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PREFACE 
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Tennessee. The test was conducted from February 7 through 19, 1974, under ARO Project 
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publication on May 20, 1974. 
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1.0 INTRODUCTION 

Wind tunnel tests were conducted in the Aerodynamic Wind Tunnel (4T). Propulsion 
Wind Tunnel Facility (PWT) to determine the static stability and control effectiveness 

of the MK-84 Modular Guided Glide Bomb LI (MGGB II). The MK-84 MGGB II is comprised 
of a MK-84 bomb, Range Extension System (RES), a KMU-353X guidance and control 
kit, and a vertical canard located on the nose of the vehicle for enhanced maneuverability 

in the yaw plane. The MK-84 MGGB II is similar to basic MGGB configurations which 
were previously tested in Tunnel 4T and in the Propulsion Wind Tunnel (16T) and 

documented in  Refs.  1  through 4. 

The MGGB series is a high-speed air-launched glide weapon system that has evolved 
from the MK-84 Homing Optical Bombing System (HOBOS). Following aircraft release, 
the wings from the RES are deployed to provide lifting surfaces for range extension. Tail 
control surfaces (flaps) are used to provide aerodynamic control of the vehicle in pitch, 
yaw, and roll. 

The MK-84 MGGB II, a modification of the MGGB Mark II (Ref. 4) has improved 
tail and flap control surfaces. Also, the forward fuselage has been elongated and the nose 
section modified to allow the addition of a distance-measuring equipment (DME) guidance 

module. The location of the vane-type angle-of-attack sensor was also changed from the 
location used during the tests cited in Ref. 4. 

The tests were conducted to determine the aerodynamic characteristics of the basic 
MK-84 MGGB II configuration and to evaluate the effect of two alternate vertical canard 
configurations on the lateral-directional characteristics. Also, flap hinge moments were 
determined for several deflection angles and a calibration was determined for the 
angle-of-attack sensor. Data were obtained at Mach numbers from 0.5 to 1.3 at angles of 
attack from -12 to 8 deg and angles of sideslip from -6 to 14 deg. 

2.0 APPARATUS 

2.1    TEST  FACILITY 

Tunnel 4T is a closed-loop, continuous flow, variable density tunnel in which the 
Mach number can be varied from 0.1 to 1.3. At all Mach numbers, the stagnation pressure 
can be varied from 300 to 3700 psfa. The test section is 4 ft square and 12.5 ft long 
with perforated, variable porosity (0.5- to 10-percent open) walls. It is completely enclosed 
in a plenum chamber from which the air can be evacuated, allowing part of the tunnel 
airflow to be removed through the perforated walls of the test section. A more thorough 
description of the tunnel may be found in Ref. 5. 
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2.2 TEST ARTICLE 

The test article was a 0.20-scale model of the MK-84 MGGB II modular guided glide 
bomb. Dimensions of the MK-84 MGGB II model configuration are shown in Fig. 1. 

Photographs of the model and test installation are shown in Fig. 2. The basic MK-84 
MGGB II configuration consists of a MK-84 bomb, a KMU-353X guidance and control 

kit, and RES. The components are identified on the model in Fig. 1. The model RES 

consisted of a strongback and two wings. The strongback shown in Fig. 3 was mounted 
to the bomb section and supported the wings. The wing shown in Fig. 4 was modifed 
to include slots which provide clearance for pylon swaybraces when the MK-84 MGGB 

II (wings folded) is attached to an aircraft. A photograph of the left model wing with 
the swaybrace slots and boundary-layer transition grit is shown in Fig. 5. When deployed, 
the wings had a sweep angle of 30 deg, an incidence angle of 3 deg, and a dihedral angle 
of -10 deg. The sweep angle was 88 deg with the wings folded. The rear section of the 
KMU-3S3X guidance and control kit included four tail fins and flap control surfaces. The 
details and dimensions of a tail fin and flap control surface are shown in Fig. 6, and 
a photograph is presented in Fig. 7. Three of the movable flap control surfaces were 
attached to strain-gage balances to measure flap hinge moments. 

Three canard configurations shown in Fig. 8 were tested on the basic MK-84 MGGB 
II. The details and dimensions of the canards are shown in Fig. 9, and a photograph 
is presented in Fig. 10. The C2 and C3 canard configurations used the same canard, which 
was 2.0 in. in height. Configuration C2 was mounted on the lower fuselage surface, whereas 
C3 was mounted on the upper fuselage surface. The C4 configuration consisted of two 
canards 0.8 in. in height and mounted on the upper and lower fuselage surfaces. The 
majority of the test was conducted with the C2 canard. 

A vane-type angle-of-attack indicator was tested on the MK-84 MGGB II model and 
is shown in a dimensional sketch in Fig. 11. The vane can be seen in the photograph 
shown in Fig. 8, and its location on the model is given in Fig. 1. The vane was mounted 
on a gimbaled shaft which allowed the vane to remain aligned with the local flow around 

the model. 

