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FOREWORD

Thir document reports a portion of the work performed by Northrop
Corporation, Aircraft Division, Hawthorne, California, under USAF Contract
F33615-70~C~1820, ''Calculation of Radar Cross Sectlo. ., ' during the period
from 1 December 1870 to 1 June 1973, The work was sponsored by the Electronic
Warfare Division, Air Force Avionics Laboratory under Project 7633, Task 13,
with Dr. Charles H. Krueger, AFAL/WRP as technical monitor.

This document was prepared by Dr. K. M. Mitzner of the Electronic
Systems Research and Technology Group at Northrop. . S. Stanley locus was
Principal Investigator on the contract,

This document has been assigned NOR 73-104 by Northrop for internal
control purposes and was submitted by the author in July 1973.

This Technical Report has been reviewed and {s approved for publication,

W. J. PORTUNE, JR.
Assistant Chief
Electronic Warfare Division
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ABSTRACT

The princlpal goal of USAF Contract F33615-70-C-1820 is to develop a semi-
automated system for computing the radar cross sectlon (RCS) of aerospace veh!cles
over the t.*equency range of 500-20,000 MHZ, Such a system requires the use of
efficient technlques for calculating the high-frequency scattering from bodies with
edges such as wings and ducts.

in calculating the scattering from three-dimensional bodles with edges,
It Is frequently meaningful and useful to consider the scattering niscclated with
an !rcremental length of the edge and to describe this scattering in terms of an
Incremental Length Edge Diffraction Coefficient (ILEDC). Inthis report the theury
of the ILEDC s developed, taking into account the actual distributlon of surface
current near the edge. The theory is illustrated Ly applying it to the problem of
scattering from a perfectly conducting polygonal plate. The Incremental Lenglh
Diffraction Coefficient (ILDC), which is the generaltzation of the ILEDC for linear
scattering features other than edges, is also treated. 1t {8 shown that two-
dimensional diffraction coefficlents, such as those used by Keller and U'itmtsev,
can be considered as speclal cases of ILDC's.
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I. INTRODUCTION AND OVERVIEW

In dealing with high-frequency scotiering from throee~dimensional bodies
with edges, it is otten meaningful and useful to treat the edges as diffracting
elements. The diffraction from an lacremental length of the edge can then be
related tc the incident fleld by means of a dyadic quantity * which we shall call the
Incremental Length Edge Diffraction Coefficient (ILELC).

Our principal obiectlve in this report is to evaluate the ILEDC which
describes the so-called 'dringe wave' scattering from a perfect conductor and to
show how this ILELLC {8 applied., We treat the ILEDC as a speclal cace of a more
general dyadlic quantity which we cail the Incremental Length Diffraction Coefficient
(ILDC). The ILDC is defined not just for an edge but for any line diffraction

feature, for example, a wire or a rounded edge.

Before considering the ILDC, we firast develop many of thn concepts of
diffraction coefficient theory and much of the nomenclature in a simpler context,
that of acatterine from an infinitely long cylinder, We describe scattering from
such a cylinder - elther the total scattering or some physically meaningful
contribution to the scattered field - in terms of a dyadic quantity which we call the
Two-Dimengional Diffraction Coefilcient 2-D DC). The 2-0 DC provides a simple
and compact way of expressing the well-known edge diffraction results of Ufimtsev

{Reference 1) and Keller (Reference 3).

The ILDC, which is defined for all directions of incidence and scattering,
is shown to be a generalization ef the 2-D DC, which s defined only for certain
combinations of Incident direction and scattering direction, Wherever the 2-D DC
is defined, it is equal to the corresponding ILDC, The fringe wave ILEDC s
the generalization of the Ufimtsev 2-D DC and will thus be referred to as the

Ufimtsev ILEDC,

The naterial on the 2-D DC is given in Section II and Is backed up by a
thorough discussion in the Appendix of scattering from an i(nfinite cylinder.
The Ufimtsev 2-D DC is treated in Section 2.2.4 with speclal cases given in 2.2.5
and 2.2.6,

* For those who are not familiar with the term, a dyadic A s a quantity which
effects a linear transformation of a vector B into a vector C. We write the trans-
formation in the form C = A+ B,
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The ILDC is studied in Section 3.1 and the results are then speclalized in

Section 3,2 to obtain the Ufimtsev ILEDC for an edge with wedge angle less than 180°

(so that there are no (nternal reflections) on a perfect conductor. Special results
for the knife edge case and for hackscatter sre included tn Section 3.2. Section IV
tllustrates the use of the ILEDC in solving reallstic scattering problems.

The sample problem which we consider in Section IV is high-frequency
scattering, both monostatic and bistatic, from a flat perfectly conducting plate
with a polygonal boundary when both source and observer are In the far-fleld
region. This {8 an appropriate choice because our Investigations of Ufimtsev's
approach, the Physical Theory of Diffraction (PTD), and our development of the
Ufimtsev ILEDC were orliginally motivated by our ohservation that the more
commonly-used Geometrical Theory of Diffraction (GTD) was not adequate for
rectangular and trapezoidal plate problems. (See Reference 2, Section 2.2.).

We assume {n Section TV that edge interactions can be neglected and that we

can also neglect the effect of distortions of the surface current near the corners of

" the plate.

Under these assumptions, the Physical Theory of Diffraction describes the
total scattering from the plate as the sum of two contributions, one due to the
physlcal optics surface current on the plate and the other due to the fringe wave
surface current concentrated near the edges of the plate. To find the fringe wave
current associated with a stralght segment of the edge, we assume that the segment
is part of the edge of an infinite half-plane and we take the difference
between the total surface current and the physical optics surface current for the
half-plane problem. It is readily seen that the fringe wave current assoclated
with every incremental length of a straight edge ls the same except for phase.

The fringe wave diffraction from a straight segment of length L is thus
described by the product of the Ufimtsev ILEDC gU with an appropriate L &ll)‘(—x-
factor obtained hyv integrating phase along the edge, and the total fringe
wave scattering is the sum of analogous contributions from all the straight
edges. By decomposing eachsinX term as the sum of two exponentials, we

can obtaln an equivalent reprcsentation In terms of contributions from the corners.
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The physical optics contribution to the scattering from the plate has been
calculated in Section V of Reference 11 and the most important results are repeated
here ln Section 4.1. Just as with the fringe wave diffraction, the physical optics
scattering can be represented either in terms of edge contributions involving

- 8inX
the product of an TLEDC witha L ; factor or in terms of corner contributions.

The total scattering can then also be expressed in terms of edge or corner
contributions which are the sum of the corresponding fringe wave and physical
optlcs contributions,

Solutions calculated by this approach are compared with experimental
results in Section 4.2 and it is conflrmed that the approach is accurate over a

wide range of condltions.

It Is important to note that the Ufimtsev ILEDC used here is calculated
by a method which takes into account the manner in which the fringe wave current ls
distributed near the edge. This is one of the reasons why the material developed
here has a broader range of applicablility than the Ryan-Peters theory of Reference 10,
in which the total edge diffraction is assumed to originate from a filamentary edge
current with a value which is a function of the azimuth of scattering. (The Ryan-
Peters theory, on the other hand, has a broader range of applicablility than standard
GTD.)

* * *

The material {n Section IV is an example of how a problem is solved within the
framework of Uftmtsev's PTD, The basic idea of PTD is to treat the scattered
fleld as a functlon of the surface current induced on the scattering body. This
surface current {8 in turn a function of the incident fleld, and thus we have
linked the inclident field to the scattered fleld by way of the surface currents, In
many problems the linkage can be described in terms of diffraction coefficients
obtalned from canontcal problems - as has been done for the polygonal piate problem -
and it is not necessary in these problems to work directly with surface currents.
Thus, even though PTD is based on surface current considerations, the surface
currents may only enter a problem implicitly,
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The usefulneas of the ILEDC s not restricted to simple situations like
that of Sectton TV in which the scattered fleld can be adequately approximated as the
sum of a physical optics contribution plus a fringe wave contribution, The ILEDC
can still be used to calculate the fringe wave contributions in more sorhListlcated
verslons of PTD which also take into account contributions due to phenomena such
as corner currents, creeping waves, and multiple reflection or diffraction.
And the more general ILDC can be used similarly for bodies with line diffraction

features other than sharp edges.

For many problems, PTD leads to a solutlon which is simple in form and
which, like the corner diffraction representation of the polygonal plate solution,
has a physical interpretation in terms of rays emanating from discrete points on
the scattering body. For bodies with edges, a necessary though not sufficient
condition for the existence of such a scattering center interpretation is that the

physical optlcs scattering can be represented wholly or (n part as an edge diffraction

phenomenon and that the edge diffraction can be described by a physical optics
ILEDC. As examples, the physical optics scattering from any flat perfectly con-
ducting plate can be expressed exactly by the integral of an ILEDC around the
edge (See Section 5.4 of Reference 11.), and the physical optics scattering from
some doubly curved surfaces with edges can be approximated accurately as the
sum of a specular point contribution and the integral of an ILEDC around the
edge (Reference 12,) For both types of problem, the edge integral can in many
cases be evaluated in terms of contributions from discrete points, but this is not

always so.
* * *

We shall concentrate in this report on ILDC's which arise out of the

solution of two-dimensional canonical problems, that is, which represent scattering

from an incremental length of an intinite cylinder. Since most physical optics
diffraction coefficients are not associated with any two~dimensional problem,
they are thus outside the pale of this report. We note, however, that efficient
techniques for the evaluation of physical optics integrals are cruclal to the
development of PTD as a practical tool for the treatment of realistic scattering

problems and, indeed, much of the advantage of PTD over GTD ltes in the ability

to treat physical optics diffraction phenomena which have no two-4dimensional
counterpart. Referencer 11 and 12 give various examples of physical optics

calculations,
* * *
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ILDC and the ILEDC. For this reason, we consider the 2~D DC (n detail In
Section II, developing the general theory in Section 2.1, and then discussing the
Keller (GTD) coefficient and the Ufimtsev coefficient in Section 2.2. This study

{s backed up by a thorough treatment in the Appeudix of scattering from an
infinftely long cylinder. The Appendix includes not only the material we need

for Section TI but additional material for use in extending the diffraction coefficlent
concept to situaticns In which source or observer or both are at finlite distance
from the scattering body.

In Sections 1.3.3 and 2.1.2, we show that the far-field scattering due to
a plane wave incident on an (nfinitely long cvlinder can be Interpreted in terms
of raye emanating from the cylinder axis and that all scattered rays form the

"’ D
. - it AT ST ) AT g U] SO WA ~. '.

same angle with the cylinder axis. Thus the rays emanating from a point P on
the axis all lie on a circular cone with apex at P, The angle which the scattered
rays make with the axis is found to be the same as the angle which the inclident

wave makes with the axls so that, in the nomenclature of Figures 1 and 2, we

© o va—— L

have Bs-- ﬁl for all scattered rays.

The 2~D DC which describes this scattering process (oth magnitude and
polarization changes) has the form of a four—-element dyadic which transforms
the Incident polarization vector into a vector normal to the directlion of
; scattering, If we consider the geometry and composition of the cylinder to be
! flxed, the 2-D DC is a function of the wave number k, the direction of incidence, and
the diraction of scattering. But the latter two quantlities are not indepcndent because
of the requirement that the incldent wave and the scattered rays form the same
' angle with the axis. For a glven direction of Incldence, the 2-D DC ts defined only
' for those liractions of scattering which satlsfy this criterton, As to the wave
number dependence, we use a normalization tn which both the Ufimisev and Keller
diffraction coofficlients for a perfectly conducting edge are independent of k,

For Incldence normal to the axis, Bl =0, the 2~D DC can be expreased in a
form In which only two of the four dyadic elements are non-zero. For perfect con-
ductor problems with any value of ﬁl‘ we can obtaln a form with only two non-zero
elements if the diffractlon coefficlent represents the scattering due to the total surface
cuarrent on the cyllnder (as In the case of the Keller edge diffraction coefficient).

We may, however, need a third non-zero element if the coefficlent represents the
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scattering due to some contribution to the total current; éxistence of such an element

means that the diffraction coefficlent by itself does not gatis fy the requirements of
reclprocity.

It turns out that the complete form of the Ufimtgev 2~D DC indeed has the
third non-zero element allowed by theory for Bl # 0, Ufimtsev did not consider
this element in Reference 1, but {ts omission does not affect his results for two-
dimensional problems - because he considered only problems which can be reduced
to equlvalent problems with Bi =0 (See Section 1.3.2) ~ nor does it affect his single
diffraction results for backscatter from bodies with curved edges - because these
resuits involve only the value of the diffraction coefficient for 38 :Bl =0,

* » * (

There are many three-dimensional problems which can be solved
satisfactorily using a 2-D DC, It is important to und@rstand both why this can be
done for some problems and why it cannot be done for others, ‘.

Under appropriate circumstances, the far-field diffraction from an edge C i
which s illuminated by a plane wave can be interpreted in terms of rays 'i
emanating from each point on the edge, with all the ray8 which emanate from a
glven point P forming a cone with apex at P, Under thése same conditions, there
wlll be only 2 finite number of rays scattered in a given direction, each such ray
originating at a different point on the edge. Thus we can say that all the scattering in

that direction originates from these points,

| The geometry for an incremental length of C, whichls the same as the
geometry of an incremental length of an infinite wedRe. 18 shown in Figure 3.
: The cone of scattering angles at the point P is found by identifying the tangent
vector to C at P with the axlal vector t along the edge of the wedge and by
then applying the condition Bs = B[. The wedge angle 2 a at P is the angle !
formed by the tangent planes at P to the two surfaces whichmeet along C, It can '.
be shown that the amplitude of the field on a ray in the curved edge problem is closely
related to thec amplitude of the field on the corresponding ray inthe Infinite wedge
problem; 1t s only necessary to introduce z scalar faCtor which accounts for the
spreading out of energy due to the curvature of C,




e~ o

I0UIM V NOHd ONIHILLYIOS ¢ JHNOWM

T RTRIBYRY W 2P R ERTR W A T T NN KT TEVRNTT T MO WY g T v et ey e s

—— st AN ARV & 2o NI I

V. tvoc A PANGE 7T DA R > TSGR B e Ain'P4eY PPIR v e AR 3 P ST Y RN

13
8
IABM
Pol 931805 d 5
"3
8
X
Q
T
I
S
JABM
ueptou]
1 1=
JABM $
JABM
upIoUf
Pal9)eds
> - b T .\.\r“r\.lll b) EIE ST TN o N G SN v o= F (AR -~ T VR T u.ii!:l.hl».\h




Thus the result of the Infinite wedge problem, that is to say, the Two~
Dimensional Diffraction Coefficient, can be used to solve the curved edge problem.
Indeed, for backscatter we need only the 2-D DC for incidence normal to the axis,
Bs = Bl =0, because the écattering appears to emanate from those points at
which the tangent to C is normal to the direction of incidence and scattering. As
already noted, the 2-D DC for this special case has only two non-zero elements.

The conditions under which these observations are valid are that the
edge C be smooth and of sufficiently high curvature (but not so high that the
radius of curvature is of the order of the wavelength) and furthermore that the
direction of scattering is sufficlently far removed from any caustic directions
of the far-field scattering. (In physical terms, we have a caustic direction
when the rays diffracted in this direction from some portion of the edge C are
parallel to first order, so that the rays do not appear to “e spreading out in the
far field region and giving the characteristic 1/R field behavior for large
distances R from the edge. The simplest examples are the backscatter and for-

ward scatter directions for normal incidence on a flat plate. )

When the tangent to C has discontinuities in direction (corners), when
segments of C are straight or almost straight, when the direction of scattering is
a caustic direction or close to a caustic direction, then the scattering can no
longer be described in terms of rays which obey the rules of two-dimensional
scattering. If a ray description of the scattering process is still possible, it
will involve ray phenomena which have no two-dimensional counterpart, for example,
rays scattered in all directions from a corner. Regardless of whether such a
description is appropriate, we must proceed toward the solution by first considering

scattering from lengths of edge rather than from isolated points.
To do this, we use the Ufimtsev ILEDC.

The Ufimtsev 1LEDC describes the scattered field due to the fringe wave
currents induced by a plane wave on an incremental length of an infinite wedge.
This quantity and its generalization, the ILDC, which describes the scattering

due Lo currents induced o: o incremental length of a cylinder of any given cross-
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sectlon, are, like the 2-D DC, four-element dyadlce which traneform the polar-
lzatlon vector of the incldent wave into a vector normal to the direction of scattering.
If we consider the geometry and composition of the cylinder to be fixed, the ILDC

{8 in general a function of the wave number k, the direction ¢i :ldence, and the
direction of soattering, with the two directions now independent. The

Ufim¢sev ILEDC turns out to be independent of k., All perfect conductor ILDC's

can be written {n a form which hae only three non-zero elements; furthermore, for
the important case of backscatter, the two dilagonal elements are the same as the
corresponding elements of the 2-D DC,

The fringe wave diffraction from the edge C is obtained by Integrating
the ILEDC over C, with proper account taken of phase shift along C. If there is
also an ILEDC which describes the physical optics edge diffraction, we can sum
the two ILEDC's and then integrate. If there exists a ray description of the
edge~diffracted fleld, it can be found by properly interpreting the resuit of the
integration, That is, tn PTD a ray description of the scatterlng, when appropriate,
is a result of the analysis rather than an initial assumption as in GTD,

If C t8 a closed curve all of which is geometrically illuminated and if the
curvature of C 8 continuous and sufficlently large, then the diffraction will appear
to originate from those points on C for which Be = Bl' Thus we have come
back to those cases for which the 2-D DC can be used to solve three-dimensional
problems.

* * %

In any mathematical writing, it Is necessary to strike a balance between,
on the one hand, Iintroducing spectal notatlon which leads to a simpler form for
the final results and, on the other hand, keeping the notation simple so that the
exposition is easler to follow. In this report we have leaned heavily toward
the use of speclal notation because we are writing primarily for the person who
wants to understand the physical significance of the results and to apply them.

A List of Symbols s included for the reader's guidance.

From the applications point of view, the most important material is

11




(a) The material (n Sectlons 3,1.1 and 3.1.2 which shows how the ILDC
and ILEDC relate the far-fleld scattering to the Incident plane wave of (2-3). Key
equations are (3-2), (3-3), (34), (3~9), (3-10), and (3-12).

(o) The evaluation of the Ufimtsev ILEDC " tn Sectlon 3.2.1, for which the
key equations are (3-46A), (3-56) to (3-61), the definitions (3-47) to (3-61), the
integral forms (3-52) and (3-53) for the functions f and g, and the closed form
evaluations of f and g In (3-65) to (3-78) (with appropriate warning that (3-75‘)
to (3-78) have not been verified thoroughly). Also, important spectal cases of
gU are treated In Sections 3.2.2 to 3.2.4.

The corresponding material on the 2-D DC is

(a) The material in Section 2.1.2 relating the two-dimenstonal far-field
scattering to the incident wave of (2-3) by means of the 2-D DC, Key equations are
(2-19) and (2-22) to (2-24).

() The evaluation of the Ufimtsev 2-D DC, also designated gU, as glven
in Sectlon 2.2.4, For actual computation the moit useful equations are (2-98),
(2-100), (2-101), and (2-118). Important speclal cases are treated in Sectlone 2.2,5
and 2.2.6,

The Keller 2-D DC gK is treated in Section 2.2.3, and some of the results
are used in evaluating gU. The most useful equations for g_K are (2-80b), (2-82)
and (2-83). Importart special cases are treated In Sections 2.2.5 and 2.2, 8.
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I, THE TWO-DIMENSIONAL DIFFRACTION CCEFFICIENT

2.1 A FORMALISM FOR TWO-DIMENSIONAL SCATTERING PROBLEMS

2,1.1 THE CVLINDER GEOMETRY AND THE INCIDENT FIELD

Let us consider the problem of an infinite length cylinder with a cross
sectlon of finite extent, composed of isotropic material and illuminated by a
plane wave. The problem geometry is shown in Figure 1. The unit vector ¢ is
parallel to the cylinder axis. The cross section of the cylinder {8 described by
the curve L,which we require to be of finite length, The unit outward normal
from the cylinder is n and the unit tangent to L is £ so oriented that

nx [=t. 2-1)

The length parameter along L, (n the direction of £, {8 /. The length parameter
along the axis s t, and we represent the position of a point r in space as

r=ga+tt, 2-2)

where p is the displacement from the axis of the cylinder. The

origin r = 0 can be chosen in any convenient manner. An x-axis normal to t_
and a corresponding unit vector e , can also be chosen in some convenient
manner, and we can thea introduce a y-axis and a unit vector e y such that

.e.x xsy =£‘
The incident plane wave will be written
{ __at .
E,=E e eml-tke, ~rl,  Z Ho=-e xEg 2-3)

Here zo is the impedance of free space. As throughout this report, exp {-lux}
time dependence, with w the angular frequency and ¢ the time, is assumed and
suppressed. The wave number k is given by

k = w/c (2-3A)
where ¢ is the speed of light in free space. The plane wave travels in the -gri
direction, with e ri a unit vector. The vector p describes the polarization

that is

of the wave, It I8 a complex unit vector and is normal to grl ,
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; la!=<a-€)1/2 =1, mrep 0,

T

where ~ indicates the complex conjugate. In dealing with polarization, it is

convenient to make use of the unit polarization vectors e ll

i

EH
rs

=-txe N /itxe, \

e -Y l ' e—l&

The vector_c.:‘ll Is normal to  and to grl, and e "i {s normal to e ll and grl.

The vectors gll. _e_s"l, -grt, in that order, form the basis of a right-handed

Carteslan coordinate system. We can now write

i {
B =P &,*P ¢, ’

where we call p1 the perpendicular-polarized component (because e 1‘ ls per=-
pendicular to the cylinder axis) and p" the parallel-polarized component
(because e "‘ has a component parallel to the cylinder axis). Since p
is a complex unit vector, the components pl and p are in general complex
f
numbers.
We deflne the obliquity angle [3l of the Incident wave by
-1 X og.T

By = sim ey L 2 A3 -
For incidence normal to the cylinder axis, Bl =0. Otherwlse, B, has the
same sign as _e_rl-_t,.

It is frequently convenient to write e rt in the form

i AL
L gr=alnﬁit_+cosﬂi €
nere @ ! . Al
where € | {5 a unit vector normal to t. In terme nf:r , we have
i = Al § _ _ Al
e, = -txe, , g, =cosf t -sinf e, .

and e "l defined by

(2-4)

(2-6)

2-7)

(2-8)

(2-9)




2.1.2 THE FAR-FIELD SCATTERING

Let us now turn our attention to the far-fleld scattering produced
when the wave of (2-3) strikes the cylinder. We will present the results in
& manner which s readily generalized to problems involving finite cylinders.
Most of the material {n Sections 2.1,2 through 2,1, 6 {8 based on material
in the Appendix, especlally the results complied in Section 1. 3. 3.

At a point in the far-field, it is meaningful to use a ray Interpretation

scat ,.scat

of the scattered fleld (E , H )« The geometry s shown in Figure 2.

There appears to be one ray through a given far-fleld point r. This ray

originates at a point on the cylinder axis and lt propagates in a direction
which we shall designate by the unit vector grs. Thus any point r can be

uniquely represented i{n the form

r =R.e  +T,t . 2<10)

Here t = 'l‘0 is the point on the axis at which the ray originates,
and we call R the giant distance from the cylinder axis to the polnt r,
We designate the angle between grs and the axial vector t as

( -—275- +8 ) and we call ﬁs the obliquity angle of the scattered ray. We

thus have
= - 8 * - g - 7-7 -
sinf8 =-e ' -t 5=B=3 . (2-11)

Now, because of the spectal properties of the infinite cylinder prob-
lem, we find that all scattered rays have the same obliquity angle 8 s Thus
a cone of rays originates at each point on the cylinder axis
and each far-field point lies on one such cone. In the case Bs =0, the
cones become discs and the rays travel radlally outward.

The angle ‘85 turns out to be equal to ﬁl,

15

o AR S MU Al Ce AN L AR T3 A M ms AR e A e a2

B U |




——— e e A o o emem

Bs =B, . (2-12)

Thus, {f we were only {nterested In (nfinite cylinder problems, we would

not even have to distinguish between the quantities ﬂs and ﬁ‘. Nevertheless,

we shall treat ﬂa as though it were an independent quantity so that we can

readily generalize from infinite cylinder problems to finite cylinder problems.

