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FOREWORD

This report presents the work accomplished on Contract F04611-71-C004,
the Orbit-to~-Orbit Shuttle Engine Design Study (00S) over the period from
1 March 71 to 1 December 1971. The program was admistered by the Procurement
Division of the Directorate of Material, Edwards Air Force Base, Edwards,
California. The technical project manager at the Rocket Propulsion Laboratory,
Fdwards, California was Mr. L. Tepe. Mr. Werner P, Luscher directed the study

effort for Aerojef Liquid Rocket Company.
This report is contained in 4 books described as follows:

Book 1: Parametric Cycle Study
Book 2: 25K 1b Engine Design

Book 3: 25K 1lb Engine Maintenance, Development Plans,
Cost Estimates and 10K 1lb Engine Design

Book 4: Appendices
This technical report has been reviewed and is approved.

L. E. Tepe
Project Manager
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ABSTRACT

This report presents the analytical
design of propulsion systems utilizing LOX/
Hydroger. propellants to be used as the
propulsion for the Orbit to Orbit Space
Vehicle of 65,000 1b lift-off weight.

The report contains the evaluation
of various engine cycles in the thrust
range of 8,000 1b to 50,000 1b thrust for
performance, weight and envelope culminating
in the cycle selection and detail design of
a 25,000 1b and 10,000 1b thrust engine. The
engine concepts are described in sufficient
detail to obtain reliable engine weight, per-
formance, envelope information and methods of
engine control. The impact of various engine
design requirements were evaluated. The
engines are designed to be reusable and
capable of starting in the idle mode operation.

The technology requirements for meeting

the engine design and operating requirements
are identified.
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V1L, Tochnfeal Discusstion (cont,)

C. ENGINE MATINTENANCE (25K LENGINE DESIGN)

1. Ground-Basad Maintenance

ingine maintenance was a basic requirement in the overall
engine design as well as the subassembly and component designs. llecause the
purpose of this study was to provide a preliminary engine design and engine
system data, the maintainability effort was directed toward the flmpact of
maintainability on engine design both from the standpoint of instrumentation
and maintainability design features rather than definition of ground support
equipment and logistics problems. The maintenance program followed a step-by-
step evolution from establishment of maintenance concepts, performance of
failure modes and effects analysis, definition of line~-replaceable units and
incorporation of maintainability features. The following paragraphs present

the step-by-step procedurc followed in assuring that the 00S engine design
contains maintainability fentures.

a. Maintenance Concepts

The maintevance concepts or philosophy establighes the
sis for all maintainability decisions and the ground rules followed in
riving the maintainability program. For the 00S program the following
i

ntenance concepts were used:

Maximum utilization of the onhoard engine con-
troller and instrumentation for engine checkout, engine monitoring during
flight for maintenance significant trends, and fault isolation during flight,

A leave-it—-alone-if-working philosophy®*.

On-the-vehicle maintenance (ground-based) by
removal and replacement of Line Replacable Units (LRU).

The 005 System achicves a reduction of the payload-in- :
orbit-cost by reusability of the delivery system. Reusability requires that
the svstem be maintained to obtain reliable payload delivery of the same

systen in subscequent misslions.

The method of maintenance is largely dependent upon the
lity of pavlioads and fleet size which determine the 00§ stage. turn
e e

turn arcund time effects the methods by which flight readi-
ness of the stage will be established. The basis of flight readiness is the

B
T .
arounda t

tion. Reduction and analysis of this flight data is the basis from which
maintenance decisions are made. Several methods of data retrieval are

feasihle and the selection is based on the vehicle turn avound time.

NG T
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I11, ¢, 1, Ground-Based Maintenance (cont.)

Real time data retrieved by telemetry via communi-
cation satelite,

Vehicle in-flight data recording and ground play-
back.

Vehicle data recording and in-flight reduction and
analysis.

The method used will change during the flight program
as tne reliability of the system is increasing. At the beginning of the
flight, real time data is required since the system is still in development. -
As reliabilitv increases, more and more data storage will be used. The
maintenance concept and turn around time will also change during the flight
program and no final decision on data retrieval and instrumentation require-
ment can be made at this time,

Engine maintenance costs are largely dependent on the
component life capabilitv. Maintenance costs are therefore designed into the
engine by the stated component design life goals (399 cycles, 10 hours) and
by the case of engine inspection and failure dJdetection.

Ground Maintenance Annroach

There are three different levels of maintenance con-
sidered:

Routine maintenance
Tefurdisihing
Hngine overhaul

iy .

MMe engine design will incorporate specific require-
ments ‘or each of these levels, The maintenance levels performed between
missions are dependent on the progressive svatem reliability history and will
change as the flight prograsm progresses,

Routine Maintenanee

This maintenance will be performed with the engine
Al

inctalled on the vehicle and considers the following onerations:

Visual inspection of the preburner and TCA injector and

chamher,
Ynpine leak check.
Hlectrleal system continuity check.

P £

ye
[
-t
~
'
A

eplacenment (Bearings).
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L1, €y 1, Ground=Based Maintenance (cont,)

Spark plug inspection and check.
Instrumentation replacement, 1f required,

No flow check or functional check will be performed
since the previous flight data will indicate system flight readiness.

Engine Refurbishment

Tn this maintenance, components of known life limita-
tion or performance degradation will be refurbished. It 1s most likely that
this maintenance is not done on the veéhicle and the vehicle wtll receive a
different engine for the next flight. Only the component (LRU) of question-
able reliability will be replaced on the engine. Prior to installation into
system or storage, the refurbished engine will be tested. No engine testing
on the vehicle is considered. Therefore, only LRU's which can be functionally
checked out without engine firing will be replaced on the system if replace-
ment time is shorter than cngine change.

Ingine Overhaul

In this maintenance, the engine is completely disassem-
bled to the subcomponent level, inspected, and ports will be replaced. The
engine will be reassembled from functional LRU's available. This means, that
there is no engine life in a real flight service but LRU's of various life are
assembled into engine assembly. This method of maintenance requires serializa-
tion of lowest subassemblv parts and parts accountability methods.

The coverhauled engine will be tested as an assembly
prior to installation Inte vehicle or storage.

ngi itenance and Maintenance Cost Desion Goals

The maintenance concepts utilizing LRU's do not recog-
nize an engine assembly as such. TFor the initial engine desipgn, the follow-
ng go: L are stﬂtcc:

00S ENCINE DESIGN STUDY - ENGINE SYSTEMS MAINTENANCE AND MAINTENANCE COST GOALS

SERVICE FREER BETWEEN TOTAL SYSTEM
REGUIREMENTS OPERATION OVERHAULS LIFE
Sumber of Thermal Cyveles 60 300 1500
ilours Life 2 10 50
Sumber of Starts 60 300 — 1500
Mamimum Single Run Time, Sec. 1000 1000 1000
Yaintenance Cost/Inftinl Coss, 74 5 v 25 200
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111, C, 1, Ground-Based Maintenance (cont.) ]
If the engine is completely new, then a maintenance nlan and cost estimate can i
he establishied ideally as fellows: =
MAINTENANCE CYCLE PLAN BETWEEN OVERHAULS i
A
ESTIMATED
COST PERCENT 3
MAINTENANCE ACTIVITY T ENGINE TIMING
Refurbishment 1 Inspection Only 150 2 hours or OU cycles .
E{
Refurbishment 2 Inspection Only 1.0 4 hours or 120 cycles j
Refurbishment 3 REFURBISH OTPA 4,5 6 hours or 180 cycles ‘
and Inspection
Refurbishment 4 REFURBISH ¥TPA 5.0 8 hours or 24() cycles
and Inspection ]
Overhaul A Combustion Cham- 24,5 10 hours or 300 cycles _
ber, Nozzle and ‘I
Inspection 2

‘laintenance Engine Design Considerations

The impact of the engine maintenance requirement on the
enpire design can be defined based on the maintenance concept described.,

Provisions have to be made to visually inspect critical ]
components such as the thrust chamher assembly and

rreburner chamber, l
Protective filters for hearing coolant flow have to be

desienad such as to be easily removable and accessible. 1

Te eneine has to be capable of bheing leak checked in
-
he inestalled condition,

Instrumentation and sensors have %o be replaceable and
cceseable in the installation (see Page 661).

canpability and component replacement time,
Flight iInstrumentation has to be defined to permit
definition of engine flight readiness, TInstrumentation
v or cress check computer his to be employed
to assure reliable data,

laceable units have to be defined based on life .]

——

|
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Y, ¢, 1, Ground-Based Maintenance (cont,)

The engine has to be capable of being ground handled
This opplies particularly tc nozzle extensions and
lines where very thin tube wall thickness should be
avolded,

The engine should be capable of being fired for check-
out at sea level without impairing the engine operating
conditions or structural integrity.

This is probably the most severe co:iéﬁmimpact and
requires definition of available facilities for engine checkout firing,

The large area ratio bell nozzles experience adverse
pressure conditions at sea level and atmospheric conditions which tend tc
collapse the nozzle. Flow separation will occur at certain nozzle pressure
ratios which may induce pressure oscillaticns. Heat transfer conditions in
regenerative cooled nozzle extensions will differ from actual in space opera-
ting conditions. This may not be of significance in a stage combustion cycle
with adaptive thrust and mixture ratio engine control since it can compensate
for this fact. Open loop testing would result in a drift of operating con-
ditions. Testing of large area ratio nozzles at sca level requires facilities
with steam ejectors. This method would permit demonstration of actual alti-
tude operating mode.

More economical methods would be a facility with an

aspirator. This method requires a separable nozzle extension and would not
dunliicate the alt*tuue operating condition but may be acceptable to demon-
strate mechanical and functional integrity of the engine. Separable nozzle
extensicns considered are dump cooled extensions and radiation cooled exten-
sions. The radiatlon cooled nozzle extension appears more attractive since
it will neot complicate engine leak checks.

The f£inal engine design features a fixed all regenera-
tive cooled nozzle and represents the most desirable design but also is most
demanding on engine checkout facilities since it requires the availability of

an on file high nltitude facility.

b. Failure Modes and Effects Analysis (FMEA)

A failure modes and effects analysis was performed for
eacn enpine subsystem to determine its mode of failure and the effect on
missicn objectives, crew safety, and other engine subsystems. Presented in
Section III.3.7 is a discussion of the failure modes and effects analysis.
The main output of this analysis as it pertains to maintainability is as
input data in determining Line Replaceable Units (LRU) by determining failure
modes and in determining malfunction detection sensors which isolate the
failed component.

c. Component Reliability Assessment

Dyrpe

esented in Table LXXVIII, Section III.B.6 is the
reliability appertionment for each of the 00S engine subsystems. This data

BEST AVAILABLE COPY
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11T, C, 1, Ground-Based Maintenance (cont,)

is used in establishing which components have a high failure rate and there-
fore require isolation as an LRU. Additionally, the parts within a component
are defined from the reliability assessment and FMEA which require maintaina-
bility features which allows for easy replacement.

d. Component Life Cycle Capability

Another factor which influences the selection of LRUs
is the life cycle capability of the components. Yach of the critical compo-
nents was evaluated to determine their life capabilities. The results of this
evaluation is shown In Table LXXXVIII. Those components which are subject to
failure due to cyclic fatigue caused by thermal gradients, such as turbine
rotors and thrust chambers, have their life capabilities expressed in cycles.
Those components subject to wear or other type failure due to duration, such
as bearings, have been expressed in terms of hours.,

e. Line Replaceable Units (LRUs)

Presented in Table LXXXIX is a list of the LRUs se-
lected for the 00S engine system. Figure 269 presents an exploded view of
tne LRUs. Data from the FMEA, the reliability assessment and the component
life cycle capability was utilized in deriving the LRUs. Selection of the
LRUs was essentially a compromise between reliability/life cycle and ease of
removal. For example, even tiough the turbopump bearings are a life-limited
item, removal of the full turbopump assembly is required since no simplified
approach for replacing the bearings in place could be derived. All instru-
mentation has been identified as LRUs because of the relatively low level of
reliability and because of the ease of replacement, Tnterconnecting lines
result as LRUs not because of their poor reliability or life cycle camability
but because they contain the other half of the flange which connects those
items requiring replacement,

f. Incorporation of Maintenance Provisions

Design reviews were held to assure incorporation of
maintainability features into the basic desipgns. Most of the design features
are discussed in the sections dealing with desipgn descriptions. Some of the
more pertinent maintainability features are discussed in the following para-
araphs,

As a zeneral rule, all of the atraching joints will
employ bolted flanses in conjunction with K-seals manufactured by Harrison
Manufacturing Companv, Although bolted flanges are not optimum from a time
removal standpoint, their use is justified because of their excellent sealing
capahilities due to the cven loading imparted to the flange. Flat intertaces
which rvecuire minimus separation of the flanges for removal have been incorpo-
L comoonents and mating surfaces.  The selection of the

rated it fnes

*
static applications will fecilitate interchimpeability,

N=seu
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TABLE LXXXVIIT

COMPONENT OPERATING CYCLE LIFE CAPABILITY

TPA's

H2 Turbine Rotors
0, Turbine Rotors
H, Turbine Nozzles
09 Turbine Nozzles

H, Tmpeller

2

0, Impeller
2 <

H? Bearings

0, Bearings

12 Shaft Seals
02 Shaft Seals
Other Components

Combustion Components

Preburner
llot Gas Manifcld
.
injector
Combustion Chamber
Nozzle

Valves

A1l Valves

Propellant Lines

Gimballed Lines

Other

Propellant Lines

Electronics

25K THRUST

300 cycles

300 cycles

1500 cycles

1500 cycles

300 cycles

700 cycles

10 and 19 hr for turbine side bearings
50 hr for pump side bearings

150 hr for the turbine side bearings
11 and 164 hr for the pump side bearings
1500 cycles

1500 cycles

Exceeds 50 hr/1500 cycles

1500 cycles
1500 cycles
1500 cycles
300 cycles

1500 cycles

~ 1500 cycles -

1500 cycles

Exceeds 1500 cycles

50 hours service life
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TABLE LXXXIX

LINE REPLACEABLE UNITS (LRU)

Fuel Propellant Circuit

- Fuel Suction Vaned Elbow ]
-  Fuel Turbopump

- Fuel Discharge Valve

=  Fuel Discharge Line
- Fuel Start Bypass-Valve
- Fuel Line to Preburner
Oxidizer Propellant Circuit ]
- Oxidizer Suction Vaned Llbow
=  Oxidizer Turbopump |
-  Oxidizer Nischarge Valve
- Oxidizer Discharge Line i
- Oxidizer ¥Flow Meter (Discharge Line)
- 0Oxidizer Lirne to I'reburner
- Oxidizer Tlow Meter (Preburner Line) §
Combustion Circuit
- Preburner Assemdly |
- ot Gas Manifold :
- Infector !
- TMrust Chamher Assembly (Chamber plus lozzle) .
i
Clectronices
- 'nstrurentation Transducers
- Instrumensation 'inrnesses
- Controller i
- Control iarnesses -

“'.“.‘_\‘

——————
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111, C, 1, Ground-Based Maintenance (cont.)

