
UNCLASSIFIED

AD NUMBER

AD919267

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies only; Test and Evaluation; OCT
1973. Other requests shall be referred to
Space and Missiles Systems Organization,
Los Angeles, CA.

AUTHORITY

SAMSO ltr, 13 Jul 1979

THIS PAGE IS UNCLASSIFIED

T1~IS REPORT HAS BEE~N ftJlI[M!TEI:

AND'~~ARD OR PUJBLIC RELEASE

tIDER DOD DIRECT.VE ~2OOAN

NO PP3TRFCF!C2NS ARE iIMPOSED UPO)N

VrS ISM AND DTSCLOSURE,

M- STRI-BUT[AN STATEMENT A

APPROVED FOR PIJBLIr RE.E'ASE;

LISTF -BUTJON 1W41 M[TED,

UNITED STATES AIR FORCE

m INFORMATION PROCESSING/DATA AUTOMATION

IMPLICATIONS OF AIR-FORCE

COMMAND AND CONTROL REQUIREMENTS

IN THE 1980s (CCIP-85)(U)

VOLUME 1V

TECHNOLOGY TRENDS: SOFTWARE

OCTOBER 1973 D DC

D

U NCLASSIYFF-
Socurit~ Yct assik.w _________________________16h_________

DOCUMENT CON -ROL DATA - R & D
f iecutily rtaxlfratjan ni TItle, bs-dy .Iastalint -,0io mm sIfi.. be-w-,,. 1,.,0, ths inel reoit IscJ A elI

I OIRI41NA-TING ACiTIVITY (Coriptte*ilto)~M mft£'~lT LS~~CTO

Space and Missilec Systems Org;1nt4.lil Unclassified
11-0. Box WL960, Woridway Postal C ULL i h. GRU
Los Angeles, CA 90009
3 tlo iTIrLI.

ltiforrni Lion Proce sslng/ Data Autolit i on lnlplic.t tion1is of Air Force Command and-
Control lRcquirenionas in the 1980,; (CCII'-_85) (U), Volurne IV, Technology Trends
Software

OCSCPIP
TIC NOTES

(?)VP*
ofreot

and Inclusive
dae.)

0. NEPOR? DA-TE ya. TOVAL NO, OF~ PA4V3A b. N-. OF, Rae

October 1973 70 4
I&, CONI-AACT OfUQHANT-HO. to. 4MIGINA-IQR'S fttPU"l t NUMIMERII)-

b. PROJECT NO. SACNSO TR 7Z--IZZ

C. b. ON9f RPOHT NOISI 'AnY Othser numbere Ol a ea aa0980d

d.

10. DISTRiDUTION STTEIr 7,1" Distribution of this rcepol-t 1S Tinitd 0 U;;. oerYneni
-Agencies only-; Test and IEvaluat~ioI, Oct 73. Cilivip ri'quests for hliks document
mxust be referred to Hlcj SAMSOIXRMS,- F0 Box 1121)0, Woridway PostaL -Ce-nter.
Los Anirlus. CA 90009). _________________-

11- SUPPLEMENTARY NOTES 12. SPONSORING-MILtTAKY ACITIVITY

13. AIISTRACr-

Comnmand and- cont-rol software will become more iinportant-in 1985 than it is-
today. It is a-rucial to determ-ine whether auur sot e tehnoloya pr-
jected fromi current trends, will be abl-e to Provide the -techniques necessa-ry to
-build -the appropriate softwa--re of -tile future.-
This volume provide s a brief introduction -to- sof twvare technology and-defines -the
-kinds of software that will be required -to build and operate 1985- C&C srstem-.
Ila-ving es:tablisi-.ed requirments 'he -report then focusecs -onl relevant software
technology to lorecast what it niay be able to achiv% e by 1985. B3oth applicatiox
ind executivc softwztre a-re conasid'v-cd, with special em-phasis on response timi,,
adaptability to unforeseen situations, -uitatbility, and ease of transfe-r from one
machine to-another. Of particular iniportance iin ;&C systems are mnethods for
the design, _prodlucti~on, and validation of software, and the manageme-nt-techni-
quCs -necessary to administer lar-ge software-development projects. -Current
tools and practit-es are wssessed.
FiiialLy, _thle e-stimnttes of 1985 softwkare technology capabilities are compared
with projected 1985 requirenits fox L.&C software. The cohcluding sectiAon of
tile report outline-s studie-s, proJects, and- l.&D-investmnlts that the Air Force
might undertake to -narrow the -expected gap bet-ween requirement and technology
and to- alleviate future problem-s iW imrplementing and- operating command and-
control softwa-re.

DD sA -s UN~CLASSIFIED
Security Clsseffcation

UNCLASSIFIED

INFORMATION PROCESSING/DATA AUTOMATION

IMPLICATIONS OF AIR FORCE COMMAND AND CONTROL

REQUIREMENTS IN THE 1980s (CCIP-85)

NOTICE TO RECIPIENTS

The views presented in this report are those of
the Study Group and do not necessarily reflect
the policy or position of the Air Force or the
participating Commands on any issue. The
work of the Saidy Group has been reviewed for
technical quality and adequacy by an Advisory
Review Group of qualified operational and
technical specialists.

DDC i

AY28194

D

UNCLASSIFIED

UNCLASSIFIED

STUDY REPORT: LIST OF VOLUMES

Volume I Highlights

Volume II Command and Control Requirements: Overview
Annex A: Strategic Requirements
Annex B: Air Defense Requirements
Annex C: Tactical Requirements

Volume III Command and Control Requirements: Intelligence

Volume IV Technology Trends: Software

Volume V Technology Trends: Hardware

Volume VI Technology Trends- Sensors

Volume VII Technology Trends: Integrated Design

Volume VIII Interservice Coordination Trends

Volume IX Analysis

Volume X Current Research and Development

Volume Xi Integrated Research and Development Roadmaps

~iii

UNCLASSIFIED

PMIEEDIN0 P W BLANK-NOT MIU4D

UKCLA SIFI ED

TABLE OF CONTENTS

1. INTRODUCTION 1

A. The Role of Software in C&C Systems 1
B. Objectives of this Report 3

II. SOFT'VARE TECHNOLOGY 5

A. A Working Defin!.tion 5

.B Types of Software.. 6
C. Software Production 6
D. Command and Control Software 7

III. SOFTWARE REQUIREMENTS FOR COMMAND AND
CONTROL SYSTEMS 9

A. Increasing Demands on Command and Control
Systems 9

B. Functional Requirements 10
C. Qualitative Requirements 12
D. Economic Requirements 14

IV. TRENDS IN SOFTWARE TECHNOLOGY 17

A. History 17
B. CurrentState of the Art 22

C. Projection of Current Trends 26
D. Trends Affecting Command and Control Software 3Z
E. Unique Software Requirements of Co mman and

Control Systems 39
F. Recent Research 40

V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS . 49

A. Requirements versus Capabilities 49
B. Measures to Narrow the Gap 49
C. Conclusions 64

v

UNCLASSIFIED

v tnn -Bt5.K-iJ0TF11

UNCLASSIFIED

LIST OF ILLUSTRATIONS

Figure Page

IV-i UJSAF Software Expenditures...............2

IV2 Hardware /Software Cost Trends- 3

IV-3 Aggregation c.(Software Components..............5

IV -4 The System Development Process (1970)........15

IV- Growth in Software Requirements...............27

IV-6 Computing Speed (1955 - 1970)............29

IV-7 Computing Speed (1960 - 1985)..................30

LV-8 Tie Cost of Computing Power (1960 - 1972) 31

IV-9 Programmer Productivity (1955 - 1985)......... 33

IV - 10 Estimated Relation of Effort to Size of Sofftwarc
Projects 35

IV-11 Air Force Information-Proces sing Technology Staff:
Recommended Manpower Plan..................59

IV -l The Softwa)re -First Machine: Possible Configuration . 63

IV-13 The System Development Process, 1970 and 1985
(potential)....................... 66

LIST OF TABLES

Table

IV-1 Effort, ort Four Software Systems 7

IV-II 1985 Requirements versus Capability: Function . . . 50

LV-LIL 1985 Requirements versus Capability: Productivity
& Timeliness..........................51

IV-IV 1985 Requirements versus Capability: Reliability . 52

vi

UNCLASSIFIED

UNCLASSIFIED

Table Page

IV-V 1985 Requirements versus Capability: Acceptability . 53

IV-VI 1985 Requirements versus Capability: Adaptability . 54

IV-VII 1985 Requirements versus Capability: Security . 55

IV-VIII Suggested Information-Processing Staff Functions . 60

IV-IX Summa.y of R&D Recommendations 65

vii

UNCLASSIFIED

UNCLASSIFIED

GLOSSARY

ADP Automated Data Processing
AED Algol Extended for Design
AI Artificial Intelligence

C&C Command and Control
CPT Chief Programmer Team
CPU Central Processing Unit

FGSS Flexible Guidance Software System

1-IOL Higher-Order Language

MTB3F Mean Time Between Failure

R&D Research and Developmcnt
RFP Request for Proposal

THE Technische Hogeschool Eindhoven

viii

UNCLASSIFIED

A_

UNCLASSIFIED

I. INTRODUCTION

Commaod and control systems in the 1980s will undoubtedly operate in
a different environment, employ different hardware devices, and be
required to respond in ways not possible with today's systems. The
CCIP-85 study examined the functions to be performed by future C&C
systems and assessed what the new functions will require of the com-
puter hardware and software that must performn them. A preliminary
comparison of those requirements with projections of future informa-
tion processing capabilities suggests that future software design proce-
dures, analysis techniques, and production methods might not adequately
meet C&C requirements. The current study discusses that problem
and outlines promising R&D strategies to decrease the gap between
future C&C requirements and future software technology.

A. THE ROLE OF SOFTWARE IN C&C SYSTEMS

By nearly every measure, software is a vitally important element of
today's ADP systems for command and control. The nature of soft-
ware technology and its intellectual and production components are
described in Section II. Briefly stated, "software" refers to the com-
puter programs (and their associated descriptive documentation) that
give purpose and direction to computer hardware, tailoring it to serve
the information neds of a user and to support his decision-making
processes. Soltware is the critical element in ADP systems because:

0 It is most expensive. As shown in Figures IV-l and IV-Z,
at least 70 percent of the current Air Force investment
in ADP systems is spent on software. That figure should
rise to over 90 percent by 1985.

v It has absolute control over ADP system response. Al-
though hardware may influence system speed and display
media, software determines the manner in which C&C
requirements are satisfied. It directs the hardware to
aggregate, organize, and transform data into usable
information. * Contrary to the popular view, C&C hard-

Information is distinct from data. "A datum is a fact in isolation. In-
formation is an aggregate of facts so organized or a datum so utilized
as to be knowledge or intelligence. Information is meaningful data,
whereas data, as such, have no intrinsic meaning or significance."1

UNCLASSIFIED

UNCLASSIFIED
ware in fact supports software, which in turn supports
mission functions.

. It provide3 essential adaptability. Regardless of possible
inflexibilities in the design of a particular program, soft-
ware (unlike hardware) is inherently easy to modify. That
quality is critical in C&C systems, where functional and
response requirements may change rapidly as the Air
Force evolves toward the dynami, force-management oper-
ations of the 1980s. It is now infeasible to track continually
shifting functions by frequent hardware alteration.

SIt is on the "critical path" in system development. The
availability of a new or updated C&C capability has --
historically -- depended directly on the completion of
software. Hence, achieving a given capability within a
given time requires the development of workable software
well within that time.

ANNUAL USAF

EOP EXPENOITURE

S's

WWMCCS EDP
ESTIMATE

$500M

HARDWARE SOFTWARE HARDWAR[SOFTWARE

Figure IV-]. USAF Software Expenditures

The importance of C&C software is underscored by the severity of the
penalties attending late or ineffective software. Often, the result is
simply the temporary loss of capability. More dangerous is the acci-
dental execution of an unintended corroand. On one recent C&C project, I
failure to complete programming delayed the completion of the entire
system by six months. The delay not only added another $z million to

direct development costs, but it also prevented use of the system by the
operating command for those cix months. Since the system was designed
for a seven-year operational life, ar a total cost of $1. 4 billion, the loss
of six months represents an opportunity cost of $100 million. Z

z

UNCLASSIFIED

UNCLASSIFIED
100

0s0 HARDWARE
.J

Go-
0

I-

w

a.,

YEAR

Figure IV-2. Hardware/Software Cost Trends

As an illustration of the dangers attending functional failure of soft-
ware, consider this scenario:

During a fairly tense period, the Soviet Union launches a
new satellite. The United States decides to use a previously
untried combination of sensors on an inspection satellite to
take a look - - an option available under the computer program
that controls sensor sequencing. But, under a certain unlikely
combination of conditions, which had not been checked out,
this software option also activates a high-intensity electron
beam for warhead detection. This happens during the mission,
and the electron beam kills a crew of six in the satellite. 3

The above situation could quickly precipitate a cangerous strategic
confrontation. Software errors, some perhaps as serious as the above
hypothetical case, are continually being found in C&C systems today;
in the SACCS software, for example, the rate is approximately one
error per day. 2Z

B. OBJECTIVES OF THIS REPORT

zI

Command and control software will become more important in 1985
than it is today, as greater command and control precision and flexi-
bility are demanded, more capacious hardware becomes available, and
military budgets and manpower shrink. It is crucial to determine

~whether future software technology, as projected from current trends,
~will be able o provide the techniques necessary to build the appropriate

software of the future. After a brief introduction to software technology]
(Section II), the kinds of software that will be required to build and
operate 1985 C&C systems will be defined (Section IIi). The approach
used here is a relatively conservative one, extrapolating futu 'e require-
ments from historical developments and technological trends. The
findings of the three agencies contracted by the CCIP-85 study to deter-

3

iJUNCLASSIFIED

UNCLASSIFIED
mine specific information-processing requirements for strategic offense,
strategic defense, and tactical warfare in 1985 are used to determine
the qualitative, quantitative, and functional requirements of future
C&C software.

Having established requirements, the report then focuses on relevant
software technology to forecast what it may be able to achieve by 1985.
Again, evolutionary development from the present, following historical
trends, is assumed (Section IV). Both executive and application soft-
ware are considered (see page 8), with special emphasis on response
time, adaptability to unforeseen situations, suitability, and ease of
transfer from one machine to another. Of particular importance in
C&C systems are methods for the design, production, and validation of
software, and the management techniques necessary to administer
large software-development projects. Current tools and practices
in those areas are assessed, to project the probable modes of software
developmeut in the 1980s.

Finally, in Section V, the estimates of 1985 software technology capa-
bilities are compared with projected 1985 requirements for C&C soft-
ware. The concluding section of the report outlines studies, projects,
and R&D investments that the Air Force might undertake to substan-
tially narrow the expected gap between requirements and technology and
alleviate future problems in implementing and operating command and
control software.

4

UNCLASSIFIED

UNCLASSIFIED

II. SOFTWARE TECHNOLOGY

Many aspects of computer software are not widely understood, and it
is often difficult to discuss software without resorting to a specialized
vocabulary. This section explains what software is, how it is pro-
duced, and, specifically, what distinguishes C&C software from other
types. *

A. A WORKING DEFINITION

Computer software may be defined as the collection of elementary com-
mands or instructions describing the machine operations necessary to
perform a defined task. The commands or instructions may be linked
to form successively more complex units, as shown in Figure IV-3.
Instructions may be grouped, first, into subroutines or modules of
a particular program, then into a computer program. One or several
programs may comprise a software subsystem. Additionally, one or
several programs or subsystems may be joined to form a software
system.