It is frequently convenient to write grs in a form analogous to (2-8), namely

8
8 _ _ A 2
r e  =-s8nft + cosB €, (2-13)

with é\rs a unit vector normal to t, (See Figure 1 for the geometrical details of

the scattered fleld. )

It is also useful to define unit polarization vectorsgl8 and o "s such that

o oo - e —— P

8 8 8 A8
e = (txe ) t xe = txe .
1 2r VLt xe,] = r (2-14)
8 __8 8 _ N B
e =e_xe cosB.t + sin Bs e, 2-15)
and -e_la. g"s, grs. in that order, form the basis of a right-handed Cartesian

coordinate syastem. These definitions are analogous to those of (2-5) and (2-9).

For all {nfinite cylinder problems,e 8 and e, t are both at the same angle lBtl

i
to the t-axis. Important special cases are

ey =el =t forB =f =0 (Ne obliquity)  (2-16)
and
e} = '21 for /5, =3 e @: . @-17)
: Putting these two cases together, we find
]
i el --e el =er-t (2-18)
i for backscatter in a two-dimensional problem, where backscatter 18 only

possible for ﬂs =ﬁ‘ =0.




We oan represent the far-field wave in the form

) = o'*Ro o ktTo 2 uocat. 8 , pocat
R—T—l 5 r . : e _x E (2-19)
0

gscat

where Zo ie the wave impedance of free space and kt is the axial wave number,

given by
kl = k sin 68 . (2-20)
The radlation vector f is independent of R, and T ) and ig normal to grs. It
can be expressed In terms of & perpendicular-polarized component and a
parzllel -polarized component as
8 8
= fle__j_ + fe, . (2-21)
Furthermore, f is a linear function of Eog, and thus we can write
£=Eo 721—'—' d "p ’ (2-22)
k cos 3, -

where g is a dyadlc which can be written in terms of Its elements as

s | s | s 1 e
(.]_ =d11-‘11 e, + d.l.llgl g” + d”ua_“ e, +d“”g” ey . (2-23)

The normalization in (2-22) has been chosen so that d is dimensionless and

also 8o that, for a body of perfect conductivity, d 11 and d un are independent

|
of the obliquity angle.

If we consider the geometry and the composition of the cylindor to be
fixed, then d is in general a function of the wave number, the direction of

inctdeiice, and the direction of scattering, We thus write

d = d(kiB, 5B, ¢, (2-24)

where ¢l is the azimuth angle measured from the x-axis to §ri, and ¢s is

8

the azimuth angle measured from the x-axls to é\r . The first Bl tells us

the obliquity angle for the incident wave. The second ﬁl tells us that the




obliquity angle 18 the same for the scattered wave.

The function d of (2-24), with the two obliquity angles equal, we shall call the
Two-Dimensional Diffraction Coefficlent of the problem. The notation I8 chosen 8o

that the Incremental Length Diffraction Coefficlent d (k; Bl’ ¢l; By ¢ g of
Section III recuces to the Two-Dimensional Diffraction Coefficient when Bs =ﬂl'

2.1.3 THE RELATIONSYiP BETWEEN FAR-FIELD SCATTERING AND

EFFECTIVE SURFACE CURRENTS

The radlation vector f is also a linear function of the effective

electric surface current

Ko=nxH (2-25)
famperes/m) and the effective magnetic surface current
K . =-nxE (2-26)
(volts/m) on the surface of the cylinder. If we write K e and -l-(—m
in component form as
lﬁq =th £+tht_ forq ~e, m , (2-264)
and if we write E and R in component form as
A=A n+A, L +A Lt forA=E,H, (2-26B)
we find that the component forms of (2-25) and (2-26) are
Keyg =-Hy K =H, 5 Reg“ B¢ » e =7Ep - (2-26C)

For plane wave incidence , the effective surface currents are linear
functions of E e. Inlight of this, it is convenient to (ntroduce the electric and

N A
magnetic surtace current dvadics, 53 and Em respectively, which are defined

by the expressions

7
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A A
K, ~K, exp{-tkt alnﬁl} . K

Kq q =E0 gq-p for g =e, m andall P (2-27)

N
We see that K—e and /hzm describe those qualities of the surface currents

which are independent of position on the axis and of the amplitude and polar-

ization of the incident wave.

The surface current dyadics can be written in element form most

simply as i

= 1

a8 o PN LA i
K =Kjle, + Ky le +K  te; vK te . (2~28)

- tu= <u
A
Here the elements KU are functions of wave number, direction of incidence,

and posltion on the cross section curve L; that is,

Let us next define the dyadlc '

ot ke AT A TN L S - st ek £t i) i

w =W kBuoiBoggi 1)
8 i
=wyerel + Wt el rweh e +Wigle (2-30)
A
='lzog-.: X(gixge)-ﬂl:xgm] ”’
The elements of W are
w,=(e% .n) 2 K, +cosB R 3
19 =8 = B) 4, KgyytcosBy Koy i
& A R
-telon) sinf Ky, ;
=40, (2-31)
- (08 A
Wy (85 o) Ry e conf, 2, R,

-(ei-xl)sinﬁszoﬁe“ "

e et AR e e L




We can now express the two-dimensional diffraction coefficlent 2

in terme of W and thus in terms ofiée andgm. The result is

-tn/4
€ ' A B 1 4
I v I L

where a prime indicates a function of the integration varlable. (To derive this result,
we start with (I-104), use (2-22) to represent f in terms of d, and express W (n terms
of the closely related dyadic W.) At this polnt, we are only stating the validity of
(2-32) for the case ﬁs =B‘ which arises in two-dimenslional problems. We will see
later that (2-32) 18 also meaningful when Bs # Bl
x x »
It can be shown by integration by parts that (2-32) still holds If W is replaced

by a dyadic W with elements

AB N
W“ =€ ) Zo Kel

Fay
+ co8 K
COBs m

) ty

1 8 A
* T tarh, of P*my

J= 1elhe (2-33)

— - 8. N el
W"j- @r n) Kmlj+°°sﬁs Z, Ketj

1 2 ~
YR Bl 7 (2K yy)

A
Because Qelj and K, 4 ate the true effective surface carrents induced
by a source which does not lle on the cylinder surface, they are continuous
and differentlable in 7 at all points of finite curveture of the cross sectior.

curve. The /-derivatives do go tc infinity at edges, but the singularities

are integrabie. (For a general discuss{on of flelds near edges, see Reference 6, )
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Matters will not be so simple, however, when we deal with discon-

A A
tinuous K o ! and Km 0 such as those of the physical optics contributton.

2.1.4 SYMMETRY PROPERTIES

A A
All the elements of l_('3 and -!-(m are either even or odd functions of

B‘. Specifically, we have

A A
Kq (-3l) =l<q (Bl yforq=ell, eth, mZll , mti ;
A (2-34)
=-Kq (B( yforg=efll, etl , miL , mtil .
Here we have omitted the arguinents which are not varted,
From these symmetry properties and (2~31), we cbtain
W (=-f3; - Yy = W : forq = L1 ,lib;
q ("B B ) q (BiiBg) fora l 2-35)
=-wq (B‘;ﬁs ) forq = L0, N},
The symmetry properties of \ZJ are the same. Indeed, we see from (2-32)
that those of d are also the same:
dq (=B =Bg) =d, (B Bg) forq=is, 01
(2-368)
= - dq (B{; ﬁs ) forq =10, W 1
From this, we Immediately obtain the very importan. result that the cross-
terms in & vanish for non-obliquc {ncidence and scattering:
dyy 0;0)= dy; (0;0) = 0 . (2-37)
2.2.5 THE PERFECT CONDUCTOR CASE
For a neitect conducior, we have
Em =0, Kelll =0 * (2-38)

S, .
el ki ki et B DB I a2 b a5 Sl el 2L 4




Furthermorse, we have the expressions

~ Pa

Ke“(k: /3[.951,; L) = Kel].(k cos B‘; 0, ¢ i) coaBl . (2-39)
% . . = 1 o ¢ . . -
Koty KB P l) == [ 37 KeggkcosBi 0, ¢ p)tan B, (2-40)
A A B

Kooy By ¢ 1) = Koty & cosf3; 0, i 1) , (2-41)

which relate the surface currents of the oblique incidence problem to those
of a non-oblique problem for the shifted wave number (k cos ﬂl). (See Sectlion
1.3.2 for a detalled discussion of the relationshkip between oblique and non-oblique

incidence problems for perfect conductors.)
By using (2-38) to (2-41) in (2-31) and (2-33), we obtain

Wi & Bl.¢l;Bl.<ps:l)=W“ k cosfB; 0, ¢l; 0, @it) cosﬁl

(2-42)
= (’9:: ‘n) 2, K\e“(k cos ﬁl; 0,9‘5‘; L) cos Bl
Wb B @B o) =0, (2-43)
W:u(k;ﬁi- Py ! --ﬂlnﬁ,_ lcos[ji (gi ‘n )
T <]z, K, & cosBi 0,8 0), (2-44)
Wiy &iBu BB ) =Wy keos Bii 0, ¢ 0, i) cos By
=Z, Ketll(k cosﬁl; 0, 3 L) cos By ’ (2-45)
i and

W = = . (2-48)
A Wy o+ O S N I T ;
Wiy &B 5 By ¢gi 1) =0 : (2-47)
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We now readily find from (2-32) that

dqmﬁl’¢l;3l’¢s) = dq (k COBH‘; 0, ¢|; 0, ¢8) y Q@ S4L,nug (2-48)
dypn kB, @: B, P)=40 ; (2-49)
dit KB, P By ) =0 . (2-50)

This {8 a statement in diffraction coefficient terminology of the well -known
fact that the far-fleld scattering at oblique incidence on a perfectly conduc-
ting cylinder can be found by solving a non-oblique incidence problem at the

shifted wave number (k cos ﬁi). (See Section 1. 3.2 of Appendix L.)

2.1.6 APPROXIMATE SOLUTIONS AND CONTRIBUTIONS TO THE SOLUTION

HoN
Thus far, we have assumed that d, K » K_ and W are exact values.
= wme ssm -

“.. Frequently, however, we have to deal with approximations to these quan-

N\
ti\les.

Equally important, we frequently represent these quantities as
the sum of varlous contributions. For example, in the wedge problem, we

express Q e and gm a8 the sum of a physical optics contribution and a
fringe wave coutributlon,

R=K K : (2-51)

where the superscript U (for Ufimtsev) indlicates the fringe wave contribution.
We then obtaln analogous representations of W and d. each as the sum

of u physical optice coniribution and a fringe wave contribution.

Approximations to contributions are a third ipportant type of non-

exact sulutlon.

i ek DA 0 T W R Al b
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It s tmportant to realize that these contributions and approximations
do not necessarily have ull the same properties as the true solution,

In practice we try to give the non-exact solution as many properties
as possible of the exact solution, Thus we always choose contributions and
approximations for 2 and the g 380 that they have the four-compenent form of
(2-23) and (2-28) respectively, and so that they have the functional depen-
dence of (2-24) and (2-29) respectively. We always require that (2-30),
(2-31), and (2-32) — which relate \g to theg a.ndg to \E-hold for each in-
dividual contribution ceparately., It then follows that we can always replace
W n (2-32) by gl of (2-33) on a term-by-term basis. We must be careful,
however, when dealing with a contribution for which the Q[j are discontinu-
ous (as they are in the case of the physical optics contribution for a wedge),
to include impulse functions in the aKlj/al terms to account for the dis-
continuities. (See Section 1.2.4.) '

We furthermore consider or.iy contributions and approximations for
which the symmetry condition (2-34) holds. Thus the symmetry conditions
{2~35), (2~56) and (2-37) will also Lold for each term.

Summing up, we can without difficulty always work with contributions
and approximations for which all the formulas of Sections 2.1.2 to 2.1.4 are
valid,

As to the perfect conductor formulas of Section 2.1.5, we always
choose contributions and approximations which satisfy (2-38), (2~39), (2-41),
(2-42), (2-43), (2-45), (2-46), (2~18), and (2-49). The remaining four equations,

A
for Koyy» Wyy» Wy oandd,,,

by-term by the contributions which are used in practice. Most {mportantly,

are, however, frequently not satisfled term-

the d, i for a contribution or approximation may be non-zero,




ﬁ As an example, consider the fringe wave contribution to the scattering
from a wedge with one face illuminated, the other in shadow, when ﬁl ¥ 0. The
N
s fringe wave current component th s k; ﬁ‘.¢‘; 1) 18 finite at the edge. On the

l other hand, the current component Qgh(k cos ﬂl; 0, ¢l; 1) \s dlscontinuous

} at the edge, with the discontinuity equal and opposite to that in the physical
optics contribution, and thus the £-derivative of this component has an {impulse at

the edge. Clearly (2-40) cannot be valid at the edge. It turns out that the two

v ke a ol fe itk man

! sides of (2-40) differ only by the impulse at the edge, but this difference is

enough to invalidate (2-44), (2-47), and (2-50).

(R should be noted that we can eliminate this difficulty by decomposing

the surface current into 2 '"modified" physical optics contribution, with the

proper {mpulse function added to Ket , 80 that (2-40) will hold, plus 2 "modifled"
fringe wave current, with the equal ard opposite impulse fupctlon tncluded. It

{8 quite possible that this i{s the procedure we shall adopt ix;’future work. For

the present, however, we have declded not to introduce the alldltlonal complication

of redefining physical optics. )

Whenever (2-40) does not hold, (2-44) and (2-47) must be replaced by

the more general expressions

wlll(k;Bl"P[;Bl’ Pgi 1) (2-52)

Fas s Fal
=lz° Keu(k;Bl.¢l;l) -@p-n) 2, Ke“\(k cosBl: 0,¢l; t) slnBl]cos Bl

Wi 168 HBy» i ) (2-53)

|

= zolRetl &; B, die) + —&-‘-— -56—1- Reu‘k cosf3; 0,¢l;l)tanﬁllcosﬁl ,

which can be derived from (2-31) and (2-33) by use of (2-38) and {2-39). I such cases,

d,  will usually be non-zero for Bl # 0 and can be calculated from (2-32).
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2.2 THE UFIMTSEV AND KELLER DIF FRACTION COEFFICIENTS FOR A CON-
DUCTING WEDGE
2.2,1 BASIC IDEAS

Let us now constder the case in which our cylinder of infinite length

is a wedge whose two faces are (nfinite half-planes.

We are Interested in this problem not just for its own sake but, even
more importantly, because the wedge is the simplest body which has an edge.
In practice, we treat the wedge problem as a canonical problem, and we use
the results in solving a variety of other problems involving bodies with edges.
In keeping with this practical emphasis, we shall use the term edge diffraction
coefficient rather than wedge diffraction coefficient.

The geometry for scattering from a wedge is shown in Flgure 3. The
wedge angle s 2a. The t-axis, at which p =0, is chosen to coincide with the
edge, which we designate as C. The unit vector n, bisects the wedge angle and

points out of the wedge. We also define a unit vector

2 = L X 20 {(2-54)

so that n,» b, t, in that order, form the basis of a right-handed Cartesian
coordinate system. The two faces of the wedge are deslignated as S_and S_,
with b pointing from the S, side to the §_side. The unit outward rormals to

S, and 5_, which we designate as n_and n_ respectively, are given by

k=
"

n,sina-b cosa
. (2-55)

3
"

n, sin@+ b cos «a

We also deflne unit tangent vectors e p$ and e = which lie on §,and §_ res-

p
pectively, and which are normal to t and directed away from the edge, so

that




€, = ~@ cosa+ bsina)

. (2-56)
e = -{p_ooosa- b sin a)

The x-axis from which we measure ¢l ard ¢s is chosen to bisect the

wedge angle and is so oriented that

©x B . (2-60)
The wedge factor

= ———
Vo= 2 (m=-a) (2-58)
plays an important role in the wedge diffraction results. This factor has a
minimum value of 1/2 for a knife edge and increases with a. We shail limit

consideration here to the case of acute wedge angles

a < F . (2-59)
Thus we will always have
1
v <1 . (2-57)

For values of a greater than #/2, matters are complicated by the presence
of reflections t;etween 8, and 8_.

We will consider in detatl two kinds of diffraction coefficients. The
Keller diffraction coefficlent gK describes the exact solution of the wedge
problem, the far fleld produced by the total current on the wedge.
The Ufimtsev diffraction coefflcient gu describes the contribution to the scat-
tered fleld produced by the '"fringe wave'' current, which is the difference
between the true current and the current predicted by physical optics.
For most angles of {ncidence, the fringe wave current {a concentrated near

the edge.

Somctimes it {8 convenlent to define a third type of coefficient, the




PR

PO' which describes the contribution

physical optics diffraction coefficlent, d
to the scattered field due to the physical optics currents on the wedge. This

ls related to the other diffraction coefficients by the simple formuia

; dPO _ 4K _ 43U (2-61)
3 = =

In (2-19) and (2-22), we defined d in terms of the far-field solution.

The wedge, however. ts a cylinder of infinite cross section, and thus it {s not

i 220 MRt b 9 ue

a priori certain that there is indeed a far-field region, that is, a region i{n

which the amplitude and phase of the far-fleld wave depend on Ro in the manner

Sl 44

of (2-19).

It fortunately turns out that, for most combinations of ® and <ps, there

t does exist a far-field region.

| There are, however, combinations of ® and ¢_ for which this is not so.

In these cases, no matter how large we make Ro’ we never reach a region in
1/2

B L T PREDY VAR tF MV STot e

which the field decreases as RO- in the grs direction. For these cases, a
formal calculation ofg yields an infinite or indeterminate result. Ome of the
advantages of 2U over EK is that ,EK has a singularity whenever ¢8 lies on

a gcometrical shadow boundary or reflection boundary, but gU is finite and

uniquely defined excepl for grazing incidence problems with ¢l =nmta.

Even though gK exlsts for most comblinations of ¢l and ¢ gt it cannot
be computed using (2-32). The conditions for valldity of (2-32) are more
stringent than those for existence of a far-fleld reglon.

2.2.2 SHADOW BOUNDARIES AND REFLECTION BOUNDARIES

TR AR T TR WIS AT OMINNCIDIRIE Y SONGRE & Sras)

ﬁ Consider now a wedge with a > 0. As we see from Figure 4, there
l are five types of illumination possible:
Case 1. Omnly 8, is tlluminated (a < ¢>l < n-a)

Case 2. The (ncident wave {lluminates S, and grazes S_ (':,13l =1 ~a)
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Case 3. Both S, and S_ are illuminated (7 - a < <j>i < m+a);
Case 4. The incident wave grazes S, and illuminates S_ (¢l =n+a)
Case 5. Only S_ is illuminated (7 + a < ¢‘ <2n -a),

We refer to Case 2 and Case 4 as the transitional cases.

Let us first consider the other three cases. Cases 1 and 3 are tllus-
trated in Figure 5, and Case 5 is analogous to Case 1. In Case 1, there {8

a gshadow boundary at
by =g, = G +m (2-62)

That is, in the simple geometrical optics approximation, the region <ps<(<p‘ +m)
is (ltuminated by the incident wave and the region ¢>8 > (c,‘)i + ) i8 in the shadow

of S, . There is also in Case 1 a reflection boundary at

?s =¢R+ $ mH2a - <’51 : 2-63)
That is, in the simple geometrical optics approximation, a wave reflected
from S, exists in the region ¢>S < (m+2a - ¢l) and is absent {n thg reglon
qbs > (m+2a - ¢l). ‘The two boundaries coincide when (6‘ = a.

In Case 3, there are two reflection boundaries, one given by (2-63) and

the other by

Py “%h- £ 37~ 29-¢, (Reflection from S ) . (2-64)

In Case 5, there is a shadow boundary

$s = ¢S- = -0 (Shadowing by S_) (2-65)

and a reflection boundary with ¢s given by (2-64). The two boundaries coin-

E cide when ¢ =27 - a,

We see ihat there are four difterent types of geometrical boundarles,

the shadow boundary and the reflection boundary for S, and the analogous

30

o

o P T




Reflection
Boundary

Incident Wave

A S
\ S_
Reflection

Boundary

TWO REFLECTION BOUNDARIES

Incldent Wava
S+
Reflection I~ "
Boundary
N
I £
/ :
S
’ -
Shadow Boundary
ONE SHADOW AND ONE REFLECTION BOUNDARY l
L ]

FIGURE 5 SHADOW AND REFLECTION BOUNDARIES

_!mm-w e AT e AV e




boundaries for S_. In each case, we actually encounter two of these boundartes.

These two we shall call .ne real boundaries for the given value of QSl.

If we now evaluate P, Pg., and ¢ _for dase 2, which is a transi-
tlonal case, we find

=3 a =%_ = 27Te @ . (2-~66)

PR + v Py

We thus see that there Is a reflection boundary at

¢s =(bR# = 3 a (2"67)

and a double boundary along S_ at
= = = - 2'68
P, =B, =Pbg_ =27 -a (2-68)

which s both the shadow boundary with reference to face § . and the reflection
boundary with reference to face S_.
Similarly, in Case 4, there is a re‘lection boundary at

s = Pg. = 27-3a (2-69)

and a double boundary along S_ at

¢ s = (PS_ = ¢R+ = a (2“70)

which is both the shadow boundary for §_ and the reflectinn boundary for S +

To unify all these results, we generalize the concept of a geometrical

boundary as follows:

For every value of ¢,, there exist four geometrical boundaries,
i ————

given by (2-62) to (2-65). A given boundary may be real, lying in the

open range a to (27 - a); it may he a grazing boundary at a or (2r -a);

or it mav be a virtual boundary whicn lies outside the closed range a to

(2n ~ a), Grazing boundaries oceur in pairs, and the nuigber/gf virtual

boundaries equals the number of real boundarlei./
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The generalized concepts also hold for the knife edge problem a = 6.
In this préblem, we have Case 1, Case 5, and one transiiional case, ¢l =,

for which there are two pairs of grazing boundaries, one at 0 and ore at 2.

We now Introduce the notation §g, for the angle from é_\: to the skadow

boundary with reference to face S o

‘S‘.’ :¢S+ -¢8 =”-¢8[,
and we simlilarly define

SRe = Ppe BT (M2 -Sp

b5 = Pg. "% = T Py
‘R" =¢R' -¢8 = (3"-20)-¢2
Here
Pot =% "P
The &, are meaningful even when they correspond to virtual bounderies.

j
It is important that the & § be uniquely and appropriately defined, be-

cause we will be considering trigonometric functions of fractions of these
angles. As long as we restrict ¢l and ¢s to be angles outslde the wedge, the

proper values of the & j are obtained by choosing <;bl and ¢ e in the range

af‘¢‘5 (Zﬂ-a) ’

(2-71)

(2-¢2)

(2-73)

(2-74)

(2-75)

(2-76)

(2-77)

e et
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a = ¢ = @7 -0 : (2-7¢)

In working with the §,, the identities

)

6R++6S+= 2[”"(¢s‘a)] ’ 6R+-6S:-2 (¢l—a)

R-* 8. =217 (e 0y ], b -4 =2[20-(p+a}] (2-79)

frequently prove useful,
2.2.3 THE KELLER COEFFICIENTS FOR A PERFECT CONDUCTOR

Thus far we have not epecialized to the case of a perfectly conducting
wedge. Let us now make that specislization.

The Keller diffraction coefficient for a perfect conductor Is given

in Section 3 of Reference 3. In our notation, these results become

K _ K 8 { K s i -

2 - dj, ‘11 eyt d i g.u E.u (2-80a)
K s | s i K ,8 t 8 | -
dg €y e, *epey) +dyie e e ey . (2-80b)

where

K K K K K K

dl = da+db , dy =da -db ’
K 1 K K K _1 K K
da -'é- (dl +d" ) db = ‘2‘(dl"d") ' (2-81)
and
etvr/a. i
d = '—"I'T vV sin v . (2-82)
/ - -
8 @) COS V7 - cOS v (¢‘ ¢s)
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=

K el /4

d - 7 vsin vo . (2-83)
.(2«)1 cos vm + cos[ V[Zﬂ- (&, + Oc)]]
Here we have used the simplified notation dl . d“ for d“ , d'| §e In accoved

with (2-49) and (2-50) there are no cross~terms {n gl( . PFurthermores,
{s tndependent of k and of ﬁl’ (From (2-48) we gee that independonce
of k implies independence of 51.)