Through-bolts are employed where possible to reduce problems associated with
flange misalignment. Self-locking nuts are used for easier and faster
replacement by eliminating the less desirable methods such as safety wire,.

Although the turbopump must be removed as a full assem-
bly, turbine components are easily replaced once the TPA has been removed,
The TPA is removaed from the engine by separation of instrumentation and the
propellant inlet and outlet lines and a single turbine hot gas joint, lHlot
gas inlet and outlet is separated by means of redundant seals which are
removed when removing the TPA. Once the TPA has been removed, removal of a
single bolt circle allows removal of the turbine nozzles for easy inspection
of the turbine rotors. Replaccment of the turbine rotor is accomplished by
removal of another single bolt circle. Subsequent operations allow easy
removal of the last shield and turbine lift-off seal.

The preburner has external bolted flange joints to
facilitate easy replacement. Because the preburner walls are regencratively-
cooled the turbino inlet temperature will be measured at the turbine manifold
rather than in the preburner. Since the manifold contaius a heat shield the
instrumentation boss will not "see" the high temperature of the hot gas,

The hot gas manifold is connected to the injector by
means of a single bolt circle. The combustion chamber is connected to the
injector by means of another bolt circle. The combustion chamber/nozzle is
removed as a single unit, The thrust chamber assembly design allows easy
removal of the full assembly or any separate part. The major disadvantage of
the . rust chamber design is the inability te separate the copper combustion
chamcer from the tubular nozzle by means of a simple flanged joint. Because of
the high heat flux, a brazed (inner-wall) and welded (outer-wall) type of attach-
ment was selected. FEven though a simple bolted flange joint was not employed,
nuch consideration was given to this joint due to the low life capability of the
combustion chamber and the high life capability of the tubular nozzle. Replace-
ment on the engine level would be accomplished by removal of the thrust chamber
assembly (combustion chamber plus nozzle) and a new one installed in its place.
After removal and return to the shop area, the combustion chamber would be
removed from the nozzle bv maciiining off the flange just upstream of the
joint. The outer thrust conce welded joint would be ground out to return it to
its original configuration., A heavy shoulder section has been incorporated
into the nozzle half to facilitate the grinding operation., The inner wall is
530-mil thick and is cut at an angle so that a 90-mil thick surface is avail-
able for mating ease. Once final machining has been accomplished a sheet of
hraze is iastalled, the combustion chamber set in place, and the assembly
placed in the braze oven for rebrazing, Although tihe combustion chamber
teplacement does not allow rapid turn-around reuse of the nozzle, it does
give a compromise between reliability versus reusability/maintainability of
the nozzle.,
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111, ¢, Eugine Maintenance (25K Engine Design) (cont.)

2. Space-Based Maintenance

Both complete engine and engine subassembly removal was
evaluated for space-based maintenance, For removal of the entire engine the
following additional design features must be built into the engine:* o

Anchor pads to serve as personal work platforms to
allow leverage when removing the suction line lLolts and electrical connectors.

Hand=grips on the engine and vehicle to allow emparting
a separation force hetween engine and vehicle and then a retention force (to
stop motion). Because of the relative lightweight (500 1lbs) of the engine it
is felt that two mew, one on each side of the engine, could separate the
engine and screwjacks would not be necessary.

Double seals with an intermediate collector ring for
check=-out orf the engine after reinstallation. A single fitting from the col-
lector ring would he used in conjunction with a helium leak checker. This
method was selected over a pressure decay method because leakage would occur
through the pump seals.

Fitting for pressurizing the suction line.

Although not affecting engine design which has capabili-
ties for centinuity checks based on ground-based maintenance, a complete
engine-to-vehicle electrical check would be required.

Upon comparing complete engine versus engine subassembly
replacement for space-based maintenance, it is recommended that complete
engine replacement be incorporated. The only exceptions to this are instru-
mentation transduccrs which would be replaceable. The complete engine re-
placement was selected because subassembly replacement would require the
following desipgn features:

4

Anchor pads at many points on the engine system at all
LRUs or subassemblvs where replacement is desired. R

Double seals and collector rings at all LRUs.

Valves must be added or allowances for incorporation of
a throat plug after LRU replacement to allow checkout of all components down="""
stream of the pump discharge valves, i.e., preburner, hot gas manifolds, tur-
binecs, injector and chamber.

*Because this studv was engine design study, considerations for storing or
transporting the engine after removal were not evaluated,
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TIT, C, Fnpine Maintenance (25K Engine Design) (cont.)

3. Instrumentation Requirements

a, General

Instrument-tion requirements are derived for three

separate system purposes. Thesc are: (1) flight safety, {(2) engine control,
and (3) maintenance.

Figure 270 presents a general overlook of the various
maintenance concepts and maintenance functions to be considered. The instru-
mentations required for the 00S Mission are largely dependent on the mainte-
nance concept used. The most desirable 00S Mission is a mission which
launches the 00S and recovers the 00S for ground based maintenance after every
£light. Depending on the turn-around time of the 00S stage more or less
sophisticated instrumentation is required. For short turn-around time,
failure mode detection instrumentation and systems analysis are required.

This system has the capability of analyzing the engine operational parameters
to a standard and flag deviations. ¥For longer turn-around time, this is not
required and the operational data would be storad in a data recorder and
ground analyzed prior to maintenance allocation. For the case of in-flight
maintenance not only must the operational data be analyzed, but also, decision
capahility has to be provided as to the operational status of the engine which
requires sophisticated engine controller computer. Many of the instrumentation
parameters can be used for dual or even triple purposes and the parameter lict
has been selected to allow full use of dual purpose sensors to keep the number
of sensors at a minimum. The overall instrumentation list is presented in
Tat.le XC and summarized in Table XCI. The system purpose of the instrumenta-
tion is also given. The following paragraphs present the reasoning for the
instrumentation selection in terms of the function it performs.

b. Flight Safety Instrumentation

Flight safety instrumentation 1s used to indicate that
a safe condition exists. Flight safety monitoring is required both prior to
engine start, to assure a readiness condition, and after engine start to pre-
vent engine damage when an out-of-control condition exists. Table XCII pre-
sents the flight safety failure mode analysis performed to determine the
instrumentation vequired to assure flight safety. Most of the failure modes
can be determined directlv, i.c., insufficient pressures, valve not closed,
etc. DRecause reliable ignition detectors. do not currently exist, use of
valve position and electrical signals are used as an indirect method of
determining that ignition has occurred. Not all of the instrumentation used
for engine flight safety assurance is supplied by the engine system. Propel-
lant tank pressure which is used to determine adequate Net Positive Suction
Head (NPSH) is supplied by the vehicle system.

All flight assurance functions are supplied with sepa-
ratn sets of redundant data. Both sets must indicate an out~of-limit situa-
tion hofeore initiation of an engine command will occur. This prevents
snadvertant shutdowr due to erroneous signals or instrumentation failures.
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Instrumentation
System

Transient Control
and Sequencing

Steadv State Control

Fliighle Siafiaia:
hel

nsirumencation

Maintenance

Tngtrumenrtation

TABLE XCI

INSTRUMENTATION REQUIREMENTS SUMMARY

Purpose
Timing of Sequence

Iixecution of Sequence

Control to Systems
Requirement

"light Safety Assurance

Onecration Monitoring
Jata Recording
Terformance Degradation

Method

Fixed Time sequence and
Feedback Control
Computer Controlled

Feedback Control
System Input

Compare to Safe
Operating Limits

Compare to Nominal
Performance
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111, ¢, 3, Instrumentation Requirements (conf.)

Ce. Control Instrumentation

When utilizing a closed-loop control system, both mix-
ture ratio and thrust must be continuously monitored. Since neither of these
are direct measurements, these are calculated within the engine controller
from flowmeter, temperature, and pressure measurements. Table XCIII pre-
sents a listing of parameters used to obtain mixture ratio and thrust,

From Table XCIII it is seen that redundant mixture
ratio '"'measurements" are obtained by two separate and different methods. The
primary method is to use oxidizer flowmeters for the oxygen side and the pres-
sure drop across the preburner injector for the hydrogen side. Although nor-
mally both pressure and temperature are measured upstream of the flowmeter to
determine density, it is assumed the oxygen temperature can be estimated with
sufficient accuracy based on the pressure. On the fuel side, this is not
true, since the hydrogen will leave the chamber cooling jacket and enter the
preburner in the gaseous state.

The backup method for determining flow rates and mixture
ratio is obtained from boost pump head rise measurements and speed and a
knowledge of the head-capacity relaticnship. A backup method different than
the primary method for determining mixture ratio was employed due to the
limited space available for flowmeters. Use of the boost pumps was not se-
lected as the primary method because it eliminates the maintenance failure
prediction capability for the boost pump, i.e., since flow is calculated from
head and speed, it would always indicate the correct head=flow-speed relia-
tionshin.

Thrust is obtained by measuring chamber pressure and
then calculated based on throat diameter, area ratio, mixture ratio, and tlow.
Redundancy is obtained by use of two chamber pressure measurements,

d, Maintenance Instrumentation

Maintenance instrumentation is used to isolate a Line
Replaceable Unit (LRU) failure and/or predict wher a failure is about to
occur,  ‘the instrumentation requirement is based upon the failure modes aud
elffects analvsis (see Table LXXXIT of Seetion LIT.B.6). Since the mainte-
nance measurerments are not used to generate command signals to the engine,
redundancy was not incorporated and therefore a single measurement is
camploved for each function. Prior to LRU replacement, instrumentation accu-
racy will be obtained either by direct test and/or evaluation of other engine
syvstlem parameters,
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111, Teehnical Discussion (cont.)

D. ENGINE DEVELOPMENT PLANS AND COST (25K ENGINE DESIGN)

1. Program

The approach to 00S program planning differs from past in-
dustry practice. llistorically, plans have been established in response to
rigid contractual requirement -- typically, with compressed schedules dic-
tated by pressing national objectives,

The plans which form the basis for the cost studies attempt

to recognize the current fiscal climate and the attendant emphasis on economy
rather than crash pregrams.

The program span has been somewhat arbitrarily established
as ten years. The Demonstrator Engine portion of the program is planned for
the first five years.

The Demonstrator Engine Program will start with preliminary
design activities to define critical technology areas. These areas will then
be investigated in a comprehensive series of laboratory type tests, The next
phase consists of the fabrication and test of one demonstrator engine. The
primary purpose of this engine will be to demonstrate the adequacy of the
selected design concept. Since no unrealistic stringent design goals must be
satisfied, (e.g., highest possible performance or minimum weight) only limited
hardware will be required, which is in consonance with the overall fiscal policy.

The final portion of the Demonstrator Engine Program involves
transforming the kncwledge gained in the two previous phases into working
drawings and documents which would form the foundation for the development
program.

The development portion of the program consists of three
phases: Block I, Preliminavy Flight Certification (PTC); and Final Flight
Certification (FFC)., Block I efforts will be accomplished within three pro-
gram vears, with one yvear allocated to the PFC and FFC phases, respectively.

The Block I effort will be a logical extension of the Demon-
strator Engine Program. Component development based upon the results of the
Demonstrator Lngine Program will be accomplished during the first two years
of the development program. It will be noted that only two design iterations
ave nlanned for this period, with relatively limited amounts of hardware.
This appreach is considered feasible because of the benefits accrued from the
Demeonstrator Engine Program which permitted a methodical approach to the so-
iution of problems at the subcomponent level. Consequently, the problem
solving effort during component development should be materially reduced from
the level experienced on more accelerated programs.

A soft mockup will be fabricated early in Block I. This
permit the precise definition of interfaces, clearances, and line rout-

]

ings. Lt precludes the need for most of the time consuming layouts that would
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111, p, 1, Program (cont.) ‘

be required to define interface locations in space and minimizes costly human
error. The soft mockup will also eliminate most of the costly, time consum-
ing iterations normally associated with first article assembly, i.e., con-
nection with ancillary lines, harness routing, clearance of lines and har-
nesses hiandling lug location, and bracketry installation.

The Block I portion of the Development Program is concluded
during the third program year with engine level tests both at altitude and at
sea level. The objective of these tests will be to demonstrate attainment of
performance goals., It is anticipated that "tune up" type modifications must
be implemented to achieve these goals. 3ix engines are planned to support
the test activity -- three at each test site., One engine will be in the test
stand, one in backup, and one undergoing refurbishment at any given time.

Immediately after completion of the Block I test program, a
design freeze will be implemented preparatory to entering the flight certifi-
cation phase of the program.

Procuction type drawings, specifications, tooling and con-
trols will be used during the fabrication and testing of four each PFC and
FFC engine ass2mblies to insure that the tect articles are identical to the
piuduction engines,

Preliminary flight certificaticn will be conducted primarily
to demonstrate the safety aspects of the engine with normal performance test-
ing. Additionally, the previous Block I history will be reviewed to ensure
that identified failure mechanisms have been corrected.

Final flight certification tests represent the satisfactory
completion of the development program as well as formal demonstration that all
of the design requirements collected from every facet of rhe development pro-
gram have been met.

The final program activity is the initiation of long lead
procurement for the production engine, This activity starts concurren®t with
the FFC tests, This start time was selected because; (1) the adequacy of the
engine has already been well demonstrated, and as » consequence, little risk
of premature ordering exists, and (2) experienced personnel are available to
staff the program office,

The schedules for both the Demonstrator and Development por-
tions of the progranm are included in Figures 271 and 272,
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11T, D, Engine Development Plans and Cost (25K Engine Design) (cont,)

2, Hardware and Test Requirements

a. Hardware

The limited contract funding available for program plan-
ning and cost estimation (<5%) made it impractical to attempt detailed hard-

ware demand and test schedules. In lieu of detailed plans, the approach hasg
been to relate to similar programs.