A ggregation
Sof subsystems

performing a

hcomplete function.Subsystem: omAggregatin ,,N h

l si h ram: Subroutines, modules, etc.
SZu br ou tine-

M od u Ie: Itn

/ In s ui on:

Con and:

F igure IV-3. Aggregation of Software Components

To help the nonspecialist understand the more technical discussions in

later sections, he is referred to the "Prose Glossary," published as

Annex A in the Highlights (Volume I) of this report.

5

UNCLASSIFIED

UNCLASSIFIED
Although not physically part of a computer program, documentation (the
set of verbal and pictorial descriptions of software functions and under-
lying concepts) is considered part of software. Without it, software
lacks the transferability and flexibility that distinguish it from hardware.

B. TYPES OF SOFTWARE

The term software may refer to any or all of the components shown in
Figure IV-3 -- any series of instructions to a computer. In use,
software is differentiated into three general types:

& Executive software performs resource-management func-
tions such as input-output and scheduling of different (but
concurrent) program executions;

* Utility software performs often-used general-purpose
functions such as tape printing and translating man-written
instructions into machine -readable commands; and

Applications software perfc:.ns special-purpose tasks
requested by the computer user. The software in most
C&C systems, specifically written to perform the tasks
required by the commander, is of the applications type.

C. SOFTWARE PRODUCTION

Software production nay be divided into five elements:

* System design -- A statement of the user's reqv'irernents
is translated into a functional design specifying the tasks
to be performed by each program in the total software
system;

* Program design -- Each program in the system is design-
ed in detail, with definition of the algorithms to be used
and steps to be performed;

* Program coding -- The specific machine-executable
instructions necessary to perform the task are prepared;

* Program checkout -- The coded program is run to verify,

to a specified level of certainty, that it performs properly;
and

System and program documentation -- The prepared soft-
ware is described in writing for the benefit of the users,
future system designers, and those desiring to under-
stand, alter, or further verify the program.

6

UNCLASSIFIED
[

UNCLASSIFIED
It is apparent that software production relics heavily on intellectual
rather than physical effort. Most of the tasks involve translation of
requirements into the processes and steps necessar/ to perform a
function. The actual writing down of the program code is currently
the smallest part of the total effort. The checkout phase involves the
tedious process of finding errors in the program and is currently the
most demanding and time-consuming. Table IV-I shows the percent of
effort expended upon each phase in producing four large software sys-
tems. (Generally, the documentation phase adds about ten percent to
the effort.)

TABLE IV.-I

EFFORT ON FOUR SOFTWARE SYSTEMS4

Percent of Effort

Analysis and
System Design (1,2) Coding (3) Checkout (4)

SAGE 39 14 47

NTDS 30 20 50

GEMINI 36 17 47

SATURN V 32 24 44

The figures in the table, which show that the majority of software pro-
duction is conceptual development (design) and the laborious ,erification
of program logic (checkout) provide some insight into the difficulties
of gaining large increases in software productivity. These difficulties
are discussed in more detail in Section IV.

D. COMMAND AND CONTROL SOFTWARE

Critical to thi. document is a question that has aroused some contro-
versy: what's different about command and control software? If one
views the programs themselves, there seems to be little difference.
Command and control software performs the same general tasks (file
management, data reduction, report generation, and the like) as other
types of software. Moreover, C&C software is procured and produced
in the same manner as software for most other applications.

The vital difference between C&C software and all other types lies not
in the nature of the software, but in the nature of command and control,
which drasticalli alters the cost-be.iefit environment in which the soft-
ware must operate. Failures in C&C software -- in real life -- can
be directly translated into lost defense objectives. Similarly, in
hardware, there is little functional difference between a Spartan missile
and an Agena launch vehicle for a weather satellite: each has propulsion,

7

UNCLASSIFIED

UNCLASSIFIED
guidance, and a payload. If the weather satellite is not successfully
injected into orbit, the consequences are not serious: it can be tried
again. But if a Spartan aborts its mission, then national defense may
be seriously and irreparably compromised. Therefore, mission soft-
ware must be better than conventional software, ebpecial.y in reliability
and flexibility, because the penalties of software error may be truly
staggering.

8

UNCLASSIFIED

, -i

UNCLASSIFIED

III. SOFTWARE REQUIREMENTS FOR COMMAND

AND CONTROL SYSTEMS

As stated in the Introduction, software has become the biggest item in
ADP system cost and the critical factor in system performance and
timely completion. This has not happened recently but perhaps has only
recently been recognized. This section discusses past and future re-
quireinents for command and control ADP systems, with particular
emphasis on the quality and quantity of the required software.

A. INCREASING DEMANDS ON COMMAND AND CONTROL SYSTEMS

The evolution of autormated C&C systems has been governed by a single
force: increased requirements (e. g. , for processing speed, reliability,
and functional capability) due to the increasing speed, sophistication,
and power of the weapon systems available to and arrayed against the
force commander. When it took several hours for manned bombers to
penetrate, C&C systems could have response times of several hours.
As missiles became the primary weapon systems, C&C response times
had to be significantly shorter. In turn, as response time requirements
shortened, other requirements became more czitical. For example,
C&C systems had to be more reliable: the 15 minutes of "downtime"
allowable in the face of an air-breathing threat would be disastrous con-
fronting ballistic missiles. Similarly, the consequences of a C&C sys-
tem failure became more critical in another sense: the less time there
is to detect and rectify an error, the more likely it is that a system
error will be taken as a real threat. When events are played out in
minutes instead of in hours, there is less time, for instance, to verify
by other means (i. e., through a non-C&C system) whether a perceived
threat is real.

More flexibility is now required of C&C systems. The existence of an
extensive range of weapon systems, response options, and engagement
scenarios requires C&C systems of corresponding sophistication and
versatility. Also, because more data are available (through sensors,
satellites, and OTH-B radar), C&C systems have to have a greater
capacity for digesting data and reporting them in a form useful to
decision-makers.

These new requiremcnts have affected the shape and size of C&C sys-
tems considerably, primarily in the area of ADP support (both hard-
ware and software). For the most part, hardware has been able to

respond adequately; over the past decade, hardware speed and reliability
have increased dramatically. Hardware flexibility has not eased soft-

9UNCLASSIFIED

UNCLASSIFIED
ware requirements, however; nor has it reduced the complexity of
the tasks software must perform.

Software has shown no dramatic progress. Therefore, it has become
the least reliable and least secure component of the C&C ADP systtem,
due in part to the increasing complexity of the functions it must perform
and in part to the methods by which it is produced. The remainder of
this s.-ction discusses the requirements that C&C software must meet in
the future, as a prelude to surveying the potential of the software indus-
try for fulfilling these requirements. Three classes of requirements
are considered: functional, describing the sorts of tasks that C&C
software must perform in 1985; qualitative, discussing acceptable
standards in reliability and flexibility; and economic, providing a
framework for discussing the impact of requirements upon software
development cost.

B. FUNCTIONAL REQUIREMENTS

Certain ADP requirements for strategic, tactical, and air defense
areas have emerged from the CCIP-85 study. This section summarizes
the implicit and explicit requirements provided by those studies. The
following list enumerates six general functions that C&C software
must be able to perform in the 1980s. Most of them represent evolu-
tionary continuations of tasks now performed by the more advanced
C&C systems.

1. Data Management and Display

Fulfillment of this function requires maintenance of a ttomated files
of data on the status of changing conditions (such as our forces, enemy
forces, weather, airspace assignments, etc.) that are necessary for
decision-making. This function includes facilities for displaying
selected information, means of selecting relevant information from the
total, and all necessary underlying update and retrieval procedures.

2. Computational Assistance

Missiles, bombers. and fighters require guidance, targeting, tracking,
and routing parameters to be calculated rapidly for maximum flexibility.

3. Optimization"

Optimal use of available force relies on various mathematical algorithms
and models to select weapons, set force levels, and assign weapons and
targets in the most effective way possible under given constr'aints.

10

UNCLASSIFIED

UNCLASSIFIED
4. Real-Time Data Reduction/Data Entry

High-speed sensor-generated data and manually entered data must be
"1massaged" to remove noise, isolate important features, provide sum-
mary information for retention in the data base, and Lor command
decisions.

5. Real-Time Command Decision Aids

Command and control decisions must often be made so rapidly that ways
of arranging and evaluating situation information must be predetermined
to take all relevant factors into account in a decision. This function
includes maintenance of programs to assist in attack/response assess-
ment, damage assessment, and response selection.

6. Real-Time Simulation and Exercise

All automated military systems must be tested and exercised in simu-
lated combat situations for shakedown, training, and tuning; they must
include programs for performance monitoring, reset, and recovery.

Such software will always be a specialized product tailored to fit the
information needs and processes of the military user. It will never be
available off the shelf. However, none of these functions is beyond
today's software technology. Given sufficient development investment,
programs can be produced that would perform these six kinds of jobs
to some extent. The technology is lacking, however, in the production
of "intelligent" C&C systems. Intelligent, in this context, refers to
programs that perform three classes of operations: pattern recognition
(visual or aural), induction (generalization), and complex decision-
making -- tasks normally done only by the human mind.

A primary and rapidly growing requirement of current and future C&C
systems is for rapid and intelligent reduction of multisource sensor
data. Stated requirements include:

0 Pure pattern recognition, as involved in identifying a
truck or radome under a wide range of shadow patterns,
and assessing bomb damage; 4

S]More powerful methods for the automated extraction of
useful information from sensor data; 4

• An image-processing capability: autom&.tic target detec-
tion on the photographic image type of infornatiori; and

* Fusion of image and textual intelligence information.

11

UNCLASSIFIE£

ILo

P--,-O MI--T -

UNCLASSIFIED
Other functional requirements call for more intelligent (decision-making
and resource allocation) capabilities for the reoptimization of SIOP
options, reprogramming and retargeting of ICBMs and bombers, and
guid;nce on when to withdraw from a force engagement. 5

C. QUALITATIVE REQUIREMENTS

It is in quality that requirements for C&C software differ most from
other -ipplication-. An ADP system controlling inventory levels, for
example, can tolerate numerous errors in counting expended stock;
a command and control system cannot tolerate any errors in counting
incoming intercominental ballistic missiles. A multi-access university
time-sharing system can tolerate unauthorized access; a C&C system
cannot. An obsolete finance and accounting system can be leisurely
replaced through reprogramming for a new configuration; an obsolete
C&C system degrades national security. Essentially, C&C software
must be the most reliable, secure, transferable, and adaptable to
changing needs. Let us consider the five important dimensions of soft-
ware quality and the requirements in these areas for future command
and control systems.

1. Reliability

Reliability, in this context, means the capability of the software to
operate without failure, without a software -caused inaccuracy in data
output. Software errors may be caused by a variety of design or coding
inconsistencies; or they may be introduced in the requirements analysis
phase through imprecise or contradictory specification of functional
requirements.

It is difficult to specify a quantitative requirement for reliability (or
for any qualitative aspect). The criteria used here are those that would
remove software from the critical path of system development or would
make software other than the weakest system component. By 1985,
hardware systems are likely to achieve a mean-time between failures
(MTBF) of 15, 000 to 40, 000 hours. 6 Software components of C&C sys-
tems should be required to reach a similar nean-time between failures.
Since the MTBF currently associated with very complex software is

eignt to 24 hours, considerable effort must be made to advance the
state of the art.

2. Acceptability

In this context, acceptability may be defined by the degree to which the
implemented ADP system meets true user needs. The difficult pro-
cess of analyzing user requirements usually has one of four outcomes,
three of them bad:

12UNCLASSIFIED

UNCLASSIFIED
* The user eventually gets a system that meets his true

needs;

0 The user eventually gets a system that does not meet
his stated needs;

* The user eventually gets a system that meets his stated
needs, but the stated needs are found to be inconsistent
with his true needs; or

* The user gets a system that is satisfactory, but only
after several interruptions during the development pro-
cess and numerous expensive and time-consuming design
and programming retrofits.

The final case is the most common; this and practical experience indi-
cate that, in many cases, decision-makers are not able tc clearly arti-
culate their complex information needs. These needs are often best
discovered by showing the user the information system output in an oper-
ational context and then letting him judge the utility of various items,
reports, and displays.

Finding better methods of determining ubers' requirements would
remove a big obstacle to the rapid and inexpensive simulation of sys-
tems. Feasible approaches to more precise and effective ways of
defining user requirements will be discussed later. For this discus-
sion, it is sufficient to state that finding a solution to the problem
should receive very high priority.

3. Flexibility

One difficulty associated with software is the high cost of making even
minor functional changes. Retrofit of software can cost four or five
times more than initially producing particular routines. 3

Command and control software is particularly liable to retrofit because
it muqt reflect the constantly changing force structures and firepower
of both friendly and hostile forces. Modifications will be needed at
an even greater rate in the future, particularly as constant ofr declining
defense spending brings about increasingly sophisticated weapon tech-
nology to meet changing needs. The requirement here is for software
that is

t i Easily and rapidly alterable;

* Alterable at a "reasonable" cost; and

* Rapidly and easily certified, once it has been altered.

13

UNCLASSI*FIED

UNCLASSIFIED
To achieve it, either the very natue, of software systems (currently
complex and highly interdependent) will have to be changed, or the cost
and time it takes to n, ,lify software will have to be reduced drastically.

4. Security

Preventing unauthorized access to, and subsequent compromise of,
software is a complex problem involving questions of hardware, person-
nel, and facilities, as well as software. Software becomes the critical
security factor only after physical access to the ADP system has been
gained. In most recorded cases, evep the most "secure" software can
be compromised once someone has access to the system.

Security :-Lqu.rements cannot be explicitly stated here, because infor-
roptio' --egaring various levels of classification must be protected.
Sutfice it to say that each level of information has associated with it
a different value, both to the protector and to the person who wishes
to gain access to it. To be secure, software must have mechanisms
able to insure that iche cost of violation (to the violator) exceeds the
value of the information gained. There are no absolutes in security --
only that relative cost-benefit relationship.

D. ECONOMIC REQUIREMENTS

All of tl-e requirements described above (with the exception of those
for intelligent systems) are feasible with sufficient economic invest-
ment. With severely constrained budgets, however, it is not currently
possible even to approach those goals.

We conclude this .ction by looking at some attainable needs with re-
spect to the cost ot developing software systerns and their timely
completion.

1. System Development Cost

The current economics of computer programming are discussed at
length in later sections of this report (see Section IV). In brief, it
may be stated that the entire system-development process -- design,
programming, and checkout -- remains essentially an artisan, labor-
intensive process. Moreover, the "labor" is highly skilled, educated,
and paid. These factors together keep system development and pro-
duction an expensive and time-consuming process.

Program development time varies with the individual, type of task,
working environment, language being used, and so forth. It is gener-
ally estinated in the range of one to 10 machine-executacle instructions
per day, with the order-of-magnitude range accounted fo.- by variation
in the parameters mentioned above. 7 More productivity is needed:

14

UNCLASSIFIED

1

UNCLASSIFIED
to have a 2-million-instruction system operational by 1987, 115 pro-
grammers would have to begin coding today. Total programmer cost
(at $40, 000 per year per man) would amount to $64, 400, 000. And a s
hardware speed increases and requirements become more complex,
more instructions per system will be necessary.

