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Abstract— The ability to precisely determine the location of
radar transmitters can be crucially important in maintaining
domain awareness. This, however, may be problematic with
traditional methods when used with a distributed network of
disparate sensors. A novel geolocation technique for circularly
scanning radar transmitters is introduced. This technique uses
the differenced central times of arrival (DCTOA) of the main
beam as an observable. The solution for the transmitter’s
position and scan rate are given using a weighted least squares
approach as well as a particle swarm optimizer. Experimental
results show this technique is able to locate a radar transmitter
within 11 meters, while maintaining minimal complexity. This
technique has the advantage of requiring orders of magnitude
less timing synchronization among receivers, an order of mag-
nitude less data transfer, and it does not require simultaneous
illumination of receivers.
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1. INTRODUCTION

The ability to accurately locate radar sources in a timely
manner is crucial in maintaining maritime and other domain
awareness. Traditional methods of precision geolocation re-
quire multiple receivers to be time synchronized on the order
of nanoseconds and often require simultaneous illumination.
Further, receivers must exchange data that often occurs at
the pulse rate of the radar. This, however, may present a
challenge when a distributed network of diverse sensors is
used that have limited timing and data exchange abilities. A
method of precision geolocation with less stringent timing
and data exchange requirements would enable a disparate
network of sensors to accurately estimate a radar transmitter’s
location, as well as expand the state of the art of radar
geolocation techniques.

There are a number of methods currently used for radar
geolocation. Reference [1] provides a general survey of
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techniques, while Reference [2] discusses the theory of these
techniques in detail. Many of these techniques require the
same radar signal to be observed by multiple receivers.
A common example of this is Time Difference of Arrival
(TDOA), where the difference in signal time of arrival is
measured between two spatially distributed receivers. De-
tails of this technique can be found in Reference [3]. This
technique may be problematic with arbitrarily distributed
receivers as it requires simultaneous illumination and precise
timing synchronization between receivers (as solution error is
proportional to timing error times the speed of light). Other
common techniques have similar requirements but observe
different signal characteristics. For example, the difference
in the phase of the signal between two receivers may be ob-
served in interferometry or the Difference in the Frequency of
Arrival (FDOA) may be used to estimate a radar transmitter’s
location. These techniques have similar timing constraints
and will further require data to be shared between receivers at
the pulse rate of the radar, which may be prohibitive.

Additionally, the doppler shift of the signal may be observed,
if there is relative motion between the transmitter and the
receiver, and can be used to estimate a transmitter’s location.
This technique may be problematic in practice as it gener-
ally requires information about the emitted frequency, which
may not be readily available and may vary over time in an
unknown fashion. Reference [4] contains further discussion
of this method.

The last common technique is based on the Angle of Arrival
(AOA) of the signal. Reference [5] as well as Reference [2]
give ample discussion of this method. This technique uses
multiple measurements of the AOA of a signal to triangulate
its source. This method does not require precision timing
synchronization of receivers or high rates of data exchange.
However, as determining the AOA of a signal to sufficient
accuracy may be challenging, precise geolocation results are
not often achievable.

A novel method has been developed that uses differenced
times of arrival of maximum signal strength across multiple
receivers to locate a circularly scanning radar transmitter.
The method allows for passive, precision geolocation without
precise timing requirements or prohibitive data exchange
volumes. The difference between signal times of arrival
is related to the angle the radar has swept out between
observation events, thus the radar transmitter location may
be calculated to be along a line of constant angle between the
two receivers. Given sufficient data, the radar transmitter’s
location may be estimated. This method has the advantage of
being independent of platform and tolerant to timing error on
the order of hundreds of microseconds.

This technique has been developed and tested at the US Naval
Research Laboratory (NRL), and has been developed by other
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researchers in References [6], [7] and [8]. Major work at NRL
include field tests in 2006 and 2009, the latter of which is
documented in Reference [9]. NRL has been issued a United
States patent for this algorithm, [10].