Estimating the hardware requirements of the Demonstrator
Engine Program is difficult because much of the hardware will be raw material
and sub-~compenents to support laboratory type tests. Many of the tests will
be spin-offs from previous tests. Consequently, hardware requirements bhave
been simplified to two equivalent engines. This level is similar to that
experiencecd on similar programs.

Hardware requirements for the Development Engine Pro-
gram are superimposed upon the fabrication portion of the program schedule
(Figure 272). The quantities as shown in the component development portion
are sufficient to support two complete design iterations. Six Block I engines
will be fabricated and tested before design freeze. After the design freeze,
four engines each are scheduled for the FFC and FFC phases.

The prime reference source used to determine the fore-
going hardware requirements was the planning accomplished under the auspices
of Contract NAS8-261388 for the AJ-550 Space Shuttle Main Ingine.

When comparing the requirements of that program with
those of the 00S, it will be noted that component development requirements of
the 00S are less and engine requirements are almost identical,

It is assumed less effort will be required for component
develorment because of the knowledge gained from the Demonstrator Engine Pro-
gram of the 00S Program. Approximately the same number of engines are re-
quired because both engines must be capable of being man-rated and as a
consequence, nust have similar test histories.

b. Test
(1) Program

The criteria for the number of tests to be con-
ducted on the engines and in each component area will be based upon the
accomplishment of specific objectives. Factors which influence total number
of tests in any component test series include complexity of objectives and
capability to plan accomplishment of multiple objectives of a given test, As
has alreadv been mentioned, funding and time limitations precluded extremely
detailed planning, however, the general philosophy and type of test envisioned
for the major engine components are known and are summarized in the following
narapraphs.,
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1,

D, 2, Hardware and Test Requirements (cont,)

Demonstrator engine testing is initiated with com~
vonents designed to satisfy analytically defined system requirements, Prior
to initial engine test, materials and components are tested both individually
and as part of assembled subsystems to verify their adequacy to proceed.
Prime importance during these tests is placed upon gaining confidence that
the design can be committed to initial engine testing. Therefore, the first
serisrs of engilne tests will be structured to identify nominal engine system
environmental conditions and functional interactions to demonstrate the gen-~
eral adequacy of the engine cycle rather than maximum performance. The
evaluation of these data and the resultant engine design will constitute the
hbasis for the Block I engine of the Development Engine Program., The test
level of effort assumed for costing was two years for the physics and engi-
neering laboratories followed by two years in the test area.

The Engine Development Program is based upon the
redefined design and test requirements for the components from the analysis of
rhe Demonstrator engine test data. Testing at both sea~level and altitude
will include environmental conditioning, fail-safe aspects, and stability
evaluation of system capabilities. _Subsequent exposure through the PFC
program will permit an assured progression through a valid Final Flight
Certification Program. The test level of effort assumed for the Development

Phase was 1 year laboratory level activity, 3 year ALRC test area activity,
and 1.25 years at AEDC.

(2) Component
(a) Turbomachinery

Prerequisites to turbomachinery development
testing are:

-Detailed design, structural, material, per-
formance, reliabillity, maintainability, and
producibility analyszes.

-Comprehensive master layouts detailing
tolerance variations and effects.

-Use of ''rig testing" for evaluation of com-
ponents to define those physical phenomena
not sybject to analysis and to validate
component capability.

The higher assembly testing commences at the
earliest possible date as determined from component rig test demonstrations
of acceptable attributes. Rig and assembly testing are not predicated on com-
plete success. Iterations and contingencies are expected and planned for at
all levels of testing. The assembly testing then affords validation or
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L1, D, 2, Hardware and Test Requirements (cont.)

vedefinition of the component requirements. Requirements validation will per~-
mit continued assembly testing to more stringent levels of operation., Redefi-
nition will require additional component evaluation if the requi..ments

exceed the determined or design capabilities.

(b) Combustion Devices

The initial and all subsequent iterations of
the combustion components will be subjected to a three-point development
approach. Static testing will be primarily oriented toward evaluation of all-
inclusive worst-case conditions. Laboratory testing will be used to the
fullest extent to yield low cost non~firing data, particularly dJuring the
Demonstrator Engine Program. Structural tests will expose design weak points,
define structural failure modes and, through test-~to-failure, assess design
margins. Satisfactory development of the preburners to the prescribed level
will constrain their use for Thrust Chamber Subsystem (TCSS) testing. TCSS
testing permits progressive development of the main injector, chamber,
nozzles, and hot gas manifold.

(c) Valves

The valve program is sequentially oriented
like all of the other contributing efforts. However, there is an early need
for particular units; therefore, a priority is established for the development
of the preburner control valves (oxidizer and fuel), the igniter oxidizer
valves, the main oxidizer and fuel by-pass valves, and the electromechanical
actuators. These components are constraints to component development testing,
which are, in turn, constraints to engine system testing. The remaining
controls components are recuired for engine testing at a later date.

The valve and actuator design and development
activity is categorized into the following distinct phases, at the end of
which the valves will have demonstrated capability for performing in the
operational fligiht propgram:

Preliminary Testing: This consists of testing
during the Demonstrator Lngine Program of
commercially-procured or fabricated individual
components and subcomponents for design re-
quirements validation and to establish design
capabilities. Extensive use will be made of
overstress testing techniques, thermal
exposure, endurance cycling, and life-proof
loading.

Development Testing: The primary objective is
to determine the adequacy for engine and sub-
system testing of those units evolved from the
Preliminary Testing., The design analysis
techniques developed during-the preliminary
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111, p, 2, Hardware and Test Requirements (cont.)

testing will be vtilized to the fullest extent
in defining this design level. Primary cate-
gories of testing will be cyclic response,
flow, pressure, endurance, and induced as

well as natural environments.

Preliminary Verification and Peripheral Test-
ing: These tests will be conducted to evalu-
ate the revised designs and test requirements
enanating from the engine system test data.
The objectives are to validate the second
generation design adequacy for continued
engine system usage and entry into component
verification. These tests are planned for
the second iteration of the Block I component
test series.

PFC: In addition to support of the engine

and other component testing, valves will te
tested ir malfunction modes deemed inadvisable
to perform on the engine, as part of the
flight safetv evaluation.

FFC: The final testing program primarily is
assoclated with the endurance and cycle life
capabilities of the valve designs.

(d) !lMarness and Iastrumentation

The electronic engine controller development
is assumed to be subcontracted. The major system development effort will be
conducted within ALRC laboratories and in conjunction with other component,
subsvstem, and engine system scheduled development testing. Scoftware develop-
ment will be concurrent with these activities,

Design requirements definition will be accom-
nlighed by using a breadboard version of the controller., This activitv will
provide precise circuit édesign reguirements for functional performance of
closed~loop control, stored start and stop sequences, flight safety, fault
iselation, and engine systems maintenance data.,

The harnesses and instrumentation will be sub-
jected to extensive laboratory evaluation, plus use during all applicable
component and engine system testing.

(e) Engine Integration Components
The components are the gimbal assembly and

enpine interconnect lines svstem. The majority of the design evolution will
ceetr in conjunction with the eneine testing.

Page 675




PR e o

| She-gupei }

e

III, D, 2, Hardware and Test Requirements (cont,)

The early portion of the program for thesc
components is devoted to testing of subcomponents or specimens to define the
analytical aspects and characteristics under imposed test conditions. This
definition then is applied to the design of units which undergo testing for
validation of criteria and demonstration of adequacy for engine use. Defini-
tion of engine operating environment, design criteria revision, and retesting
to the revised requirements provides component upgrading to the level required
for component verification and engine system certification,

3. Facilities and GSE

do new facilities are required to fabricate or test the 00S
Engine. During the early portion of the Demonstrator lingine Program, much of
the work will be accomplished at the laboratory level, ALRC has well
equipped nondestructive test laboratories to support all of the work now
contemplated. Later in the program, the ALRC Aerophysics Laboratory will be
used in tests of small combustion devices. The Demonstrator Engine components
will be fabricated in the Research and Development Manufacturing complex and
engine testing will be accomplished in the ALRC J-area test stand.

Fabrication of engine comnonents will be shifted to the
regular ALRC fabrication facilities during the Development Program. Fngine
tests are planned heth for ALRC J-area cad Arnold 'ngineering Development
Center, Tullahoma, Tenn.

Modifications to the ALRC test facility are listed in Table
XCIV and GSE requirements are tabulated in Table XCV.

L, Propeilant Recuirements

The prepellant requirements were estimated in accordance with
the established ALRC practice of prejecting quantities on the basis of time in
the test area for an engine of a given thrust level. Experience has demon-
strated that because cof the various usage factors (boil off, spillage,
contaminaticn etc.) this apprecach is more satisfactorv than ordering for a
specific run duration.

Propellant requirements for the Demonstrator and Development
Engine P'rograms are:

Demonstrator Development
LPZ 1,110,000 Ib 5,910,000 1b
Lo, 3,320,000 b 17,646,000 1b
LN; 663 ton 3,532 ton
He 1,200 XSCF 6.400 KSCF
5. FProjfect Control Methods

The pro’ect control methods shown in Figure 270 with refer-

v

ence te the nrogram lovic diagram are self explanatory.

't will e noted that controls during the Demonstrator
fapine norslion of the orocram are of the informal varlety in order to provide
A S EN e R G el LAl T ohkERa I e
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TABLE XCIV

FACTLITIES RENUTREMENTS

Combustion Component Test

Propellant Run Lines 4" (Install)

GH2 Vent Stacks (Relocate Existing)
Thrust Fixture Fabricate

GNZ Cascade 4500 psi (Relocate)

GH2 Cascade 4500 psi (Relocate)

GN, and GH2 Converters (Relocate)
Instr., and Controls Systems (Install)

TPA lest

"

.3 Low Pressure Tanks (Relocate LExisting)
Provellant Lines (Relocate Existing)
Fixrure {Reliocate Existing)

Instr and Control (Relocate Existing)

Engine Test
Diffuser System Modification
Chamber Mode Modification
Fixture Modification
Prop Run Piping Modification
Lii, Run Vessel (Use Storage) Modification

mstr and Control Modification
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TABLE XCV

CHAKACTERLSTIC GSE REQUIREMENTS

o

Units
Transport and Handling T

E‘ Shipping Containers 40
Handling Frame 2

[' Installation and Removal Set 3
Sling Set Component 3

{ Sling Set Nozzle 2
: Stiff Links Gimbal 4
Sling Engine Handling 2

[ Trailer 4

l Safety and Protective

Kit Engine Protective Covers 44

{_ Cover Lnvironmental 10
' Kit TPA Protective Closure 2
[ Kit !lot Gas Manifold 2
Kit Valve Protective 5

inspection, Test

Kit Engine Leak Detector 2

[ Kit Y“ngine Leax Test Closure 2
Simulator Yngine Sensor 2

{ Simmlator kngine Valve 2
Inepection Unit Fiberoptic 2

. Seal Assemhlv, Comb Cham Thrust 20
Tnspection Set Main Tnject Face 2

“anifold Seal 2

[ Test Seot Staff Displ 4

|
' *
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TABLE XCV (cont.)

Shop Maintenance and Service Units
Stand Maintenance LPTPA 2
Tool LPTPA 2
Tool Kit Valve 2
Stand Engine 2
Stand Maintenance !HOTPA 2
Stand Maintenance HFTPA 2
Tool HFTPA and HOTPA 4
Lapping Kit 1
Test Set Cryo/Pneumatic 1
Test Set Igniter 1




I11, D, 5, Project Control Methods (cont.)

The controls gradually become more stringent in the Develop-
ment Engine portion until all of the various disciplines are imposed during

the fabrication of the PFC engines. These controls constitute one of the
inputs used to project manpower load which was in turn used as one of the
elements of cost.

6. Methods of Cost Estimating

The basic contract required that program planning and cost
estimating be accomplished with no more than 5% of the total program effort,
Consequently, it was impractical to attempt a detailed cost analysis of each
of the engine 47 variations considered.

e gy P s C a—— L

The approach to costing was as follows:

N £ e A representative schedule and program plan was estab-
lished as described in Sectien IIL.E.1.

3 i 2. Hardware requirements were estimated based upon exper-
3 ience with similar programs. (Quantities are shown on the program schedule,
3 Figure 272).
.
i 3. Test and propellant costs were estimated based upon
- typical test area facility requirements and the program schedule.
i 4, Hardware fabrication costs were estimated buased upon
available drawings (Table XCVI). Total hardware costs were then developed
from the hardware demand portion of the program schedule (Figure 272).
l SiE Cngineering manpower costs were based upon the engincer-
ing manpower distribution spread shown in Figure 273, which was g2nerated
pursnant te the requirements of the program controls shown in Figure 274.
L The foregoing cost elements formed the basis for the cousts

of the 25% baseline engine shown in Figure 275.

Costs for design and thrust variations were thien estimated
a: a delta to the base costs. The mechanics of this process required esti-
mites from the Enginecering, ‘finufacturing and Test areas relative to the per
[ cent change in complexity for cach of the various conditions, including con-
‘ fignration variantions shown in Figures 275 and 276, The algebraic sum of the
inputs defined the cost variation.

B The results of the study are summarized in Tuables XCvil
throuph XCIX,

As shown, o'l costs fall within a relatively narrow band,

) H Paohecane eneineering and supnort manpower costs are the mitjor cost
v limen e i any aeeeeae and enncific design detalls exert a retativelv minor
AR, O AT G S0 ORI or o 2O

Pape 6RO




TABLE XCVI

COMPONENT COST BREAKDOWN

Demonstrater  Develospment Troduction
Thrust Chamber Nozzle (Regen) $112,621 $ 71,429 $ 65,656
Injector 53,000 30,727 26,904
Hot Gas Manifold 66,245 36,297 31,937
Gimbal Block 13,572 4,283 3,834
Oxidizer TPA (Incl Boost Pump) 48,236 42,628 41,826
Fuel TPA (Incl Boost Pump) 76,774 70,550 69,589
T.C. Igniter and Valve 17,772 11,242 10,376
P.B. Igniter 7,000 4,428 4,087
Prehuzner 30,000 17,126 14,691
Oxidizer Preburner Valve 29,732 11,595 10,281
Oxidizer Discharge Valve 33,115 16,519 14,498
Fuel Start Bypass Valve 33,115 16,519 14,498
Fuel Discharge Valve 28,000 14,491 12,816
Oxidizer Vaned Elbow 750 750 750
Fuel Vaned Elbow 750 750 750
Turbine Bypass Valve 33,115 16,519 14,498
Fuel Discharge and Start Bypass Line
Fuel Discharge Line
Fuel Line to Preburner > 33,019 16,985 15,125
Oxidizer Line to Preburner
Yower Head Assembly / 11,863 7,921 6,477
Thrust Chamber Assembly 25,873 16,036 12,443
Electrical Harnesses 11,200 11,200 11,200
Sensors 39,900 39,900 39,900
Controeller 125,000 125,000 125,000
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111, Technical Discussion (cont.)

