
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD885270

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors;
Administrative/Operational Use; MAR 1971. Other
requests shall be referred to Air Force Aero
Propulsion Lab., Wright-Patterson AFB, OH
45433.

AFAL ltr 24 Sep 1973



w
AFAL-TR-71-ni

o
i>

lo
OD
00
A

■ I
a

a lC

SUDAAR No. 418

STANFORD UNIVERSI

CENTER FOR SYSTEMS RESEARCH

The Homicidal Chauffeur - A Differential Game

by .
Antony W Merz

^idance l
March 19

H Laboratory

This document is subject to special export controls and each transmittal 
to foreign governments or foreign nationals may be made only with the 
prior approval of AFAL(AVNE).

Air Force Aero Propulsion Laboratory 
Air Force Systems Command 

Wright-Patterson Air Force Base, Ohio



NOTICE 

When Govenunent arawin.s. specifications, or other cMa are used for any purpose 

the   United  states   uovci formulated, furnished, or in 
,nH fhP fart that the Rovernment may have formuiatea, 

whatsoever; and the fact tnai me b regarded 
1.0H »ho «aid drawincs, specifications, or other data, is not 10 b 

patented Invention that may In any way be related thereto. 

f 

Jlrattons. contractua! options, or notice on a specific document. 



AFAL-TR-71-111 

Department of Aeronautics and Astronautics 
Stanford University 

Stanford, California 

THE HOMICIDAL CHAUFFEUR - A DIFFERENTIAL GAME 

by 

Antony W. Merz 

This document  is subject  to special export 
controls and each transralttal to  foreign 
nationals may be made only with the prior 
approval  of AFALOWNE). 

SUDAAR  No.   418 

March 1971 

This work was performed   in association with research sponsored 
by the Air Foi-ce under Contract F33615-67-C-1245 / 

and Contract  F33615-70-C-1637 



ACKNOWLEDGMENTS 

I express my most profound gratitude to Professor Breakwell for his 

direction, patience, and unflagging enthusiasm during the course of this 

research.  Many of the results of the work would certainly not have come 

to light without his extraordinary mathematical perception.  I also thank 

Professor Bryson and Professor Franklin for agreeing to serve as readers 

and for the interest and understanding they have shown in this work. 

Fellow doctoral candidates Pierre Bernhard and John Dixon were frequently 

helpful during the study, and I thank them both. Further, 1 wish to 

record my gratitude to my wife, Peggy, who typed several versions of the 

manuscript, and who provided encouragement and solace when they were 

needed.  Mrs. Diana Shull typed the final version of this document with 

perseverance and skill, for which I am grateful. 

Financial support was provided under Air Force Contract No. F33615- 

67-C-1245 and F33615-70-C-1637, 

iii 



U-< :% 

X2M 

BLANK PAGE 

^_.. _ 

•^^öSSÄBI MIM«! 



UNCLASSIFIED
.n* . i. I.tssifu fl

•■..V

DOCUMENT CONTROL DATA ■ R & D
f v« ’irn

Stanford University
Department of Aeronautics and Astronautics 
Stanford, California 94305

J*. C •• • •.• r.

UNCLASSIFIED

THE HOMICIDAL CHAUFFEUR - A DIFFERENTIAL GAME

r • •r.; jM '•I- iv»
>tarch 1971 Scientific Interim

I Antony W. Marz

- - - - - - - - -

March 1971

F33615-67-C-1245 & F33615-70-C-1637

5102

*L NO
113

- r. r.,.j *. e c rr r- - r

SUDAAR No. 418

Task No. 510215
AFAL-TR-71-111

This document Is subject to special export controls and each 
transmittal to foreigr governments or foreign nationals may be made only with the 
prior approval of AFAL(AVNE).

Air Force Avionics Lab 
Wrlght-Patterson Air Force Base 
Dayton, Ohio 45433

■^The homicidal chauffeur** Is the name of a pursuit-evasion differential game 
originated by Isaacs in his book. Differential Games. In this game, the chauffeur chases 
'a slower pedestrian In an unbounded parking lot. The chauffeur's control is his turn 
rate, bounded In magnitude, and the pedestrian's control Is his velocity direction, 
which can be changed at will. The pursuer and evader seek respectively to minimize and 
maximize the capture time, when the radial separation becomes less than a known capture 
radius. The two equations of relative motion and the terminal conditions can then be 
written In terms of the two constant parameters of the game: 1) the speed ratio, it) thd 
ratio of capture radius to pursuer's minimum turn radius. The solution to the problem 
(consists In finding the optimizing strategies of both players as functions of the 
position relative to the pursuer. These "mln-max" strategies are specified In terms 
of the local position variables and the local components of the gradient in the optimal, 
time-to-go, values of which are known at the termination of the game. The equations of^ 
.relative motion and the gradient equations are then integrated retrogr^slvely from 
termination, so as to fill the relative space with optimal paths which satisfy all of 
the necessary conditions for the solution. The retrogressive solution is made dif- 
•ficult by the presence of certain "exceptional" lines in the relative space. These 
:lines border the various regular regions in the relative space, and In each of these 
‘regions the optimal paths take a specific form. The exceptional lines themselves may 
or may not be trajectories, and they are often characterized by discontinuities In the 
igradlent vector and in one or both of the controls. In addition to the exceptional 
{lines discovered by Isaacs (e.g., the "barrier", across which the iime-to-go Is dis- 
^contlnuous, the "universal line", and the "equivocal line"), two new types of lines are

Bn I-Ka n< ms *'su4 1 IT
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13.   Abstract   (continued) 

Furthermore,   "safe-contact" motion,   for which the evader maneuvers so as  to touch but 
not  penetrate  the capture circle,  is found to be sometimes optimal, and  "dispersal 
lines"  for both pursuer and evader are encountered,  as  is a new barrier.    Also,   cer- 
tain details  in the preliminary results reported at the 1* IntemationalDifferentialGame&m- 
terence  in  1969 have been corrected.       Each type of exceptional line  (e.g.,   focal  line, 
evader's dispersal line,  etc.)   occurs only for parameters in certain regions of  the 
parameter space.    More than twenty such regions are  found to exist,  each of which 
corresponds   to a different  configuration of exceptional  lines.     The results  obtained 
are  believed  to provide a complete solution to the game  for all combinations of  the 
two parameters. j 
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Chapter I 

INTRODUCTION 

The homicidal chauffeur" is a pursuit-evasion differential game, 

first described by Isaacs in his epochal book, Differential Games (Ref. 

