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FOREWORD 

This report presents the work accomplished on Contract F04611-71-C004, 

the Orbit-to-Orbit Shuttle Engine Design Study (00S) over the period from 

1 March 71 to 1 December 1971.    The program was admistered by the Procurement 

Division of the Directorate of Material,  Edwards Air Force Base, Edwards, 

California.    The technical project manager at the Rocket Propulsion Laboratory, 

Edwards, California was Mr. L.  Tepe.    Mr. Werner P.  Luscher directed the study 

effort for Aerojet Liquid Rocket Company. 

f 

This report is contained in 4 books described as follows: 

Book 1: Parametric Cycle Study 

Book 2: 25K lb Engine Design 

Book 3:  25K lb Engine Maintenance, Development Plans, 

Cost Estimates and 10K lb Engine Design 

Book 4: Appendices 

This technical report has been reviewed and is approved. 

? 

L. E. Tepe 
Project Manager 
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ABSTRACT 

This report presents the analytical 
design of propulsion systems utilizing LOX/ 
Hydrogei* propellants to be used as the 
propulsion for the Orbit to Orbit Space 
Vehicle of 65,000 lb lift-off weight. 

The report contains the evaluation 
of various engine cycles in the thrust 
range of 8,000 lb to 50,000 lb thrust for 
performance, weight and envelope culminating 
in the cycle selection and detail design of 
a 25,000 lb and 10,000 lb thrust engine. The 
engine concepts are described in sufficient 
detail to obtain reliable engine weight, per- 
formance, envelope information and methods of 
engine control. The impact of various engine 
design requirements were evaluated.  The 
engines are designed to be reusable and 
capable of starting in the idle mode operation. 

The technology requirements for meeting 
the engine design and operating requirements 
are identified. 
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c, Ei'\GI~E >IAlr-\Tl.:NA~CE (25K ENGINE DESIGN) 

1. Ground-Based Maintenance 

Engine maintenance was a basic requirement in the overnll 
engine design as \vell ns the subassembly and component clesir,ns. Because the 
purpose of this study wns to provide a preliminary engine design and engine 
sys tcm data, the rn~1in tainnbil:ity effort w::s directed toward the impact of 
maintainability on engine design both from the standpoint of instrumentation 
and maintainability d~sign features ratltcr than definition of ground support 
equipment and logistics problems. The maintenance program follower! n step-by­
step evolution from establishment of maintenance concepts, performance of 
failure modes and effects analysis, definition of line-replaceable units ancl 
incorporation of maintainability features. The following paragraphs present 
the step-by-step procc'dure followed in assuring that the OOS engine design 
contain!.; main tninnb ili ty fc.n.tures. 

a. ~aintenance Concepts 

The maintC!l~ance concepts or philosophy establishes the 
basis for all maintainability dec::_sions and the ground rules follm..red in 
Jeri vin,c; tlle main tain;o_hili ty program. For the OOS program the following 
maintennnce concepts were used: 

>1aximum utilization of the onbonrd engine con­
troller and instrumentation for engine checkout, angine monitoring durin~ 
f ~i1~llt for- mainten2.nc0 significant trends, and fau] t isolation during flight. 

1\ leave-i t-alone-if-\..rorking philosophy>''. 

On-the-vehicle main ter'.ance (ground-based) by 
removal and ':"eplacerrtent of Line Replacab1e Uruts (LRU). 

'flw OOS Sys tern achieves a reduction of the pnyloatl-in­
orbi t-cus t 1)V reusability of the delivery system. Reusability requires that 
tile sys te::1 be r:win tained to obtain reliable payload delivery of the same 

·:;_'he method of maintenance is largely dependent upon the 
av<Li.lability of p;lyloads ;1:1d fleet size which determine the OOS stage. turn 
o.rou:1d tirne. The tur:1 around time effects the methocis by \vhich flight readi­
ness of the stage Hill be established. The basis of flight readiness is the 
engine performar.ce of the last flight recorded by the onboard instrumenta­
tion. :\eduction and analysis of this flight data is the basis from which 
~~intcnnnce decisions nre made. Several methods of data retrieval are 
fe:ts .:.'<~.cc am: t:le sc'2.ection is based on the vehicle turn around time. 

o:T:ti'-; drJes not include:: those components designed to give a certain minimum 
, '•e c~ln;':)-Llity to ac:1~c~vc iligh performance or lm.,r \veight. 
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Ill, C, 1, Ground-Based Maintenance (cont.) 

Real time data retrieved by telemetry via communi- 
cation satelite. 

Vehicle in-flight data recording and ground play- 
back. 

Vehicle data recording and in-flight reduction and 
analysis. 

The method used will change during the flight program 
as the reliability of the system is increasing.  At the beginning of the 
flight, real time data is required since the system is still in development. 
As reliability increases, more and more data storage will be used.  The 
maintenance concept and turn around time will also change during the flight 
program and no final decision on data retrieval and instrumentation require- 
ment can be made at this time. 

Engine maintenance costs are largely dependent on the 
component life capability.  Maintenance costs are therefore designed into the 
engine by the stated component design life goals (30'J cycles, 1Ü hours) and 
by the ease of engine inspection and failure detection. 

Ground Maintenance Anoronch 

sKSerec' 
There are three different levels of maintenance con- 

Routine maintenance 
:?er,jrbishing 
Engine overhaul 

The engine design will incorporate specific require- 
ments for each of these levels.  The maintenance Levels performet! between 
missions are dependent on the progressive system reliability history and will 
change as the flight program progresses. 

Routine Maintenance 

This maintenance will be performed with the engine 
installed on the vehicle and considers the following operations: 

chamber. 
Visual inspection of the preburner and TCA injector and 

Engine leak check. 

Electrical system continuity check. 

Engine filter replacement (hearings). 
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\1 r, C., l, c:round-Hm~c·d 1-ln:lntcnance (cont.) 

Spark plug inspection and check. 

Instrumentation replacement, if required. 

~o flow check or functional check will be pl~rformed 
since the previous flight uatn will indicate system flight readiness. 

Eng_~ne Refurbishment 

Tn this main terrance, componcn ts of knmvn 1 ife limita­
tion or performance degrac\a tion \vill be refurbislwcl. It is most likely that 
this maintencmce is not done on the veEicle anu the vehicle-wtll receive a 
different engine. for the next flight. Only the component (LRU) of question­
able reliability will be replaced on the engine. Prior to installation into 
system or storage, the refurbished engine will be tested. No engine testing 
on the vehicle is considered. Therefore, only LRU's which can be functionally 
checked out Hithout engine firing will be replaced on the system if replace­
ment time is shorter tha~ c~gine change. 

Engine Overhaul 

In this maintenance, the engine is completely disassem­
bled to the subcomponent ~~evel, inspected, and ports \vill be replaced. The 
engine Hill be reassembled from functional LRU's available. This means, that 
the!:"e is no engine life in a real flight service but LRU's of various life are 
assenblcd into engine asser.1bly. This method of maintenance requires serializa­
tl~~ of lowest subnsse~~lv uarts and parts accountability methods. 

The overhauled engine will be tested as an assembly 
pr:~or. to ·~nstall;.ttj.on :~::~o vehicle or storage .. 

>~n.:i.:1 ten.rmce .-::>.nc! :-:ain tcnance Cost Design Goals ·-------·------------------
The maintenance concepts utilizing LRU's do not recog­

n:i_;;:e an engine assembly as such. For the initial engine design, the follow-
ing ~onl~ a!:"e state~: 

OOS Ei:\'CI?\E DESIGN ST1J:JY - ENGINE SYSTEMS P.tAINTENANCE k."JD MAINTENANCE COST GOALS 

:~umber of Thermal Cycles 

ilours Li .fc 

>1n;-:.i~~HlE1 Si:1gle !~un Tirnefl Sec. 

SERVICE FREE 
OPERATION 

GO 

2 

60 

1000 

Po.gc 650 

LIE THE EN 

OVERHAULS 

300 

10 

300 

1000 

25 

TOTAL SYSTEH 
LIFE 

1500 

50 

1500 

1000 

200 



Ill, C, 1, Ground-Based Maintenance (cont.) I 
If the engine is completely new, then a maintenance plan and cost estimate can 
He established ideally as follows: 

MAINTENANCE CYCLE PLAN BETWEEN OVERHAULS 

MAINTENANCE ACTIVITY 

ESTIMATED 
COST, PERCENT 
OF ENGINE TIMING 

Refurbishment 1 Inspection Only 

Refurbishment 2 Inspection Only 

Refurbishment 3 REFURBIaH OTPA 
and Inspection 

Refurbishment 4 REFURBISH FTPA 
and Inspection 

Overhaul     A Combustion. Cham- 
ber, Nozzle and 
Inspection 

1.0 

1.0 

4.5 

5.0 

24.5 

2 hours or 60 cycles 

4 hours or 120 cycles 

6 hours or 180 cycles 

8 hours or 240 cycles 

10 hours or 300 cycles 

Maintenance Engine Design Considerations 

The impact of the engine maintenance requirement on the 
engine design can be defined based on the maintenance concept described. 

Provisions have to be made to visually inspect critical 
components such as ehe thrust chamber assembly and 
preburner chamber. 

Protective filters for bearing coolant flow have to be 
designed such as to be easily removable and accessible. 

The engine has to be capable of being leak checked in 
the installed condition. 

Instrumentation and sensors have to be replaceable am) 
accessable in the installation (see Page 661). 

Replaceable units iiave to be defined based on life 
capability and component replacement time. 

Flight instrumentation has to be defined to permit 
definition of engine flight readiness.  Instrumentation 
redundancy or cross check computer has to be employed 
to assure reliable data. 

J 

i 
! 

3 

J 

I 

1 

J 
J 

1 
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111, C, 1, Crouncl-ll.:lR<.'d Maintenance (cont.) 

The engine hos to he capable of being ground handled. 
This r.'.pplics partieularly to no7.zlc extensions and 
Hncs where very thin tube wall thickness should be 
nvoidecl. 

The engine should be capable of being fired for check­
out nt sea level without: impair:l.ng the engine operating 
conditions or structural integrity. 

This is probably the most sev~re design impact and 
requires definition of ::>.v::lilable facilities for engine checkout fi.r.lng. 

The large area ratio bell nozzles experience adverse 
pressu-::-e conditions at seG. level and o.tmospheric conditions which tend tc 
collapse the nozzle. Flow separation will occur at certain nozzle pressure 
ratios whiclt may induce pressure oscillati~ns. Heat transfer conditions in 
regenerative cooled nozzle extensions will differ from actual in space opera­
ting conditions. This may not be of significance in a stage combustion cycle 
with adantive thrust and ~ixture ratio engine control since it can compensate 
for this fact. Open loop testing would result in a drift of operating con­
ditions. Testing of !arge area ratio nozzles at sea level requires facilities 
with steam ejectors. This method would permit demonstration of actual alti­
tude operating mode. 

Xore economical methods would be a facility with an 
aspir::>to.,.. 11llS :r:ethod requires a separable nozzle extension and would not 
d\..:Dlic?.::c the altitude oper2~ing condition but may be acceptable to demon­
strate :-,echanical and fur~ctional integrity of the engine. Separable nozzle 
cxten:::;icns considered are dump cooled extensions and radiation cooled exten­
sions. The radiation cooled nozzle extension appears more attractive since 
it will not complicate engine leak checks. 

TI~e final engine design features a fixed all regenera­
tive coolec~ nozzle and represents the most desirable design but also is most 
dcmnndinR on engine checkout facilities since it r~quires the availability of 
nn on (ilc hish nltitude facility. 

b. Fc:iJ_ure :Modes and Effects Analysis (FMEA) 

A failure modes and effects analysis was performed for 
en.·_:h t?np,ine subsystem "to determine its mode of failure ar1d the effect on 
rrlission objectives, crc\v safety, and other engine subsystems. Presented in 
Section III.:S.7 is a discussion of the failure modes and effects analysis. 
111E:' rmin output of this analysis as _it pertains to maintainability is as 
input data in deterni:ting Line Replaceable Units (LRU) by ·determining failure 
::wdcs a!!c: in determining mnlfunction detection sensors which isolate the 
failed cornnonent. 

c. Component Reliability Assessment 

Pees en ted in Table LXXVIII, Section III. B. 6 is the 
rr· ~in\,-~~ L '-Y :t;1D<)rtionn1o::t for each of the OOS engine subsys terns. This data 
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lit, C, 1, Ground-Based Maintenance (cont.) 

is used in establishing which components have a high failure rate and there- 
fore require isolation as an LRU. Additionally, the parts within a component 
are defined from the reliability assessment and FMEA which require maintaina- 
bility features which allows for easy replacement. 

d. Component Life Cycle Capability 

Another factor which influences the selection of LRUs 
is the life cycle capability of the components.  Each of the critical compo- 
nents was evaluated to determine their life capabilities.  The results of this 
evaluation is shown in Table LXXXVIII.  Those components which are subject to 
failure due to cyclic fatigue caused by thermal gradients, such as turbine 
rotors and thrust chambers, have their life capabilities expressed in cycles. 
Those components subject to wear or other type failure due to duration, such 
as bearings, have been expressed in terms of hours. 

e. Line Replaceable Units (LRUs) 

Presented in Table LXXXIX is a list of the LRUs se- 
lected for the 00S engine system.  Figure 269 presents an exploded view of 
the LRUs.  Data from the FMEA, the reliability assessment and the component 
life cycle capability was utilized in deriving the LRUs.  Selection of the 
LRUs was essentially a compromise between reliability/life cycle and ease of 
removal.  For example, even though the turbopump bearings are a life-limited 
item, removal of the full turbopump assembly is required since no simplified 
approach ror replacing the bearings in place could be derived.  All instru- 
mentation has been identified as LRUs because of the relatively low level of 
reliability and because of the ease of replacement,  interconnecting lines 
result as LRUs not because of their poor reliability or life cycle capability 
but because they contain the other half of the flange which connects those 
items requiring replacement. 

r.   Incorporation of Maintenance Provisions 

Design reviews were held to assure incorporation of 
maintainability features into the basic designs.  Most of the design features 
are discussed in the sections dealing with design descriptions.  Some of the 
more pertinent maintainability features are discussed in the following para- 
graphs. 

As a general rule, all of the attaching joints will 
employ bolted flanges in conjunction with K-seals manufactured by Harrison 
Manufacturing Company. Although bolted flanges are not optimum from a time 
removal standpoint, their use is justified because of their excellent sealing 
capabilities due to the even loading imparted to the flange.  Flat interfaces 
which require minimum separation of the flanges for removal have been Incorpo- 
rated \I", all lives, components and mating surfaces.  The selection of the 
K-se.i' 'or all static applications will facilitate intorchangeabiIity. 
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1'f.. D LE LXXXVI II 

C01'-1PONENT OPERATING CYCLE LIFE CAPABILITY 

TP/\.'s ---

H2 Turbine Rotors 

02 Turbine Rotors 

H2 'furbinc Noz?.:les 

() Turbine i\o?.zles 
2 

1{2 Impeller 

02 Imncllcr 

II 
"2 Bc.arin.gs 

()') Bearings 
L.. 

ll Sh.-tft Seals "2 

02 Shaf~ Seals 

Otl1cr Co:;monents 

CO!'"lbus 1.:ion Co7'1Ponen 1.:s 

Preburne.r 

l[ot: C2s >!:mifcld 

-
... 