E. 10K THRUST ENGINE DESIGN

The engine design requirements for the 10K engine were slightly
modified from the 25K engine design. The new requirements are presented
in Table C. Table CI indicates the modified payload trade-off parameters for
the 10K thrust engine.

The difference in requirements, as compared to the 25K thrust
engine, are:

Minimum thrust rise rate regq.

Minimum coast time regq.

Zero NPSH pump assisted idle mode start
Increased engine weight payload sensitivity

Envelope definition

Of these requirements, only the latter three have an impact on the engine
design. The minimum thrust rise rate and coast time requirements effect
engine operation only and do not effect the basic design. sSince the engine
is designed for deep throttling, the start transient can be slowed to any
desired ratc within the throttling range. The minimum coast requirement of
60 sec has no design impact, since in this start time period heat soak back
and environmental effect are minimized. However, it should be noted that
repressurization of the propellant tank may be required, which may effect
the design of the tank pressurization.

The pump assisted idle wmode operation is not a baseline enpine
requirement but an alternate requirement and, therefore, is not reflected
in the basic engine design. The engine modifications are identified in the
following sections and the engine control requirement and engine operation
are defined by steady state LETS II computer analysis which are also
discussed in suhscquent sections of this report.

The modified pavload sensitivity parameters mean the payload is
very sensitive to engine weight., Very large area ratio nozzles are feasible
for the 10X engines, consequently consideration of light weight nozzles was
nandatoryv since the nozzle weight represents the largest single component
weight., The envelope constraint was modified to consist of a 400:1 nozzle
but not to exceed 82-in. overall engzine length. This requirement defines
the nczzle as a fixed nozzle concept. The area ratio, however, must be
optimized hased on the pavicad trade-off parameters. The optimum area ratio
is very sensitive to the nozzle concept (i.e., weight) and therefore careful
consideration was given te concept Selection.

Page 691




TABLF C

10,000-POUND THRUST ENGINE OPERATING CHARACTERISTICS

Propellants Liquid Oxygen/Liquid Hydrogen
Maximum Vacuum Thrust, pounds 10,000
Nominal Engine Mixture Ratio 6.0:1
Engine Mixture Ratic Operating Range 5.5:1 to 6.5:1
Vacuum Thrust Throttling Capability 5.0:1
Nozzle Configuration Bell
Nozzle Expansion Ratio 400
Turbine Drive Cycle Staged Combustion
Vacuum Specific Impulse, seconds *
Engine System Weight, pounds &
Number of Vacuum Starts 60
Lifetine (kxpendable Mode), thermal cycles 6
Service Life Between Overhauls (Reusable Mode), 300

thermal cycles
Service Life Between Overhauls (Reusable Mode), hr 10
Gimbal Angle (Square Pattern), degrees 7
Gimbal Acceleration, radians/(second)2 20
Minimum Natural Frequency of Giwmbal System, Hertz 10
Fuel Pump NPSH, feet of hydrogen 60
Oxidizer Pump NPSH, feet of oxygen 16
Maximum Single Run Duration, seconds 2000
Maximum Storage Time in Orbit (Dry), weeks 52
Maximum Time Between Firings (Coast Time), days 14
Minimum Time Between Firings (Coast Time), minutes 1
Maximum Thrust Rise Rate, 1lb/sec 3000
Service-Free Engine Run Time, hr 2
Service-Free Engine Firing Cycles 60

*To »e Determined as a result of design and analysis.
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TABLE CI

VERICLE TRADE-OFF FACTORS

Trade-off factors based on Orbit-to-Orbit Missions:

E APL
R Alsp = 157 1b/sec

i APL

AwBurnout
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11T, E, 10K Thrust Engine Design (cont.)

15, Engine Design Point Selection

For the 10K engine design, the stage combustion cycle was
ground ruled as shown in Figure 277. Within this cycle three variations were
considered.

1. Stage combustion - bleed cycle

2. Gear driven LO2 TPA

8k Independent LH2 and LO2 pump turbine drives
A comparison of the power balance capability was made and is presented in
Figure 278 indicating the stage combustion bleed cycle to be slightly superior
to the others. However, the additional specific impulse due to bleed iosses
of this cycle cannot be compensated for by the superior power balance
capability. Therefore it was rejected in favor of thc independent turbine
drive. The gear driven L02 TPA alternate was used for an alternate engine
design study.

The selection of the design chamber pressure for the 10K
thrust engine was based on the thrust chamber life and power balance capability.
The coolant pressure drops for a low cycle life requirements of 300 cycles,
was established and defined for a 10K thrust engine as function of chamber
pressure as shown in Figure 279. This figure indicates a sharp rise of coolant
pressure drops and pump discharge pressuie requirements with increasing
chamber pressure as P, = 1250 psia permitting a 2-stage fuel pump design.

For this selected chamber pressure, an engine power balance
was made ancd the resulting engine cycle schematic for nominal conditions is
shown in Figure 280. The basic engine cycle is identical to the 25K thrust
engine cvcle, the main difference is the reduction of the fuel pump stages
bv one.

An analysis was made to investigate the payload sensitivity
to the assumed chamber pressure. Figure 281 indicates the relationship of
engine performance and engine weight as function of chamber pressures and
nozzle area. In this figure, lines of constant pavliocad and constant engine
length are showm and is based on the parameter engine studv. Of interest is
the fact that ‘or constant engine length an increase of chamber pressure of
250 »sia results iIn a pavioad increase of 400 1lb. The payload sensitivity to
chamber pressure for constant engine length is:
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Ficyre 231, Payload Sensitivity Analysis
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III, ©, 1, Engine Design Point Selection (cont.)

AP
10K Thrust: S O = 1.6 1b/psia
AP
¢ L=Const.
25K Th i’ :
rust: = 1.2 1lb/psia
AP
C
L=Const.

The selection of chamber pressure at the 1CK thrust level
is considerably more critical with respect to payload than for the 25K engine.
Based on this, a re-evaluation of the latest thrust chamber material test
data was conducted (Section ITI.F.10). It indicates that chamber life is
very sensitive to environmental conditions effecting chamber life by an order
of magnitude, and the basic life data assumed was conservative.

2. Nozzle Expansion Area Ratio Selection

The relatively low thrust 10K engine has the capability of
a large nozzle expansion area ratio within the engine length constraints of
82 in.

For the nozzle contour the minimum length Rao nozzle was
used and the nozzle characteristics such as engine length, diameter
and performance were determined as function of area ratio.

Figure 282 presents the JANNAF calculated performance as
function of area ratio and chamber pressure for the 10K thrust staged
combustion engine. The performance is calculated for an energy release
efficiency of 997. The performance shown ir Figure 282 is considered conservative,
since the interim JANNAF performance prediction method yields 1-1/2 sec higher
specific impulse. Test experience shows that at these chamber pressures
ERE = 99.57 can be achicved. Figure 283 represents the performance tolerance
hand estimate for the '0OK thrust engine, indicating that performance of
470 sec, of specific !mpulse can be achieved.

The engine overall length relationship as function of expansion
area ratio is shown in Figure 284 indicating that the maximum feasible nozzle
expansicon area ratio within 82-in. engine length is . = 460:1 resulting in a
maximum engine diameter of Dp,, = 49 inches and a performance potential of
Ig = 466.5 to 470.4 sec.

The design expansion area ratio was optimized for the given
enrine pavload sensitivities. The very large area ratios and the large engine
welipht sensitivity factors makes the design area ratio strongly dependent on

the nozrle cenfigurat ton,
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111, F, 2, Nozzle Expansion Area Ratio Selection (cont.)

An analysis was conducted for two different types of nozzle
extensions:

All regeneratively cooled

Combination regeneratively and radiation cooled

For the all regeneratively cooled nozzle, the transition area
ratio from the machined copper chamber to the tubular nozzle extension is
¢ = 5.5:1. The nozzle weight of the tubular section was established as
function of expansion area ratio and tube wall thickness of 0.15 in. and
0.010 in. and is presented in Figure 285.

For the rediation cooled nozzle AGCarb material of 0.125 in.
wall thickness was assumed. The effect of the transition area ratio from
regenerative cooling to radiation cooling on nozzle weight was aralyzed and
i5 presented in Figure 286, for an overall expansion area ratio of + = 400:1.

As shown, the transition area ratio has a significant effect
on the radiation cooled nozzle weight. Yeat transfer analysis indicates that
the transition area ratio ¢f ¢ = 70:1 is the lowest area ratio possible for
uncoated graphite resulting in a total nozzle weight of 64 lb. Further reduction
of this area ratio would require Hafnium coating of the nozzle to cbtain the
desired life capability versus nozzle erosion. Such 2 nozzle would permit
attachment at the area ratio of 5.1:1 and would reduce the nozzle weight to
46 1h.

The maximum attachment point of a radiation cooled nozzle
is - = 150:1. At this azrea rativ, the radiation cooled configuration is equal
te the all regeneratively cooled nozzle.

To establish the effects of nozzle configuration and pavicad
capahility, a nozzle area ratio optimization studv was made. The results are

vae

shown in Vigure 287.

Fipure 287 relates nozzle extension weight versus engine
performance for the a’! reweneratively cooled nozzle, the regenerating and
radiation cooled nozzle, and the all radiation cooled nezzle. The results
Indicvate that the nll regeneratively ceooled nezzles reach an optimum pavload
Imit within the 82 In. engline length: the radiation cooled nezzles however
are tength limited. The pavload changes due o nozzle configuration are

1
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MR = [6.0
Pc = |1250 PSIA
F = {10,000 LBS
OPT AREA RATIO
100
! ALL REGEN COOLED
NOZZLES
DESIGN
(V]
(=)
-
-
%)
5
[ K%
—)
~ 50 4—
9 |
" J
e CALL RADIATION
s COOLED NOZZLE
Y
RADIATION =
& REGEN. s
COOLED sz
NOZZLF s
& ¢ | s
" l {
U 14 T
455 460 465

SPECIFIE IMPILSE,, SEC

Finure 227. Nczzle Wall Thickness vs Payioad
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L1l, g, 2, Nozzle Lxpansion Area Ratio Selection (cont.)

Nozzle Concept Comp *=gon

RO

Material Max Nozzle 1 APy,
Thickness Area Weight s Length | Payload
Configuration in. Ratio 1b sec in. 1b
All Regeneratively 0.010 440 104 465.9 80 0
Cooled Nozzle !
eetea ennie | 0.0125 400 95 465.6 76.5 -125
0.0150 370 88 465.0 74,0 -250
Regeneratively
and Radiation 0.125 460 69 466.5 82 +250 1b
Cocled Nozzle (0.010)
e =70:1
| o i
: 4
S
All Radiation 0.125 460 50 466.5 82 +350 1b
Cooled Nozzle ;
o= 5.5:1
5]

As shown, the total payload span due to nozzle configuration
is 4Pp, = 600 lb. As the baseline configuration, the all regeneratively cooled
chamber was assumed with a tube wall thickness of 0.010 in. and the selected
area ratio is £ = 400. The reduction of the area ratio to ¢ = 400 from the
optimum €opt = 44C has no effect on payload capability according to Figure 287.

The loss in payload due to decreased area ratio is shown in
Figure 2288 and was calculated based on the given sensitivity factors. At
caq = 300:1 the engine length would be 68 inches at an Igp = 464 and an engine
weight change of AWg = 17.5 1b as compared to € = 400:1 resulting in a payload
loss of 150 1b.

Further advanced technology nozzles have the potential to
increase pavload by 250 to 350 1lb as compared to the selected baseline.

The selection of the regeneratively cooled nozzle was made
on the basis of readily available technology. However the selected tube wall
thickness of 0.01C in. is considered the absolute minimum and would
he of high fabrication cost as compared to a 0.015 in. tube wall. In addition,
{r is anticipated that in a reusable system, the 0.010 tube may prove to be
too sensitive for handling and result in high maintenance cost.

The all radiation cooled nozzle would not only be sturdler,
vosult In considerable payload gain, but alsc permit engine sca level testing
mnder actual operating conditions, since it would be seperable at arca ratio

.
LS AR
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PAYLOAD LOSS , inches

MR = 6.0

P. = 1250 PSIA

TUBE THICKNESS - .010 INCHES

40

ENGINE LENGTH, inches

Figure ZRC,
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111, E, 10K Thrust Engine Design (cont.)

3. Basic ¥ngine Cycle Description

a. Nominal

The engine-cycle was established for the following
nominal engine design point:

Thrust = 10,000 1b

Chamber Pressure = 1250 psia .
Nozzle Area Ratio = 400:1

Mixture Ratio = 6.1

Turbine Inlet Temperature = 1860°R
Specific Impulse = 465.5 sec (469.5 IS max)

The flow schedule presented in Figure 280 is representative
of the selected engine design point. The engine cycle 1s designed to permit
a throttle range of 5:1 over the required mixture ratio range of MR = 5.5
to MR = 6.5 and is identical to the 25K thrust selected engine cycle.

For the engine control, the three valve concept was
established, permitting the engine to operate at pressure fed idle mode. The
engine throttle performance was established and is shown in Figure 289
indicating a fast drop-off in performance bevond 30% of thrust indicating
that engine throttling bteyond this point is not desirable.

b. Off Design Engine Operafion

A LETS 2 model of the baseline 10K engine was set up
and operated over a throttling range of 10:1 and for mixture ratios of 5.5,
6.0, and 6.5. The results are summarized in plot form in Figures 290 through
298.