2.3 INSTRUMENTATION 

Aerodynamic forces and moments acting on the model were measured using a 
six-component, moment-type, internal strain-gage balance. Two-component, moment-type, 
strain-gage balances were used to measure hinge.moments on three of the tail fin control 
surfaces. The vane-type angle-of-attack indicator used a potentiometer to measure the angle 
of rotation of the vane shaft with respect to the fuselage centerline. Base pressure was 
measured at one location in the plane of the model base using a S-psid transducer. 
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3.0 TEST DESCRIPTION 

3.1 TEST PROCEDURES AND CONDITIONS 

Model forces and moments were obtained at angles of attack and angles of sideslip 
using two model positioning procedures as follows: 

1. The model angle of attack was varied while Mach number, roll angle (ß 
= 0), and flap deflection were held constant. 

2. The model pitch angle and roll angle were both varied yielding a variation 

of the sideslip angle at a constant angle of attack relative to the free-stream 
velocity vector. Again Mach number and flap deflection were held constant. 

Force and moment data were obtained with and without flap deflections at Mach 
numbers from 0.5 to 1.3 by both procedures. Data were obtained for angles of attack 

from -12 to 8 deg using procedure 1 and for sideslip angles from -6 to 14 deg using 
procedure 2. Boundary-layer transition on the wings was fixed with a O.l-in.-wide band 
of No.   120 grit (0.005-in.  diameter) located 0.30 in. aft of the wing leading edges. 

The tunnel stagnation pressure was varied from 1000 to 1200 psf, and the tunnel 
stagnation temperature was varied from 100 to 125°F. The resulting Reynolds number 
variation was from   1.3 to 2.5 x 106  per foot. 

The data are presented in the wind axis system. The orientation of the axis system, 
control surface numbering, and deflection sign convention are shown in Fig. 1 2. A summary 

of the control deflections used and test conditions is shown in Table 1. 

3.2 DATA CORRECTIONS 

Correction for the components of model weight, normally termed static tares, was 
made in order to calculate the net aerodynamic forces and moments. The angle of attack 
was corrected for sting and balance deflections caused by the aerodynamic loads. The 
model was tested both upright and inverted to obtain the necessary data to correct for 
tunnel  flow angularity and model-balance misalignment. 

3.3 PRECISION OF MEASUREMENTS 

The uncertainties of the data presented which can be attributed to errors in the 
balance measurements and tunnel conditions were determined for a confidence level of 

95 percent, and the values are presented in Table 2. The precision in setting Mach number 
was ±0.002. The Mach number variation in the test section occupied by the model was 
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no greater than ±0.005 for Mach numbers up to 0.95 and ±0.01 for Mach numbers greater 
than 1.0. The uncertainty in the angle of attack and angle of sideslip was ±0.1 deg, and 
the precision of the flap settings is shown in Table 3. 

4.0 RESULTS AND DISCUSSION 

4.1 GENERAL 

The measured force and moment data were reduced to coefficient form in the 
wind-axis system as shown in Fig 12. With the wings extended the moment reference 
was at MS 15.745 on the bomb centerline. For the wings-folded configuration (Xw = 
88 deg), the moment reference point was at MS 15.962 on the bomb centerline. The 
deflections of the flap control surfaces for pitch, yaw, and roll control are illustrated 
in Fig. 13. The majority of the test data presented in this report are machine plotted 
and faired from point to point with straight Lines. 

4.2 MODEL  BUILDUP 

The aerodynamic coefficients for various buildup stages of the MK-84 MGGB II 
configuration (model without canard, wings, hardback, tail fins, etc.) are shown in Figs. 
14 through 16. 

The addition of canard C2 to configurations B2 or B2T5 had no appreciable effect 
on the longitudinal characteristics of the configurations; therefore, model buildup data 
without canard C2 are not presented. The C2 canard did affect the lateral-directional 
characteristics of the MK-84 MGGB II (Fig. 16). The magnitude of the crosswind-force 
coefficient, Cc, was increased for increasing magnitudes of sideslip angle by the addition 
of the canard, and the directional stability was decreased. The addition of the canard 
produced a negative increment in the rolling-moment coefficient, CgiW (Fig. 16) for positive 
sideslip angles and a positive increment in Cg>w for negative sideslip angles, which repeats 
the trends of a previous test (Ref. 4). 

4.3 CANARD AND WING SWEEP ANGLE EFFECTS 

The lateral-directional characteristics of the basic MK-84 MGGB II configuration 
without a canard and with the three canard configurations (C2. C3, and C4) are shown 
in Figs. 17 through 19 for angles of attack of 0 (Fig. 17), 5 deg (Fig. 18), and -10 
deg (Fig. 19). The directional stability of the model was reduced by the addition of the 
canards. The C2 canard generally produced the largest decrease in directional stability 
and resulted in a directionally unstable or neutrally stable vehicle at large sideslip angles 
for M^ = 0.5 and 0.9 at a = -10 deg (Fig. 19). The C2 canard tended in general to 

10 
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reduce the magnitude of the induced rolling-moment coefficient obtained when increasing 

sideslip angle at all angles of attack. At 0- and 5-deg angles of attack (Figs. 17 and 18), 
the C3 canard increased the magnitude of the rolling-moment coefficient, CgiW, with 
increasing sideslip angle. The C4 canard had no appreciable effect on Cgw for moderate 

sideslip angles at all angles of attack. Based on the data presented in Figs. 17 through 
19, the C2 canard configuration was chosen as the most effective canard for the MK-84 
MGGB II configuration. 