2. Timeliness

There are two aspects to timeliness: first, that of the software itsel.
(i. e. , whether it is produced on schedule) and, second, that of the
entire system (i. e., whether parts of software design and production
slow the total development process regardless of the speed of software
production). It may be possible to make systems more timely by
software-related means that allow an earlier start to software production
but do not affect its timely completion.

Software affects C&C ADP system timeliness both directly (as mention-
ed above) and indirectly. Software development is a serial process:
the phases of requirements analysis, system design, prograrn design,
coding, checkout, system test, etc. follow each other. (See Figure
IV-4, which also shows the various hardware-related decisions that
attend the development and acquisition process.)

1970
3- 4 YEARS

HARDWARE INSTALLATION

GROSS RFP OTAILED SYS, DESIGN SY.STEM TEST
FORMULATION. SISTEM DESION. RESPONSE PPOO AMN NG-CHECKOUT
ROTSANALYSIS SIZING E EVALUATION DOCUMENTATION TRAINING

T I 2 3 4 5 T+6

Figure IV-4. The System Development Process (1970)

What is needed is to reduce the time involved in this process, prefer-
ably by overlapping 'hese steps. In the Conclusions (Section V), this
problem is addressed. Specific R&D projects are suggested to solve it.

Looking at Figure IV-4, one implication of system timeliness is fur-
nished by the issuance of the Request for Proposal (RFP) for hardware
about a third of the way along the process. It should be pointed out
that the six-year time span shown in Figure IV-4 is illustrative and
typical but does not apply to the development of all command and
control systems. Ilhe WWMCCS projects seven years for development,
and SAGE required eleven years to complete. The phasinZ of the steps
is the important asp'ct here. Essentially, the spz,_ification of hard-

ware commits the syr.:tem to a relatively narrow range of configurations.
This means that altered requirements -- either new or newly perceived -

will require major, expensive design retrofits. In addition,, early

15

UNCLASSIFIED

UNCLASSIFIED
specification of hardware mak'es the systeri vulnerable to early obsoles-
cence with advances in hardware technology, Therefore, it is necessary
to:

* Phase the system-dvelopment process so as to reduce
total time-to-complete, and

0 Find a way to delay hardware selection and acquisition
until the latest possible time.

16

UNCLASSIFIED

- *-' -L - -- " ' r , . , 1 ' d ' '... .i " •-

UNCLASSIFIED

IV. TRENDS IN SOFTWARE TECHNOLOGY

With few exceptions, growth in software capabilities has been driven
by user requirements on one side and machine characteristics on the
other. For example, if the user needed a tracking program, he got a
tracking program; if the user had drum storage, the program would
use drum storage. Hence, forecasting the C&C functions that will
require automation in 1985 and projecting the kind of hardware that
will be available then largely determines the qualitative nature of
future C&C software.

There are other characteristics of software, however, that are as
critical to the user as the overall job it must do. Because there are
so many ways to write a computer program to perform a given task,
such parameters as how much the program costs, how quickly it was
constructed, how efficiently it uses hardware resources, howM reliable
it is, and how suitable it is to the user have become essential consider-
ations in determining software quality. Trends in these and other
related characteristics must also be evaluated to derive an accurate
picture of future software technology.

The approach here will be to outline the history of software develop-
ment, describe the current state of the art, and then project the direc-
tions in which software technology is likely to grow. Limits and miti-
gating factors will be pointed out where necessary. Special sections
will be devoted to exotic information processing, unique C&C require-
ments, and recent work in software program production and validation
methodologies that may significantly alter current trends. The effects
of software technology trends on managing development efforts and on
the organizational framework in which development takes place will
also be pointed out.

A. HISTORY

1. The First Decade

In the first generation of computing, software was extremely machine-
constrained. Much effort was expended in fitting programs into the
small .machine memories and in devising algorithms efficient enough
to produce the desired results in a reasonable time. Programs were
full of clever methods to capitalize on machine quirks and wring out
as much processing speed as possible. Although standard, prewritten
library programs were considered, 8 they were not used except perhaps
to do floating-point arithmetic.

17

UNCLASSIFIED

UNCLASSIFIED
Programs were also required to cope with the fairly unreliable equip-
ment: the MTBF was often less than 20 minutes. 9 This forced pro-
grams to be very adept at using short bursts of computing power (e. g.
by providing frequent storage of the contents of main memory on a
magnetic drum for use in restart). Since computers were initially
thought of as being very fast arithmetic machines, and the earliest
programs did great quantities of scientific and engineering calculations,
machines were designed with very limited input-output gear. Typically,
this consisted of on-line, low-speed, punched-card equipment. Hence,
few programs were written to process large quantities of data. The
interaction of machine characteristics and the calculational workload
tended to make progr;,-ns small, limi'ted in input-output, and highly
machine -dependent.

At about the same time, the nossibility of processing large volumes
of business data and real-time radar data on electronic computers
was beginning to be explored. Concurrently, hardware technology
was allowing faster, more reliable machines to be built with larger
memories and considerably improved input-output equipment. The
demand for computer processing increase 1, and the character of soft-M

ware changed.

The most important differences were in the size and complexity of
programs attempted, the emergence of higher-order languages (HOLs),
and the appearance of supervisor systems.

Users had no trouble in conceiving programs that could utilize the
increased speed and memory size. .Logically complex programs, with
more options and more program paths, require more space and are
naturally difficult to segment and reduce below a certain size (related
to the level of complexity). Various optimization and simulation pro-
grams appeared, not to mention more detailed engineering calculations.
Real-time programs in particular (e. g. , the SAGE prototy~pes) were
great consumers of computing cycles and main memory. wr

The demand for more programs to be written prompted the development
of the first higher-level computer languages geared to the user. The
incrcase in machine capability now allowed the writing of prograrrs
large enough to translate such languages into instructions acceptable
to the machine. Though programs produced by these translators, called
compilers, took more storage and took longer to run than hand-coded
programs, the increased machine capability made storage and running
time less costly than programming talent. Subroutine libraries were
also being built up through the formal or informal interchange of pro-
grams among users. Common tasks (e. g., output o± data to printers)
often did not have to be reprogrammed from scratch for each new job.

The inefficiency of operating a computer by hand (program setup often
took longer than program execution), the s.andardization)f input-

18

UNCLASSIFIED

UNCLASSIFIED
output functions, and the advent of higher-order languages led to the
development of supervisory "operating systems." These were collec-
tions of programs that loaded programs into memory from tapes, di-
rected output to tapes, assembled user-written programs together with
the necessary library routines, and automatically maintained tape files
of intermediate data produced in multistep procedures.

Later, when the independently operating "data channel" device was intro-
duced to permit input-output to be overlapped with computation, the
operating system incorporated the very complicated input-output con-
trol and buffering programs necessary to take full advantage of the new
hardvare. Supervisory programs and compilers were among the larg-
est programs; however, the costs (in terms of speed and space) of
using higher-order languages were considered too great for these appli-
cations. Hence, they were coded almost entirely in machine language.

It is interesting to note that the military requirements for the SAGE
system placed it beyond the leading edge of software technology in
this period (the late 1950s). The number of programs required to per-
form identification, monitoring, tracking, weapon assignments, inter-
cept direction, etc. , plus the various support programs used for test-
ing, recording operations, simulation and other purposes, made SAGE
an exceptionally large system of coordinated programs (over one million
instructions). The speed at which these functions had to be performed
to keep up with radar data on incoming bombers in real time demanded
automatic scheduling and supervision of the hardware, although this
control was implicitly spread throughout the operational programs rather
than being centralized in an "operating system." Emphasis on speed
also requii ed the development of extensive measurement and simulation
software not previously seen in the field. SAGE became one of the first
system to include immediate, iateractive man-machine communication
via display, lighL guns, and switches.

2. The Second Decade

As increasing generality was pursued in the early 1960s, software
technology grew more elaborate. More powerful machines allowed, and
often required, more complex support programs. Applications for pro-
grams and higher-order languages to construct programs proliferated.
It became clear that user requirements for software of all kinds were
growing at an exponential rate.

Several factors contributed to the use of more elaborate programs.
,oremost was the degree of generality required by supervisor system

gr.. Whil. it was sufficient, for a typical application program to
solve a specific problem with a specific c-.iculation on a specific mach-
ine, system programs had to be designed to run on a range of machine
configurations to ;5upport a wide variety of problem specifications.

19

UNCLASSIFIED

UNCLASSIFIED
Indeed, one of the primary justifications for system programs was
their ability to increase the productivity of nearly all programmers, no
matter what their task. The need for generality was also found in lan-
guage translators, where all logical combinations of statements must
produce proper machine code. And as more generality was required,
programs grew to accommodate all the necessary tests and options.
System programs were further elaborated to protect the system from
user actions that could erase or otherwise abuse the system, to inter-
pret various command languages, and to account for who should pay for
the use of the system. 11

Improvements in hardware also widened the scope of system programs.
In particular, the independent data channel, the availability of substan-
tial core memory, and the advent of interrupts to signal events (com-
bined with the disparity in speed between the relatively slow input-
output and relatively fast computing) encouraged the development of
multiprogramming systems. In return for increases in work done per
unit time and in hardware utilization, a multiprogramming operating
system acquired the additional burdens of i) keeping track of the pro-
gress of several programs simultaneously; 2) running system tasks to
transfer information from low-speed to high-speed memory devices;
and 3) maintaining queues and tables to schedule hardware and soft-
ware system resources, as well as performing many other coordina-

tion functions. Further enlargements were necessitated by time-
sharing of several active programs, multiprocessing, decoupling pro-
grams from slow readers and printers through "spooling," and the
maintenance of a variety of system and user files.

In the most capable systems of this period (e. g., CTSS), 12 the super-
visor alone could take up as much core memory as some similar
machines had in toto. The supervisor generally exceeded the amount of
core memory that could be devoted to it, and some programs had to be
kept on the recently introduced disk-storage devices (from which they
could be quickly loaded as needed).

Programs that actually solved problems (as distinct from system pro-
grams) developed in several ways. The most exotic "artificial intelli-
gence" programs were also becoming more elaborate. Systems that
answered questions, recognized patterns, or attemted to solve prob-
lems in more general ways were of great interest, compared with
the re)atively simple game-playing programs of the 1950s. A much
larger effort, however, was going into developing techniques to make
it easier to use the computer for various applications. "Packages" of
programs were developed for various applications to which one could
give numbers and get btck anbwerz (e. g., the FORTRAN scientific
subroutine package, SCERT/COMIT, etc.) Languages were specialized
for solving problems in certain areas. For example, JOVIAL (for
command and control), COBOL (for business), and SIMSCRIPT (for
simulation), among others, were developed, and many specific appli-

zo

UNCLASSIFIED

UNCLASSIFIED
cation programs were written. In 1963, IBM maintained a library of
nearly 6500 of these kinds of programs, and SHARE; had a collection
of over 1800. 14

The quickest solution to a fairly wide (although explicitly restricted)
set of problems was perhaps furnished by the closed-end, algebraic,
time-sharing languages such as JOSS and BASIC. 15 These systems
provided (and still provide) a facile yet flexible means for engineering
and scientific computing by strictly shielding the user from the
machine he was using. With this development, the rest of software
technology reached the level SAGE had attained some years earlier.

The third generation of computing hardware was introduced in the
mid-1960s, and what had been research projects became commercial
products. Special machinery was included to do things particularly
difficult for software, such as memory protection and dynamic address
translation to achieve "virtual storage. " Thus, multiprogramming,
time-sharing, and numerous languages became widesperad. The fore-
front of software technology moved on to attempt programs that were
increasingly more complex.

Typical large efforts during this period were OS/360, TSS/360, the
SABRE II airline-reservation system, and the Apollo real-time system.
Some characteristics of these systems are as follows:

0 Control and utilization of large collections of hardware.
The Apollo center uses five IBM 360/75 computers, func-
tionally bound together, plus hundreds of displays, con-
soles, and other input-output devices.

Very large programming workforce, with multilevel
management. The OS/360 took at least 5000 man-hours
of effort and involved many levels of management,
directing some 900 pecple.

0 Greater integration and generality of functions.
SABRE II was designed to handle not only real-time
seat reservations but aircraft status and all American
Airlines' business data-processing as well.

* Greater reliability requirements. In contrast to most
previous systems, which could fail, be corrected, and be
restarted without permanent damage, the cost of failure
for the Apollo system was unacceptable.

* Hardware saturation. The gains in hardware speed and
memory capacity were entirely consumed by the require-
ments for these projects; moreover, control programs

l 1

UNCLASSIFIED

UNCLASSIFIED
continued to be written primarily in assembly language
to achieve maximum efficiency.

Besides the large-scale efforts described above, a great variety of
development continued along traditional lines. As graphics hardware
became less costly, software packages were written to give the user
convenient modes of using it. New languages were developed for more
and more applications, not the least important of which were for con-
structing other languages. The existence of direct-access storage
devices stimulated many efforts to produce systems to give users
easy access to data recorded on those devices. The availability of time-
shared systems prompted all types of text editors and conversational
programming systems.

B. CURRENT STATE OF THE ART

In discussing today's software, one must distinguish between typical
computer usage and advanced computer systems. We vwill call the
first the "mainstream" and the second the "leading edge" of software
technology.

I. The Mainstream

One does not now have to be a highly trained programmer to use com-
puting facilities. Engineers and military men can cover more problem-
solving ground per day than programmers could in previous years.
Computer utility has broadened through:

" The use of on-line, interactive, and sometimes graphic
techniques to specify calculations and other manipulations
of quantitative data (e.g. , graphic ROCKET 1 6);

* The use of data-management systems that allow retrieval
of information from data bases by using fairly formal
query procedures (e. g., MARK IV 17); and

" The use of parameterized application packages and collec-
tions of routines that perform specific operations or, the
users' data (e.g., BMD1 8).

"Programs" written by such users, if any are written at all, are likely
to be small and do not significantly change the power of the system
being used. However these facilities can sometimes be tailored to a
specific user's preferences, vocabulary, and working habits with a
little extra programming.

The professional programmer is also more productive. He is still
required to build the tools described above and to write programs when

22

UNCLASSIFIED

UNCLASSIFIED
no previously programrnmed system satisfies a user's requirements.

His software tool kit includes:

* Multipurpose higher-order languages (e.g., PL/I) and
special-purpose languages (e. g., SIMSCRIPT II) for
different kinds of jobs;

* Libraries of subroutines for particular applications
(e.g., IGSI 9);

* Tool-building tools, such as meta-compilers (systems that
write compilers to order), cross-referencers (which
construct "indexes" to program elements), and simulators:
and

* On-line conversational text editors, file managers, and
debuggers that help automate previously manual tasks.

Today's typical programs are one- or two-man products that operate
in a non-interactive fashion and no longer require the effort, or
receive the refinements, that similar programs once did. Relative
freedom from machine and language constraints has brought out new
limits on computer utilization, however. Some of these are a high
frequency of errors, the likelihood of inflexibility, and the lack of

program transferability.

Finding and eliminating errors is a sig.nificant part of all programming.
Although it is usually fairly easy to code what one wants to have done,
it is difficult to oe perfectly correct or logically complete in writing
a program. In a recent study, 20 debugging consumed far and away the
largest amount of time in program development, usually 45 to 65 per-
cent. Moreover, the ease in writing a program provided by higher-
order languages has not generally been extended to debugging. Program-
mers must still be quite knowledgeable about the intricacies of the
operating system and machine operation in order to isolate and correct
errors.

