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Abstract …….. 

Many processes are affected by the interaction of liquids with surfaces. These interactions depend 
on the solid-liquid, solid-vapour, and liquid-vapour surface tensions, as well as the surface 
structure or roughness. A liquid in intimate contact with a rough surface will generally be better 
adhered than the same liquid on a smooth surface due to the increase in the contact area. Rough 
superhydrophobic surfaces with low surface energy, however, support the liquid on the peaks of 
the roughness, with minimal contact area, and as a consequence the liquid is easily removed. In 
this work durable micron sized polyurethane fibres were produced by electrospinning. The 
surface of these fibre mats was microscopically rough, and nano-scale features were added to the 
fibre surface by electrospinning with nanoparticles, or through a fluorinated alkyl silane, sol-gel 
coating process. The sol-gel treatment produced a rough hydrophobic coating on the electrospun 
fibres. From contact angle measurements, it was found that these methods increased the water 
contact angle, however, a truly superhydrophobic surface with small tilt angle was only achieved 
when a thicker sol-gel coating was deposited on the electrospun fibre mats. 

 

 

Significance to defence and security  

Many military systems are impacted by solid-liquid contact, whether it is contamination by 
chemical agents, corrosion, ice-accumulation, biofouling, degraded antenna performance, dirt 
accumulation and staining, or discomfort from being wet. Superhydrophobic or oleophobic 
materials have chemical and structural properties which limits liquid contact and wetting, 
permitting the liquids to be easily shed. The electrospinning of fibres is one method of producing 
materials with the required properties and may be applicable to oil-water separation, water 
proofing membranes and better rain wear.  
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Résumé …….. 

De nombreux processus sont affectés par l’interaction des liquides avec les surfaces. Ces 
interactions dépendent des tensions superficielles solide-liquide, solide-vapeur et liquide-vapeur, 
ainsi que de la structure de la surface et de sa rugosité. Un liquide en contact étroit avec une 
surface rugueuse y adhèrera généralement mieux que sur une surface lisse en raison de la surface 
de contact plus grande. Toutefois, les surfaces rugueuses superhydrophobes à faible énergie 
superficielle supportent le liquide sur leurs parties les plus rugueuses, là où le contact est minimal, 
et, en conséquence, le liquide facilement extrait. Pour le présent travail, nous avons produit des 
fibres de polyuréthane durable de la taille de l’ordre du micron par électrofilage. La surface de ces 
mats fibreux était rugueuse au microscope et des caractéristiques à l’échelle nanométrique ont été 
ajoutées à la surface des fibres par électrofilage au moyen de nanoparticules ou grâce à un 
procédé de revêtement sol-gel avec un alkylsilane fluoré. Le traitement par sol-gel a produit un 
revêtement rugueux hydrophobe sur les fibres électrofilées. À partir de mesures d’angles de 
contact, nous avons montré que ces méthodes accroissaient l’angle de contact de l’eau. Toutefois, 
seule une surface vraiment superhydrophobe avec un petit angle d’inclinaison a pu être obtenue 
quand un revêtement sol-gel plus épais était déposé sur les mats fibreux électrofilés. 

 

 

Importance pour la défense et la sécurité  

De nombreux systèmes militaires sont soumis à un contact solide-liquide, que ce soit la 
contamination par agents chimiques, la corrosion, l’accumulation de glace, l’encrassement 
biologique, la performance d’antenne dégradée, l’accumulation de poussière ou de taches ou 
l’inconfort dû au fait d’être mouillé. Les matières superhydrophobes ou oléophobes ont des 
propriétés chimiques et structurelles qui limitent le contact du liquide et le mouillage, permettant 
aux liquides de s’écouler facilement. L’électrofilage de fibres est une méthode permettant de 
produire des matières aux propriétés requises et pouvant être appliquées à la séparation huile-eau, 
à des membranes d’étanchéité et à de meilleurs vêtements de pluie.  
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1 Introduction 