By straightforward application of standard trigonometric identities,

we can obtain the equivalent forms

. L /4
af = 2 172 Uvﬂn — (2-84)
2@2m) sin(z dg, ) sin( % 8g.) ,
ir /4
dé‘ e - £ 7 Vain v (2-85)
2 @2m) sin (%6R+) sln(-%on_)

These are not as convenient for computation as (2~-82) and (2-83), but they
show how simply the Jiffraction coefficient Is related to the positions of the
geometrical boundaries.

It {s a simple matter to decompose each expression (2-84) and (2-85) into a

contribution from the current on S + and a contributton from the current on

S_. Letus write

(1K=dli + gl_( , d(:c = dK + d » q= 1, lIl, a, b! etc. ’ (2-86)

where + indicates the 8_contribution eand - indicates the 8_ contributlon. We then
readlly find

K e.l " /4 vV (2-87)
d = - v cot ] =
a+ 2 @n _)172 2 %« |,
tn/4
K _ e ' y 2-88)
d = v cot <« ¢ ’ (
a - 22 )172 2 "S-
in/4
K . e vt L4 (2-89)
A+ 1/7 7 SR+

2 (2m)

——




I+

X
it =

e v
= v oot «2—6 - : .
2 @m/? B |
1 4
etﬂ/4 sin 3 (6S+ +6R+)

n

1/2 v v
2 @2m sln 5 4. sin zép
elw/4 sln v [(rra) -d’g]
- (2”172 cOo8 ¥ (dl—-a) - co8 Vf(w+a) -dB]
ol M/4 cos v (27 - &) '
v T
@) 1/2 sin # (w -6‘) -siny(@2w 38)
/ 2
el"/4 Y sin ) (db.-*ba_)
1/2 v v
2(2m) sin <5 68- sin 7 %R-
ol /4 sin v{(m-a)-¢ ]
(2«)172 cos v{@2m-a)~¢]- cosV|(n- ")‘%3
i el /4 cos v &
(2")172 sin v (n -¢,) + sinvg_
[ 4
ol /4 ) sin = (8g, ~6p,)
1/2 v v
2 2 sin T"s+ sin _2-‘R+
A7/4 sln v (¢, - a)
(2”)1,72 cos u(dt-og- CoA u[('m-a)-és]
eln/4 cos u(n~¢l)
v —_— A\S
(2”)172 sinv/n- ¢t’ -~ 8in V(fn-és)
. Vv
gl_ﬂ/fl . ?!n 5 (g = %)
1/2 2z, 2
2 2m) sin < ég. sin > éR-
oi"/4 sin V(en -a)-¢, )
(zﬂ)m Y eos T [27-a) - 6() ~ €08 | (Weqx) - ¢B"j
_ e 005 (7 =4;)
@ ”)1/2 slnv(n-—»ﬁ‘)«rs!nuba

[y

(2-90)

(2-91a)

(2-91b)

(2-910)

(2-92a)

(2-92b)

(2~92¢)

(2-93a)

(2-93h)

(2-93c)

(2~94a)

{2-94b)

254

In each equaticn, the sine terms in the numerator of the "2 form and of the

'b" form are equal, 8 can be veritied using (2~79).
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if now we conslider the df 4 as functions of Pgr We find that
]

d has odd symmetry about ¢8 =p+a;

it
dl_ has odd symmetry abontda8 =m-a;
d"+ has even symmetry about ¢8 =m+a;

d _ has even symmetry about ¢s n-a.

, n
These are exactly the symmetry properties we expect from the concept of

each face of the wedge being a radiating current sheet.

It s readily verified that the results glven in (2-87) to (2-90) add up to yleld
the results given In (2~84) and (2-85). The "' and 'b' forms of (2-91) to (2-94)

are obtalned from (2-81) and (2-87) to (2-90) by using the {dentity

sln(y+x) _ 28in(y +Xx)
sin x sin'y T Cos (y -X)-co8 (y +X) , (2-95)

oot X tcoty =

and the ''c'' forms are then obtained by using the definition (2-58) of ¥ and
standard trigonometric {dentitles.
We omit here the proof that the terms with subscript + and -
are indeed due to currents on s, and S_ respectively, but we note
that this proof is easily made as a by-product of the derivation of the

Incremental Length Diffraction Coefficlent.

There is no difficulty in evaiuating any of the expressions for

gK and its components in the transitional cases

On the other hand we see from (2-87) to (2-90) that SK is singular

when 8., & , 8p,, or dp_1is zero. This confirms our statement In Sec-

S+’
tion 2.2.1 that gx has a singularlity when d’e ltes on a shadow boundary or a
reflection boundary. It can furthermore be verified that, because of the con-
dition a < —2’-'— , the arguments of the cotangents In (2-87) to (2-80) never

reach 7 or -m, and thus the shadow boundary and reflection boundary singula-

rities ave the only singularities of_c_lK.

;
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2.2.4 THE UFIMTSEV COEFFICIENTS FOR A PERFECT CONDUCTOR

The Ufimtsev diffraction coeffictent gi__U for a perfect conductor has the

form
u_ ,U_s8 i U s i U s
d7=dye e vd e e, v dy ey ey ' (2-96)

where we have used the simplified notations of Section 2.2.3 and also dx in-
stead of d" L for the cross-term. From Section 2.1.68, we see that this is
indered the most general form we ever encounter for a perfect conductor
diffraction coefficient; d1 " is always zero.

It ig convenient to proceed as {n Section 2.2, 3 and define daU and

dbU such that
U _ U U
N —a "h 2-97)
U _ U vU_1,.U .U -
dg -'é(dl*du" 4 =z @y -4
We then can write '
u_,U =8 i s i U s i g8 | v_s _1
4" =d e e veue,) g e eme o) tdoe e (2-98)
We also proceed analogously to (2-86) and define
U U U U _,U .U
=d d N d = d d ’ =4, i y 8y Uy . ’ 2-
g d, +d_ 4 q++ - q =1 x, a, b, etc (2-99)
where + and - indicate contributions from S, and S_ respectively.
The diagonal elements ong are given in Section 4 of Ufimtsev's book
(Reference 1). Expressing Ufimtsev's results in our notation. we have
tﬂ/4 &b, -
U_ K L~%
@ ")
U ol 7/4 [ " P 20 ¢ +¢, +2d
= U, ($,) tan - U_ (%) tan . 12-101)
4y =9 * 2““'(2 7T P | 55—




Here U, and U_ are step functlons defined by

U+(¢l) = 1for (m+a )>¢l_>_¢z
undefined for ¢l =m+a ’ (2-102)

]

0 otherwise
SR TE

U_(¢‘) 1 for (2n - a)2¢l> (7 - a)
undefined for ¢, = 7 - a . (2-103)
= ( otherwise
That is, U, =1 when S_ is illuminated, U_ =1 when §_ is illumingted.
We see that d aU and dbU are independent of k and Bl' and thus dtlJ and

d:: are independent of k and Bi' We also note that

A
U_,K
d = =d~ for (17+¢y)><75>s >(m-a) .
By making use of the easlly-verified ldentities
1 = . = - cot -~ = - cot —— .
tan—2-—(¢l-¢s)--ta.n 3 ¢sl = - cot = g¢e = -cot 3 "s-, (2-104)
tan —- (P + ¢, -2a) = cot—;- LI
= (2-105)
1 = —_
tan 5~ (¢, +¢_+2a) = cot = 4. |,
we can write (2-100) and (2-101) in the equivalent forms
in/4 ) 8
U_ K, e o8+ S- 2-106
da 'da+——Vz(U+°°t 5— -~ U_cot =) (2-108)
2@m)
v _ Kk, o~ OR+ R
d =d + 2—(;-—)—175 (U, cot == -U _cot ——) . (2-107)
.




From th@se expressions and (2-84) and (2~85), we see how simply the d'agonal
elements of _gU are related to the positions of the geometrical boundaries.

It is now straightforward to separate the S . and 8_ contributions to

U U
d a and db , We obtain
in/4 B
13) e v 1
= - a~ - - 0 = 0
da* m v cot (2 ‘8-0') U+ cot ( 5 S‘f)] N (2-108)
in/a [
alU. e veot (Lé.)-U cot (= s )], (2~109)
2(2")1/2 L 2 8- - 2 "S-
I in/4 -
i A - N 4 - L 2-110
db+ = 2(2#)1/2 vcot(26R+) U, cot ( 5 6R+):]’ ( }
i in/4 -
U e v 1
= = veot (58, )-U_cot (g4 _)] . (2-111)
d'b 2(2”)1/2 2 "R 2 R
The S, and S_ contributions to d? and dl": are
|
1
? v
: U ln/4 sln —-(4g, +6R+) sin —(6 MR+)
2(2m) sin == 8o, 8in & 4o, sin -5-68_F 5 6R+
U l /4 [ sin -;—( 68— +6R__) ; sin —12 (6 + R ) ] (2-113
—-——7- -U_ . - )
(2rr) 2 sin -3'- sln-—dR sin ; S- sin?1 R- ‘
1
JU elﬂ/4 sln-2-(68+ &) 8in - (8g, = 85.)
I e 2l e mZo.. " omLsomLls + @
@2nm) sln2 S5‘3112 R+ 8“'2-6548"'2-&#
| U ol /4 8in % (4p - 8g) sin IT g~ &)
M- = 5@ m\1/2 v { v v s - U B! ] (2-115)
2m) B“Ts.sln'é" R- slnT S- slnTJR_.
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The (4 = §) terms can be evaluated using (2-79). Note that the coefficlent

]

“of the step function U , |8 obtained from the Keller coefficient by substituting
3 for v. Using this fact, we can readily construct forms nf the dUoorrea-
ponding to the 'b' and "c'' forms of (2-91) to (2-94), The symmetry proper-

ties of the dY L 88 functions of ¢8 are the snme as those glven in Sectlon 2.2.3
K . o
for the % &

b
“
e e ¢l gt o e i 1 Tt o e et
et

When both ¢i and ¢Blle outside the wedge, in the range a to{n - a),
the forms (2~100) and (2-101) are probably the mosi useful ones for actual
computation. It may also be meaningful in some lnatances to consgider values
of q‘;s inside the wedga,' because the fringe wave current alone does produce
scattering in these directions. For such directions, we can use (2-108) to

(2~-115) provided we use the range of angles

-

@mea)= @ = a (2-116)

i1z the expressions for the dq , and the range of angles

@n-wz¢, =~ (2-117)

In the expressions for the dq_. This cholce of ranges can be justified by
symmetry conslderattons., In actual computation, (2-108) io (2~-111) are
probably more convenient than (2-112) to (2«1185). F

‘; It may be raeaningful to conslder values of ¢ ) inside the wedge, but

i this question has not yet been studied.

| The cross~term de ts glven by

‘ |
| u o774 , (2-118)
dx = - m slnﬁl U* (¢i) = U_ (¢l) ] ’

which vanishes when both faces are illuminated and also for incldence
normal to the axis. To verify (2-118), we calculate \ " lPO (which
is a simple and straightforward procedure), use {2-47) to show that

wUs-- W, lPO’ and then calculate ¢ U from the W form of

na

o
.

(2-32). Since d xU ts Indeperdent of qJS , we may use (2-118) for

$a

Tpos



values of ¢s {nstde the wedge, and it is thus not necessary to
consider a decomposition of dg into §_ and S_ contributions.

A
(In order to carry out the decomposition, we would have to evaluate Ke m at

the edge. This would be just an unproductive stde issue.)
The crosa~term d:J does not appear in Ufimtsev's work (Reference 1).

This does not affect his results for two-dimensional problems, because a two-

dimensional probiem involving only perfect conductors can be reduced to an

» cane

equlvalent problem with 8 { = 0 for which de vanishes. Similarly, Ufimtsev's
results for backscatter from a three-dimensional body are valld whenever the scat-
tering appears to arise from single diffraction at scattering centers, because

here Bl =0 in the canonical problem which we utilize at each scattering center.

On the other hand, the absence of the cross-term can make an important dif-

ference in thrze-dimensional bistatic scattertng problems and in three-

R b b i vt il Baet ad i et e i A 9ot '('wi'| i

dimenslional backscatter problems involving multiple diffraction or combined

diffraction and reflection. ;
4

|

As noted {n Sectlon 2.2.1, QU is finite and uniquely defined for atl b

¢s when ¢l # 7+ a. Toprove this, we refer to (2-198) to (2-111), note | 2
|

that the step function U, Ls always unity when the arguments of the cotangents i
are zero, and use the identity ?
1 v :

vtan =6~ tan = § v

veot ( %6) - cot (;-6) = f - 2 =%-(1 -v2)6+ 0 (63) 2-119) L
tanz & tan %6 P

U TR ASOT 6. O DNDS. U rees s s - - -

i
to show that there is nefther a singularity nor an ambiguity in definition when i ‘
|

one of the 8 is zero. Furthermore, it can readily be verified thal 68+ and

6R+ have absolute value less than 27 for all values of <I>l for which U+ =],
and . and 8 o have absolute value less than 2 for all é, for which U_ =1,




Thus the terms of form U cot §/2 have no singularities other than the one
at 4 =0. It follows that the d v are uniquely defined and finlte for all ¢>B

g:t

when ¢£ #nia.

For the transitional or grazing cases ¢i = m+ a, we would expect
some difficulty since, for a 1-polarized incldent wave, we do not even have
a unique separation into physical optics and fringe wave currents. Let us
conslder the elements of éiU separately. The simplest to deal with s dg.
We see by inspection of (2-118) that, for 31 ¥ 0, d:] i{s not deflned for

¢l =n+a, values which In fact correspord to discontinuities in dg.

For B, =0, av

x vanishes for all values of d’l' including 7z a.

The most efficient way to study d? + and d:{ .

pressions (2-108) and (2-110) for d;{( and d.DU+ and the definitions (2-71) and

is by means of the ex-

(2—72)fm'6s+ and 6R+’ We find that dY+’ as a functlon of ¢l and ¢s’ has a
rather complicated behavior near the points (¢l' ¢8) =(n+a,a) (7+a,

2m +a), a behavior which {s probably of no physical significance. For

a < ¢B< n+taand 7 +a < ¢s < 27 +a, di{'_lsnotdeﬂnedwhenﬁb( =mn+a,
because there is a finite discontinuity of di’L across this value., Only when

¢8 =¢~[ is dIL_ defined for ¢l = 7 +a, but this exception t8 very inportant

because it Includes the case of backscatter. As to d:{ 4+ Wwe find that it s

defined for ¢l = m+a in all cases but ¢s = q and ¢s =2n +a, where we

encounter the same kind of complicated hehavior as for dY +
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In similar manner, we find that dY_ and d:‘,’_ have a rather compllicated

behavior near the polnts (7 - a, - d) and (7 - a, 27 -a); that d‘f_ {8 not

deﬂnedfor(rr-a.¢8)when-a<¢s< n-a or n—a,<q‘>s<2n-a because

h these values represent a line of discontinuity; that dlf_ s deftned fer ¢s =

| = m-aiandthat d;_ls defined for ¢ ~ 7 - a and -a < $_ < 27 -a.

All elements of gU are defined for backscatter at non-oblique
{ncidence,

: (2-120)

and thus g_U {s 2 continuous fuaction of fP‘ for backscatter,

The fact that a dyadic element does not exist for a given palr of values

of ¢l and ¢3 tells us that our simple model of the scattering mechanism is

not valid at or near this palr of values. A more complicated model must be used.
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2.2.5 SIMPLIFICATIONS FOR A KNIFE EDGE

—

e

For a_lgnl,ie,edge',"'\\?'e/have

= = L
a 0.0—20

There is no range of ¢, for which both 8§, and S_ are illuininated.
There is only one transitional case,

b, = 7.
There are no angles inside the wedge, and both cp‘ and ¢ 8
run from 0 to 27. Also

U = l-U .
- -+
The simpiest and most important forms of the diffraction coef-

ficient for a knife edge are

ol n/4 sin %(”‘9!’5)
/2

-

dy =+

1 1 1
2n) sin §-|ﬂ-¢‘|4 c-os-z-(n-tbs) ,

U _ ,U_1,U
dl + - dl- 2‘ dl ] 1
d U _ elﬂ/4 cos .2- (”-(Pi)
4 - = :
(217)172 sln%—lﬂ-tpllo- cos-z-(n -<;>s) .
U U 1
d" + d“ - = f d-l ’
m/4
dU x - f._‘._/_._. sin B‘ ’
X + (2”) 1/2

where the - sign is used for ¢i< m, the + sign for ¢, > 7. We have
written d 1U in a form which emphasizes that it is an odd function of
(”"4,1) and an odd function of (7 - <;bs), and we have written d “U ina

form which eraphasizes that it is an even function of (7 - qbl ) and an

even function of (7 - ¢>8).

(2-121)

(2-122)

C@-123)

(2-124)

(2-125)

(2-126)

{2-127)

(2-128)
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We readily see that dU

€xcsept when <pl = n. When qS‘ =m, d"U is uniquely dafined for ali

is finite 2nd uniquely defined for all P

values of $, except 0 and 27, d lU/(s' defined uniyuely for P = ¢l =
but not for any other value of $gs ARG d XU je uniquely defined only
when B‘ =0,

Other diffraction coefficient forms which are of inte-est {nclude

in/4
g K.__¢ 1 , (2-129)
2 2eml/? cos [5 @ - 09|
(2m) cos | 7 (9 - ¢9)]
dbx L 6111/4727 11 ’ (2-130)
1 1
'_ : 2(2nm) cos { 5 (cﬁ1 + és)l
(/4 (/4 t+tan F&
at 42m) St 42m) 1=~tan 7 &g
K eW/4 1 e“'/4 l'ta”%‘bsi
da_ =4 7z cot 7 65" == 172 1 ’ (2-132)
4(2n) 42my"’ ° 1+tan 7 %l
, 1
in/4 in/4 l+tan — @
K_ e 1 e 17z
== cot 6, =~ . , (2-133)
o 4ee/2 T TRe 4zny’? 1-tan T Py
. /4 ) Jl7/4 1-tan ¢ ¢
Gy = g7z cotFbép_ =- 172 1 : (@-134
: 2(2n) 421y 1+ tan Z¢E

K _ 0e!?/4 sin ;- (m-&,) sin %—(n-g&s)
e vz ! (2-135}
@n) cos (7-P,) +cos (n- P.)

1 . 1
4K 20l 7/4 cO8 5 (7 ~p,) cos 7 (=)

== H (2~136)
: 2 cos (T=P}) +cos (7 - )

(2”)1 2
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K w/4 sin 1—(ﬂ-¢)

d; =-= :
o 2em 2 sinl(n-dy) - cos L -9,)

K eln/4 sin -(ﬂ-¢8)

dj .=~ 172 T '
i 2(27) sin i’ (M=) + co8 & (7 -a)

in/4 cos L (7 -¢b)

gk _¢ 2 | X

I+ 1/2 ?

22m) % sin ;—(n-q)l)-cos %(n-%)

K =.el"‘/4 cos-(ﬂ @)

= 1/2 sln-(rr -¢l)+cos-(n ¢) ’

2(2n)

el n/4

U 1 1
d - - 1 ¥ Sln-(¢ "é) l)
a 2(2")1/2 cos%(%_%) [ 2T
tn/4 [ _
U e 1 1
= 1 7 8ln 5 (+¢) ],
% 2(2,,)172 °°8%(¢|"¢s’ 2 """ ¥s

with the upper sign used for ¢l < n, the lower sign for ¢1 > m; and

lr/4
al -

a+ W(z COt4 S+- U cot 65_’) ’

Y e‘”/4 1 1
da- = W (E cot ry 6S U Cot 68_) ’

eln/4

U . L ootle -y cotk
a T ve Rl B 38 TR A D

lﬂ/4

1
= ( - U COt -6 .
G- 2(2"') 172 & Op. ~U_cot 360

(2-137)

(2-138)

(2-139)

(2-140)

(2-141)

(2-142)

(2-143)

(2-144)

(2-145)

(2-148)
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Alternate forms of (2-141) and (2-142) can be obtained by using the identity

1+tan X
. CO8 X X
clo; imkz 1- s‘n X = cot (41- f) = 2x . ‘2-147)
1 ~-tan 5
The identlty
7 cotpo-cotzé= rtan 16 (2-148)

can be used to simplify (2-143) and (2-145) when U+ =1 and to simplify (2-144) and
(2-146) when U_ =1,

2.2.6 BACKSCATTER AND GENERALIZED BACKSCATTER

We shall define generalized backscatter as the case in which

¢, = =@ . (2-149)
Thus backscatter s a speclal case of generalized backscatier for which 13‘ =0,

The results for generalized backscatter are no more complicated than those for

backscatter alone, except that the relationship of e Isl toe I: {8 given by

s _ 1 _ t _
gu—(g“ -t xE,xt) (2-150)
for generalized backscatter and
e, =ga_“| =t (2-150A)
for backscatter. We have

e® =- el =e

€4 - (2~150B)
and

- - 1 . { - 1 _.anm -

0gs==8g =7 , Fop,=(F+@) =@, z6p =(F-a)-¢ . (2-161)

Also, since we are assuming that ¢l I8 an angle outside the wedge, we have

@2n-a)>¢> a . (2-152)

The simplest and most important forms of the diffraction cocfficient for

generalized backscatter are
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v
v e‘ /4 v sin g (g, +™) 1
22n) sinvy  slng 6p,
im/4 1 1
._® [ v 2 -U,cotz 6.0 |, (2-163)
g@ml/2 L8t 4,y vZtanv(2 7 -¢) + 7 pe |
X -
4 U olm/4 [ 8ln 3 (6 _~™ ‘U cot;-GR_]
1- 2 (2 n)1/2 sin 112E sin 226R- (2-154)
=_el"/4 [‘"” 2 +U_cot:1?6R_] ’
2emt/2 LOVT v ianve
lﬂ/4 v ”] 1 1
d" 2(2”) 3.{(“” - cot 3 63_) -2 cot vy -U4cot 276R+ +U_ cot féR-$
in/a
e [ v 4 1
=- +U, cot 1o -U cotls ] (2-135)
2(2”)172 sinvnm l-tanzvg- tanzl»'(ﬂ-db) 2 R+ “- 2 "R- ].

The expression (2-118) for d

generalized backscatter.

when ﬁl =

0,

o}

X

XU does not simplify sigrificantly for the case of

(For true backscatter, which only occurs

v vanishes. )

In (2-153) to (2-155), the firet form can readily be found from

(2-112) to (2~115), and the second form can be found from the 'b"

forms {n (2-31) to (2-94).

We can obtain d

K’ d
1+

K

l-
terms in U, and U_ from (2-153) to (2-155).

1

and d

"K stmply by omitting the

Other diffraction coefficient forms which are of in.. ~est are

cl n/4

@m

1/2

1 4

cot v

'
=

2

An/4

vefnvn

@ ")172

1-cosvrm '

(2-158)

(2-157)
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in/4
U_e 2 vsin v ) .
% = 2(2")172 [ CoR VT CoB Zrpi<p * Us tan @9 - U_ tun g+a) ] ;
in/4 .
U e 2
d, =- [ + U tan (¢..“) J ,
HE 2(2,"1/2 sinwm 1 ~tan vzﬂ tan ”("-¢ +
in/4 ‘
U e [ 2
dy_ =~ -~ U_ tan (P+a) | .
- 2(2”)1/2 sinvrm 1+tan v-’é’ tan y(7 ~¢h) - ]

We can obtain ¢, d, %, 2 _* from 2-158) to (2-160) by omitting

the terms in U, and U_.

We have omitted expregsions for the dbe’ U, which only tnvolve
using (2-151) tn (2~89), (2-90), (2~110), and (2-111}, and for dLK and
d LU, which are merely the sum of the appropriate ¢ i+ and d‘l _ with
no significant stmplifications.