The control system used was essentially the same as
that on the 25K engine, oxidizer preburner and thrust chamber valves were
used for control of thrust and mixture ratio and the fuel preburner bypass
valve was used to maintain a constant turbine inlet temperature of 1750°R
below 757% thrust. '

Results were very similar to those obtained for the
25K engine. The turbine temperature in the controlled range was increased
from 1660°R in the 25K engine to 1760°R in the 10K engine because of the
somewhat lower preburner mixture ratios (for a given temperature) resulting
from higher fuel bulk temperatures leaving the cooling jacket.

BEST AVAILABLE CGRY
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111, E, 3, Basic Engine Cycle Description (cont.)

The engine throttle characteristic was also evaluated for
its effect on the engine life and thermal cycle capability in particular for
the sensitive components such as the thrust chamber and turbine disks and
bearings.

For the thrust chamber thermal cycle life capability two
characteristic parameters were identified, the hot side wall temperature T
and the thermal wall gradient ATy. The criteria of the selections of the
design chamber pressure and coolant mach numbers was based on these two param-
eters and are shown for design conditions in Figure 321 (Section I!1, E, 9)
as functions of chamber length. A heat transfer study was conducted to
evaluate the effect on low cycle fatigue life due to off-design engine
operation.

For the throttled condition the pertinent parameters are
shown in Figure 319 (Section III, E, 9), indicating a rapid increase in low
cycle fatigue life Ny at the reduced thrust levels. The turbine inlet temp-
erature and speed are also reduced during throttled engine operation (Figure
297 and Figure 291) effecting turbine disk life and bearing life favorably.
The results of the analysis indicate, that engine throttling is very beneficial
to engire life and low cycle fatigue capability.

This fact can be utilized to prolong the engine life through
engine operating procecures. Full engine thrust is only required duriny the
initial phase of the first burn. For the subsequent burns the thrust lewvel
is not significant and throttled overation is feasible within enpgine per-
formance constraints.

The engine delivered specific impulse requirements are only
critical for a few large 'V missions and many missions can be accomplished
at cderated specific impulse such as throttled engine pertormance. Yven with
the nrolonged engine burn time requirements of throttled operation, the tur-
bine disk and bearing life in terms ! number of missions are considerably
increased as compared to full thrust operation. The low cycle fatitue lite
0! the chamber is not affected by burn time.

Therefecre enyive life and mission capablility can bde improved
by mode of operation if the enyine is capable of throttling.

The increased capability can be explained by either reducing

engine overhaul and maintenance cost or increased pavload capability throuph
increased chamber pressure and turbine temperature for the critical missions.

Page 721

oy e |



T A T D Y A T e
e e Ol

PR TR AT S YT

!4 p——1

~ p——;

s B

e

Lo B o

111, E, 10K Thrust Engine Design (cont.)

4. 10K Thrust Engine Coufiguration

The configuration of the engine components for the 10K
thrust engine are very similar to the 25K engine components. A packaging
study was performed to investigate the feasibility of in.line fuel pump for
the 10K configuration.

Since the selected area ratio results in an overall engine
length 6 in. shorter than the available envelope (if the engine is a scaled
version of the 25K configuration) the in line fuel pump concept should result
in a relative small payload loss and would eliminate the complex hot gas
manifold and lines of the side mounted configuration. A preliminary payload
investigation shows:

Payload analysis for in-line and side mounted configuration

In-Line Side Mounted

Overall Length 82 76
Injector face to gimbal 16 in. 6 in.
Gimbal to Injector 13 in. 3 in.
Nozzle Area Ratio 356:1 400:)

i3 465.0 465.5

! Payload (Nozzle Only) =29 1b 0

Wt Nozzle 64 1b 72 1b

The payload loss due to loss in performance however should
be compensated by eliminating the hot gas manifold because of the magnitude
of the engine weight trade-off factor.

The hot gas manifold weighs 55 ib of which approximately
45.7 1b can be saved with an in line design resulting in a net gain of
payload.

4Py = 7.4 x 45.7 =29 = +303 1b
Due to this reasoning, the 10K engine configuration is shown as both with an
in~line fuel pump and with side mounted pumps.

Although th> in-line engine configzuration could be designed
for the same basic engine cy:le as described for the basceline engine. An
alternace engine cycle was rtudied. In this cvele the LO, pump is driven by
a reduction gear, (designed to transmit 282 horsepcwer) climinating the hot
gas manifold completely.
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111, E, 4, 10K Thrust Engine Configuration (cont.)

The advantage of such a system is the rigid coupling of the
two pump speeds and relative ease of engine start transient control. The
reduction gear will be cooled by hydrogen gas and is considered state-of-the-
art technology. A schematic of the gear driven concept including pressures
and temperatures is shown in Figure 299,

The alrternate engine cycle potential is also a stage combus-
tion cycle and will achieve the same specific impulse as the baseline engine.
The engine control method selected is identical to the baseline concept.

The engine configuration for both configurations are presented
in Figure 300 through Figure 302 and the characteristics for both configurations
are shown in Table CII and Table CIII.

Which configuration will ultimately be selected depends

largely on the avallable engine envelope. Should the available engine length
decrease considerably, then the side mounted configuration appears
attractive.

The side mounted TPA appears to provide easier access to the
»umps and pump may be changed without dismounting the engines. Without a stage
configuration, however, this apparent advantage is difficult to evaluate.

Sy Idle Mode Qperation

Idle mode operation for the 10K thrust engine design is
studied in two different modes:

a. Pressure Fed ldle Mode

The purpose of this operating mode is to chill both
pumps simultaneously prior to starting and also to recover some specific
impulse of the chilldown propellants.

In this operating mode, the propellants pass from the j
tank threough the pumps into the thrust chamber. The turbines are not operating
since the flow is bypassed and no pressure rise is obtained in the pumps.

It is assumed that both propellant tanks are settled at ]
initiation of the idle mode. The tank pressures at initiation of the idle
moCe are assumecd to be propellaui vapui prossure.

Sl

%o modification of the engine is required to accommodate
the pressure fed idle mode since turbine preburner by-pass valve and lines are
already incorporated in the baseline engine configuration. Thrust obtainable
frem this mode of operation wiil depend on the minimum tank pressure available.
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L 173.7° R
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71.7°R | :
180° R
I' ]
L ' -
1860° R
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5.48 18S/secl <0 Faia
T 2040 PSIA
524° R
1385PS1 0.33 LBS/SEC
1773° RY 1661 PSIA
— -
-t L, P = 1250 PSIA
/. ¥R=6.0
¢ F =10,000 1Bs \\\
Figure 299, qu1ne Schematic, Gear Driven LO, Pump
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Figure 302. 10K Engine In-Line Fuel Pump (Sheet 2 of 4)

Page 728



GERR  DRIVEN
QHIO1ZER  Pymip

GERREON

C AR AECTOR

aroZER
MET

SYCTION Lmwve
CIMBR/L

FUEL INLET

10K Engine In-Line Fuel Pump (Sheet 3 of 4)

Figure 302,

THRUST TrkEQUT d

STRUTS (4 ALACES)

Page 729



' (v 30 ») dung 1angd auy-ul dUTBUY NO1 gyf PanUy

— NOILOAS did TEnd

5

éraA SESEET T

SMOTT44

ONIY "IVENIO . . .
—-— HWIONELS INOINVL JSOBHY

m B e e , . _ i — e bl R bew am

Pape 730



e

$°S/0

LT/t

1 XA
AR %)
8

z8
1:9
95t

€1°1
0°8
0szl
0°S9Y
09
000°0T

2ATAQ aBIYH

@uTl Ul

8°91/0°91
LLe/1n° e

1°8L¢
0z sy
9L

9L
1:9
00%

£1° 1
0°'8
0s21
S° 59y
0°9
000°0T

aujraseq

polunoy SpIS

au:u\NOA 1939wey( uojaiedo]

AUDh\NOJ 193393TeId

82Ul UOFIONg

(ar) 09y «3y8yam sursug
("uy) ®3p 3gx3 duzBul
(*uy) Ya8ua] pamoas Iujduj

(‘ur 0°¢T = TeqwWH - 3eol1yl 1)
("ur § = ,1)

(*uy) Yadua TiEaIanQ JUTBuly
SNVl

o
3

(aeinqny o3 asquey)y 19ddo))

ado1aaug

("ur) ¥
o]

d/3

(w1sd) °q

as) °3

UK

{(at) ‘a4

o e T .

ddurt10ji1ayg

uojisnquo) padeas :a7124)

AAVI3NS NOISIA ANIONA NOI

— e ———

110 419Vl

Page 731



e e e e

"TABLE CIII

10K ENGINE WEIGHT SUMMARY BASELINE ENGINE

Side Mounted TPA

PC = 1250 psia MR = 6.0 e = 400:1

1. Thrust Chamber Weight 1b
A. Injector 12.4
B. Copper TC to € = 6:1 23.6
C. Regen Tubes to e = 400:1 72.2
D. Ignitor 12.1

11. TPA's
A. Fuel incl. Boostpump 22.7
B. Oxidizer incl. Boostpump 26.30

111. Valves 27.2

1v. Gas Lines, Gas Manifold, 55.4
Liquid Lines

V. Preburner 18.7

VI. Gimbal Assembly and Support 7.5
Total Calculated Weight 278.1 1b

Estimated Harness Instrument 29 1b

Support, Brackets and Attached

Hardware

Estimated Engine Controller 35 1b
Tetal rstimated Weieht 3a2.1

Pape 732

NPSH ft = 60(F); 16(0)

Weight %

43.30

17.60
9.78

19.90

6.72
2.70

100
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TABLE CIII (cont.)

Gear Drive Concept

PC = 1250 psia MR = 6.0 e = 356:1 NPSH (H) = 60 F/160
T Thrust Chamber Weight 1b Weight %
alculated
A. Injector 12.40 s 1
B. Copper Thrust Chamber 23.60
C. Regen Tubes to £ = 356 64.0
D. Igniter 12.1 50.1
LI. TPA's
A. Pumps, Boost Pumps and Gearbox 48.30 21.6
ITI. Valves 27.20 12.20
IV, Gas and Liquid Lines 9.70 4.30
V. Preburner 18.70 8.40 =
VI. Gimbal Assbl. and Support 7.50 3.4
Total Calculated Weight, 1b 223.5 100.0%
“stimated Harness, Instrument 29.0
Support Brackets and Attach .
Hardware
Fstimated Engine Controller 35.0
Total Estimated Weight 287.5

—
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ITI, E, 5, Idle Mnde Overation (cont.)

The hydraulic resistance of the system and stability considerations will limit
chamber pressure to a value 30-50% of the minimum tank pressure. With
saturated propellants, tank vapor pressures of 15 psia will result in thrust
levels of 30-40 1b. It is desirable to minimize the need for feedback controls
during idle mode and Table CIV shows a comparison of several operating voints
with fixed oxidizer valve positions. This shows that mixture ratio will remain
in the satisfactory range of 1.5 - 3 without control of the oxidizer valve.
Figures 303 and 304 show the effect of changing vapor pressures in the fuel and
oxidizer tanks. This indicates that some control of oxidizer valve position
would be required to compensate for large changes in tank pressure.

The thrust level shown in Table CIV is 0.3% of full
thrust operation. The relative low level is due to the relatively small
chamber throat size of high pressure engines.

Table CIV also shows the idle mode operation with
externally pressurized oxygen and fuel tank pressure (Case 4). This case is
of interest for systems which have stored tank pressurization capability on
board which enables these systems to start as soon ac the pumps are sufficiently
chilled down.

A summary of the engine operating mode and control
requirements for the complete engine start sequence is presented in Table CV
for this engine start of sequenced pressure fed and pump assisted idle mode.

b. Engine Configuration Modification for Pump Assisted
Idle Mode

The incorporation of the pump fed idle mode for auto-
genous tank repressurization requires that the LO2 vaporizer be operative
during idle mode. To meet this reauirement, the LOj vaporizer is located
around the thrust chamber since this is the only heat generating component
during the idle mode operation. In Figure 305 the LO2 vaporiser concept is
shown. The LO) passages arce machiined into the closure wires cof the fuel
manitold and thus are avoiding any direct Interpropellant leakage. The
2-dimensional heat transfer of the copper chamher will help to vaporize the
oxidizer.

This modification will impact the engine weight only
slightly and is estimated to be 4 lb. The engine life will not be impacted
due to idle mode operation. Section I11.E.8 presents the cost impact due
to the idle mode requirement. A heat transfer analysis was conducted to
establish the surface requirements of the LOp vaporizer and tank pressurant
condition during idle mode. The results are summarized in Table CVI.
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TABLE CV (cont.)

PUMP FED IDLE MODE 0 (NPSH) F = 30.9 LB
0,0 Pyr = 15 PSIA Hyt  Per = 18.057 PSIA
Py = 15.01 PSIA Py = 18 PSIA
Ty = 162.6 °R e o G
W, = 0.0454 LB/SEC IN '
h = -106.2

We = 0.035 LD/SEC
! ENGINE: MR = 1,291
? P. = 4.65 PSIA
TANK PRESSURE IDLE MODE
F o= 47.75 L8 MR = 6.91 P = 6.9 PSIA
FUEL 0XID AUTOGENOUS PRESSURE FLOW
Ny = 6683 RPN “o = 0.4297 LB/SEC W = 0.352 LB/SEC
Py = 33 PSIA Py = 26.75 PSIA
Ny = 91 (NO. CHANNELS)
Ty = 37.45 °R Ty = 162°R ’
Ao = 0.001 in.€ PER CHANNEL
dg = 0.0674 LB/SEC N. = 3179 ReM

"~ = PUMP DISCHARGE PRESSURE
: 'n 7 PUMP DISCHARGE TEMP
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TABLE CVI

PUMP FED IDLE MODE OXIDIZER AUTOGENOUS
SYSTEM HEAT TRANSFER SUMMARY

Thrust Chamber

Chamber Pressure 7.5 psia
Mixture Ratio 251

Total Chamber Flow 0.114 1lb/sec
Cooling Jacket Flow (LHZ) 0.0368 lb/sec
Coolant Inlet Pressure 33 psia
Coolant Inlet Temperature 42°R
Predicted Coolant Temperature Rise 450°R
Predicted Coolant Pressure Drop 15 psi

Tank Pressure, Fuel 17 psia

Tank Pressure, LO2 23 psia

Autogenous System

Number of Channels 91

Channel Flow Area 0.00071 in.2

Oxidizer Flow 0.35 1lb/sec

Oxidizer Inlet Pressure 27 psia

Oxicdizer Inlet Temperature 170°R

®redicted Tota! Enthalpy Rise 80 Btu/lb

Predicted Pressure Drop 12 psi

‘leat Exchanger length 6 in. ;
Yage 741
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111, F, 5, Idle Mode Operation (cont.)