The aerodynamic coefficients for the MK-84 MGGB II with wings open (Xw = 30 
deg) and wings folded (Xw = 88 deg) are shown in Figs. 20 through 25. The longitudinal 
stability (Fig. 20) was greater for the wings-folded configuration than for the wings-open 
configuration. The wings-open configuration was close to neutrally stable at M,,, = 0.5, but 
the stability increased with Mach number. The lift-to-drag ratio (Fig. 21) for the wings-open 
configuration reached a maximum value of approximately 9.4 at M^ = 0.7. The 

rolling-moment coefficient, Cß,w (Fig. 22) was negligible for the wings-folded configuration, 
but became substantial when the wings were opened. Comparison of the Q>w data for 
the wings-open and -closed configurations show large values of Cg>w for the wings-open 

configuration. These increments were probably due to some asymmetry in the model wings. 

The lateral-directional characteristics (Figs. 23 through 25) show that the directional 

stability was somewhat increased for the wings-open configuration and in general increased 
with increasing angle of attack. The wings-open configuration possessed unstable dihedral 
effects in that positive sideslip angles produced positive rolling-moment coefficients for 
all Mach numbers at a = 0 and 5 deg (Figs. 24 and 25). At Mx < 0.85 for a = 0 and 
5 deg, the wings-open configuration displayed unstable as well as stable dihedral effects. 
depending on the Mach number and sideslip angle. 

4.4    CONTROL  EFFECTIVENESS 

The longitudinal aerodynamic coefficients for pitch control deflections, 5Q, are shown 
in Fig. 26. At Mach numbers less than 0.95, the vehicle is essentially neutrally stable 
for all values of the flap deflection. The stability of the vehicle increases with Mach number. 

The variation of the lift increment parameter, CL _, and the pitch control 
effectiveness, CmiWfiQ, with Mach number are shown in Figs. 27 and 28, respectively. 
The changes in the lift coefficient per degree of pitch control deflection, CLfiQ (Fig. 
27), indicate that the lift control effectiveness decreased with increasing magnitude of 

control deflection, as expected, and that a 5Q = 10-deg was more effective than a 5Q 
= -10-deg deflection. For the 6Q = -5 deg deflection, CL60 indicated that at M^ = 0.5 
and 1.1  wing-fin interference or possibly other aerodynamic phenomena caused a loss in 

II 
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lift control effectiveness, which resulted in control deflections of SQ = ±10 deg being 
more effective than 8Q = -5 deg in lift. In general. Cm>WfiQ (Fig. 28) decreased with 
increasing magnitudes of negative pitch control deflections. However, at M^ = 0.5 and 
0.95, a 8Q = 10-deg deflection was more effective than a 5Q = -5-deg deflection. A 
large increase in CmjWfi0 occurred at M^ > 0.85 for 5Q = -15-deg deflections, whereas 
SQ deflections of lesser magnitude tended to become less effective at M^ > 0.85. 

The longitudinal load factor per degree of pitch deflection, nz/5Q, is shown in Fig. 
29. The values of n^/SQ were calculated using linear analysis in the angle-of-attack range 
from a = -2 to 2 deg. These data indicate that for a dynamic pressure of 778 psf (critical 
design value) a MK-84 MGGB II configuration weighing 2650 lb could obtain longitudinal 
load factors as high as 12 at M^ = 0.75  with a 5Q = -5 deg. 

The lateral-directional coefficients for several yaw control deflections, 6R. are shown 

in Fig. 30. Increasing 6R to 10 and 15 deg tended to reduce the directional stability 

of the MK-84 MGGB II configuration. In fact, for 5R = 15 deg at M„ = 0.5, the vehicle 
was neutrally stable for the lower values of p\ However, the directional stability increased 

with Mach number, and the 5R = 15 deg deflection resulted in a stable condition at 
M^ > 0.5. The croswind-force parameter, CC5R, and yaw control effectiveness, Cn>WfiR, 
both evaluated at zero angle of attack, are shown in Figs. 31 and 32, respectively. CCg R 

and Cn>WsR  decreased with increasing control deflection angles, as expected. 

The directional load factor per degree of control deflection (ny/SR) is shown in Fig. 
33 for the MK-84 MGGB II with the three canard configurations for several values of 
5R. The values of ny/5R were calculated using linear analysis in the sideslip angle range 
from j3 = -2 to 2 deg. These data indicate that the C2 canard configuration consistently 
produced higher load factors at any given Mach number and 5R control deflection than 
either the C3 or C4 canard configurations. With the C2 canard configuration, a MK-84 
MGGB II weighing 2650 lb and flying at a dynamic pressure of 778 psf could obtain 
a lateral load factor of 1.45 at M^ = 0.75 and OR = 5 deg. 