1). As one of the first physically motivated pioblems in this emerging 

field of optimization, it has both historical and mathematical interest. 

The game is easily described and visualized, pitting a chauffeur (the 

pursuer,  P ) with a finite minimum-turn radius,  R , against a slower 

pedestrian (the evader,  E ) with unrestricted turn radius.  The pursuer's 

speed advantage is partially offset by the evader's agility; these fea- 

tures provide the game with its competitive aspects. 

As suggested by the name of the game,  P wishes to minimize the 

capture time,  defined as the time when the mutual separation becomes 

less than the capture radius,  i .  Simultaneously,  E understandably 

seeks to maximize this time or, if possible, to avoid capture forever. 

The differential game thus represents a generalization of the minimum- 

time optimization problem in that there are two opposing controls, both 

of which Influence the relative motion and the resulting optimal or 

"min-max" capture time.  Much of the interest and difficulty of the game 

lies in the fact that the optimal controls are not always unique, and 

that the form taken by the optimal solution to the game depends very 

strongly upon the speeds of the players and the maneuverability of P . 

More than 20 qualitatively different forms of the solution will be found 

to be possible, these forms depending on the relative capabilities of 

the players.  The unexpected variety and complexity of the solutions to 

the problem support and justify certain generalizations regarding dif- 

ferential games made by Isaacs in Ref. 1. 

1.1 Assumptions and Definitions 

The game Is visualized as taking place on a horizontal plane.  When 

suitably normalized, the differential equations giving the relative 

position of the players depend on two parameters which are the speed 

ratio,  7 , and the ratio of capture radius to P's minimum turn radius, 

1 



ß   .     This  latter parameter is  used  in defining the  terminal  conditions of 

the  game. 

An  important  problem  in a   pursuit-evasion game  is  the determination 

of   those  parameters for which capture  is  possible only  from starting 

points   inside  a  certain boundary,   the evader otherwise avoiding capture 

forever,     A  subsidiary problem arises  when capture is  known  to be possi- 

ble from all   starting points,   but for which there exist  loci  of  discon- 

tinuity  in  the optimal  time-to-go.     In Chapters  II and  III,   these    bar- 

riers"  are  shown to exist  for certain ranges of  the parameters. 

When the parameters and relative position are such that capture is 

possible,  a solution to the game consists in specifying the optimal 

strategy of  each player as  a  function of    E's    position     (x,y)     relative 

to    P  .    These "min-max" strategies are: 

i)    For    P ,   the rate of  turn,    cp(x,y)  , with    |cp|  < 1   , 

ii)     For    E  ,   the velocity direction,     t(x,y)   , 

and when capture is possible,  each relative position is associated with 

an optimal  positive time-to-go,    V(x,y)   .    The optimal strategies  (which 

are not necessarily unique) are such that,  e.g.,   if only    E    deviates 

from his optimal  strategy for  a  finite  time,  capture occurs  sooner than 

V(x,y)   .    Likewise,   if only    P    deviates from optimality,  capture must 

occur later  than    V(x,y)   .    This  is   the source of  the "saddle-point" 

terminology  used  in differential-game  theory. 

The important assumptions of the game are: 

i)    Both    P    and    E    know the relative position exactly, 

ii)    Both  players  know the  speeds,   the capture radius,   and    P's 

minimum  turn radius. 

Other assumptions which represent departures from "reality"   (as  in,  say, 

air-to-air combat games)  are evident from the previous discussion. 

Treating the speeds as constant,   forcing the motion to occur in a plane, 

and ignoring any response-time lags  in the dynamics of    P    and    E    are 

the most obvious of  these. 



It  Is appropriate to state here that  the complexity  and variety of 

the solutions  to this differential  game were underestimated for  some 

time.     In fact,   early in the study of  this  game,   it was mistakenly be- 

lieved  that little remained  to be learned from it.    Attention was  conse- 

quently directed  to generalizing  the dynamical model,   the  third-order 

game of  two cars" being the most  natural  generalization.     Certain dif- 

ficulties  in this  third-order problem raised doubts about our under- 

standing of  the simpler homicidal  chauffeur game.    These  doubts  proved 

to be well founded,   and led  to the decision to find  the complete  solu- 

tion to  the present game for all  values of  the parameters. 

The pioneering work by  Isaacs  describes a  treatment of   the problem 

which is  complete only for certain rather narrow ranges of   the  two  para- 

meters.     In the course of his researches  Into this  problem,  various  loci 

in the relative space were found,   across which  either or both of   the 

strategies change.     Specifically,   a  barrier and an equivocal  line were 

found  to enclose "turn-away"  regions  in the  relative space,   and   the y- 

axis was found   to be either a universal  line or a  pursuer's dispersal 

line.     Loci of   this  type,  which separate two qualitatively distinct 

families of  relative trajectories,   and which may or may not be  trajec- 

tories  themselves,  will be termed  "exceptional" lines.    As will  be made 

clear by later results,   Isaacs'   terminology "singular line" has  an un- 

desirable connotation to most control  theoreticians,   and  is not  suffi- 

ciently broad  in meaning.    The present choice is made to  accommodate as 

large a   class of  such arcs as possible,   and  its definition  is  therefore 

intentionally  general. 