A complete description of the methods used to reliably imple-
ment this technique, called SearchLight, are presented. The
development of the basic observable is presented along with
the necessary algorithm to allow the technique to be used
for an arbitrary receiver configuration. Next, methods for
estimating the radar transmitter’s position are presented for
both the linearized and the nonlinear system. The nonlinear
optimization process has the added benefit of being able to
easily resolve a location ambiguity that exists within the
system. Last, experimental results are presented using data
from the 2009 data collection. Ultimately, it is shown that the
SearchLight algorithm enables precision radar geolocation
using distributed receivers without the need for precise timing
synchronization.

2. THE SEARCHLIGHT METHOD

The SearchLight concept makes use of the fact that a sta-
tionary, circularly scanning radar transmitter will illuminate
a receiver at a regular interval. If one envisions two receivers
distributed about a circularly scanning radar, the change in
time of illumination between the receivers is equal to the an-
gle the transmitter sweeps out between the receivers divided
by the scan rate of the transmitter. This can be expressed by
the following equation.

tj − ti =
1

ω
cos−1

(

(ri − r) · (rj − r)

|ri − r| |rj − r|

)

(1)

In practice, the position of the transmitter, given here by
r, is the unknown quantity that must be derived along with
the scan rate, ω, given a series of differenced central times
of arrival (DCTOA), ti and positions at these times, ri.
While the position vector may be expressed in either a local
vertical local horizontal coordinate system or in an Earth
fixed coordinate system, the implicit assumption is that the
radar transmitters and receivers do not vary significantly from
the local tangent plane. The central time of arrival for a
receiver is defined as the time of arrival of maximum signal
amplitude (corresponding to the arrival of the center of the
main radar beam).

The method for determining the central time of arrival is de-
pendent on radar signal characteristics as well as the number
of active radar in the collection area. When there are multiple
active radar being collected against, each signal must be
deinterleaved. There are several methods for accomplishing
this, all of which rely on the specific characteristics of the
radar to properly sort the signals. Reference [2] contains a
general overview of available techniques. Once each radar
signal has been isolated, the central time of arrival may be
calculated. For pulsed radar, this time may be estimated by
fitting a quadratic curve to the center of received radar pulses
and calculating the time corresponding peak of the quadratic
for each radar pass. A similar technique may be applied to
continuous wave radar.

It should be noted that the angle calculated in Equation 1 is by
definition of arc cosine between 0 and π; therefore, a check is
necessary not only to ensure the correct quadrant is resolved,
but also that the calculated angle between receivers is indeed
the angle the radar has swept out between detection events.

θ

2π − θ

2

1

Figure 1. Diagram Showing Example of Relative Geometry
of Two Fixed Receivers to One Fixed Radar Transmitter

Consider Figure 1. As the radar transmitter sweeps in a
counter-clockwise direction, the angle it sweeps between
consecutive receiver illumination events will alternate be-
tween θ and 2π − θ. That is, the angle that the radar
transmitter sweeps from receiver one to receiver two is θ,
while the angle the transmitter sweeps from receiver two to
receiver one is 2π−θ. However, the calculated angle between
the receivers will always remain θ. A set of geometric
checks must be implemented to differentiate these cases in
order to calculate the correct error residual and to extend this
technique to arbitrary receiver geometry.

It can be shown that angle the radar sweeps between detection
events falls into one of three cases. As shown above, the
first case occurs when the radar has swept out exactly the
calculated angle θ between detection events. In the next
case, the radar has swept out not θ but its explement (i.e.
2π − θ). These cases are demonstrated in Figure 1. The
last possible case occurs for one mobile receiver. Between
detection events, the receiver may have displaced an angle θ
with respect to itself. In this case, the radar sweeps out one
complete revolution plus the additional angular displacement,
which is 2π + θ. This occurs when the receiver moves
with the direction of radar sweep: when the receiver moves
against the radar sweep the angle is 2π − θ. Assuming
that system uncertainty is small with respect to the time
between detection events, the correct DCTOA error residual
is implemented as the following.

