benchmark
[1]. Although other specialized versions of TCP (TCP cubic
and Compound TCP) are currently being used in many Linux
and Windows platforms they offer very minor changes and are
tailored for more specific applications. TCP Reno is a good
bench mark because it performs “good enough” on good to fair
wireless links but backs off quickly once more than 1 or 2
packet losses occur. Figure 2 shows a bench test of TCP Reno
performance over a couple minutes. The slow build up of the
congestion window during times of consistent signal strength
demonstrate opportunities to distinguish between true
congestion and electromagnetic insufficiencies for data
transmission.

Figure 2: TCP Reno congestion window size (packets) is show in purple
and demonstrates the characteristic additive increase and multiplicative

decrease. RSSI (dBm) is shown in blue and slow start threshold (packets) is
shown in red.

III. TCP STOCKBRIDGE

It is important to first identify why an improvement to TCP
is possible and what must be done to accomplish it. In the
simplest terms, it’s a race between the transport layer and the
physical layer and TCP has historically been losing. TCP Reno
cannot vary its window size as fast as the wireless link quality
can. Therefore, there is wasted time when the link quality is
good enough to send more data but TCP cannot detect it fast
enough to take advantage of it. This is where leveraging the
knowledge that RPAs fly repetitive flight paths can help. If the
TCP algorithm knows that the link is going to improve or that
the link has already improved we can change the rules for how
the window size works and capture this lost transmission time.
This of course is not a new idea. It is important to note that
some of the foundation for this work was accomplished and
published in 2010 under an effort with Harvard University and
the Office of the Secretary of Defense (OSD) [3]. Based on [3]
and other RPA link characterization work done at the Air Force
Research Laboratory (AFRL) owned Stockbridge Research
Facility in upstate New York [4], [5], the ability to design,
emulate [5] and flight test new algorithms has become very
quick and affordable. Due to that history and the current
capabilities of the test site that is being used for this work, the
TCP modifications that will be examined in this section will be
referred to in this document as TCP Stockbridge.

A. Rationale of Algorithm

TCP Stockbridge operates under several assumptions. The
first is that RPAs operate in repetitive flight paths and the
precision by which they navigate produces reliable metrics by
which prediction can be accomplished. Figure 3 shows link
metrics collected on an ISR style RPA flight accomplished in
2011. The second assumption is that TCP does not need to
throttle back for random sparse errors that can be determined to
be related to the nature of wireless links and not network
congestion or bad link quality. This is done by using a heuristic
that helps inform TCP of the health of several of the network
layers. The result of this heuristic is the capability to inform
TCP of current and future expected wireless performance.

2

Figure 3: RPA link characteristics. Blue is SNR (dBm), Green is packet
errors (packets/sec) and black is throughput (packets/sec)

This can be seen visually in Fig. 4 when compared to Fig.
2. Note that the blue on the bottom of both graphs is the SNR.
Both TCP sessions were exposed to very similar
electromagnetic characteristics and TCP Stockbridge was able
to maintain a higher congestion window size despite areas of
lost packets which caused TCP Reno to throttle back. The
comparison between figure 2 and figure 4 shows the
performance differences and how this improvement could
enhance effective throughput. This scenario was also simulated
using Matlab and past TCP error distribution data files from
past flight tests. The outcome of the simulation along with
bench testing showed a potential TCP rate increase of 2.5 times
that of TCP Reno. This increase in rate was calculated in
Maximum Segment Size (MSS) packets per second (due to
greater window sizes). For both the bench test and the
simulation the heuristic was employed to evaluate the local
electromagnetic environment and make decisions on whether
or not to modify the reaction to a congestion event. The
heuristic uses a simple linear combination of several statistics
about the link quality available on the RPA.

Figure 4: TCP Stockbridge congestion window size (packets) shown in
Green, RSSI is shown in blue (dBm) and slow start threshold (packets) in

shown in red.