Providing flexible software is another problem. The need for a parti-
cular software capability tends to change over time as the surrounding
environment changes or design deficiencies are recognized by users.
Though computer programs are inherently modifiable, programmers
often find it difficult to alter tightly intertwined program logic quickly
and to know precisely where to enter the modification in the original
design. Also, the user may simply be averse to changing a piece of

softaretha fiall works after a long developmoent effort.2

Despite the prevalence of higher-order language programs, software
capabilities that exist at one installation cannot generally be transferred

23

UNCLASSIFIED

UNCLASSIFIED
to another installation because of compiler differences from machine
to machine, operating system differences, lack of a particular language
for a particular machine, or lack of sufficient doc,,mentation. Thus,
an appreciable amount of development effort goes into redoing software,
rather than into advancing software capability. Moreover, much pro-
gramming is done in languages that are not well matched to the appli-
cation because those languages are more universally compilable (e. g.,
FORTRAN). Again, software technology is not advanced through these
efforts.

The above problems arc serious and pervasive; on the whole, however,
the average computer user is much better served than he was five, ten,
or fifteen years ago.7

Z. The Leading Edge

As in the past, the software projects that determine the upper limits
on current software technology are, by definition, those that are the
largest and most elaborate, that make the most severe demands on the
power of the hardware, and that strain the ingenuity of the designers.
In this class are most of the larger operating systems (e. g., TSO/360
and MULTICS) and the real-time control systems (e. g. , Apollo mission
control and the newer airline reservation systems. Important charac-
teristics of these large operational systems and their problems are
discussed below.

a. Enormous Effort -- Time taken to develop these projects is
measured in years, cost in millions of dollars, labor in hundreds of
man-years, and documentation in tons. A labor-intensive artisan
approach to software design, production, and testing is used, incor-
porating several layers of management. President Nixon's former
science advisor, Dr. E.E. David, Jr., has commented:

Among the many possible strategies for producing large
software systems, only one has been widely used. It
might be labeled "the human wave" approach, for typically
hundreds of people become involved over a several year
period. This technique is less than satisfactory. 7

b. Overexpectation -- The imagination of systems designers,
salesmen, and others seeking to push technology is limitless, but their
time and cost quotations to the customer cannot be. As it is nearly
impossible to write definitive specifications for large-scale systems
before the design is begun, more powerful system functions may be

*Another kind of limit is set by the state of research in more esoteric

uses of computers (e. g., artificial intelligence), which will be dis-
cussed later.

24

UNCLASSIFIED

UNCLASSIFIED
promised than can be delivered. Moreover, with such long associated
lead time, perceived user requirements can shift, forcing redesign,
retrofit, or cancellation of the project. Continues Dr. David:

[The "human wave" approach] is expensive, slow, inefficient,
and the product is often larger in size and slower in execution
than need be. The experience with this technique has led
some people to opine that any software system that cannot
be completed by some four or five people within a year can
never be completed; that is, reach a satisfactory steady
state. 7

c. Efficiency Requirements -- The desire to exploit the hardware
to its maximum potential generally requires that at least a part of
large-scale systems be written in machine-dependent assembly lan-
guage. This need for operational performance also often requires dis-
carding some software tools, such as higher-order languages or
standard input-output packages, because the overhead resulting from
their generality is too costly. Some projects misjudged the effects of
this overhead (e.g. , UNIVAC's reservation system for United Airlines)
and were abandoned. As it was put by Hopkins, "If you have the pros-
pect oi 3000 inputs a minute and your system has always been just one
step ahead of the sheriff, you are not going to tell people that a micro-
second isn't important; too many times they have had to rewrite code
to save a microsecond or two.",

d. ResponsibiLity -- The cost of failure, even temporary failure,
is fairly high. First, these systems are more tightly coupled to the
environment. Second, they handle many task!- concurrently. For
example, this scenario:

Consider a time-sharing computer which operates perfectly
for, say, 50 hours, then malfunctions for two seconds. Sup-
pose that, during the two seconds, all communication between
the on-line users (there may be several dozen) and the com-
puter are lost; program pointers to data are confused; diction-
aries o files are destroyed; and key portions of the operating
software have been disabled. Each user is going to be very,
very unhappy. Z3

if these users happen to be key defense commanders or air-traffic
controllers, some people depending on the system may be more than
unhappy.

e. Reliability -- Equipment is often duplicated to provide fail-
safe operation in the event of hardware failure, but there is no simple
means of validating software. It is impossible to say with certainty
that there are no errors in a large software system, so the system

UNCLASSIFIED-

UNCLASSIFIED
may fail in unpredictable situations. In critical applications, particu.-
larly in command and control, validation must nevertheless be done.
Brute-force methods have required as much as $750, 000 for an 8000-
instruction program. 2 4 Typically, the cost of validation for a missile-
guidance program is $4 per machine instruction. Since this cost is
so high, errQrs are usually shaken out of larger software systems
through actual use. For example, it is said that around 1000 errors are
found in each new release of OS/360. Z2

f. Integration -- Current systems attempt to perform multiple
functions with the same hardware and a common data base. One
express purpose of MULTICS, for example, was to "provide multiple
access to a growing and potentially vast structure of shared data and
shared program procedures."Z 5 Thus, the construction, ccmpilation,
testing, editing, debugging, and stor-age of computer programs would
all be available through compatible system software "at one's finger-
tips. " Similarly, in business data processing, the potential for using
data for many purposes (e. g., inventory data for marketing, forecasts,
and product evaluation, as well as for inventory control) has been real-
ized in some instances. That is also the objective of SAl (SO's Flex-
ible Guidance Software System (FGSS) being developed for rocket-
vehicle guidance and control.

C. PROJECTION OF CURRENT TRENDS

Forecasting software capabilities is somewhat different from predict-
ing future hardware. While many appropriate measures exist for gaug-
ing hardware production and performance -- cost per bit, add time,
transfer rate, byte capacity, etc. -- similarly comprehensive and
meaningful metrics for software are lacking. Hence, it is hard to de-
fine what is forecast. Though copious quantitative data have been col-
lected on hardware production and performance, the importance of such
dala for software is just beginning to be recognized. Thus, there is no
firm data base from which extrapolations may be made. Most impor-
tantly, while the laws of physics are well known and can be used to
predict and control progress in hardware development, the "laws of

software" are not well known; there are few invariant relationships
to bound projections of future software characteristics.

Nevertheless, it is most likely that some patterns can be abstracted
from the history of software development so that the kinds of software
technology that might be available in the 1980s can be suggested. As
mentioned above, certain forces greatly influence the course of soft-
ware technology and produce certain trends in software capabilities. I
The intention here is to use these to derive a first-order approximation
of future software characteristics.

26

UNCLASSIFIED

UNCLASSIFIED
1. The Driving Conditions

Three factors seem uppermost in influencing the development of soft-
ware technology. The computing requirements and economic resources
of the user are most important in determining the functional character-
istics (i. e. , what tasks the program should do). These interact with
the characteristics of the available hardware to determine more pre-
cisely how programs will operate (e.g., what de,.ee of detail is feasible
and what response time can be expected). Further affecting the tech-
nology are evolutionary forces -- those that cesult from the available
stock of implementation tools, ideas, ant ex:perience with previous
attempts to do a similar job. Let us examine these in more detail.

a. User Requirements -- Growth in software requirements has
continued at an exponential rate. Few capabilities have been discarded
and many, many have been added. Increases have occurred in the
number of applications, operating systems, and languages, and in their
size and complexity. As one index of this growth, Figure IV-5 pre-
sents the amount of code (machine instructions) provided as standard
programming support (Type 1 programs in IBM terminology) for a
variety of computers. This curve shows that the amount of software
required doubles about every 1. 4 years. Projecting this curve out to
1985 would indicate a need for about six billion instructions of program-
ming support for a particular computer system.

,0M Of course, this growth may slow down
before 1985. The industrial market is

5M -already beginning to be saturated, the

2M 60 growth of the programming profession
is slowing down, and in general the com-

7090 704 puter industry is beginning to mature.
S500K . Because software is no longer supplied

1.00K401 "free" with IBM equipment and an inde-:200K

7070-" pendent software industry has appeared,
4the above measure of software require-

50K 1604 ments, as defined, probably cannot be

0/ projected accurately.
20K 0-DATATRON

10K -650 However, the growing market forces

5 ,K surrounding software and the continuing
56 5660 62 64 66 68 70 search for generality may perpetuate

YEA-- the current growth rate. In the 1960s,

Figure IV-5. Growth in there was only one operating system and
Software Requirements set of languages, supplied by the machine's

manufacturer; now, competition may in-
duce various firms to produce several

different systems and language implementations with different character-
istics for the same machine. This is already visible in certain soft-
ware components, such as data-access methods and compilers.

27

UNCLASSIFIED

UNCLASSIFIED
The search for generalized software had haunted software technology
as the search for the philosopher's stone haunted alchemy. People
belicved that many of their troubles would disappear, if only there
existed a completely generalized operating system, or a universal
programming language, or a general management-information system.
Much programming effort has gone into achieving these ideals --

OS/360, PL/I, GIS (Generalized Information System2 1) -- but it has
turned out to be extraordinarily difficult to obtain the e.xpected benefits.
And generality is a primary factor operating to escalate user require-
ments.

There is no reason to believe that the imagination and ambition of
software users, designers, and implementors will diminish, thereby
liniting the variety and scope of program products. For example,
the historical expansion in operating system functions suggested by
the lists below will probably continue, perhaps to handle demands for
increased integration, reliability, security, and performance. Thus, if
"supporting software: is redefined to mean all that which is commer-
cially available for a given class of machines, the projection may be
borne out.

1955 Support Softwarell

Program loader
Floating point subroutines

1970 Support Software 2 6

Job management; Data management:
Scheduling File access control
Resource allocation 1-0 blocking & label control
Program loading Data file generation, main-
lnte rrupt event monitoring tenance, retrieval
Program termination processing
Input-output scheduling Sorting and merging programs
Buffering control
Device manipulation Diagnostic error processing:
Remrote terminal support Hardware error correction
System startup Program error notification
Recovery processing Interface error control

Managernent u tilities: Processing support:
Peripheral device support Timing service .
System simulation routines Testing/debugging service
System* measurement Logging and accounting
Display routines System status monitoring

28

UNCLASSIFIED
-: -- - - , 1' -v, l . ,- ...'

UNCLASSIFIED
Operating system management: Compiler interfaces:

System generation Executive routine support
System reconfiguration Library support

System utilities
Program maintenance:

Libraries and directories
Load module generation

b. Hardware Characteristics -- The CCIP-85 study of hardware
trends demonstrated that computing power has also been growing at
an exponential rate. As an index of this, Figure IV-6 shows the
increase in computing speed over the last 15 years. According to
this curve, the speed of commercially available processors doubles
about every two years. Note that this is not quite as rapid as the growth
in our index of software requiroments. The CCIP-85 study has projected
this curve out to 1985, .,s shown in Figure IV-7. The decrease in the
rate of growth shows the influence of approaching physical limits on
processor circuitry speed.

100

tO ism , was

Coe ~ ~ IS sa *o411100/

0 ISO 80/70

11011W -w0to?

SM is 7

0.01
1064 W11 ~I 19" 170 1*74j

Figure IV-6. Computing Speed (1955-1970)

Z9

UNCASSI-FIED
~NCL

UNCLASSIFIED

I000 -

-L 100 CDC STAR-1O0

GOOYEAR STARAN NZ

IBM0 30195018-19

I0 CDC0 0

UNIVAC III0

CCG $600

IMSTRETCH

011
1960 1970 1990. 1990

YEAR

Figure IV-7. Computing Speed (1960 - 1985)

More important to software technology than the increase in power is the
decrease in cost per instruction executed, as shown in Figure IV-8.
Decreasing cost and increasiag power have allowed more elaborate
software aggregates to become feasible, and more to become cost-
effcctive. The availability of larger core memories and random-access
storage has also encouraged this trend. It appears that the cost of
computing power will continue to shrink.

Although the cost of power has decreased, computer hardware is still
expensive, and there is a continuing interest in using it more efficiently.
Where processing bottlenecrs have been identified, various forms of
multiplexing and parallelism have been used to overcome them (e. g.,
overlapping data retrieval from various portions of memory or simul-
taneous central processing and input-output by means of the data
channel). This desire for system efficiency also greatly influenced soft-
ware design in the past: more efficient utilization means more real work
done per dollar spent on hardware. Hence, the concept of program
paging and overlaying was developed to conserve main memory; input-
output buffering was introduced to ease the disparity between input- I
m,,p t rale and processing rate; and multiprogramming evolved to utilize
the centra] processing unit (CPU) more efficiently. The value of system
efficiency is still prized, even though cost per instirction executed has
decreased by about three orders of magnitude since 1955. It appears

30

UNCLASSIF-IED

A--

UNCLASSIFIED

100

110

~70941I
II

S196 194 1

ii

hi

YESAR

Figure IV-8. The Cost of Computing Power (1960 1972)

unlikely that efficiency will be less sought after in the future, particu-
larly in C&C systems accommodating higher data rates, more sophisti-
cated options, and reduced defense budgets.

2. Evolutioiary Forces

Ordinarily, new software is heavily influenced by previous software
and by the stock of previously developed tools available to build and
operate it. Previous software has such a great effect because progress
has typically been made in software by the cut-and-try method. Next-
generation designs attempt to introduce features in reaction to problems
arising from use of the old software. The lack of appropriate and well
understood metrics has frustrated attempts to evaluate designs by Other
means. Hence, software nearly always goes through various vers±uns --
FORTRAN I-IV, JOVIAL 1-6, OS/360 releases 1-20 (so far) -- and
classes of softvare often develop in reaction to previous versions of
that class, as MULTICS is a reaction to CTSS. Such reactions have
occurred approximately every four or five years (e.g., the time be-
tween FORTRAN I and FORTRAN IV), which roughtly corresponds to
the time between generations of hazdware.

The software development environment also has great effect. For ex-
ample, the existence of FORTRAN governed the way many other pro-
grams were written (static storage allocation, no recursion, no string
handling, ecc.), and the existence of time-sharing operating systems
spawned text editors and conversational compilers. This effect is
strongest when low development cost is considered important and weak-
est when user requirements make more stringent demands on the avail-
able hardware.

31

UNCLASSIFIED
wit-

,UNCLASSIFIED

This vroblem-.driven evolution of software thus means that predicting
software capability more than one evolutionary step ahea" is extremely
hazardous. Yesterday's problems are solved today, but tomorrow's
problems cannot be reliably anticipated.

D. TRENDS AFFECTING COMMAND AND CONTROL SOFTWARE

A number of specific trends have resulted from the general conditions
just discussed. Assuming that the driving conditions continue, the
trends car; be projected into the 'uture and their effects on command
and control software in the 1980. can be examined.

1. Demands on Hardware Capa't

The largest and most powerful software systems have always severely
strained the largest and most powerful hardware available; future large
systems will make similarly severe demands on future hardware. The
insatiable growth in user requirements and projected hardware capa-
bilities will continue to encourage complex designs employing very
large programs to manipulate larger and larger collections of equipment
and data. If the requirements for military C&C systems continue to be
the most extensive ones at any given time (as the. always have been),
C&C software projects will face more difficult design problems and
more constraints on efficiency and response time than other software
efforts. Neither more capacious future hardware nor evolutionary
forces seem likely to reverse this treyid.