In the effort  to extend  the parameter space to its limits,   several 

new types of  exceptional  line were found  to be necessary.     Two of   these 

lines are apparently new,  not only  to the specific  game at  hand,   but  to 

the theory of  differential  games.     The others  are found  to occur  in 

other games described  in Ref.   1.     Each  type of  exceptional   line occurs 

only for parameters in certain areas of   the parameter space,  but all 

such areas appear to have been found.     Consequently,   a  complete  solution 

to the  game is  believed known,  for all  values of  the  parameters.     The 

startling discoveries made at  intervals during this  study,   on the other 



hand,   discourage presumptions  of  this type.    That  is,   there may yet be 

novel  types of trajectories or strategies which might occur for certain 

isolated  ranges of  the parameters.    So many cases have been analyzed 

numerically in the course of this work,  however,   that this  is considered 

unlikely.    That is,   the deformations in the trajectory configurations 

are found to be smooth and continuous with changes in the parameters,  so 

that smooth qualitative changes  in the configurations can be observed 

whenever a parameter locus is crossed.    These loci are actually the end 

result of  the study,  but  there is no proof  that the loci are complete. 

1.2     Equations of Motion and General Solutions 

The pursuer's location in the playing field is given  (Fig.  1.1) by 

solving 

x    = sin 9    = so  * 
p P P 

y   = cos e  = ce„ (1) 

'P p       P 

e   - <P .   I<pl < ! • 
p 

These equations effectively normalize the dimensions of  length and time, 

as    P    has been given unit speed and a maximum turn rate of unity.    The 

position of  the slower evader is given by solving 

x   = yae. 
e e (2) 

K = ^e  ' 

where 0 < 7 < 1 •  " E'* contro1 is taken " * = ^P ' "^ ^ 

relative coordinates defined as in Fig. 1.1 by 

x = (xe-xp)cep - (ye-yp>% 

y = (vV8ep 
+ CVyp>cep ' 

the relative position     (x.y)     is given by the solutions  to: 

We,   as throughout  the thesis,    s    and    c    are used as abbreviations 

for sine and cosine. 



X = -<py +

y = -1 + (px + 7c^ .

FIGURE 1.1. P and E in Fixed and Relative 
Coordinate Systems

In retrogressive time, dr = -dt , and the equations become

* = (py - 7si|f

(4)

y = 1 - (px - 7CV ,

where the superscript circle denotes the derivative with respect to the 

dimensionless time-to-go, t .

When capture is possible, each relative position (x,y) has asso­

ciated with it a positive constant, the optimal time-to-go, V(x,y) , 
which is to be found by postulating optimal play from that point on.

Its total time rate of change can be written in terms of its gradients.



dV 
- = min max [V^ + Vyy] = -1 . (5) 

This is the "main equation" of Ref. 1, and using (3) it may be expressed 

as the "Hamiltonian," or 

H = min max   [-V    - rp(V y-V x)  +  7(V s\|t+V c\|r) ] + 1  = 0  .      (6) 
cp      \)f y x      y x y 

This  "min-max"  operation gives  the optimal  strategies  in terms  of  the 

(known)  position     (x,y)     and   (unknown)   gradients     (V  ,V )   , x    y 

tp = sgn S = sgn(V y-V x) x       y 
(7) 

S^L _ vji _      1 
Vx = Vy =v^   " 

P is thus to turn hard left or hard right, unless the switch func- 

tion S = 0 , and E is to run normal to the contours of constant time- 

to-go. Whenever S has a constant sign and the contours of constant V 

have continuous second partial derivatives, the corresponding region is 

termed "regular." In these regions, the partial derivatives of the main 

equation with respect to    x    and    y    must vanish.    Thus,  for example, 

^ [Vxi+Vyy]   = Vxxx + Vxyy + Vxix + Vyyx = 0 . 

The first two terms on the right equal  the time derivative of    Vx ,   and 

the  last  two can be evaluated  by reference  to   (3).     Repeating this opera- 

tion with respect  to    y    gives the gradient  equations as 

V    = -äH/öx = -mV 
x ^ y 

(8) 

Vy = -ÖH/Öy  = (pVx  , 

where    cp = ±1   .     Note  that  since    H    is  stationary with respect  to     * , 

the  partial  derivatives  are most  easily obtained  by  treating    t .   as  well 

as    cp    and     (V  ,V  )   ,   as  fixed. y x'   y 



In retrogressive   time,   and for general   initial   conditions,   the solu- 
tions   to   (8)   are 

\ = Jt    +Vy    S(^T) 
V     o        Jo 

v = fF y       V   Xo 
2 

+ V      cCt +'4)T) 
yo        0 

(9) 

We have found  that,  when    S >0    or    S < 0  ,     E's    optimal  direction 

in relative space varies linearly with time,      ♦' =  •;*    + -;T  .     Since    P's 
o 

rate of  turn is    CO  ,   this means  that    E's    motion  is  rectilinear  in real 

space,   and that  the linear  time variation is  due  to    P's    turn straleRy. 

The retrogressive  solutions to  the state  equations   (4),  over any 

time  interval  during which    cp    is constant   (  S    of  constant  sign)   ure 

x = md-cx)  + x CT + cpy ST -  yis(.-ii -KPT) o o o 

y  =   (1-cpx   )ST  +  y  CT  -   7TC(\|(   -Kpr)  , 
(10) 

where  the controls    y       and    cp    are given by   (7)  in  terms of  the  gra- 

dients     (vx0>vy0)   •    Determination of  the gradients,   as functions of   the 

relative position     (x,y)   ,   is   the most important  source of  theoretical 

difficulties  in the problem,   since  these functions  used  in  (7)  essen- 

tially yield  the feedback-solution to the problem. 

The approach  taken in  the  investigation of  the  game is the same as 

that  used  by  Isaacs  in  Ref,   1.     That  is,   terminal   conditions  for     x    and 

W    are found,   in  terms  of  the  parameters    ;*    and     7  ,   which  lead  to 

terminal values for the controls    \)/    and    p  .     Then  the retrograde solu- 

tions   (10)  are used  to find where these  terminal  points must have come 

from.     Since any  point  outside  the capture circle is  a   possible initial 

condition,   the intention is  simply that of  filling the entire space with 

retrogressive paths.     We will  lind,  however,   that  for any choice of para- 

meters,   the space  is  subdivided by exceptional  lines   into various  regular 

regions,  in each of which   (10)   is satisfied.     The exceptional  lines 

which border the regular regions have one or more of   the following dis- 

tinguishing features: 



i)     The  tlme-to-go  Is discontinuous  across  the line; 

ii)     The  gradient in  the  time-to-go Is  discontinuous  across  the 

line   (as   Is   therefore     E's     strategy); 

ill)     The  switch  function on  the  line has   the value    S = 0  ; 

iv)     The  line  Is  the capture circle Itself. 