Gl Pump Fed Idle Mode Operation

An investigation was conducted of the feasibility of a
pump assisted idle mode for the 10K engine. This does not effect chilldown
time, since the engine cannot be started until the pumps have been chilled and
saturated liquid is available at pump suction, however, it provides a means
of autcgenous tank pressurization to bring NPSH up to a value permitting a
normal engine start without any external source of tank pressirization.

The sequence of events for initiating the pump fed idle
mode is as follows:

15 Engine is operating as in Case 3 of Table XCIX at
end of chilldown.

2 Preburner fuel bypass valve is closed, sending all
fuel flow through the turbines and developing
turbine torques of 2.7 and 2.0 in.-1b for the
fuel and oxidizer turbines.

3. After pump rotation has begun, the autogenous
valves are opened permitting tank pressurization.

4, Once the tank pressures reach the required levels,
the normal engine start sequence begins. 1f, for
any reason, a '"hold" is required prior to engine
start, the preburner bypass valve may be partially
reopened to obtain a steady state thrust in the
50-100 1b range.

Operation of a pump fed idle mode at zero NPSH depends on the existance of
thermodynamic head which is a function of propellant enthalpy. Table CVI1
shous operating points at start and completion of tank pressurization. These
are steady state points with power balanced by the autogenous flow or pre-
burner bypass. Shutting off the autogenous flow partially unloads the pumps
and increases turbine speed. Limiting speeds for the fuel and oxidizer pumps
at zero NPSH are approximately 12,000 and 4000 rpm. When operated in the
engine, higher speeds are possible at higher flow coefficients but the flow
must be recirculated; if it is injected in the thrust chamber, the {ncrease
in pressure will force the pumps into operation at low flow coefficients with
poor cavitation performance.

It should be noted that the two cases in Table CVIi are
at the beginning and completion of autogenous pressurization. Because the
fue! autogenous tap-off is at the cooling jacket exit, Case 1 shows less
than 1 opsi driving pressure for fuel pressurant flow. This s satisfactory
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TABLE CVIT

PUMP ASSISTED IDLE MODE

TANK PRESSURE FULLY PRESSURIZED
= VAPOR PRESSURE PROP. TANKS
CASE NO. L ok -
FUEL OXID. fuel 0XID
TANK PRESSURE, PSIA 15 15 16.8 22.8
TURBINE SPEED, RPM 6680 3180 9060 5480
HICH SPEED INDUCER
NPSH FT (NO TSH) 0 0 60 16
THERMODYNAMIC SUCTION HEAD 113 4 113 4
SUCTION SPECIFIC SPEED 470 1700 544 512
FLOW COEFFICIENT .30 46 .31 .08
FRACTION CAVITATION LOSS 0 0 0 . 0002
MAIN STAGE PUMP
NPSH, FT {NO TSH) 15 4 96 29
THERMODYNAMIC SUCTION HEAD 115 4 115 4
SUCTION SPECIFIC SPELD 475 1190 560 540
FLOW COEFFICLENT .33 .51 .34 .16
FRACTION CAVITATION LOSS 0 0 0 0
FINAL STAGE PUMP DISCH. PRESS. 340 26.6 50.6 60
AUTOGENOUS SUPPLY PRESSURE 15.8 26.6 28.7 60
AUTOGENOUS FLOW RATE, LB/SEC .02 .35 0 0
CHAMBER FLOW RATE, LB/SEC .037 .078 087 s 13
COOLING JACKET FLOW RATE .037 o Ry -
PREBURNER FLOW RATE .037 0 L0069 0
PRUEURNER BYPASS FLOW RATE 0 S .019 -
CAS INJECTOR EX!T TEMPERATURES, °R 424 481 380 363 1
PRUBURNER PRESSURE 10.8 19.7 ‘
CRYINE EXHAUST PRESSURY 7.5 14.0
ST 47.8 83.2
“1ET O h RATIO 2.1 LS
PECTETC TMPULSE 419 396
(AL LG OVALVE KW L0172 0172
SR UNER BYPASS VALVE  RY 0 L300
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111, g, 5, 1dle Mode Operation (cont.)

since the limiting pump is the oxidizer pump. As the oxidizer tank is
pressurized, both pump speeds and chamber pressure will increase thus providing
adequate fuel tank pressurant flow. If Case 2 had the fuel tank pressure at

15 psia, the fuel pump would still be operating in a non-cavitating condition.
The actual transient was not run on the computer because of time and budget
limits but it appears that no control operation other than the autogenous
valves (and possibly the preburner bypass valve) would be required.

6. Effect of Engine Cycle Life on Engine Design Point

The engine low cycle fatigue cycle requirements have a
considerable effect on the engine design point selection. The engine components
most effected by these requirements are the thrust chamber and fuel turbine
disks.

The turbine disk life can be manipulated by the selection of
turbine inlet temperature and turbine tip speed identical to the relationship
oresented for the 25K thirust euglne., The variations of these two turbine
design parameters effects the power balance and tuncrefore chamber pressure
capability.

The chamber life requirement is most effectively manipulated
by changing thrust chamber pressure and coolant throat Mach. No. The
parametric analysis yielded the design information required to establish the
roolant pressure drops for each chamber pressure required to meet the 60 and
600 life cycle requirement. The data is summarized in Figure 306.

With this pressure drop requirement and the selected turbine
temperatures and tip speed, the power balance was conducted over the appropriate
chamber pressure range. The chamber pressures were then selected meeting the
chamber life requirements and power balanc~ capability. The flow, temperature
and pressure schedules are shown in Figure 307 and Figure 308 and the turbopump
operating conditions are summarized in Table CVIII.

The chamber pressures of P, = 1050 psia for 600 cyeles and
Pe = 1400 psia for 60 cycles were defined. This change in chamber pressure
effects engine performance weight and envelope. Utilizing the parametric
engine data, the engine characteristics can be summarized as follows:
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I, E, 6, Effect of Engine Cycle Life on Engine Design Point (cont.)

Engine Characteristics for 60 and 600 Cycle Life

60 Cycles 600 Cycles

Thrust, 1b 10K 10K
Chamber Pressure, psia 1400 1050
Area Ratio 400 400
Engine Length, in. 73 81
Engine Diameter, in. 43.0 49.60
Specific Impulse, sec 466 .20 464.8
Engine Weight Change, 1b -10 +16
TPA Weight Change, 1b 0.0 +1.7
F/Pc 7.14 9.53
Total Engine Weight, 1b 268 294

(W/0 Harness & Engine Controller)

The engine payload change due to changing life requirement is

oPL aPL
APL = EI— X AIS + W Awt
S t
60 Cycles 600 Cycles
Payload
Change +184 -243.0

7. Elimination of Throttling Requirement

The elimination of the throttling requirement can result in
minor engine configuration modifications. The preburner bypass valve and
line will be eliminated resulting in a weight savings. The preburner control
valve resistance is reduced to 200 psia and the preburner LOj circuit pressure
drop i{s increased to 800 psia and liquid LO2 injection will be used. The
L0y vaporizer for the preburner is eliminated and replaced by a hydrogen repvn-
erative section.

To maintain autogeneous capability, a LUX vaporizer has to bhe
available and is recommended to be placed around TCA, which could maintain the
capability to operate at pump assisted idle izode.

A modified engine schematic is shown in Figure 309, The
welpght change due to eliminazion of the throttling requirement is - AW = -8,20 b,
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111, E, 10K Thrust Engine Design (cont.) ‘

8. Engine Development and Cost

a. Baseline Engine

The development of the 10K engine will be accomplished
within the basic program schedule shown ia Figure 310 for the 25K engine and it o
is anticipated that approximately the samc amount of hardware and facility
modifications will be required.

The program controls will also be identical to these
used on the basic 25K engine effort, consequently, the costs for the basic
10K engine programs are expected to be identical to those of the 8K engine {
program. These are:

Demonstrator Program $16,374,000 i
Development Program 38,993,000
Production (40 Units) 22,273,000 ]
Total $77,640,000 l
First Production
Unit Cost $ 708,000 ’i 5
Propellant requirements will be:
Demonstrator Program Development Program -
LH2 354,000 1b 1,890,000 1b
Lo, 1,110,000 1b 565,000 1b
LN2 212 tons 1,130 tons
H_ 384 KSCF 2,050 KSCF
<
b. Effects of Varying Design Conditions -i

(1) Cyclic Life

The technical aspects of increasing cyclic life 4
to 600 cvcles/20 hr firing life or reducing to 60 cycles and 2 hr is discussed ’
in Section lI1,F.6, That section shows the engine configurations to be very
similar for either of the two conditions, consequently, the only variation g
to program costs will be associated with the increases or decreases to testing.

All of thece costs will be incurred in the
development pertion of the program.
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111, E, 8, Engine Development and Cost (cont.)

The increase in costs associated with the increase
in cyclic life are estimated to be:
Hardware $100,000
Testing 230,000
Total $330,000
The reduction in costs with reduced cyclic life

which would be applied to the devciopment program are $230,000, all of which
are a reduction in test costs.

(2) 1dle Mode Operation

The only cost impact resulting from the idle mode
new design condition is assoclated with the pumped case.

The additional costs are incurred in the development
portion of the program due to the necessity of additional effort in testing
the combustion chamber heat exchanger. These costs will be
Hardware $210,000
Testing 460,000
Total $670,000

(3) No Throttle Capability

The cost impact of eliminating the throttling
capability as discussed in Section II1.F.7 will be felt in two areas,
development and engire production.

Development program costs will be reduced as
follews:

Hardware $308,000
Testing 690,000
Total $998,000

Production unit engine costs will be reduced by
approximately $20,000.
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111, E, 10K Thrust Engine Design (cont.)

9. Major Component Design Description

The combustion components of the 10K thrust 00S engine are
essentially scaled-down versions of the larger, 25K engine studied in the
previous section. The operational requirements of the two engines are very
similar, except for the maximum thrust level, and the depth cf examination
required in certain areas of extended requirements.

a. Engine Scaling Considerations

Most engine component weights and envelcpes do not scale
down directly with maximum delivered thrust levels, even though the delivered
specific impulse remains relatively constant with thrust scaling, so that pro-
pellant flow rates do scale linearly. When smaller components are desigfued to
operate with the same thermal characteristics, e.g., wall and fluid temp-
eratures are substantially the same as larger counterparts, as is the case
with the two subject engines. The sizes and weights are largely dependent
upon internal fluid pressures. Fluid pressure contributes greatly to the
total stress level of many engine components, and, hence, to their wall thick-
nesses and weights. Whereever the mixture fluid is compressible, the fiuid
density and required flow area is also affected by pressure. The weight and .
volume of most combustion component parts are greatly affected by propellant
flow area requirements, because they all handle propellants and require pro-
pellant cooling.

Every combustion component is a heat exchanger, using
this fact as basis for selecting the proper scaling requires that local heat
fluxes be similar. Given the same temperature data, it is then required tc
match fluid velocities (Mach numbers) and passage sizes (Reynolds numbers).
Power balance and thrust chamber life considerations require that the 10K
engine operate at a lower chamber pressure than the 25K engine, because 1t is
not possible to obtain similar Reynolds numbers within the chamber itself,
otherwise. The use of lower system pressures in the 10K engine causes gas
passage total flow areas to be designed greater than 10/25 = 407 as large as
the 25K enpine. Required flow areas are more nearly: %g%% x %% = 587 ot
those used in the 25K engine. Those components whose wall thicknesses are
are dependent upon pressure induced structural requirvements will have walls

1/2 1250
nominally (0.58) X 1800
Many component lengths are unchanged for reasons of heat transfer and/or
combustion length requirements. Some, however, have envelopes and weights
which are rather insensitive to any scaling parameters. e

= 537 as heavy as the larger engine counterparts.
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111, E, 9, Major Component Design Description (cont.)

J One such example is the main chamber igniter. In other cases, minimum fabri-
ﬁ cation gage determines material thicknesses, rather than structural or flow /
considerations.

Tables CIX through CXIV list the basic design specifi- |
cations of the 10K engine combustion components. These components are shown
in Figures 311 through 314, Preceeding the design specification (which includes
calculated component weights) and the corresponding figure, is a brief dis-
cussion of the differences between the 10 and 25K component des.igns.

i Component low cycle fatigue lives are very similar to
those of their larger counterparts, because by design their thermal character-
istics have been unaltered.

b. Main Injector

The 10K engine main injector is a propellant condition-
ing device as well as a metering and delivery component, as is the 25K unit,
In order to duplicate the heat transfer properties of the larger injector,
the 10K infecr-r utilizes the same hydraulic passage sizes throughout the
vanes as is . ! in the larger unit. Flow velocities are controlled by alter- - 4
ing the number .. passages and orifices (including the fuel-rich hot gas
orifices between the vanes). Table CIX lists the resulting major injector
dimensions and operating parameters. The similarity to the 25K injector ie
shown pictorially in TFigures 311 ard 312.