It is important to note that d lU and d “U are continuous functions
of ¢, specifically that they are not discontinuous as ¢ passes through
the grazing angles ¢ = r % a. ’

For generalized backscatter from a knife edge, the simplest and

most Important forms of the diffraction coefficient are

in/4 i7/4
U e 1 e - b -

d, =- =~ [1+tan(-+ 1)] ,
Poent? et pleg|  zemV? 2 4
U_,U _1.U

4479 =74 '

U elrr/4 1 _ eirr/4 b- =

dy 75 1 =- i7z (lraniz )| o

27)7° 1+ ian 5[’-‘-9‘:{ 2(27)

' (2-158)

(2-159)

(2-160)

(2-161)

(2-162)

(2-163)

(2-154)




and (¢4-128) for d XU. which does not simplify significantly. In (2-161)§nd (2-163), the

upper signs are used for ¢ < # and the lower signs for ¢>n,

FRETER, T,V T S (R e

Other forms of interest are

v .k et (2-165)
d = d ==- ’ =

a a 22 ”)172

U_,U_LK_,K_1 K ] 2-166
aV=qY=d =d" =3 q ; (2-1686)

in/4
de L8 1 : (2-167)
2(2”)1/2 cos ( m=9) ’
. é
K ol n/4 1 + tan

X =- 5 2 (2-168)
+ 42nmy ¢ 1 - tan%’

-tan 2
de . elrr/4 1 tan 7 ’ (2-169)
- 4(2rr)1/2 1+ tan %
L2 { . ]
db =L 1 1- | sin (7~¢) I , (2-170)

C2@em)? cos (m-¢)

fe.)
| /4 - 1+tan =
U___e 1 2 _y tan ¢>~| , (2-171)
v T g m? [2 1 -tan @ * -
in/4 1-tan @
d'bU .. 8 T [}. 2 + U_tan ¢] H (2-172)
- 2(2m) /212 34 tan ?
JK_ & 1-cos (=) (2-173)
i 22 ”)lﬁ cos ( 7-¢) ,

in/4
e 1 (2-174)

e 2@m)/? 1 -cot %("-dﬁ
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ew/4 1

2(2rr)1'72 1 + cot ;-(n -

e! n/4 1 + cos (m=)
172 cos (7 -¢)

22n)
K el"/ 4 1

ey (e yr—

el n/4
1/2

K _
="

1
tan%(ﬂ-¢)+1

d

) 22n)

(2-175)

(2-176)

(2-177)

(2-178)
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NI, THE INCREMENTAL LENGTH DIFFRACTION COEFFICIENT

3.1 THE GENERAL THEORY

3.1.1 DEFINITION OF THE INCREMENTAL LENGTH DIFFRACTION COEFFICIENT

Let us now define the Incremental Length Diffraction Coefflotent
as a mathematical entity. We shall do so without reference to its
applications or to the considerations motivating the definition, matters
which we defer until Section 3.1.2,

We shall use the standard formalism for three-dimensional

scat _,scat

scattering problems, in which the scattered field (E , H )at a

point
!'. :R e (3"1)

in the far-fleld region is written in the form

exp JIkR } .
Escat___ 7 (1] E , gscat = ];Z e 8 X Escat , (3_2)

o o]

- where the radlation vector F s independent of R | and normal to the

unit vector grs in the direction of scattering.

By using (2-146) of Reference 4, we can write F as an Integral of the

effective surface currents K and K over the surface S of the scattering body,

= - —— 8 - s. t ) 8 ! -
E=- g_rx/dS'exp{lke_r o} K+ 2e . x K (3-2A)
S

When the incldent wave (8 a plane wave of the form (2-3), K, and K  are linear

functions of E p , which we can write in the form




K, =E Ky R for g =e, m, (8-2B)

On substituting (3-2B) into (3-2A), we see that we can write F in the form

_ 1., ‘ -
F—EOE E * (33)

Ho

where the dyadic D is dimenslonless and is independent of Eo and p.
Indeed, so long as we consider the geometry and composition of the
hody to be fixed, D is a function only of the wave number, the direction

of Inclidence, and the direction of scattering,

: _ ..l 8
| D=D kie ;s ) . (3-4)

o b ———— A
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Ve shall call D the Three-Dimensional Diffraction Coefficient

of the problem. The notation D, with appropriate subscript, super-

script,or other modification, can also be used to designate an approxi-

mation or a contribution to the true value of I_)

Now let us consider again the i~finite cylinder problem of :
i

Section 2.1.1, as lllustrated in Figure 1. We use the definitions i
of Section 2.1.1 for the quantitiest, n, £, t, £, L, g, ey gy, which J
refer to the cylinder geometry, and the quantities g:,., _@ri, e .l" g"i,
P ﬂi’ and ¢, which refer to the incident field. But now, instead of
treating the scattering from the entire cylinder, we consider the scat-

tering due to the effective surface currents on the incremental length

element of the cylinder which lies between the planes

1 .
Fat . (3-5)

t ==
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The incrementsal element will scatter {u all directiong, so now

. _
e Rt i sk Delteiternadi

the scattering direction _grs is independent of g_r‘. Nevertheless, once

L ae b

8 A B 8
we have specified a value of ¢ ., we can stili define 3, € ", e |-
and g: by (2-11), (2-13), (2-14), and (2-15) respectively, where now , §

’

Bg '8 Independent of Bl. We can also still define ¢ as the azimuth angle

A
measured from the x-axis to e rB.

Let us assume that e ri and g_rs have been so chosen that a far-

fleld region exlsts. (In the case of a finite cross-section cylinder, a
far-field region exists for all values of e rl and _ers.) The far-fleld
scattering can be described in terms of a radiation vector d_I-:oo, which
we can write In component form as

N 8 8
dF_=dF e +d Fw" e_" . (3-6)

This radiatlor vector can In turn be expressed In terms of a Three-Dimenslional

Diffraction Coefficient d D - by

- 1 - 3-7
dzw—Eok-ono'P. ’ 6-=7)

which is of the same form as (3-3).

It is clear that dgm {s a linear function of the length dt of the

incremental element, and thus we can write

ol n/4

© = @n )2 kgldt ' @=®

o
o




where 2 is a dimenslonless dyadi¢c which describes the scattering

properties of an incremental element, The formula (3-8) holds

for that particular element of cylinder which {8 symmaetric about t = 0,

For any other element, we must introduce a phase factor, (See (3-12).)

We shall refer to the quantity d as the Incremental Length Diffraction

Coefficient for the cylinder of interest. If we consider the geometry and composition

of the cylinder and the orientation of the axis to be fixed, then d is in general a func-

tlon of the wave number, the direction of incidence and the direction

of scattering,

d=d & By oy B ¥g) . (3-9)

For 85 = Bl the Incremental Length Diffraction Coefficient {8 equal
to the Two~Dimensional Diffraction Coefficient of Section II. This fact, which is
verified in Section 3.1.3, motivated the cholce of normalization factor in (3-8)

and the use of the same symbol d for both types of diffraction coeffictent.

From (2-6) and (3-6) we see that d can be written in component form

using (2-23). But now, of course, e : and ¢ "' are no longer constrained to

both form the same angle with the t-axis.




The notation d, with appropriate subscript, superscript, or other mcd!fication,

will also be used to designate an approximation or contributton to the true value of

the Incremental Length Diffraction Coeffictent.

3.1.2 APPLICATIONS

We shall now motivate our definition of the incremental length |
diffraction coefficient by briefly discussing some important applications.

The most straightforward application is to scattering from a
cylinder of finite length. Let us assume that the cylinder is sufficiently
long so that there Is no interaction between the two ends. Then we can
conslder the total effective surface currents on the cylinder to be the
sum of the currents K, K which would exist on an infinitely long
cylinder plus correction currents, both on the end plates and near the
ends of the shaft, which are independent of the cylinder length. In
many problems, the end effects are negligible.

The contribution to the scattered fleld due to the currents §e°c
and !imm can be described by a Three=Dimenslional Diffraction Coeffl-
clent gw. We can readily verify that I.J_wis related to the Incremental

Length Diffraction Coefficient d by the simple formula

{ e-l”/4 sin X
€r Y&y L,

. T kT Q(k; ’ ;B) ) .
(2”)1/2 X = Bl¢l 5 Ps

Here T is the length of the cylinder, I, is that point on the axis of the

cylinder which lies halfway between the ends, and

-1 -
X = 3 kT slnﬁl sin ﬁs

S LEES Al L e 3R in smSETGme ber Mhu oamr cxa r. L v

(3-10)

(3-11)
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{s half the phase difference in radlans between far-flold returns from tha two

ends of the cylinder.

The important problem oi scattering from a thin straight wire s of course

a apeclal case of scattering from a cylinder of finiie length.

Another class of applications is to scattering from a curved
rod, which we can define as the body produced when we bend the axis
of a finite cylinder but keep the cross section perpendtcular to the
axis constant at every point of the axis. If the radius of curvature of
the bent axis is large enough and If there is no significant interaction
between parts of the cylinder, then we can assume tnat

(1) The total current on the shaft can be approximated satis-

factorily by the sum of the currents §ew, K o which are

m
found from the corresponding infinite cylinder problem

plus end-effect currents which are independent of the length
and curvature of the rod;

(2) The compression and stretching of the surface when the
cylinder is bent can be neglected.

Because of the second assumption, the contribution to the

scattered fleld from the currents 5ew, K o CAN be approximated by

m
the three~dimensional diffraction coeffictent

e-t n/4

”zmkﬁdt'@m ke g+e - ol

g (3-12)
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Here t is the !ength psrameter along the axis, r is the position of a point on the
axla and {8 a function of t, and the integration is taken over the length T of

the axis. The diffractior. coefficient d is a function of the five arguments of
{3-3) and also «f the unit vector ¢ along the axis. Inturn, t and the arguments

Bi’ ¢i' BB' and ¢8 are functions of t.

Frequently the {ntegral of (3-12) can be approximated satisfactorily by
stationary phase techiniques. In many of these cases, the only significant
contributions to the integral come from the neighborhood of those points on
the axis at which Bs = ‘Bl Thus many curved rod problems can be solved
adequately using the two-dimensional diffraction coefficient of the corresponding
cylinder. This was done for the curved wire problem in a recent paper by Keller

and Ahluwalia (Reference 6).

The formula (3-12) can also be applied to curved rods of slowly varying
cross section, In which case dis a function of the local cross section as well

as of the axlial direction and the angles of incidence and scattering.

One of the most inyportant applications is to scattering from bodles with
edges, both wedge-like edges and rounded edges, Consider, for example, the

problem of scattering from a flat plate. I« the plate dimensions are large

enough compared to the wavelength and {f the directions of incldence and scattering

are not too close to grazing, we can approximate the total current on the plate as

the sum of the current predicted by physical optice plus the fringe wave currents
assoclated with the edges, We have shown in Section V of Reference 11 how

to calculate tne scattering due to the physical optics current., The scattering due
to the fringe wave currents is calculated using (3-10) for stralght edges and
(3-12) for curved edges, with d replaced by the Ufimtsev diffraction coefficient

QU. In Section TV we use this approach to solve the polygonal plate problem,
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The ldea of breaking the soluction up into a physical optics term plus fringe wave
scattering terms {8, as we have notad in Section I, also basic to the solution

of a large vartety of other problems.

The original three~dimensional body work of Ufimtsev (Reference 1) was
limlited to problems Involving curved edges for which the only significant
contributions to the edge scattering come from the nelghborhood of points where
Bg = B+ Thus good results were obtained using two-dimensional diffraction

confficlents.

3.1.3 THE DIFFRACTION COEFFICIENT AS A FUNCTION OF THE EFFECTIVE

SURFACE CURRENTS

A A
Let us use (2~27) and (2-28) to define surface current dyadics K e and K m
on the shaft of a cylinder, and let us also Introduce the dyadic function W which is

A A
related to Ke and lém by (2-30} and (2-31). We can then show that the Incremental

=

Length Diffraction Coefficient d for the cylinder is given in terms of W - and
A
thus ultimately in terms of K

K. and gm ~ by (2-32). The proof is obtained by

applying (3-2A) to find dgw for an incremental length of the cylinder, using
A A
(2-27) to express 53 and l_(m in terms of lée and I-:{m respectively, and then

tinding d from dF « DYy use of (3~7) and (3-8).

The expression (2-32) can also be used to calculate the ILW
with an approximation or contribution to the effectlve:‘ surface currents. Furthermore,
we can verify by irtegration by parts that (2-32) is s‘tlll valid when W is replaced
by the \5’ of (2-33). Care must be taken, when calculating \5’ for a surface current
contribution with disoontinutties in the Q[ j to acoount for the discontinuities

by Including approoriate impulse functions in the ﬁ /al terms,

/1

To verify the important fact that the 2-D DC is equal tc the ILDC for




.
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Bs = B,, we merely note that both are given by (2-32).

* * *

We aiways work with surface current dyadics for which the symmetry

e — = 1 = e i e o o S S o s

conditions of (2-34) hold. As a result, Wand \}7 have the symmetry properties i

given in (2~35) and the IL.DC d has the symmetry properties given in (2-30).

We should keep in mind that the true infinite cylinder currents are not
the true total currents on an element of a finite cylinder or curved rod. 1Tuis is
why we have used the subscript = when we refer to infinite cylinder currents
in Section 3.1.2. Of course, in many cases the infirite cylinder currents are

a very good approximation to the true currents. : |

3.1.4 SCATTERING INTO THE FORWARD AND BACK CONES E

We shall refer to the cone
ﬁs = Bl {3-13)

as the forward cone and shall refer to the cone

Be =~ B (3-14)

as the back cone. For Bl =0, they are the samae,
Scattering into the forward cone can be treated using only the
two dimensional diffraction coefficient. An important speclal case is

forward scatter, for which

'Id)“ o= . (3-15)

Scattering into the back cone includes the extremely imoortant

speciz! case of backscatter, for which




Let us now consider how scattering into the back cone is related
to scattering into the forward cone. Using (2-31) to (2~33), we readily

find the expression

dy (B = By =d (B B +84d (B sln B forq =is,ui, Hah,

where

o W4 f As '
6dq(B‘) =-;(;—)]7'2-k Ldpexp{-tkCOSBlgroe }6wq
n

and

j = l, 1] .
=ue 2. n z K
=ue )t D 2, Reyy
Here we have omlitted those arguments of g which are not pertinent.
We see from (3-17) that, fo. ﬁl sufficiently small, the elements
of the diffraction coefficient for scattering Into the back cone can be
approximated by the elements of the two-dimensional diffraction

coefficient.

3.1.5 THE PERFECT CONDUCTOR CASE

The ‘rue infinite cylinder currents on a perfect conductor satisfy

(2-38) to (2-41). We then readily find from (2-31) and (2-33) that, for

a perfect cnnductor,

62

(3-16)

(3-17)

(3-18)

(3-19)
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LW G By B Buggi ) =Wy ‘C‘COBBlHﬁ: ¢ il) co8 B
W, & B, P Bgsys ) =0,
W, & B, o6 By Pgi 0) = -|stn A, cos ;31(3_91. n)

+co8 Bssln ﬁlm%s—‘;l- .1?1 I z, ﬁeu(kcos By 0, b:0),

Wy & By ¢ By ‘7’3‘, )= W.ul*(k cos B‘; ¢l;l ) cos ;8‘l ,
and

W o=w_ |, S UL, Lty bl
Wq q qg=1ll,1

—— - %
W, & B, @By @git) = Wiy k cos B;9;: ) h (B By)

where
* A A
Wit k32, @if) =(. n) Z K, &k ;0,51

* A
wll!! (k ;¢i; l, = ZO Ket” (k; 03 ¢l;l) ’

— % .1 3 A i .
W,,i (k;?l,f)—n{- 31 [Zohell(k’ 0, ¢l’[ )] ’
and

1+ sin BssmBl

h(Bs Bg) =tan Bscos ﬁl - tan Blcos By= —= Bocos B, (6in B -sln B))
8

1+sin Bssln 'Bl 1 1
=2 cos B cos B c0s 7 (Bg+ B sin 5 (By=B) -

By using (3-20), (3-21), (3-23).and (3-25) in (2-32), we can

readtly verlfy the important identities

(3-20)

(3-21)

(3-22)

(3-23)

(3-24)

(3-25)

(3-26)

(3-27)

(3-28)

(3-29)
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dy & B P 2B 4, = dyfkcos B 0, B Br gy o a=ui,m 3 @-30) |

3-21)

}
(=]

diy & Bl’ ¢l; 33- ¢8) =

dyy & B P By B) = dy, (kcos By B* dg)  h (B By) - (3-32)

Here

dll:l (k:¢l; BB' ¢3)=

I e k [ dl'expf-tkcos B 25 .0} W, * (; st (3-33) §
72 L Xp ¢ g =>r P iy & {'l) !

2@ m)

and Bs‘ is defined by g

cos ﬁs

cos [3; = W— (3--34) .

It ts clear from the right~hand stde of (3~34) that we have to let cos ﬁs*
take all positive values from 0 to «, and this means we must allow
imaginary values of BS *, We can let Bs* range either through all
positive imaginary values or through all negative imaginary values. It
does not matter which branch we choose, since 3 s‘ eaters into the
expressions for the dq only in the form of single-valued functions of
cos )38*.

The most lmportant information contained tn (3-30) to (3~32) 18

that d

vanishes; that d 11 and d can be expressed us functions of

i i
the four variables k cos B, cos Bs ) T and ¢s instead of the five
! variables k, B‘, Bs’ ¢, and ¢, a fact which can be used to greatly

simplify the computation of a diffractlion coefficlent; and that d" 4 can

be expressed as a function of four varicbles times a standard geometri-

cal factor.




Wtken Bs = ﬁl, (3-30) to (3-33) reduce to (2-48) to (2-50).

For scattering into the back cone, we have

dq (k3 B‘u ¢";' B‘. %) = dq (k cos Bl; 0, ‘Pﬁo’ ¢8)' q=11, un H (3-35)
dy, & AB(- ¢‘; - B, ¢8) =0 ‘ (3-36)
dﬂl &; Bl' ? 3‘3(: 9"8)’ -24d nI (k cos B‘; ¢l; o, ¢s)8hl Bl' (3-37)

These formulas tell us that the diagona: zitements of d for scattering

into the back cone are the dlg:gpnal elements of the two-dimensional

diffraction coefficlent, Thus, in the perfect conductor case, there ls a very

close relatlonship between three-dimensional backsceattering problems and

two-dimensional problems,

We have been working thus far with the true infinite cylinder currents on

a perfect conductor and the resulting d. Now let us consider approximations and

contributions to the current.

Following the plan of Section 2,1,6, we wlill consider only approximations
and contributions which satisfy (2-38), (2-39) and (2-41), but we wlll not
require that the approxtmations and contrlibutions satisfy (2-40). These

approximations and contributions will then clearly satisfy the equations

(3-20), (3-21), (3-23), and (3-24) for the wq and Wq. the equations
(3-30) and (3-31) for the dq. the equations (2-48) and (2-49) for the dq

when Bs :Bl’ and the equations (3-35) and (3-36) for the dq when

.BE = "Bi' On the other hand, the contributions and approximations

’

may not satisfy (3-22), (3-25), (3-32), (2-50), and (3-37) for W"

W , and d
Wyy anddy

I




In piace of (3-22) and (3-25), we have the expressions

w||l (k: Bl: d)‘; Bs! ¢8‘ 1 )

(i B, byi4)c08 By = (e 1) Z, Koy 008 B3 0 $,:¢) sin Bycos B (3-38)

o eu
and

Wu.l (k: ﬁ‘; ¢l; BBQ ¢5; l)

1+sin /sin 8
4W“1* & cosfB; Piit) oo ﬁB‘ ! cos ;-(BJ By) sin ;-(BB-A)
8
+ \-v.'u"*(k; ﬁv ¢l; l) co8 ﬁs ’ (3_39)
With

" B b D)

1 9 . . .

O etl i

Note that W" I* is an odd function of B‘,

-— kK — * K

wul k;- B‘n ¢l; 1)y=~Wy k; Bli ‘Pl; £) . (3-41)
It is readily seen that (3-38) and (3-39) reduce to (2-52) and (2-53)

respectively when 3 . B T

The equation which replaces (3-32) is

. 1+ 8inf slnB‘
dyy &; By P3Bgr Pg) =2 Ay (c cosly;%; ﬁ ) cosf_coef,

+ du;‘* (k;Blo(ﬁ‘;bst ¢'S) ’ (3—42)

os -12—(3 +B,)ein = L8 -ﬁ.)




with d" I defined by (3-33) and

dll 1“0‘;3‘9 ¢l; 65' ¢E)

" in/4

= - 2(2") kCOBBBde['exp{“ lchBBs/e:rs.BQ}W,"l*# (k;B,¢l;l')' (3_43)

Note that d'*'I {s an even function of Bs and an odd function of Bl’

d“I* (k; B‘: ¢l; ~BS ’ ¢8)
== d1* & - B b ¢ B, ) =dry kB, By, @) ' (3-44)
Though d3t is In general a function of five variables, it can be quite simple

to evaluate in practice. For example, in calculating the fringe wave ILEDC QU, the

integration over {' indicated in (3-43) becomes trivial because W I*U 18 an {mpulse

function at the edge.

¥or Bs =Bl’ (3-42) reduces to

dy; &iB,®:B8,9,) = d““ &8, DB Bg) » (3-45)
and for Bs='ﬂl' we have

*
d”lﬁ‘-;/‘f‘. B =Bpdgl==2d kcoslB:e:0,¢,) slnf3,




If we conslder the physical optics contribution to the surface current, we find
that the corresponding d" L vanishes for backscatter. This result, which (s a
speclal case of the general observation that physical optics backscatter s not
depolarized, can be obtained by using the physi{cal optics surface currents in

calculating d,ﬁ and dui-‘ and then applying (3-48).

3.2 THE EDGE DIFFRACTION COEFFICIENT FOR A PERFECT CONDUCTOR

3.2.1 THE GENERAL CASE
Let us now return to the problem of Section 2,2 and Figure 2, scattering

from a perfectly conducting wedge whose two faces are infinite half-planes.

We will concentrate here on the Ufimtsev ILEDC gU , which describes the

contribution to the scattered field produced by the fringe wave current. We have

discussed in Sectlon I how gU s used in solving scattering problems and we shall

glve an example in Section IV,

-

From Section 3.1.5, we see that de vanishes, Thus we can express the
Incremental length g__U {n terms of three elements d 1U, d "U , and d ,}J by means
of (2-96), an expression we origlnally wrote down for the two-dimensional
diffraction coefficient. Furthermore, we can use (2-99; to express d 1U and d“U

each as the sum of a + contribution from S_and a - contrtbution from 5_, and we

can use (3-42) to express d xl’ in terms of d,* and d}*. We thus find that gU can be

written In the form

U U U i U U
4 =@y +dl)ele v, ey ‘ltt

1+sin 8 8inf8
+]2 4» 8 i
X c>osB‘5 cos E‘

1 1 - s 1
cos 2-{;38 +B‘) sin E(Bs+Bl) +d I (3-46A)

Lsat us now cvaluate the sty acalar d which appear {n (3-46A). In order to

express these guantities in a convenient and compact form, we introduce two patrs of
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parameters, (V o 7 ) and (V_, ¢ ), which are defined In terms of the geometry of the

problem by

cosﬁa
Vs cosBl cos [("“')' qu J= = °°sﬁ;7°°8(¢8.-a). V=~

: cos ,
V.= cosBls cos [("'“)‘¢BJ= - cos By cos(g+a), Y =2 ~a-g .

Since cos [38* can take all positive values from 0 tow , V + and V_ will
both take all real values from -~ to + « . If we consider only values

of ¢l outside the wedge, that is, a< ¢l < (2 m -a), then the range of
both d/+ and ¢_ will be

2(17-41)3%: = 0 .

We also define parameters Ve Vo such that

vV = coa.1 v ,

with the branch of cos “lv so chosen that

v={,12{x0 ; V=cos¢ for |V|=1
v=Iiw, w>0 ; V =coshwfor V>1 :

V= Telu, u>0;V==coshufor V<=1

here we have suppressed the subscripts +and -onv, V, ¢, wand u.