These lines may or may not be optimal paths themselves. Certain addi- 

tional necessary conditions must be satisfied by the exceptional lines 

which,   together with  the main equation,  will   guarantee global  optlmality. 



Chapter II 

CLASSICAL RESULTS 

Isaacs'   analysis of   this game,   as  given in Ref.  1,   begins with  the 

determination of   the "usable part" of   the capture circle.     This  allows 

the specification of  the  strategies     (cp.f  )     and   the terminal  conditions 

(xoiyo)     in the solutions  given by   (10)  of   the previous  section.    Work- 

ing retrogressively from  termination,   he  then shows how  to fill   the 

(x,y)    space with  trajectories,   using the main equation and its  deriva- 

tives.     Implicit  in this  analysis  is  the restriction of  parameters   to 

certain regions in  the  parameter space,  which will  be specified  below. 

But these "classical" results,   apart from  their many Interesting fea- 

tures,   provide a  foundation of  conclusions which will ultimately lead  to 

solutions in adjacent areas of  parameter space. 

2.1    One-Stage Game 

The "usable part" of  the capture  circle,  on which the optimally- 

played game must  end,   is   easily determined  by writing the main equation 

in polar coordinates, 

min max[V r + V 6] = -1 n) 

where 

r = -ce + 7c(^-e) 

e = -if +   [s9 + 7s(t-0)]/r 

Since termination  is  defined  independent of   the  terminal angle    e     , 
o 

the terminal value of the angular adjoint V  must be zero, while the 
e 

radial adjoint at  this  time is given by substituting for    f    in   (1)   and 

performing the indicated  maximization: 

max V  [-00    + 7c(t-e  )] = V   (/-ce   )  = -1   . (2) ^       r o       '     '    o   ■' r o 

This brief analysis has provided three important results: 



V 
X 

= v se 
r 

+ V1 •)ce = ce0-7 

V 
y 

= v ce r 
- (V^, •}*0 = ^o 

ce-r 

i) At termiiuition, when r = ß , P's control (turn rate) Is 

irrelevant, und E's control (direction) is radially out- 

ward,     \|/  - ö     ,   US  suggested  by  intuition; 

11)     The  terminal   udjolnts  are    V     = 0   ,     V    = ——- > 0   ; 
0        r  C0O""/ 

ill)  The terminal value of the angular coordinate must satisfy 

It) I < ö   i where the "usable part" is defined by the half- 
UP A    -1 

ancle 0  = cos y  , 
up 

At the terminal location r = ß ,  0=0  , we first find the switch 

function which determines P's strategy, according to (7) of Sec. 1.2. 

The cartesian adjoints are 

80 

(3) 

With these terminal values for the gradients, it Is easy to verify that 

the switch function is the angular gradient, and therefore it vanishes. 

The retrogressive  time-derivative,   however,   is 

se 
§ . V    = —2-    . (4) 

x    ce -7 o 

which means that ? = sgn S = 1 , for 0o > 0 ; hence P is turning 

toward E    just before termination. This result has an obvious intui- 

tive interpretation.  More generally, we note that, according to (7) of 

Sec. 1.2, whenever S = 0 ,  E's velocity is radial;  E is running 

directly toward or away from P . 

For right half-plane terminal conditions,  xo = ßs0o > 0 , the 

solution (10) of Sec. 1.2 is, with ro = 1 , 

x = 1 - CT + (ß-7T)s(e +T) 
0 (5) 

y = ST + (ß-7T)c(eo+T) . 
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Here it is noted that, when t = P/7 , the point (x,y) is inde­

pendent of the arrival angle 9^ , and that this point, A , has coor­

dinates

X. = 1 - CT.

where

‘A '

3/7 .

These equations imply that the point A is located on a unit circle 

in the x,y plane according to the value taken by the ratio 3/y , as 

shown in Fig. 2.1.

FIGURE 2.1. Locus of Point A for cp = -»^1 
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We note here  that ull optimal   trajectories  terminating at    e    < S 
o   -      \ly 

van be considered  as  emanating from   this  point    A  ,  which  is  then a 

"dispersal   point"  lor    E  .    This  is,   in fact,   the convention adopted by 

Isaiics,   and  according  to the arrival  angle "preferred" by    E  ,   his op- 

timal  strategy    \|/       at  the dispersal  point need not be unique.    This 

strategy  need only  satisfy  the  inequality, 

ß// <yA< ß/y+ cos"1^, (?) 

any one of  which leads  to    r = ß    in the  time    ß/y  . 

As  shown in   (1)     *iien    r = ß  ,   the radial velocity is     r = 7 - cö 

tor  the paths   (l* .   and hence    f = 0    when    9=9       .    The sidemost  path 
o   up r 

from A , as shown in Fig. 2.2(a), touches but does not penetrate the 

capture c rcli   Accordingly, this path is here considered as distinct 

from its ru. ighnof , in that it leads to "safe-contact" for E , rather 

than capture.  Thus, our convention differs from that of Isaacs in that 

we consider K to have only one strategy from A , assuming that P 

turns toward E , and this will be called the "barrier" or "safe-contact" 

strategy. 

It is also interesting to see that, If P turns toward E when he 

is initially on IB  but above the point A ,  E chooses the barrier 

strategy.  This path arrives earlier at the capture circle than does the 

two-stage trajectory via the y-axis, but here it is simply evident that 

E prefers an early safe-contact to a later arrival with penetration, 

and he runs accordingly. Whether or not P also prefers the barrier 

strategy will be determined by a certain parameter inequality, to be 

derived in Sec, 2.3, 
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(b) Real Space

FIGURE 2.2. Trajectories from Near Point A
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2.2     Universal   Line 

In Flg. 2.2,   trajectories from the neighborhood of    A    terminate on 

the capture circle over a  range of  angles for    cp  = 1   .     A symmetric group 

of  paths for which   cp = -1    arrives at the capture circle from the left. 