θ = cos−1

(

(ri − r) · (ri+1 − r)

|ri − r| |ri+1 − r|

)

(2)

e = DCTOAobserved − DCTOAcomputed (3)

= min

[

DCTOAobserved − θ/ω
DCTOAobserved − (2π − θ)/ω
DCTOAobserved − (2π + θ)/ω

]

(4)

To reiterate, for each measurement a calculated difference
central time of arrival will be computed based on the cur-
rent estimate of the radar transmitter’s position and scan
rate. This calculated DCTOA must be checked against the
observed DCTOA to ensure that the correct geometric case
is identified. From here, the error residual is computed as
the value that is the minimum of the three geometric cases
discussed above and shown in Equation 4. This method is
valid as measurement error is at least an order of magnitude
lower than time difference between the three geometrical
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cases. It should be noted that without making this correction,
the algorithm is constrained to geometric cases where each
receiver is 180o or less apart from each other with respect to
the radar transmitter.

Note that this relationship holds true regardless of receiver
configuration. The benefit of this method is that data from
any number of receivers in any distribution may be used to
estimate the radar transmitter’s location without additional
impact upon the SearchLight algorithm. Indeed, the only
requirement is that sufficient change in receiver bearing with
respect to the transmitter is observed; thus, a multitude of
receiver platforms and configurations are supported.

Further, it can be seen that information regarding specific
transmitter characteristics is not necessary a priori. This
gives SearchLight an advantage of competing geolocation
techniques such as geolocation via doppler shift observation,
where the emitted signal frequency must be known. Also,
only the arrival of the center of the main radar beam must be
isolated when multiple transmitters are present, rather than
the arrival of each pulse. This may decrease the complexity
in the signal deinterleaving process and allow the SearchLight
algorithm to be used in applications where specific signal
characteristics are not known a priori.

Next, SearchLight may be used to geolocate Continuous
Wave (CW) radar transmitters. Many traditional techniques,
such as TDOA, use the arrival of pulses to define a measure-
ment event and cannot be easily implemented to geolocate
CW radar transmitters.

Last, it can be seen from Equation 1 that this observation
is much less sensitive to clock error than traditional time
difference of arrival (TDOA) methods. In TDOA methods,
the resulting position error due to clock error is proportional
to the speed or light; however, for this DCTOA method,
the position error is only proportional to the scan rate of
the radar transmitter, which is several orders of magnitude
slower. Thus, much larger clock errors are tolerable. This
fact enables this method to be used with distributed receivers
without the need for precise timing calibration. Additionally,
the requirements for data transfer with this algorithm is
much lower than traditional methods. Traditional techniques
require data measurements to be taken at the pulse rate of
the radar, while this technique only requires the sharing of
data taken at the scan rate of the radar transmitter. This
typically results in the need for one order of magnitude less
data transfer between receivers to formulate a geolocation
solution.

3. SOLVING THE LINEARIZED SYSTEM

Given multiple DCTOA measurements, a stationary, circu-
larly scanning radar transmitter’s position and scan rate may
be estimated. It is clear that the measurement equation (Equa-
tion 1) is nonlinear, so a linearized least squares solution
may be used. The least squares criteria was first posed
by Gauss. For a more in depth treatment see References
[11] or [12]. Here the state that is solved for is the radar
transmitter’s position, r, and scan rate, ω. The measurement
is the DCTOA, which is related to the state by Equation 1,
which is repeated for completeness.

x =

[

r
ω

]

(5)

y =
1

ω
cos−1

(

(ri − r) · (ri+1 − r)

|ri − r| |ri+1 − r|

)

(6)

= h(x, ri, ri+1) (7)

To linearize the measurement equation, the first order vari-
ation of its Taylor series expansion about a known constant
state x0can be considered. So then, the following equations
hold.

ỹ = h(x, ri, ri+1)− h(x0, ri, ri+1) (8)

ỹ ≈ H [x− x0] (9)

H =
∂h(x, ri, ri+1)

∂x
(10)

In the weighted least squares (WLS) formulation the goal is
to estimate the state, xo, that minimizes the following cost
functional, which is the sum of the squares of the error.