Z. Use of Higher-Order Languages

Stringent performance requirements for large systems have necessitat-
ed the use of assembly language to achieve maximally efficient equip-
ment utilization. Traditionally, higher-order languages have not allow-
ed a very close coupling between the user and the real machine instruc-
tions (perhaps because of transferability concerns). The inability to
exploit low-level machine features and the overhead typically imposed
by generalized input-output, setup, or storage -management routines have
usually ruled out HOLs as system-building tocls. In recent years, how-
ever, there have been attempts to combine the advantages of both kinds
of programming by using a layered design strategy or by using specially
developed system-programming languages. Layering involves using an
HOL for most of the code, with performance-critical sections written in
assembly language. The wider availability of techniques for measuring
program performance has aided this approach. System-programming
languages provide access to machine code through machine-dependent
statement types an' e).plicit provisions for intermingling assembly code
with higher-level s-atements. The MULTICS implementation, for
example, hab ube 6 both techniques.

32

UNCLASSIFIED

UNCLASSIFIED

in 1969, Corbato estimated that the performance of compiled object
coding was two times worse than that of hand coding. 2 8 Until these
capabilities improve, C&C software may not be able to afford much use
of HOLs or other generalized programming tools.

3. Increasing Programmer Productivity

Programmer productivity will not continue to increase through the use
of software tools if only assembly language is used. Higher-order
languages, operating system facilities, and subroutine libraries have
allowed speedier production of programs to perform a given task.
Assembly-language programmer.; as a groip have not been able to
achieve this. To illustrate, Figure IV-9 shows the estimated average
number of checked-out machine instructions produced per man-month
in 1955 and 1970, with projections for 1985. The numbers are re-
lated to the tools nrevalent at the time. (The tools shown for 1985
will be discussed later.) The width of this estimate reflects the vari-
ance found in an SDC study of 169 USAF programs. 2 9 Also shown are
estimates provided by Aron, 2Z summarizing historical data from IBM
projects involving system programs (1410, 7040, 7030, OS/360) and
applications systems (Mercury, SABRE, FAA) done primarily in
assembly language. A fairly large variance was found in these data
as well.

10,O00,

IOPOOf

10002t- lo A4

I-,9
(109l PMARAM~

- 10

1955 1970 1945

PRIMARILY PRIMARILY PRIMARILY
MACHINE FORTRAN, AEO,
LANGUAGE JOVIAL. ETC. NLS. ETC.

Figure IV-9. Programmer Productivity (1955 - 1985)

Such productivity calculations are derived by dividing the total number
of instructions in a completed system by the total number of man-
nionths taken to design, code, and test the system. Productivity can

33

UNCLASSIFIED

... .

UNCLASSIFIED

therefore be increased by reducing the time spent in any of these three
phases of software development, as long as the time saved does not
reappear in another phase. Software tools have affected all three phases.
Design and coding have become easier since the tools provide standard
solutions to many subproblems and a means of communication with the
machine better oriented to the problem being solved. Testing and
checkout are somewhat easier because the tools have provided some
chunks of pre-debugged code for inclusion in the final system. Many
tools have been developed for enterprises with many users (e. g., busi-
ness data processing). To the extent that C&C software overlaps with
these activities, such tools would allow fvit're C&C systems to be
developed more quickly or with less effort (even though they might
degrade efficiency).

4. Shifting Evaluation Criteria

Software evaluation criteria will continue to shift as computing power
becomes cheaper, programming skill more expensive, and user re-
quirements more critical. Software attempts to satisfy many needs.
Run time and storage space may be traded off against user conven-
ience, flexibility against efficiency, generality against ease of learn-
ing, and so on. Changing hardware characteristics alter the choice of
software characteristics of greatest importance to the user at a given
time. For example, in compiler evaluations reported by Haverty in
1962, compilation speed and object code running time received all
the attention. 30 Rubey's compiler evaluation in 1968 showed that the
speed with which a program could be written and deougged, program
production costs, and the frequency of errors made with a particular
language nearly submerged the data on execution time. 20 Changing
requirements also alter evaluation criteria. As systems have been
vested with more responsibility, for example, software reliability has
become more important. But reliability usually dema.nds freezing the
development, which halts attempts to obtain greater efficiency. Pro-
jecting this trend into the 1980s, one can expect hardware-dependent
software characteristics to become less important thar, i3 er-dependent
criteria.

5. Development Effort Disproportional to System Size

The effort required to complete a software project seems to increase

nonlinearly with the size of the project. Although there are few quanti-
tative data to support it, practitioners (e. g. , Schwartz in Reference 22)
feel that this curve resembles that in Figure IV-10. There are many
reasons for such nonlinearity, but robably chief among them arc
simply the consequences of scale in the complexity of the task and the
nun-hpr of man-man and man-machine interfaces required. Although
increasing numbers of projects ha-ve used traditional tiers of mana-
gers to coordinate the many people involved and to handle communica-

34

UNCLASSIFIED

UNCLASSIFIED

APOLLO liuon among different groups working on
39/360 different pieces of the project, there

is some controversy over how well
such scheduling, reporting, and con-
trol methods work. Another cause of

MULTICS disproportionate effort may be that,
o" / as software evolves, the harder prob-
I lems tend to exceed our increasing

ability to solve them at a geometric
oL/I rate: what appears to be twice as

.L much capability actually requires"W four times the effort to provide. It is
C also thought that software tools that

Joss make small problems easier may
" exacerbate larger ones. Checkout and

SIZE OF PROJECT reliability problems, which also in-
crease with software size and com-

Figure IV-10. Estimated plexity, are another factor increasing
Relation of Effort tu Size the required effort. To automate
of Software Projects more functions, C&C software systems

of the 1980s must be larger than to-
day's, and the nonlinear increase in required effort may be the key
barrier to their timely implementation.

6. Growth in Special -Purpose Software

The search for generality will continue in software research, but
special-purposc software will become more cost-effective for many
applications. Up to now, evolutionary forces have combined with the
desire for more integrated computer "utilities" to push toward general
or multipurpose languages, operating systems, and application pro-
grams. However, the increased performance of special-purpose soft-
ware, its greater suitability to a particular problem, and its relative
availability in time-sharing system libraries will expand its use in the
future. These packages will proliferate even further because of market
forces, the ease with which special-purpose software is built, and the
increased use of higher-order languages as computing power becomes
cheaper. Compatibility and maintainability considerations, however,
will increasingly inhibit radical software development. It will be easier
and cheaper to learn how to use a new software product than to build
one. Unless specification methods become considerably more sophis-
ticated, it appears unlikely that an organization will ever be able to
use on-line application software without adjustment, tuning, and tailor-
ing. High overhead in these items may be tolerated since they will be
les ubily than othcr alternatives. Although - rend will bV e. L

C&C support software, it will be a challenge to use commercial pack-
ages in the highly demanding C&C operational environment.

35

UNCLASSIFIED

UNCLASSIFIED

7. Need for Certification

Debugging, testing, and validation practices have remained virtually
unchanged since the beginning of computer programming, but interest
in changing them is increasing. Except where the cost of failure has
been very high (e. g., spaceborne software), not much effort has gone
into streamlining those tasks, even though they are known to consume
about 50 percent of the production effort. Few languages have been
designed to include any but the most rudimentary debugging aids; few
special tools (e. g. , input generators, output analyzers, checkers for
source code consistency) arc available; and personnel try to avoid
thinking about testing because it is so tedious. Most of the research
on this topic has attempted to recapture the on-line debugging capa-
bility of the first generation of computing. The trend toward software
systems with greater responsibility in the physical world may force
greater emphasis on certification, however. Considerable work will
be aecessary to achieve even modest gains because of the intellectual
difficulty of the problems and the scarcity of basic data defining their
boundaries. Current techniques for verifying the validity of software
are based on exhaustive testing, but these methods can never guarantee
a perfectly correct product. It will probably continue to be far beyond
the state of the art to guarantee that software systems of the kind en-
visaged for 1985 command and control will be completely correct.

8. Changing Hardware

Changing hardware characteristics have had far-reaching effects on
software technology, and this will continue. The desire to use new or
special-purpose hardware efficiently probably does not vary with the
speed or capacity of the equipment. The CCiP-85 hardware study 2 7

forecast that some different types of equipment will be available in the
1980s. Some of these, and their software implications, are listed
below.

. Pipelining, multiprocessing, array processors, and
other forms of parallelism will require different kinds of
languages for the user to communicate the parallelism
of his problem to the machine. With only a little guidance,
compilers may themselves be able to discover and ex-
ploit parallelism in a given program. Attempts to couple
this high processing speed to fairly non-parallel real-
time applications through clever scheduling are also ex-
pected. Debugging and optimization problems will take
on new dimensions, even with careful design.

* Associative processing or other special processing de-
vices will require tight scheduling since they probably
will be an expensive resource. The ability to trade
off software for special hardware should be welcomed

36

UNCLASSIFIED

UNCLASSIFIED

although users' desires for greater flexibility may
inhibit the widespread adoption of these devices.

* Self-repairing computers and miniprocessor networks
will enormously intensify coordination and testing prob-
lems but they may be worth it for relaibility. The ex-
tent to which software can recover and reconfigure itself
during and after hardware failure is a current research
question.

0 User -microprogramrnming and hardware -implemented oper-
ating systems seem able to greatly boost effective CPU
speed for certain well defined applications. However,.-

tre introduction of a whole new level of possible errors,
transferability and maintenance problems, and compati-
bility considerations may prove too burdensome for the
average user. Widespread use of microprogramming
would stimulate all sorts of micro-prefixed software:
micro-assemblers, micro-executives, micropaging
software, etc. Whether the flexibility inherent in these
techniques can be put to good use is another question
for research.

9. Artificial Intelligence

One branc;h of software technology research has remained fairly inde-
pendent of current functional requirements and hardware capabilities.
Investigators of the kind of information processing that has come to be
known as artificial intelligence (AI) have pursued much larger prob-
lems: the simulation or duplication of human perception, planning,
problem -solving, and general intelligence and understanding.

Success in this area could make it possible not only to augment the
human operator but also to replace him in some cases. In earlier
years, some even argued that

If artificial intelligence can imitate the intelligence of a man,
then with more effort it can outwit and surposs that intelli-
gence; the ability to consider large numbers of different
factors cogently, rapidly, accurately, and adaptively implies
that management and control systems of the future will be

run virtually by computer. 3 1

It is precisely this kind of problem, however, with which computer

programs have been least successful. According to Feigenbaum, the
second decade of Al research has shown that it is extraordinarily
difficult to achieve the program generality and representational flexi-
bility required to economically "consider larger numbers of different

37

UNCLASSIFIED

' , .- ,":,- . ,,+ .wi,, , .,, _ ..~- - -,:4tli .. . , i," . . . e - r I. •o ... r ;
'

UNCLASSIFIED

factors" in solving a problem. 3Z Because heuristic search* is still the
basic strategy in Al projects, working in a very rich problem space
has been too costly. Moreover, generalized programs can always be
overpowered by more specialized ones that can take advantage of spec-
ial representations. For example, character -recognition software
operates well for certain stereotyped printing; but it cannot read
correctly as wide a range of character styles as humans can.

There has been success, on the other hand, with very task-specific
programs. Very good checker players and fairly good chess players
have been built. An elaborate program to infer the composition of
organic molecules from mass-spectrograph data has demonstrated an
ability equal to that. of a skilled chemist in some domains. Natural-
language processing has advanced to the point where it can "under-
stand" and solve most story problems typed in from a sixth-grade
arithmetic text. Recognition of geometric solids and block construc-
tions from TV images has been accomplished.

Current research is attempting to push beyond the current limits on
generality. Computer -controlled mecharical robots are providing a
test bed for integrating various task-specific programs into a coordi-
nated whole. It turns out that using the richness of the real world is
easier than simulating it for programs designed to operate in real-
world situations. Work has been particularly vigorous on visual
(TV) scene analysis with application to solving such problems as tra-
versing an obs;acle-.filled room.

Research on deductive reasoning by means of the logic manipulations
used to prove theorems is also very active. This appears to be a
powerful representation capable of use as an action-planning mechanism
in question-answering systems and in robots. (An application in pro-
gram validation is discussed later.) Machine learning and self-
organization for problem-solving has not been successfully grasped.
Investigations into how humans perform these tasks, how they make
decisions, and how they incorporate values into these decisions is also
not as active as it once was.

Evolutionary forces strongly affect Al research since the stock of ideas
remains painfully hard to enlarge. Success with systems of limited
generality suggests that certain 1985 Air Force command and control
needs could be met if they were sufficiently limited, sufficiently well
defined, and sufficiently funded. For example, it may be possible
to update a data base by scanning a text employing a few hundred words
of vocabulary, simple sentence structure, and a restricted frame of

*A technique based on experimenting with many trial solutions in an

organized way.

38

UNCLASSIFIED
w i

UNCLASSIFIED

reference. It seems very unlikely that, even with vry computing
power, a general language capability or general image-interpreting
capability will be available. Greater understanding of natural intelli.-
gence and its relation to artificial intelligence may also be necessary
to further extend the applicability of AI research to the command and
control arena.

A larger question is whether it would be more effective to replace or
merely augment the human in the command post by a computer, part.i-
cularly as regards the manual backup for preserving system viability.
In any case, the C&C system and its software must be organized so
that key decisions remain in the hands of human commanders.

E. UNIQUE SOFTWARE REQUIREMENTS OF COMMAND AND
CONTROL SYSTEMS

General trends in how software technology might affect C&C software
have been discussed up to this point. In the next few paragraphs, the
issue is examined from the other side: how will C&C software differ
from other kinds of software and, hence, make unique demands on
technology ?

9 The uncertainties in the military environment require
extremely adaptable programs. A change in the strategic
situation may require reorientation of ADP support in
a matter of hours, making reprogramming and retesting
infeasible. Generality has been the principal means of
achieving adaptability, but unforeseen situations and
performance (response time) limitations make this an
only marginally effective solution. Certain software
techniques based on easily reconfigurable tables or other
data structures (or a series of "plug.-compatible" soft-
ware modules) might provide better means. As there are
less consequentiai uncertainties in other environments,
commercial organizations will not have the impetus to
make extensive commitments to these inethods.

0 Decision times in C&C systems are vey short compared
with other information systems. It is thus critical 1) to
shorten decision time; Z) to devise decision aids, menus
of choices, interactive strategic simulations, and differ-
ent types of adjustable displays; and 3) to tighten the
interface with human decision-making. Commercial
systems typically do not face such time constraints;
hence, commercial software will not move to incorporate
these functions or to investigate human decision-making
under conditions of military stress.

39

UNCLASSIFIED

UNCLASSIFIED

a Commercial systems will probably always be able to
tolerate a level of reliability that is an order of magnitude
below that which a C&C system could tolerate. Incorrect
programs are not as dangerous in commercial environ-
ments. Hence, expensive certification efforts will not
be as important to non-defense industry as they will be
to the military.

* Security and system integrity are also much more vital
to a military system than to a commercial one. A com-
petitor hardly presents the same caliber of threat to
operations as an enemy. The hostile environment impos-
ed on C&C systems will require different kinds of soft-
ware for verification of access, detection of sabotage,
and so on. Note that security is not the same as data
privacy, which is receiving some attention in resear.i.