One's curiosity is therefore aroused regarding the conditions under 

which    cp = 0     is optimal.     We have  shown  that    cp = sgn S  ,   and  the clas- 

sical  definition of universal  line     (UL)     or "singular arc,"  is  a  path 

along which the switch function Is Identically zero.    Thus,  using the 

equations of  motion  (3)   and  adjoint equations   (8)  of  Sec.   1.2,  we find 

S=Vy-Vx = 0 
x y 

(1) 

I = v (i-7c\|() + v ysy = o . 

In order for    V      and    V      not to be both zero,   these equations  imply 
x y 

that  the determinant of  their coefficients is zero,  or 

x -  7(xc\|f-ys>|/)   = 0  . (2) 

But, since we have shown in (7) of Sec. 1.2 that E's control  (sf.cy) 

is proportional to the gradient W = (V ,V ) , the parenthesis in (2) 
x    y 

Is  proportional  to    S ,  and therefore it vanishes,   leaving 

x = 0 (3) 

as  the only candidate for a    UL    In the field of  primaries.    Thus,  the 

hypotheses  in   (1)  are fulfilled only for motion of     E    down the y-axis. 

On this  line,   the switch function  (1)  implies    cp = V^y = 0  ,  and hence 

V    = * = 0  ,   so that both    P    and    E    follow the same straight path in 
x 

real   space. 

The condition  (3)   is  necessary but not sufficient for the  existence 

of   the    UL ,   and  in fact we will find  that portions  of   the y-axis can 

instead be a  dispersal  line for    F  ,  or a dispersal  line for    E  .de- 

pending again on    ß    and    y .    For parameters such that a barrier exists 

(to be specified in Sec. 2.3),   the trajectory configuration near the 

positive y-axis  resembles  the upper paths of Fig.  2.2.     As  shown in 

Ref.   1   (p.  194),   these tributary paths correspond to sharp turns by   P , 
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with E running tangent to P's turn circle. The contours of time-to- 

go, shown as dashed lines in the figure, are smooth at the y-axis, which 

implies that E's strategy is continuous here, being the same straight- 

line motion before and after    P    stops  turning. 

Specifically,  for a  trajectory which encounters  the y-axis at  the 

Ordinate    y     ,   the retrogressive continuous  solutions  to  the adjoint 

equations  are,  with    rp = +1   , 

vx = T^;ST 

(4) 

vy — " 

and the path equations are 

y 

CT + (y -7t)sT 

ST + (y1-7T)cT 

(5) 

where  T is measured on the path back from the ordinate y1   .  The 

magnitude of the gradient vector along and adjacent to the UL is given 

by the main equation when x = ^ = 0 , so  |W| = Vy = 1/? = 1/(1-7) ■ 

For the rectilinear chase to which this result applies, the interpreta- 

tion of the gradient is particularly simple; i.e., the change in optimal 

time-to-go resulting from a change in relative (y-axis) position is the 

inverse of the difference in speeds. 

2.3 Barrier 

When the  trajectories derived  in   (5)  of   Sec.  2.1 have  the boundary 

value    e  = 9       .the resulting locus defines  the "barrier,"    »  .    There 
up 

is here an infinite discontinuity  in the radial  adjoint,   as  shown by- 

putting    6     = 6       = cos"1?    in  (2)  of   Sec.  2.1.    At  the barrier,   then, 

according  to   (3)Pof   Sec. 2.1,   both    Vx    and    Vy    are  infinite in magni- 

tude.     Accordingly,   as  the barrier is  approached,   the main equation may 

be divided by the magnitude of  the adjoint,   so that,  with    v6  = 0  ' 
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[Vxx+V y] 1 
lim / rain max —X  ^— ) =  lim ~- = 0 . 

Vr -» « 1 CP  t      r  j   V -> « r (1) 

Hence, defining a normalized adjoint vector, 

Vv = (vV -j^s <vx'V • 

the main equation becomes 

mln max[v x+v y] = 0 . (2) 
cp     )|(     x     y 

The adjoint  vector    Vv    is   therefore normal  to  the barrier trajectory, 

as   is     E's    optimal  velocity direction,    y  . 

Thus,  for    r = ß,    e    =9       ,(2) becomes,  with    (v ,v ) = 

(se     ,ce     )     and    cp = +1   , up      up r ' 

max[se     (ßcg     -7s\|f  )  + cB     (1-ßse     -yet  )]   = 0 (3) ^        up up       To up      K    up      ro  ' 
o 

which Implies    t    = d To        up 

The retrogressive adjoint equations are,  with their boundary condi- 

tions, 

(4) 

(5) 

?   = v v (o) = se x        y x up 

v   = -v v (o) = ce     , y x y up 

and   the solutions give    E's     barrier strategy for    cp = +1   , 

Vx = S(eup+T) 

vy = c(eup+T) , 

so   that 

i|f(T) = eup + T . (6) 

The  equations  of  the barrier are  then given by   (5)  of  Sec.  2.1, 

16 



1  -   CT +   (ß-7T)s(e    +T) 

ST + (ß-n)c(e   +t) • 

(7) 

The barrier is  termed a  semipermeable surface by  Isaacs   (p.   70)   since, 

if    cp = +1  ,   no strategy of     E    allows     x    to penetrate  the barrier in 

the "E-dlrection," and  if    \|(     is  given by  (6),  no strategy of    P    allows 

penetration in  the P-direction.     Here the P-direction  refers  to  the side 

of  smaller time-to-go,   and  in general  the optimal  time-to-go is discon- 

tinuous  at  the barrier.    Thus,   for    x    on the barrier,   a  departure from 

the strategy    ^  = 6      +  T    by    E    results  in motion away from  the bar- 

rier  in  the P-directlon,   to a  region of  small    V  .     Likewise,   a  depar- 

ture by    P    from    cp = +1   ,   if     E    is paying attention,   moves    E    across 

the barrier to a  region of  large   (perhaps  infinite)    V   .     The discon- 

tinuity  in    V    decreases  to zero at  the end    B    of    8   ,   which is  indi- 

cated  by the vanishing of    P's     switch function.     Combining  (5)  and  (7), 

this function is 

S = vy-vx = 7-c(e    +T)   . (8) x' y up 

P's    barrier strategy is  thus    cp = +1    for    S > 0  ,  or for 

0 < T < 2(«-e     )  = TR  , O) 
Up o 

and unless the barriers  intersect on the positive y-axis,     TB    is  the 

time required to traverse the barrier. 