J(x) = 1/2 ǫTWǫ (11)

= 1/2 (ỹ −Hx)
T
W (ỹ −Hx) (12)

Here, W is a positive definite weighting matrix which is gen-
erally set to the inverse of the measurement noise covariance.
This has the well-known solution shown below.

xo =
(

HTWH
)

−1
HTW ỹ (13)

This quantity is often described in terms of the covariance
matrix, P .

P =
(

HTWH
)

−1
(14)

xo = PHTW ỹ (15)

As this is a nonlinear WLS problem, an initial state
estimate,x0, must be generated and the solution must be
iterated upon until convergence. An initial guess for the radar
transmitter’s position can be generated by a rough grid search.
To generate an initial guess on the radar’s scan rate, the times
between detection events for any individual receiver can be
averaged. This may then be averaged between all receivers.
This time divided by 2π yields a fairly accurate guess of scan
rate. This is because the time between detection events for
each individual receiver roughly corresponds to one complete
revolution of the radar beam.

While an analytic form of the matrix H may be found
(this is shown in the Appendix), analysis has shown that
calculating numerical partial derivatives generally yield better
results. Reference [8] contains an alternate formulation of
this solution.
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4. SOLVING THE NONLINEAR SYSTEM

As the system is nonlinear, it would be beneficial to estimate
the radar transmitter’s position and scan rate in a nonlinear
fashion. Additionally, there is an issue that makes nonlinear
analysis preferable. It can be seen from Equation 1 that
any given DCTOA can be generated by estimating the radar
transmitter at the true position and true scan direction or at
a position mirrored about the line joining the measurement
locations and having the opposite scan direction. This false
location will be referred to as a “ghost point.” This ghost
point will move as the relative geometry of the receivers
change; however, the area in the vicinity of the ghost point
will represent a local minimum of the sum of the squared
error. This may cause the WLS to erroneously converge.
Thus, a method for locating a global minimum (despite the
existence of local minimums) is necessary. An example of
this phenomenon can be seen in Figure 2 below. As can be
seen, there is a distinct local minimum corresponding to the
ghost point mirrored about the mobile receiver position.
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Figure 2. Plot Showing Error Contours of the Cost Function
with Relative Receiver Geometery for F1 Dataset

In order to meet these goals, a particle swarm optimizer
(PSO) was implemented. PSO was first theorized in Ref-
erences [13] and [14]. For a more in depth discussion see
Reference [15], while Reference [16] provides an excellent
overview of the process. The problem must be posed as
finding a minimal value of a cost function given a set of input
parameters. This applies exactly to the SearchLight problem:
the sum of the squares of the residuals may be minimized by
finding the correct transmitter location and scan rate. From
here, the search space for the solution must be defined. In
terms of this application, this means that appropriate bounds
need to be placed on the location as well as the scan rate for
the receiver. In this execution of the PSO, the initial bounds
on the radar transmitter’s position have been as large as two
degrees in latitude and longitude. The initial bounds on the
scan rate can either be estimated by the end user or taken
as within a reasonable percentage of the estimated scan rate
using the method described above. Next, the search space
is randomly populated with a number of state guesses (in
this case receiver position and scan rate), known as particles.
These particles are also given an arbitrary initial velocity.
At each time step the cost function is evaluated for each
particle, and the a number of best states are tracked. The first
tracked state is known as the individual best solution which
corresponds to state with the lowest cost at any time step on a
strictly per particle basis. So, for N particles, there will be N
individual best states tracked. The next tracked state is known
as the global best solution and is the state with the lowest cost
for any particle at any time step. There is typically only one
global best solution. From here, each particle is stochastically

accelerated along three directions: along its current direction,
towards its best known individual solution and towards the
best known global solution. This process is iterated until a
stopping condition is met, which is typically a fixed number
of iterations.

The equations in this process are defined in the following
paragraphs. Here, the objective function is defined as the
sum of the squares of the residual error: this is a function
of transmitter position and transmitter scan rate.

J(x) =

N
∑

i=2

(yi − hi(x, ri−1, ri))
2 (16)

Here, yi and h(x, ri, ri+1)
i are the ith observed DCTOA and

calculated (via Equation 1 and Equation 4) DCTOA, which
are summed over M observations.