The ability of a liquid to wet and adhere to, or to be shed from a solid surface is relevant to many 
military applications such as anti-biofouling coatings for boats, self-cleaning surfaces and 
windows, water-shedding antennas, stain-resistant textiles, water-proof clothing, and separation 
of oil and water.1 Superhydrophobic surfaces have sparked interest because of the potential for 
creating materials that readily shed water. Nature supplies many examples of superhydrophobic 
surfaces such as the lotus leaf which sheds water. The ability to shed the water relies on rough 
protrusions from the surface that are coated with nanocrystals of a waxy material. The waxy 
material reduces the solid-liquid surface tension, and provides a second order of roughness. The 
combined nano and micron scale roughness act to minimize the contact area with water. As a 
result water drops can rest on top of the protrusions in a beaded state with minimal contact. If the 
surface is inclined, then small gravitational forces are large enough to cause the liquid to detach 
and roll from the surface. A variety of methods have been developed to produce 
superhydrophobic surfaces including template and lithographic approaches, micromachining, 
plasma treatments,2,3 chemical derivatization,4 electrochemical deposition,5 colloidal assembly,6 
sol-gel7-11 and electrospinning12-14 or a combination of the techniques.1  

In this study superhydrophobic surfaces were produced by electrospinning mats of micron and 
sub-micron sized fibres. Electrospun fibres have previously been shown to be capable of 
producing the superhydrophobic effect14 through: the addition of nanoparticles to the 
electrospinning solution;12 by electrospinning low surface energy polymers;15 use of microphase 
separation;13 or through the use of sol-gels.16 These reports do not usually contain enough 
information to be able to easily reproduce the results or to apply them to other polymer or 
chemical systems. Hence, the electrospinning parameter space was investigated in order to 
determine the effect of various experimental conditions on the morphology of durable, 
electrospun polyurethane fibres. Nanoparticles and sol-gel coatings were used to increase the 
electrospun fibre roughness. The fluorinated alkyl silanes used in the sol-gel treatment acted to 
decrease the solid-liquid surface tension. Scanning electron microscopy, Scanning Electron 
Microscope (SEM), was used to determine the characteristics of the fibre and mat, and contact 
and tilt angle measurements were made to determine the hydrophobicity of the materials.  

This work was undertaken as part of a technology investment project, investigating the use of 
superhydrophobic and organophobic materials for military application, for the Canadian Army 
Forces. 

1.1 Theory 

The solid-gas, solid-liquid, and liquid-gas surface tensions (sv, sl, lv, respectively) acting on a 
liquid drop resting in equilibrium on a surface are related by the Young equation and the contact 
angle, the angle between the liquid-vapour and solid-liquid surface tensions, Equation 1 and 
Figure 1. The contact angle is indicative of whether a surface is hydrophilic, < 90, or 
hydrophobic, > 90. A liquid completely suspended on air would have a ciontact angle of 180.1 

SG = SL + LG cos  (1)
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small contact angle hysteresis.12 Contact angle hysteresis is the difference between advancing and 
receding contact angles, which can be measured on the downhill and uphill sides of a drop on an 
inclined surface before the drop rolls. It can also be determined by growing or reducing the drop 
size.  

Achieving a superhydrophobic state requires two main surface characteristics: high surface 
roughness to minimize the solid-liquid contact area, and low surface energy to minimize the 
solid-liquid surface tension. The surface tension depends on the chemical nature of the surface 
materials,3 and their associated strong dipole-dipole and hydrogen bonding interactions or weaker 
Van der Waals forces. Low solid-liquid surface tension is often achieved between water and alkyl 
hydrocarbons, or fluorinated molecules, and results in the water beading due to the large  
liquid-air surface tension. Changing the material of the surface or applying a coating are 
two ways of modifying the solid-liquid surface tension.  

Naturally occurring superhydrophobic materials such as the lotus leaf have micro- and  
nano-structures. Man-made materials with roughness on two scales can be prepared by adding 
nanoparticles to a surface that already contains a micron-sized roughness, or by preparing  
micron-sized particles from nanoparticles, and coating the surface with these.17  