The rolling-moment coefficients for negative roll control deflections, 6P, are shown 
in Fig. 34. The variation of CgjW with a became very nonlinear at M^ = 0.85 for a > 
4 deg; however, sufficient roll control was available to offset the Cgw attributable to 
angle of attack at j3 = 0 deg. The roll control effectiveness, CgiWsp, is shown in Fig. 
35 for a = ß = 0. CgjWfiP decreased with increasing magnitudes of 5R for all values 

of 6R except at M^ = 0.5. In this instance 5R = -5 and -10 deg produced the same 
value for Q>Wsp. 
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4.5 CONTROL SURFACE HINGE MOMENTS 

Control surface hinge moments are presented in Fig. 36. The hinge moments, in 
general, were opposing in that the hinge moment was opposite in direction to the actuator 

torque required to deflect the flaps from the undeflected position. This is very obvious 
at MM > 0.95 in Fig. 36. There was little increase in the hinge-moment coefficients as 

a result of the 5-deg control surface deflections (5P = -5 deg) at M^ < 0.85; however, 
the increase was substantial at M^ > 0.95 and, for fin No. 2, reached a value corresponding 
to a full-scale actuator torque of 178 in.-lb for a flight condition of q^s = 778 psf at 
M^ = 0.95 and a = 0. The maximum hinge-moment coefficient obtained occurred on 
fin No. 1 for a 6Q = -10 deg at MB = 0.95 and would correspond to a lull-scale actuator 
torque of 350 in.-lb at q = 778 psf. 

4.6 CALIBRATION OF VANE-TYPE ANGLE-OF-ATTACK INDICATOR 

The vane-type angle-of-attack calibration data for several buildup configurations are 
shown in Fig. 37. The addition of the RES (wing, strongback. and launch lugs) caused 

a slight offset in the zero intercept of the vane angle of attack, a,, with the model angle 
of attack, a. The addition of the RES also resulted in a decrease in the slope of the 
a versus as  curve, which remained relatively constant with Mach number. 

5.0 CONCLUSIONS 

The static stability and control effectiveness characteristics of a 0.20-scale model of 

the MK-84 MGGB II were obtained at Mach numbers from 0.5 to 1.3 at angles of attack 
from -12 to 8 deg and sideslip angles from -6 to 14 deg. The effects of canard configuration 
variations, wing sweep angle, and control deflections were investigated. Also, control surface 
hinge moments and the influence of configuration buildup on the vane-type angle-of-attack 
sensor were determined. The following conclusions were reached: 

1. The longitudinal stability margin was close to zero at Mach number 0.5. but 
increased with Mach number. The stability was greater with the wings folded 
than with the wings open. Longitudinal load factors as high as 12 (dynamic 
pressures of 778 psf) were produced by the MK-84 MGGB II at Mach 
number 0.75 and a pitch control deflection of-5 deg. 

2. The directional stability of the vehicle was reduced by the addition of the 
canards, and the C2 canard resulted in an unstable configuration at Mach 
numbers 0.5 and 0.9 for large sideslip angles at an angle of attack of-10 
deg. The C2 canard consistently produced higher directional load factors 

at any given Mach number and yaw control deflection than either the C3 

13 
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or C4 canards. Directional load factors as high as 1.4S (dynamic pressure 
of 778 psf) were produced by the configuration with the C2 canard at 
Mach number 0.75 for a yaw control deflection of 5 deg. The wings-open 
configuration had unstable dihedral effects for Mach numbers 0.85 through 
1.3. 

3. In general, the flap hinge moments opposed the applied torques. 

4. The addition of the range extension system (RES) caused a slight offset 
in the zero intercept of the vane-type angle-of-attack calibration curve. 
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»LL   DIMENSIONS  IN INCtCS 

Figure 1.   Dimensional sketch of MK-84 MGGB II, configuration B2S1W2T5L1C2. 
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a.   Looking downstream 
Figure 2.   Photographs of model and installation, configuration B2S1W2T5L1C4. 
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Figure 2.   Concluded. 
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Figure 3.   Dimensional sketch of the strongback (S1). 
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Figure 4.   Dimensional sketch of the wing (W2). 
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Figure 5.   Photograph of the wing showing swaybrace slots and boundary-layer transition grit. 
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Figure 6.   Dimensional sketch of the tail fin and flap. 
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Figure 7.   Photograph of tail fin and flap (T5). 
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Figure 8.   Photographs of the canard configurations. 
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Figure 11.   Dimensional sketch of the vane-type angle-of-attack indicator. 
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TOP VIEW 

SIDE VIEW 

Figure 12.   Orientation of model forces and moments. 
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Figure 13.   Orientation of control surface deflections. 
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5TMB0L  CONFIG H. S. bP «3 bR 

□ B2C2 0.50 - - - - 
0 B2T5C2 0.50 - 0 0 0 
A B2S1W2L1C2 0.50 30 - - - 
<3 B2S1M2T5L1C2- 0.50 30 0 0 0 
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Figure 14.   Lift, drag, and pitching-moment coefficients for configurations B2C2, B2T5C2, 