We now define functions f and g such that

(3-47)

(3-48)

(3-49)

(3-50)

(3-51)
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-ln/4
(V,0) = J & exp{Wx}vB(x.w) ,
em/
-lw/4
g(V, ¥)= - [ ax exp{ivx} VL x, ¥),
@n )/

Here VB is the complex conjugate of the function Vg which Paull uses (n

Reference 9 to describe the fringe wave current (Pauli's paper, published
in 1938, does not, of course, use the term ''fringe wave current. ")

and

We also defilne
f+ = f(V+, w+) ’ f- = f(v_o !1/_ )
g, =8(V,, v)) , 8_=8(V_, V)

Starting from the general results of Section 3.1.5, we can show ina

straightforward manner that the qu are related to f N and g, by

dl? =f elnf(m+a) '¢B] = f _sln (¢ ~a),

d, ?= -f{_sin [( w-a)-gbs] =-1{_sin( ¢s+ a),

U cosB
II+ —g+ cos B g cos B* ’
cosﬁ
u 8
dy_ =€ osp, " B-Coof B*x

(3-52)

(3-53)

(2-54)

(3-55)

(3-56)

(3-57)

(3-58)

(3-59)




and that

dy = d,.: ( cos B,; Py B;. ¢,)=if+009 [("+“)-¢,]-f_coa [("-ﬂf)-<;5s )}OOBB;

= - [f+ cos(qsa ~a)~f_cos (¢8+a) ]coa,Bs* ’ 8-60)
'rr/4

"oy By, ¢ B g == 2 U, (@)-U_ (&) ]cos B tan 3-61

dx = dus @B, B 2% —177 [V, 4’1 J Ry (3-61)

Here the arguments (k; g3 it .3 Bg ¢,)are to be understood on the

dV in (3-56) to (3-59). The range of @ In (3-56) and (3-58) (s

@r+a)=¢ za , (3-62)

and the range in (3-57) and (3-59) is

(3-63)
@Qr-a)= g%: -a
It now remains to evaluate f and g in closed form. The evaluation for
1<V =1 (3-64)
can be carried out by matching (3~56) to (3-59) against the formulas
of Section II for the case ﬁs = /31. In this manner we obtain
lw/4
e 1 vseinvy . 8lov _
fv, &) = (2")172 sin v [003 vv-cos vy u(r _w’oos V - co8yYs ] (3-65)
and
tw/4
__ze vsin vy _ sin ¢ _
gV, ¥) @n) 172 [cos vv-cos vy - V(Y <oy ~co8 (3-66)

where v ig defined in terms of the wedge half-angle a by (2~58), and
U {8 a step function defined by
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U(e) =1 forv=0>0

{3-67)
undefined for o0 = 0 *
= 0 otherwise
It {s useful to note that U is related to U . and U_ of (2-102) and
(2-103) by
- = 3-68
U= &) = U (@) ' (3-68)
U(m- ) = U_(9) . (3-69)
The apparent singularity of £ at v =0 and the apparent sing=-
ularities of f and g at v = s are removable. Specifically, we have
i n/4 y 2 1 ¢ i
f(1,¥)= -U(" ) =—pe—| fOor y#0,m , (3-70)
22mt/?  lgin? g sin? %—
ir/4
tvd- cot ¢
f(cos ¥, ¥ )==-2 reor =2 for mw>y>0, (3-71)
2(21,‘_)1/2 sin
el "/4 2
f(1,0)=~ a-v7) 3 (3-72)
6 (21,)172
and
iv/4 ,
g(cos ¥, U)y= ~ £ 7 v cot wz’/_ cot ¥ form =W >0, (3-13)
2(2m
g(1,0)=0. (3-74)

Furthermore, we see that f is discontinuous In Y at ¢ = ©
and goes to infinity as V— =1 for arbitrary ¢ . On the other hand,
g \s continuous in V and ¥ for [vi<1 and goes to infinity only for the case

(vi ‘.‘Il)—"(-l)” )e

ik ke,
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It has been established that f and g have no singularities for V> 1,
but f and g have not yet been evaluated rigorously for this range of V
Preliminary results indicate that (3-85) and (3-66), with v defined by
(3-50) and (3~51), are probably still valid for IV]>1. In terms of the
variables w and u of (3-51), we would then have

tw/4
_ e 1 vsinh Vv w sinh w
f(v'w)—(zw)lff “slnh w [ COSh V W = coBvy U(m-¥) Tosh wecosw | + ©°75)
ir/4
__e vsinvy : siny
gV, ¥)= (21‘)1/2 lcosh UW=COBVY U(n-v) To5h W=CO8 { ’ (3-76)
for v >1, and
£V, e! /4 1 v (8lnymcosh vu - i cos vrsinh i)
V,v)= @ 17)1/2 sinh u [ (cosvmcosh vu+ 1 stnvn sinh vu)- cos v ¢
sinh u
* UMY SR u v cos T 3=17)
gV, )= - ei"/4 ) v sinvy
' ‘2")1/2 (cos Vncos vu +  sin vmeinh vu)-cos v ¢
. 8in -
UMY ehu + cos v I @-78)
for V<=1,

Let us now turn our attention from the functions f and g to the
diffraction coefficients. We find that both dmU and d"_U will be infinite
for

A = :l:é ) (3-79)
that is, for an incident wave which grazes the edge. This i8 to be ex-

pected, since our simple model of the scattering mechanism is not
adeqate for this case. Algo, d, +U is elngular when

¢(=n+a , cos(¢>s-a)cos,88~_- cos

1! (3-80)




and dn_U 18 singular when
¢l ="-a, CO8 (¢s+ @) cos Bsz cosB‘ . (3-81)

What (3-80) tells us is that, for grazing incidence at obliquity
angle ﬁt and scattering at any obliquity angle 8 s such that

B | 5’31' . (3~82)

there exist two values of the scattering azimuth angle ¢~8, one
in the range ‘

n

(Frorgza (3-83)

the other in the range

o vt - AT 8 N8 Geme < o L

3
(2w+a)zc%>(-2l+a) ) (3-84)

for which d “U is infinlte. When BS =% B(, the two critical values
of <7"s are a and (27 +a), which is consistent witk the results

-ttt e e e

ohserved in Section 2.2.4. Again, a more sophisticated model of
tlie scattering mechanism s necessary in order to handle the critical
cases. The interpratation of (3-81)is completely analogous to

that of (3-80),

The ccefficient d “U is singular whenever

EBDANCS I Qi

cos (¢ ~a)cos B =cosB  with |BSHB,‘] , (3-85)

and ‘viien

D=+ (o) ={a 8 =+ £ .

“ ' YsT grrat s i (3-86) i

In the case of (3-85), the singularity is caused by the sin v term in

———

{3-65) going to zero, an effect which is cancelled by the sin (¢s- Q)
term In (3-56) when !Bq‘ = vjl‘l. In the c: se of (3-86), we have a higher
order of singularity because

T BN
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8lo v=0, cos vv-cos V¥ = 0, and cos v - cos ¥ =9,

and we find that the behavior of d L +U is quite complicated near
the singular points.

We also see that d“U is discontinuous for grazing incidence on

¢l =T+ a ,
excapt when

@ g =mra,
®) ¢, =a and [B|£]8, | .

© o= @n+orand |gld8 |

in which cases d | = 0, (Even if (3-75) and (3-77) should

prove incorrect, physical considerations tell us that the discontinuity
exists for ‘VI >1.)

The behavior of dl_U is completely analogous. 1t is singular

when

cos (¢ +a) cos Bsz c:oaBl wlthlBs|<, B!I

and when
Q = TMe X ¢ i B =*ﬁ
i '8 2n-a ' fg i *
It is discontinuous for grazing incldence on s_,

d)l =~

except wher

a) ern-a .

7%

(3-87)

(3-88)

(3-89)

(3-90)

(3-9%)

(3-92)

(3-93)

(3-84)

(3-95)
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b) & =-x and’ﬂﬂiﬂﬂ'! . (3-96)

) ¢, ~2v -4 and|BH|B] . 3-97)

These roacults are consistent with those of Section 2.2.4.

A morc sophisticated model of the scattering \nechanism is needad
to handle singular, near-singular, and discontinuous cases,

The coefficient d ,U is discontimuous for grazing incidence ¢
either s, or S_unless we have both /-38 =B£ =0 and qbs =-a,a,
2n-a, 27 +a,. Itlssingular for an incident wave which grazes
the edge,
B = t5 (3-98)

aznd whenever

74 NPT &I CRtsbl S SN, 4, E o e, A < s e A7 DA e T o

cos (@, -a) cos Bszcos Bl . (3-99)

A more sophisticated model of the scattering mechanism (s needed
to handle singular, near-singular, and discontinuous cases.

3.2.2 SIMPLIFICATIONS FOR A KNIFE EDGE
For a ktife edge, we have

*®
@=0, V=V _=V_=cos Bs cos(W-¢.), Y, =R, V_=27-9 , 3-100)
and (3-56) to (3-60) thus become

d U= 21v, g)sln (v-g)

(3-101)
i ¢/, =af =1ay @3-102)
’ d “U =28(V, uy) COS ﬂs' . (3-103)
l‘ du‘i :d,.‘{ = i" dnU ’ (3-104)




- »
dy = - 2{(V, ¢ ) cos ¢s cos 3 =-d1Ucot & cosﬁs' . (3-1056)

In obtaining these results we have used the fact that, for a knite edge, we have
fV, o)==tV ¢ ) 8MViv )=g(V, y_) (8-106A)

For |V| <1, we obtain from (3-65) and (3-86) the expressions

el n/4 1 1
£, w* ) =¥
172 1 1, 1 (3-106)
4(27) coszv slnzlﬂ rb‘|+ coszv .
1v/4 1 "
e cos 5 (T -H)
E (Vv W:g) =- " 172 1 1 . (3"107)
2(2m) sin §|ﬁ- lI +cos8 FVv
We can express these results in terms of V using
1/2
1 1+V
cos g v= ( ; ) (3108)
if we assume the valldity of (3-65) and (3-6€) for |V|>1, we
find that (3-106) and (3-107) still hold, with cos %'v given by
(3-108) for V >1 and
1 lvi-1 \/2 .. .
cos 2-V =q (—T—)l for Vv 1 . (3-109)

3.2.3 SCATTELRING INTO THE FORWARD AND BACK CONES

For scattering into the jorwar® one, Be = [31, the Incremental
length edge diffraction coefficient reduc.c to the two-dimensional
diffraction coefficlent which has already been discussed at length in

Section 2. 2,

Fur scaiiering iniv ine back cone, '68 = -ﬁ(, we nave, from

{3-35), (3-45), (3-46), ard (3-6u),
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8 V03B, BBy ) - AV0iBL KByt 8, + 4, By BBy 9 &) €

U t
+ 4, 76,B,,9; -Bp ) e, L, . (3-110)
with
a V. B b B b )=d 0k, BB b)) - 2dy (Bedg) 8B 3-111
x ] [ lo Blo B X » i’ l’ lv B) X ¢l’¢8 i' ( )
d; (d)‘, ¢s) = — f(cos Vo Y, Jeos (gbs -a) +flco8v_, y ) cos ((;bs +a), (3-112)
and
v, = |(ma)-¢, | - (3-112)

The unit vectors gli, e "l, gls are the same as for scattering into the
forward cone. Thus we see that the dyadlc form of the incremental
length edge diffraction coefficlent for scattering into the back cone
differs from the result for scattering into the forward cone ouly in the

definition of & "s and in the presence of the d_* term.

It should be noted that d U (; B,, ¢; B, @) and

U
d,U & B, ¢ By P,)areactually independent of k, that d, &:B,, ¢:B, &)

8 in actuality a function only of B, and $,, and that de (s By ¢ Byp )
is in actuality a function only of Bl' ¢, and @ The full complement of arguments
has been used to stress the similarity of the two~dimensional results
and the three-dimensional back cone results.
1t should also be noted that, as we can sec from (J-56) and (3-57),
the f(cos v, ¢ ,) of (3-112) can be expressed in terms of the values for
Bg =B, of d“_U and di_U. Thus d * can be expressed in terms of these
two functions. We then see from (3-110) and (3-111) that 8" for scat-

tering into the back cone can be constructed from the ‘Two-Dimensional

. . u u .U U
Diffraction Coeffictente d , =, d, ", d, »andd ".

)

s




For scattering from a knife edge, (3-112) becomes

in/d cos ,lr ¢
& 8

cot ¢ (3-114)
co8 %—Qﬁi + 8ln %-Q‘) &

d, @b.b )= -2
Xil 8 (2")1/2

with the + sign for d>‘ < 7 and the - sign for q‘)‘ > .

3.2,4 BACKSCATTER

For backscatter, we have

\ 8 ' (3-115)
which is a speclal case of scattering into the back cone. It I8 convenient to
define unlt vectors ¢ ., ¢ ., and e such that
8 i 8 i 8 i
e = = B = = - -
Sri&e ey 21778, 7Y -t T (3-116)
we can then express d__U in the form
U U U U '
d”=-d,7e,e ;+d;"e e, -dy e, e, - (3-117)
with
dlU___e"'/‘1 {21/ l 1 . 1 (3-118a)
N SN | @1
, 2(2-'7)72 eln v 1+tanv-%tanu(2w-¢) 1+tanv 5

3 tap v¢p
- U+ tan (¢ - a) + U_ tan (¢+a)}

et 1 i

_(;;;TTZ— {usln vm l- +

) 1-cos ¥  coBVT+ CO8 2V (m=P)

+Hu, tan @- @ - U_tan pra)s .

(3-118b)




duU = el”/41]2 [Sl:u” 5 4" 3 + U+ tan (¢-a) -U- tan l‘¢+a)l
22 ) 1- tan” ¥ 3 tan v(n=-9) 3-1198)
tn/4
_. - 1 - 1
- (2")172 {” stovm l1-cosvnm  cosvm+ co8 2 y(T-9)
- % ‘U+ tan (¢-a) - U_tan (¢+a)]} . (3-119b)
de_-.- e Ln/4 2v cot (P-a)
2 11)1]2 sinvm 1 ~ tan u-g cot v (n+a-¢)
o S0t (bta) snB . (3-120)
1 + tan v-%' cot v(m-a-9)

For a knife edge (3-117) still holds, with d_lU now given by (2-161), d |.b
by (2-163), and d, by

in/4
U__¢e ¢ -
dX = - m cot 3 slnﬁ R (3 121)

To verify (3~118) and (3-119) and to justify the use of (2-161) and (2-163),
we firast observe from (3-110) that d lU and d “U are fhe same as for two-dimensional
generallzed backscatter, which has been treated ln Section 2.2.6. We then obtain
{3-11€a) from (2-153) and (2-154); {(3-119a) from (2-155); and (3~118b) and (3-119b)
f from (2-97), (2-156), and (2-158). Tou verify (3-120), we start with (3-111),
use (2-118} to evaluate de (Bl' Bl) and {3-112) to evaluate d; , and note that
(3-112) simplifiea for hackscatter to

dy (0, #) =8, VkiBpiB pcct @-ar+ dU ;B B &) cot (pra)| @-122)

with the d L‘i given Ly (2-153) and (2-164). To verlfy (3-121), we Just substitute

tho kntfc edge value » =;— into (3~120) and use standard trigonometric

ldentities,




IV SCATTERING FROM A PERFECTLY CONDUCTING

POLYGONAL PLATE

4.1 GENERAL FORMULAS

Let us now develop formulas for far-field scattering from an N-sided
perfectly conducting polygonal plate which I8 illuminatad by the incident plane
wave of (2-3). A typlcal plate geometry is shown in Figure 6. To avold a phase
factor which has no essential bearing on the problem, we assume that the origin of
coordinates lies in the plane of the plate. Following Section V of Reference 11 we
make the following definitions:

S indicates both the {lluminated side cf the plate and the area of the plate;

n is the unit normal out of the illuminated side;

Pn, forn =0to N, is the nth corner of the plate, with n Increasing {n the

counterclockwlise direction as seen frem the +n halfspace and with

PN =P ; (4-1)

T I8 the position vector to P 2nd is normal to p;
a is the angle of the corner at Pn;

Cn indicates both the edge running from li’n_1 to Pn and the length of the

edge, and

Co = CN; 4-2)

to P_:

Zn {s the untt tangent to C, directed from Pn-l A

ron e the center of Cn' 80 that

=L

1
n=2C Ly 49

e is the unit vector along the projection of the sum vector (g rs +e
(which bisects the bistatic angle) onto the plane of S, so that

t
)
e~ [nxel+elfxn, | 4=4)

where the parameter 7 is given by
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1 8 i
7:2-|p_x(e_r+e_r)| 4-5)
and ltes in the range
1 >720; (4-6)
Y, 8 the angle measured counterclockwise from e to Zn’ so that
coa)’n=e_-£n. siny =n. ex L) 4-17)

gn is a parameter proportional to the phase difference between far-field returns

from the two ends of C n and Is given by

= -
Yn = n(Cn cos )'n. (4-8)

We note that ~ =0 for forward scattering ard for all cases in which n
bisects the bistatic angle, including backscatter at normal Incidence. The quantities

e and Yn are not defined for 7= 0 but this fact does not iead to any difficulties.

If we consider the edge Cn to be a segment of an infinltely long edge, then

we can define values of Bl' ﬁs. ¢s' and ¢l on Cn' Indeed, we readily find that

- l' 7 - - 8. 7 -
smBln"Er Loy 8B =-ep Ly (4-9)

with Bln and Bsn In the range - 7/2 to 7/2, that

1 i -
e, *ax L) (4-10)

cos ¢ln =
in -

Cco8

with

0>¢ln>0 -(4-11)

because we have specified that n points out of the illuminated side, and that




™

ST A I S AN, A

m>@y >0 for g_:- n>0

C08 Fop = cosl ‘i: *@mx I )with . (4-114)
n 2n>¢8n>ﬂfor g:. n<

Furthermore, we can define unit polarization vecturs e 1.ln ' ey n"

e, : ,ande n‘ by using (2-6), (2-14), and (2-15) with ¢t replaced by Z .

If we neglect edge interactions and also neglact distortion of the fringe
wave currents near the corners, then the field scattared from the plate can be
represented as the sum of the physical optics scattering from S plus the integral
around the edge of the Uftmtsev ILEDC with proper phase weighting. We can

express the radiation vector F in the form

1
F =Eol'<' D-p ' 4-12)
where the three~dimensional diffraction coefficlent l=) is the sum
p =pFO+ (4-13)

of a physical optics coefficlent and a fringe-wave coefficlent. 1 we introduce the

notation
g=0(q,p; 9.1.8. 9.:-3 k) , 4-14)

with q a real unit vector, to designate the radar cross-section (RCS) seen by a

linearly polarized antenna which is sensitive to the component of gscat parallel
to q, then we have |
¢ = :'2' ] q- Q.le:, 4-15)
Thus the problem of determining the RCS reduces to the problem of determining
D or, equivalently, determining both QPO and QU.
—_—

T
The fringe-wave coefficient Ql can be represented elther as the sum of

N edge contributions or as the sum of N corner contributions. To obtain the edge
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contribution form, we use (3-10) and observe that T o corresponds to T cn’

T corresponds to C n’ and X corresponds to I?n| because

= i_ = l s .-‘ = -
2rcosY =27e- [ =(.+e )+ L =slnB -sinf . (4-16)

We thus obtaln

-l /4 N-1 4
U- e - sin nd U 4-117
P- Sk T ooml-nries £g i, Sytdy D
n=0

where d nU is the knife edge Ufimtsev ILEDC for Cn' From (2-96) we see that

d nU has the three-element form _
J_ U s i U 8 i U 8 {
9 =9 0 %n%m "% Sin &in T % Sinn (4-18)
L8] U

xn
which can be found using the material of Section 3.2,2 to 3,2.4. The individual terms

U
whered =, d,  ,andd = are functlons of k, Bln’ ¢ln’Bsn' and ©_
in the sum (4-17) remaln finite as 7—~0.
In compnting the data of Section 4.2, QU was calculated using (4-17).

By rearranging the terms of (4-17), we obtaln an expression for I=)U

as the sum of N corner contributions,

u_ N1 - .U
D™= 3 exp{-2ttke- gn}gn , (4-19)
n=90
whare the flat piate corner diffraction coefficient gnU is gtven by

irr/4 .

U e 1 U 1 U
€. = - ( d - - d ). 4-20)

=n 22 ")1/2 ,  CO8 )‘“+1 =n+l  cosY, =n

‘The representation (4-18) corresponds to a physical interpretation of the fringe
wave scattering in terms cf rays diffracted from the corners of the plate.

Note that the diffraction from a corner does not depend on the lengths of the edges
which meet there.

The representation (4-19) {8 valid if and only if the condition

v w4 1o e < o s
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| !
| ‘i
]
|
; \:
e 5val)s 740 forall 4-21 !
ep+e ) L, ralln , S\ ) {
-
! i
. Is satisfled. This condition excludes all cases in which one or more edges 3
1
: " are normal to the bisector (e : te i_) of the bistatic angle and thus a:s» normal to e, j %
& . :
F , .
: It also excludes the case of forward scattering, for which 'l J
~ N ’
8 t_ 3 i
g_r+g_r—0. (4~-22) ; é
The condition (4-21) s necessary because two or more of the ¢ S are infinite ; i
when (4-21) doee not hold., A ccrrect result can be obtained, however, by taking i ii

the limit as the left-hand side of (4-21) approaches zero.
* *x x

The physlcal optics coefficient =DPO has been studled in Section V of

Refererce 11, Like I___)U , it can be represented either as the surn of N edge

contributions or as the sum of N corner contribmutions. The edgc ~ontribution form - ‘

it Ak Rt U s ok R

is -in/4 N-1 sin Y ;
: PO _ e o - n PO " ;
; D == k[): exp{-2itke . r o} C ——— d "l , 4-22) :
. @2 _ Y 3
: n=0 n :
i where j
in/4
) 0] e . 4
d - =-——7z sin 7, 4-24) :
: n 2 (27?)1 2 r n :
o & 8 i 1
| go--e_rx g_rx[nx(eer:)” . (4~25) ;
|
and [ Is the unit dvadic. The corner contribution form tis
D . = - . -y
= }z exp {~ 2iTke t;n} . ] Io. (4~26)
n=10
1 where ¢ nPO {8 related to the anO in the same way that ¢ g {8 related to
é thed U in (4-20), that is
‘ PO t7/4 1 PO 1 PO ' L :
€ :
PO _ ( - a¥o) (4-28A) 5 ;
n 2@ ”)1/27 cos yn+1 n+l  cos Yn n ! :

Upon substituting from (4-24) into (4~26A), we obtain the much simpler expressicn

L
i
K
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PO t .
¢ = - e (tan ¥ -tan Y ). 4-27
n P n+l n )

The edge contributlon form (4-23) t8 valid for all cases in which 7 =0 and
approaches the correct limit

O__ _t_.2
PO=- - sy, (4-28)

as 7 0. The corner contribution form (4-28), like the corner contribution form

4-19) for QU, is valld {f and only {f (4-21) holds, and a limiting process will yleld

the correct result when (4-21) does not hold.

PO

In computing the data of Section 4.2, D was calculated using (4-23)

except at normal incidence.

*  J *

if we combine the fringe wave and physical optics contributions, we obtain

the edge contribution form

o -ln/4 Nil { £ sin Y
l_):——7—k exp {-2itke + ¢ , |C ———— d (4-29)
= (2")1 2 n= 0 C n -Y.'n =n
with 4
R ¢ PO
gnqln tdy Ly 4-30)
which (s vaiid when T #0, and the corner contribution form
N-1 _
, D= X exp{-2vke-r Jc_ (4-31)
n=0
with
in/4
e 1 1
c =- ( d - d ) (4-32a)
Z=pn 22 ”)1/27 cos Yn a0 - n+l - cos? n
U PO 4-32b)
“eptey Iy ¢

which {8 valid when (4-21) holds,
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The physical meaning of (4-31) is that,to the orcder of approximation we are
using here, the toial scattering from the plate can be represented in terms of
rays diffracted from the corners of the piate, with the diffraction from a corner
irdspendent of the lengths of the edges which meet there. This statement

would still be true if we were to take into account the distortion of the fringe

e, - et e o g B

wave currents near the corners but is no longer true when we take lnto

account edge interactions.

« & *

It should be noted that the method of Ryan and Peters (Reference 10)

can be applied to the polygonal plate problem and leads to a result which can be

written in the form (4~29), but with a different expression for d n It can be shown

that the Ryan-Peters method gives accurate results in mauy cases for which

standard Geometrical Theory of Diffraction is not satisf:ctory but that there is

a much larger class of problems which can be solved accurately by using the value
of d | developed in this report.
For scattering bodles other than polygonal plates, a stmilay observation i

can be made as to the relative ranges of usefulness of standard GTD, the Ryan-

Peters method, and the form of PTD used in this report.