B. Algorithm Description

The statistics used to generate the heuristic include SNR,
retransmit timeout, round trip time, round trip time variance,
time since last ACK received, time since last data sent, and

ACKs per second. A bias and scale was applied to each factor
and the resulting values were combined into a single value
useful for decision making purposes. SNR and ACK’s per
second were weighted the highest as they are first order
feedback on the link health, while the other statistics are mostly
seen as confirming variables. Figure 5 shows SNR (RSSI),
RTT, RTT variance, ACKs/second and the heuristic in yellow.
This information is used in the algorithm to know when errors
can be ignored (High SNR) and when errors need to be allowed
to decrement the congestion window (Low SNR or bad current
throughput). As the RPA flies its path for the first time, TCP
Stockbridge collects the metrics described and makes decisions
on 200ms intervals based on current (200ms old) data. Once
the RPA begins passing over its original path it begins to use
data from the “future” (200ms in the future) to decide how
aggressively it will ignore the normal TCP back-off
mechanism.

Figure 5: TCP Stockbridge congestion window size (packets) shown in
Green, RSSI (dBm) is shown in blue, slow start threshold (packets) is shown

in red and the heuristic (unitless) is shown in yellow.

C. TCP Stockbridge Psuedo Code

User Space pseudo code

list := vector[data]

lookup := rtree[gps,index]

every 200ms

 # get and store location, RSSI, and tcp info

 APPEND(list, READ_DATA())

 # smooth the noisy data

 if LENGTH(list) >= SMOOTHING then

 target := LENGTH(list) - SMOOTHING / 2

 list[target] = AVERAGE_LAST(list, SMOOTHING)

 # insert smoothed data into the rtree

 INSERT(lookup, list[target].GPS, target)

 end

 # find nearby smoothed samples

 results := QUERY(lookup, LAST(list).GPS)

 # attempt to time shift along the repeating orbit

3

 foreach result in results

 result += LOOK_AHEAD

 # find the average RSSI of the nearby points

 rssi := AVERAGE_INDEXED(list, results).RSSI

 if rssi < RSSI_LOW_THRESHOLD then

 # default to Reno
 SET_RF_QUALITY(BAD)

 else if rssi < RSSI_MODERATE_THRESHOLD then

 # forgive some packet losses
 SET_RF_QUALITY(POOR)

 else if rssi < RSSI_GOOD_THRESHOLD then

 # forgive a few packet losses
 SET_RF_QUALITY(FAIR)

 else

 # open the congestion window to discovered maximum
 SET_RF_QUALITY(GOOD)

 end

end

Kernel Space pseudo code

initial_window <- /proc/stockbridge/initial_window
rf_quality <- /proc/stockbridge/rf_quality

on new connection

 SET_CONGESTION_WINDOW(initial_window)

end

on congestion event

 # there is no way to avoid this happening in the Linux kernel
 SET_CONGESTION_WINDOW(GET_CONGETSION_WINDOW() / 2)

 # change behavior based the RF quality
 forgive := 0

 switch(rf_quality)
 case(BAD)

 # do nothing

 end

 case(POOR)

 forgive = FORGIVE_WHILE_POOR
 end

 case(FAIR)
 forgive = FORGIVE_WHILE_FAIR

 end

 case(GOOD)

 forgive = FORGIVE_WHILE_GOOD

 end
 end

 # only additively decrease if the losses are spread out temporally
 if CONSECUTIVE_LOSSES() <= forgive then

SET_CONGESTION_WINDOW(PREVIOUS_CONGESTION_WINDOW()
- 1)

 end

end

IV. EXPERIMENTAL STUDY

A. Initial Test Setup

Once the first version of the algorithm (pseudo code seen in
section III.C) was finalized it was installed on an Artigo
standalone computer. Attached to it was a Wi-Fi adapter
running in infrastructure mode. A Linksys WRT54G AP was
setup as the destination. To make sure the link was being
exercised to its fullest, the source’s (on the RPA) buffer was
being kept 95% full so there was no chance of it not having
anything to transfer. The ability of the wireless interface is of
course limited by the media access control (MAC) mechanism
for Wi-Fi, which reduces the signaling rate depending on RSSI.
CSMA/CA (medium collision avoidance) was also running but
due to the rural nature of the test location no other wireless
networks were competing for spectrum. This payload was
ground tested on a small UTV with varying distances and
terrain.

During preliminary ground tests both TCP Reno and TCP
Stockbridge experienced timeouts due to high latency
conditions of long distances and mobile Wi-Fi clients. The
standard Wi-Fi function “TCP_Low_Latency” was turned on
to allow for more time before TCP timeout would be triggered.
Once this option was turned on both links were relatively
reliable. A Linux computer attached to the AP was set up to
receive the stream from the source (on the aircraft) and log
data. TCP dump was also implemented as an additional method
for data logging. During the testing there was no control of the
airborne payload as not to interfere with the data being sent
through the network. Upon landing SSH was used to transfer
log files from the source and data graphs were generated to
show performance.