B2S1W2L1C2, and B2S1W2T5L1C2. 
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SYMBOL  CONFIG M. >M 6P 60 61 

Q B2C2 0.75 - - - - 
O B2T5C2 0.75 - 0 0 0 
A B2S1H2L1C2 0.75 30 - - - 
4    B251W2T5L1C2 0.75 30 0 0 0 
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Figure 14.  Continued. 
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□ B2C2 0.85 - - - - 
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Figure 14.   Continued. 
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Figure 14.  Continued. 
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Figure 14.   Continued. 
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SYMBOL  CONFIG S. »P »0 tR 
□ B2C2 - - - - 
O B2T5C2 - 0 0 0 
A B2S1H2L1C2 30 - - - 
< B2S1W2T5L1C2 30 0 0 0 
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Figure 15.   Lift-to-drag ratio for configurations B2C2, B2T5C2, B2S1W2L1C2, 

and B2S1W2T5L1C2. 
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SYMBOL      CONFIG >>M 6P 60 6R 

□ B2C2 - - - - 
O B2T5C2 - 0 0 0 
A B2S1W2LIC2 30 - - - 
<I B2S1W2T5L1C2 30 0 0 0 
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HBO L  CONFIG >>* 6P »0 *R 
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STMBOL      CONFIG H. >*        *P           »0 *fl 
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Figure 16.   Crosswind-force, yawing-moment, and rolling-moment coefficients 

for configurations B2S1W2L1, B2S1W2T5L1, B2S1W2L1C2, and . 
B2S1W2T5L1C2. 
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SYMBOL  CONFIG M. >N bf> «0 bR 
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Figure 16.   Continued. 
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STMBOL      CONFIG H. 
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Figure 16.  Continued. 
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STMBOL      CONFIG K *« *P M2 »R 
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Figure 16. Continued. 
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SYMBOL  CONFIG M. X„ *P tQ »R 

□ B2S1W2L1 1.10 30 0 0 0 
O B2S1W2T5L1 1.10 30 0 0 0 
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SYMBOL  CONFIG H. >« 6P 60 »R 
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Figure 16.  Concluded. 
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SYMBOL  CONFIG    N.    \u *P    »0 »R 
□ B2S1W2T5L1    0.50   30    0    0 0 
O B2SIW2T5L1C2  0.50   30    0    0 0 
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Figure 17.   Effect of canards C2, C3, and C4 on the crosswind-force, yawing-moment, 

and rolling-moment coefficients, a = 0. 
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SYMBOL  CONFIG K >K kP tQ *R 
□ B2S1W2T5LI 
O B2S1W2T5L1C2 
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Figure 17.  Continued. 
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SYMBOL  CONFIG M. V„ kP kQ *fl 
Q B2S1W2T5L1 0.90 30 0 0 0 
0 B2S1W2T5L1C2 0.90 30 0 0 0 
A B2S1H2T5L1C3 0.90 30 0 0 0 
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SYMBOL  CONFIG M. 
Q B2SIH2T5LI 1.30 
O B2S1W2TSL1C2 1.30 
A B2SIW2T5L1C3 1.30 
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Figure 17.   Concluded. 
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SYMBOL      CONFIG M, 

B    B2S1W2T5L1 0.50 
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Figure 18.   Effect of canards C2, C3, and C4 or the crosswind-force, yawing-moment, 

and rolling-moment coefficients, a = 5 deg. 
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STMBOL  CONFIG *. >* fcP 10 *R 
□ B2S1M2T5L1 
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Figure 18.  Continued. 
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SYMBOL     CONFIG M. 
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SYMBOL  CONFIG H, x„ *P bQ (R 

Q B2SIH2T5U 0.50 30 0 0 0 
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Figure 19.   Effect of canards C2, C3, and C4 on the crosswind-force, yawing-moment, 

and rolling-moment coefficients, a = -10 deg. 
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Figure 19. Continued. 
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SYMBOL  CONFIG H. 
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O B2SIW2T5LIC2 1.30 
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SYMBOL      CONFIG *. Si M» »0 •ft 
0    B2S1H2T5L1C2 0.50 30 0 0 0 
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Figure 20.   Effect of wing sweep angle on the lift, drag, and pitching-moment coefficients 

of the MK-84 MGGB II configuration. 



SYMBOL  CONFIG    H.     x„    *P    *Q    *R 
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Figure 20.   Continued. 



SYMBOL      CONFIG M. ** *P »0 6R 
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SYMBOL      CONFIG M. >* fcP 60 6R 
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SYMBOL      CONFIG M. Ni bP bQ SR 
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SYMBOL      CONFIG M. S( 6P 60 6R 
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Figure 20.  Continued. 