1.2 Electrospinning 

Electrospinning is the technique employed to prepare fine fibres by applying a large electrical 
potential to a polymer solution in a syringe. The accumulation of charge on the drop’s surface 
causes repulsive forces to develop which distort the drop’s shape into a cone. This is referred to 
as the Taylor cone. If the repulsive electrostatic forces exceed the surface tension, a liquid jet will 
be ejected from the drop. This jet then travels from the syringe needle to a collector, Figure 3.18 
The jet remains stable for a short distance, termed the rectilinear region, until the electrostatic 
forces, and solvent evaporation, result in instabilities that cause the jet to bend. This bending is 
contained within the region called the envelope cone which increases in size with the distance 
travelled until the fibre hits the collector. The bending instability, or whipping motion, causes a 
massive increase in the path length the fibres travel and also stretches the fibre down to micro and 
sub-micron diameters. Different needle sources such as a coaxial spinneret, gas jackets, 
bi-component spinneret, and multiple spikes methods have been used to direct the flow of the 
polymer solution, and similarly different methods exist to accelerate and collect the electrospun 
fibres, providing scope to tailor the fibre characteristics.19  
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2 Experimental 

All solutions in this study were prepared on a percent weight/volume basis, whereby the 
components of interest were added to a volumetric flask, dissolved in solvent and made up to the 
mark. Solutions for electrospinning were prepared by dissolving a polyurethane resin, Pellethane 
(Dow Pellethane 2103-70A), in mixtures of tetrahydrofuran (THF), and N,N’-dimethyl 
formamide (DMF), from Sigma-Aldrich. The Pellethane is a polyurethane made 
from 4,4-methylene diphenyl diisocyanate, 1,4-butanediol, and polytetramethylene glycol. 
Polymer solutions of concentrations 5, 7.5, 10, 15, and 20% w/v Pellethane were prepared. The 
effect of the solvent mixture ratio, THF:DMF, was assessed using 10% w/v Pellethane solutions 
in solvent ratios of 100:0, 90:10, 70:30, 60:40 and 50:50, THF to DMF. Solution viscosities were 
measured using #3 and #6 Zeitfuchs cross arm viscometers, Cannon Instruments, with viscosity 
constants of 0.155 and 1.08 mm2s-2, respectively. The viscometers were used according to the 
manufacturer’s specifications. Three measurements were made for each solution. The 
measurements were conducting within the electrospinning enclosure before spinning so as to 
capture the representative conditions. The temperature, typically 23 ± 1o C, and the humidity were 
recorded.  

A custom built acrylic enclosure fitted with an adjustable collector and several openings for 
needles, electrical leads, and operator access was used for electrospinning. Electrospinning was 
evaluated in vertical and horizontal configurations using gravity feed or a syringe pump, 
Cole Parmer Instrument Company SYRINGE PMP CMPTCT 115 V Model #75900-00, Figure 4. 
Teflon tubing with inner diameters of 3/16”, and nickel plated brass single barb Luer lock fittings, 
McMaster-Carr, were used for connecting needle and syringe. Electrospinning was observed with 
the aid of a strobe light. Variables assessed included: polymer concentration, solvent composition, 
needle gauge, needle voltage, collector distance, and collector voltage. Each of the electrospun 
samples was left on the aluminum foil collector for scanning electron microscope, SEM, 
characterization after being carbon sputter coated. SEM images were analyzed for fibre 
morphology, diameter, fusing between fibres, texture, fibre shape, and mat consistency. The 
degree of fusing was qualitatively based on the observed range. For some of the thicker and 
denser mats a gold sputter coater was used in order to reduce charging during imaging.  
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to 25 mL ethanol. This solution was added to the silicate solution and stirred for approximately 
18 hours before use. The sol-gel solution was sonicated prior to coating the various substrates by 
dipping them directly into the solution, and allowing them to air dry, followed by one hour curing 
at 110oC.  

Different substrates were coated with the sol-gel including textiles (thin and thick polyethylene 
terephthalate (PET) fabric, cotton, and glass fibres), electrospun fibre mats (beaded Pellethane 
fibres, thin Pellethane electrospun fibres, thick Pellethane electrospun fibres), spin coated 
Pellethane samples, and glass slides.  
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3 Results and discussion 

3.1 Electrospinning 

Initially the electrospinning apparatus was set up in the vertical orientation with gravity feed of 
the electrospinning solution. In this orientation, the collector – needle tip distance was limited to a 
maximum of 20 cm. Any solution dripping from the needle landed on the collector. The gravity 
feed method was sufficient for electrospinning but made comparison of the resultant fibres 
challenging due to the decrease in flow rate as the experiment progressed. The introduction of a 
programmable syringe pump resulted in better control of the flow. The syringe pump also 
permitted use of the apparatus in the horizontal position, eliminating the impact of drips falling 
onto the collector. In the horizontal configuration the needle-collector distance could be extended 
to 35 cm. Some electrical arcing observed at the syringe pump was addressed by coating all the 
bare metal portions of the pump with a few coats of acrylic paint, and by the use of Teflon 
sheeting between the syringe holder and base.  

