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BIODEGRADATION OF ORGANOFLUORINE COMPOUNDS 
 
 

1. INTRODUCTION 
 
Organofluorines consist of an important group of compounds that are used as 

refrigerants and agricultural chemicals. Although useful, organofluorines are frequently toxic and 
can cause environmentally deleterious effects such as ozone depletion.1 The challenge associated 
with their remediation and detoxification is largely related to their stability. The carbon–fluorine 
(C–F) bond is the strongest covalent bond a carbon atom can form, and it typically survives 
extreme  pH, temperature, and oxidation-reduction conditions.2 New and improved means of 
detoxifying these compounds are highly sought after, and a few enzymes that are capable of 
cleaving the C–F bond have been identified.3,4 Recently, several of these enzymes have been 
crystallized.2 Other defluorinases exist, as evidenced by the fact that there are 12 known 
naturally occurring organofluorine compounds, all of which have been found in microorganisms 
and plants.5 As with all compounds found in nature, it is assumed that their enzymatic 
degradation occurs because they have not accumulated infinitely in the environment. 

 
 

2. MATERIALS AND METHODS 
  
An M9 medium was used without glucose. It consisted of 7.25 g of Na2HPO4, 

3.0 g of KH2PO4, 0.71 g of NaCl, and 2.0 g of NH4Cl per liter. A salt solution was added to the 
following concentrations: MgSO4 (1 mM), CaCl2 (0.1 mM), and FeCl3 (0.01 mM). 

 
Fluoride electrode assays were conducted at room temperature in 2.5 mL of  

50 mM bis-tris-propane (BTP) buffer with pH 7, using 100 µL of supernatant from the lysate as 
the enzyme sample. 

 
 

3. RESULTS AND DISCUSSION  
  

3.1 Enrichment Cultures 
  
One approach to the identification of degradative enzymes is to “feed” the 

compound of interest (COI) to a consortium of microorganisms as the sole carbon source for 
growth and energy. This selection is a powerful tool that can be used to isolate organisms and, 
subsequently, enzymes for the degradation of various organic compounds. Organisms capable of 
COI use overgrow the culture and after a period of time (typically weeks), can be isolated from 
the consortium. Following isolation, lysates can be tested for useful enzyme activity; in the 
specific case of C–F hydrolysis, activity can be monitored by fluoride electrode. Our approach 
was to use an array of naturally occurring and synthetic organofluorine compounds as carbon 
sources in separate enrichments. 

 
The compounds used in the enrichments are shown in Table 1. All compounds 

were initially used as a 20 mM concentration as a sole carbon source in an M9 salt medium. 
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Table 1. Compounds Used as Carbon Sources in Enrichments 

Compound MW 
Density 

g/mL @ 25 °C 
Chloropentafluorobenzene 202.51         1.569 
1H,1H,2H,2H-perfluorooctyltriethoxysilane 510.35         1.3299 
2,2,2-Trifluoroethanol 100.04         1.373 
4-Fluorophenol           112.1         1.246 
Perfluorononanoic acid 464.08         Solid 
Perfluoro-1-octanesulfonyl fluoride 502.12         1.824 
2,2-Difluoroethanol   82.05         1.296 
2-Fluroaniline 111.12         1.151 
2,6-Dichloro-4-(trifluoromethyl) pyridine 215.99         1.505 
Benzoyl fluoride 124.11         1.14 
2-Fluoro-6-(trifluoromethyl) benzoyl chloride 226.56         1.465 
5-Fluoro-2-nitrobenzotrifluoride           209.1         1.49 
3-Chloro-4-fluoro-5-nitrobenzotrifluoride 243.54         1.607 
2-Fluoro-3-(trifluoromethyl) benzoic acid 208.11         Solid 
5-Fluoro-2-(trifluoromethyl) benzoic acid 208.11         Solid 
2-Fluoro-5-nitrobenzotrifluoride           209.1         1.52 
2-Fluoro-6-(trifluoromethyl) benzonitrile 189.11         1.373 

 
 
Enrichment cultures were inoculated with environmental isolates from water, soil, 

and wastewater discharges and incubated at 25 °C for up to 3 months. Two of the enrichments 
(benzoyl fluoride and 1H,1H,2H,2H-perfluorooctyltriethoxysilane) became turbid as a result of 
bacterial growth. Initial cultures containing these two substrates were subsequently passed using 
a 1 µL inoculum placed into a 100 mL flask containing the M9 medium with 20 mM of the same 
compound as the sole carbon source. Both cultures continued to grow with several subsequent 
passages, and bacteria from each were repeatedly streaked for single colonies. Neither was 
capable of growth on either substrate as a sole carbon source. 