25K THRUST 

300 cycles 

300 cycles 

1500 cycles 

1500 cycles 

300 cy~les 

700 cycles 

10 nnd 19 hr for turbine side bearings 

50 hr for pump side bearings 

150 hr for the turbine side bearings 

11 and 1611 hr for the pump side bearings 

1500 cycles 

1500 cycles 

Exceeds 50 hr/1500 cycles 

1500 cycles 

1500 cycles 

1500 cycle~~ 

Co!n:Hlstion Chamber - 300 cycles 

:\oz?.lc 1500 cycles 

"3. V.1.lves 

1\ll Valves --- 1500 cycles 

Gimballed Lines 1500 cycles 

Otl1cr 
PrnpelLmt Lines Exceeds 1500 cycles 

') . Electronics 50 ~ours service life 
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TABLE LXXXIX 

LINE REPLACEABLE UNITS (LRU) 

Fuel Propellant Circuit 

Fuel Suction Vaned Elbow 

- Fuel Turbopump 

Fuel Discharge Valve 

Fuel Discharge Line 

Fuel Start Bypass-Valve 

Fuel Line to Preburner 

Oxidizer Propellant Circuit 

Oxidizer Suction Vaned Elbow 

Oxidizer Turbopump 

Oxidizer Discharge Valve 

Oxidizer Discharge Line 

Oxidizer Flow Meter (Discharge Line) 

Oxidizer Line to Preburner 

Oxidizer rlow Meter (Preburner Line) 

Combustion Circuit 

Preburner Assembly 

;iot Gas Manifold 

- Iniector 

- Thrust Chamber Assembly (Chamber plus Nozzle) 

I-.'.-.* c t ron leg 

Instrumentation Transducers 

Instrumentation Harnesses 

Controller 

- Control Harnesses 

Otbers 
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Ill, C, 1, Ground-Based Maintenance (cont.) 

Through-bolts are employed where possible to reduce problems associated with 
flange misalignment.  Self-locking nuts are used for easier and faster 
replacement by eliminating the less desirable methods such as safety wire. 

Although the turbopump must be removed as a full assem- 
bly, turbine components are easily replaced once the TPA has been removed. 
The TPA is removed from the engine by separation of instrumentation and the 
propellant inlet and outlet lines and a single turbine hot gas joint.  Hot 
gas inlet and outlet is separated by means of redundant seals which are 
removed when removing the TPA.  Once the TPA has been removed, removal of a 
single bolt circle allows removal of the turbine nozzles for easy inspection 
of the turbine rotors.  Replacement of the turbine rotor is accomplished by 
removal of another single bolt circle.  Subsequent operations allow easy 
removal of the last shield and turbine lift-off seal. 

The preburner has external bolted flange joints to 
facilitate easy replacement.  Because the preburner walls art; regeneratively- 
cooled the turbir>2 inlet temperature will be measured at the turbine manifold 
rather than in the preburner.  Since the manifold contains a heat shield the 
instrumentation boss will not "see" the high temperature of the hot gas. 

The hot gas manifold is connected to the injector by 
means of a single bolt circle.  The combustion chamber is connected to the 
injector by means of another bolt circle.  The combustion chamber/nozzle is 
removed as a single unit.  The thrust chamber assembly design allows easy 
removal of the full assembly or any separate part.  The major disadvantage of 
the . -ru^t chamber design is the inability to separate the copper combustion 
cham.cer from the tubular nozzle by means of a simple flanged joint.  Because of 
the high heat flux, a brazed (inner-wall) and welded (outer-wall) type of attach- 
ment was selected.  Even though a simple bolted flange joint was not employed, 
much consideration was given to this joint due to the low life capability of the 
combustion chamber and the high life capability of the tubular nozzle.  Replace- 
ment on the engine level would be accomplished by removal of the thrust chamber 
assembly (combustion chamber plus nozzle) and a new one installed in its place. 
After removal and return to the shop area, the combustion chamber would be 
removed from the nozzle by machining off the flange just upstream of the 
joint.  The outer thrust cone welded joint would be ground out to return it to 
its original configuration.  A heavy shoulder section has been incorporated 
into tiie nozzle half to facilitate the grinding operation.  The inner wail is 
50-nil thick and is cut at an angle so that a 9Ü—mi 1 thick surface is avail- 
able for mating ease.  Once final machining has been accomplished a sheet of 
braze is installed, the combustion chamber set in place, and the assembly 
placed in the braze oven for rebrazing.  Although tiie combustion chamber 
teplacement does not allow rapid turn-around reuse of  the nozzle, it does 
give a compromise between reliability versus reusability/maintainability of 
the nozzle. 
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II I, C, Ea,g:tne ~1n:tn tcnunce (25K Engine Design) (cont.) 

2. Spnce-Based Maintenance 

Both complete engine and engine subassembly removal was 
evaluated for spnce-bnsed maintenance. For removnl of tlte entire engine 
following ndJitinnnl design features must be built into the engine:* 

the 

Anchor pads to serve ns personal work platforms to 
allow leverage ~1en removing the suction line bolts and electrical connectors. 

Hand-grips on the engine nnd vehicle to allow empnrting 
a sC'p.·uation force \)et\veen engine and vehicle and then a retention force (to 
stop mot:i.:m). Hecause of the relntive lightweight (500 lhs) of the engine it 
:i.s f e.l t th:J t two mL~;,, one on each side of the engine, could sepn rate the 
engine and screwjncks would not be necessary. 

Double seals with an intermediate collector ring for 
check-out of the engit:'' after reinstallation. A single fitting from the c:ol­
lector r:i.:1g \voulJ he used in conjunction with a helium lenk checker. This 
method \vas selectC'c.l over a pressure decay .method because leakage \o/Ottld occur 
thro'J~jh the pump seals. 

Fitting for pressurizing the suction line. 

Although not affecting engine design wltich has capabili­
ties for continclity checks based on ground-based maintenance, n complete 
cn;:ic;e-to-vc.hiclc electrical check Houle! be required. 

Cpon comparing complete engine versus engine subassembly 
replacement for space-based maintenance, it is recommended that complete 
engine replacement be incorporated. The only exceptions to tltis are instru­
mentat:i.on tr.·msduccrs \vliich \voulcl be rcplacenble. The complete engine re­
placc>::ten t h'i1S selcctr:>c because subassembly n>.pl:-tcemen t would require the 
[olluwin~ design features: 

Ancl:.or pad~_ at many points on the engine system at all 
LJ\\J[-' or subasscmblys where rcplacemen t is desired. 

Double seals and collector rings at all LRUs. 

Valves must be added or allowances for incorporation of 
a t:1~o.1t plug after LRL: replacenent to allow checkout of dll components dowti.:..····· • 
stream of the pump discharge valves, i.e., preburner, hot gas manifolds, tur­
bines, injector nnd chamber. 

*Because this study was engine design study, considerations for storing or 
t r:1:1sptwting the engine after removal \verc not evaluated. 
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iii, r., En~ine Haintennnce (25K Engine Design) (cont.) 

3. Instrumentation Requirements 

a. General 

Ins trumen t.,.tion requirements are derived for thr.ee 
separate system purposes. Thes~ are: (1) flight safety, (2) engine control, 
and (3) maintenance. 

Figure 270 presents a general overlook of the various 
~aintenance concepts and maintenance functions to be considered. The instru­
mentations required for the OOS Mission are largely dependent on the mainte­
nance concept used. The most desirable OOS Mission is a mission which 
launches the OOS and recovers the OOS for ground based maintenance after every 
flight. Depending on the turn-around time of the OOS stage more or less 
sophisticated instrumentation is required. For short tum-around time, 
failure mode detection instrumentation and systems analysis are required. 
This system has the capability of analyzing the engine operational parameters 
to a standard and flag deviations. For longer turn-around time, this is not 
requi~ed and the operational data would be stor~d in a data recorder and 
ground analyzed prior to maintenance allocation. For the case of in-flight 
maintenance not only must the operational data be analyzed, but also, decision 
capa~ility has to be provided as to the operational status of the engine which 
requires sophisticated engine controller computer. Many of the instrumentation 
parameters can be used for dual or even triple purposes and the parameter li£t 
has been selected to allow full use of dual purpose sensors to keep the number 
of sensors at a minimum. The overall instrumentation list is presented in 
'J'-1'r; 1':: XC and summ:J.rized in Table XCI. The system purpose of the instrumenta­
t:k·'1 is also given. The follo-vling paragraphs present the reasoning for the 
instrumentation selection in terms of the function it performs. 

b. Flight Safety Instrumentation 

Flight safety instrumentation is used to indicate that 
a safe condition exists. Flight safety monitoring is required both prior to 
engine start, to assure a readiness condition, and after engine start to pre­
vent engine damage when an out-of-control condition exists. Table XCII pre­
sents the flight safety failure mode analysis performed to determine the 
instrumentation required to assure flight safety. Most of the failure modes 
can be determined directly, i.e., insufficient pressures, valve not closed, 
etc. 3Pc~use reliable ignition detectors do not currently exist, use of 
valve oosition and electrical signals are used as an indirect method of 
determining that ignition has occurred. Not all of the instrumentation used 
for engine flight safety assurance is supplied by the engine system. Propel­
l~nt tank pressure which is used to determine adequate Net Positive Suction 
Head (:\?SH) is supplied by the vehicle system. 

All flight assurance functions are supplied with sepa­
rnt0 ~cts of redundant data. Both sets must indicate an out-of-limit situa­
t-i o:l ':1e:'crc initiation of an engine command will occur. This prevents 
! nn(>;r.: rt.'1:-tt. sh~tdovm due to erroneous signals or instrumentation failures. 
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TABLE XCI 

INSTRUMENTATION REQUIREMENTS SUMMARY 

Instrumentation 
 System  

Transient Control 
and Sequencing 

Purpose 

Timing of Sequence 

Execution of Sequence- 

Method 

Fixed Time sequence and 
Feedback Control 
Computer Controlled 

Steady State Control Control to Systems 

Requirement 

Feedback Control 
System Input 

T-light   Sa^etv 
Instrumentation 

"light Safety Assurance   Compare to Safe 
Operating Limits 

t 
Maintenance 
I n s t ^ urn e n t a t "* o n 

Operation Monitoring 
Data Recording 
vcrrormance Degradation 

Compare to Nominal 
Performance 
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I 
III, c, 3, Instrumentation Requirements (conr.) 

c.  Control Instrumentation 

I 
I. 
[ 

When utilizing a closed-loop control system, both mix- 
ture ratio and thrust must be continuously monitored.  Since neither of these 
are direct measurements, these are calculated within the engine controller 
from flowmeter, temperature, and pressure measurements.  Table XCIII pre- 
sents a listing of parameters used to obtain mixture ratio and thrust. 

From Table XCIII it is seen that redundant mixture 
ratio "measurements" are obtained by two separate and different methods.  The 
primary method is to use oxidizer flowmeters for the oxygen side and the pres- 
sure drop across the preburner injector for the hydrogen side.  Although nor- 
mally both pressure and temperature are measured upstream of the flowmeter to 
determine density, it is assumed the oxygen temperature can be estimated with 
sufficient accuracy based on the pressure. On the fuel side, this is not 
true, since the hydrogen will leave the chamber cooling jacket and enter the 
preburner in the gaseous state. 

t 

The backup method for determining flow rates and mixture 
ratio is obtained from boost pump head rise measurements and speed and a 
knowledge of the head-capacity relationship.  A backup method different than 
the primary method for determining mixture ratio was employed tine to the 
limited space available for flowmeters.  Use of the boost pumps was not se- 
lected as the primary method because it eliminates the maintenance failure 
prediction capability for the boost pump, i.e., since flow is calculated from 
head and speed, it would always indicate the correct head-flow-speed rela- 
tion shin. 

Thrust is obtained by measuring chamber pressure and 
then calculated based on throat diameter, area ratio, mixture ratio, and flow. 
Redundancy is obtained by use of two chamber pressure measurements. 

(1.   Maintenance Instrumentation 

Maintenance instrumentation is used to isolate a Line 
Replaceable Unit (LRU) failure and/or predict when a failure is about to 
occur.  The instrumentation requirement is based upon the failure modes and 
effects analysis (see Table LXXXII of Section III. 11.6).  Since the mainte- 
nance measurements .ire not used to generate command signals to the engine, 
redundancy was not incorporated and therefore a single measurement is 
employed for each function.  Prior to LRU replacement, instrumentation accu- 
racy will be obtained either by direct test and/or evaluation of other engine 
system parameters. 
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111, Technical Discussion (cont.) 

D. ENGINE DEVELOPMENT PLANS AND COST (25K ENGINE DESIGN) 

1. 

dustry practice. 
rigid contractual 
tated by pressing 

Program 

The approach to OOS program planning differs from post in­
Historically, plans have been established in response to 
requirement -- typically, with compressed schedules die­
national object1ves. 

The plo.ns which form the basis for the cost studies attempt 
to recognize the current fiscal climate and the attendant emphasis on economy 
ra tller t:wn crash progr:1ms. 

The program span has been somewhat arbitrarily established 
as ten years. The Demonstrator Engine portion of the program is planned for 
the first five years. 

The Demonstrator Engine Program will start with preliminary 
design activities to define critical technology areas. These areas will then 
be investigated in a comprehensive series of laboratory type tests. The next 
phase consists of the fabrication and test of one demonstrator engine. The 
primary pu:rposP of this engine will be to demonstrate the adequacy of the 
selected design concept. Sj,nce no U!l!"E'."'llistic stringent design goals must be 
satisfied, (e.g., higl-.es t possible performance or minimum weight) only limited 
hard\,rare \vill be required, which_ is in consonance with. the overall fiscal policy. 

The final portion of the Demonstrator Engine Program involves 
transforming the knowledge gained in the two previous phases into working 
drm..rings and documents which would form the foundation for the development 
progrnr1. 

The development portion of the program consists of three 
p!wscs: !Hock I, Prelir1inary Flight Certifico.tion (PFC); and Final Flight 
Cert~[ication (FFC). Block I efforts will be accomplished within three pro­
gram years, w!..th one year allocated to the PFC and FFC phases, respectively. 

The Block I effort will be a logical extension of the Demon­
str.::ltor Engine Progr:1m. Component development based upon the results of the 
Demonstrator Engine Program will be accomplished during the first two years 
of t:le clevelopiT'.ent progr.1.m. It will oe noted that only two design iterations 
a~e nlnnned for this period, with relatively limited amounts of hardware. 
T!1.~~; :l~)prt'[1Ch :i.s cons·Lt!cred feasible because of the benefits accrued from the 
:),::n~onstrator Engine Program \.Jhich permitted a methodical approach to the so­
lution of problems at the subcomponent level. Consequently, the problem 
solving effort during component development should be materially reduced from 
the~ ~ .;veJ. expc ric::1cec: on more accelerated programs. 

A soft mockup will be fabricated early in lllock I. This 
.,_,:._ J: ;)'.' n:1:.. t the nrec.:Lsc definition of interfaces, clearances, and line rout-
' :-q::o. ~ t !}rccl·_td(~S t:1c~ need for most of the time consuming layouts that would 
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Ill, D, 1, Program (cont.) 

be required to define interface'locations in space and minimizes costly human 
error.  The soft mockup will also eliminate most of the costly, time consum- 
ing iterations normally associated with first article assembly, i.e., con- 
nection with ancillary lines, harness routing, clearance of lines and har- 
nesses handling lug location, and bracketry installation. 