3.1.1 Effect of the applied potential 

The potential between the needle and collector is an important factor in the electrospinning 
process. It is involved in the formation of the Taylor cone, the rate at which solution is ejected, 
and the length of the rectilinear region. Stable electrospinning conditions were determined by 
observation of the Taylor cone and rectilinear region. Optimum electrospinning conditions 
occurred when a positive potential was applied to the needle. The potential was then adjusted in 
order to maintain a symmetrical Taylor cone of constant size, and a rectilinear region with good 
trajectory and stability. If the potential was too high, then the Taylor cone and rectilinear regions 
were unstable and moved around very rapidly appearing to form multiple jets from the 
Taylor cone. If the potential was too high for the solution flow rate, the solution in the 
Taylor cone was depleted and would retreat into the needle. When this occurred the 
electrospinning would pulse rather than proceed as a steady stream. If the potential on the needle 
was too low for the solution flow rate, the Taylor cone extended and the liquid drop would detach 
from the needle (drip) when the liquid became too heavy. It was found that the electrospinning 
would often stabilize if the potential was set towards the high end, compared to being set too low 
where drop growth at the end of the needle distorted the Taylor cone.  

During electrospinning, the ejected polymer solution and subsequent fibre are subject to the 
effects of gravity. In the horizontal orientation with the collector grounded to earth, the fibres 
deposited toward the lower edge of the collector plate. Application of a negative potential to the 
collector caused the fibres to deposit in the centre, with a reduction in the diameter of the fibre 
mat, Figure 7. In addition to a smaller diameter mat, there was an increase in fibre fusing. Due to 
the decrease in fibre transit time from the needle to collector, the solvent had not fully evaporated 
and wet fibres were being collected. Fusing is discussed in more detail below. The amount of 
fibre fusing could be reduced by decreasing the potential applied to the collector.  

The two parameters which were observed to affect the potential required for optimum 
electrospinning results were the polymer concentration and flow rate. 
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As expected, fibre mats electrospun from the 10% w/v Pellethane in 100% THF solution showed 
a low degree of fusing, due to the high vapor pressure of the solvent, which resulted in dry fibres 
arriving at the collector. This solution, however, dried so quickly that the needle clogged after a 
short period of electrospinning. Needle clogging was also accompanied by the formation of a very 
tight electrospinning envelope through which the fibres travelled, and only covered a small 
portion of the collector, even for large needle-collector separations and high voltages on the 
needle (15 kV). Instabilities during fibre flight caused the fibre trajectory to cover a larger area 
over time. Fibres produced from this solution contained a high portion of beads similar to 
solutions with lower Pellethane concentrations, though these beads had dimpled surfaces, 
Figure 8. Rapid solvent evaporation in humid environments has previously been observed to 
result in the formation of pores within the fibre structure due to the condensation of water 
droplets on the surface which is cooled by the solvent evaporation.18 

Fibres electrospun from 90:10 THF:DMF solutions showed a marked decrease in the number of 
beads and fewer dimples were observed, Figure 8. The needle was still prone to clogging though 
the spinning envelope was larger. Images of fibre mats electrospun from solutions with higher 
DMF content are also shown in Figure 8, and were achieved over a range of experimental 
conditions, Table 2. A consequence of increased DMF concentration was the collection of wet 
fibres that fused together. Fibre fusing was minimized by increasing the needle-collector distance 
and reducing the solution flow rate. The voltage difference between the needle and collector, used 
to drive the electrospinning, was in the range of 650 to about 700 V/cm.  
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Table 3: Viscosities of Pellethane in 70:30 THF:DMF as a function of the polymer concentration. 