4.2 TYPICAL RESULTS

Figures 7 to 11 compare calculated and experimental vaiues of radar cross-

section for diamond~shaped and irapezolidal plates, The calculations were made as des-

cribad in Section 4.1. All data are for backscatter, g_: = @ ! = e _, with recelver

L -r r
g polarization the same as Incident polarization, q =p. The orlentation of e r '8

given by the angle a, measured In a plane normal to the plate and including the axis

marked Z In the figures. For a =-90° , the incident wave is traveling in the +2
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directlon and e r thus points in the -2 direction. For a-0° the wave is incident
normal to the plate and, for @ =90°, it is travelling in the -2 direction. Vertical
polarization V corresponds to p and thus E‘-o normal to the Z- axis, and horizontal
polarization corresponds to H o normal to the Z~ axis, Data are given for a =0°to

90° for the diamond plate case, @ =.90°to + 90° for the trapezoidal plate,

Experimental data were normalized so that they agree with calculated results
at normal incldence, a =0°. These experimental data were obtained by sweeping
a through 360°, which gives a pattern which should in principle repeat tour times
for the diamond plate case, twice for the trapezoidal plate case. The plotted data

are for one non-repeating part of the experimental pattern, with no attempt to average

out those variations which were observed between parts. Examination of these
variaticns indicates that main 'obe daia are quite reliable, the positions and peak
values of the first few sidelobes are fairly reliable, and hardly any of the data

on nulls are relliabie,

In light of these shortcomings in the experimental data, plus the fact that
even the first sidelobes are so many dB down from the peak value of ¢, the
agreement between calculated and experimental data {8 quite good. The divergences
which arise as we approach grazing incidence ln the problems of Figure 9 and

Figure 10 can probably be removed by taking into account edge interactions

and corner current distortions.
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V. SUMMARY AND CONCLUSIONS

In Sectlon I, we have glven an overview of the Physical Theory of Diffraction

: (PTD) and the role which the Incremental Length Diffraction Coeffictent (ILDC) in
general and the Ufimtsev Incremental Length Edge Diffraction Coefficient

in particular play In the theory. The actual formulas for expressing far-fleld

scattering in terms of ILDC's are given in Sectlons 3.1.1 and 3.1.2. General
formulas for the ILDC as a function of the effective surface currents are summarized
in Sections 3.1.3 to 3.1.5, with these sections drawing heavily on material presented

earlier |n Sections 2.1.3 to 2.1.6. The Ufimtsev ILEDC gU is developed in Section

R Al ey s e ondied K

3.2, Then PTD and the Ufimtsev ILEDC are used in Section IV to solve the problem

of far-~field scattering of a plane wave from a perfectly conducting polygonal plate.

! The data in Sectlon 4.2 show how well problems can be solved by PTD with use of the

Ufimtsev ILEDC, even when edge interactions and current distortion near the

W, SRt
e e e % A Amart ' T s o b

corners are neglected,

These neglected effects can be accounted for within the framework of PTD, 4
{ and the results thus obtained will remain accurate nearer to grazing incidence. Even

without such further development of PTD, a great varlety of problems involving flat

! plates, finite cylinders, doubly curved surfaces, and bodies with flat faces can be |
solved satisfactorily by simply using the Ufimtsev ILEDC of Section 3.2 in conjunction

with the physical optics material of References 11 and 12.

« *x  *x

Before treating the ILEDC in Section III, we develop the simpler theory of

the Two-Dimensional Diffraction Coefflclent (2-D DC) in Section I. Sections 2.1,1

and 2.1.2 show how tc express the far-fleld scattering from an (nfintte cylinder in

terms of the 2-D DC, Secticns 2.1,3 to 2.1.6 give general formulas for the 2-D

DC as a function of the effective surface currents; as already noted, many of




-

-

p

< Iy

these formulas are also used for the ILEDC, Sectlon 2.2 glves the 2-D DC's for
Ufimtsev's and Keller's approaches to scattering from a conducting wedge. The
material of Section II {8 supplemented by a thorough study {n the Appendix of
scattering from an Infinite cylinder. Some of the material in the Appendix can be used
in extending the approach glven here to the case in which source and observer are

not both at infinity.

A list of key equations for expressing fields in terms of diffraction coefficients
and for evaluating the various edge diffraction coefficlents {s given at the end of
Sectton 1,

Some additional comments are appropriate on the equations for the ILEDC
U

in Section 3,2.1. Equations (3-56) to (3-60) have been verified as correct when f and
g are defined by the Integral expressions (3-52) and (3-53), For ~1<V =<1, it has
been verified that f and g are glven by (3-65) to (3-74). But further verification is
still needed that (3-75) to (3-78) are correct evaluations of the {ntegrals of (3-52)

and (3-53) for the cases V < -land V>1.

96

e L D S0 e U0 £ U 0 RN

R~ G (L. £ TR AP VOSSR XUEL S SREETLT




rpva e

P pr———— S BT LT T S e el )

APPENDIX, SCATTERING FROM AN INFINITE CYLINDER

.1 OBLIQUE INCIDENCE AND EXPONENTIAL VARIATION ALONG AN AXIS

Our maln objective in this Appendix is io vertfy the material of Sections 2.1.2
to 2.1.6 for far-fleld scattering from an Infinite cylinder when the plane wave of (2-3)
(8 incldent, We shall follow the notation of Section 2.1, as lllustrated ia Figure 1,
with one exception: we use the symbol 8 (n place of both B‘ and 8 s because, as we
shall show, Bl = Bs for an (nfinite cylinder problem,

The plane wave of (2-3) has exponen:ial vartation along the cylinder axis. To
show thig, we substitute (2-2) and (2-8) Into (2-3), obtaining

L}

A A
Eo=Egexp ik t}, ZH = Z, H, oxp {-ik, th, {I-1)

with go and ﬁo independent of t and given by

(1-2)

Zoﬁo=-Eog:xg exp{-lkcosﬁ’e:;.a}

and with the axial wave number kt given by

kt =k 8in - (I-3)
We are interested in scattering from an infinite cylinder, aligned with the t-axls,
which either 18 composed of material invariant in the t-direction or is described by
boundary conditions with no t-dependence. When a fleld with exponential t-dependence
i8 scattered from such a oyiinder, there is nothing In the scattering process which
affects the t-dependence of the fleld, The scattered fleld thus has the same exponentlial
t-dependence as the incident fleid. By factoring out the t-dependence, we can reduce

the original three-dimensional problem to a two-dimensional problem. This is the
approach we shall take here,
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We begin in Section 1.2, by developing important bastc material: the Maxwell and
Helmbholtz equations and the Green's function for fields with exponential t-dependence;
integral representations for the field produced {n free space by current sources with

exponentlal t-dependence; and a more general representation for far-flield radiation

from such sources. Then in Section 1.3 we apply the material to scattering problems.
Although emphasis (s on verifying the material of Sections 2.1.2 to 2,L 6, there is also

much useful material for the cases of source or observation point or both at finite

distance from the scatterer,

1.2 FIELDS WITH EXPONENTIAL VARIATION ALONG AN AXIS

I.2,1 THE MAXWELL AND HELMHOLTZ EQUATIONS

let us conslider a homogeneous region of space, with cylindrical boundaries

parallel to the t-axis. Let this region be filled with a homogenecus medium with wave
number k and wave impedance Z, and let the region contain an electric current source

distribution l—{evo (amperes/mz) and a magnetic current source distribution E—(r‘r,\o
(volts/mz) which have exponential t-dependence:

(I-4)

v _Ov -
§qo—!-<qo (g)eXp{-lktt} forq=e, m .

Here the axial wave number kt is not restricted by (I-3), but is an arbitrary complex

number.

Under appropriate conditlons on the behavior of the field at the boundary, the
composition of adjoining regions, and the sources in these reglons, the field (E, H)in

the region of inierest will have the same t-dependence as the 5;0 :

A N

E=E (9exp {-tk t} , HeH(p)exp{-tk t} . (1-5)
For such a field, Maxwell's equations
tk . _ v

VxH+ZE =K, , (1-6)
VXE-(kZH =~K_" , (I-7)

- - -mo
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take the form
A A
Uxf -kt xHeEE K :
(I-8)
A A Ay
vx -kt x E-kzH=-K ¥ . 1-9)
Now let us Introduce the notatlon
= -1
f=ftet, (1-10)

Vxf(®)=-tv.[txf, ()]t x VL (p), (I-11)

to represent a vector f as the sum of an axial component ft t and a transverse com-
ponent f o’ By using the identity

we can decorapose (I-8) and (I-9) to obtatn

A A
V- tx Ep+kZH, =

A
Ve¢_x H

p -

N
jer
E ]
1>
<
GEI M JFITIMREEET SHROPUCRIY ¥ GRS RET 8 W NS

z p eop ' (I-12)
vE +ik B -kztxH,. =-t xR Y ; I-13
t T e =p X Tp "L XD hop ? (1-13)
Ay
L =Ko . (I-14)
i _ AV
Z tt = = Kaot . (I-15) ]
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and =
A
VE + Tz t x I/'\l + —R——k 2 t VH ==t ﬁ M ktz l/\( v 1-17 "
=P x X k- =eop’ ( ) _ 39
where the trausverse wave number k 18 related to k and kt by ‘

: A

: k2 =ik? -l (1-18)

t The palr of equations (I-8) and (I-9), the four equations (I-12) to (I-15}, and the ’
four equations (I-14) to (I-17) are three equivalent forms of Maxwell's equations for -y
flelds with exponential t-dependence. -

If now we take the divergence of (1-1€) and (I-17) and make use of (I~14), (I-15),

and the identity

[ex veo) ] =0, (1-19)

we obtain the Helmholtz equations
A2 k A -~

2 A2 N - k Ay - . A v _ t K v 1_20 :

(VKO H = o Koy ~L VX Koo %2V i-\m::op (-29)

. aﬂd
: n2 v k Z i ;.

] : 2 /\2 A _ k VA I . A v i g

; 1 W +k )Et-—ik—- Keot+t- Vxl§ T-Vgeop (I-21) :

y A A S
In conjunctior: with these equations, it is useful to express Ep and l;lp as functions of
A A }

H, and E, by the equations i
ﬁ- [k VE +thxVH +kth +kz K.Y (1-22) |
= ikz mop —eop ]

! i = g - X o n kK AV . o

3 = - |k - — - —_ 1-23 .

i v, ih2 [ tVH = ZLx VE -k L X l-(eop+ Z Emoo ’ ( : .

! 2

A which are just rearrangements of (I-15) and (I~17). ;
’ Thus far, our results are valid for arbitrary values of k and kt’ and k has only f
appeared in the form k We now restrict k to be real and positive and restrict k to ! X
-‘ not be a real number wlth absolute value greater than or equal to k. mrthermore, we ,
i. define k to be the root of k which has a positive real part. It is readily seen that such ‘; :
4 a root exists for all admissible values of kt in the complex plane: pure imaginary roots
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correspond to the forbidden vatues of kt' which in turn, correspond

to surface wave probleme rather than acattering or radiation problems. We can readily
confirm that

A A

A
k - ~ ¢
RE1= "%k Kn >I“u! ' (I-24)

where subscripts R and i indicate real-and imaginary parts respectively,

For kt rea’ nnd‘ lzt |'»- k, we can use the notation of (I-3) with 3 real and in il.e range

-é’<ﬂ< %’ We then have

k =kcos 8 .

(1-24A)
A
For any admissible values of k a.4 k, we have
A
k, =k sin 8, k =k cos 8 (I-24B)
for some value of 3in the open strip
- -5'-< q‘<-g- . ﬁ‘ arbitrary . (1-24C)

The problems of ultimate interest in this Appendix are ecattering problems,
more specifically problems which involve scattering from an (nfinitely long cylinder
of finite or infinite cross section Into an infinite region ¢f free space (or other homo-
geneous lossless materiai). In this type of problem 1t is useful to consider the total

fleld (E, H)ln the regton outside the scattering body as the sum of an incldent field
(E,» H,)anda scattered ficld (E scat Escat): tpcicent iteld

- = scat scat
;‘_' .E°+ - ’ H =§°+§

-

tm

. (1-25)

The incldent field (_.'-:‘0 , go) v/e define as the field which would be produced In free
spaco, that ts, in the absence of the scattering body, by the sources exterior to the
scattering body. We (nclude the afiact of sources at Infinity, such ae those which give
rise to plane waves (see Reference 4, Sectlon 2,2,6),

It foliows that the scattered fleld has no sources exterior to the scattering body.
One consequence of this is that ﬁt“m and ’ﬁtscat satisfy homogeneous Helmholtz
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equations,

A A A o ;
(v2+k2) Eacat =0, (V2+k2) Htscnt =0, 1-26) i

in the region exterior to the scattering body. But these equations would still be valid ;

if thore wereg sources at inflalty, To exclude such sources and to thus obtain a uniquely i
defined scattered fleld it is necessary to impose a condition on the behavior of the field
at {nfinity, a condition which guarantees that the direction of power flow at infinity is

away from the scaitering body.

When the cylinder cross gectlon s of finite maximum

Pa)
dimension, the appropriate condition is that both Etscat and Htscat must satisfy a

two-dimensi{onal radiation condition of the form
|

o et O Sep——

(1=27)

; /2 | @ n
lm P = F(p) -tk F(p)l|=0,
L R |55 Fee )

where
is distance from the origin {n the transverse direction. There are also many problems

involving cylinders with cross sectlon extending to infinlty-~such as the wedge problem
discussed in Sectlon 2, 2~~ln which E £, Beat and Htscat satisfy (1-27) for some or all

¢ directions of scattering.

The condition (I~27) tells us that the hehavior of the field F for P large is

essentlally the same as the behavior of a cylindrical wave with propagatlon constant k

It ts important to realize that (I-27) (s a radiation condition because we have E
required that Q have a positive real part and that an equation of form (I-27) would :
not be a radiation conditlon if QR were zero or negative. We shall ver!fy in Sectlon

1.2.3 that QRT- 0 does {ndeed characterize a radiating fleld, that is, a fleld which

Y YO ST, - !
2 P, WOUURUIORTY - Ty i - . " K . L g s
(> T . - Il -
s serat N AR o bbb Fotac otls B i il g it PGS Sl iRl Aot o LU ke i s iR o

carries energy away from ihe origin.

The quantity k caa be positive, negative, or zero., When kI is negative, Etscatand
H

tscat increase exponantially with g for ® sufficiently large. This behavior, strange
as it appears at firet look, does not viclate any physicul principle. The physically

Pay
meaningful quantities are E and H,not E and g, and, as we shall see ln Sectlon 1.2.3,

o eeated SUNNERL

b W S
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the flelds E and H propagate energy at an angle to the cylinder axls and the flelds do
~
not {ncrease in the direction of energy propagation. Waves with negative kI are called

lﬂ! WAVeSs.

Since the scattered fleld has no aources outside the scattering body, {t mus
necessarily have sources within or on the surface of the scattering body. We shall show
that the effective surface currents on the scattering cylinder act as the sources of the
scattered field.

1.2.2 THE TWO-DIMENSIONAL GREEN'S FUNCTION
Let us now introduce the two-dimenslonal scalar Green's function

- - A
Gp. ik =Gkr)=f uM &y, (1-29) !

where we are using the notation Hél) for the Haunkel function of first kind and order n, and
p:'g— £‘I (1“30)

{s the distance from source point p' to observation point p. The function G satisfles
the Helmholtz equation

w2+ k38 =- 8(p- 2" (1-31)

where & {8 the Dirac delta function for a point singularity in a two-dimensional space.

We can readily show that

<ot S sl 1 a2 3B LA e S s e I o b ST e A it ke S T L o

VP= -y'P= g (1-32)
and
1 i
VVP=9'¢'P=-yy' P=-9'VP=3(Q,~ 20) (1-33) g
where ‘
(1-34) )

g =(p-p2'Y P

T TP

is a unit vector polnting from p' to p and




TR TR i e g
o A T T T I (P o1 S St e bz e - -
VT st s oo ey e L L

(1-3€)
Using (I-32) and (1-33), we obtaln

.I,p = 9.‘9.x+e-y -y

acts as a unit dyadic for vectors normal to t.

1)
vGE ~-V'G=-TH1 &k Py g (I-38)
and
voG =V V'G =-VV' G=-V'Y G (1-37)
k § a 1
=-Tr%u§)&p)(;p-z so+kruM ke gaf . (1-38)
For
ﬁ > li:l >>
R 0, P>1
we have the approximations
tn/4 n
- = e kP
G= GR = € ’ (1‘39)
2 2rk P)
where the value of the square root with positive real part is chosen,
- - A 1-40
and N
V9E =V G =-99v' G =-v'V G =-kKGzg0a . (1-41)

These approximations, obtained by using the asymptotic expansion of the Hankel

function, are useful in both the raclating near-fleld reglon and the far-field region
It can readily be shown

as defined In the IEEE Antenna Standard (Reference 7).
that aR satisfles a radiation condition of the form of (I-27).

Let us write P in the form
8
r (1-42,

1>

2=-3

|o] a8 in (I-28) and e 1 thus a unu vector., (We shall show In Sectlon

whera P
of (2~13).) Then, for'l: real and

I.2.3 L.at the e 2.8 ot (1-42) 12 the same as the e

104

L T T i, ke s - b
- B Tk SRy WG m“‘.‘h‘ / Ao okl
‘. ¥

j

[N




/k\po > 1 ,ngvllzg % , |£0I<< go (1-43)

we have the approximations

= _= - . A 8 50 (1-44)
GxG, =G°exp{ lﬁg_re } o
] A8 -
E vG=-v 8 =185,¢° , (1-45)
i vve-v '=-Vv'a=-v-v5=_/,;z§w@: et (1-46)
with ' A
. T -2 tn/a ALY ' I-46A
i’ ° 2(2ﬂ§ PO)I:! ( )
These can be derived from the more general expressions (1-39) to (I-41). The approxi-~
mations (I-44) to (I~46) are useful for far-field problems. Note that they depend on the
s chotce of origin but (I-39) to (I-41) do not.

ral
{ We could also define far-field approximations for complex k but these are not
' of as much practical Interest,

L.2.3 THE FIELD DUE TO SOURCES IN FREE SPACE

We shall now show how to calculate the field produced In free space by current :
sources with exponential t-varlation, This material is intrinsically useful, for example 1
in calculating the incident fleld due to a source distribution. Much more important, {t

J
will form the basis for our treatment of scattered fields as functlons of effective sur- i
face currents. ;

‘Consider a current source distribution K Km o V of the form of (I-4). We
designate ag D the region of the (x, y) plane in whtch the functions K (p) and fj\m ov( ),
which doscribe the transverse varliation of the source distribution, are non-zero. 1

i

{

(In mathematlcal terminology, D is the support of the functions ﬁ and f_(_\m ov. ) 1
i

]

i

Let us restrict D to be of finlte extent, that {s, to have a flnlte maximum
{ dimension, so that there are no sources at infinlty. We can then

A A
ohtain an expreasion ior the field component Et as a function of l_(e Ov and gm Ov by

E applylng the two~dimensional Green's theorem, (48) of Reference 8, which tells us that

p i
,[dA(f vig-g v f) =[dl c% -¢ 28 ) (I-46 B) {
on on
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for f and g functions of x and y only, A a finite area, B the boundary of A, d¢
the incremental length along B, and 8/88 the derivative along the unit normal B to
B which points out of A. We set

g
|

(=8 (o0 82 =G(a. g (146C)

woatnd APt ddsead o

and take the area of integration to be a disc D of radius P with center at the
origin and with P large enough so that D ocontains D. We thus obtain the
preliminary result

f { ] 1,2 2 Av-/ [ [ =_=_9 A
4D [Qt V' e-8(v) Et]— - dt &, &:5-C =B . (1~47)

Here L I8 the perimeter of D and a prime denotes a function of the integration
variable or a derivative with respect to the Integration variable,

If now we let P approach infinity, the integral around Lin (1-47) will vanish by
virtue of the radiatior condition (1-27). Also, the v2 terms on the left hand side of
(1=47) can be ellminated by maklng use of (I-21) and (1-31) We thus oltalu

A '
= -l f ' v . v :
= -l 5P Gl ﬁ IR A ﬁ K ] (1-48) .

st b Tt at, ettt M L bt Ele NI B ek b i s

-=€e0p

We can eliminate the derivatlves of the source currents by using the two-
dimensional Gauss's theorem (42) of Reference € and the two-dimensional Stoke's theorem
(81) of Reference 8, which take the forms

|

I -

i [dAV' P= '/B.dl n <P , (1-48A)
—L’A£-(vx2)=‘{dl(£.xr§)-2_ (1-48B)

respectively for P normal to t and independent of t .  We then raduce the dormaln
of Integration from D to D because the integrand vanishes outside of D. The result is




' 1By, RV - G - '_./\ !
ﬁte_{dn lexvd) RY -5F GKo -g—VT-K o) . =9

Fas
which (8 the desired integral representation of ’E\t. The analogous equation for Hy is

/‘2

- A ‘.
"IY‘ *.k& v'G* K (I-50) ;

zﬁth ./dn' [Z(t xv'G) -

Op

l These results are valid for any observation point g which is boundeqd away from ‘
| D, that s, which does not lie within D or on the boundary of D. The situation at inter- i
g ' ior points and boundary points of D is more complicated and shall not be considered l

here.

i We now readily obtaln the expressions

B o K2z
vﬁ-- dD' [vv'c (txl(mw)+ -'fﬂ(—vcxet -k-—vvc ﬁ J(I—Sl)

and

/\2 t k - 1]
V(Zﬁt)= .[[dD' [zvv' (th )--'{Evax‘fmot- +v V'G-Qx‘;‘

op (1-52)
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for p bounded away from D, which is a sufficlent condition to justify taking the v
operator inside the integra! sign. By substituting (I-61) and (I-62) into (I-22) and
(I-23), we obtaln integral representations for ’g\p and ’lj p (Note that the source
terms in (1-22) and (I-23) vanish because p is outside D.)

When g s sufficlently far from all points p' of D 80 that the inequality (I-38)
holds for all such p', then we say that p lies in the radiating near-fleld region of the
source distribution, By use of (I-39) to (I-41), we can readily show that (n this region
we have

b Av' \"
§=lk .4;D' GRY ki ZK ., gmo ;kt; gip'), (1-53)

/\_ f , == [ . vi Ay
ZH=1k JdD' Gplu . &, k, g) xVk; deo. Kmo 1K gi 2') (1-54)

with
v 2K BN ki = zu xw xRY)ou xR Y
=V, &; ZQ";. l/j\,‘,'l';kt. g 8 u, (g)
+ Vs ZKY, RY ki g 2w b Ky o) (1-55)

A
Nyr Nt Nyt kA A
v, & ZK, .gm;kt: g )= u, (g)-(ZﬁepHgKmthEt- ar l-(;ln'p .+ (1-56)

Ayr Ay ' {} A v k Ny
Vy b ZKY L KDk o 2y =-u, @y RV 4 2R Y s 22Ky (1-57)
\ll (2) =_t_x¢.7. ’ (1-58)
1
Bu(k' kt' 2)=E(Q_t_+ktg) ’ (1-59)
Lk ke @) =f Ko-kt) . (1-60)

A
These results are valid for k, k., and k restricted as in the discussion preceding (1-24).
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The arguments z@:’ , i_(‘;:. and g are of course themselves functions of the argument g'.

The vector 4, (s always real and of unit length. The vectors u ,

and g ¢ are real
and of unit length for k, real and Ikd <k, For k., #0, we stlil have

LT g W u.=1 (1-80A)

but the length of u \ and of u o 88 defined by (2-4) la greater than unliy. I all cases,
the three vectors u LBy and u o are mutually perpendicular and

Uu xu =1u u =
=1 = -r’' =y x‘i!‘ ==l-.l_1 » L. XU u

=r 21 Yy - (1-61)

These vectors are generalizations of the vectors e f ' e, g grs deflned in Section

2.1.2.

Let us now conslder the case in which the sources are concentrated at the origin:

A
v
lSqo(f)= Ld(2)for g=e, m , (1-62)

where 8(p) is the Dirac delta function a8 in (I-31'. We ‘hen have

A A A -63
&, kt'és)x§ = -E, ‘lx(é\-sr)*El‘-‘n &, k., é\-sr) =59

in the radiating near-fleld region, with

A
ikp -in/4
A e "o ke
E =-= V. for p=4,0 . (1-64)
PP V2 g0qk )72 Toop

A8
Here P and € . are defined as in (I-42). The quantities V oL and voou are the

coefficlents of 5 (P) in the expressions for vy 'and V, which we obtzln . . Substituting
(1-62) tnto (1-56) and (I-57).
We can readily conflrm that ga.nd ﬁ of (I-63) satisfy the radiation condition (1-27).
A
We can also readlly verify that these functlons Increase exponenttally with P, for kI <Q,
the leaky wave conditlon. We now want to show that the field E, H whose tranaverse

variation is given by (I-63) indeed carrtes energy away from the origin--as a radiating
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field by definition should~-and that the fleld amplitude does not grow exponentiall: with
distance In the direction of energy propagation, .