The Block I portion of the Development Program is concluded 
during the third program year with engine level tests both at altitude and at 
sea level.  The objective of these tests will be to demonstrate attainment of 
performance goals.  It is anticipated that "tune up" type modifications must 
be implemented to achieve these goals.  Six engines are planned to support 
the test activity — three at each test site.  One engine will be in the test 
stand, one in backup, and one undergoing refurbishment at any given time. 

Immediately after completion of the Block I test program, a 
design freeze will be implemented preparatory to entering the flight certifi- 
cation phase of the program. 

Production type drawings, specifications, tooling and con- 
trols will be used during the fabrication and testing of four each PFC and 
FFC engine assemblies to insure that  the test articles are identical to the 
production engines. 

Preliminary flight certification will be conducted primarily 
to demonstrate the safety aspects of the engine with normal performance test- 
ing.  Additionally, the previous Block I history will be reviewed to ensure 
that identified failure mechanisms have been corrected. 

Final flight certification tests represent the satisfactory 
completion of the development program as well as formal demonstration that all 
of the design requirements collected from every facet of rhe development pro- 
gram have been met. 

The final program activity is the initiation of long lead 
procurement for the production engine.  This activity starts concurrent with 
the FFC tests.  This start time was selected because; (1) the adequacy of the 
engine lias already been well demonstrated, and as .1 consequence, Little risk 
of premature orderin;-, exists, and (2) experienced personnel are available to 
stafr the program office. 

The schedules for both the Demonstrator and Development por- 
tions of the program are included in Figures 271 and 272. 
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Ill, D, Engine Development Plans and Cost (25K Engine Design) (cont,) 

2. Hardware and Test Requirements 

a. Hardware 

The limited contract funding available for program plan­
ning and cost estimation (<5%) made it impractical to attempt detailed hard­
ware demand .::md test schedules. In lieu of detailed plans, the appronch has 
been to relate to similar programs. 

Estimating the hardware requirements of the Demonstrator 
Engine Program is difficult because much of the hardware will be raw material 
and sub-components to support laboratory type tests. Many of the tests will 
be spin-offs from previous tests. Consequently, hardware requirements have 
been simplified to t~.;ro equivnlent engines. This level is similar to that 
experienced on similar programs. 

Hardware requirements for the Development Engine Pro­
gram are superimposed upon the fabrication portion of the program schedule 
(Figure 272). The quantities as shown in the component development portion 
are sufficient to support two complete design iterations. Six Block I engines 
will be fabricated nnd tested before design freeze. After the design freeze, 
fou~ engines each are sclteduled for the FFC and FFC phases. 

The prime reference source used to determine the fore­
going hard\v,<re reauire;nents \vas the planning accomplished under the auspices 
of Contract ~ASR-26188 for the AJ-550 Space Shuttle Main Engine. 

Hhen comparing the requirements of that program with 
tltose of the nos, it will be noted that component development requirements of 
the OOS are less and engine requirements are almost identical. 

It is assumed less effort will be required for component 
development because of the knowledge gained from the Demonstrator Engine Pro­
gr2m o: the OOS Program. Approximately the same number of engines are re­
quired because both engines must be cnpnble of being man-rated and ss a 
consequence, rmst hnve similar test histories. 

b. Test 

(1) Program 

The criteria for the number of tests to be con­
cucted on the engines and in each component area will be based upon the 
accomplishment of specific objectives. Factors whir.h influence total number 
of tests in any co~ponent test series include complexity of objectives and 
c3pability to plan accomplishment of multiple objectives of a given test. As 
h,ls already been mentioned, funding and time limitations precluded extremely 
detailed ?lanning, i1owever, the general philosophy and type of test envi3ioned 
for the major engine co:;1poncnts are knmvn and are summm:ized in the following 
;:':-1 r:\grn.phs. 
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t!!, n, 2, ll:1rdwarc nnd Test Requirements (cont.) 

Demonstrator engine testing is initiated with com­
ponents designed to Bntisfy analytically defined system requirements. Prior 
to initial engine test, materials and components are tested both individually 
and as part of assembled subsystems to verify their adequacy to proceed. 
Prime importance during these tests is placed upon gaining confidence that 
the design can be committed to initial engine testing. Therefore, the first 
se:d 'S of engine tests will be structured to identify nominal engine system 
environmental conditions and functional interactions to demonstrate the gen­
eral adequacy of the engine cycle rather than maximum performnnce. The 
evaluation of these data and the resultant engine design will constitute the 
basis for the Block I engine of the Development Engine Program. The test 
level of effort assumed for costing was two years for the physics and engi­
neering laboratories followed by two years in the test area. 

The Engine Development Program is based upon the 
redefined design and test requirements for the components from the analysis of 
~he Demonstrator engine tP.st data. Testing at both sea-level and altitude 
will include environmental conditioning, fail-safe aspects, and stability 
evaluation of system c~pabilities. _Subsequent exposure through the PFC 
program will permit an assured progression through a valid~inal Flight 
Certification Program. The test level of effort assumed for the Development 
Phase was 1 year laboratory level activity, 3 year ALRC test area activity, 
and 1.25 years at AEDC. 

testing are: 

(2) Component 

(a) Turbomachinery 

Prerequisites to turbomachinery development 

-Detailed design, structural, material, per­
formance, reliability, maintainability, and 
producibility analyses. 

-Comprehensive master layouts detailing 
tolerance variations and effects. 

-Use of "rig testing" for evaluation of com­
ponents to define those physical phenomena 
not s~bject to analysis and to validate 
component capability. 

The higher assembly testing commences at the 
earliest possible date as determined from component rip, test demonstrations 
of acceptable attributes. Rig and assembly testing are not predicated on com­
plete success. Iterations and contingencies are expected and planned for at 
nJl levels of testing. The assembly testing then affords validation or 
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11.1., D, 2, ll;trch ... nn:! nne! Test Requirements (cont.) 

redefinition of th~ component requirements. Requirements vnltdntinn will per­
mit c~ntirtued assembly testing to more stringent levels of operntion. Redefi­
nition lvill require additional component evaluation if the requi:,.'llents 
exceed the determined or design capabilities. 

(b) Combustion Devices 

The initial and all subsequent iterations of 
the combustion components will be subjected to a three-point development 
approach. Static testing will be primarily oriented toward evaluation of all­
inclusive worst-case conditions. Laboratory testing will be used to the 
fullest extent to yield low cost non-firing data, particularly t1uring the 
l)emonstrator Engine Program. Structural tests will expose design weak points, 
define structural failure modes an<i,- through test-to-failur~ assess design 
margins. Satisfactory development of the preburners to the prescribed level 
will constrain their use for Thrust Chamber Subsystem (TCSS) testing. TCSS 
testing permits progressive development of the main injector, chamber, 
nozzles, and hot r,as manifold. 

(c) Valves 

The valve program is sequentially oriented 
like all of the other contributing efforts. However, there is an early need 
for particular units; therefore, a priority is established for the development 
of the preburner control valves (oxidizer and fuel), the igniter oxidizer 
valves. the. main oxidizer and fuel by-pass valves, and the electromechanical 
actu~tors. These components are constraints to component development testing, 
which are, in turn, constraints to engine system testing. The rema1n1ng 
controls components are required for engine testing at a later date. 

The valve and actuator design and development 
activity is cntegorizccl. into the following distinct phases, at the end of 
• . .:hich ti1e valves Hill have demonstrated capability for performing in the 
operational flig~t program: 

Preliminary Testing: This consists of testing 
during the Demonstrator Engine Program of 
commercially-procured or fabricated individual 
components and subcomponents for design re­
quirements validation and to establish design 
capabilities. Extensive use will be made of 
overstress testing techniques, thermal 
exposure, endurance cycling, and life-proof 
loading. 

Development Testing: The primary objective is 
to determine the adequacy for engine and sub­
sys tern testing of those untts evolved from the 
Preliminary Testing. The design analysis 
techniques developed during-the preliminary 
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Ill, D, 2, Hardware and Test Requirements (cont.) 

testing will be utilized to the fullest extent 
in defining this design level.  Primary cate- 
gories of testing will be cyclic response, 
flow, pressure, endurance, and induced as 
well as natural environments. 

Preliminary Verification and Peripheral Test- 
ing:  These tents will be conducted to evalu- 
ate the revised designs and test requirements 
emanating from the engine system test data. 
The objectives are to validate the second 
generation design adequacy for continued 
engine system usage and entry into component 
verification.  These tests are planned for 
the second iteration of the Block I component 
test series. 

PFC:  In addition to support of the engine 
and other component testing, valves will be 
tested in malfunction modes deemed inadvisable 
to perform on the engine, as part of the 
flight safety evaluation. 

FTC: The final testing program primarily is 
associated with the endurance and cycle life 
capabilities of the valve designs. 

(d) Harness and Instrumentation 

The electronic engine controller development 
is assumed to be subcontracted.  The major system development effort will be 
conducted within ALRC laboratories and in conjunction with other component, 
subsystem, and engine system scheduled development testing.  Software develop- 
ment will be concurrent with these activities. 

Design requirements definition will be accom- 
plished by using a breadboard version of the controller.  This activity will 
provide precise circuit design requirements for functional performance of 
closed-loop control, stored start and stop sequences, flight safety, fault 
isolation, and engine systems maintenance data. 

The harnesses and instrumentation will be sub- 
jected to extensive laboratory evaluation, plus use during all applicable 
component and engine system testing. 

(e) Engine Integration Components 

The components are the gimbal assembly and 
engine interconnect lines svstem.  The majority of the design evolution will 
occ-ir in conjunction with the encine testing. 
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The early portion of the program for these 
components is devoted to testing of subcomponents or specimens to define five 
analytical aspects and characteristics under imposed test conditions.  This 
definition then is applied to the design of units which undergo testing for 
validation of criteria and demonstration of adequacy for engine use.  Defini- 
tion of engine operating environment, design criteria revision, and retesting 
to the revised requirements provides component upgrading to the level required 
for component verification and engine system certification. 

3.   Facilities and GSE 

'Ao  new facilities are required to fabricate or test the 00S 
Engine.  During the early portion of the Demonstrator Engine Program, much of 
the work will be accomplished at the laboratory level.  ALRC has well 
equipped nondestructive test laboratories to support all of the work now 
contemplated.  Later in the program, the ALRC Aerophysics Laboratory will be 
used in tests of small combustion devices.  The Demonstrator Engine components 
will be fabricated in the Research and Development Manufacturing complex and 
engine testing will be accomplished in the ALRC J-area test stand. 

Fabrication of engine components will be shifted to tiie 
regular ALRC fabrication facilities during the Development Program.  Engine 
tests are planned both for ALRC J-area i.nd Arnold Engineering Development 
Center, Tullahoma, Tenn. 

Modifications to the ALRC test facility are listed in Table 
XCIV and GSE requirements are tabulated in Table XCV. 

I*.       Propellant Requirements 

The propellant requirements were estimated in accordance with 
the established ALRC practice of projecting quantities on the basis of time in 
the test area for an engine of a given thrust level.  Experience has demon- 
strated that because of the various usage factors (boil off, spillage, 
contamination etc.) this approach is more satisfactory than ordering for a 
specific run duration. 

Propellant requirements for the Demonstrator and Development 
Engine Programs are: 

LH, 

L0„ 

L.W 

Demonstrator 

1,110,000 lb 

3,320,000 lb 

663 ton 

1,200 KSCF 

Development 

5,910,000 lb 

17,646,000 lb 

3,532 ton 

6,400 KSCF 

Project Control Methods 

The project control methods shown in Figure 270 with refer- 
ence to the program logic diagram are self explanatory. 

Iz  will be noted that controls during the Demonstrator 
'•igir.e ror*_:or. o*1* *.'".- ore "ram are of the informal variety in order to provide 
m.tx'-um er.;• ir.eerir.r flexibility. 
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TABLE XCIV 

FACILITIES REOUTREMENTS 

Combustion Component Test 

Propellant Run Lines 4" (Install) 

Gil Vent Stacks (Relocate Existing) 

Thrust Fixture Fabricate 

GN Cascade 4500 psi (Relocate) 

GH Cascade 4500 psi (Relocate) 

GN' and GH Converters (Relocate) 

Instr. and Controls Systems (Install) 

TPA Test 

Low Pressure Tanks (Relocate Existing) 

Propellant Lines (Relocate Existing) 

Fixture (Relocate Existing) 

Instr and Control (Relocate Existing) 

Engine Test 

iJiffuser System Modification 

Chamber Mode Modification 

Fixture Modification 

Prop Run Piping Modification 

LHP) Run Vessel (I'se Storage) Modification 

Instr and Control Modification 
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TABLE XCV 

CHARACTERISTIC GSE REQUIREMENTS 

Units 
Transport and Handling 

Shipping Containers 

Handling Frame 

Installation and Removal Set 

Sling Set Component 

Sling Set Kozzle 

Stiff Links Gimbal 

Sling Engine Handling 

Trailer 

40 

2 

3 

3 

2 

4 

2 

4 

I 
Safety and Protective 

Kit Engine ProterHve Covers 

Cover Environmental 

Kit TPA Protective Closure 

Kit Hot Gas Man]fold 

Kit Valve Protective 

44 

10 

2 

2 

5 

[ 
r 

Inspection, Test 

Kit Engine Leak Detector • 

Kit Engine Leak Test Closure 

Simulator Engine Sensor 

Simulator Engine Valve 

Inspect;ion L'nit Fiberoptic 

Sea'. Assembly, Comb Cham Thrust 

inspection Set Main Inject Face 

Manifold Seal 

Test Set Staff 'Jispl 

2 

2 

2 

2 

> 

20 

2 

2 

4 
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TABLE XCV (cont.) 

Shop Maintenance and Service 

Stand Maintenance LPTPA 

Tool LPTPA 

Tool Kit Valve 

Stand Engine 

Stand Maintenance HOTPA 

Stand Maintenance HFTPA 

Tool HFTPA and HOTPA 

Lapping Kit 

Test Set Cryo/Pneumatic 

Tost Set Igniter 

Units 

2 

2 

2 

2 

2 

2 

4 

1 

1 

1 
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III, D, 5, Project Control Methods (cont.) 

The controls gradually become more stringent in the Develop- 
ment Engine portion until all of the various disciplines are imposed during 
the fabrication of the PFC engines.  These controls constitute one of the 
inputs used to project manpower load which was in turn used as one of the 
elements of cost. 

6.  Methods of Cost Estimating 

The basic contract required that program planning and cost 
estimating be accomplished with no more than 5% of the total program effort. 
Consequently, it was impractical to attempt a detailed cost analysis of each 
of the engine 47 variations considered. 

The approach to costing was as follows: 

[ 

1. A representative schedule and program plan was estab- 
lished as described in Section III.E.1. 

2. Hardware requirements were estimated based upon exper- 
ience with similar programs. (Quantities are shown on the program schedule, 
Figure 272). 

3. Test and propellant costs were estimated based upon 
typical test area facility requirements and the program schedule. 

4. Hardware fabrication costs were estimated based upon 
available drawings (Table XCVI). Total hardware costs were then developed 
from the hardware demand portion of the program schedule (Figure 272). 

5. Engineering manpower costs were based upon the engineer- 
ing manpower distribution spread shown in Figure 273, which was generated 
pursuant to the requirements of the program controls shown in Figure 274. 