B. Flight Operations/Facilities

The data shown in this paper was collected over the

course of several weeks at the Stockbridge Research facility

located just south of Oneida, New York (Fig. 6). The Facility

is a satellite site of the Air Force Research Laboratory’s

Information Directorate which is located in Rome, NY.

Figure 6: Stockbridge Research Facility on left and test aircraft on right.

The flight tests done for this effort were accomplished under

the Unmanned Vehicle Experimental Communications

Testbed (UVECT) flight test plan and were done over the

Stockbridge Research Facility in the National Air Space. The

4

Threshold (packets) in blue

test site consists of 300 acres with 30 distributed ground nodes

connected by terrestrial fiber and power. The site also has 2

600 foot runways for small RPA operations. The flight path

was controlled by the onboard autopilot with an on hand flight

crew of 3.

C. Initial results

Once Electromagnetic Interference (EMI) and

Electromagnetic Compatibility (EMC) testing was complete to

make sure the payload did not interfere with the command and

control systems of the aircraft several flight paths were

selected to exert the link and the TCP session running on top

of it. A flight path that had varying distances from the AP was

constructed and can be seen in Fig 7. This flight path was

designed to degrade the link to approximately 50% of its

capacity in one direction and 25% in the other. It provided a

great scenario for varying conditions pertinent to potential

operational ISR scenarios.

Figure 7: RPA flight path at 150 meters altitude intended to cause partial
link loss to the north and almost complete loss to the west. There are 4
overlapping flight paths on this graph.

Baseline testing of TCP Reno was accomplished first and

is shown in Fig 8. It is easy to see that the large peaks are the

time the aircraft spent on the southeast corner of pattern,

closest to the AP. The smaller peaks are the time the aircraft

spent in the inside “elbow” of the pattern also relatively close

to the AP. You can also see the repetitive nature of the TCP

session in the transport layer as we assumed we would.

Figure 8: TCP Reno Congestion Window in Red (packets) and Slow Start

Following the TCP Reno baseline collections, TCP

Stockbridge was tested over the same flight path for the same

number of laps. The results can be seen in Fig 9. Once again,

the red line is the TCP window size and the blue line is the

Slow Start Threshold (SST). The reason the SST is graphed

with the window size is that each time the magnitude of the

SST line changes value it means a perceived congestion event

(Actually an RF event) was experienced and the slow start

threshold was adjusted to half the current congestion window

size. This helps us understand what events we were actually

able to completely avoid through implementation of the new

algorithm (change in Blue but no change in red) and which

events were bad enough that we had to back off anyway due to

no ACKs being received by the destination.

Figure 9: TCP Stockbridge Congestion Window (packets) in Red and
Slow Start Threshold in blue

It is important to note a few success and failures with this

data. First, if we simply calculate the area under the

congestion window curve we observe an increase of 2.58

times the “opportunity” to send data. That is actually very

close to what our analysis predicted it would be. However

when we pulled our TCP dump data down we were shocked to

see that with all that extra opportunity to send data we actually

transferred less data during the course of the test than standard

TCP Reno did. Figure 10 shows that TCP Reno transferred

875MBs over the course of the test and TCP Stockbridge

transferred 825MBs. We of course began to analyze how this

could be. We realized that when the link was failing under

control of TCP Stockbridge the number of packets that were

becoming lost was huge. This was causing a very large

number of unacknowledged packets and therefore a large

amount of back and forth (Once the link improved) for those

packets to be finally acknowledged before we could begin to

send new packets. This was causing goodput to be low despite

the bursts of high throughput that were being provided. This

caused us to rethink out heuristic metric and how we would

implement this prediction algorithm.