SYMBOL      CONFIG M. Si *P 60 6fl 
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SYMBOL      CONFIG H. hä hf bQ *n 
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SYMBOL      CONFIG H. Si »P »0 tR 
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SYMBOL  CONFIG M. >n &P 60 6R 
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AEDC-TR-74-58 

SYMBOL     CONFIG ht »P »0 tfl 

□    B2S1W2T5L1C2 30 0 0 0 
0    B2S1W2T5L1C2 88 0 0 0 
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Figure 21.   Effect of the wing sweep angle on the lift-to-drag ratio of 

the MK-84 MGGB II configuration. 
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SYMBOL      CONFIG >* *P *Q       *fl 
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Figure 21.   Continued. 
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SYMBOL  CONFIG ht kP *Q »R 
□ B2S1W2T5LIC2 30 0 0 0 
O B2S1W2T5L1C2 88 0 0 0 
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Figure 21.  Continued. 
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SYMBOL      CONFIG ^ 6P *Q tfl 
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Figure 21.  Continued. 
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SYMBOL  CONFIG    h,     kP    »0   »R 
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Figure 22.   Effect of the wing sweep angle on the rolling-moment coefficient 
of the MK-84 MGGB II configuration. 
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SYMBOL      CONFIG ht fcP »0 M 
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SYMBOL  CONFIG    K.     >n *P    60    »ft 
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Figure 23.   Effect of the wing sweep angle on the crosswind-force, yawirig-moment, 

and rolling-moment coefficients of the MK-84 MGGB II configuration, 
a = -5 deg. 
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Figure 23.   Continued. 
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O    B2S1W2T5L1C2 
A    B2SIW2T5L1C2 
<3    B2S1W2T5L1C2 

1.10 
1.10 
1.10 
1.10 

30         0           0 
30         0           0 
30         0           0 
30         0           0 

«= 0 

0 
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15 
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-0.2 
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-0.6 

*n,w 

0.03 

0.02 

r   0.01 

0 

-0.01 

-0.02 

-0.03 
-2    0 2     4 6 

P 

e.   M 
Figure 30. 

= 1.10 
Continued. 
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SYMBOL  CONFIG n. Ht        tP 60 6R 

□ B2S1M2TSL1C2 
G B2S1W2T5L1C2 
A B2S1W2T5L1C2 
< B2S1W2T5L1C2 

1.30 
1.30 
1.30 
1.30 

30   0 
30   0 
30   0 
30   0 

0 
0 
0 
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a= 0 

0 
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10 
15 

u. •* 

0.2 
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-0.2 

-0.4 

Cc 

-0.6 

"n.ti 

U.UJ 

0.02 

r 0.01 

0 

-0.01 

-0.02 

n m 
-8   -6   -4 -2 0 2  4 6 

ß 

f. M„ = 1.30 
Figure 30. Concluded 
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Figure 31.   Effectiveness of the flap control surfaces in producing cross wind force 
at zero sideslip angle. 
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Figure 32.  Yaw effectiveness of the flap control surfaces at zero angle of attack 
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Figure 33.   Lateral load factor per degree of yaw control deflection (5R) 
versus Mach number. 
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SYMBOL      CONFIG Si ftP »0 tfl 

Q    B2S1H2T5L1C2 
0    B2S1H2T5L1C2 
A    B2SIH2T5L1C2 
<    B2S1H2T5L1C2 

30 
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—G  G  C >——c >-©- >-o-[>o.o^<ErQo 

—£ =4 ==* r=d ^ Ms £# «* 
* 

r    0.01 
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a.   M^ = 0.50 and 0.75 
Figure 34.   Effect of roll control deflections on the rolling-moment coefficients 

of the MK-84 MGGB II configuration. 
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SYMBOL  CONFIG N< 4P 60 bR 
□ B2S1M2T5L1C2 
G B2S1W2T5L1C2 
A B2S1W2T5L1C2 
4 B2S1W2T5L1C2 
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b.   M   = 0.85 and 0.95 
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Figure 34.   Continued. 
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SYMBOL  CONFIG K *P »0 *n 
□ B2S1W2T5L1C2 
0 B2S1W2T5L1C2 
A B2S1W2T5L1C2 
<    B2S1W2T5L1C2 

30 
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30 
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0 
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0 
0 
0 
0 

K.= 1.10 
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e- 

M.*1.30 

e- -e 3-S e-c^> 

-16-14-12-10 -8   -6   -4-2    0     2 6     8    10 

c.   M..= 1.10 and 1.30 
Figure 34.   Concluded. 
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Figure 35.   Roll effectiveness of the flap control surfaces at zero angle of attack. 
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SYMBOL      CONFIG M, K 6P *Q 6R 
□    B2S1H2T5L1C2 
G    B2S1W2T5L1C2 
A    B2S1W2T5L1C2 

0.50 
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a.  M„ = 0.50 
Figure 36.  Control surface hinge-moment coefficients versus angle of attack for 

different control deflection angles. 
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SYMBOL  CONFIG 
G B2S1M2T5L1C2 
O B2S1H2T5L1C2 
A B2S1W2T5L1C2 