Solution Concentration (% w/v) Viscosity (cP) 

DMF 0 0.92 

THF 0 0.55 

70:30 THF:DMF 

5 
7.5 
10 
15 

45 
195 
576 

2690 
70:30 THF:DMF +1% TiO2 10 590 

50:50 THF:DMF 10 526 

90:10 THF:DMF 10 558 

The increase in the solution viscosity noticeably affected the electrospinning characteristics, such 
as the size of the Taylor cone, the rectilinear region length, the size of the electrospinning 
envelope, as well as the morphology of the electrospun fibres. As the polymer concentration 
increased, the rectilinear length increased, there was less whipping, and the spinning envelope 
became narrower with a commensurate decrease in the mat size. Note that fibre stretching is said 
to occur in the spinning envelope, so a reduction in the size of the spinning envelope should 
equate to thicker fibres. This is observed in the SEM images of electrospun fibres as the polymer 
concentration increased, Figure 10. Low polymer concentrations resulted in fine fibres containing 
beads. Under the strobe light, the envelope cone for the 5% w/v Pellethane solution appeared to 
contain secondary whipping that was not observed for higher polymer concentrations. At high 
polymer concentrations no beads were observed and the fibre diameters were larger. Note, a 
larger needle diameter and higher applied potential were required to electrospin the 
15% w/v polymer solution. The fibres formed from this solution were mostly above 
2 µm in diameter and minimal fusing was observed under some experimental conditions. 
The 20% w/v polymer solution was electrospun using the 15 gauge needle under the force of 
gravity. The drop was formed on the end of the needle with the assistance of the plunger to allow 
electrospinning to begin. This solution resulted in thick fibres and no whipping motion was 
noticed. The fibres collected in tight bundles on the mat and were large enough to be seen by eye. 
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ability to even electrospun a fibre. The results are summarized in Table 4. The term “Worked” 
indicates that the conditions produced acceptable fibres, while the term “Best” indicates that the 
fibres were superior, i.e. not fused, uniform, etc. 

Table 4: Optimum needle gauge as a function of polymer concentration. 

Needle Gauge/ 
Concentration 

5% 7.5% 10% 15% 

24 Best Worked Worked Too Viscous 

20 Worked Worked Best Worked 

15 Dripped Not Used Worked Best 

The flow rate of the solution through the needle had an impact on the fibre characteristics, with 
larger diameter fibres being obtained when the flow rate was high. High solution flow rates also 
resulted in an increase in the amount of fusing in the mats due to the formation of thicker wetter 
fibres, or the coalescence of wet beads which formed from lower concentration solutions, 
Figure 12a. Decreasing the flow rate reduced the amount of fused material which resolved into 
beads Figure 12b-e. Thus it is assumed that under these conditions, beads are arriving at the 
collector still very wet. The amount of fusing was qualitatively evaluated on a scale of 0–10 with 
zero being unfused and 10 being completely fused fibres. Fusing was identified where adjacent 
fibres, or beaded regions, were joined with no distinct boundaries. The fusing quality is plotted 
for electrospun 10% w/v Pellethane solutions, at flow rates of 25, 50, and 75 µL/min for 
THF:DMF ratios of 100:0, 90:10, 70:30, 60:40, and 50:50, from a 20 gauge needle at 
+15 kV positioned 35 cm from the collector plate at -10 kV, Figure 13. Electrospinning was 
continued for five minutes and the fibre mats were subsequently examined under the SEM. The 
expected trend was for the degree of fusing to increase with the percentage of DMF, and as the 
flow rate increased. The average degree of fusing increased from 2.5 to 4.8 to 7 as the flow rate 
was increased from 25 to 75 µL/min and is highly correlated. The effect of DMF on fusing was 
not as clear. The amount of fusing was generally lower for the 100:0 and 90:0 than for the 70:30 
and 60:40 THF:DMF solutions. However, the degree of fusing for the fibres prepared from 
50:50 THF:DMF appear to be anomalous. The lower right plot in Figure 13 considers the effect 
of a smaller needle-collector distance of 25 cm. It is observed that the degree of fusing was larger 
for the shorter needle-collector distance which is consistent with the shorter flight path and less 
time for the solvent to evaporate before the fibres or beads contacted each other. 