The foregoing cost elements formed the basis for the costs 
of the 25K baseline engine shown in Figure 275. 

r 
l 

f 

\ 

Costs for design and thrust variations were then estimated 
a- a delta to the base costs.  The mechanics of this process required esti- 
m ites from the Engineering, Manufacturing and Test areas relative to the per 
cent change in complexity for each of the various conditions, including eon- 
figuration variations shown in Figures 275 and 276.  The algebraic sum of the 
inputs defined the cost variation. 

The results of the study are summarized in Tables XCVI I 
through XCIX. 

As shown, all costs fall within a relatively narrow band. 
ause eng Inee •' Ln>; and support manpower costs are the major cost 

,.,v .,.-,,.,-,,.. ,,■,,.; specifie design details exert a re'.ativelv minor 

':.'■■     tota I ""-ogrnrn. 
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TABLE XCVI 

COMPONENT COST BREAKDOWN 

 r  

Thrust Chamber Nozzle (Regen) 

Injector 

Hot Gas Manifold 

Gimbal Block 

Oxidizer TPA (Incl Boost Pump) 

Fuel TPA (Incl Boost Pump) 

T.C. Igniter and Valve 

P.B. Igniter 

Oxidizer Preburner Valve 

Oxidizer Discharge Valve 

Fuel Start Bypass Valve 

Fuel Discharge Valve 

Oxidizer Vaned Elbow 

Fuel Vaned Elbow 

Turbine Bypass Valve 

Fuel Discharge and Start Bypass 

Fuel Discharge Line 

Fuel Line to Preburner 

Oxidizer Line to Preburner 

lower Head Assembly 

Thrust Chamber Assembly 

Electrical Harnesses 

Sensors 

Controller 

D—xn—n=t rator/ 

$ 112,621 

53,000 

66,245 

13,572 

48,236 

76,774 

17,772 

7,000 

30,000 

2y,732 

33,115 

33,115 

28,000 

750 

750 

33,115 

Line 

^ 33,019 

$ 71,429 

30,727 

36,297 

4,283 

42,628 

70,550 

11,242 

4,428 

17,126 

11,595 

16,519 

16,519 

14,491 

750 

750 

16,519 

16,985 

llUUUt U JL\J 11 

$ 65,656 

26,904 

31,937 

3,834 

41,826 

69,589 

10,376 

4,087 

14,691 

10,281 

14,498 

14,498 

12,816 

750 

750 

14,498 

15,125 

11,863 7,921 6,477 

25,873 16,036 12,443 

11,200 11,200 11,200 

39,900 39,900 39,900 

125,000 125,000 125,000 
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Ill, Technical Discussion (cont.) 

10K THRUST ENGINE DESIGN 

The engine design requirements for the 10K engine were slightly 
modified from the 25K engine design.  The new requirements are presented 
in Table C.  Table CI indicates the modified payload trade-off parameters for 
the 10K thrust engine. 

engine, are: 
The difference in requirements, as compared to the 25K thrust 

Minimum thrust rise rate req. 

Minimum coast time req. 

Zero NPSH pump assisted idle mode start 

Increased engine weight payload sensitivity 

Envelope definition 

Of these requirements, only the latter three have an impact on the engine 
design.  The minimum thrust rise rate and coast time requirements effect 
engine operation only and do not effect the basic design.  Since the engine 
is designed for deep throttling, the start transient can be slowed to any 
desired rate within the throttling range.  The minimum coast requirement of 
60 sec has no design impact, since in this start time period heat soak back 
and environmental effect are minimized.  However, it should be noted that 
repressurization of the propeilant tank may be required, which may effect 
the design of the tank pressurization. 

The pump assisted idle mode operation is not a baseline engine 
requirement but an alternate requirement and, therefore, is not reflected 
in the basic engine design. The engine modifications are identified in the 
following sections and the engine control requirement and engine operation 
are defined by steady state LETS II computer analysis which are also 
discussed in subsequent sections of this report. 

The modified payload sensitivity parameters mean the payload is 
very sensitive to engine weight.  Very large area ratio nozzles are feasible 
for the 10K engines, consequently consideration of light weight nozzles was 
nandatory since the nozzle weight represents the largest single component 
weight.  The envelope constraint was modified to consist of a 400:1 nozzle 
but not to exceed 82-in. overall engine length.  This requirement defines 
the nozzle as a fixed nozzle concept. The area ratio, however, must be 
optimized based on the payload trade-off parameters.  The optimum area ratio 
is verv sensitive to the nozzle concept (i.e., weight) and therefore careful 
consideration was given to concept selection. 
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TABLE C 

10,000-POUND THRUST ENGINE OPERATING CHARACTERISTICS 

Propellants 

Maximum Vacuum Thrust, pounds 

Nominal Engine Mixture Ratio 

Engine Mixture Ratio Operating Range 

Vacuum Thrust Throttling Capability 

Nozzle Configuration 

Nozzle Expansion Ratio 

Turbine Drive Cycle 

Vacuum Specific Impulse, seconds 

Engine System Weight, pounds 

Number of Vacuum Starts 

Lifetime (Expendable Mode), thermal cycles 

Service Life Between Overhauls (Reusable Mode), 

Liquid Oxygen/Liquid Hydrogen 

10,000 

6.0:1 

5.5:1 to 6.5:1 

5.0:1 

Bell 

400 

Staged Combustion 

* 

* 

60 

6 

300 
thermal cycles 

Service Life Between Overhauls (Reusable Mode), hr 10 

Gimbal Angle (Square Pattern), degrees 7 
2 

Gimbal Acceleration, radians/(second) 20 

Minimum Natural Frequency of Giinbal System, Hertz 10 

Fuel Pump N'PSH, feet of hydrogen 60 

Oxidizer Pump NPSH, feet of oxygen 16 

Maximum Single Run Duration, seconds 2000 

Maximum Storage Time in Orbit (Dry), weeks 52 

Maximum Time Between Firings (Coast Time), days 14 

Minimum Time Between Firings (Coast Time), minutes 1 

Maximum Thrust Rise Rate, lb/sec 3000 

Service-Free Engine Run Time, hr 2 

Service-Free Engine Firing Cycles 60 

*To '"'O Determined as a result of design and analysis, 
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TABLE CI 

VEHICLE TRADE-OFF FACTORS 

Trade-off factors based on Orbit-to-0rbit Missions: 

APL 
AIsp 157 lb/sec 

APL 
AW. -7.4 

Burnout 
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I III, E, 10K Thrust Engine Design (cont.) 

1.  Engine Design Point Selection 

For the 10K engine design, the stage combustion cycle was 
ground ruled as shown in Figure 277. Within this cycle three variations were 
considered. 

r 

i 

i 
[ 

f 

f 

i 

! 

1. Stage combustion - bleed cycle 

2. Gear driven LO TPA 

3. Independent LH„ and L0„ pump turbine drives 

A comparison of the power balance capability was made and is presented in 
Figure 278 indicating the stage combustion bleed cycle to be slightly superior 
to the others.  However, the additional specific impulse due to bleed losses 
of this cycle cannot be compensated for by the superior power balance 
capability. Therefore it was rejected in favor of the independent turbine 
drive.  The gear 
design study. 

.ven LC„ TPA alternate was used for an alternate engine 

The selection of the design chamber pressure for the 10K 
thrust engine was based on the thrust chamber life and power balance capability, 
The coolant pressure drops for a low cycle life requirements of 300 cycles, 
was established and defined for a 10K thrust engine as function of chamber 
pressure as shown in Figure 279.  This figure indicates a sharp rise of coolant 
pressure drops and pump discharge pressuie requirements with increasing 
chamber pressure as ?c = 1250 psia permitting a 2-stage fuel pump design. 

For this selected chamber pressure, an engine power balance 
was made and the resulting engine cycle schematic for nominal conditions is 
shown in Figure 280.  The basic engine cycle is identical to the 25K thrust 
engine cycle, the main difference is the reduction of the fuel pump stages 
by one. 

An analysis was made to investigate the payload sensitivity 
to the assumed chamber pressure.  Figure 281 indicates the relationship of 
engine performance and engine weight as function of chamber pressures and 
nozzle area.  In this figure, lines of constant payload and constant engine 
'ength are shovn and is based on the parameter engine study.  0! interest is 
the 'act that for constant engine length an increase of chamber pressure of 
250 ?sia results in a Dayload increase of 400 lb. The payload sensitivity to 
chamber oressure for constant engine length is: 
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III, E, 1, Engine Design Point Selection (cont.) 

10K Thrust: 

25K Thrust: 

AP. 

AP 

AP, 

L=Const. 

AP 

= i.6 lb/psia 

= 1.2 lb/psia 

L=Const, 

I 

The selection of chamber pressure at the 10K thrust level 
is considerably more critical with respect to payload than for the 25K engine. 
Based on this, a re-evaluation of the latest thrust chamber material test 
data was conducted (Section III.F.10). It indicates that chamber life is 
very sensitive to environmental conditions effecting chamber life by an order 
of magnitude, and the basic life data assumed was conservative. 

r 

2.  Nozzle Expansion Area Ratio Selection 

The relatively low thrust 10K engine has the capability of 
a large nozzle expansion area ratio within the engine length constraints of 
82 in. 

For the nozzle contour the minimum length Rao nozzle was 
used and the nozzle characteristics such as engine length, diameter 
and performance were determined as function of area ratio. 

Figure 282 presents the JANNAF calculated performance as 
function of area ratio and chamber pressure for the 10K thrust staged 
combustion engine.  The performance is calculated for an energy release 
efficiency of 99%.  The performance shown 1P '-"igure 282 is considered conservative, 
since the interim JAXXAF performance prediction method yields 1-1/2 sec higher 
specific impulse.  Test experience shows that at these chamber pressures 
ERE = 99.5% can be achieved.  Figure 283 represents the performance tolerance 
hand estimate for the 19K thrust engine, indicating that performance of 
470 sec, of specific impulse can be achieved. 

r 

The engine overall length relationship as function of expansion 
area ratio is shown in Figure 284 indicating that the maximum feasible nozzle 
expansion area ratio within 82-in. engine length is t = 460:1 resulting in a 
maximum engine diameter 
Is = 466.5 to 470.4 sec. 

'max = 49 inches and a performance potential of 

The design expansion area ratio was optimized for the given 
encine pavload sensitivities.  The very large area ratios and the large engine 
weight sensitivity factors makes the design area ratio strongly dependent on 
:■]«• nozzle configuration. 
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III, F, 2, Nozzle Expansion Area Ratio Selection (cont.) 

extensions: 
An analysis was conducted for two different types of nozzle 

All regeneratively cooled 

Combination regeneratively and radiation cooled 

For the all regeneratively cooled nozzle, the transition area 
ratio from the machined copper chamber to the tubular nozzle extension is 
c = 5.5:1.  The nozzle weight of the tubular section was established as 
function of expansion area ratio and tube wall thickness of 0.15 in. and 
0.010 in. and is presented in Figure 285. 

For the radiation cooled nozzle AGCarb material of 0.125 in. 
wall thickness was assumed.  The effect of the transition area ratio from 
regenerative cooling to radiation cooling on nozzle weight was analyzed and 
is presented in Figure 286, for an overall expansion area ratio of t = 400:1. 

As shown, the transition area ratio has a significant effect 
on the radiation cooled nozzle weight,  "eat transfer analysis indicates that 
the transition area ratio of r. = 70:1 is the lowest area ratio possible for 
uncoated graphite resulting in a total nozzle weight of 64 lb.  Further reduction 
of this area ratio would require Hafnium coating of the nozzle to obtain the 
desired life capability versus nozzle erosion.  Such a nozzle would permit 
attachment at the area ratio of 5.1:1 and would reduce the nozzle weight to 
46 lb. 

The maximum attachment point of a radiation cooled nozzle 
is • = 150:1. At this area ratio, the radiation cooled configuration is equal 
to the ail regeneratively cooled nozzle. 

To establish the effects of nozzle configuration and pay lead 
capability, a nozzle area ratio optimization study was made. The results are 

shown in Figure 2P7. 

Figure 287 "-elates nozzle extension weight versus engine 
performance for the ail regeneratively cooled nozzle, the regenerating and 
radiation cooled nozzle, and the all radiation cooled nozzle.  The results 

are 
sit!' 

ate that the nil regeneratively cooieci nozzles reach an optimum pay toad 
within the 82 in. engine length; the radiation cooled nozzles however 

engt':1, limited.  The payload changes due tc nozzle configuration are 
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11:, E, 2, Nozzle Expnnsion Area Ratio Selection (cont.) 

Nozzle Concept Com1= • ·:i.rJon 

Material Max Nozzle 
Is Length J 

i\PL 
Thickness Area Weight Payload 

Configuration in. Ratio lb sec in. lb 
All Regcnerat.Lvcly I 0.010 440 104 465.9 80 0 
Coo lc•d :.:czzlc> I 

I 0.0125 400 95 465.6 76.5 -125 

I 
---- ··-· 

0.0150 370 88 465.0 74.0 -250 

Regeneratively I 
and Radiation 0.125 460 69 466.5 82 +250 lb 
Cooled :.:ozzle (0.010) 

I 
E = 70:1 i 

I 

I 0 I 
I 

I 

i I i 
All Radiation I 0.125 460 I 50 466.5 82 +350 lb 
Cooled ~ozzle I I 

I l 
r 

I 5.5:1 I 

j r:o = I I I 

As shmvn, the total payload span due to nozzie configuration 
is ~PL = GOO lb. As the baseline configuration, the all regenerativcly cooled 
c:·u:t::t':ler ';vas assumecl h'2..th a tube wall thickness of 0.010 in. and the selected 
area ratio is s = 400. The reduction of the area ratio to c = 400 from the 
opt::.rr:um ~opt = 440 has no effect on payload capability according to Figure 287. 

The loss in payload due to decreased area ratio is shown in 
Fi~urc 288 and was calculated based on the given sensitivity factors. At 
c 8 = JU 1J:l the engi~e length would be 68 inches at an lsp = 464 and an engine 
i·Jeig1;t change of 1\\\r,.; = 17.5 lb as compared to s = 400:1 resulting in a payload 
lo:;s of 150 lh. 

Further advanced technology nozzles have the potential to 
i.ncr('ase payload by 250 to 350 lb as compared to the selected baseline. 

The selection of the regeneratively cooled nozzle was made 
on th0 basis of readily available technology. However the selected tube wall 
thi.c~~ness of 0.010 i.n. is considered the absolute minimum and would 
be o: high fabricatioe~ cost as compared to a 0.015 in. tube wall. ln addllion, 
it i.s anticipated that in a reusable system, the 0.010 tube may prove to he 
too sensi~·~ve for handling and resulJ; in high maintenance co~t. 

Tbe nll radintion cooled no7.7.le wou]J not only be sturdier, 
rt.:.su~t L~~ <~on~idc\r~:1~le payload gain, but al8o permit engine sea lcvt~J t<.~stlng 
•Jnde r ::,· ~ ua.1 o/crati.!~g concli tions, since it would be seperable at nrca ratio 

) • _'I • 
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lll, E, lOK Thrust Engine Design (cont.) 

3. Basic Engine Cycle Description 

a. Nominal 

The engine-cycle was established fe-r the following 
nominal engine design point: 

Thrust 

Chamber Pressure 

Nozzle Area Ratio 

Mixture Ratio 

= 10,000 lb 

1250 psia 

= 400:1 

= 6.1 

Turbine Inlet Temperature = 1860°R 

Specific Impulse = 465.5 sec (469.5 I max) 
s 

The flow schedule presented in Figure 280 is representative 
of the selected engine design point. The engine cycle is designed to permit 
a throttle range of 5:1 over the required mixture ratio range of MR = 5.5 
to ~R = 6.5 and is identical to the 25K thrust selected engine cycle. 