0 The difficulty of envisioning all the consequences of
logically complex design decisions has necessitated a long
test period for commercial systems under atual opera-
tional conditions. Command and control systems cannot
be tested under the actual conditions for which they are
designed until it is too late. Therefore, simulation and
other exercise methods, which are not likely to be
developed outside the military, will be necessary.

F. RECENT RESEARCH

Mos! current research extends software in an evolutionary way, with-
out much changing its direction (e. g., Balzer 3 3). There are a few
laboratory developments that may alter this assessment. Only a
few experinienters have had experience with them, however, and
evaluation data are lacking. In spite of the rapidity with which soft-
ware technology changes, it is not clear how fast research results
can be made available for Air Force production. For example, the
first attempts at "automatic programming" (higher-order language
translation) occurred around 1952, but the first commercial compilers
did not appear until around 1957 and were not widespread until 1959
or 1960.

1. Software Production Methods

Two problems associated with recent large-scale development efforts --
producing the software on time and assuring its high quality -- have
led to investigation of three new approaches to program design and
production. These are the building-block approach, the on-line
approach, and the structured programming approach.

40

UNCLASSIFIED

UNCLASSIFIED

a. Building-Block Approach - Essentially, this is an extension
of the development of higher-order languages, but a large enough ex-
tension that "higher-order language" does not accurately describe
it. Basic to this method are a number of softwarc components, or
building blocks, which can be assembled in many different ways by
means of a more elemental language. The existence of libraries of
these components would relieve a software project of starting from
scratch with each new system when similar systems have been built and
similar software already constructed. Also essential to this tech-
nique are:

* Careful attention to interfaces and module definition;

* A cohesive, coordinated selection of software com-
ponents;

0 A very flexible programming language to "glue" the
components together;

* System-generation tools for tailoring the components
and building special components; and

* A software-production discipline to guide the system
builder in his use of the tools.

If operational system efficiency is also required, the performance of
the software produced is measured, and the efficiency of critical
modules (i. e., those most often used) is increased by stripping out
excess generalities.

The foremost example of this approach is the AED (Algol Extended for
Design) system. 34 The components are generally suited to develop-
ing new kinds of languages rather than, say, processing real-time
sensor data or constructing new operating systems. The AED system
has been used for a variety of applications including a system for for-
mal algebraic manipulation, language translators, information retrie-
val systems, econometric modeling, ship design, and others. The
prewritten and pretested building blocks do seem to speed production
and reduce the need for debugging and testing to achieve correctness.
A job estimated to take six man-months was accomplished with AED
in about two man-weeks.

Work on AED began in 1959 and an operational system has been around
for a number of years; but it does not play a major role in the com-
puting community either in theoretical contribution or in practical
utility. 15 This seems to be caused by a lack of necessary documenta-
tion; difficulty in using the manuals that exist; lack of training courses
for potential users; errors still in the AED systems themselves; and

41

UNCLASSIFIED

UNCLASSIFIED

the crude error-detection-and-notification schemes employed when
processing programs are written by the user. It is not known to what
extent AED or an AED-like system could cope with the nore severe
C&C software requirements, particularly the efficiency constraints.
At least a partial test is underway, as AED is being used in the com-
piler and operating system for the B-1 avionics software.

b. On-Line Approach -- In large projects, keeping track of all
the specifications, flow charts, design changes, development progress,
test cases, and other interfaces is a mammoth job. Moreover, inte-
grating all the assemblers, compilers, cross-reference listings, data
files, debuggers, text editors, simulators, and other currently used
tools into a commonly accessed, terminal-oriented data-management
system cuts down tremendously on the relatively nonpreductive book-
keeping and card-shuffling common in large projects. Various sys-
tems are being used (e. g., CLEAR-CASTER at IBM) or are under
development (e. g., NLS at Stanford Research Institute 3 5) to perform
these functions. Reducing various delays in the current process of
producing programs cannot help but speed development. Although
the reduction of clerical errors by this approach may improve system
reliability, using the same programming techniques on-line is not likc-
ly to dramatically improve the quality of C&C software.

c. Structured Programming Approach -- The most far-reaching,
and therefore least predictable, approach has been laid out by Dijkstra.
He proposes to change the design and production methodology and the
way programmers write programs. 36 This would involve, for example,
eliminating unconditional branching in programs and following both a
top-down design scheme and a top-down implementation procedure.
The block programming structure that results would reduce the proba-
bility of undiscovered error by clarifying the logical re.sons for its
execution at the beginning of a block. This would also reduce program
production time by forcing out logical inconsistencies in the design
phase, thus shortening the testing phase. It is claimed that individual
programming efficiency can be increased by about five times.2 2

Unfortunately, data to substantiate these claims are not available and
are probably unattainable except +hrough controlled experiments,
which have not been done.

IBM has tried mixing the foregoing approaches with a new management
technique called the 'Chief Programmer Team. " This and other aspects
of structured programming will be discusised further in Section V.

2. Software Validation Techniques

Errors and oversights in the design and implementation of computer

programs have always been very common. Currently, a reasonably
correct program that does what it is supposed to do is developed by an
iterative program-and-test process known as "debugging." Confidence

42

UNCLASSIFIED

UNCLASSIFIED

that a program always performs as it should, and does not perform as
it should not, is currently supplied by a period of exhaustive testing.
The term "validation" has come to mean the process by which one gains
confidence that a program is completely correct. Currently, valida-
tion usually consists of another round of testing performed .-y a group
independent of the one that developed the programs. A completely
"reliable" program is one that operates without error, or "failure,
every time it is executed.*

Although programmers have long known that programs are logical
entities capable of precise mathematical definition, this characteristic
has only recently begun to be heavily exploited by researchers inter-
ested in proving program accuracy.** Standard testing is unsatisfac-
tory for economic and theoretical reasons: the cost of detecting and
correcting all errors in large systems is usually very large; tesing
cannot ever demonstrate the absence of errors, only presence. 3
Two new approaches, both relying on the underlying logicality of
programs but using different degrees of formality, have been summar-
ized by Liskov and Towster. 39 These are briefly described below.

a. ,The Analytic Approach -- The bulk of work has gone into the
more formal analytic approach. The given program is treated as a
theorem to be proved of the form:

Program X with input Y will terminate, and

its output will be Z, where

X is a listing of the program,

Y is the range of input variable values, and

Z is the resulting output.

It is usually assumed that the semantics of the language used to define
the program are well known and unambiguous and that the input and
output can be well defined. Usually this main theorem is broken up
into a number of subtheorems, called assertions, concerning what
should be true at various points in the program before the output is
issued. Although the problem of determining in general whether
a program terminates is insoluble, many piactical programs can be
shown to do so. Research has been undertaken to define appropriate
notation, construct the rules of inference, prove necessary support-
ing theorems, and extend the concepts to more types of programs.
Initially, only recursive programs with no branches were analyzed

For a discussion of current testing and validation techniques, see
Hetzel. 37

Formal recognition of this logicality may be found in McCarthy. 38

43

UNCLASSIFIED

MI

UNCLASSIFIED

for accuracy; bJut later work has encompassed programs with loops
and branches 4 0 and asynchronnus parallel programs. 41 This approach
is concerned primarily with proving the correctness of programs after
they have been written.

Besides the establishment of theoretical and methodological foundations,
some work (principally by London) has applied proof techniques to non-
trivial real-world programs that were written without any considera-
tion of proving correctness. The list of achievements, compiled by
Liskov and Towster, 39 is highlighted by proofs for:

0 A program that performs error-bounded arithmetic
(433 Algol statements, 46 pages of proof);

* An input routine that accepts bridge hands (167 Algol
statements, 20 pages of proof); and

* A program that makes the opening bid in a bridge game
(370 Algol statements, 55 pages oi proof).

Although these programs had been debugged oy traditional methods,
the process of proving them correct uncovered several previously un-
detected errors.

A few methods for automating part of the proof procedure have been
devised and work in this area is continuing. In one such method, 4Z
a special compiler has been written to accept both 1) a statement of a
program in an Algol-like language and 2) assertions (supplied by the
programmer) about what the program is supposed to do, in terms of
changes to the values of its variables. The compiler then verifies
that the assertions are true and, hence, that the program is valid.

Another method allows the machine to do part of the work while a
man does the part for which a human is more qualified. An interactive
system has been written 43 that manipulates the assertions and keeps
track of them, while the programmer supplies the proofs. When all
assertions have been proved, the complete proof is assembled and
displayed by the system.

The "verifying" compiler has been used to prove the correctness of,
f.or example:

A program that determines whether a number is or is
not prime (6 Algol statements);

0 A program that sorts an array of integers into ascend-
ing order (12 Algol statements); and

44

UNCLASSIFIED

I

UNCLASSIFIED

0 A program that multiplies two integers by successive
addition of ones (23 statements).

The interactive system has aided in providing the correctness of an
Algol program that reverses the elements in an array (11 lines).
Some thought has been given to extending the interactive system to
include more aids for proving intermediate theorems, but further
study will be required.

b. The Constructive Approach -- A more pragmatic and heuristic
approach to program reliability has been advanced by Dijkstra. 36, 39
The central premises of his approach are:

0 The ability to prove program correctness should be kept
clearly in mind while the software system is being
designed and implemented.

* The structure of a program, both data and algorithm,
greatly affects one's ability to prove it correct; hence,
programs should be structured so as to make this task
easy.I Certain design strategies (e. g., using a hierarchy of
levels of abstraction to partition the programs to be
written); certain methods of directing the flow of con-
trol (e. g., using IF-THEN-ELSE and WHILE state-
ments, but not GO TO statements); and certain program-
ming disciplines (e. g., making the physical appearance
of the source code correspond to the logical behavior of
the program) should be used in structuring a program.

* A program structured into a hierarchy of levels by the
above means requires only a small number of relevant
test cases per level to verify the correctness of that
level. Hence, the program can be validated by a complete
case analysis of all levels. Testing must proceed from
the lowest level upward.

Several small routines have been validated by this means, mainly in
Europe. Dikjstra's major achievement so far has been the validation
of a small operating system, the THE-Multiprogramming system,
that he and his colleagues built. 4 4 Other benefits of imposing a struc-
ture on program development appear to be faster implementation (as
mentioned above), greater facility in understanding and managing pro-
gram complexity, and greater ability to change and adapt programs to
changing tasks.

45

UNCLASSIFIED

A-~ Q -- * %IffffiO"

UNCLASSIFIED

3. Applicability to Air Force Software

Although it is possible to validate some programs by various proce-
dures different from those currently employed, questions remain about
whether such techniques are applicable to Air Force software projects.
A few are listed below.

* The more formal analytic proof procedures may cost as
much and take as much time as testing the program, and
doing the proof seems to be more difficult and complex
than either testing or wiiting the program initially.
Proofs of programs have always been much longer than
the prograns chemselves. AH oV. C, fOrml proofs are
the only way known to achieve mathematical certainty
that a program is correct.

* Automated program proving is not yet viable for practical
programs, because of both the software necessary and the
depth of expvience required to use it eI:ectively. Pro-
grams to help prove the correctness of cther programs
must be able to use a very broad and general set of
axioms so that axioms that are relevant to a given asser-
tion may be chosen. This generality, as we have men-
tioned, is very difficult to incorporate. Moreover,
stating assertions is now an art that must be learned by
human program validatoi s; little is known about auto-
mating it. Automation of these procedures may be of
only slight benefit in very large systems.

* The constructive approach may not be appropriate where
high program efficiency is required.

• It is not known whether the benefits of structured program-
ming could be obtained by large development groups.

* The details and boundaries are sufficiently unclear to

produce ludicrous results if the "rules" of structured
programming are applied slavishly. For example, a
large program completely lacking subroutines and per-
haps having an excess of repeated code is entirely poss-
ible. This may be a problem in transferring the method-
ology.

• Programs cannot be validated without being specified
correctly. As Liskov and Towster point out, 39 standard
techniques for specifying what the program has to do --

usually a combination of natural language and mathemat-
ical notation -- do not allow sufficiently complete or

46

UNCLASSIFIED

UNCLASSIFIED

precise design descriptions. It is therefore impossible
to check formally on whether a program meets informally
stated requirements. Although a more formal problem-
statement language could help, it might simply shift
the validation burden to another lcvel. Moreover, some
means would be required to determine errors in the
problem statement.

Further research will be needed to determine whether the above diffi-
culties are surmountablk. Both approaches seem worth pursuing --
the analytic for the strength of its guarantee, and t!e constructive for
its apparently easier application to practical proble.-ns.

47

UNCLASSIFIED

UNCLASSIFIED

V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

In this section, C&C software requirements are summarized and com-
pared with functional performance, quality, and production capabilities
projected for the industry as a whole in Section IV. Some R&D and
procedural measures that co .ld narrow the gap between capabilities
and requirements are also discussed.

A. REQUIREMEN'IS VERSUS CAPABILITIES

Tables IV-I through IV-VII summarize projected 1985 C&C software
requirements and current and expected state-of-the-art capabilities
in six aspects: function, productivity and timeliness, reliability,
acceptability, adaptibiliti,, and security. In each table, the first col-
umn on the left shows the C&C software requirement in 1985; the cen-
ter column shows the current state of the art; and the extreme right
column indicates the expected state in 1985 and, hence, the disparity
between requirements and available technology and methodology. This
judgment assumes continued research in current directions and contin-
uation of current procurement and management methods. It also
assumes continuation of the slow rate at which research results are
put to operational use in software production. In general, the tables
indicate that the "software problem" in 1985 will equal or surpass that
of today.

B. MEASURES TO NARROW THE GAP

Detailed below are a series of technical approaches and procedural
alterations that could lead toward better and more expeditiously pro-
duced software. Before such steps can succeed, however, a new way
of thinking about computer software must be adopted.

1. A New Perspective on Software Production

Folklore holds that the cost of software is increasing. In reality, soft-
ware cost is not increasing: at worst, it is constant per programmed
task, and at best, it is gradually decreasing. What has risen is the
ratio of software to hardware costs, a reversal from 1:'; in 1960 to
5:1 or larger in 1971. That is because:

_ Hardware costs have decreased markedly. The cost of
a given processing rate (instructions per second) has
decreased 8 to 40 times.

I49 PEEDINf PAGE. BIANK-NOT FIMED

UNCLASSIFIED

UNCLASSIFIED

-4 -4 1
4 Q>) ..4

., r.S4 tv- N s >
>) - d o .0 *

-4 c2-4 04. .41

*n 00 0 0 -
4

... .-

-4) -

-4 'd cv4 c

04 0 *) 0 >0 4-4: -4 -4 f.
[-4oj (d . 0 ~ 4 .0 '0 0 Q)) 4

0u u (1 -4 (
a,) Q) 4 dm (

-4 E j ~4 1 4 I(n 0U) >: <

04 (A 44o , 4 j I " '
.-4 P)~ 0 4>0

:J * 01 .. 0- 00

(d4 -4()14-4Q
J 4

U) Q).- -.--
4) M- -441~4 4M > 't (1O~ >

, ~ ~ ~ U c: >U O0-4-4 - .0 0 0 0 4.4

W 0 0 1

1: 1 - 4 - :

0 0 4)01: -. 4 7.440 I

to 4)4) u

4)0 01 U) -i 00

> 0)- . 0 0
to 4) U). -44 - -

0 04) Q). 4) 0i d"
U~;Wc -4 0

m 4->1 1-4 01 00 - 00)0
414~ 4) 01- 01

m4 1- 4.1It-)r z -

Q) z01 41) 4)U o

Q) 0 >4 0) r-41

0' -4 4 o
:D d 0~-U 0)

G5

(n0uNCLSSIaE

UNCLASSIFIED

o~ u)4
4J

.40

o o

a, 0

00 . - 4

0.44
1-4 0J 4)

-4 ~ '.