Now, an initial population of particles can be created. This
is done by uniformly, randomly populating the search space
with N number of initial states. This is accomplished by

invoking the following equation for the jth particle.

Xj =Xmin + r(0, 1)d (17)

d =Xmax −Xmin (18)

Xj is the state of the jth particle, Xmax is the upper bound
of the search space, Xmin is the lower bound for the search
space and r(0, 1) signifies a random number with uniform
distribution between 0 and 1.

The following process is then iterated until a suitable stopping
condition is reached. First, evaluate the objective function for
each particle.

Υj = J(Xj) (19)

Next, check to see if this current state represents either an

individual best solution for the jth particle, denoted by ψj ,

or a global best solution, represented by G. Here, only one
global best solution will be tracked. If these conditions are
satisfied then the following are implemented.

ψj =Xj if Υj < J(ψj) (20)

G =Xj if Υj < J(G) (21)

For M particles, the algorithm tracks M individual particle
best solutions and typically one global best solution. The in-
dividual and global best solutions are not necessarily updated
at every iteration; rather, they are only updated when a better
individual particle solution or global solution is found. This is
known as a global best topology. A formulation can be made
where each particle is only aware of the best solution within
its group of neighbors as defined in state space, as opposed
to each particle having knowledge of best solution globally.
This formulation is generally regarded as allowing the PSO
to be more resistant to premature convergence; however, it
requires more computation and was not deemed necessary for
this work. Further discussion is available in Reference [17].

Now that all particles have been evaluated and checked for
the individual or global best solutions, the particles must
be moved to a new position for the next iteration. This is
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accomplished in the following manner. First, the velocity of
each particle is set in the following manner.

V k
j = cI V

k−1

j

+ cC

(

ψk −Xk−1

j

)

+ cS

(

G−Xk−1

j

)

(22)

Here, j refers to the jth particle and k refers to the kth itera-
tion. The initial particle velocity can be assigned arbitrarily.
In this implementation, the velocity direction was randomly
assigned while the magnitude was set to be arbitrarily small.
As can been seen, the particle’s velocity is impacted by
three main factors: the particle’s previous velocity, the vector
difference between its individual best state and its current
state, and the vector difference between the globally best
solution and its current state. These three quantities are scaled
by inertial, cI , cognitive, cC and social, cS weights, which are
defined in the following manner.

cI =
1 + r1(0, 1)

2
cC = 1.49445 r2(0, 1)

cS = 1.49445 r3(0, 1) (23)

Notice each of these three constants involve an independent
uniform random number, given by ri(0, 1). Each of these
stochastic scale factors were chosen from suggested values
in the literature and may be adjusted in a number of ways.
Both References [18] and [19] discuss the effects of altering
these parameters. Once the particle velocity is calculated,
the particle is propagated to its new location in the following
manner.

Xi
j+1 =Xi

j + V
i
j (24)

This then concludes one iteration. This process is then
repeated until an appropriate stopping condition is met.

5. CONFIDENCE REGION CALCULATION

In many applications, it is not sufficient to only estimate the
position of the radar transmitter: it is necessary to estimate
the size of the confidence region about the solution. There
are two methods that were explored.

First, a confidence ellipse may be calculated from the lin-
earized system. Reference [20] gives an excellent review of
calculating a confidence ellipse given a covariance matrix.
The covariance matrix, P , of the linearized system is related
to the confidence ellipse through its eigenvalues, λi, and

eigenvectors, vi. As the primary concern is for the uncer-
tainty in the radar transmitter’s position, consider the reduced
two by two covariance matrix, P2x2 (which corresponds to
the position covariance), and let its eigenvalues be λ1 > λ2.
The confidence ellipse can be defined by its semi-major axis,
SMA, its semi-minor axis, SMI , and its orientation angle,

φ. These are defined by the following.

SMA =
√

2λ1σ2F 1−α
p,n−p (25)

SMI =
√

2λ2σ2F 1−α
p,n−p (26)

Here, σ2 represents the calculated error variance, F rep-
resents the percentage point of the Fisher distribution, α
represents the confidence level, p is the number of degrees
of freedom and n is the number of data points. The Fisher
distribution is itself a ratio of Gamma function and generally
has numerical values available in standard math tables. The
orientation of the ellipse can defined as the angle of the first
eigenvector (i.e. the direction of the semi-major axis) with
respect to the first coordinate axis. This is given by the
following.