It was observed that production of stable electrospinning conditions required a commensurate 
increase in the applied potential for flow rates up to 100 µL/min. At flow rates higher than 
100 µL/min there was not as great of a change in the upper and low fibre diameter limits. The 
flow rate also affected the length of the rectilinear region. The length of the jet was proportional 
to the flow rate and the formation of thicker fibres.  
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Tilt angles could not be measured for the electrospun Pellethane fibre mats as the water drops 
remained adhered to the surface at all tilt angles. In part this is due to the hydrophilic nature of the 
polyurethane polymer, however, it was also observed that pinning of the drop to the surface 
occurred if fibres were wetted and embedded in the drop and some drops may have been in the 
Wenzel state.  

A spin coated 5% w/v Pellethane solution containing titanium dioxide particles resulted in an 
average contact angle of 81°, higher than the spin coated polymer alone. This increase in contact 
angle was also noted for most of the electrospun nanoparticle containing fibre mats where the 
measured contact angles ranged from 114–142°. The higher contact angles obtained are most 
likely a result of the secondary roughness provided by the nanoparticles. Pinning of the water 
drops was still evident for these materials, even though in some cases the contact angles were 
considerably higher. This indicates that the surface tension and other pinning mechanisms are still 
too large to permit the water to release from the surface. Reduction of the solid-liquid surface 
tension could be achieved by the addition of polymers with a greater hydrocarbon or fluorocarbon 
component and fewer hydrophilic groups. The use of hydrophobic derivatized nanoparticles could 
also reduce the solid-liquid surface tension.  

The literature reports that contact angles were larger for beaded electrospun fibre mats and 
attributed this observation to the presence of a second level of roughness.20 The impact of beads 
on the fibres on the contact angle will depend on the size of the beads and fibres; the ability of the 
distribution of sizes to support the water drop; and the effective contact area. Large beads may 
increase the contact area, reducing the contact angle, while small beads may have the opposite 
effect.  

3.2.1 Sol-gel coating 

A sol-gel coating technique was used to derivatize the surface of electrospun fibre mats, several 
textiles, and other materials. The sol-gel coating, used to reduce the solid-liquid surface tension 
and to produce a nanoscale roughness, was applied by dipping the materials into an activated 
mixture of alkoxy silane, TEOS, and FAS. The components were in a 10:1 ratio of TEOS to FAS 
(mol:mol). As this mixture reacts, a silicate core grows that is size limited by a corona of 
fluorinated silicate groups. This process produced a nanoscale rough hydrophobic coating on the 
substrate. Spin coated Pellethane on a glass slide, Polyester, cotton, and glass fibre textiles, and 
electrospun fibre mats were dipped into the sol-gel mixture, dried, and their water and oil contact 
and tilt angles were measured, and these results are summarized in Table 5. SEM images of the 
fibre surfaces and pictures of the water drops on the surface before and after sol-gel coating are 
presented in Figures 19–24 and Figures A.1 to A.7 in the annex. The water contact angle was 
found to increase for each material after it was sol-gel coated, with the contact angles falling in 
the range of 140 to greater than 150°. Tilt angle measurements were also made of these materials, 
and range from greater than 47° to less than 5°. Drops of vegetable oil placed on the coated 
surfaces tended to wet the material and seep into it.  
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Table 5: Sol-gel coating preparation and characteristic summary. 

Substrate Water Contact and Tilt Angles* Comments on Substrate 
Preparation and Coating 

Before 
Coating 

After sol-gel 
Coating 

Avg. Tilt 
Angle  

Spin coated 
Pellethane on 
Glass Slide 

72.9 141.8 18.5 
5% w/v Pelletane in a 70:30 
THF:DMF solution was used 
for spin coating. 

Textile: PET-
thick  

-- 148.9 24.6 

Substrates washed with 
ethanol then dipped into the 
sol-gel suspension before air 
drying 

Textile: PET thin 51.1 146.4 31.6 

Textile: Cotton 145.5 149.8 21.6 

Textile: Glass 
fibre 

118.7 142.7 19 

Electrospun: 
E344 

124.4 140.4 >47 Electrospun fibre samples. A 
sample taken for the original 
specimen was coated in the 
same manner as the fabric 
substrates. 