3 The 10K injector pressure schedule is shown in Table CX.

On a dimensionless basis, with chamber pressure as the reference, this is the !

same schedule as used for the larger engine. This is desired for flow con-

3 trol, which automatically occurs when injecting gases. The change in density
with pressure alters the fluid density, the velocity head, and the dimensional !

pressure loss schedule, as desirved.

c. Thrust Chamber g

The 10K engine thrust chamber shares its materials and
type of construction, as well as cooling scheme and overall configurztion
with that of the 25K engine. It was found necessary to reduce the thrust
chamber pressure from 1800 to 1257 psia to duplicate the chamber low cycle
J farigue life. This was caused by the hydraulic dissimilarity of the
smaller chamber. The wall heat flux could only be reduced by lowering thc i
gas-side film coefficient through a reduction of gas pressure. With the
thrust and chamber pressure given, the throat area, and other dimensions
were easlly determined. These are listed in Table CXI and on Figure 213 as
design specification and design concept picture, respectively.
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TABLE CIX

10K MAIN INJECTOR BASIC DESIGN SPECIFICATIONS*

Baseline Engine

. Number of Vanes 48
: Number of Baffles 8
? Number of Orifices 608
’ Orifice Shape and Size, in. Rectangular, in. 0.0187 X 0.0374
T Type and Number of Elements:
Impinging Doublets 230
Showerhead 48
| Total Elements 328
' Doublet Impingement Angle, Degrees 60
i Dovklet Impingement Distance, in. 0.052
Staggered Doublet Centerline Spacing, in. 0.093
Vane Centerline Spacing, in. 0.193
Thrust per Element, Lbf. 30, 5%*
; Fuel Rich Hot Gas Injection Ve'ocity, ft/sec 575
% Oxidizer Injection Velocity, ft/sec 415
) Fuel Rich Hot Cas Injection Temperature, °R 1565
3 Oxidizer Injection Temperature, °R 550
] !a Infector Weight, 1lb. 12,40
; . Axial Vane Length, in. 3.5
F Iniector Face Diameter, in. 3.0
$
Uxidizer Pressure Drop, psi 420
E Fuel Rich Hot Cas Pressure Drop, psi 110

#hata for 10K 1bf thrust at 6.0 Engine Mixture Ratio
Frhased on total number of elements:

e/ lement, F/E = 35.7 1bf based on doublet elecrnents only.
F/E = 32.9 1hf based on 1/2 of the total number of orifices,

s e



TABLE CX

10K INJECTOR PRESSURE SCHEDULE

Baseline Engine

FUEL RICH HOT GAS 0XIDNIZER
INJECTOR CORE , INJECTOR CORE
AP, AP,
LOSS PSIA LOSS PS1A
Inlet Manifold 30 Manifold Vane, Total 50
Distribution 15 Injector Vane 10
Plate #1 Inlet
Distribution 15 Heating Channel 100
Plute #2 Friction )
Inter-VYane 40 Orifice Inlet 60 \
“riction Loss Plenum '1
Injector Velocity 10 Injector Orifice 200
Head
TOTAL LOSS 110 420
1 Page 757
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TABLE CXI

10K COMBUSTION CHAMBER BASIC DESIGN SPECIFICATION

Throat Diameter, in.

Chamber Contraction Ratio
Combustion Zone

Overall Incl. Injector
Chamber Shape
Chamber Half-Angle, Degrees
Chamber Exit Area Ratio
Combustion Length, L', in.
Overall Chamber Length, in.
Primary Cooling Method

Flow Scheme

Number and Type of Coolant Channels

Cas-side Wall Thickness, in.
Channel Depth

Channel Width

Land/Channel Width Ratio at Throat

Channel Height/Width at Throat, in/in

Chamber Inner Wall Material
Hoop Stress Support Method

Axial! Load Support Method

Thrust Chamber Weight, lbm (to ¢ = 5.3:1)

Page 7SR
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2.26

2.0
2.4

Conical
4,2
5.3
6.5
8.4
Hydrogen Regenerative
Single Pass, Counter Flow
91 Rectangular
0.030 Constant
Continuously Variable
Stepped, 3 Widths
1.0
.064/.040
Zirconium Copper
Wire-wrapped

External Conical Shell

23.6 w/o clevises



TABLE CXII

10K NOZZLE BASIC DESIGN SPECIFICATIONS

Inlet Area Ratio

Exit Area Ratio

Exit Diameter, in,
Length, 1in.

Contour

Construction Type

Tube Wall Thickness, in.
Tube Material

Number of Tube Bifurcation Planes

Location of Bifurcations
Coolant Scheme

Bifurcation Joint Type

Turnaround Manifold Type
Number of Tubes:

€ =6 to e = 25

€ = 25 to € = 200
¢ = 200 to ¢ = 400
Sumber of Stiffening Rings

Attachment to Thrust Chamber

Nozzle Weight, lbm (e = 5.3:1 to 400:1)

Page 759

5.3:1
400:1
45,2
61.2
Minimum length Rio optimum
Round Tubular-Furnace Brazed
0.010, Constant
ARMCO 22-13-5, Tapered Tubes
2
€ =25 and € = 200
Two-pass Hydrogen Regen.

Circular Tube Surrounding
Back-to-back '"'D" Tubes, Brazed

"U" Tubular @ ¢ = 400, Brazed

Total Segments = 497

11
142
284

5

Rebrazable Joint
72.2
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TABLE CXIII

10K PREBURNER BASIC DESIGN SPECIFICATIONS*

Injector Type and Material
Propellant Injection Phase
Injector Pattern

Number of Orifices:

Fuel
Oxidizer

Total
Orifice Shape and Size
Fuel, in. X in.
Oxidizer, in. X in.

Doublet Impingement Angle
Fuel & Oxidizer, Degrees

Impingement Distance from Face, In.
Fuel, in.
Oxidizer, in.

Injector and Chamber Dia., in.

Fuel Injection Velocity, ft/sec
Oxidizer Injection Velocity, ft/sec
Fuel Injection Temperature, °R
Oxidizer Injection Temperature, °R
Total Fuel Pressure Drop, psi

Total Oxidizer Pressure Drop, psi

Chamber Type

Brazed Platelet, N;j-200
Gas/Gas

Like-on-Like Doublets

2520 + 1260 Doublets
1274+ 637 Doublets
3794 +~ 1897

Rectangular
0.010 X 0.020

0.010 X 0.020

60

0.030
0.055

2.4
1000
125
450
400
205
385

Oxidizer Regen. Cooled, with
Fuel Regen. Cooled Liner

Combustion Stability Device Acoustic Resonator Integral .
with Chamber and Liner
Chamber Length, in, 9.0
Total welght, lbm 18.7
; *Hata for 10K 1bf thrust at 6.0 engine mixture ratio.
Mare TR0 '
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TABLE CXIV

10K THRUST CHAMBER IGNITER BASIC DESIGN SPECIFICATION N
Type Hot Gas Torch .
Initiator Spark
Electrode Cooling Submerged in O2 Flow
Spark Gap Width, in. 0.035
Spark Voltage, Kv 20
Spark Rate Sparks/sec. 50
Spark Energy, Millijoules/Spark 5 J
Torch Mixture Ratio, O/F 1.5
Torch Temperature (minimum) °F 1100
Fuel Flow Rate, lbm/sec 0.022 3.
Oxidizer Flow Rate, lbm/sec 0.033
Duration of Operation, Sec/Engine Start 0.75
Materials:
Housing ARMCO 22-13-5 S
Chamber Liner /Flame Tube Haynes 188 .
Electrical Seal Brazed/Ceramic h
i
Injector Head Zircoium-Copper ;
Total Weight, lbm (with Exciter) 12.1 ?
3
3
Page 761
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111, F, 9, Major Component Design Description (cont.)

The selection of the chamber pressure of 1250 psia is
based on the low cycle fatigue life capability of the ZrCu chamber material,
which was established experimentally at the ALRC facilities. Since the start
of this contract considerable more data was made available from other sources
and an effort was made to correlate these data for the two most promising
chamber materials.

Zirconium Copper

Silver - Zirconium Copper

The result of this analysis indicates that the low cycle fatigue life is
strongly effected by the environmental conditions. The data presented in
Figure 315 and Figure 316 indicates the low cycle fatigue for these materials
measured in air and in inert environments, indicating the testing in air to
result in lower fatigue life than tests in inert environment by a factor of
about 3. Tnis fact is attributed to the oxidation within the fatigue cracks,

when tested in air.

The real environment in LOX/hydrogen engine is superheated
steam and free hydrogen and its effect has not been established to date, but
it is speculated that the available data will bracket the actual environmental
effects. The conclusion reached from this analysis is that the chamber life
estimate based on the data in air is conservative.
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Figure 315. Life Estimates for 00S Chamber Made of Zirconium Copper
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11, E, 9, Major Component Design Description (cont.)

d. Nozzle

The expansion nozzle for the 10K engine comprises a
large portion of the total engine envelope and weight, more so than was the
case for the 25K engine. This is in spite of the fact that the same mate-
rials, design type configuration, as well as cooling scheme is used. This is
also in spite of the fact that 0.010-in. thick regenerative tube wall thick-
nesses are used instead of 0.015-in. on the larger thrust engine. The 10K
engine nozzle has a larger overall area ratio, and operates at a lower cham-
ber pressure. Therefore, its length and weight are nearly equal to that of
the larger nozzle. Since the remainder of the engine is considerably sma.ler
and lighter, the nozzle becomes a component of major importance to vehicle
performance. Design specifications and concept are shown in Table CXII and

Figure 313, respectively.

e. Thrust Chamber Thermal Characteristics

The thrust chamber assumed coolant passage geometry 1is
shown in Figure317 for the 7r Cu chawver. This geometry was used to determine
the chamber cnermal characteristics.

The pressure drop characteristics at full thrust opera-
tion is shown in Figure 318 indicating “he coolant sensitivity to pump dis-
charge pressure and was used to obtain the feed system power balance. The
coolant characteristics for throttling conditions are shown in Figure 319.

The heat transfer analysis had the objective to define
the coolant condition for meeting the 300 thermal cycle requirements. The
result of this aralysis is summarized in Figures 320 and 32i for tne throat
conditions and alzo includes the condition at the throat for off mixture
ratio conditions at full thrust. Indications are that the chamber has more
than adequate life at all operating conditions.

The throttling conditions at MR = 6.0 are described in
Figure 322 Indicating a rapid increase of chamber life with throttling. This
indicates the capability to improve engine cycle life by simply directing the
engine to a slightly lower thrust level.

f. Preburner
The 10K engine preburner charber is the same length and

design/construction type as the larger, 25K unit. Since the chamber i{s a heat
crotanger, it, in common with the main injector, utilizes fewer ccolant
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I1L, E, 9, Major Component Design Description (cont.)

22

passages of similar size to form a chamber of smaller flow area to contain the
lower volumetric flow of preburner reactants. The total heat transferred to
the oxygen and hydrogen coolants per lb per second is similar, to obtain the
same thermal schedule. The injector, again is similar, containing fewer injec-
tion orifices, arranged in the same pattern as shown for the 25K preburner
injector. The preburner basic design specifications are given in Table CXIII,

and depicted pictorially in Figure 314,

[  prman)

g. Igniter

L]

\.

\ The igniter for the 10K engine main injector is identi-
cal to that of the 25K engine in every respect. The reasons for this are that
the ignition requirements are the same, both within the igniter chamber and in
the thrust chamber. This is because the same propellants, mixture ratios, and
start pressure schedules require the same igniter diameter and total heat
generation rate. The basic design specification for the main igniter is shown
in Table CXIV.

The 10K engine preburner igniter operates in the same

e manner as its larger counterpart. Therefore, the same exciter, electrode,
and feed system is utilized in both preburners.

r h.  Turbopumps

(1) Requirements

The operational requirements fur the 10,000 1bf

vacuum engine are identical to those of the 25,000 !bf engine with appropriate
adjustments for the 10K flow and pressure schedule.

(2) Design Selection

- (a) Design Criteria
The turbopumps for the 10K engine are based on

the same structural criteria as used for the 25Kk turbopump. This criteria is

' summarized below:

1 F mp Impeller

3

s 1600 ft/sec impeller maximum rated tip

N speed (Titanium) to achieve 300 thermal

{ cycles.
Page 776
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111, E, 9, Major Component Design Description (cont.)

2 Turbine Rotors

1860°R turbine inlet temperature to
achieve 300 thermal cycles.

s 1300 ft/sec turbine mean blade speed to
i achieve a disk design 1ife of 10 hours,
} The burn mixture consists of one

} 1000 second long burn plus eleven 40

; second long burns plus eleven 40 second
i short burns.

] Turbine blade root stress allowable value
i of 31000 psi (50% of 10 hour creep rup-
ture strength).

The design parameters used for the 10K turbo-
puip afe given in Table CXV and differ from the 25K design parameters in the
areas tabulated below:

:ﬂ Oxid. Fuel =
3 0K BE I
E Max. RPM Ratio, Main/Low Speed 3.5:1 54l 355 5:1
E Bearing DN - Low Speed Pump 215000 126000 343000 24000
Number Stages - Main Pump 1-1/2 1-1/2 3 2
l Shaft Speed - Main Pump 50000 63000 80000 100000 ;
’ Internal Recirculation 5% 71.54 7% 15%
i Allocated
Turbine Bypass, Allocated 4% 17.5% ¥4 6% ‘
Turbine End Bearing DN - 1.5 x 106 1.2 x 106 2 x 106 2 x 106
Main

The relative shaft speeds of the low speed pump
were reduced for the 10K design to reduce their power requirements. The 10K 1

fuel pump is designed with two centrifugal stages compared to the three stapes

for the 25K TPA design. The lower system pressure permitted the lower head

generation with two stages while maintaining the impeller tip speed below 1600 _
ft/sec. The 10K TPA design point shaft speed values were increased. (Refer ji
to the section below for design speed seclection.) The pump allocated

recirculation flow and the turbine bypass flow values were increased from the

25¥ values because as pump sizes are reduced, the lzakage area does not reduce ,
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TPA DESIGN PARAMETERS

Low Speed Pump Assembly

Main

NPSH, feet
Thermodynamic Suppression Head, ft

TABLE CxXV

10K ENGINE

Min., Ratio of Effect. NPSH, Run/Breakdown

Suction Specific Speed, Breakdown
Max. RPM Ratio, Main/Boost

Specific Speed, Maximum

Suction Diameter Ratio, Hub/Tip

Tip Diameter Ratio, Exit/Suction

Mean Diameter Ratio, Exit/Suction
Turbine Drive

Ratio Bearing Spacing/Shaft Diameter
Ratio Turbine Overhang/Shaft Diameter
Bearing Dn.

High Speed Turbopump Assembly

High Speed Inducer

High

High

Thermodynamic Suppression Head, ft

Min. Ratio of Effect. NPSH, Run/Breakdown

Suction Specific Speed Breakdown
RFM Katio, Inducer/Main

Specific Speed, Maximum

Suction Diameter Ratio, Hub/Tip
Tip Diameter Ratio, Exit/Suction
Mean Diameter Ratio, Exit/Suction

Speed Main Pump
Tharmodynamic Suppreaaion Head, ft

Min. Ratio of Effect. NPSH, Run/Breakdown

Suction Specific Speed Breakdown
Shaft Speed
Number Stages

Internal Recirculation, Allocated, %

Speed Main Turbine

Type

Number Stages

Energy Extraction Means
Inlet Temperature, °R

Mean Blade Speed, ft/sec
Nozzle Angle

Max. Diameter Ratio, Hub/Tip
Min, Diameter Ratio, Hub/Tip
Inlet Manifold Mach No.