For the engine control, the three valve concept was 
established, permitting the engine to operate at pressure fed idle mode. The 
engine t!:rottle performance was established and is shown in Figure 289 
inc'.icating a fast dro?-off in performance beyond 30% of thrust indicating 
that engine throttling beyond this point is not desirable. 

b. Off Design Engine Operation 

A LETS 2 model of the baseline !OK engine was set up 
and operated over a throttling range of 10:1 and for mixture ratios of 5.5, 
6.0, nnd 6.5. The results are summarized in plot form in Figures 290 through 
298. 

The control system used was essentially the same as 
t

1
1at on the 25K engine, oxidizer preburner and thrust chamber valves were 

used for control of thrust and mixture ratio and the fuel preburner bypass 
valve \vas used to maintain a constant turbine inlet temperature of 1750°R 
below 75% thrust. 

Results were very similar to those obtained for the 
25K engine. The turbine temperature in the controlled range was increased 
from 1660°R in the 25K engine to 1760°R in the lOK engine because of the 
so!T'.e\,•hat lower preburner mixture ratios (for a given temperature) resulting 
fror.1 ;1igher fuel bulk temperatures leaving the cooling jacket. 

BEST AVAILABLE COPY 
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Ill, E, 3, Basic Engine Cycle Description (cont.) 

The engine throttle characteristic was also evaluated for 
its effect on the engine life and thermal cycle capability in particular for 
the sensitive components such as the thrust chamber and turbine disks and 
bearings. 

For the thrust chamber thermal cycle life capability two 
characteristic parameters were identified, the hot side wall temperature T 
and the thermal wall gradient AT^. The criteria of the selections of the 
design chamber pressure and coolant mach numbers was based on these two param- 
eters and are shown for design conditions in Figure 321 (Section III, E, 9) 
as functions of chamber length. A heat transfer study was conducted to 
evaluate the effect on low cycle fatigue life due to off-design engine 
operation. 

For the throttled condition the pertinent parameters are 
shown in Figure 319 (Section III, E, 9), indicating a rapid increase in low 
cycle fatigue life N^ at the reduced thrust levels.  The turbine inlet temp- 
erature and speed are also reduced during throttled engine operation (Figure 
297 and Figure 291) effecting turbine disk life and bearing life favorably. 
The results of the analysis indicate, that engine throttling is very beneficial 
to engine life and low cycle fatigue capability. 

This fact can be utilized to prolong the engine life through 
engine operating procedures.  Full engine thrust is only required during the 
initial phase of the first burn.  For the subsequent burns the thrust level 
is not significant and throttled operation is feasible within engine per- 
formance constraints. 

The engine delivered specific impulse requirements are only 
critical for a few large V missions and many missions can be accomplished 
at derated specific impulse such as throttled engine performance. Kven with 
the prolonged engine burn time requirements of throttled operation, the tur- 
bine disk and bearing life in terms of number of missions are considerably 
increased as compared to full thrust operation.  The low cycle fatigue life 
of the chamber is not affected by burn time. 

Therefore engine life and mission capability can be improved 
by mode of operation if the engine is capable of throttling. 

The increased capability can be explained by either reducing 
engine overhaul and maintenance cost or increased paylo^d capability through 
increased chamber pressure ;>.nd turbine temperature for the critical missions. 
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I III,  E,  10K Thrust Engine Design (cont.) 

L 

I 
I 
I 
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I 
I 

4.  10K Thrust Engine Configuration 

The configuration of the engine components for the 10K 
thrust engine are very similar to the 25K engine components. A packaging 
study was performed to investigate the feasibility of in-line fuel pump for 
the 10K configuration. 

Since the selected area ratio results in an overall engine 
length 6 in. shorter than the available envelope (if the engine is a scaled 
version of the 25K configuration) the in line fuel pump concept should result 
in a relative small payload loss and would eliminate the complex hot gas 
manifold and lines of the side mounted configuration.  A preliminary payload 
investigation shows: 

Payload analysis for in-line and side mounted configuration 

Overall Length 

Injector face to gimbal 

Ginbal to Injector 

Nozzle Area Ratio 

T 
S 

.'. Payload (Nozzle Only) 

Wt Nozzle 

The payload loss due to loss in performance however should 
be compensated by eliminating the hot gas manifold because of the magnitude 
of the engine weight trade-off factor. 

The hot gas manifold weighs 55 ib of which approximately 
45.7 lb can be saved with an in line design resulting in a net gain of 
payload. 

AP - 7.4 x 45.7 -29 « +303 lb 

Due to tills reasoning, the 10K engine configuration is shown as both with an 
in-line fuel pump and with side mounted pumps. 

Although ch» in-line engine configuration could be designed 
for the same basic engine cy:le as described for the baseline engine.  An 
alternate engine cycle was rtudied.  In this cycle the L07 pump is driven by 
a reduction gear, (designed to transmit 282 horsepcwer) eliminating »he hot 
gas manifold completely. 

In-Line Si d e Mounted 

82 76 

16  in. 6   in. 

13   in. 1   in. 

356:1 400:1 

465.0 465.5 

-29  lb 0 

64  lb 72  lb 
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Ill, E, 4, 10K Thrust Engine Configuration (cont.) 

The advantage of such a system is the rigid coupling of the 
two pump speeds and relative ease of engine start transient control. The 
reduction gear will be cooled by hydrogen gas and is considered state-of-the- 
art technology. A schematic of the gear driven concept including pressures 
and temperatures is shown in Figure 299. 

The alternate engine cycle potential is also a stage combus- 
tion cycle and will achieve the same specific impulse as the baseline engine. 
The engine control method selected is identical to the baseline concept. 

The engine configuration for both configurations are presented 

in Figure 300 through Figure 302 and the characteristics for both configurations 
are shown in Table CII and Table CHI. 

Which configuration will ultimately be selected depends 
largely on the available engine envelope.  Should the available engine length 
decrease considerably, then the side mounted configuration appears 
attractive. 

The side mounted TPA appears to provide easier access to the 
pumps and pump may be changed without dismounting the engines. Without a stage 
configuration, however, this apparent advantage is difficult to evaluate. 

5.   Idle Mode Operation 

Idle mode operation for the 10K thrust engine design is 
studied in two different modes: 

a.  Pressure Fed Idle Mode 

The purpose of this operating mode is to chill both 
pumps simultaneously prior to starting and also to recover some specific 
impulse of the chilldown propellants. 

In this operating mode, the propellants pass from the 
tank through the pumps into the thrust chamber.  The turbines are not operating 
since the flow is bypassed and no pressure rise is obtained in the pumps. 

It is assumed that both propellant tanks are settled at 
initiation of the idle mode.  The tank pressures at initiation of th<" idle 
moce are assumed to oe propeliani. va^ui' pressure. 

*>o modification of the engine is required to accommodate 
the pressure fed idle mode since turbine preburner by-pass valve and lines are 
already incorporated in the !>as<»line engine configuration.  Thrust obtainable 
fron this motie of operation will depend on the minimum tank pressure available. 
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I 
1 

TABLE CIII 

I 10K ENGINE WEIGHT SUMMARY  BASELINE  ENGINE 

E 

I 

r 
r 

i 

i 

P    = 1250 psia 
c r 

Side Mounted T?A 

MR = 6.0      e - 400:1 

I. Thrust Chamber Weight lb 

A.  Injector 12.4 

B.  Copper TC to z  » 6:1 23.6 

C.  Regen Tubes to e - 400:1 72.2 

D.  Ignitor 12.1 

II. TPA's 

A.  Fuel incl. Boostpump 22.7 

B.  Oxidizer incl. Boostpump 26.30 

III. Valves 27.2 

IV. Gas Lines, Gas Manifold, 
Liquid Lines 

55.4 

V. Preburner 18.7 

VI. Gimbal Assembly and Support 7.5 

Total Calculated Weight 278.1 lb 

Estimated Harness Instrument 
Support, Brackets and Attached 
Hardware 

Estimated Engine Controller 

TuLäl ICstitrated Weip.ht 

NPSH ft = 60(F); 16(0) 

Weight % 

29 lb 

35 lb 

342.1 

43.30 

17.60 

9.78 

19.90 

6.72 

2.70 

100 

Pace 73; 
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TABLE CIII (cont.) 

Gear Drive Concept 

p   = 
c 1250 psia                MR « 6.0 e ■ 356:1 NPSH (H) =  60 F/161 

I. Thrust Chamber 

A. Injector 

B. Copper Thrust Chamber 

C. Regen Tubes  to e = 356 

D. Igniter 

Weight lb 

12.40 

23.60 

64.0 

12.1 

Weight % 
calculated 

50.1 

II. TPA's 

A.     Pumps,  Boost Pumps  ana Gearbox 48.30 21.6 

III. Valves 27.20 12.20 

IV. Gas and Liquid Lines 9.70 4.30 

V. Preburner 18.70 8.40 

VI. Gimbal Assbl.   and Support 7.50 3.4 

Total Calculated Weight, lb 223.5 100.0% 

Estimated Harness, Instrument 
Support Brackets and Attach 
Hardware 

Estimated Engine Controller 

Total Estimated Weight 

29.0 

35.0 

287.5 

PaRe 733 
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III, E, 5, Idle Mode Oneration (cont.) 

The hydraulic resistance of the system and stability considerations will limit 
chamber pressure to a value 30-50% of the minimum tank pressure. With 
saturated propellants, tank vapor pressures of 15 psia will result in thrust 
levels of 30-40 lb.  It is desirable to minimize the need for feedback controls 
during idle mode and Table CIV shows a comparison of several operating uoints 
with fixed oxidizer valve positions. This shows that mixture ratio will remain 
in the satisfactory range of 1.5 - 3 without control of the oxidizer valve. 

Figures 303 and 304 show the effect of changing vapor pressures in the fuel and 
oxidizer tanks. This indicates that some control of oxidizer valve position 
would be required to compensate for large changes in tank pressure. 

The thrust level shown in Table CIV is 0.3% of full 
thrust operation.  The relative low level is due to the relatively small 
chamber throat size of high pressure engines. 

Table CIV also shows the idle mode operation with 
externally pressurized oxygen and fuel tank pressure (Case 4). This cast' is 
of interest for systems which have stored tank pressurization capability on 
board which enables these systems to start as soon as the pumps are sufficiently 
chilled down. 

A summary of the engine operating mode and control 
requirements for the complete engine start sequence is presented in Table CV 
for this engine start of sequenced pressure fed and pump assisted idle mode. 

b.  Engine Configuration Modification for Pump Assisted 
Idle Mode 

The incorporation of the pump fed idle mode for auto- 
genous tank repressurization requires that the LO2 vaporizer be operative 
during idle mode.  To meet this reauirement, the LO2 vaporizer is located 
around the thrust chamber since this is the only heat generating component 
during the idle mode operation.  In Figure 305 the L02 vaporizer concept is 
shown.  The L02 passages arc machined inco the closure wires of thp fuel 
manifold and thus are avoiding any direct interpropellant leakage.  The 
2-dimensional heat transfer of the copper chamber will help to vaporize the 
oxidizer. 

This modification will impact the engine weight only 
slightly and is estimated to be 4 lb.  The engine life will not be impacted 
due to idle mode operation.  Section I1I.E.8 presents the cost impact due 
to the idle mode requirement. A heat transfer analysis was conducted to 
establish the surface requirements of the LO2 vaporizer ;ind tank pressurant 
condition during idle mode. The results are summarized in Table CV1. 
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Bffl i MEBSBS 

PUMP FED IDLE MODE 

PIN 
TIN 

15 PSIA 

15.01 PSIA 

162.6 °R 

TABLE CV (cont.) 

0 (NPSH) 

WQ = 0.0454 LB/SEC 

ENGINE: MR = 1.291 

4.65 PSIA 

FT 
> 
IN 

'IN 
h 

30.9 LB 

18.057 PSIA 

18 PSIA 

37.5 °R 

-106.2 

0.035 LB/SEC 

TANK PRESSURE IDLE MODE 
p = 47.75 LB 

FUEL 

NT = 6683 RPM 

MR 6.91 Pc = 6.9 PSIA 

OXID AUTOGENOUS PRESSURE FLOW 

D 

W 

WQ = 0.4297 LB/SEC   WQ -    0.352 LB/SEC 

33 PSIA 

Tn = 37.45 °R u 

26.75 PSIA 

Tn = 162°R 

f    = 0.06^4 LB/SEC  NT = 3179 RPM 

N
0 = 91 (NO. CHANNELS) 

A
0 = 0.001 in.2 PER CHANNEL 

:
: = PUMP DISCHARGE PRESSURE 

"0 " PUMP DISCHARGE TEMP 
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TABLE CVI 

PUMP FED IDLE MODE OXIDIZER AUTOGENOUS 
SYSTEM HEAT TRANSFER SUMMARY 

Thrust Chamber 

Chamber Pressure 

Mixture Ratio 

Total Chamber Flow 

Cooling Jacket Flow (LHJ 

Coolant Inlet Pressure 

Coolant Inlet Temperature 

Predicted Coolant Temperature Rise 

Predicted Coolant Pressure Drop 

Tank Pressure, Fuel 

Tank Pressure, L0_ 

Autogenous System 

Number of Channels 

Channel Flow Area 

Oxidizer Flow 

Oxidizer Inlet Pressure 

Oxidizer Inlet Temperature 

Predicted Total Enthalpy Rise 

Predicted Pressure Drop 

Heat Exchanger Length 

7.5 psia 

2.1 

0.114 lb/sec 

0.0368 lb/sec 

33 psia 

42°R 

450°R 

15 psi 

17 psia 

23 psia 

91 

0.00071 in.2 

0.35 lb/sec 

27 psia 

170°R 

80 Btu/lb 

12 psi 

6 in. 
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I III,  K    5,  Idle Mode Operation (cont.) 

I 
1 

I 

I 
I 

c.  Pump Fed Idle Mode Operation 

An investigation was conducted of the feasibility of a 
pump assisted idle mode for the 10K engine. This does not effect chilldown 
time, since the engine cannot be started until the pumps have been chilled and 
saturated liquid is available at pump suction, however, it provides a means 
of autogenous tank pressurization to bring NPSH up to a value permitting a 
normal engine start without any external source of tank pressjrization. 

mode is as follows: 
The sequence of events for initiating the pump fed idle 

1.  Engine is operating as in Case 3 of Table XCIX at 
end of chilldown. 

2   Preburner fuel bypass valve is closed, sending all 
fuel flow through the turbines and developing 
turbine torques of 2.7 and 2.0 in.-lb for the 
fuel and oxidizer turbines. 

3. After pump rotation has begun, the autogenous 
valves are opened permitting tank pressurization. 

4. Once the tank pressures reach the required levels, 
the normal engine start sequence begins.  If, for 
any reason, a "hold" is required prior to engine 
start, the preburner bypass valve may be partially 
reopened to obtain a steady state thrust in the 
50-100 lb range. 

Operation of a pump fed idle mode at zero NPSH depends on the existance of 
thermodynamic head which is a function of propellant enthalpy.  Table CVll 
shows operating points at start and completion of tank pressurization.  These 
are steady state points with power balanced by the autogenous flow or pre- 
burner bypass. Shutting off the autogenous flow partially unloads the pumps 
and increases turbine speed. Limiting speeds for the fuel and oxidizer pumps 
at zero NPSH are approximately 12,000 and 4000 rpm. When operated in the 
engine, higher speeds are possible at higher flow coefficients but the flow 
must be recirculated; if it is injected in the thrust chamber, the increase 
in pressure will force the pumps into operation at low flow coefficients with 
poor cavitation performance. 