Electrospun: 
E371 

122.8 144.9 >47 

Electrospun: 
E384 

119.2 153.6 <5 

Electrospun: 
Removed Thick 

114.6 146.9 4.5 
This thick sample was 
removed from the collector 
foil and coated  

* Contact angle measurements using peanut oil were attempted for each of the coated and native substrates, 
however, it was found that the peanut oil seeped into each surface and contact angle measurements were 
not possible. An exception was for the sol-gel coating on the Pellethane spin coated glass slide. Contact 
angle was not recorded. A tilt angle was measured for this sample of 40° and the oil slowly slid down the 
surface, leaving a trail behind. 

The sol-gel coating on Pellethane spin coated onto a glass slide, resulted in an increase in the 
contact angle from 73° to 142°. The tilt angle measured for this surface was 18°. As a baseline 
this indicates that the sol-gel is responsible for a large increase in the contact angle of a nominally 
smooth surface.  

A thin plain weave PET textile before being coated with the sol-gel is shown in Figure 19. The 
inset pictures show a water drop just after being placed on the textile and after several seconds. 
During this time the water drop has wet the textile and spread out. The contact angle measured 
just after deposition was about 51°. After sol-gel coating, the fibres appear to have a glassy 
coating which at higher magnification, inset, appears as a rough surface, Figure 20. Water drops 
placed on the treated textile beaded to high contact angles around 146°. The tilt angle at which  
the drop started to slide across the surface was measured to be about 32°, which indicates 
that adhesion between the water and surface is still relatively strong. Images of other textiles,  
pre- and post- sol-gel treatment, and water drops on the surface are presented in the  
annex, Figures A.1 to A.7. In each case the surface of the treated fibres appeared rougher and the 
contact angle increased. The tilt angle for the sol-gel coated textiles ranged from between 20–30°.  
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In the same manner electrospun polyurethane fibre mats were sol-gel coated. SEM images of the 
fibre mats reveal that a rough coating deposited on the fibres during this process, Figures 21–24. 
The electrospun fibre mat presented in Figures 21 and 22, was relatively thick with little fusing or 
beading. The contact angle increased from 124° to 140° on coating, though the drops were still 
pinned to the surface at the limit of the device of 47°.  

A beaded electrospun fibre mat was also sol-gel coated and these images are presented in 
Figures 23 and 24. The sol-gel coating on these fibres appeared to be heavier than was observed 
for the mat in Figure 22, with the coating forming a very rough surface. The contact angle 
exceeded 150° and a tilt angle of less than 5° was measured, qualifying this as superhydrophobic.  

In an attempt to see if the supporting substrate (the aluminum foil used to coat the collector) had 
an effect on the sol-gel deposition process and contact angle measurements, a thick electrospun 
mat was selected and removed from the aluminum foil. The contact angle of the untreated 
material was measured to be about 115°. On sol-gel coating, the contact angle increased to about 
147° and a tilt angle of 4.5° was measured. These results which are similar to those of sample 
E384, indicate that the substrate is probably not affecting the contact angle when the fibre mat is 
thick. Images of this material are not presented.  

An important finding for the materials studied here was that the sol-gel treatment increased the 
contact angles, for water on the substrates, to values near 150°. A second important finding was 
that although the contact angle was high, the drops often remained pinned to the surface even at 
very high tilt angles. A major feature of superhydrophobic materials is that the liquid should roll 
away when the surface is tilted. This will reduce surface wetting and can act as a cleaning 
mechanism, where the rolling liquids carry away dirt particles of the surface. Pinning of the liquid 
to the surface may have occurred while placing the liquid onto the surface. It was difficult to get 
the water onto the sol-gel coated surface as the adhesion of water to the coating was lower than 
the adhesion of the water to the syringe used to deposit the liquid. It may be that while trying to 
get the liquid onto the surface the liquid was forced into the fibres, resulting in the Wenzel state, 
or as has been observed, to have caused the liquid to be wrapped around fibres in the surface. 
Finally, the combination of the surface roughness, from the electrospun fibres and the sol-gel 
coating, appears to be necessary in order to achieve high contact angles and low tilt angles. More 
work is required in order to produce definitive results. 