The right and  left barriers  intersect  tangentially,   on the y-axis, 

for given values of    ß    and    7  ,   if    T    exists such  that    x(ß,7,T)  = 

S(ß,7,T)  = 0  .     Using  (5)  of  Sec.  2.1,   and eliminating     T    from  these 

equations,   gives  the condition for tangential closing as 

ß = 7 sin"17 + v/l-T2 - 1   • (10) 

Implicit  in this derivation is an  important  parameter inequality, 

necessary for the existence of   the barrier.    This  inequality can be 

derived by calculating the velocity components when    v  = +1    and 

\|r = cos"17    at    r = ß  .     In polar coordinates,   these velocities  are,   in 
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general, 

f = -ce + 7c(\|(-e) 
(ii) 

e = -9 + -[ae + 7s(*-e) ] 

and for the given terminal conditions, the retrogressive velocity com- 

ponents are found to be 

'r = 0 

  (12) 

e = -i + -f- • 

The retrogressive  radial  acceleration,   however,   is 

v = - ^7 e 
and will be positive only so long as 9 < 0 or, by (12), when 

ß2 + 72 < 1 • <13) 

This is the parameter space inequality necessary for the existence of 

the barrier which terminates at 6=0   with tangential velocity. up 

For    ß    larger than the value given in  (10),  the barriers do not 

contact   the y-axis but  instead  curve away to  the rear,   according  to  the 

parametric equations   (7),     In  this case,   the  end of  the barrier is 

reached at    T,, = 2(it-cos~ y)   ,   and this point has coordinates given by 

(7);   i.e., 

X
B =^1-7 [aVi^T7 - ß + ?"fB] 

(14) 

yB = -7[2v^7- e + rtB] . 

Note that the bracket in (14) is the radial distance,  rB , and that 

i(r -Ö) =Vl-ri  + /(«-cos-1/) - ß > 0 . 

This   inequality  is  implied by   (13),  and  it means  that  the end of  the 

barrier,     B  ,   is  always  outside  the capture circle. 
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It  is  possible lor parameters   to be such  that   the point    A    is not 

on   the barrier;   i.e.,     TA > TB  .     Substituting for these retrogressive 

times from   (9)  and from  (6)   of  Sec.  2.1,   this   inequality c;in be reduced 
to 

c(iV27)   +  >■ > 0  . dö) 

2.4     Equivocal  Line and  Pursuer's  Dispersal  Line 

For parameters such  that  the barriers are open,   the  equivocal  line 

(EL)  joins  the end of  the barrier to  the y-axis  or  to  the capture circle, 

and  the y-axis below  the    EL    is a  dispersal  line lor    P  .     The    EL    is 

a   locus of  points along which    E's    strategy  is  locally  the same as his 

incoming strategy,  which is  such as  to cause    P's    switch function to  be 

zero;   i.e., 

S"  = V"y -  V"x  = 0   . (1) x' y 

This  implies  that    tan  i|»    = x/y ,   and  that    E     is  running directly 

toward    P  .     Though  the minimization  through  the main equation yields 

cp = sgn S  ,   the Signum operator is  indeterminate at    S = 0   ,   and so we 

require the intermediate value of  turn rate by other means.     Continuity 

of   the components of  the gradients along the    EL  ,   and  requiring unit 

rate of decrease of  the tlme-to-go thereon together gives 

VEL +  V/EL = VAL +  V/EL  =  -1   • (2) 

These equations are interpreted vectorially in Fig.  2.3,   where it  is  seen 

that   the  adjoint  vectors  before and  after arrival   at   the     EL     have  equal 

components  along the    EL ,   and  that  the main equation  is  satisfied both 

above and below the    EL  . 

Thus,   the    EL    is  a  locus  along which    E    can choose between two 

strategies,   and    P's     strategy depends on this  choice.     If    E    chooses 

ly    ,     P    is  forced  to mix* his  strategies,  for a  resultant  intermediate 

control,    cp(x,y)   ,  depending on    E's     position.     This  "chatter"  strategy 

The    mix    is accomplished  at  infinite frequency,   such   that    cp = 2p-l   , 
where    p = proportion of  time spent at    y = +1   . 
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FIGURE 2.3. Velocities and Gradients Near the EL

produces a path for P of time-varying curvature in real space. When 
E chooses , he flees along the tangent to P's minimum turn circle,

and P's optimal strategy Jumps to = +1 . For EL motion, the 

retrogressive equations read

* = W - 7s\|r"

J = 1 - $x - 7c\lr"

where

S\|( X____ X

- ■ y ■ V-

The main equation on the prior side then gives the magnitude of the 

adjoint vector, so that, with (4),



v" = -4~ x      y+yr 
(5) 

V     = —L— 
y     y+7r 

To evaluate    Cj5  ,    (4)  is  used  to  give    E's     control  in  (2),   which 

then becomes 

V+(cpy+7x/r)  + V+(l-$x+7y/r)   = 1   , 03) 

where the gradients  are  to be found as functions  of     (x,y)    on  the     EL  . 