5

Threshold in blue

Figure 10: Average data rate for Reno and Stockbridge over the course of
the whole test. Y Axis is mistakenly showing total Bytes for the test

D. Second Test Setup

Once we realized we were wasting all our opportunities to
send more data due to the clean up we needed to accomplish,
we decided to take our payload out of the aircraft and go back
to the bench. We then took some of our TCP Reno baseline
data and begin to analyze it for new opportunities to more
effectively predict performance. We found that the SNR was
incredibly volatile and was causing our heuristic to thrash up
and down in magnitude. However the SNR was the key to
knowing what kind of communication trend we were on. We
therefore implemented a simple convolution or moving average
to smooth the data. Starting with SNR data that was sampled
several hundred times each 200ms, a Matlab moving average
was implemented using a moving convolution function. Figure
11 shows a moving convolution of 75 200ms samples (That
themselves contained hundreds of samples) and

Figure 11: 200ms averaged SNR (dBm) in blue and 15second averaged
SNR (dBm) in red

shows a very smooth function that shows great potential for
our SNR trend line. If we then import the corresponding

window size for this SNR data we can see the relationship
between actual window size and a smoothed version of what
the physical layer was experiencing. Figure 12 shows TCP
Reno window sizes in blue and shifted and smoothed SNR in
red from the last flight test we did.

Figure 12: TCP Reno window size in Blue and SNR in Red

We changed the prediction algorithm to continue with the

heuristic as a health metric but to trigger TCP Stockbridge

behavior when upward trends (slope detection) in SNR are

detected and a threshold SNR is reached. On the transition

down (where we were very inefficient before) the heuristic

reverts back to TCP Reno behavior just before the

multiplicative decrease from the last pass. This will reduce

outstanding unacknowledged packets and the ensuing

overhead of cleaning them up. With these changes the payload

was redeployed and another flight test was accomplished.

Figure 13 is the TCP Reno baseline and Figure 14 is the TCP

Stockbridge data from this test. Almost immediately it can be

seen that TCP Stockbridge is much more stable. This change

prevented the heuristic from thrashing the window size up and

down but also unfortunately eliminated much of the increase

in window size that was expected. This is due to the

conservative and somewhat arbitrary initial thresholds that

were put on the algorithm.

Figure 13: TCP Stockbridge Congestion Window in Red and Slow Start

6

Figure 14: TCP Stockbridge Congestion Window in Red and Slow Start
Threshold in blue

This being the case it is important to note that over the
course of several tests that even with the very conservative
slope detection thresholds in place (which eliminated almost all
potential increases) TCP Stockbridge outperformed TCP Reno
with respect to goodput as seen in figure 15.

Figure 15: Average data rate for Reno and Stockbridge over the course of
the whole test. Y Axis is mistakenly showing total Bytes for the test

It is assumed that with more development time the margin
between TCP Reno and TCP Stockbridge will widen to a
significant improvement.

V. CONCLUSIONS

This research area still has much to offer for continued

network characterization and network improvements. Figure 9

and Figure 14 side by side show the potential for more

improvements in throughput.

Future work will include optimizing the slope detection

portion of the TCP Stockbridge algorithm and collecting more

data from operationally relevant scenarios for TCP

Stockbridge to be tested against. It will also be important to

develop metrics to describe the variance and frequency of the

physical layer for TCP calibration to different electromagnetic

and network conditions. In conclusion, as RPAs continue to

take on more and more missions, the DoD has much to benefit

from an optimized version of TCP for these autonomous yet

predictable platforms.

Acknowledgments: Thanks and appreciation goes out to the

Stockbridge flight test support team, Robert Gorman, Jason

Cassulis, Herb Bloss, Kevin Besig, and Mary Draper. Our

flight test TAA, Dr. Michael Hayduk. AFRL/RI safety office:

Michael Lovell, Michael Burke.

REFERENCES

[1] D. E. Comer, Internetworking with TCP/IP: Principles, Protocols and
Architectures. Upper Saddle River, NJ: Prentice Hall, 2005.

[2] James F. Kurose, Keith W. Ross, Computer Networking Third Edition,
Pearson Addison Wesley 2005

[3] H. T. Kung, C.-K. Lin, T.-H. Lin, S. J. Tarsa, D. Vlah, D. Hague, M.
Muccio, B. Poland, and B. Suter, “A location-dependent runs-and gaps
model for predicting tcp performance over a uav wireless channel,”in
MILCOM, 2010.

[3] 2008-2010 AFRL/RI Research Program “Characterization of the UAS
Network Environment” (CUNE)

[4] 2010-2012 AFRL/RI Research Program “Protocol Emulation for Next
Generation UAV Networks” (PENGWUN)

[5] Carvalho, Advances in Intelligence Modelling and Simulation. Springer
2012

7