The results presented here, provide guidance for electrospinning fibrous mats. Electrospun fibres 
have high surface areas. The ability to include fillers, functional groups, control the polymer 
chemistry, and coat the fibres means that they are of interest as catalysts, filtration membranes, 
and as functional textiles. Methods for increasing the roughness and reducing the surface energy 
of the materials have also been presented, and superhydrophobic materials were demonstrated. 
Superhydrophobic materials may find applications in rainwear, self-cleaning, corrosion reduction, 
and personnel and equipment protection from chemical agents. The fibrous materials studied here 
may be useful for applications involving textiles, or in filtration systems such as oil/water 
separation. Material durability needs to be considered, as does other methods for producing rough 
low surface energy coatings. Commercially available superhydrophobic products with high 
durability are sparse. 
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4 Conclusions 

This study has provided insights into the experimental conditions required for electrospinning 
polyurethane fibres. Polymer solution viscosity, flow rate, and the applied potential had an effect 
on the fibre diameter and the presence of beads. Smooth, large diameter fibres were formed for 
high viscosity polymer solutions, and high flow rates. Beading occurred for low viscosity 
solutions. Under the experimental conditions assessed, large needle-collector distances, low 
potential differences, low solution flow rates, and volatile solvents aided in the formation of 
unfused polymer fibres. Some of these parameters reduced the electrospinning rate. Long 
electrospinning times resulted in the production of dense fibre mats which were preferred for 
studying the materials hydrophobic properties. 

The roughness of the mats was increased by producing beaded fibres, by the addition of 
nanoparticles to the polymer solution, and by sol-gel coating. Contact angle and tilt angle 
measurements of a spin coated polyurethane sample indicated that this polymer is hydrophilic. 
Contact angle measurements of the electrospun fibre mats showed an increase over the smooth 
polymer. This is attributed to the increase in surface roughness. Water drops on the uncoated fibre 
mats were metastable and were observed to collapse into a Wenzel state. Electrospun mats with 
titanium dioxide nanoparticles produced higher contact angles, though these materials were still 
hydrophilic and pinned water drops on the surface.  

Hydrophobic sol-gel coatings of the textiles and the electrospun hydrophilic polyurethane, 
increased the contact angles considerably, and in a number of cases tilt angles were measured. 
Thick sol-gel coatings resulted in rougher surfaces and contact angles greater than 150o and tilt 
angles less than 5o were measured, thus demonstrating the ability to produce a superhydrophobic 
surface in the Cassie-Baxter state, from these materials.  

As a final note, the surfaces studied here did not prove to be oleophobic, or oil repellent, though 
the sol-gel treated spin coated Pellethane on a glass slide did show some promise.  
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5 Future Work 

The current work has laid a foundation of methods for producing electrospun fibres and an 
understanding of some of the major factors affecting fibre structure. Electrospun fibre mats have 
shown some promise as a superhydrophobic material with an increase in the contact angle over 
that of the smooth polymer. In addition this work has touched on two methods for increasing the 
fibre roughness and hydrophobicity, namely by incorporation of nanoparticles into the 
electrospinning solution and sol-gel coating of the fibres, which resulted in the achievement of a 
superhydrophobic surface. Indeed these studies have been by no means exhaustive, and there are 
a number of promising techniques for increasing surface roughness and decreasing the 
solid-liquid surface tension. 

Methods to reduce the solid-liquid surface tension could be: 

 Electrospinning solutions containing hydrophobic polymers; 

 Adding hydrophobic nanoparticles to the electrospinning solution; 

 Applying hydrophobic coatings; and 

 Coating the surface by plasma polymerizing hydrophobic monomers. 

Methods to increase the surface roughness include: 

 Adding hydrophobic nanoparticles to the electrospinning solution; 

 Adding nanoparticles in a coating; 

 Electrospinning phase separating polymer mixtures; 

 Grafting or polymerizing polymer chains onto the fibre surface; and 

 Electrospinning a dilute polymer solution onto the fibre mat. 
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List of symbols/abbreviations/acronyms/initialisms  

DMF N,N’-dimethyl formamide 

DND Department of National Defence 

DRDC Defence Research and Development Canada 

DSTKIM Director Science and Technology Knowledge and Information Management 

FAS tridecafluorooctyl triethoxy Silane 

PET polyethylene teraphthalate 

R&D Research & Development 

SEM Scanning Electron Microscope 

TEOS tetraethoxy orthosilicate 

THF tetrahydrofuran 
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