Specifically,   the adjoints and  position are given by 

st, 

x      1-7 
(7) 

y      1-7 

x = l - CT, + (y1-7T1)sT1 

(Ö) 

y = stj +  (y1-7T1)cT1   , 

where T IS measured back from the position (0,)^) . Eliminating 

(y -7T ) from (8) and solving the resulting quadratic equation give 

the time from    EL    to y-axis  as a  function of   position on the    EL : 

1-x+hy 
CT        — —' 

h +1 

y-h(l-x) 
ST1  =        2  ' 1 h +1 

where    h2 = x2+y2-2x   .     Substituting these relations  into  (7)   and  this 

result Into   (6)  give    P's    intermediate control  as 

r -x+hr (9) 
2 

r    -«-r... 
cp = 1 - 7 —; x- • T r(r-y) 

It is easy to prove that $41, since the numerator in (9) cannot 

vanish except at x = y = 0 . At the left end of the EL , x = 0 , and 

the chatter strategy here is cp = 1-7 •  Typical numerical examples pro- 
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duct deviations oi    if    over  the EL of only a few percent from this 

iilituil value.  The point B , where the  EL Joins the barrier, has 

coordinates given by (14) of Sec. 2.3.  These are the initial conditions 

for the retiofressive integration of the EL , which then proceeds by 

using (1) and (9) in the equations (3). 

It can readily be shown that the slopes of  EL and barrier are 

equal at B .  The reason is that y + 7r = 0  at the point B , because 

r = 0 on both arcs and therefore the slope at B is independent of cp ; 

dy/dx =v W^/7 •  This also implies, according to (5), that the gradient 

becomes unbounded at B , since the sensitivity of capture time to a 

change in position is infinite at this point. 

Our convention regarding the barrier has been briefly discussed in 

Sec. 2.1.  While this topic is discussed completely in Chapter III, 

special consideration must be given here to its end-point,  B .  For 

those trajectories which begin above the EL , we have found that  E can 

choose to remain on the  EL to the point B , if P plays optimally. 

But, since E can avoid termination by playing the barrier strategy,  P 

must prevent  E from reaching B .  As mentioned by Isaacs (p. 300),  P 

can postpone his switch to q$ by an infinitesimal time. The ensuing 

equivocal path is then imagined as occurring slightly below the  EL , 

such that B  cannot be reached by E . 

As shown in Fig. 2.5(b), a portion of the negative y-axis may be a 

UL for P , with 9=0. That is, if the EL encounters the negative 

y-axis (instead of the capture circle), the trajectories leading to the 

EL from the "turn-away" region arrive also at the negative y-axis Just 

under the capture circle. This segment will then be a UL as discussed 

in Sec. 2.2, and this "reverse chase" strategy of E's  is continuous 

with the strategies on either side of the y-axis, as E strives to 

delay P's  turn maneuver. 

The intersection of the UL and EL is a multiple-choice point in 

the relative space.  That is, both P and E must choose strategies, 

and trajectories can depart from this point in four different directions. 

If E chooses to continue his reverse chase policy at the EL , the 
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switch function remains at zero while    P    executes a  slow turn at  the 

intermediate rate,     $(x,y)   .     If he does not  so choose,     E    runs tangent 

to  the minimum turn circle chosen by    P  •    On arrival at  this  four-way 

junction,   then,     P    "first"  chooses a  turn direction   (or the sign of    ?  ), 

and    K  ,  by his choice of   strategies,   simultaneously  forces    P    to turn 

at one of two specific magnitudes    (|cp|   = ip    or    1)   . 

Immediately below  the  intersection of  the    EL    with the y-axis 

(where    y    is  given by numerical solution of  the    EL    equations),  we 

find  the value of  the switch function to be     S+ = V^   ,     Using  (7)  and 

(8),   this reduces  to    S+ =   (l-CT^/d-/)   .     Substituting for    c^     in 

terms of  the  position     (0,y)     then yields 

s+ = ^1— > o . do 
(1-7) (1+y ) 

A similar analysis for trajectories in the  left half  plane    («p  = -D 

shows  that    S" < 0   .   and  since this  analysis  can hold for all  retrograde 

paths not intersecting the    EL ,  we conclude  that  the switch function  is 

discontinuous across  the negative y-axis at all points below  the    EL  . 

A dispersal line is defined in Ref. 1 as a locus of initial condi- 

tions along which either or both of the strategies are not unique. They 

are often found as the retrograde Intersection of two distinct families 

of optimal paths, lor each of which the main equation is satisfied. At 

the intersection, the optimal time-to-go is the same for either pair of 

strategies, and the dispersal line condition is expressed in terms of 

the two fields of  trajectories,  as follows: 

w-.x" = W+.i+ . w 

This reduces to a differential equation for the slope of the dispersal 

line, 

v--v+ 
dy     x  x (X2) 
dx    v"-V 

y y 

where the superscripts refer to opposite sides of the line. 
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The discontinuity of S across this portion of the negative y-axis, 

as derived in (10), coupled with the symmetry of strategies and paths 

across it, is a special case of (12), as here we have V^ = -V^ and 

V" = V+ .  This portion of the y-axis is then a dispersal line along 

which the sign of  S Is undefined.* A diagram of the velocity vector 

components for x on the negative y-axis below the EL shows that 

P's  contribution to the x-velocity  (-cpy)  exceeds E's contribution 

(ysiji) , and hence P determines the departure direction.  The line is 

therefore called a "pursuer's dispersal line"  (PDL) . The present case 

has a geometrically obvious interpretation (when E is directly behind 

P ,  P can turn sharp right or sharp left, and E's strategy depends on 

P's  choice) but we will find other more general circumstances in which 

(12) holds.  In these other situations, the discontinuity W >« W 

implies a discontinuity in E's control  (f ^ f)   ,  but it need not 

imply a change in P's control.  That is, the switch function can be 

discontinuous across the line, while retaining the same sign on either 

side. 

2.5    Parameter Space and Trajectories 

To summarize  the developments of  this  chapter,   it has been shown 

that  the "usable part" of  the capture circle is an angular sector on 

which the game raust end.    If  the parameters are such that a  trajectory 

arrives  tangentially at the boundary of  this region,   such a  trajectory 

is  a  "barrier,"  across which the  time-to-go is discontinuous,   and along 

which the gradient  is infinite.     These parameters satisfy the relation 

ß
2  +  7

2 < 1   ,   the  equality being shown as    ^    in Fig.  2.4.     If   the 

parameters fall  above this  curve,   a  tangential trajectory cannot arrive 

at  the boundary of  the usable part.     It has also been shown that if    ß 

is  sufficiently  small,   the capture region is a finite curvilinear tri- 

angle.     If     E    is  initially outside of  this region,   he can avoid capture 

indefinitely,   using the sidestep  tactic of  the bullfighter.     Thi^finite 

capture  region exists   (for    ß2 +  7
2 < 1   >   "    ß < 7 sin    y + jl-72 - 1   • 

*By contrast,  we have seen in Sec.  2.2  that the y-axis above  the    EL    is 
a     UL  ,   since  there    s+ = S~ = 0   . 
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The latter function appears as in Fig. 2.4. It has also been shown

that the point A occurs on the barrier (as assumed in Ref. 1) only if 

c(^/27) + 7 > 0 ; is the corresponding locus in Fig. 2.4.