'-4 0 -4 -i)

- .- 2 J

H11 0. d

4) -

u0
:D4

0 4-

-4) -0

(d 4 41

Z-) -4 0

4- .4 ,4 3 -

u .-1 04 5'

UN(dCLASFE
-~~ ~ 41 ftrt

UNCLASSIFIED

U) -4~1

4U) t4 -44

..- 4 od1
-4

P"

-4- E4-4

m -H 4 -

10
a"1 0'~ ~

U) 0) U) 41'
rd ...- 4tj4 P

H 1 U -4$. V
:j .4 1--4

U 0)U dk

z) "-40

o".4 c) u) r: En0

1-44i

0 k 4 14 4

-0 0 U 0))00

0 ro- -- 4r

1- r Q) : 0 * 4 . 0 U) E

H: 0

u4. 4.)4

.4
U).

o k)

4- 0)) -' 0 U (L

;-4 U U)'U 00- -4

(1) 01 0 -400

0 >x*

.-4 (1)0 -1 Z -

UNCLASSIFIE

UNCLASSIFIED

-4 (n 1 -4 -

4-) 0) M ,40-4r
-14 .4

U)o t2 4 '.

a) 41) 4+49:0
-4 Q) -4,

00o 0

-4 tfl U)

..41 A 4
d) 04'

u.U 7;3 (-)~ a)
x 41

r- .4 QtS 4 >a (S -.a 4

4J U) (d J*.. U~4 d

0-4 41 aa . 4 ~ ~)

d U :j 04 >.. a) 4.
. Q~~) a U 41 a) 4)$

j) (d0 '.4C 004~.> ~ '~

o o cd (n 0 0

- n &J cua

U)) --

.) :j w. 0,0 0 4

a a) U.. >. >~ a) 4
a) 41 04. 00 -'-4 0 041

0. 4-) 44 4-, 04
4 ~ U c:a 0 -4~

04~ ((D~a U k

a1 0O.. 4J4 4

:; ,a 4-. 0 ()41U44)0 t

-4* g.- .I a

53 - 4UNCLASIFIE
-')

UNCLASSIFIED

cJ) I

-4 ou

4j~

0" >
-40 -an 1 e 0

p -

U cd .1

~0"'
01 0' d 4

x 0 0$ 0

U))
-4 1) 0a)4 Q)>

41)

.4 .,-4

() k)
-4 4j

04 , k" ;A0
k4.>. . .

0~ 0. 0 41

~a) *.4% ~ *4~40 '-

*0 0-

u Q)-

454

UNCASSFIE
-Q) 4J--

UNCLASSIFIED

X4-4

00

F-4 P-4
0

U

4-)0

-4'-4 (n U

.-H d :j

:j .- 4 _4-4

() 0J (P 44

00 ; 4-) ~0 0 >'
04 0

0 :j-

-41

A 0 441 rs

- 4 - Jl-
00..-0

k 4J -4-4

UNCLASSIFIED

* New computing requirements affect software -much more
directly than hardware. An increase in hardware speed or
capacity creates new demand, which must always be fill-
ed by more, and more complex, software.

Thus, an increase of hardware speed by 8 to 40 times has meant that
8 to 40 times as much software is generated to use a faster processoro
Indeed, the cost of software has risen in direct proportion to the de-
creasing cost of hardware (per instructions/second executed). The fact
that the ratio has not increased to 40:1 indicates that the productivity of
programmers has actually risen, although unspectacularly.

Second, it must be realized that software, unlike hardware, is not a
Ibreakthrough" technology. Progress in software comes from the grad-
ual accretion of knowledge, expertise, and methods. Improvements
in software production cannot be hastened except by attacking problems
on several fronts with several weapons -- which raises the price of
research and development. As compensation, however, raising the
productivity of programmers by one instruction per day would save the
Air Force $25 to $50 million per year.

2. Secific Recommendations

a. Procedures for Keeping Better Records of all USAF Software
Development Projects -- Despite repeated recommendations,

few data are being collected -- in government or industry -- on the
history, progress, results, and personnel participating in software
development projects. Efforts to improve the software production
process -- to assess qualitative and quantitative aspects of the process
and product -- are severely handicapped by a lack of data concerning
past efforts., Managers of software development projects are similarly
hindered because the lack of data makes it difficult to, say, estimate
required effort. Data are needed to assess the utility of various pro-
gramming languages, institutional approaches, and methods of choos-
ing personnel.

Before a comprehensive software data base can be established, devel-
opers must deal with a number of questions:

0 What data should be collected?

-How do different organizations subdivide the software

development effort for consistent reporting?

0 What are effective, unobtrusive procedures for collect-
ing such data?

56

UNCLASSIFIED

- -i------------

UNCLASSIFIED

0 Precisely what sorts of analyses would be performed?
(This may be a primary question, as it defines the for-
mats and data items.); and

* What are the costs (both institutional and direct) of
different levels and techniques of data collection?

Answers to the above questions will provide a framework for the rapid
and efficient collection of data. In the near term, these data can be
used to gain insights into the nature of software production, the utility
of various production methodologies, and programmer productivity in
different project organizations. in the long term, the data collected
should serve as a base for both research and development of new tech-
niques and management tools for estimation, planning, and control of
Air Force software development projects.

b, Allocate the Budget for Information-Processing R&D so as to
Reflect Software's Pre-eminent Share in ADP System Cost
and Performance -- Although information plays a crucial role

in decision-making, the current state of knowledge about software and
its production methods is hazy. The USAF investment in software
procurement is estimated at over $1 billion per year, yet tLe funds
allocated for research on software and its production methods is small.
In FY 1972, only about $10 million was invested in all information-
processing R&D (6.13, 6. 2, 6.3, 6.4, and 6.5). * Further, only about
30 percent of that $10 million was devoted to software problems.

These R&D budget figures in toto are extremely low relative to the
magnitude of software procurement and the overall importance of infor-
mation. To illustrate by way of comparison, total USAF R&D expendi-
tures (6. 2 and 6. 3) on structures and materials are about $40 million,
but the success or failure of future Air Force operations will likely
depend at least as much on information structures as on physical
structures.

c. Find Better Ways to Analyze Requirements and Specify Soft-
ware Design -- One possibility involves testing and exercising

C&C systems by carrying out artificial (although realistic) procedures
similar to those that might be encountered operationally. Such opera-
tional simulations are intended to provide the G&C system with inputs
that duplicate as closely as possible the information that would be re-

This figure excludes direct development, such as that carried out
through SPOs, which undoubtedly has some additional research value.

57

UNCLASSIFIED

UNCLASSIFIED

ceived in a real threat. The system's functioning under these conditions
can suggest its effectiveness, efficiency, and reliability.

Besides its significant potential for improving future combat-readiness,
operational simulation is an aid to requirements analysis. Current
methods are haphazard and generally ineffective. Operational simula-
tion can be used to show the commander the results -- in a lifelike
environment -- of the information needs he has specified. He may then
alter his judgment of needs or approve the service provided by the sys-
tem as simulated. The use of ooerational simulation can thus serve as
an iterative aid to eliciting information requirements, with each
s imulation-alteration phase successively refining the precise needs of
the commander.

Simulation improves combat-readiness by revealing "bugs" and weak
points in systems, and frequent testing by this method helps to main-
tain a high level of operational preparedness, both in hardware and
software components and in the personnel charged with operating the
system. Nor should the value of such exercises in building morale
be overlooked.

There are additional benefits from building a repeatable simulation
capability into a C&C system early in its life cycle. The most signifi-
cant is that it can serve as a prototype of the system and thus allow
early validation of the requirements analysis. Determination of simu-
lation parameters can often point to design deficiencies and weak spots
in the system's overall conception. Another benefit is a potential cost
saving, as retrofitting of the simulation capability can often be more
expensive and is certainly more costly in time and disruption of C&C
system operations.

Operational simulation is not a panacea, however. It can do little to
alter the shape of a system that is poorly designed or executed. The
value of operational simulation in other respects remains open to ques-
tion. It is very difficult to provide an atmosphere that is sufficiently
realistic to introduce the stress that probably would accompany actual
situations. Therefore, the level of confidence in a successful simula-
tion is relatively low. Finally, any simulation degrades operational
capability to some degree during the simulation period.

d. Establish a USAF Information-Processing Technology Staff --

Such vital functions as data gathering, technology dissemination, and
configuration management standards cut across all of the classical
R&D categories; a single organization is necessary to provide coherent
and efficient performance of such information-processing staff functions.
An organization should be formed to provide user services, to build and

maintain libraries and tool inventories, information gathering and
analysis, standards, interservice coordination, evaluation of experi-

58

UNCLASSIFIED

I-

UNCLASSIFIED

mental developments, and long-range planning. It should not, at this
stage, compete with existing organizations in information-system re-
search, development, operations, and management. Figure IV-il
shows a time-phased plan by which these staff functions could be
introduced and the manpower to allot to each.

150Cr. i/ TOTAL

0. 100
z EXCLUDING

50E INFO-GATHERING
< 50FUNCTIONS

0
2

1972 1973 1974 1975 1976 1977 1978 1979

43

W,. 30

ft SANDARDS

z /" INFO-GATHERING.

fII
-0

i-. / /LIBIRARY TOOL INV.

Z

_j 10
0

_>

1972 1973 1974 1975 1976 1977 1978 1979

o¢" 0EXPERIMENTAL DEV. USER SERVICES

w30

Z

0

Z20

20

I-
U

Z

J 10 LONG-TERM PLANNING

>

25 iNTERSERVICE COORD.

Z 0 v I _

1972 1973 1974 1975 !976 1977 1978 1979

Figure IV-. Air Force Inf ormation-Processing Tech-

nology Staff: Recommended Manpower
Plan

Table !V-VIII specifies the types of tasks performed in each function.
SInitially, this organization should undertake projects with potential

~early payoffs, to demonstrate its feasibility. Although this organiza-

~59

~UNCLASSIFIED

=2 2

U NCLASSIFED

(d U) o

Ow .U) 0 u)
z 14 a U) "

4 l)Cl

0J =) 0) ;44

Ci) X ~ U ~ ~ oC,4
u 00 E n .0 C

0
a.o0 N)~ Ci)U 4l).. ,~J .fl))

0 14 0 0 j

> ~ ~~ Q S4) V .

1- id -4

U) E

U) 4) 4

So ~
o - 0 o 0o

- 0 t

0 o) * 4d 0) . 40 0 '1 0

'a 0 0(*-' 'd 4).)o

E-' 0 $4~~
(d' oo Ni. 0l * E 0~ : 21

U)0; ol 0
4 H4 O 0 4)' 0..

0 04Q 0 0 0 0

41 :.t 0 j 14 C-

41 -* 0

-)t 0 0 0 0) x 04 $4

(o U)O 002l. A,> -0~

600
UNCASSFIE

,(- --'l

UNCLASSIFIED

tion should support the full range of Air Force activities, several C&C
problems are worthy of special attention: software/system certifica-
tion, data security, information system design/analysis methodology,
and computer system performance analysis.

Three technical concepts are described below, which appear likely to
reduce future Air Force software difficulties. Although these are by
no means the only technical areas for fruitful research, they are of
paramount promise. Other topics for investigation will emerge through
these and other studies, particularly the data collection and analysis
effort outlined above.

e. Investigate the Applicability of Structured Programming to Air
Force C&C Software -- Though the term "structured program-

ming" has been used for other specific endeavors, it best describes
a variety of techniques including higher-order languages such as AED;
programming techniques as exemplified in Dijkstra's Technische Hoge-
school Eindhoven (THE) operating system; and innovative structuring of
software production such as the IBM Chief Protrammer Team (CPT)
experiment. Although each of these activities is somewhat different,
they all represent an attempt to bring a "top-down" approach to soft-
ware production and to minimize logical errors and inconsistencies
through structural simplification of the development process. In the
case of the THE system, the approach includes requiring system cod-
ing to be free of discontinuous program control ("GO-TO-FREE").
In the CPT approach, a single individual is chosen to do the majority of
actual design and programming; he tailors a support staff around his
function and talents.

None of these systems or concepts has yet been rigorously tested.
Indications are, however, that the structured approach can significantly
shorten the software development process. In one case, the use of AED
reduced the man-effort of a small system from an estimated six man-
months to two man-weeks. An experiment using the CPT concept (on
a system for the New York Times) halved expected project costs and
reduced development time to Z5 percent of the initial estimate.

Because structured-programming processes produce relatively error-
free and well documented software, they might be particularly well suit-
ed to C&C information processing. A cursory analysis shows that, if
certain "folklore" assumptions are true, increasing the degree of system
code structure or project structure can simultaneously reduce both
programming costs and the probability of a mjaor undetected error in
either coding or system integration. In additon, some methods of
structured programming provide for easy transfer to program mainten-
ance responsibility (through simplified coding and self-documenting
systems), thus reducing costs over the lifetime of a system. On the
other hand, too much of the wrong kind of structure produces an inflex-
ible and untransferable system.

61

UNCLASSIFIED

UNCLASSIFIED

Current USAF software-ptocurement procedures do not permit specify-
ing any form of structured programming as the required approach. If
and when they do, a great deal of care will be needed because, even more
than in most applications, structured programming requires very senior
personnel, highly trained and skil!cd in both systems analysis and pro-
gramming. 'ery few such people exist in the Air Force, either in
commissioned or in civilian status. All Air Force career paths for
officers and civilian counterparts lead to management positions. There
is currently no extensive, technical "software" career path. Should
such a path be established, however, retaining these skilled specialists
would become a problem.

Experiments have shown that these approaches can remarkably reduce
the time and effort required for software development. However, only
a small number of experiments have been done; little has been reported
about the ultimate quality or usefulness of the programs produced; and
the results of experiments cast as experiments must be viewed with
caution (because of the Hawthorne effect*).

Nevertheless, the promising results justify further, broader experi-
mentation. An initial recommended step is the design of a series of
controlled experiments to det(--vmine:

* The difference in development time and effort between
"structured" and usual approaches;

* The difference5 in program quality (reliability, core
utilization, speed, transferability) between structured and
usual approaches; and

* The types of analysts and programmers most effective with
each approach.

To insure the long-term validity and relevance of such experimentation,

related steps must be taken:

* Investigation of other methods of bringing structure to the
programming process, ranging from establishment of ex-
tensive program-quality standards to more sophisticated
techniques of "software engineering "

Interference of the observers with the subject being observed. Named
after industrial psychology experiments conducted at GE's Hawthorne
Works, wherein productivity rose no matter how working conditions
were changed because workers worked harder just because they were
the subjects of attention.

6Z

UNCLASSIFIED

UNCLASSIFIED

0 Development of career paths for both c.,mmissioned and
civilian personnel, allowing career advancement in
technical disciplines.

* Development of training programs within USAF to
motivate and instruct commissioned and noncommissioned
officers in highly technical areas,

* Review and possible revision of retention incentives and
software-procurement regulations.

f. nvestigate the Feasibility, Costs, and Benefits of a "Software-
First" Machine -- The "ooftware-first" machine is a highly

generalized computer capable of simulating the behavior of a wide range
of hardware configurations. It would allow the systems designer first
to configure the software, then use the software machine to determine
an effective hardware configuration. A software machine would also
allow testing of software for implementation on hardware not yet con-
structed. A possAible configuration of such a machine is shown in
Figure IV-12.