*. Si *P »0 tR 
0.75 30 0 0 0 
0.75 30 -5 0 0 
0.75 30 0 -10 0 
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Figure 36.   Continued. 
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SYMBOL  CONFIG H, H 4P «0 tR 
Q B2S1N2T5UC2 
0 B2S1W2T5L1C2 
A B2S1U2T5L1C2 
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Figure 36.   Continued. 
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SYMBOL  CONFIG K. N. 6P 60 *R 
Q B2S1W2T5L1C2 
0 B2S1H2T5L1C2 
A B2S1H2T5L1C2 

0.95 
0.95 
0.95 

30 
30 
30 

0 
-5 
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0 
0 

-10 

0 
0 
0 

d.   M„ = 0.95 
Figure 36.  Continued. 
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SYMBOL  CONFIG K hi fcP M3 *R 
B    B2S1M2T5L1C2 1.10 30 0 0 0 
O B2S1H2T5L1C2 1.10 30 -5 0 0 
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Figure 36.  Continued. 
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SYMBOL  CONFIG H. >H *P »0 tn 
□ B2S1W2T5L1C2 1.30 30 0 0 0 
0 B2S1W2T5L1C2 1.30 30 -5 0 0 
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Figure 36.  Concluded. 
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SYMBOL      CONFIG >N 6P 10 I 

CD     B2 - - - - 
0    B2C2 - - - - 
A    B2T5C2 - 0 0 0 
<    B251W2T5L1 30 0 0 0 
^    B2S1W2T5L1C2 30 0 0 0 
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a.   M^ = 0.50 and 0.75 
Figure 37.  Vane calibration data, a versus a,, comparing configurations B2, 

B2C2, B2T5C2, B2S1W2T5L1, and B2S1W2T5L1C2. 
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SYMBOL      CONFIG X„ 

Q B2 
0 B2C2 
A B2T5C2 
0 B2S1W2T5L1 30 
V B251W2T5L1C2        30 

12 

8 

bP 

0 
0 
0 

to 

0 
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bR 
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-16 

12 

8 

-4 

-8 
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b.   M„ = 0.85 and 0.95 
Figure 37.   Continued. 
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SYMBOL  CONFIG     >* 

□    B2 
O    82C2 

bP fcQ 6R 

A B2T5C2 - 0 0 c 
0  B2S1W2TSL1 30   0 0    0 
V B2S1W2T5L1C2 30   0 0    0 

8 

4 

0 

-4 

-8 

-12 

1    1 -1U 

12 
H.=l. 30 

8 

4 

0 

-4 

-8 

-12 

-28   -24   -20   -16   -12    -8 8      12     16     20 

c.   M„, = 1.10 and 1.30 
Figure 37.  Concluded. 
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Table 1.   Summary of Test Conditions and Flap Control Surface Deflections 

Mach No./pt 

6P 6Q 5R 0.50 0.70 0.75 0.85 0.90 0.95 1.00 1.10 1.20 1.30 

1000 1000 1000 1000 1000 1100 1100 1100 1200 1200 

0 0 0 X X X X X X X X X X 

-5 X X X X X X 

-10 X X X X X X X 

-15 
1 ' X X X X X X 

0 +10 X X X X . X X 

-5 X X X X X X 

-10 X X X X X X X 

-15 i ' X X X X X X 

0 +5 X X X X X X 

0 +10 X X X X X X X 
' ' 0 +15 X X X X X X 

-5 +5 0 X X X X X X 

+5 0 +5 X X X X X X 

0 +5 +5 X X X X X X 
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Table 2.   Uncertainties in Aerodynamic and Hinge-Moment Coefficients 

Moo ACL ACD acm,w ACc 

±0.0074 

ACn,v AC£,w ACMH 

0.50 ±0.0180 ±0.0065 ±0.0049 ±0.0011 ±0.0010 ±0.0088 

0.75 ±0.0129 ±0.0038 ±0.0026 ±0.0051 ±0.0008 ±0.0006 ±0.0052 

0.85 ±0.0117 ±0.0034 ±0.0023 ±0.0046 ±0.0007 ±0.0005 ±0.0054 

0.95 ±0.0126 ±0.0035 ±0.0031 ±0.0046 ±0.0008 ±0.0004 ±0.0066 

1.10 ±0.0119 ±0.0034 ±0.0050 ±0.0043 ±0.0007 ±0.0004 ±0.0056 

1.30 ±0.0104 ±0.0031 ±0.0044 ±0.0038 ±0.0006 ±0.0003 ±0.0063 

Table 3.   Precision of Flap Control Surface 
Deflection Angle Settings 

Nominal 
Angle, 

deg 

Measured Angle, deg 

Fin 
No. 1 

Fin 
No. 2 

Fin 
No. 3 

Fin 
No. 4 

0 +0.15 +0.31 -0.61 -0.23 

-5 -5.36 -5.28 -4.59 -4.74 

+5 +4.70 +4.60 +5.58 +5.20 

-10 -10.37 -10.00 -9.67 -9.67 

+10 +10.55 +10.76 +9.98 +10.84 

-15 -15.70 -15.39 -14.67 -14.99 

+15 +14.83 +14.52 +15.23 +15.39 
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NOMENCLATURE 

b Reference wing span, 2.267 ft 

Cc Cross wind-force coefficient, crosswind force/qJS 

Cc_            Slope of Cc versus )3 curve, evaluated between sideslip angles from -2 to 2 deg, per deg 