φ = arctan

(

v12
v11

)

(27)

Here, v1l represents the lth component of the first eigenvector.
This method has the advantage of being well suited to a WLS
approach as the covariance is already calculated. However, it
makes the assumption that the confidence ellipse is centered
upon the solution position, which is not necessarily the case.
Additionally, the ellipse is derived from the covariance of the
linearized system, which may not yield the correct result in a
nonlinear system.

Thus, a nonlinear method for developing the confidence re-
gion is needed. References [21] and [22] both discuss several
methods for developing a confidence region in the context of
PSO. A general confidence region can be expressed by the
formula for the likelihood method which is as follows.

J(x)− J(xo) ≤ σ2pF 1−α
p,n−p (28)

This equation, which was first formalized in Reference [23],
states the confidence region is the locus of points x in state-
space such that the difference between the cost function at
that point and the cost function at the optimal point x0 is
within a constant, which itself is a function of the error
variance, degrees of freedom and the associated percentage
point of the Fisher distribution.

This definition of a confidence region lends itself well to the
PSO process. A key feature of PSO is the evaluation of
the cost functional at a large sampling of points. Thus, a
byproduct of this is the ability to evaluate whether a point
satisfies Equation 28, and thereby create the locus of points
that represents the confidence region.

This process is implemented in several steps. First, within
the PSO algorithm a check can be added for each particle
as to whether it satisfies Equation 28. If it is satisfied,
the point and value of the cost function are stored for post
processing. After the PSO has run to completion, a check
must be run to ensure each point that has previously satisfied
Equation 28 still indeed satisfies the equation (as the value
of the optimal cost has no doubt been updated throughout
each iteration). The remaining set of points represents the
nonlinear confidence region. A set of points, however, is
difficult to express by a few meaningful quantities. Thus,
it was decided that the minimum volume containing ellipse
(MVCE) should be fit to these points so that the size and
orientation of region may be expressed in identical terms as
in the linearized confidence region. In order to make this
process more efficient, the convex hull of this set of points
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may be found before calculating the MVCE (since the MVCE
of a set of points is identical to the MVCE of its convex hull).
The convex hull is defined as the minimum subset of points
such that all points are contained within them.

This process has a few benefits derived from the fact that the
confidence region is explicitly linked to the evaluation of the
cost functional. First, this method is able to identify when
a cost minimum represented by the ghost point is within the
confidence region of the true minimum. This can be a quality
measure by the end user to determine whether sufficient data
has been taken to definitively locate the radar transmitter.
An additional benefit of this method is that the ellipse is not
assumed to be centered upon the optimal solution. This fact
can aid in identifying modeling problems by more readily
distinguishing when the true solution does not lie within the
confidence region in excess of what is statistically predicted.

6. TESTING RESULTS

An exercise was conducted where a fixed receiver and a
moving, ship-based, mobile receiver were collecting data
while in range of three separate radar transmitters to test
these methods. These transmitters had varied characteristics.
These receivers collected a synchronized time tag, their own
position as well as radar data. The relative geometries of
the radar transmitters and the receivers are shown in Figure
3 below.

As can be seen, the fixed radar transmitters were installed
in a coastal location. The ship-board receiver traveled along
the coast so that the effects of relative geometries could
be observed. Figure 3 also shows how the data have been
divided into subsets, each set ranging from 10 to 30 minutes
of collection time.

Both the WLS method and the PSO algorithm were imple-
mented on the dataset. The estimated radar position was
compared against the known position for each data segment.
The results of this analysis are summarized in Table 1 below.
As an additional point of comparison, data for a line of bear-
ing (LOB) geolocation process was simulated. The technique
uses the angle of arrival (AOA) of the signal and essentially
uses triangulation to determine the radar transmitter’s loca-
tion. References [2] and [5] contain detailed discussion of
this method. This was done so that an appropriate comparison
can be made, as the LOB technique also does not require pre-
cision time synchronization and may be used with distributed
receivers. Both the WLS and LOB results are taken from
Reference [9] to serve as a point of comparison against the
PSO results.