To this end we recall that the time average power flow (watts/mz) s given by the
real part §R of the complex Poynting vector

r S=ExH , (1-85)
where ~ {ndicates the complex conjugate. Thus the directlon of §R is the direction of
[ power flow and energy flow and furthermore the condition

8
@-r . -S-R >0 at £=P° @Br for P, sufficlently large (I-66)

characterizes a radlating field.
For the fleld with transverse dependence given by (1-63), we have

‘ \ A 1 A A A~
§=€:"ﬁ=§[(é = +Eu L) X CE, ‘-1-1+E1‘i|?]
k
21 (1212~ A2 21 t1 2 2 A8

In derlving this result we have assumed that Z is real, which is compatible with cur
agsumption that k {8 real, and we have used

k
~ 20 N A _oo2t Tt A2
g“xg_" - k2 (kRktI' kI ktR) \_1_1 =- —k2 rR (kR + tR) CU (1-68)

LA b s mate

Taking the real part of (1-67), we have
1(1 2 A AB

s=[(ﬁ +E)qQﬂe-kt) =

‘ =R Z Ik | 1 nf ~r " “tR- (1-69) i
2 .2 AR As

'z ({: +kg) By E)gt xe ] . :

1

Thus (I-66) is clearly satisfied if and only {f ﬁ > 0, which verifies our statement that the ;

condition Q >0 characterizes a radlating fleld. (We also see that there is no power

ST S S

AL | B Ky 500
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A
flow either away from or in toward the axis when k {s pure imaginary, which confirms
A
that these values of k correspond to surface waves, )

Next, from (I-5) and (I-63) wo have

l...

/2 exp{l@P -k t)} A = /2 exp{l&e -kt)or}

O

= _1_ 8 . Asg
"4 3 ol B o8t kgt x) el R A% -kt eh, 0ot
with
_ ke -tn/4
u ¢ \'A u,) (I-71)
2@2n k) 172 ovl I
Now at point r, the direction of energy propagation is the direction of §R Thus, (f we
define
{(I-72)

ANAg
r'(“l?_r“ktlﬁ )'.§R ’

we see from the iast term of (1-70) that there will be an exponenttal {ncrease in E in
the directton of propagation only if I'< 0. But use of (I-69) and (I-24) in (I-72) ylelds
_ 1 A2 Al A~ A 73

re gy UEP 1B dgkskghp =0, =)

8o there !5 nelther an exponential Increase ncr an exponential decrease of the fleld in
the direction of energy propagation.

For a source distributed over a region D of the (x, y) plane with finite maximum
dimension, the corresponding resuits are that, for Po sufficiently large, the radiating
fleld condition (I-86) holds and there is no exponential increase or decrease of the

fleld in the direction of propagation.
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Let us next consider the fleld {n the far-fleld region for the case of ﬁ real and
less than k. We shall defer unttl later a general definition of the far-fleid region. For
the moment, it {8 enough to say that a point r i8 In the far-fleld region of a source
distribution with finite support D If p ls sufficiently large at r so that the inequalities of
(I-43) hold for all p'{n D. Because we have assumed

/l\< <k, ' (1-73A)
we can write
{\t =kecos 8 , kt =k sin8 , (1-74)
with
- <B<-§ (1-75)

as in ([-3) and (1-24A).

One way to evaluate the fleld at p is by substituting the approximations (1-44)
to (1-46) for the Green's functlion and its derivatives into (1-49) to (I-52) and then
employing (I-22) and (I-23). A more convenient approach, however, {8 to replace
GR and g by G and e : respectively in (I-53) and (I-54) and then use (1-5) to obtain
expressions for E and H. In this manner we obtain, from (I-53), the result

E@ =

A
exp{l(kPo -k, t)} o~ in/4 K V2

AN
_/I;dn' exp {-l k g:. g:} v (1-76)

(B, /cos B/ a@nmy/z TcosB
with ' Ave Ayt AS
V=L®ZK o Ko ki€lsp) . (I=764)

In order to put this result (n a form more appropriate to the far-field case.

we begln by formally defining gr as in (2-13), R and T as in (2-10), and e 8 and
e, 5 as In (2-14) and (2-15) respectively (with B replaced by B in the deﬂnltlons of

€_:r and e “s). "but for the moment we place no physical interpretation on any of
these quantities. We then readily find

1"o = Ro cos B , (I-77)

112

et A D M D it e et

R

okt ot G




?’—W!?,;{a\- R IR WY Y, il SISEE- VN TRl Mmoo

~in/4 1/2 A o
‘e"““Tn 173 cl:)s pdD' expf-tke 2.p1}y (k; 2K, R v pkeinB; 82, o) (199,
2(2m

. M‘»N« - N‘-—*~~.-—.~«.—.——_-—--—--~—-~~vv-.. - e e e
]

H

§ kp -k t=kR cos? g IR AR LT ET S kR -k, T, (1-78)
¥

g and thus (1-76) cap be written gs

E.

3 e lkRo

s E-= ;'V!' exp {-lkt'ro}f_ , (I-79)
‘ o

ig with
T
y
!,_
X

Ve RV

v(k;zﬁe"',ﬁ ksing; e g')=-[2e xﬁ te xK ]
v 0 (1-81)

Viep tvey
1 8w A8 A v I-82
? v, = (Zgwwcosﬁ?l(mt +sin B8 ° ‘K (1-82)
A
V" T - gf . grnvp' *tcos 3 Z Qevt' +8ing Q:. (2 I.(e‘;;) . (1-83)
We al80 have, from {I-54),

ZH =e: xE . (1-84)

Since ’e\ 8 I8 a unit vector in the x, y) plane, it ig determineg tf we know its

azlmuth augle ¢ of Section 2.1.2, Also, k sing is clearly determined if we know k
I 2nd B, Thus we can write
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which is a more convenient set of arguments for many purposes. (This set of
arguments can also be used in the radiating near-fleld reglon, in which case ¢B
is itself a functlon of P'.)

It is clear from (I-79) and (2-10) that grs gives the direction of phase propagation,
and it can be shown by evaluating §R (see (I-69)) that grs gives the direction of energy
propagation. It then follows that the ray through r does indeed appear to originate at
the point t = T0 on tha p =0 axis and that R o is the distance from the cylinder axis to
r along the ray. T follows from (I-61) that 9_:, e 8 e rs. in that order, form the
basis of a right-handed Carteslan coordinate system. Thus we have justified the
physlcal interpretation given to Ro' T0 and the three unlt vectors In Sectlon 2,1.2.

It is also clear now that the definitlon of @_ : In (1-42) leads to the interpretation of

A S
e, embodied in (2-13).

Wa can now give a more general definition of the far-field region with respect
to a source distribution of finite support D, It is the region consisting of all values
of r at which the field is glven accurately by (I-79) to (I-&4). The reglon is cylindrical,
since the validity of these equations depends only on £, not ont, but its inner
boundary {8 not in general circular. The condition we used previously, that 2
be sufficlentiy large so that the Inequalities of (I-43) hold for all 2'in D, Is a
sufficient but not necessary condition, For finite D, the fact that (I-79) holds witn f_
independent of Ro and To implies valldity of (I-80). This s no longer tiue when
D is Infinite, in which case the far-field region is defined as the region in which (I-79)
holds with f Independent of RO and To but not necessarily given ty (I-80)., The case
of infinite D Is discussed further {n Section I.2.5.

¥ % %

It ls also useful to constder far-fleld scattering when k is real and greater than
k, that ls, when
A A
k =kR>k. (I-85A)
In this case kt is pure imaginary. It I8 convenient to allow B to take pure ‘
imaginary values,

114




TR @ A eem—— - mea

S ————

.

:I3 -‘%' L4 >ﬂl D - o ' (1_86)

80 that we can stlli use (I-74) and we can still define vectors e f, e :. and

€ ® by means of (2-13) to (2-16) (with ﬁe replaced by 8). 1t s readily verified that
the vectors ¢ : and e : are now complex. It (8 elso readily confirmed that we can
eculvalently define gf . g: » ande ? as the values of u, , u , andu_ of (I-58) to
(1-80) for ¢ =Q:.

By the same procedures which ylelded (I-79), we obtain

I

tk Po
2 -
§=cogl/ ﬁgﬁrm {ktldi' zg=g:x§, (1-87)

o

with f as in (I-80). We find from (I-69) that energy flow is normal to t , a fact
which influenced our choice of notation in (I-87).

l.2.4 THE FIELD DUE TO SURFACE CURRENT SOURCES

There I8 a very strong analogy between scaitering problems and source problems
in which tke sources are surface currents. For this reason, it will be useful to
speclallze the results of Section L. 2.3 to the case in which the fleld is produced by
surface current sources Koo Emo’ wlth the exponential t-dependence of (1-4), located
on a cylindrical sheet S whose projection onto the (x, y) pizne {8 the curve L. We shall
restrict L to be of finite length, which assures that the maximum transverse dimension

of the uource region is finlte.

H L i8 a closed curve, we define r as the unit outward normal from L. If L is
an cpen curve, we can arbitrarily define efther unit normal to be n. In either case,
we thon define the tangent vector £ so that (2-1) is satisfied und define ¢ to be the
Iength parameter along L in the I direction.

The units of surface currents -l'-‘e and Em are amperes/m. and volts/m. respect--
ively. As indicated in Sectlon 2.2.8.1 of Reference 4, a surface current gq on S is the
limit as d =0 of a current source

v i

!Sq =X l_(q (1-88)
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dowing untformly in a shell of thickness d with middle surface S. More mathematically, .
§q s equivalent to 2 singular voiume current density l
' |
kY =
where & L. is the symbollc function defined by

[d!f:{db féL for all f, (1-90)

with D the entire (x, y)plane. Surface currents are restricted to lle tn the plane of

S, and thus we have
l_gq= tht_:_+l(qt£ forg=e, m (1-91)
and a corresponding expression for gq , which is related to i_(_q by an equation analogous
to (I1-4).
On the basis of these considerations, we readily find that the general

expresslions (1-49) to (1-52) speclallize to

. - No k7 -
; _ 3G /\' - k Z - /\' - t” AG /\' Toa!
1 ét"‘/l:dl' (757 Bnor = 1k © Keot "%~ 57 Keot: (2-92)
| f 82 _n, K g a
A ag A =N, t 8G ' o
| 2H= - A0 (2 55 KL TR ORot * B 37 K'mor (1-93)
- /\2 k2
N 3G L 2 to_ B R ] -
vzt=.[dz' (VR -5 VB Kipg - 5 B 00K, |, a-99)
|

- Ao k
A j’ ' _— I ¢ -0,
V(ZH, ) =- Jjdt [Z( Vo ) Kooy + T VG Kt -}r, (VOK ,}. (1-95)

Equivalent expressions which differ in the last term of the integrand can be obtained

using
(1-96) i

1 E'Av_-/ G 8/\'
/;df-%-rx,- TR SR |
|

In order to make (I-86) valld even for discontinuous K and for open curvee L, we

K, to inciude tmpulse functions at the dlscontmuit &6 of ? op 1. and im~
The impulse functions at the end
; =0on the

- rleiinad x2Sk 2N K5 ol A.Afx&'m“l L

3 2
define FYi

pulsc functions at the end points of an open curve.
A
points are calculated by considering L to be part of a closed curve with K

o N e Pt
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rest of the curve,

Note that (1-92) to (I-9%) are still valid if the signs of n and fare raversed, This
is why we can designate either unit normal to L as n.

In the radiating near-fleld region, the equations equivalent to (I-53) to (I-57) are

A -
E =1k Ldl'GRw (k,zye|o g'mo; kt; ait') , (1-97)
Jurs cw 2R R kg .
= ‘k GRU r 9 H __mo; to Js ]
A A A A
Wk 2K, K ik, a,v)—-l7 u xw, xKi)vu xK2

= -zf:" ﬁ'-k- ;tYu (o)
-Wl «’ 9 t’o—’ _l —

+W, (k.zﬁ ﬁ mikp @it u, & Kk, @) . (1-39)
t 2 ' ﬁ 4 ' kt 'A' 00
w“k:Zl_c_;.lj;n; kiogif)=(gn)ZX ], +¢ K\ - pu (@- Ky, (1100

k

A A
A A A A t
W, 6 2K, K15 ki git'y == (g - o) K )+ 2Ky - U, (@0 2Ky, (1-101)

m

wll:hgl 4y, and u, given by (I-58) to (I~60). By virtue of (I-96), we see that (I-87)
and (1-98) still hold Uf W is replaced by u vector W with elements

) k

w [ k An 1 t 98

W= (@) 2Ry, K+ e =~ K, (1-102)
A & k

Wi=- (g oKy, + p 2Ky + k’t‘ B @K, . (1-193)

In the far-fleld reglon, (1-79), (I-84)and (I-87) are still valid, but { ie given by
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i ,
] f= y .
= an/a 1/2 f AA A e 3
e k 8 v p v, . 8% ") (1-104
- dr exp {-tke® - o' fW ki 2K} , R 7' kein8; € 1'), (1-104)
2 (2”)175 cond 7, r =eo mo j
i
1
;
and W, W, and W of (I-99) to (I~101), evaluated for k, =keinfB and ¢ =fe_\rs, are '
glven by
! 8 8 0 8 _ 8 8 _
E y:-[zirx(grxl(e")fg_rxﬁ,'nl]— We +We, ", (I-106)
=65 oyzk B ' - n') sinB K_° 1-106
Wy =@, 0)2ZK,, +cosl By~ 2 m? (1-106)
A A A
Wy =-(@5-n)K '+cosBZK) -] +n') emBZK /. (1-107) ?

T

Agailn W can be replaced by W, and the components of W are

P 8 A )} 1 3 4 -
Wﬁ@.;-‘ n') zxe;»fcosﬁ Ko\ + -mtanﬁ-a-l-r K./ (1-108)

- A ) 1 .
W, =- (’e\: "n)K 4 cosf K, + 1k tan o * (1-109)

.vu e b . - Lot tind s i L 43k
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Analogously to (I-85), we can write W as a furction of a diffcrent and frequently more

convenlent set of arguments,

PRI

A A
w=\!“; ZEG' ’ 51;1;60 ¢8; f') ’ (I-110) '

ani we can write V:J in the same manner.

1.2.5 A MORE GENERAL APPROACH TO FAR-FIELD RADIATION

A
In this section, we shall only conslder the case of k real and less than k.




We have already seen that, (f all sources are confined to a region of finite extent
{n the (x, y) plane, then the far-field radiation is given by

kR -tk T
e "o to 8
_E_=-E-m e f ., ZH=e¢_ xE, (I-111)
[+

- -

where { is independent of R o and 'I‘o and i8 normat to grs. In (I-80), we have given an
integral representation of f, and in (I-104) we have given a specialized form of this
representation, valid when the sources are surface currente. For any azlmuthgbs.
there will be a value of R o beyond which the far -field expressions have a given

degree of accuracy, and furthermore there is some value of Ro beyond which the far-

field expressions have that degree of accuracy for all@ s°
The sltuation 18 much more complicated when the source distribution extends to

infinity, It {8 still true that, if the integral of (I-80) or of (J-104)exists for a given
azimuth angle ¢s' then this integral gives the correct value of f for radiation in the
indicated azimuth direction. However, there are also cases in which the Integral

does not exist for some value of ¢s' but there nevertheless exists an f, independent of
Bo' which makes (I-111)valid for that azimuth. As a simple example, consider a
constant surface current distribution on an Infinite half plane. The integral represent-
ation (i-104) for { involves the integral

(- +]
1= fdl' exp |- tkk* t} , (1I-112)
(¢]

o N L of AR i 2

*
with k a function of ¢s. This integral I8 not uniquely defined but, nevertheless,
the function f of (1-111) exlsts for all azimuth directions except the two directions

normal to the half-plane.
.

The fact that (I-111) can hold independent of whether (1-80) or (I-104) holds

follows from the theory of the two~dimensional Helmholtz equation, which tells us that,
under a wide varlety of conditions, the solutlion has the form

AN L B ik N o i s £ L WA T L
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Q= &;—175-— q, (I-113)
o

with q independent of P o' for ¢8 fixed and P o sufficiently large. By setting

Q- zﬁt ,a=cos /28 f, , andq-= ﬁt. q =cos®/2g £, , (I-113A)

/N
and then calculating the corresponding values of ﬁ p and H p We find that (I-111)is a
consequence of the existence of solutions of form (1-113).

When the source distribution extends to infinity, there may be values of ¢ 8 for
which the representation (I-111)never becomes valid, no matter how large we make
Po. In physical terms, we can never travel far enough away in the ¢s direction so

that we are in the far field region of the sources. In the case of the constant surface

current source on an infinite half-plane, this is the situation in the two directions
normal to the half-plane,

Finally, for a source distribution of infinite extent, the far-fleld conditions
may be approached non-uniformly, so that no matter how large we make Bo, in-
creasing Ro will increase the range of angles ¢, over which (I <111) {8 valid to a
glven degree of accuracy. This is the case when there are isolated directions for
which (I-111)never becomes valld. Thus, for the constant surface current on an
infinite half-plane, increasing Ro will decrease but never eliminate the angular
reglon about each normal direction in which (1~111) cannot be used,
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1.3 SCATTERING OF FIELDS WITH EXPONENTIAL VARIATION

1.3.1 THE SCATTERED FIELD AS A FUNCTION OF EFFECTIVE SURFACE
CURRENTS

Let us now consider the field @soat‘ scat) scattered from a cylinder whichhas its

oross section bounded by a curve L of finite length in the (x, y) plane. The geometry
is lllustrated in Figure 1. We use the same geometrical notation as in Section 1. 2.4,
where L defined the surface on which a source distribution {s located.

We begin by applying the two-dimensional Green's theorem to Etscat and G.

We proceed as Ir the derivation of (I-49) except that we exclude the region interlor to
L from the domain of integration and we thereby introduce a line integral over L.
The line (ntegral {nvolves 59?1 ﬁtscat’ which we eliminate by use of (I-17). We also

scat

A
make use of the fact that Et has no sources In the domain of integration. We obtain

the result

—— /\2 k z
scat 3G Ascat' k“Z= Ascat t” = & Ascab
© =)ot (g BT - T - g0 g BT, o)

for r outside L. Similarly, if we apply the two -dimensional Green's theorem to G

K]
A i
and the source field Eotwlth the domalin of integration taken as the reglon interior i
to L, we find g
;
i
_ |
G 2, _k°Z =A t” 5.2 fry-= -115
] ./L'd“(an Eo Tk GHyp - % C 37 Ho) =0 (I115) i

when the argument r of G s a polnt outside L. Upon adding (I-114) and (1-115) and
expressing the result in terms of effective surface currents, we obtaln

Ascat /, oG 2 _kz =4 =
Et Ldl (WK' T GKe't'ﬁ--E—G-é-rrKel) . (I-116)

IR VIS TN FLPRIVL S tIRTC I O TR

There are no impuise functions tn —~ M ﬁ o 1 because L is a clogad curve and ﬁei is

continuous even at an edge, that ls, a point where the tangent to L is dizcontinuous.

C e i




(See Section II of Reference 5, which also glves the dual result that f(\m ' {8 contlnuous.)
Thus we can apply (I-96) and obtain

ne k Z
Ascat _ A k2 =A t? oG _
E, L a“’ ( Kx'nf Tk CKet "% T"Kel) . (-117)

mt this is just (I-92) with E replaced by E g Beat and geo and gmo replaced by ge and
l_( m respectively, Indeed, we can readlly show that all che integral representations
(1-92) to (I~95) and the radiating near fleld formulas (I-97) and (I-98) still hold with @.

ﬁ. f_Eeo. and /!_Em replaced by Escat Hscat’ ge' and /E\m respectively and with W and

the alternative form W still glven by (1-99) to (I-103). We can similarly show that the far-
fleld scattering is given by (1-104) and (I-111)with E, H, K o and ’ﬁmu replaced

by Escat Hscat /—\e' and K respectively, (We retaln t‘xe notation f for the radlation
vector in both cases.) It should be noted that K and K are functions of 7 and linear

functionals of the functions ZH t(t ) and L‘ t([ )

We now have a complete set of representations in which the effective surface
currents on the scattering body act as the sources of the scattered fleld, These
representations hold even when the tangent to L has discontinuities, because the result-
ing infinities in ’ﬁet and /ﬁmt are integrable (See Sectlon II of Reference 5).

The representations also hold for scattering from thin cylindrical sheets. The
path L In this case Is traced in one direction on one face of the sheet and in the other
direction on the other face, enclosing zero area. A simpler formulation can be obtatned,
however, by using the same equations but with L now an open path running along the
sheet from one edge to the other and /ﬁe and ’12 m oW the sum of the effective surface currents
on the two faces, which is proportional to the jump in tangential field across the sheet.

Regardless of whether Lis of finite extent or extends to infinity, the following
principle (a form of Huygens' Principle) holds: _
If an Incident fleld ( §0. H, ) produces effective surface currents (K . K m)
on the surface of the scattering cylinder, with K and K = having the expon-
entlal t- dependence of (1-4), and if identical surface current sources
(K 5 ) would produce a radiated field (E scat -scat
scatterlng cylinder and of other sources, then (E
field produced by E,» go).

) in the absence of the
scat scat) s the scattered
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On the basis of this principle, we see that the considerations of Section L.2.5
also appiy to scattered flelds.

Now let us consider a pair of functlona. ﬁ ej' Q mj’ which are elther (1)approxi-

mations to Q ﬁ mb °F (2) contributions to K l( in the sense that ﬁ and Q
represented as sums and Q i’ gmj are terms (n these sums; or (3) approximations to

contributions. Then the formulas we have already clted can be used to calculate

A A
quantities E jscat H jscat’ E jscat’ H jscat £y and w which are the

A
corresponding approximations or contributions to Eacat scat pscat

LB E
fysoat ﬁ
H ', f,and W . For example, if K j are the physical optics

contributions to K Q m* then E jscat H jscat are the physical optlcs contributions

to the scattered field, The considerations of Sectlon 1,2.65 apply individually

to each contribution, but the behavior for large R, of an approximation

or contribution may not be the same as that of the true fleld. For example, in the

case of scattering of a normally incident plane wave from an infinite half-plane,
the radiation vector f (s not defined in the back-scatter and forward -scatter

directions. However, the contribution f i corresponding to the fringe wave current

is defilned for these directions.

ST TSNS INNIIING: G & SR

et b
Rt s L L YRS W IV SR




o

1.3.2 THE PERFECT CONDUCTOR CASE

A perfect conductor problem 18 charactertzed by the boundary conditlon

”~\

X =0 . (1-118)

By applying this condltion and (I-22), we find that the boundary conditions on E
and H at L are

ﬁ: =0 (1-119)
and
aﬁt/an = 0. (1-12¢)

A \
We thus obtain two uncoupled scattering problems and can calculate E and Ql in=-

1\ Bcat
dependently of each other. A corollary observation is that ﬁ does not produce any E

and E does not produce any Htscat.

It is convenlent to represent the surface current and the scattered field as the
sum of a term which depends on H but not on I':, plus a term which depends on E

but not on Hot These two terms correSpond to the two princlpal polarizations in plane

P
wave Scattering; ﬁot dependence is the generalization of perpendicular polarization and Eot

dependence of parallel polarization. Thus we write

A A
-l i
l-(e.lie + ige

(I-121)

where

A A A

1 _%i
Ke =Kg L+ Kg ! (1-122)
A

{s a function of Hot and

i@
Ké x t b (1-123)

ls a function of E The fact that K Ko has no / ~component follows from the fact that

E does not produce any H cat. We use superscripts 1 and Il to avold confusion

wlth the dyadic elements of Section 2.1.5.

From (I-23 ) we find

L
Kot T 5T Ker - (1-124)

124

~ ————

R T Mt Rt Y




L

'}‘\here are, however, very important sltuat(ons In which we find It useful to represent
In terms of contributions for which (I-124) does not hoid. Use of such

oonulbutlona leads to a spurlous ﬁt”’“ term, spurious In the sense that (ts sum

over allcontributions is zero. This complication arises, for example, in the case

of a wedge with cne face illuminated, If we decompose Q "lnto physical optics

and fringe wave contributions. (See Section 2.1.6. )

In light of this, we shall consider two different sets of formulas for perfect conductor
problems. The first {5 valld for all contributions and approximations to the surface

current which are used In practice. The second is a simplified version valid for the
true field and for contrtbutions and approximations for which (I-124) holds.