It should be noted that the two cases in Table CVll ure 
at the beginning and completion of autogenous pressurization.  Because the 
fuel autogenous tap-off is at the cooling jacket exit, Case 1 shows less 
. i, ;]'.! 1 psi driving pressure for fuel pressuranl flow.  This Is sal i s fat lor v 
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CASE NO. 

TABLE CVII 

PUMP ASSISTED IDLE MODE 

TANK PRESSURE 
- VAPOR PRESSURE 

TANK PRESSURE, PSIA 

Tl'RBINE SPEED, RPM 

HIGH SPEED INDUCER 
NPSH FT (NO TSH) 

THERMODYNAMIC SUCTION HEAD 

SUCTION SPECIFIC SPEED 

FLOW COEFFICIENT 

FRACTION CAVITATION LOSS 

MAIN STAGE PUMP 
NPSH, FT (NO TSH) 

THERMODYNAMIC SUCTION HEAD 

SUCTION SPECIFIC SPEED 

FLOW COEFFICIENT 

FRACTION CAVITATION LOSS 

FINAL STAGE PUMP D1SCH. PRESS. 

AUTOGENOUS SUPPLY PRESSURE 

AUTOGENOUS FLOW RATE, LB/SEC 

CHAMBER FLOW RATE, LB/SEC 

COOLING JACKET FLOW RATE 

PREBURNEK FLOW RATE 

PREBURNER BYPASS FLOW RATE 

(■AS INJECTOR EXIT TEMPERATURES, °R 

PREBURNER PRESSURE 

•''■RBINK EXHAUST PRESSURE 

:>iKUi>T 

"IX'       h  RATIO 

SPECIFIC   IMPULSE 

'■>:.   SEC  VALVE     KW 

"":.:;■ KNER »YPASS VALVE  KW 

FUEL OXID. 

15 15 

6680 3180 

0 0 

113 4 

470 1700 

.30 .46 

15 4 

115 4 

475 1190 

.33 .51 

0 0 

33.1 26.6 

15.8 26.6 

.02 .35 

.037 .078 

.037 - 

.037 0 

0 - 

424 481 

10. 8 

7 5 

47. 8 

2 1 

419 

0172 

0 

FULLY PRESSURIZED 
PROP. TANKS 

fuel OXID 

16.8 22.8 

9060 5480 

60 16 

113 4 

544 512 

.31 .08 

0 .0002 

96 29 
, i r 
XI J 4 

560 540 

.34 .16 

0 0 

50.6 60 

28.7 60 

0 0 

.087 .12 3 

.087 - 

.069 0 

.019 - 

380 36 3 

19.7 

14.0 

83.2 

1.4 

396 

300 
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HI, F., 5, Idle Mode Operation (cont.) 

since the limiting pump is the oxidizer pump. As the oxidizer tank is 
pressurized, both pump speeds and chamber pressure will increase thus providing 
adequate fuel tank pressurant flow.  If Case 2 had the fuel tank pressure at 
15 psia, the fuel pump would still be operating in a non-cavitating condition. 
The actual transient was not run on the computer because of time and budget 
limits but it appears that no control operation other than the autogenous 
valves (and possibly the preburner bypass valve) would be required. 

6.  Effect of Engine Cycle Life on Engine Design Point 

The engine low cycle fatigue cycle requirements have a 
considerable effect on the engine design point selection.  The engine components 
most effected by these requirements are the thrust chamber and fuel turbine 
disks. 

The turbine disk life can be manipulated by the selection of 
turbine inlet temperature and turbine tip speed identical to the relationship 
presented for the 25K thrust engine. The variations of these two turbine 
design parameters effects the power balance and therefore chamber pressure 
capability. 

The chamber life requirement is most effectively manipulated 
by changing thrust chamber pressure and coolant throat Mach. No. The 
parametric analysis yielded the design information required to establish the 
coolant pressure drops for each chamber pressure required to meet the 60 and 
600 life cycle requirement.  The data is summarized in Figur»' 306. 

With this pressure drop requirement and the selected turbine 
temperatures and tip speed, the power balance was conducted over the appropriate 
chamber pressure range. The chamber pressures were then selected meeting the 
chamber life requirements and power balance capability.  The flow, temperature 

and pressure schedules are shown in Figure 307 and Figure 308 and the turbupump 
operating conditions are summarized in Table CVIII. 

The chamber pressures of ?c  ■ 1050 psia for 600 cycles and 
Pc ■ 1400 psia for 60 cycles were defined. This change in chamber pressure 
effects engine performance weight and envelope.  Utilizing the parametric 
engine data, the engine characteristics can be summarized as follows: 
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HI, E, 6, Effect of Engine Cycle Life on Engine Design Point (cont.) 

Engine Characteristics for 60 and 600 Cycle Life 

Thrust, lb 

Chamber Pressure, psia 

Area Ratio 

Engine Length, in. 

Engine Diameter, in. 

Specific Impulse, sec 

Engine Weight Change, lb 

TPA Weight Change, lb 

F/P 

60 Cyc] .es 600 Cycles 

10K 10K 

1400 1050 

400 400 

73 81 

43.0 49.60 

466.20 464.8 

-10 +16 

0.0 +1.7 

7.14 9.53 

Total Engine Weight, lb 
(K/0 Harness & Engine Controller) 

268 294 

The engine payload change due to changing life requirement is 

APL 
8PL 
SI 

s 
x AI 

9PL 
3W^ 

AW 

Payload 

Change 
lb 

60 Cycles 

+184 

600 Cycles 

-243.0 

7.  Elimination of Throttling Requirement 

The elimination of the throttling requirement can result in 
minor engine configuration modifications. The preburner bypass valve and 
line will be eliminated resulting in a weight savings. The preburner control 
valve resistance is reduced to 200 psia and the preburner LO2 circuit pressure 
drop is increased to 800 psia and liquid LO2 Injection will be used. The 
LO2 vaporizer for the preburner is eliminated and replaced by a hydrogen regen- 
erative section. 

To maintain autogeneous capability, a U)X vaporizer has to be 
available and is recommended to be placed around TCA, which could maintain the 
capability to operate at pump assisted idle .«ode. 

A modified engine schematic is shown in Figure 309. The 
weight change due to elimination of the throttling requirement is - AW ■ -8.2U lb, 
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Ill, E, 10K Thrust Engine Design (cont.) 

8.  Engine Development and Cost 

a.  Baseline Engine 

The development of the 10K engine will be accomplished 
within the basic program schedule shown in Figure 310 for the 25K engine and it 
is anticipated that approximately the same amount of hardware and facility 
modifications will be required. 

The program controls will also be identical to these 
used on tht basic 25K engine effort, consequently, the costs for the basic 
10K engine programs are expected to be identical to those of the 8K engine 
program.  These are: 

Demonstrator Program 

Development Program 

Production (40 Units) 

Total 

First Production 
Unit Cost 

$16,374,000 

38,993,000 

22,273.000 

$77,640,000 

708,000 

J 

1 
Propellant requirements will be: 

LH2 

LO, 

Demonstrator Program 

354,000 lb 

1,110,000 lb 

212  tons 

384 KGCF 

Development Program 

1,890,000 lb 

565,000 lb 

1,130 tons 

2,050 KSCF 

b.  Effects of Varying Design Conditions 

(1)  Cyclic Life 

The technical aspects of increasing cyclic life 
to 600 cycles/20 hr firing life or reducing to 60 cycles and 2 hr is discussed 
in Section III.F.6. That section shows the engine configurations to be very 
similar for either of the two conditions, consequently, the only variation 
to program costs will be associated with the increase** or decreases to testing. 

Ail of these costs will be incurred in the 
development portion of the program. 

1 
I 
j 
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Ill, E, 8, Engine Development and Cost (cont.) 

The increase in costs associated with the increase 
in cyclic life are estimated to be: 

Hardware  $100,000 

Testing    230,000 

Total   $330,000 

The reduction in costs with reduced cyclic life 
which would be applied to the development program are $230,000, all of which 
are a reduction in test costs. 

(2) Idle Mode Operation 

The only cost impact resulting from the idle mode 
new design condition is associated with the pumped case. 

The additional costs are incurred in the development 
portion of the program due to the necessity of additional effort in testing 
the combustion chamber heat exchanger.  These costs will be 

Hardware   $210,000 

Testing     460,000 

Total   $670,000 

(3) No Throttle Capability 

The cost impact of eliminating the throttling 
capability as discussed in Section III.F.7 will be felt in two areas, 
development and engine production. 

follows: 

approximately $20,000. 

Development program costs will be reduced as 

Hardware   $308,000 

Testing     690,000 

Total   $998,000 

Production unit engine costs will be reduced by 

1 

I 
I 
I 
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Ill, E, 10K Thrust Engine Design (cont.) 

9.  Major Component Design Description 

The combustion components of the 10K thrust OOS engine are 
essentially scaled-down versions of the larger, 25K engine studied in the 
previous section.  The operational requirements of the two engines are very 
similar, except for the maximum thrust level, and the depth of examination 
required in certain areas of extended requirements. 

a.  Engine Scaling Considerations 

Most engine component weights and envelopes do not scale 
down directly with maximum delivered thrust levels, even though the delivered 
specific impulse remains relatively constant with thrust scaling, so that pro- 
pellent flow rates do scale linearly.  When smaller components are designed to 
operate with the same thermal characteristics, e.g., wall and fluid temp- 
eratures are substantially the same as larger counterparts, as is the case 
with the two subject engines. The sizes and weights are largely dependent 
upon internal fluid pressures.  Fluid pressure contributes greatly to the 
total stress level of many engine components, and, hence, to their wall thick- 
nesses and weights. Whereever the mixture fluid is compressible, the 'iuid 
density and required flow area is also affected by pressure.  The weight and 
volume of most combustion component parts are greatly affected by propellant 
flow area requirements, because they all handle propellants and require pro- 
pellant cooling. 

Every combustion component is a heat exchanger, using 
this fact as basis for selecting the proper scaling requires that local heat 
fluxes be similar.  Given the same temperature data, it is then required tc 
match fluid velocities (Mach numbers) and passage sizes (Reynolds numbers). 
Power balance and thrust chamber life considerations require that the 10K 
engine operate at a lower chamber pressure than the 25K engine, because it is 
not possible to obtain similar Reynolds numbers within the chamber itself, 
otherwise.  The use of lower system pressures in the 10K engine causes gas 
passage total flow areas to be designed greater than 10/25 = Wl  as large as 

the 25K engine.  Required flow areas are more nearly: 
1800  10 
1250 X 25 * 5'" 

uJ 

those used in the 25K engine.  Those components whose wall thicknesses are 
are dependent upon pressure Induced structural requirements will have walls 

1/2  1250 
nominally (0.58)  " x rgxg = 53? as heavy as the larger engine counterparts. 

Many component lengths are unchanged for reasons of heat transfer and/ur 
combustion length requirements.  Some, however, have envelopes and weights 
which are rather insensitive to any scaling parameters. 
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Ill, E, 9, Major Component Design Description (cont.) 

One such example is the main chamber igniter.  In other cases, minimum fabri- 
cation gage determines material thicknesses, rather than structural or flow 
considerations. 

Tables CIX through CXIV list the basic design specifi- 
cations of the 10K engine combustion components. These components are shown 
in Figures 311 through 314. Preceeding the design specification (which includes 
calculated component weights) and the corresponding figure, is a brief dis- 
cussion of the differences between the 10 and 25K component designs. 

Component low cycle fatigue lives are very similar to 
those of their larger counterparts, because by design their thermal character- 
istics have been unaltered. 

b. Main Injector 

The 10K engine main injector is a propellant condition- 
ing device as well as n metering and delivery component, as is the 25K unit. 
In order to duplicate the heat transfer properties of the larger injector, 
the 10K irnp'"- • utilizes the same hydraulic passage sizes throughout the 
vanes as is    ' in the larger unit. Flow velocities are controlled by alter- 
ing the number ^. passages and orifices (including the fuel-rich hot gas 
orifices between the vanes).  Table CIX lists the resulting major injector 
dimensions and operating parameters. The similarity to the 25K injector Is 
shown pictorially in Figures 311 ard 312. 

The 10K injector pressure schedule is shown in Table CX. 
On a dimensionless basis, with chamber pressure as the reference, this is the 
same schedule as used for the larger engine. This is desired for flow con- 
trol, which automatically occurs when injecting gases.  The change in density 
with pressure alters the fluid density, the velocity head, and the dimensional 
pressure loss schedule, as desired. 

c. Thrust  Chamber 

The 10K engine thrust chamber shares its materials and 
type of construction, as well as cooling scheme and overall configuration 
with that of the 25K engine.  It was found necessary to reduce the thrust 
chamber pressure from 1800 to 125C psia to duplicate the chamber low cycle 
fatigue life.  This was caused by the hydraulic dissimilarity of the 
smaller chamber. The wall heat flux could only be reduced by lowering the 
gas-side film coefficient through a reduction of gas pressure. With the 
thrust and chamber pressure given, the throat area, and other dimensions 
were easily determined. These are listed in Table CXI and on Figure 313 as 
design specification and design concept picture, respectively. 
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TABLE CIX 

10K MAIN INJECTOR BASIC DESIGN SPECIFICATIONS* 

Baseline Engine 

Number of Vanes 

Number of Baffles 

Number of Orifices 

Orifice Shape and Size, in. Rectangular, in. 

Type and Number of Elements: 

Impinging Doublets 280 

Showerhead 48 

Total Elements 328 

Doublet Impingement Angle, Degrees 60 

Doublet Impingement Distance, in. 0.052 

Staggered Doublet Centerline Spacing, in.                    0.093 

Vane Centerline Spacing, in. 0.193 

Thrust per Element, Lbf. 30.5** 

Fuel Rich Hot Gas Injection Velocity, ft/sec                 575 

Oxidizer Injection Velocity, ft/sec 415 

Fuel Rich Hot Gas Injection Temperature, °R 1565 

Oxidizer Injection Temperature, °R 550 

Injector Weight, lb. 12.40 

Axial Vane Length, in. 3.5 

Injector Face Diameter, in. 3.0 

uxicizer Pressure Drop, psi 420 

Fuel Rich Hot Gas Pressure Drop, psi 110 

*im.i for I0K lbf thrust at 6.0 Engine Mixture Ratio 

**!;:tsi-(J op. total number of elements: 

""' T'IM/: !*«ent, F/E " 35.7 lbf based on doublet elcnents only. 
F/K • 32.9 lhf based on 1/2 of the total number of orifices. 
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TABLE CX 

10K INJECTOR PRESSURE SCHEDULE 

Baseline Engine 

FUEL RICH HOT GAS 0X1MZER 

INJECTOR CORE INJECTOR CORE 

LOSS 
AP, 
PSIA 

30 

15 

LOSS 
AP, 

PSIA 

Inlet Manifold 

Distribution 

Manifold Vane, Total 

Injector Vane 

50 

10 
Plate #1 Inlet 

Distribution 

Plate n 
15 Heating Channel 

Friction 

100 

Inter-Vane 
^riction Loss 

40 Orifice Inlet 

Plenum 
60 

Injector Velocity 
Head 

10 Injector Orifice 200 

TOTAL LOSS 110 420 

] 

I 

I 
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TABLE CXI 

10K COMBUSTION CHAMBER BASIC DESIGN SPECIFICATION 

Throat Diameter, in. 