As can be seen the SearchLight algorithm provides geolo-
cation results with much higher accuracy than the line of
bearing method. The positions calculated via the SearchLight
algorithm are on average twenty times more accurate.

Furthermore, it is clear that the PSO generally provides more
accurate results than the WLS method. The average miss
distance is almost 150 meters lower for the PSO method.
In addition to the more accurate results, the PSO method
requires much less data preprocessing than the WLS method.
The WLS requires not only an initial guess for the radar
transmitter’s position and scan rate, but it also requires more
data checking to ensure that it will not converge to the ghost
point. The PSO method, on the other hand, requires only a

2WLS and LOB results are from [9]

Table 1. Data Analysis Results Summary of Miss Distances
in Meters2

Dataset PSO Method WLS Method LOB Method

F1 11.0 9.3 926.0

F2 38.5 53.7 1296.4

F3 199.2 398.2 6667.2

F4 80.4 196.3 2592.8

F5 160.1 368.5 7408.0

F6 72.8 561.2 14630.8

F7 667.0 822.3 11112.0

L1 72.1 20.4 1296.4

L2 45.3 131.5 9074.8

N1 136.5 785.2 1852.0

N2 732.3 724.1 1481.6

N3 550.9 492.6 2963.2

Min 11.0 9.3 926.0

Max 732.3 822.3 14630.8

Avg 230.5 380.3 5108.4

rough search space definition and is able to uniformly process
data with little intervention. And since the WLS method
requires additional preprocessing, the run times for both
methods are comparable, even though a PSO is traditionally
more computationally intensive.

Next, the confidence region of these solutions can be calcu-
lated from both the linearized and nonlinear methods. These
regions can be constructed for a given confidence level (e.g.
95%) and represent where the estimated solution may lie if
more or varied data is used to compute the solution. It should
be noted that this does not necessarily mean that the true
solution will lie within the confidence region at that given
probability.

Confidence ellipses were calculated at a 99.9% confidence
level in both the linearized and nonlinear method as described
above for each dataset. It was also noted whether the confi-
dence region contained the true solution or not. These results
are presented in Table 2 below.

It can be seen from those results that nonlinear method
provides confidence regions that are much smaller, but only
contain the solution for half of the cases while the linearized
solution provides confidence regions that are much larger but
contain the true solution for all datasets. At this chosen
confidence level, it would be expected that each confidence
region would approximately always contain the true solution
if the system is correctly modeled. This indicates that system
modeling can be improved. Indeed, upon examination of a
contour plot of the error residuals, it can be seen that the
true solution is not located within a minimum error residual
location.

A plot of the results for dataset F1 are shown below in Figure
4. As can be seen, the estimated radar transmitter location is
within 11 meters of the true transmitter location. The 99.9%
nonlinear confidence ellipse is plotted as well for a point of
reference. Figure 5 shows a plot of the results for the F3
dataset. These results show the case where the true solution
is not contained within the confidence ellipse. It should be

6



Figure 3. Plot Showing Relative Positions of Radar Transmitters Versus Receivers Over Collection Period

Table 2. Results Summary for Confidence Region Analysis

Nonlinear Method Linearized Method

Dataset SMA [m] SMI [m] Contained SMA [m] SMI [m] Contained

F1 332.10 163.34 In 288.81 139.45 In

F2 93.09 20.36 Out 274.02 57.37 In

F3 1286.39 28.64 Out 7380.09 80.43 In

F4 313.16 22.11 Out 1660.67 80.14 In

F5 570.94 28.49 Out 4470.12 99.37 In

F6 2635.31 45.32 Out 21014.90 138.75 In

F7 5259.61 126.09 In 50190.45 315.56 In

L1 1872.81 202.33 In 3584.14 367.26 In

L2 1749.42 116.66 In 7644.55 216.75 In

N1 19217.66 1988.07 In 24307.59 345.76 In

N2 349.64 155.37 Out 1200.12 508.43 In

N3 7769.74 6073.10 In 30136.18 72.13 In

noted that the confidence ellipse extends beyond the bounds
of the plot and is indeed elliptical. It can be seen that the true
transmitter location does not correspond to a location with
minimal error, suggesting that modeling errors are present.