 
Both cultures were grown in 1 L volumes to their maximum density on their 

respective substrates. They were then pelleted at 5,000 × g, lysed in a microfluidizer, and 
pelleted again at 20,000 × g. The supernatant was tested for defluorination activity using a 
fluoride electrode calibrated against known standards. Assays were run with all the compounds 
listed in Table 1 against lysates from cultures grown on benzoyl fluoride and 1H,1H,2H,2H-
perfluorooctyltriethoxysilane. This screening did not identify any significant activity from either 
culture on the organofluorine compounds that were tested. Figure 1 depicts a typical result of  
an assay comparing defluorination rates in the presence and absence of bacterial lysates. In all 
the cases, rates were similar with or without the lysates, which was consistent with little or no 
enzymatic activity. Table 2 shows defluorination rates of some organofluorine compounds. 
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Figure 1. Typical defluorination assay results.  
 
 

Table 2. Defluorination Rates* of some Organofluorine Compounds  

Compound 
Hydrolysis Rate 

(nM F-/min) 
Chloropentafluorobenzene                       1.0 
2,2,2-Trifluoroethanol 0.14 
4-Fluorophenol                       4.6 
Perfluoro-1-octanesulfonyl fluoride                     90 
2,2-Difluoroethanol                       0.4 
2-Fluoroanaline                       4 
2,6-Dichloro-4-(trifluoromethyl) pyridine                       6.0 
Benzoyl fluoride            980,000 
2-Fluoro-6-(trifluoromethyl) benzoyl chloride                       4.0 
3-Chloro-4-fluoro-5-nitrobenzotrifluoride                     16 
3-Fluoro-4-(trifluoromethyl) benzoic acid                       3.0 
2-Fluoro-3-(trifluoromethyl) benzoic acid                       3.3 
5-Fluoro-2-(trifluoromethyl) benzoic acid                       2.0 
2-Fluoro-5-nitrobenzotrifluoride                       3.0 
2-Fluoro-6-(trifluoromethyl) benzonitrile                       4.0 

 

y = 0.0125x + 15.47
R² = 0.818

y = 0.012x + 19.57
R² = 0.8392

y = 0.0096x + 8.6899
R² = 0.873
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 4 

While most of the organofluorine compounds exhibited very slow hydrolysis, one 
compound (benzoyl fluoride) hydrolyzed approximately 6 orders of magnitude faster than the 
others (Figure 2). 

 
 

 
Figure 2. Defluorination of benzoyl fluoride. Assayed in 50 mM BTP with pH 7  
at room temperature. 
 

 
The primary product of the reaction was  benzoic acid. The reaction for benzoic 

acid is depicted below.  

 
Scheme.  Benzoic acid reaction. 
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Accordingly, the cultures that were islolated with benzoyl fluoride as the sole 
carbon source probably contained benzoic acid. 
 
3.2 Continuous-Loop UV Mutagenesis Reactor 

  
A continuous-loop UV mutagenesis reactor was used to pursue a parallel 

approach to the isolation of organofluorine-degrading bacteria (Figure 3). This reactor is 
essentially a chemostat that is used for the purpose of continuously mutagenizing and selecting 
the organic compounds provided as sole carbon sources.6 

 
 

Figure 3. Continuous-loop UV mutagenesis reactor. Environmental isolates are gravity-fed 
from a drip bag to a continuously stirred Erlenmeyer flask and overflowed into a UV 
mutagenesis chamber calibrated to kill 90–99% of cells. The overflow from the UV 
mutagenesis is cycled back to the beginning of the process. Growth (turbidity) can be detected 
visually in the Erlenmeyer flask. 
 

 
In an effort to maximize simplicity, the reactor was fed from a drip bag and the 

mutagenesis was calibrated to the drip rate from the bag. Using a gravity-fed system avoids the 
possibility of spills related to clogging and pressure build-up, which are common to pump-fed 
systems. To produce useful mutants, we calibrated the flow through the UV light source to 
produce an approximately 90–99% kill rate.  
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Figure 4. Calibration of mutagenesis reaction. A drip rate of approximately 50 drips/min 
corresponded to a kill rate of 90–99%. This rate was confirmed with 5 subsequent tests, 
which yielded kill rates between 96.63 and 97.83%. 

 
 
 Using the calibrated flow rate of 50 drips/min, the mutagenesis reactor was 
operated continuously for 1 week using 10 mM concentrations of each of the compounds listed 
in Table 1 (Figure 4). The recycled effluent from that run was contained in a large flask and 
monitored for any increase in turbidity. 
  
 
4. CONCLUSIONS 

 
The chemical hydrolysis data will be used to select compounds for future use in 

the chemostat. The primary criterion for an enrichment substrate is that the compound must be 
adequately stable (i.e., relatively little hydrolysis should occur over a period of days to weeks). 
With the exception of benzoyl fluoride, all the other compounds that were tested met that 
criterion. 

 
Further efforts will be made to identify single-colony isolates, which are capable 

of using the organofluorine compounds as sole carbon sources for growth.  
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