Chamber Contraction Ratio 

Combustion Zone 

Overall Incl. Injector 

Chamber Shape 

Chamber Half-Angle, Degrees 

Chamber Exit Area Ratio 

Combustion Length, L', in. 

Overall Chamber Length, in. 

Primary Cooling Method 

Flow Scheme 

Number and Type of Coolant Channels 

Gas-side Wall Thickness, in. 

Channel Depth 

Channel Width 

Land/Channel Width Ratio at Throat 

Channel Height/Width at Throat, in/in 

Chamber Inner Wall Material 

Hoop Stress Support Method 

Axial Load Support Method 

Thrust Chamber Weight, lbra (to c - 5.3:1) 

2.26 

2.0 

2.4 

Conical 

4.2 

5.3 

6.5 

8.4 

Hydrogen Regenerative 

Single Pass, Counter Flow 

91 Rectangular 

0.030 Constant 

Continuously Variable 

Stepped, 3 Widths 

1.0 

.064/.040 

Zirconium Copper 

Wire-wrapped 

Kxternal Conical Shell 

23.6 w/o clevises 
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TABLE CXII 

10K NOZZLE BASIC DESIGN SPECIFICATIONS 

Inlet Area Ratio 

Exit Area Ratio 

Exit Diameter, in. 

Length, in. 

Contour 

Construction Type 

Tube Wall Thickness, in. 

Tube Material 

Number of Tube Bifurcation Planes 

Location of Bifurcations 

Coolant Scheme 

Bifurcation Joint Type 

Turnaround Manifold Type 

Number of Tubes: 

c ■ 6 to c ■ 25 

E - 25 to c = 200 

c - 200 to e - 400 

Number of Stiffening Rings 

Attachment to Thrust Chamber 

Nozzle Weight, lbm (c - 5.3:1 to 400:1) 

5.3:1 

400:1 

45.2 

61.2 

Minimum length Ri.o optimum 

Round Tubular-Furnace Brazed 

0.010, Constant 

ARMC0 22-13-5, Tapered Tubes 

2 

e - 25 and e = 200 

Two-pass Hydrogen Regen. 

Circular Tube Surrounding 
Back-to-back "D" Tubes, Brazed 

"U" Tubular @ e - 400, Brazed 

Total Segments = 497 

71 

142 

284 

5 

Rebrazable Joint 

72.2 

1 

I 
i 
J 
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TABLE CXIII 

10K PREBURNER BASIC DESIGN SPECIFICATIONS* 

Injector Type and Material 

Propellant Injection Phase 

Injector Pattern 

Number of Orifices: 

Fuel 

Oxidizer 

Total 

Orifice Shape and Size 

Fuel, in. X in. 

Oxidizer, in. X in. 

Doublet Impingement Angle 

Fuel & Oxidizer, Degrees 

Impingement Distance from Face, In. 

Fuel, in. 

Oxidizer, in. 

Injector and Chamber Dia., in. 

Fuel Injection Velocity, ft/sec 

Oxidizer Injection Velocity, ft/sec 

Fuel Injection Temperature, °R 

Oxidizer Injection Temperature, °R 

Total Fuel Pressure Drop, psi 

Total Oxidizer Pressure Drop, psi 

Chamber Type 

Combustion Stability Device 

Chamber Length, in. 

Iota! Weight, lbm 

•Data for 10K lbf thrust at 6.0 engine mixture ratio. 

Brazed Platelet, Ni-200 

Gas/Gas 

Like-on-Like Doublets 

2520 H-1260 Doublets 

1274 -*• 637 Doublets 

3794 •+1897 

Rectangular 

0.010 X 0.020 

0.010 X 0.020 

60 

0.030 

0.055 

2.4 

1000 

125 

450 

400 

205 

385 

Oxidizer Regen. Cooled, with 
Fuel Regen. Cooled Liner 

Acoustic Resonator Integral 
with Chamber and Liner 

9.0 

18.7 

"ar.e 7^0 



TABLE CXIV 

10K THRUST CHAMBER IGNITER BASIC DESIGN SPECIFICATION 

Type 

Initiator 

Elsctrode Cooling 

Spark Gap Width, in. 

Spark Voltage, Kv 

Spark Rate Sparks/sec. 

Spark Energy, Millijoules/Spark 

Torch Mixture Ratio, 0/F 

Torch Temperature (minimum) °F 

Fuel Flow Rate, lbm/sec 

Oxidizer Flow Rate, lbm/sec 

Duration of Operation, Sec/Engine Start 

Materials: 

Housing 

Chamber Liner/Flame Tube 

Electrical Seal 

Injector Head 

Total Weight, lbm (with Exciter) 

Hot Gas Torch 

Spark 

Submerged in 0 Flow 

0.035 

20 

50 

5 

1.5 

1100 

0.022 

0.033 

0.75 

ARMCO 22-13-5 

Haynes 188 

Brazed/Ceramic 

Zirco lium-Copper 

12.1 

1 
J 

I 
I 
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III, F., 9, Major Component Design Description (cont.) 

The selection of the chamber pressure of 1250 psia is 
based on the low cycle fatigue life capability of the ZrCu chamber material, 
which was established experimentally at the ALRC facilities. Since the start 
of this contract considerable more data was made available from other sources 
and an effort was made to correlate these data for the two most promising 
chamber materials. 

Zirconium Copper 

Silver - Zirconium Copper 

I 

[ 

The result of this analysis indicates that the low cycle fatigue life is 
strongly effected by the environmental conditions. The data presented in 
Figure 315 and Figure 316 indicates the low cycle fatigue for these materials 
measured in air and in inert environments, indicating the testing in air to 
result in lower fatigue life than tests in inert environment by a factor of 
about 3. This fact is attributed to the oxidation within the fatigue cracks, 

when tested in air. 

f The real environment in LOX/hydrogen engine is superheated 
steam and free hydrogen and its effect has not been established to date, but 
it is speculated that the available data will bracket the actual environmental 
effects. The conclusion reached from this analysis is that the chamber life 
estimate based on the data in air is conservative. 

I 
I 
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Ill, E, 9, Major Component Design Description (cont.) 

d. Nozzle 

The expansion nozzle for the 10K engine comprises a 
large portion of the total engine envelope and weight, more so than was the 
case for the 25K engine. This is in spite of the fact that the same mate- 
rials, design type configuration, as well as cooling scheme is used. This is 
also in spite of the fact that 0.010-in. thick regenerative tube wall thick- 
nesses are used instead of 0.015-in. on the larger thrust engine. The 10K 
engine nozzle has a larger overall area ratio, and operates at a lower cham- 
ber pressure. Therefore, its length and weight are nearly equal to that of 
the larger nozzle.  Since the remainder of the engine is considerably smaller 
and lighter, the nozzle becomes a component of major importance to vehicle 
performance. Design specifications and concept are shown in Table CXI I and 

Figure 313, respectively. 

e. Thrust Chamber Thermal Characteristics 

The thrust chamber assumed coolant passage geometry is 
shown in Figure 317 for the 7,*  Cu chamber. This geometry was used to determine 
the chamber thermal characteristics. 

The pressure drop characteristics at full thrust opera- 
tion is shown in Figure 318 indicating *.he coolant sensitivity to pump dis- 
charge pressure and was used to obtain the feed system power balance. The 
coolant characteristics for throttling conditions are shown in Figure 319. 

The heat transfer analysis had the objective to define 
the coolant condition for meeting the 300 thermal cycle requirements. The 
result of this analysis is summarized in Figures 320 and 321 for the throat 
conditions and also includes the condition at the throat for off mixture 
ratio conditions at full thrust. Indications are that the chamber has more 
than adequate life at all operating conditions. 

The throttling conditions at MR ■ 6.0 are described in 
Figure 322 Indicating a rapid increase of chamber life with throttling. This 
indicates the capability to improve engine cycle life by simply directing the 
engine to a slightly lower thrust level. 

f.  Preburner 

The 10K engine preburner chamber is the same length and 
design/construction type as the larger, 25K unit.  Since the chamber is a heat 
-x lander, it, in common with the main injector, utilizes fewer ccolant 
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III» E, 9, Major Component Design Description (cont.) 

I 

passages of similar size to form a chamber of smaller flow area to contain the 
lower volumetric flow of preburner reactants. The total heat transferred to 
the oxygen and hydrogen coolants per lb per second is similar, to obtain the 
same thermal schedule. The injector, again is similar, containing fewer injec- 
tion orifices, arranged in the same pattern as shown for the 25K preburner 
injector. The preburner basic design specifications are given in Table CXIII, 
and depicted pictorially in Figure 314. 

g.  Igniter 

The igniter for the 10K engine main injector is identi- 
cal to that of the 25K engine in every respect. The reasons for this are that 
the ignition requirements are the same, both within the igniter chamber and in 
the thrust chamber. This is because the same propellants, mixture ratios, and 
start pressure schedules require the same igniter diameter and total heat 
generation rate. The basic design specification for the main igniter is shown 
in Table CXIV. 

t 
The 10K engine preburner igniter operates in the same 

manner as its larger counterpart. Therefore, the same exciter, electrode, 
and feed system is utilized in both preburners. 

h.  Turbopumps 

(1) Requirements 

The operational requirements fur the 10,000 lbf 
vacuum engine are identical to those of the 25,000 lbf engine with appropriate 
adjustments for the 10K flow and pressure schedule. 

(2) Design Selection 

(a)  Design Criteria 

The turbopumps for the 10K engine are based on 
the same structural criteria as used for the 25K turbopump. This criteria is 
summarized below: 

I 

F mp Impeller 

1600 ft/sec impeller maximum rated tip 
speed (Titanium) to achieve 300 thermal 
cycles. 

r 
! 
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Ill, E, 9, Major Component Design Description (cont.) 

2^   Turbine Rotors 

1860°R turbine inlet temperature to 
achieve 300 thermal cycles. 

1300 ft/sec turbine mean blade speed to 
achieve a disk design life of 10 hours. 
The burn mixture consists of one 
1000 second long burn plus eleven 40 

second long burns plus eleven 40 second 
short burns. 

Turbine blade root stress allowable value 
of 31000 psi (50% of 10 hour creep rup- 
ture strength). 

The design parameters used for the 10K turbo- 
pump are given in Table CXV and differ from the 25K design parameters in the 
areas tabulated below: 

Oxid. Fuel 

Max. RPM Ratio, Main/Low Speed 

Bearing DN - Low Speed Pump 

Number Stages - Main Pump 

Shaft Speed - Main Pump 

Internal Recirculation 
Allocated 

Turbine Bypass, Allocated 

Turbine End Bearing DN - 
Main 

25K 10K 25K 10K 

3.5:1 5:1 3.5:1 5:1 

215000 126000 343000 24000 

1-1/2 1-1/2 3 2 

50000 63000 80000 100000 

5% 7.5% 7% 15% 

4% 

1.5 x 10* 

17.5% 

1.2 x 10* 

4% 

2 x 10( 

6% 

2 x 10( 

The relative shaft speeds of the low speed pump 
were reduced for the 10K design to reduce their power requirements. The 10K 
fuel pump is designed with two centrifugal stages compared to the three stages 
for the 25K TPA design. The lower system pressure permitted the lower head 
generation with two stages while maintaining the impeller tip speed below 1600 
ft/sec. The 10K TPA design point shaft speed values were increased.  (Refer 
to the section below for design speed selection.) The pump allocated 
recirculation flow and the turbine bypass flow values were increased from the 
25K values because as pump sizes are reduced, the leakage area does not reduce 
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TABLE CXV 

10K ENGINE 

TPA DESIGN PARAMETERS 

Low Speed Pump Assembly 

NPSH, feet 

Thermodynamic Suppression Head, ft 

Mln. Ratio of Effect. NPSH, Run/Breakdown 

Suction Specific Speed, Breakdown 

Max. RPM Ratio, Main/Boost 

Specific Speed, Maximum 

Suction Diameter Ratio, Hub/Tip 

Tip Diameter Ratio, Exit/Suction 

Mean Diameter Ratio, Exit/Suction 

Turbine Drive 

Ratio Bearing Spacing/Shaft Diameter 

Ratio Turbine Overhang/Shaft Diameter 

Bearing Dn. 

Main High Speed Turbopump Assembly 

High Speed Inducer 

Thermodynamic Suppression Head, ft 

Min. Ratio of Effect. NPSH, Run/Breakdown 

Suction Specific Speed Breakdown 

RPM Ratio, Inducer/Main 

Specific Speed, Maximum 

Suction Diameter Ratio, Hub/Tip 

Tip Diameter Ratio, Exit/Suction 

Mean Diameter Ratio, Exit/Suction 

High Speed Main Pump 

Thermodynamic Suppression Head, ft 

Mln. Ratio of Effect. NPSH, Run/Breakdown 

Suction Specific Speed Breakdown 

Shaft Speed 

Number Stages 

Internal Recirculatlon, Allocated, X 

High Speed Main Turbine 

Type 

Number Stages 

Energy Extraction Means 

inlet Temperature, *R 

Mean Blade Speed, ft/lec 

Nozzle Angle 

Max. Diameter Ratio, Hub/Tip 

Mln. Diameter Ratio, Hub/Tip 

Inlet Manifold Mach No. 

Exit Manifold Mach No. 

Turbine Bypass, Allocated, X 

Power Transmission 

Turbine End Bearing Type 

Turbine End Bearing DN 

Pump End Bearing Type 

Pump End Bearing DN 

Oxid Fuel 

16 60 

Calc. Calc. 

1.87 1,87 

45000 45000 

5:1 5:1 

4000 4000 

0.4 0.3 

1.0 0.916 

1.1 1.054 

FFH* FFH* 

2.17 2.17 

3.17 3.17 

126,000 24,000 

Calc. Calc. 

1.87 1.87 

30000 30000 

1:1 1:1 

4000 4000 

0.512 0.515 

1.0 1.0 

1.1 1.1 

Calc. Calc. 

2.27 2.50 

10000 10000 

61,UÜÜ 100,000 

1-1/2 2 

7.5 15 

Axial Axial 

Impulse PI** 

1860 1860 

1100 1300 

15 20 

0.90 0.90 

0.85 0.85 

0. J 0.3 

0.5 0.5 

17.5 6 

Dplx Ball Dplx Ball 

1.26 x 10 x 10 

Dplx Ball   Dplx  Ball 

1.07 x 10 2 x 10 

I 
I 

•rrH - Full riow Hydraulic 

■•PI - Pressure Compounded, Impulse 
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Ill, E, 9, Major Component Design Description (cont.) 

proportionately. The particularly large increase in the fuel pump recircu- 
lation resulted from the miniaturization affects and from reducing the number 
of pump stages. The reduction of pump stages increased the pressure drop 
across the hydrostatic seals which in turn increased the leakage flow. 