7. CONCLUSIONS

A novel method for geolocation of a circularly scanning radar
transmitter based on observing times between detection of
a distributed set of receivers was introduced. This method
has the benefits of minimum complexity and minimal timing
requirements. This, in turn, enables the technology to be used
on a variety of platforms in a multitude of configurations
without the need for precise timing calibration or high data

7
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Figure 4. Plot Showing Nonlinear Analysis Results for
Dataset F1 with Error Contours
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Figure 5. Plot Showing Nonlinear Analysis Results for
Dataset F3 with Error Contours

transfer rates. Both linear and nonlinear methods were
explored for solving this system. Using a particle swarm
optimizer enabled precise geolocation, while being tolerant
of the nonlinearities of the solution space. An analysis of
the confidence region associated with the solution showed
that the uncertainty in the position of solution for the radar
transmitter is relatively small; however, it also suggests that
modeling improvements may be made.

With this in mind, future work includes incorporating a
scan rate drift term in the estimation process. This requires
relatively low effort for implementation in the PSO and will
allow a more accurate result given a non-constant scan rate.
In addition, incorporating angle of arrival (AOA) information
within the estimation process should increase the accuracy
of the results while maintaining minimal complexity. Uncer-
tainty in AOA measurements are generally orthogonal to the
uncertainty in the DCTOA measurement. This should allow
for increased accuracy.

Ultimately, the technology shows enormous potential in a
variety of fields. The future of some fields, such as maritime

domain awareness, are dependent upon the use of a network
of disparate sensors. This method will enable these sensors
to perform precision radar geolocation without the need for
expensive precision timing calibration and high data transfer
rates.

APPENDIX

The partial derivatives of the nonlinear measurement given
in Equation 1 may be calculated as follows. Consider the
following system.

x =

[

r
ω

]

(29)

y =
1

ω
cos−1

(

(r1 − r) · (r2 − r)

|r1 − r| |r2 − r|

)

(30)

(31)

Now assume that positions are restricted to the local tangent
plane and let ρi = ri − r. So then, the following are true.

x =

[

x
y
ω

]

(32)

y =
1

ω
cos−1

(

(ρ1) · (ρ2)

|ρ1| |ρ2|

)

(33)

(34)

So then the partial derivatives of h with respect to the first
position state, x is as follows.

∂h

∂x
= ∓

1

ω
√

1− γ2

∂u

∂x
(35)

γ =
ρ1 · ρ2
|ρ1| |ρ2|

(36)

∂u

∂x
=

−ρ1(1)− ρ2(1)

|ρ1| |ρ2|
(37)

+ ρ1(1)
ρ1 · ρ2

|ρ1|
3 |ρ2|

(38)

+ ρ2(1)
ρ1 · ρ2

|ρ1| |ρ2|
3

(39)

Here, ρ(i) represents the ith component of ρ vector. The
partial derivative of h with respect to the second position
state, y, is as follows

∂h

∂y
= ∓

1

ω
√

1− γ2

∂u

∂y
(40)

∂u

∂y
=

−ρ1(2)− ρ2(2)

|ρ1| |ρ2|
(41)

+ ρ1(2)
ρ1 · ρ2

|ρ1|
3 |ρ2|

(42)

+ ρ2(2)
ρ1 · ρ2

|ρ1| |ρ2|
3

(43)

Finally, the partial derivative of h with respect to the scan
rate, ω, is as follows.

∂h

∂ω
= ∓

1

ω2
arccos

(

ρ1 · ρ2
|ρ1| |ρ2|

)

(44)
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The sign ambiguity on these terms is related to the ambiguity
presented in Equation 4. The partial derivatives are negative
for the case where the radar has swept through θ or 2π + θ,
while the partial derivatives are positive for the case where
the radar has swept out 2π − θ.
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