In perfect conductor problems, we never use non-zero contrlbutlons or approxi-
matlone to Km and we always use contributions or approximations with K lndependent
of E We thus find

Ascat _ Z A2 = A 8G 2,
E, "'112"./;‘“'(“ GKgy+ Ik 777 Koy

& faols g
=- L2 =2 2 =010 G »
% [Jarlk Gxet+& GKy, + tk, =K 1) ] (1-125)
A 8cat _ 3G A
ZH, T =~ Z.L‘“' an" Ket . (I-126)
/> s8cat 2>y geat

The expressions for V E and VZH are readily found from thesc

formulas and we shall omit them. The expressions for W and W {n the
various scattering formulas simplify to

e U i igepie . D i s n e 8 g couiidd
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[
R
= £ t . i
y--Z\lrx(grxl_(‘“) , (1-127; 4
W = e nt 8 i }-
W, =W,=(¢ p_)ZKel , {1-128) g
k.a, K . .
W" = szet e 9‘.1(—) *n' ZK ¢ (1-129) ‘
and
oA P
EZ +-ik—§--—r(ZK L) (I-130)
1t {8 convenlent to {ntroduce the notation 4
= T L W = T W |
W=w fol_!_" , W=W +Wxg." (1-131)
with
1. g il 1-132
wWi= (o n)ZK “L*szetg—u’ ( )
ko 8y kt K 133 ]
= Y - en? 1 1~ r
LA LR wf W ( L n
A k - ¢
= K 2 1t 2 1 1-134 1
Wtk 2 *m T e FKer ) - (-134) 3
Using these expressions for W and W we can determine f and the radlating near-field
reglon values of E gocat on ﬁscat by the usual formulas. Equations ([-125) to (I-134) are
valld for all contributions and approximations used in practice.
When the condition (I-124) holds, (1-126) s!mplifies to
A2
Ascat k™2 =A
Et =~ T '{:df ' GK';‘t , (I-135)

126




o A

e v e arm—

-

7~ scat 2> scat

and the equatlon for VE
and vH*%** do not slmpllfy.

stmplifies in ltke manner. The expressions for H,

The most important simplification (s that of W. The 'cross term" Wx vanishes
and thus we have

W= wf (1-136)

Obviously this {s easler to work with than W, so we shall not even consider the form
which W takes.

* ® ®

We shall now consider the relationship of problems with k £ 0 to equlva-
lent normal incidence problems witi: k replaced by k and k set to zero. In doing 8o,
we shall restrict consideration to flelds for which (I-124) holds.

AN
We begin by noting that the surface currents are functlons of k and £ and linear
functionals of the Incldent fleld. Thus we can write

Ry=1, Gt 0y By (1-137)

No_p Aoty B (1-138)
Zﬁet =Lyksf, 1) E (1)

with L, and L, llnear integral operators which convert a function of ' Into a functlon
of 1. The fact that K and K depend on k and k only in the combination k is a
consequence of the perfect conductor boundary condltlon. It is a very important fact,
because it enables us to make meaningful comparisons between problems with the
same K but different k and k,.

We shall define an squivalent normal {ncidence problem in the same way we used
in Sectlon 3. 3.3 of Reference 2, where the definition was motivated by the fact that it
leads to equal radar cross~-sections for the original and equitvalent problems., Under
this definitlon, a problem with

/N
k, =0 k =k, H, =H_., E, =0 (1-139)
{1s the equivalent of a problem with
2 .2 .1/2 K
ki *0, k - & +ko) v Hot= & Hopy, Ege =0 - (1-140)

3
g
g
!
g
fi

. et e

Y O O N S




—— e e e ——— o~ - . —————— SN S\ A

I the solution to the first problem le

scat scat Escat - Escat K =K

p 8
B sHg L, BT =Epy -+ Ko=Kg b, @, §=fg,8} (-14)

1
1
:
:

.,,
witn s

Ascat k . .scat t cat Ascat_ ., scat

H Heg t + % VHpr, E =Egy ;
kK ]
Nk k, N t K t ;
K "k ¥ed ~ % 21 Kgebr WisgWi g W@ - (I-142) | 1
J
A
f= (X, 12 £ es . g
- g Eil=1 1
1
g
Similarly, a problem with j
N . :
kt =0, k =k, Eot = EoEt' Hot, =0 (I-143) ]

is the equivalent of & problem with \,
A _ PN

k o, k= & +k7 ) Ve Sot™§ Fort ,» Hot=0 - (1-144) ‘

I the solution to the first problem is R
Do

b

: scat _ ., scat scat scat t_wt - - !

| E™ =Eg Lo =Hpo + Ke cWi=wppt, f=fgt,  (7149)

then the solution to the second problein is

k A
scat gscat - Hscat

-u—:?:vg ,

——— -

128

R I R S
—




S BT wydn AR Rt tem RA Fmam s xS agd i

L

Crae 4

T PRI S

f
|
|

e i e e e et e e m e ——— e - m——— —e

Vertfication of these equivalences is straightforward. It involves use of
(I-128), (1-1385), (I-2%), (1~23), (1~132), and (I-104) and of the fact that (I-124)
holds separately for the incldent and for the szattered fleld.

By use of the equivalence concept, we can replace a problem involving
an incldent fleld with exponential dependence along the axis by two uncoupled problems,
ons for each polarization, wnvolving flelds with kt =0, Conversely, when we '7
solve a kt = 0 problem, we have in doing o effectlvely solved a class of obllque inci-
dence problems. & must be zmphasized, however, that the equivalence concept is a
result of the special characterlatics of perfect conductor problems, not a general rule
for scattering problems.

L3.3 PLANE WAVE INCIDENCE

We shall now consider the case in which the luctdent field ts a homogeneous
plane wave Incident at angle 3, = 8 (see Figure 1). We describe such u plane wave

using (2-3) and the assoctated definitions of Section 2.1.1, and recall that an aiternative
degcription of the same wave {8 glven by (I-1) to (I-3). We can now readily verify

that, in order for the axtal variation of the tncident and scattered waves to match,

we must havs

By =k (1-147)
and thus our use of the same notatlon /3 for both these quantities Is justified.

We have already noted that the effective surface currents are linear functions of
and /[-? These in turn are linear functions of E p. for plane wave incldence. Thus
it followe that 't is legitimate to relate the surface currents to E B by surface current
dyadics K K as {8 done In (2-27) to (2-29) of Section 2.1.3,

~ The general expressions for the scattered fleld now become

A G -
scat f —aL’, 2 g’m + ik c082B ZG ¢ - 3G
L

- L ﬁ__é)}- p, (1-148)

x>

e' ~-8InBZ =

h e A
2f,°°% - - & U de (z 1 K’ -tk cos®s Gt - gn; +oin BL '+ K} p, (1-149)
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A A
. and corresponding expressions for VE, and V(ZH,) which can be used in

(1~22) and (I-23).

For the radlating near-field region, we readily obtatn

E°5= Eo[tk./;dt' GpWkiE, FpkeinBioit)] - oo (1-160)
ZH°%% = E_ ‘lk‘/l:dl' G, ki ksiu, o) x W KB, ¢k stnigs ) 2. (I-161)

with W of the form

_ l t o
W,u.¢, +Wu e 1 +W,ue,+ Y Sy (1-152)

The elements of W are

A A
W“=(CL-!_\_') Zﬁéq + cosBKt'mj- sln,f?m It n') Km'“

wuj:-(g'p-')ﬁ;nfj +COBBZﬁe;J -slnB @-1' n ) ZKv j

Alternatively, W can be replaced by ¥ with elements

— A A 1 ) A '
W‘j=(g_ot.1_') ZKef'j +cosf3 Kr'ntj"' "3 t,anB-a—lr Km“
J =40, (1-164)

- . . 1 9 £
W“r:-(g.;l)l{ S+COBBZK ‘W ‘“ﬁﬁ"'(zxeif

g-off polnt for the development ofa

The equations (I-150) and (I-151) are the jumpin
We shall not,

diffraction coefficient representation of scattering at finite ranges.
however, pursue this line of investigation here.

We also readily verify that the far-fleld scattering (s given by (2-19) with { of

the two-component form (2-21) and glven by

1 -1n/4
=B, 573 ,‘ 173
k™' “cos3 2@2m)

/ df'exp]-ik ucsﬂgi- oWk B, ¢k amﬁ;g;’,; 1')]- e . (I-156)
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For far-field work, It i8 conventent to proceed as in (I-110) and express W In tirms of

arguments O and ¢ o ipstead of (k sin 3) and é rs We thus have

‘=” = ‘4’ ( k;B' 16; o L) (1-..56)

and simtlarly for ZJ We now see that this W and EI are indesed speclal cases fm’{il

Bg - B of the W and W defined by (2-30), (2-31), and (2-33), (The notatlon here is a

little more general than that of Section 2 {n that we use an arbltrary real wave Imped-

ance Z Instead of speclifying the free space wave impedance Zu. ) Furthermore, If wi

define the diffraction coeffictent d as {n {2-22) to (2-24), we find from (I-155) that dis
indeed given by (2-32).

To verify the baslc symmetry property (2-34), from which (2-35) to (2-37)

A
follow, we first note that replaclng 3 by -3 will not affect the sign of H ecat
the contribution to H

due to the 1-polarized component of the lncldent
fleld, nor the sign of Q scat. Then (I1-22) and (I-23) tell us that the slgns of

N
E plscat and H p"e(.at are also unchanged 'but the slgns of gt:cat and H,, acat reverse.

A second application of (I-22) and (1-23) tells us that ﬁ p"scat and f_\l :cat reverse

signa. Upon replacing the flelds by the corresponding surface currents (See
(2=26C). ), we cbtain (2-34).

Turning to the perfect conductor problem, we confirm from (I-118) and (I-123)
that f( and ﬁelu are zero, as stated In (2-38). The results (2-39) and (2-41) are
=m

obtalned from the equivalences derived in Section 1.3.2. The result {2--40) follcws
from (I-224) and the equivalences.

As in Section L 3.2, we have two different sets of formulas for the perfoct
conductor problem, the first valid for all contrlbutions and approximationsg used in
practice~~ {ncluding those for which (2-40) does not hold--and the second valld for
the true fiold and for contributions and approximatlons which satisfy (2-40).
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e e A e =

In the flist case, (I-148) and (I-149) reduce to

Ascat Z |12 2 2y 2 2 '
E. =- thr,/l: at [k cos’BE K, +&" cos ﬁﬁﬁeuﬂk elnﬁ%gﬁeh)]}‘g, (1~157)

ocat , 8G 2,
zﬁf n-EO{z]I:dl = Kb e oo (1-158)

tand vzﬁtsoat which oan

and there are corresponding expreasions for vlﬁtsca
1-150) and (I-151)

be used in (I-22) and (I-23). In the radiating pear-fleld reglon, (

hold with
—w' U gew! _
v =¥ * WL » W= +W)(-'H-L' (1-159)
‘Et =W, ‘.’.19_‘1" W% &y o (1-180)
- 4 I 1
W, =g n)2Kg,,, (1-161)
N
W, = cos BZK,\ (1-162)
A A
= - . A\l 1 -
W, cos82ZK, ' -8ln Bu, ) ZKgy o (1-163)
- A 1 : 9 5o -
W, =cosf 2K\ + ¢ *” B.5p (ZKyg) (1-184)
From thege formulas and the equlvalences of Sactlon 1. 3.2A, we readily confirm that the

-22), and (2-32) with W aad @ glven by

far -fleid aesttering is given by (2~19),(2
The expressions (2-48) and (2-49)

@-42), (2~43), 12-46), (2-48), (2-52), ard (2-53).
for the dq are congequences of the resuits for W.

When (2~10) holds, (1-1567) simplifies to

A 2 = b -
£7%8¢ = £, {1k 2 cos ﬁj:d!' Gk, b e (1-165)
and there is an analogous expression for V@t”“. In the radiating near-field region
and In the far-iteld region, we heve

W -0,
Y

su we can use (I-1560),

(1-166)

(I-151), (2-19), (2-22), and (2-32) with

e el i e mane H
o St et L e+ 2k O Pl 2 i SN




v‘g - wt (1-167)

Thle result confirms (2-47) and thus (2-60). B I8 readily verified that W, is given by
(2-44) In the far field, but ln practice we would never use W instead of \EI when (2-40)
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LIST OF SYMBOLS

(We omit dummy variables, quantities which appear only in derivations,
quantities which are only used within a few lines of where they are defined, and
quantities which are used only in Section IV, which I8 sbort enough so that there is no
problem keeping track of the notation. )

| A) i A is a scalar, vector, or dyadic, then
A', when it appears under an integral sign, signifies A taken as a

function of the integration variables. There i8 one exception to this rule,
namely VB'.

H A I8 a complex scalar, vector, or dyadic, then
A 18 the complex conjugate of A,

Ap 15 the real part of A. (Note: There s one exception, ER. Also,

R as a subscript on the real scalars ¢ and 4 has another meaning. )

A, 18 the imaglnary part of A,

I

I A Is a scalar, vector, or dyadic which has exponentlal variation along
an axis, then we use the notation

A=4 exp {-lktt }
where

t s the length parameter along the cylinder axis.

kt {s the axial wave number (See Section L. 2.1, also Sectivns
2.1.2and L. 1. ).

ﬁ 1s independent of t.

H A Is a vector, then

Ay = L+ A

At= t- A

A = = -

A =tx(Axp=A-At

where
t is the unit vector along the axis of a cylinder, which can be
an infinite length cylinder (See Sectlon 2.1.1.) or an Incremental
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length coylinder (See Section 3.1.1.).

1 s the unit tangent to the cylinder in a plane normal to t_
(See (2-1). ).

i A (s a dyadic, then

Ayy=ef Aee) Ay=el a1 Apy=Lhe,
Ap=ef- A-ey Ajp=el- At Ay =LA 9:,
Ay =eicArel  Apr=ef- Al A =t Avel
A=eif - A- e A =ef - At S __‘g:
where
e }_, e ,}, e f, e "s are unit polarization vectors defined by

(2-5), (2-14), and (2-15).

For convenience, we sometlimes use the simpler notation
Al instead of All
A instead of A

Ay Instead of Ay,

B) Additional subscripts and superscripts which have specific meanings:

E indicates a quantity obtained from the equivalent pormal incidence problem
(See Section 1,3.2.).

e Indicates an electric current or related quantity.

i Indicates a2 quantity related io the incident field.

K Indlcates a quantity for use in Keller's Geometrical Theory of Diffraction
(GTD).

m indicates a magnetic current or related quantity.

PO Indicates the physical optics contribution to a quantlty.

8 (ndicates a quan ity related to the scattered fleld.

scat Indicates a scatterad fleld,

U indlcates the fringe wave (Ufimtsev) contribution to a quantity.

o Indicates an incident fleld or a current source dist. tbutton.
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+ {indloates a quantity assoclated with the surface S ,» Which intersects
tbe surface 8_ to form an edge. For example, da + 8 the contribu~
d tion to da from the current on 8 X

- Indicates a quantity assoclated with the surface 8_ (See +,).

C) Other aymbols:
b  Unit vector normal tot andn o (8ae (2-54) and Figure 3. ).

C An edge (See Section I and Figure 3.).
¢ Speed of light,
Av L v
D Support of the functions l_(eo. émo (See Section L 2,3.).
D Three-Dimensional Diffraction Coefficient (See Section 3.1.1.).
R, Value of D calculated by assuming currents l_(ew ' Ko o0

cylinder of finite length {See Sectlon 3.1.2.),
da' db Scalar diffraction coefficlents related to d for a wedge (See
(2—80b)c )-

dq - dq_ forq=1, §, x, & b Contribut'onto d 4 from the current

on S+ or 8_ respectively.

d,ﬁ Quantity related to d,, (Sce (3-32), (3-33).).

lelt Quantity related to d'u (See (3"42) to (3~46), Jo

dg, d* Alternste notatlon for djf, , djjj respectlvely.

¢ d &;B, #iK,. ¢,) Incremental Length Diffraction Coefficlent (ILDC)
(Bee Sectlon M. ); also, for B, = f,, Two-Dimensional Diffractlon
Coefficlent (2-D DC) (S8ee Section IL ).

d ,» d_ Contributions to d from the current on §, and S_respectlvely., ]

dp,, Contribution to D, from an Incremental length element of a ﬂ
cylinder (See (3-8).). 4

(’!\.Ij o Radiation vector corresponding to dD,, (See (3=7).).

E; , ﬁ” Components of_e_ (S8ee (I-63).).

E Electric fleld.

e : . & : Unit vectors which indlcate the directions of the scattered

wave (9_: ) and the Incident wave (-9_:) (See Sectlons 2.1.1, 2.1.2,
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3.1.1.),

-Q : , é\_:, Unit vectors along the projections of e : and e : respectively
onto a plane normal to the cylinder axis (8ee (2~ , (2-13).).
e x Unit vector normal to t which serves as an azimuth reference (See
Section 2.1.1,). For the wedge, we use e." -l_l_o (See Figure 3.).
e Unit vector normal to t and e _ (See Bectlon 2.1.1.).

y
f. e ;’ e f, e ; Polarization vectors for the scattered and incident

flelds (See (2-5), (2-14), and (2-15).).
e ; . &p Unit tangent vectors normal to t on S, and S_ respectively
(See (2-56) and Figure 3. ).
F Radiation vector for a three-dimenglional problem (See (3-2),
(3~3). ).
f, £ (V, &) A function related to the ILEDC ¢" for a wedge (See (3-52),
3-56), (3-57), (3=60).).
o I Values of f for the arguments (V_, dz_) and (V_, ) respectively
(See (3=55). ).
Radlation vector for an infinite cylinder problem (See (2-19),
2-22).).
G Two-dimensional scalar Green's function (See (I-28).).
E;'R. 'éo, G, Approximations to G (See (I-39), (I-44), (I-46A).).

‘F‘\

g g (V,J) A function related to the ILEDC gU for a wedge (See (3-53),
(3-58), (3-59).).

8. B_ Values of g for the arguments (V o x(l+) and (V_, ) respectively
(See (3=55). ).

H na) Hankel function of first kind and order n,

H Magnetlic fleld,

h (B, Bg) Quantity related to dy, (See (3-25), (3-29), (3-32).).

Lo Unit dyadic for vectors normal to t (See (I-35).).

i Square root of -1; exp {-tw t} time dependence is used.

K., l_gm Effoctive electric and rr;agnetlc surface current respectively (See

(2-26), (2-26).). On a perfect conductor, Ee {s the true surface current.

The effective surface currenis on an infinitely long cylinder
when used as an approximation or contribution to the currents on a i

finite or incremental length of cylinder (See Section 3.1.2.). i
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K :’ 5mv Electric and magnetic volume current distributions (See Section L2.3.). :
f_(e*. f_a J° For an infinite length cylinder, the contributions to K induced by the '
1-polarized and y~polarized components respectively of an incident
wave with exponential varlation along the cylinder axis (See Section
L3.2.).
l:f A surface current dyadic, either eloctric or magnetic.
ge’ i;{ m Electric and magnettc surface current dyadice respectively
(See (2-27).).
k Wave sumber,
kt Axial wave number (See Section 1.2.1, also Sections 2.1,2 and
L1.).
ﬁ Transverse wave number (See (I-18).).
! L The curve normal to t which describes the cross sectlon of
a cylinder (See Section 2.1.1 and Figure 1.).

i Length parameter along L (See Sectlon 2.1.1.,).

2 Unit tangent to L (See (2~1).).

n Unit outward normal (See Section 2,1.1.).

n Unit vector which bisects the wedge angle and polnts out of the

° wedge (See Section 2.2.1 and Figure 3.).

n,,0n_ Unit outward normuls to S + and S_ respectively (See {2-55).).

P, P o These symbols are to be read as capital rho. Therefore they are
Included in the alphabetic 1lsting of Greek-letter symbols,

P Polarization vector of the incident wave. (See Section 2.1.1.).

Ro Distance to a point in the far-field reglion. For a three-dimensional
body, Ro is measured from the origin (See (3-1),). For an infinite
length cylinder, Ro is measured from the axis along the unique
scattered ray which passes through the far-fleld point (See (2-10)
and Figure 2,).

r Poslition of a point in space,

8 The surface of a three-dimensional body,

8, S_ The two surfaces which intersect to form the edge C (See Section

2.2.1 and Figure 3.).
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S Complex Poynting vector (See (I-85).).

T Length of a finite cylinder (See Section 3.1.2.).

T o Point on the axis of an {nfinite length cylinder from which a scattered
ray appears to originate (See 2.10 and Figure 2.).

b 3 Time,

Length parameter along the cylinder axis (See {2.2).).

e
(g

t Unit vector along the oylinder axis (See Section 2.1.1.).

U, U, U_  Step functions (See (2-102), (2-103), (3-67).).

: +!?
f.
5 u Real number related to v (See (3~561).).
i
P u ,u , Complaex vectors which are generalizations of e 5 e s. o®
4 =1’ =y’ -r =1’ =i’ =r
3 respectively (See Section I, 2. 3.).
_‘ { \Y Argument of the functions f and g (See Section 3,2.1.).
' V.. V_ Values of V corresponding to the scattering from § , and S_
respectively (See (3~47), (3-48).).
. i
1 ‘ v Vector fleld used in calculating the field produced by a 5"
k-
! volume distribution of current sources (See Section 1.2.3.). -
v ,V Quantities used i{n calculating the fleld produced by a it
oo’ "oofl |
iine source (See Section I1.2.3.).
Vy VoV Quantities related to V, V+, V_ by (3-50) and (3-51). E;
'\‘/’B Quantity related to f and g (See (3-52), (3-63).). b
Vg a Vp/d  (See (3-54).) -

= o -

Wii* Wy*  Quantities related to W, and W), for perfect conductor

case (See Section 3.1.5.). (Note: There is no dyadic W *)

s

Wy, Wit**  Quantities related to W  (See Section 3.1.5.). (Note:

e

There are no dyadics W*or W *+.)

oarT ]

W, \:V, w! Surface vector guantities used in calculating the field produced

by a surface current distribution (See Section 1.2.4.).
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Dyadic quantities used in caloulating the field produced by a
surface current distribution (See Sectlon 2.1.3,).

Real number related to v (See (3-51). ).

Half of the phase difference in radlans between far-field
returns from the two ends of a finite cylinder (See Sectlon I,
Section 3.1.2.).

Wave Impedance of a medlum.

Wave impedance of free space.

Interior half-angle of a wedge (See Section 2.2.1 and Figure 3.).
{(Note: o 18 used with a different meaning in Section 4.2,)

Used instead of Bl and Bs in Appendix, which deals only with
cases for which Bs = Bl‘

Angle describing the obliquity of ¢ | to the cylinder axis (See
(2-7) and Figure 1.).

Angle describing the obliquity of ¢ : to the cylinder axis (See
(2-11) and Figure 1.). '

Quantity related to Bs and 3! (See (3-34).).

The Dirac delta function for a. point singularity at P=0 in a two-
dimensional space (See (I-31).).

The angles measured from /_e\_ : to each of the

four shadow and reflection boundaries (See (2-71) to (2-74).).
Measure of the error introduced when dq (Bl; 'Bl) is approximated
by d (B3B8 (See 3-17).).

Quantity related to édq {See Section 3.1.4.).

Number ecual to v when v 18 real (See (3-51).).

- e L om0 Eal I e id

(LU VOV EIFE ™ POL S




Wedge factor (See {2-58).).

Distance from p' to p (See (1-30).).

Radlal distance from the cylinder axis to a point in the far-field
region (See (I-42).).

Projection of r onto a plane normal to the axis (See (2-2).).
When not under an integral sign, signifies the value of Pat

a source point (See Section i.2.%.).

Unit vector pointing from p' to p (See (I-34).).

Azimuth angles cf @ : and /ol : respectively (See Section 2.1.2
and Figure 1.).

i _As

Az\muth angle from ’Qr toe . (See (2-75).).

¢8+' ¢’R+;4’8-' ¢R- The azimuths of the four shadow and reflection

Pz
1/
¢+' lll_

boundaries (See Section 2.2.2.).

The sum (¢‘ +¢B) (See (2-78).).

Angle which s argument of f and g (See Sectlon 3.2,.1,).
Values of w assoclated with the scattering from S

and S_ respectively (See (3-47), (3-48).).

Radfan frequency.
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