VIRTUAL RTUAL
MACHINEMACHINE N

CONTROL DEVELOPMENTH AIDS

~MEMORY

SOFTWARE DEVELOPMENT SOFTWARE DEVELOPMENT
CONSOLES, PROJECT °1 CONSOLES, PROJECT *N

Figure IV-l2. The Software-First Machine: Possible Configuration

Use of the software-first machine could shorten the time from conception
to implementation of an integrated hardware-software system. In the
usual procurement process, the hardware is chosen first. If special-

63

UNCLASSIFIED

UNCLASSIFIED

purpose hardware is required, the software cannot be debugged until
the hardware has been delivered. With the software mach.ne, debugging
could be done independently. Since the checkout phase can consume
40 to 60 percent of the total software development effort, that means a
huge saving in elapsed time. This saving translates directly into in-
creased system operating life. A danger is that the scftware machine
might have a "centrifugal effect" on the hardware development: allowing
designers to tailor hardware to software might result in the proliferation
of similar though critically different computers, each used for a special
purpose. For WWMCCS-like systems, where standardization is vital,
this aspect is critical; for radar processors, guidance computers, or
communications processors, it is less important.

We do not know, of course, whether the software-first machine can be
built and, if so, whether its cost would be "reasonable. " The appear-
ance of hardware radically different from conventional digital computers
(such as the CDC STAR and ILLIAC IV configurations) has greatly expand-
ed the hardware options predictable for 1985. What might be expected
to appear, and seems technologically and economically feasible, is a
range of software-first machines, each capable of ef(iciently simulating
the performance of a class of computers. Otherwise, the software
machine's configuration would have to be so general that its efficiency
for any given task would be seriously degraded. However, the range
may not need to be too broad to encompass most Air Force C&C tasks.

Developments related to the b.asic software-first machine are also
likely to be useful in solving other Air Force problems. As a current
exampLe, the USAF Satellite Control Facility has acquired some micro-
programmed computers that will first be made to emulate existing second-
generation computers there. Later, the Facility's software and system
functions will be upgraded using a microprogrammed base. In this way,
they can avoid system down time that would tesult from a simultaneous
hardware and software transition. Thus, the great potential benefit of
the software-first machine and its potential spinoffs demands that it be
seriously investigated.

The topics suggested for future research are summarized in Table IV-
IX, with a description of the potential benefits and drawbacks of each,
and specific recommendations for near-term action.

C. CONCLUSIONS
The technical innovations suggested here should be investigated. lf
successfully implemented, they could improve the development of C&C

systems in three ways. First, the work of developing the software for
a particular C&C project could be significantly reduced by using struc-
tured approaches to software design and production.

64

UNCLASSIFIED

UNCLASSIFIED

. . • k 0

0..4
4) 14 ~ 4.0

Si 2

14 004

I. 0 - 00ox o0 -o oo
00 . 2n €

.0. 0
0 4.)4)0a

0E x o t Z .
Z o

Ek(4.'..
0CZ U0 0

o 4) M -m
0..0 k2 0

: -4 0 X..1

4)
'4) 4~u 0'a eS~4 4

k ~ ~ ~ ~ k. 0 ~ 4 k)o0

r4~~~ m .- ... rc

.. t ,vo.

a o to 9

H u 0- so
0 4 $4 b

o o . 0- 0 c . aE

Z. 0 . - a

S 0 0.~e .4~

04 4.0~

4

CLASS

- 0 , "'a

65

UNCLASSIFIED

UNCLASSIFIED

Second, the worK of developing an entire C&C system could be shortened
considerably, primarily because the software-first machine would
allow overlapping of system design and software production and testing,
and because the use of operational simulation would shorten the training
period required for commanders and system operators.

Finally, and perhaps most important, the elapsed time between hard-
ware specification (and acquisition) and system implementation would be
materially reduced. In operational terms, the total iseful life of a sys-
tem would be extended because the hardware would become obsolete much
later than it now does after software implementation. The potential
system-development process in 1985 -- under the effects of the innova-
tions described here -- is shown in Figure IV-13, contrasted with the
current process. The six-year time span is representative of a typical
current system and was chosen to illustrate the time that can be saved.

1970
3- 4 YEARS

HARDWARE INSTALLATION

GROSS RFP DETAILED SYS. DESIGN SYSTEM TEST
FORMULATION, SYSTEM DESIGN, RESPONSE PROGRAMMING-CHECKOUT
RQTS. ANALYSIS SIZING EVALUATION DOCUMENTATION TRAINING,

T I 2 3 4 5 T-6

1985
1- 1.5 YEARS

I I

RFP

RESPONSE

EVALUATION

INSTALLATION
DETAILED SYS DESIGN

JEXRCISIGROSS PROGRAMMING TS
SYSTEM CHECKOUT SYSTEM TEST

ANAL DESIGN DOCUMENTATION TRAINING

SEMIAUTOMATED STRUCTURED PROGRAMMING SEMIAUTOMATED
EXERCISER SOFTWARE FIRST MACHINE EXERCISERI .II. . .

T ; 2 3 4 5 T+6

Figure IV-13. The System Development Process,
1970 and 1985 (potential)

66

UNCLASSIFIED

UNCLASSIFIED

REFERENCES

1. P. E. Rosove, Developing Computer Based Information Systems,

John Wiley & Sons, New York, 1968.

2. Personal communication with B. W. Boehm.

3. B. W. Boehm, "Some Information Processing Implications of Air
Force Space Missions: 1970 - 1980," RM-6Z13, The RAND
Corporation, Santa Monica, California, 1970.

4. "Information Processing/Data Automation Implications of Air
Force Command and Control Requirements in the 1980s, Volume
III, Command and Control Requirements: Intelligence, " SAMSO/
XRS, AFSC, January 1973, SECRET.

5. "Information Processing/Data Automation Implications of Air
Force Command and Control Requirements in the 1980s, Volume
II, Command and Control Requirements: Overview, Annex A:
Strategic Requirements, " SAMSO/XRS, AFSC, June 1972,
SECRET.

6. "Information Processing/Data Automation Implications of Air
Force Command and Control Requirements in the 1980s, Volume
V, Hardware Forecast," SAMSO/XRS, AFSC, January 1973,
UNCLASSIFIED.

7. Software Engineering. ed. by Peter Naur and Brian Randell,
Scientific Affairs Division, NATO, Brussels, Belgium, January
1969.

8. M. V. Wilkes, D. J. Wheeler, and S. Gill, The Preparation of
Programs for an Electronic Digital Computer with Special Refer-
ence to the EDSAC and the Use of a Library of Subroutines,
Addison-Wesley Press, Inc., Cambridge, Massachusetts, 1951.

9. Saul Rosen, "Electronic Computers: A Historical Survey," Com-
puting Surveys, 1, 1, March 1969, pp. 7 - 36.

10. H. Sackman, Computers, System Science, and Evolving Society.

11. R. F. Rosen, "Supervisory and Monitor Systems," Computing
Surveys. 1, 1, March 1969, pp. 37- 54.

67
UNCLASSIFIED

UNCLASSIFIED

12. F. J. Corbato, M. M. Daggett, and R. C. Daley, "An Experimental
Time-Sharing System," Proc. SJCC, 21, Spartan Books, Balti-
more, Maryland, 1962, pp. 335- 344.

13. Computers and Thought, ed. by E.A. Feigznbaum and J. Feldman,
McGraw-Hill Inc., New York, 1963.

14. "A Survey of the Computer Field," Computers and Automation,
iZ, 1, Industrial Securities Committee, Investment Bankers
Association of America, 1963, pp. 15 - 25.

15. Jean E. Sammett, Programming Languages: History and Funda-
mentals, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969.

16. B. W. Boehm and J. E. Rieber, Graphical Aids to Aerospace
Vehicle Mission Analysis, P-3660, The RAND Corporation,
Santa Monica, California, October 1967.

17. "Mark IV File Management System Reference Manual, " 2nd ed.,
Document No. SP-70-810-lB, Informatics, Inc., Canoga Park,
California, 1970.

18. BMD -- Biomedical Computer Programs. ed. by W. J. Dixon,
University of California Press, Berkeley, California, 1970.

19. G. D. Brown and C. H. Bush, "The Integrated Graphics System for
the IBM 2250, " RM-5531-ARPA, The RAND Corporation, Santa
Monica, California, October 1968.

20. R. J. Rubey, "Comparative Evaluation of PL/I, " ESD-TR-68-150,
Electronic Systems Division, AFSC, April 1968.

21. A. Kreger and J. Nathanson, "The Tribulations and Triumphs of
GIS," Datamation, 17, Z0, October 15, 1971, pp. Z0 - 25.

22. Software Engineering Techniques, ed. by J. N. Buxton and B.
Randell, Scientific Affairs Division, NATO, Brussels, Belgium,
April 1970.

23. G. W. Armerding, Computer Software: The Evaluation Within the

Revolution, P-3894, The RAND Corporation, Santa Monica, Cali-
fornia, July 1968.

24. B. W. Sine, " An Autonomous Quick Reaction Software System,
STS, TOR-0059 (6758-03)-3, Aerospace Corporation, El Scgundo,
California, October 26, 1970.

68

UNCLASSIFIED

UNCLASSIFIED

25. J. F. Corbato and V.A. Vyssotsky, "Introduction and Overview
of the Multics System, " Proc. SJCC, 2_7, Spartan Books, Balti-
more, Maryland, 1965, pp. 185 - 202.

26. Clinton S. McIntosh, et al, "Analysis of Major Computer Opera-
ting Systems, " ESD-TR-70-377, Electronic Systems Division,
AFSC, August 1970.

27. R. Turn, "Air Force Command and Control Information Process-
ing in the 1980s: Trends in Hardware Technology," R-1011-PR,
The RAND Corporation, Santa Monica, California, October 1972.

28. F. J. Corbato, "PL/I as a Tool for System Programming," Data-
mation, May 1969, pp. 68 - 76.

29. "Air Force ADP Experience Handbook (Pilot Version)," ESD-
TR-66-673, Electronic Systems Division, AFSC, December 1966.

30. J. P. Haverty, "The Role of Programming Languages in Command
and Control: An Interim Report, " RM-3Z93-PR, The RAND Cor-
poration, Santa Monica, California, September 1962.

31. Data Processing and Display, Project FORECAST Final Report,
available from the FORECAST Special Project Office, HQ AFSC
(SCGF), Andrews AFB, Maryland, January 1964.

32. E. A. Feigenbaum, "Al: Themes in the Second Decade," CS
Memo No. 67, Stanford University, Computer Science Department,
Stanford, California, August 1968.

33. R. M. Balzer, "On the Future of Computer Program Specification
and Organization, " R-62Z-ARPA, The RAND Corporation, Santa
Monica, California, August 1971.

34. D. T, Ross, "Fourth-Generation Software: A Building-Block Science
Replaces Hand-Crafted Art, " Computer Decisions, April 1970,
pp. 32 - 38.

35. D. C. Engelbart, Advanced Intellect-Augmentation Techniques,
SRI Project 7079, Stanford Research Institute, Menlo Park,
California, July 1970.

36. E. W. Dijkstra, Notes on Structured Programming, IH-Report
70-Wsk-03, Department of Mathematics, Technological Univer-
sity, Eindhoven, The Netherlands, April 1970.

37. Program Test Methods, ed. by William C. Hetzel, Prentice- I
Hall, Inc., Englewood Cliffs, N.J., 1973.

69

UNCLASSIFIED

UNCLASSIFIED

38. J. McCarthy, "A Basis for a Mathematical Theory of Computation,"
Computer Programming and Formal Systems, ed. by P. Braffort
and D. Hirschberg, North Holland Publishing Co., Amsterdam,
1963, pp. 33 - 70.

39. B.J. Liskov and E. Towster, "The Proof of Correctness Approach
to Reliable Systems," ESD-TR-71-Z2, Electronic Systems
Division, AFSC, July 1971.

40. R. W. Floyd, "Assigning Meaning to Programs, " Proceedings of
Symposia in Applied Mathematics, American Mathematical Society,
19, pp. 19 - 3Z.

41. E.A. Ashcroft and Z. Manna, "Formalization of Properties of
Parallel Programs, " Memo AIM-ll0, Stanford Artificial Intelli-
gence Project, Stanford, California, 1970.

42. J. C. King, "A Program Verifier, " (thesis), Carnegie-Mellon
Computer Science Department, September 1969.

43. D. I. Good, "Towards a Man-Machine System for Proving Pro-
grain Correctness," (thesis), University of Wisconsin, Univer-
sity of Texas Computation Center, June 1960.

44. E. W. Dijkstra, "The Structure of the 'THE' - Multiprogramming
System," CACM, 11, 5, May 1968, pp. 341 346.

70

UNCILASSIFIED

-(.1 '- ~ --: - - p 'i e
M

I

UNCLASSIFIED

Securityr Clasication DOCUMENT CONTROL DATA- R & D
(Security ctassificatlon of title, body of abstract and Indexing annotatlon must be entered when the overall report Is clasalfled)

1. ORIGINATING ACTIVITY (Corporate author) Ze. REPORT SECURITY CLASSIFICATION

Space and Missile Systems Organization Unclassified
P. 0. Box 9Z960, Worldway Postal Center 2b. GROUP
Los Angeles, CA 90009

3. REPORT TITLE

Information Processing/Data Automation Implications of Air Force Command and
Control Requirements in the 1980s (CCIP-85) (U), Volume IV, Technology Trends
Software

4. DESCRIPTIVE NOTES (T'ype of report and inclusive dotes)

5. AUTHOR(S) (First name, middle Initial, last name)

6. REPORT DATE 70. TOTAL NO. OF PAGES 7i. NO. OF REFS

October 1973 70I 44
GS. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

b. PROJECT NO. SAMSO TR 72-IZZ

C. 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

d.

10. DISTRIBUTION STATEMENT

1I. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT
Command and control software will become more important in 1985 than it is
today. It is crucial to determine whether future software technology, as pro-
jected from current trends, will be able to provide the techniques necessary to
build the appropriate software of the future.
This volume provides a brief introduction to software technology and defines the
kinds of software that will be required to build and operate 1985 C&C systems.
Having established requirements, the report then focuses on relevant software
technology to forecast what it may be able to achieve by 1985. Both application
and executive software are considered, with special emphasis on response time,
adaptability to unforeseen situations, suitability, and ease of transfer from one
machine to another. Of particular importance in C&C systems are methods for
the design, production, and validation of software, and the management techni-
ques necessary to administer large software-development projects. Current
tools and practices are assessed.
Finally, the estimates of 1985 software technology capabilities are compared
with projected 1985 requircmcnts for C C software. The concluding section of
the report outlines studies, projects, and R&D investments that the Air Force
might undertake to narrow the expected gap between requirements and technology
and to alleviate future problems in implementing and operating command and
control software.

D ,Io, I s,14 73 UNCLASSIFIED
Security Classification

UNCLASSIFIED
Security Cisssificatlon________ -

LINK A LINK 9 LINK C
KEY WORDS- - -

ROL2 WT ROLE WT ROLE WT

UNCLASSIFIED
Security Closslfication