CC{R         Cross wind-force control effectiveness parameter, per deg 

 c        at zero sideslip angle 

Cp      '      Drag coefficient. drag/q^S 

CL Lift coefficient, lift/q^S 

CL Slope of C[_ versus a curve, evaluated between angles of attack from -2 to 2 
deg, per deg 

CL6Q Lift control effectiveness parameter, per deg 

(CL)i0 = x - (CL)fi0 = o 
 — at zero angle of attack 

6Q = x 

Cg,w Rolling-moment coefficient, rolling moment/qJSb 

Cg w Roll control effectiveness parameter, per deg 

(C«,w)6p = x -(Cß,w)6p = o 
 — at zero angle of attack and zero sideslip angle 

ÖP = x 

C\i H!        Hinge-moment    coefficient    for    fin    control    surface    number    1.    hinge 
moment/2MA q„, positive moment tends to force trailing edge down 

CM H 2        Hinge-moment    coefficient    for    fin    control    surface    number    2,    hinge 
moment/2MA q^, positive moment tends to force trailing edge down 

CM H 3        Hinge-moment    coefficient    for    fin    control    surface    number    3,    hinge 
moment/2MA q,,,, positive moment tends to force trailing edge down 

-m ,w Pitching-moment coefficient, pitching moment/q^c, moment reference point 
on bomb centerline at MS 15.745* 

♦Moment reference point on bomb centerline at MS 15.962 for the wings-folded (*.w = 88 deg) configuration. 
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Cmw Slope of Cmw versus a curve, evaluated between angles of attack from -2 to 2 
deg, per deg 

Cm,w6Q    Pitch control effectiveness parameter, per deg 

(Cm,w)6Q = x "(Cm,w)fiQ = o 
 —  at zero angle of attack 

oQ = x 

Cnw Yawing-moment coefficient, yawing moment/qJSb, moment reference point at 
MS 15.745* 

*-n ,w, 

-».*SR 

CFS 

K 

L/D 

MA 

MS 

M. 

nY/6R 

Pt 

Slope of Cnw versus ß curve, evaluated between sideslip angles from -2 to 2 

deg, per deg 

Yaw control effectiveness parameter, per deg 

(Cn.w)4R = x  "    (Cn,w)AR = o 
  at zero sideslip angle 

5R = x 

Reference chord length. 0.3079 ft 

Full-scale reference chord length, 1.5395 ft 

Wing incidence angle, deg 

Lift-to-drag ratio 

Flap control surface moment area. 0.0003825 ft3 

Model station 

Free-stream Mach number 

Directional load factor, 

c      - c      
*-n ,W a 

QFS Srs 

W 
-, per deg 

nz/6Q       Longitudinal load factor. 

'" .»'40 
L4Q 

qis Sps 

W 
-, per deg 

Free-stream total pressure, psfa 

•Moment reference point on bomb centcrlinc at MS 15.962 for the wings-folded (A.w = 88 deg) configuration. 
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p^ Free-stream static pressure, pst'a 

qi.'s Full-scale dynamic pressure. 778 psf 

q^ Free-stream dynamic pressure, psi" 

Re Free-stream unit Reynolds number, ft"1 

S Wing area, 0.6638 ft* 

Sps Full-scale wing area, 16.595 ft2 

u.v,w Velocity components along the body axes, ft/sec 

V,, Free-stream velocity, ft/sec 

W Full-scale weight of the MK-84 MGGB II, 2650 lb 

a Angle of attack, TAN*1 w/u, deg 

Os Angle of attack as indicated by a vane-type angle-of-attack indicator, deg 

dtrim Trim angle of attack, angle of attack for zero pitching moment, deg 

ß Angle of sideslip, SIN"1 v/Vw deg 

T Wing dihedral angle, deg 

5P Fin control surface deflection angle for roll control, 5P = (-51 - 52 + 53 + 
64)/4 

5Q Fin control surface deflection angle for pitch control, 5Q = (61 + 62 + 53 + 
54)/4 

6R Fin  control  surface deflection angle for yaw control, 5R = (-61 + 52 - 53 + 
64)/4 

51-4 Control deflection angles for the respective tlap control surfaces 1 through 4 (see 
Fig. 13). positive when trailing edge is down, deg 

Xw Wing sweep angle, deg 

MODEL NOMENCLATURE 

B2 MK.-84 bomb with KMU-353X kit (less tail fins and flaps) and a vane-type 
angle-of-attack indicator 
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C2 2-in. vertical canard mounted on lower fuselage surface 

C3 2-in. vertical canard mounted on upper fuselage surface 

C4 0.80-in. vertical canards mounted on the upper and lower fuselage surfaces 

LI Launch lugs 

SI Basic strongback 

T5 Cruciform tail and flap control surfaces, flap hinge line at MS 28.293 

W2 Wing with NACA 65-410 airfoil section and sway brace slots 
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