Exit Manifold Mach No.
Turbine Bypass, Aliocated, X

Power Transmission

Turbine End Bearing Type
Turbline End Bearing DN
Pump End Bearing Type
Pump End Bearing DN

*FP - Full Flow Hydraulic
#sp] - Pressure Compounded, lmpulse

Page 178

0.4

1.0

1.1
FFH*
2.17
3.17
126,000

Calec.
1.87
30000

4000
0.512
1.0
1.1

Calc.
2.27
10000
A 3,000
1-1/2
7.5

Axial
1
lmpulse
1860
1100
15
0.90
0.85
0.3
0.5
17.5

Fuel

60
Calc.
1.87
45000
S:1
4000
0.3
0.916
1.054
FFH*
2.17
3.17
24,000

Calc.
1.87
30000
1:1
4000
0.515
1.0
1.1

Calc.
2.50
10000
100,000
2

15

Axial

prae
1B60
1300
20
0.90
0.85
0.3
0.5

Dplx Ball Dplx Ball

1.26 x lO6

2 x 10" 3

Dpix Ball Dplx Ball

1.07 x l()6

2 x 10°




111, E, 9, Major Component Design Description (cont.)

proportionately. The particularly large increase in the fuel pump recircu-
lation resulted from the miniaturization affects and from reducing the number
of pump stages. The reduction of pump stages increased the pressure drop
across the hydrostatic seals which in turn increased the leakage flow.

(b) Shaft Speed Determination

The design point shaft speed for the fuel main
turbopump was established at 100,000 RPM. The relationship of allowable pump
shaft speed and TPA weight to available NPSH are shown in Figure 323, The tuel
TPA shaft speed was established at 100,000 RPM to limit turbine blade root
stresses to 31,000 psi. Increasing shaft speed above 100,000 RPM would reduce
the turbine diameter. This action would require an incieased blade length
which would increase turbine blade root stress above the limiting 31,000 psi
value. Pump operation at 100,000 RPM requires 123 feet NPSH and results in
a weight value of 21.5 pounds. This NPSH value exceeds the specified minimum
of 60 feet. Pump operation with 60 feet NPSH would permit a maximum pump
shaft speed of 81,000 RPM with a resulting turbopump weight of 44.5 pounds.

A low speed pump weighing 1.8 pounds will permit the 100,000 RPM main pump
design operating point giving a combined boost pump plus turbopump weight of
23.3 pounds as compared to a 44.5 pound TPA without a low speed pump. The
weight values noted above were obtained from a computerized TPA weight program.
These computed values while differing from the values computed for the actual
TPA design, do provide meaningful weight trends for trade studies,

The oxidizer TPA shaft speed was established
at 63,000 RPM. This value was selected tc equalize the shaft spin up time
since the oxid and fuel turbopumps operate from a common gas generator.
Increasing the design shaft speed would reduce the diameter of the turbine
which in turmn would reduce its rotor moment of inertia (turbine rotor is the
predominate inertia component) and reduce the spin up time. The turbine mean
blade speed was established at 1100 ft/sec, a compromise value to achieve the
desired spin up times, and to adjust turbine rotor weight to achieve shaft
critical speed values that fall between the 2nd and 3rd critical speeds modes.

The relationship of oxid pump allcowable shaft
speed and vesulting TPA weight to available NPSH are shown in Figure 324, Pump
operation at 63,000 RPM requires 65 feet NPSH and results in a weight value of
16 pounds. This NPSH value exceeds the specified minimum of 16 feet. A boost
pump weighing 3.5 pounds will permit the 63,000 RPM main pump design operating
point giving a combined boost pump plus turbopump weight of 19.5 pounds as com-
pared to a 153 pound TPA weight without a boost pump.
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Il1, F, 9, Major Ccmponent Design Description (cont.)

e g

(¢) Fuel TPA Candidate Configuration

Six configurations cf the fuel turbopump were
considered in the fuel TPA selection. These six candidates are shown by con-
ceptual sketches in Figures 325 through 330. A turbopump with a gear driven
oxidizer pump was analytically evaluated where the oxidizer pump is driven by
the fuel pump turbine through a speed reducing gear box. The analysis showed
that a slight increase in cycle efficiency would be achieved as shown in
Figure 299 by a slightly lower power balance pressure (fuel pump discharge
pressure). This configuration was selected as an alternate configuration and
is presented in Figure 330. From the six TPA candidates, Figures 325 through
329, concept No. V, (Figure 328) was selected. The selected concept positions
the shrouded impeller front to back with the pump end bearing located between
the two impellers. This concept was selected on the basis that it:

i Eliminated the tight axial clearance
reguirement.

2 Permitted the high speed inducer to be
driven by the impeller shroud (the full
flow hydraulic turbine drive concept
necessitates a shroud driven high speed
inducer), and

3 Permitted a first stage impeller design
with a low hub to tip diameter ratio.

The selected concept has the disadvantage that LH» will leak past the hydro-
static seal from the high pressure area of the first stage impeller to the
suction of the first stage. This leakage flow will be heated as a result

pump inefficiency and where this ieakage flow enters the low pressure area of
the lst stage suction, some propellant could flash to vapor. Therefore, design
conside-ation might be given to (1) adjusting pressure values where the leakage
flow re-enters the main stream and to (2) adjusting the through flow areas to
accommodate the increased volume flow resulting from the presence of vapor.

[ The six candidate TPA concepts including the
selected concept No. V, are compared and rated from 1 (selected) to 6 (least
attractive) in Table CXVI. Concept VI (front to back unshrouded impellers -
bearinc hetween stages) was a close second and was rated No. 2 on the basis

{ that the unshrouded impeller concept did not lend itself to the full flow
turbine driven boost pump drive in that it does not have a shroud to drive the
high speed inducer.
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Fuel TPA
Concept
Number

I

II

I1I

v

Description

Back to Back Unshrouded
Impellers - Bearing between
High Speed Inducer and
First Stage Impeller

Back to Back Shrouded
Impellers - Bearing between
High Speed Inducer and First
Stage Impeller

Front to Back Shrouded
Impellers - Bearing between
High Speed Inducer and First
Stage Impeller

Front to Back Unshrouded
Impellers - Bearing between
High Speed Inducer and First
Stage Impeller

Front to Back Shrouded
Impellers. Bearing between
Stages

Front to Back Unshrouded
Impellers - Bearing betw:en
Stages

TABLE CXVI

FUEL TPA CONCEPT EVALUATION

Advantages

Off Setting Pump Axial
Thrust-First to Second
Stage. Leakage of Heated
High Pressure - Vapor
Entrained LH into Suction
of First Stage Impeller
Eliminated.

0ff Setting Pump Axial
Thrust - First to Second
Stage. Tight Axial
clearance not required.

Tight Axial clearance
not required.

Leakage of Heated

High Pressure - Vapor
Entrained LH; into
suction of first stage
impeller eliminated

Tight Axial clearance
not required. Shroud
driven high speed
inducer feaaible.
Small Hub Ratio First
Stage Impeller

Leakage of Heated High
Pressure - Vapo: Entrained
LH2 into Suctior of First
Stage Impeller eliminated.
Small Hub Ratio First
Stage Impeller

Page 789

Disadvantages Rating
Large Hub Rativ First Stage
Impeller. Bearings between
Inducer and 1lst Stage 5

Impeller preclude shroud
driven high speed inducer.
Tight axial clearance
required. Increase

passage length and complexity.

Large Hub Ratio First Stage
Impeller. Bearing between

Inducer and lst Stage

Impeller preclude shroud

driven high speed inducer. 6
Leakage of Heated High

Pressure - Vapor entrained

LH; into suction of first

stage. Increaaed passage

length and complexity.

Large Hub Ratio First Stage
Impeller. Bearing between
Inducer and lst Stage
Impeller preclude shroud
driven nigh speed inducer.
Leakage of Heated High
Pressure - Vapor entrained
LHy into suction of first
stage.

Large Hub Ratio First Stage
Impeller. Bearing between

Inducer and lst Stage

Impeller precludes shroud 3
driven high speed irducer.

Tight axial clearance

required.

Leakage of Heated High

Pressure - Vapor Entrained 1
LHy into suction of first (selected
stage. concept)

Unshrouded impeller precludes
shroud driven high speed 2
inducer. Tight axial

ciearance required.
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111, E, 9, Major Component Design Description (cont.)

(d) Oxidizer TPA Candidate Configurations

Two configurations of the oxidizer turbopump
were consicdered in the oxidizer TPA selection. The two candidates are shown

" by conceptual sketches in Figures 331 and 332, Concept No. I has a one and

one-half main stage and Concept No. II has a single main stage. Concept No. I
with a cne and one-half stage pump uses the first stage to raise the pressure
level of the oxidizer to that required at the injector of the secondary com-
bustor. The one-half stage then receives approximately 15% of the oxidizer
flow and increases its pressure level to that required at the injector of the
primary combustor. Concept No. II with a single stage pump raises the pres-
sure level of the total oxidizer flow to the high pressure level rcquired at
the injector of the primary combustor. The pressure level of the oxidizer
that is going to the secondary combustor (85% of the flow) is reduced to the
pressure required at the injector of the secondary combustor. This throttling
of pressure in the oxidizer circuit which is an internal loss in the propellant
feed systems, does not permit a system design with a thrust chamber pressure
of 1250 psia. Therefore, Concept No. I which does have the capability of
achieving the desired 1250 psia thrust chamber pressure was selected.

(e) Low Speed Pump Drive Candidates

The low speed pump drive candidates considered
for the 25K engine TPA were reconsidered for the 10K engine TPA's. Two of the
six candidates, the full flow hydraulic turbine and electric motor drive, were
rated 1 and 2 in that order and were evaluated in greater depth. Two electric
motor drive concepts permitted tank mounting of the boost pumps and with a
separate electric motor drive, these pumps would also be used in bleeding the
main pumps. The shaft power requirement, 6 for the oxidizer and 3.3 HP for the
fuel boost pumps, is sufficiently high that the electrical supply system weight
and complexity outweigh the advantages of electric motor drive. Therefore, the
fuil flow hydraulic turbine was selected for the 10K engine turbopumps.

(f) Materials

The materials selected for the 10K engine fuel
and oxidizer turbopumps are the same as selected for the 25K engine turbopumps.
A complete discussion of the rationale of material selection is included in
Section T11,B,2,g.
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11{, E, 9, Major Component Design Description (ccnt.)

(3) Description
(a) Fuel Turbopump
1 Assembly Description

The fuel turbopump shown in Figure 333
consists of a high speed main turbopump and a low speed turbopump. The
low speed turbopump consists of a low speed inducer and a full flow
hydraulic turbine mounted to a common shaft. Propellant lubricated ball bear-
ings support the shaft. The full flow hydraulic turbine is located between
the high speed inducer and the first stage pump of the high speed main turbo-
pump. The high speed main turbopump consists of a high speed inducer, two
stage centrifugal pump and a two stage turbine mounted to a common shaft.
Propellant lubricated ball bearings support the shaft. The design of the fuel
turbopump assembly is almost identical to that of the 25Kk engine with appropri-
ate scaling factors. Consequently the appropriate section relative to the
25K engine constitutes a design description for the 10K engine components as

well as the 25K engine components.

The component weight breakdown for the
fuel turbopump is included in Table CXVII,

(b) Oxidizer Turbopump
L Assembly Description

The conceptual design of the main oxi-
dizer turbopump is shown in Figure 334 with a low speed inducer upstream of the
main pump which is driven by a '" full flow" turbine located between the high
speed inducer and first-stage impeller. The main pump is a 'stage and a half"
design with the first-stage discharging 85% of the flow to the secondary
injector and 157 to the half-stage which discharges its flow to the primary
injector. The impellers are shrouded to minimize tolerance requirements for
tight axial clearances and to provide bi.- loads for the single acting thrust

balancer. The pump is driven by a single-stage partial-admission turbine.

As 1s the case with the fuel turbopump

assembly the design similarity of the 10 and 25K oxidizer turbopump assemblies

make it possible to refer to Section III,B,2,p for a description of the 10K

design. The component weight breakdown for the oxidizer turbopump is included

in Table 1V,
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TABLE CXII1

10K 00S TURBOPUMP WEIGHT BREAKDOWN

é Oxidizer Fuel
; Low Speed Turbopump - Pounds
; Impeller 0.17 0.20 :
Shaft and Bearing Inner Race 0.26 0.28
Hydraulic Turbine 0.10 0.13 }
i Housing and Bearing Outer Race 1.55 1.63
Total 2.08 2.04 g
4
£ Main Turbopump - Pounds i
Inducer 0.18 0.23 |

Impeller(s) Main 0.20 1.20
Impeller (Half Stage) 0.08
Shaft and Rotating Elements 1.85 1.20
First Stage Turbine Rotor 0.75 0.42
= 0.42

Sccond Stage Turbine Rotor

E Pump Housing and Power Transmission Housing 18.31 14,98

2.10

3 Turbine Nozzle Assembly 2.84 i

Total 24.21 20,55

Low Speed + Main Turbopumps - Pounds

Total 26.29 22.59
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111, E, 9, Major Component Design Description (cont.)

i. Control Valve

The selection process and design features associated
with the 10K engine control valves are identical to those of the 25K engine
design. Consequently the 10K engine control valves are scaled down versions
of those discussed in Section III,B. The flow diameters and weights of the
10K engine control valves are as follows:

Diameter, in. Weight, 1b
Fuel Pump Discharge Valve 0.75 5.32
Oxidizer Pump Discharge Valve 0.75 5.75
Preburner Oxidizer Vaive 0.375 2.5
Fuel Start Bypass Valve 0.75 5.75

(Turbine Bypass Valve
same Config.)

Figures 335 through 337 show three of the valve concepts.

Conceptual drawings of the fuel start bypass and turbine bypass valves are
not included because they will be the same configuration as the oxidizer

discharge valve.
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III, Technical Discussion (cont.)

F, ENGINE TECHNOLOGY REQUIREMENTS

In course of designing the 00S/Tug propulsion system many
technology requirements became evident. Some of these technologies are basic
and a function of the engine design and operating requirements, others exist
because of uncertainty of the selected approach.

To differentiate in the level of need each new technology required
was tagged with a priority, priority 1 being the most needed. The listing
shown in Table CXVIII includes all propulsion technologies grouped by
components.
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