(b) Shaft Speed Determination 

The design point shaft speed for the fuel main 
turbopump was established at 100,000 RPM. The relationship of allowable pump 
shaft speed and TPA weight to available NPSH are shown in Figure 32". The fuel 
TPA shaft speed was established at 100,000 RPM to limit turbine blade root 
stresses to 31,000 psi. Increasing shaft speed above 100,000 RPM would reduce 
the turbine diameter. This action would require an increased blade length 
which would increase turbine blade root stress above the limiting 31,000 psi 
value. Pump operation at 100,000 RPM requires 123 feet NPSH and results in 
a weight value of 21.5 pounds. This NPSH value exceeds the specified minimum 
of 60 feet. Pump operation with 60 feet NPSH would permit a maximum pump 
shaft speed of 81,000 RPM with a resulting turbopump weight of 44.5 pounds. 
A low speed pump weighing 1.8 pounds will permit the 100,000 RPM main pump 
design operating point giving a combined boost pump plus turbopump weight of 
23.3 pounds as compared to a 44.5 pound TPA without a low speed pump. The 
weight values noted above were obtained from a computerized TPA weight program. 
These computed values while differing from the values computed for the actual 
TPA design, do provide meaningful weight trends for trade studies. 

The oxidizer TPA shaft speed was established 
at 63,000 RPM.  This value was selected tc equalize the shaft spin up time 
since the oxid and fuel turbopumps operate from a common gas generator. 
Increasing the design shaft speed would reduce the diameter of the turbine 
which in turn would reduce its rotor moment of inertia (turbine rotor is the 
predominate inertia component) and reduce the spin up time. The turbine mean 
blade speed was established at 1100 ft/sec, a compromise value to achieve the 
desired spin up times, and to adjust turbine rotor weight to achieve shaft 
critical speed values that fall between the 2nd and 3rd critical speeds modes. 

The relationship of oxid pump allowable shaft 
speed and resulting TPA weight to available NPSH are shown in Figure 324. Pump 
operation at 63,000 RPM requires 65 feet NPSH and results in a weight value of 
16 pounds. This NPSH value exceeds the specified minimum of 16 feet. A boost 
pump weighing 3.5 pounds will permit the 63,000 RPM main pump design operating 
point giving a combined boost pump plus turbopump weight of 19.5 pounds as com- 
pared to a 153 pound TPA weight without a boost pump. 

] 
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Ill, F, 9, Major Component Design Description (cont.) 

(c) Fuel TPA Candidate Configuration 

Six configurations cf the fuel turbopump were 
considered in the fuel TPA selection. These six candidates are shown by con- 
ceptual sketches in Figures 325 through 330. A turbopump with a gear driven 
oxidizer pump was analytically evaluated where the oxidizer pump is driven by 
the fuel pump turbine through a speed reducing gear box.  The analysis showed 
that a slight increase in cycle efficiency would be achieved as shown in 
Figure 299 by a slightly lower power balance pressure (fuel pump discharge 
pressure). This configuration was selected as an alternate configuration and 
is presented in Figure 330. From the six TPA candidates, Figures 325 through 
329, concept No. V, (Figure 328) was selected. The selected concept positions 
the shrouded impeller front to back with the pump end bearing located between 
the two impellers. This concept was selected on the basis that it: 

1 Eliminated the tight axial clearance 
requirement. 

2 Permitted the high speed inducer to be 
driven by the impeller shroud (the full 
flow hydraulic turbine drive concept 
necessitates a shroud driven high speed 
inducer), and 

3^   Permitted a first stage impeller design 
with a low hub to tip diameter ratio. 

The selected concept has the disadvantage that LH2 will leak past the hydro- 
static seal from the high pressure area of the first stage impeller to the 
suction of the first stage. This leakage flow will be heated as a result 
pump inefficiency and where this leakage flow enters the low pressure area of 
the 1st stage suction, some propellant could flash to vapor. Therefore, design 
consideration might be given to (1) adjusting pressure values where the leakage 
flow re-enters the main stream and to (2) adjusting the through flow areas to 
accommodate the increased volume flow resulting from the presence of vapor. 

The six candidate TPA concepts including the 
selected concept No. V, are compared and rated from 1 (selected) to 6 (least 
attractive) in Table CXVI.  Concept VI (front to back unshrouded impellers - 
bearing between stages) was a close second and was rated No. 2 on the basis 
that the unshrouded impeller concept did not lend itself to the full flow 
turbine driven boost pump drive in that it does not have a shroud to drive the 
hi>*h speed inducer. 

I Page 782 



M 
a 
« 

I 
o u 
I 

o 
ca 
(0 

4J 
o. 
a> o 
c 
o 
U   (0 

u 

I* M M 
3 
H -O 

a) 

«   0) ° £ 

CM 
CO 

4) 

3 
00 
i-l 

Page  783 



I 
I 
i 
I 
I 
I 
t 
I 
I 

I 
I 
i 

< 

I 

O 

M 
I 
O 

■u 
I 

O 

a. 
01 
o 
c 
o 

CJ 

B- ai 
B u 
3 <u 
O.H 
O -H 

a* H  M 

H T3 
0) QJ 
3 T3 
fc 3 

«2 
O JC 
•H w 

vO 
CM 
m 
0) 
u 
3 
00 

I 
Page  784 



o 
M 

I 
o 

u 
a o 
u 

■u 
o. 
0) 
u 
§ o 
tea 

u 
a> an 

O  rH 

2^ 
•-) -a 

O 
*  u 
H  CO 

CM 
C> 

3 
00 

Page 785 

1 



I 
I 
I 

I 
I 

I 
I 
I 

I 
i 
I 

! 

u 
ffl 
« 

I 
o 
4J 

I 
4-1 

e 
o 
u 
fa 

01 
O 
c 
o 
u w 
a tu 
g H 

o a 
J3 E 
U M 
3 
H -a 

<u 
-I T3 
0) 3 
3 O 
fa h 

^ V) 
o c 

ao 

a» 
3 
00 

I 
I 

Page  786 



':: 

JA 
O 03 
cd <u 
i cd 
O 4J 

a 

B 
43 

>   CO 
00 

• Ö 
■U TH 

o. ü 
ID   cd o m 
(-!   CO 
Ö 
U    I 

rue 
M 
CD 

P-r-l 
O H 

Si- 
H M 

.H T3 

3 3 
O 

© j: 
iH C/> 

CM 
en 

i-i 
3 
00 

Page 787 



I 
I 

I 
I 
I 

i 

! 

to 
CU 
00 
Cd 

w 
c 

2 
PQ    0) 

I 
CD 

^    Ml 

> a 
«  M 

4J    (0 
Ou 0) 
CU PQ 
O 

C o u 
fa 

I 
o 

■U 
I 

o 
Cd 

P. <u 

^  M 
3 
H T) 

CU 
H na 

fa   M 
, JS 

o e 

o 
CO 

CU u 
3 
00 

I 
I 

Page 788 



TABLE CXVI 

FUEL TPA CONCEPT EVALUATION 

Fuel TPA 
Concept 
Number Description 

Back to Back Unshrouded 
Impellers - Bearing between 
High Speed Inducer and 
First Stage Impeller 

Advantages 

Off Setting Pump Axial 
Thrust-First to Second 
Stage. Leakage of Heated 
High Pressure - Vapor 
Entrained LH2 into Suction 
of First Stag« Impeller 
Eliminated. 

Disadvantages 

Large Hub Ratio First Stage 
Impeller.  Bearings between 
Inducer and 1st Stage 
Impeller preclude shroud 
driven high speed inducer. 
Tight axial clearance 
required. Increase 
passage length and complexity. 

Rating 

II 

III 

IV 

VI 

Back to Back Shrouded 
Impellers - Bearing between 
High Speed Inducer and First 
Stage Impeller 

Front to Back Shrouded 
Impellers - Bearing between 
High Speed Inducer and First 
Stage Impeller 

Front to Back Unshrouded 
Impellers - Bearing between 
High Speed Inducer and First 
Stage Impeller 

Front to Back Shrouded 
Impellers.  Bearing between 
Stages 

Front to Back Unshrouded 
Impellers - Bearing betvjen 
Stages 

Off Setting Pump Axial 
Thrust - First to Second 
Stage. Tight Axial 
clearance not required. 

Tight Axial clearance 
not required. 

Leakage of Heated 
High Pressurs - Vapor 
Entrained LH2 into 
t-uction of first stage 
impeller eliminated 

Tight Axial clearance 
not required.  Shroud 
driven high speed 
inducer feasible. 
Small Hub Ratio First 
Stage Impeller 

Leakage of Heated High 
Pressure - Vapor Entrained 
LH2 into Suction of First 
Stage Impeller eliminated. 
Small Hub Ratio First 
Stage Impeller 

Large Hub Ratio First Stage 
Impeller.  Bearing between 
Inducer and 1st Stage 
Impeller preclude shroud 
driven high speed inducer.      6 
Leakage of Heated High 
Pressure - Vapor entrained 
LH2 into suction of first 
stage. Increased passage 
length and complexity. 

Large Hub Ratio First Stage 
Impeller.  Bearing between 
Inducer and 1st Stage 
Impeller preclude shroud        , 
driven high speed inducer. 
Leakage of Heated High 
Pressure - Vapor entrained 
LH2 into suction of first 
stage. 

Large Hub Ratio First Stage 
Impeller.  Bearing between 
Inducer and 1st Stage 
Impeller precludes shroud        3 
driven high speed irducer. 
Tight axial clearance 
required. 

Leakage of Heated High 
Pressure - Vapor Entrained 1 
LH2 into suction of first (selected 
stage. concept) 

Unshrouded impeller precludes 
shroud driven high speed 
Inducer. Tight axial 
clearance required. 
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(d) Oxidizer TPA Candidate Configurations 

Two configurations of the oxidizer turbopump 
were considered in the oxidizer TPA selection. The two candidates are shown 
by conceptual sketches in Figures 331 and 332.  Concept No. I has a one and 
one-half main stage and Concept No. II has a single main stage.  Concept No. I 
with a one and one-half stage pump uses the first stage to raise the pressure 
level of the oxidizer to that required at the injector of the secondary com- 
bustor. The one-half stage then receives approximately 15% of the oxidizer 
flow and increases its pressure level to that required at the injector of the 
primary combustor. Concept No. II with a single stage pump raiser the pres- 
sure level of the total oxidizer flow to the high pressure level required at 
the injector of the primary combustor. The pressure level of the oxidizer 
that is going to the secondary combustor (85% of the flow) is reduced to the 
pressure required at the injector of the secondary combustor. This throttling 
of pressure in the oxidizer circuit which is an internal loss in the propellant 
feed systems, does not permit a system design with a thrust chamber pressure 
of 1250 psia. Therefore, Concept No. I which does have the capability of 
achieving the desired 1250 psia thrust chamber pressure was selected. 

(e) Low Speed Pump Drive Candidates 

The low speed pump drive candidates considered 
for the 25K engine TPA were reconsidered for the 10K engine TPA's.  Two of the 
six candidates, the full flow hydraulic turbine and electric motor drive, were 
rated 1 and 2 in that order and were evaluated in greater depth. Two electric 
motor drive concepts permitted tank mounting of the boost pumps and with a 
separate electric motor drive, these pumps would also be used in bleeding the 
main pumps. The shaft power requirement, 6 for the oxidizer and 3.3 HP for the 
fuel boost pumps, is sufficiently high that the electrical supply system weight 
and complexity outweigh the advantages of electric motor drive. Therefore, the 
full flow hydraulic turbine was selected for the 10K engine turbopumps. 

(f) Materials 

The materials selected for the 10K engine fuel 
and oxidizer turbopumps are the same as selected for the 25K. engine turbopumps. 
A complete discussion of the rationale of material selection is included in 
Section III,B,2,g. 
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Ill, E, 9, Major Component Design Description (cent.) 

(3) Description 

(a) Fuel Turbopump 

1        Assembly Description 

The fuel turbopump shown in Figure 333 
consists of a high speed main turbopump and a low speed turbopump.  The 
low speed turbopump consists of a low speed inducer and a full flow 
hydraulic turbine mounted to a common shaft. Propellant lubricated ball bear- 
ings support the shaft. The full flow hydraulic turbine is located between 
the high speed inducer and the first stage pump of the high speed main turbo- 
pump. The high speed main turbopump consists of a high speed inducer, two 
stage centrifugal pump and a two stage turbine mounted to a common shaft. 
Propellant lubricated ball bearings support the shaft. The design of the fuel 
turbopump assembly is almost identical to that of the 25K engine with appropri- 
ate scaling factors. Consequently the appropriate section relative to the 
25K engine constitutes a design description for the 10K engine components as 
well as the 25K engine components. 

The component weight breakdown for the 
fuel turbopump is included in Table CXVII. 

(b) Oxidizer Turbopump 

1 Assembly Description 

The conceptual design of the main oxi- 
dizer turbopump is shown in Figure 334 with a low speed inducer upstream of the 
main pump which is driven by a " full flow" turbine located between the high 
speed inducer and first-stage impeller. The main pump is a "stage and a half" 
design with the first-stage discharging 85% of the flow to the secondary 
injector and 15% to the half-stage which discharges its flow to the primary 
injector. The impellers are shrouded to minimize tolerance requirements for 
tight axial clearances and to provide biao loads for the single acting thrust 
balancer. The pump is driven by a single-stage partial-admission turbine. 

As is the case with the fuel turbopump 
assembly the design similarity of the 10 and 25K oxidizer turbopump assemblies 
make it possible to refer to Section III,B,2,g for a description of the 10K 
design. The component weight breakdown for the oxidizer turbopump is included 
in Table IV. 
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TABLE CXII 

10K OOS TURBOPUMP WEIGHT BREAKDOWN 

Low Speed Turbopump - Pounds 

Impeller 

Shaft and Bearing Inner Race 

Hydraulic Turbine 

Housing and Bearing Outer Race 

Oxidizer Fuel 

0.17 0.20 

0.26 0.28 

0.10 0.13 

1.55 1.63 

Total 2.08 2.04 

Main Turbopump - Pounds 

Inducer 

Impeller(s) Main 

Impeller (Half Stage) 

Shaft and Rotating Elements 

First Stage Turbine Rotor 

Second Stage Turbine Rotor 

Pump Housing and Power Transmission Housing 

Turbine Nozzle Assembly 

Total 

0.18 0.23 

0.20 1.20 

0.08 - 

1.85 1.20 

0.75 0.42 

- 0.42 

18.31 14.98 

2.84 2.10 

24.21 20.55 

Low Speed + Main Turbopumps - Pounds 

Total 26.29 22.59 
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Ill, E, 9, Major Component Design Description (cont.) 

i.  Control Valve 

The selection process and design features associated 
with the 10K engine control valves are identical to those of the 25K engine 
design. Consequently the 10K engine control valves are scaled down versions 
of those discussed in Section III.B. The flow diameters and weights of the 
10K engine control valves are as follows: 

Fuel Pump Discharge Valve 

Oxidizer Pump Discharge Valve 

Preburner Oxidizer Valve 

Fuel Start Bypass Valve 
(Turbine Bypass Valve 
same Config.) 

Figures 335 through 337 show three of the valve concepts, 
Conceptual drawings of the fuel start bypass and turbine bypass valves are 
not included because they will be the same configuration as the oxidizer 
discharge valve. 

Diameter, in. Weight, lb 

0.75 5.32 

0.75 5.75 

0.375 2.5 

0.75 5.75 
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Ill, Technical Discussion (cont.) 

F.  ENGINE TECHNOLOGY REQUIREMENTS 

In course of designing the OOS/Tug propulsion system many 
technology requirements became evident. Some of these technologies are basic 
and a function of the engine design and operating requirements, others exist 
because of uncertainty of the selected approach. 

To differentiate in the level of need each new technology required 
was tagged with a priority, priority 1 being the most needed. The listing 
shown in Table CXVIII includes all propulsion technologies grouped by 
components. 
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