These three loci determine two regions in the parameter space, but 

optimal trajectories which fill the playing space have been found in 

this chapter only for parameters in Region I. A typical set of trajec­

tories for parameters in this region is shown in Fig. 2.5(a). Because 

the time-to-go is discontinuous (and infinite) at the barrier, where the 

point A is located, paths "from" A must Instead be regarded as 

starting from points infinitesimally close A . From this range of 

Initial points, trajectories depart to terminate at angles in the half­

open interval, 0 < e < 0^^ . We follow the convention that when the

1.

FIGURE 2.4. Regions in Parameter Space 
for the Classical Game



FIGURE 2.5. Trajectories and Isochrones 
In the Classical Game



barr; rs close,  E follows the semipermeable barrier when possible,  E 

preferring an early safe contact at eup  to a later termination at 

9=0.  P , of course, turns toward E whatever E's strategy, be- 

cause In this case.  S has the sign of  x , and P will reasonably 

prefer a safe contact to none at all.  Thus, in this case we see that * 

is a locus of infinite discontinuity in the time-to-go, and it is an 

optimal path which ends tangentially at e 
up 

Contours of constant V can be easily calculated as the dashed 

lines in the figure. These isochrones are tangent to the barrier only 

below the point A . The discontinuity in E's strategy for initial 

conditions near IB at the point A is the cause of this change in the 

isochrones. 

The more complex diagram in Fig.  2.5(b)  applies  for parameters  in 

Region II   to  the  right of    C3  ,   and  this  configuration is  essentially 

as given in Ref.   1.     Because  the strategies  are not  known at all  points, 

however,   it may happen that  some of  the trajectories  so far found  are 

not optimal.     In fact,   this  actually occurs for a small  range of  para- 

meters,  as will  be shown In Chapter III.     For present  purposes,  we may 

say that the trajectories of Fig.  2.5(b),   though Incomplete,   are quali- 

tatively representative,   for all  parameters  right of    C      and above    C 

in Region  II.     Of  course,  as     (ß,/)     change In Region II,   the point    A 

will  be displaced along the barrier and  the barrier's  relative size will 

change,  but  this  does not affect the  type of  solution.     We will find, 

however,   that the reverse-chase is absent  for parameters close to  the 

intersection of    C3    and    C      in Region  II. 

The isochrones of Region II are more complex and  interesting than 

those of  Region  I.     The barrier appears as  a  discontinuity in the  tirae- 

to-go,   but  this  discontinuity decreases  to  zero at  the end    B    of   the 

barrier.    The    EL  ,   which extends  the barrier to  the y-axis  or  to  the 

capture circle,   is a  sharp minimum  in    V  ,   in the sense  that   the  time- 

to-go increases  linearly in both directions  normal  to  the    EL  .     The 

normal  to  the local  isochrone is  thus  indefinite on the    EL  ,   reflecting 

the fact that    E    can choose between two strategies on  the     EL 
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Similarly we have found that when the barriers are open, the y-axis 

may be a  UL or a PDL , depending on whether or not P's switch func- 

tion is continuous across it.  For the discontinuous  (PDL) case, the 

normal to the isochrone is again double-valued, because the y-axis is 

here a sharp maximum in the time-to-go,  V . 

For initial conditions on the open barrier,  P's strategy is a turn 

away  (9 = -1) unless the parameters are below C4 in Fig. 2.4. For 

these parameters, we will find that a range of positions on 3 exists, 

for which cp = +1 is optimal on both sides of the barrier. Thus, » 

is an optimal trajectory only in this case, and when the barriers close. 
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Chapter III 

EXTENSIONS TO THE CLASSICAL RESULTS,  g +y ^ 1 

The parameter inequality In the chapter title holds whenever the 

barrier exists at eu  •  But when the right and left barriers do not 

intersect, strategies for x  in the shaded area of Fig. 2.5(b) must be 

found.  For parameters above C4  (see Fig. 2.4), including those to the 

left of C  , this extension is not difficult, though it entails treat- 

ment of "safe-contact" strategies. For parameters between C2  and C^ 

in Region II, however, two new exceptional lines are required to complete 

the solution.  We begin by considering those trajectories which touch the 

capture circle at the lowest corner of the shaded area. 

3.1 One-Dimensional Motion 

We have seen in Fig. 2.5(b) that turn-away trajectories can arrive 

at the negative y-axis.  The particular path which contacts the capture 

circle at the right edge of the shaded region is specified in terms of 

the intercept y1 and the time from tangency to this intercept. The 

equations giving these two quantities are r = ß ,  r = 0 , which re- 

quire the use of the retrograde trajectories 

-1 + CT - (y1-7t)sT 

y = ST + (y1-7T)cT 

(1) 

(2) 

The tangency condition is then expressed by the equations 

2   2 
1 - CT + (yi-7T)ST + Jt^-n)  " ß 1 = 0 

(I-7)ST + (y^-rtHcT-y) = o . 

Eliminating    y1    gives a cubic in    CT  ,  which turns out  to be  the square 

of 

yi+Z^/cT  (1-CT)  -  ß(cT-7)  = 0  . O) 

This  expression yields     ^   .   the time from tangency  to  the negative y- 
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axis,   in terms oi  which  the  intercept  is 

v    =  7T    +  1 < -ß  . (4) 

The angle at which   tangency occurs in given by  (1)  as 

*<yi'V       ^V1 (5) 
tan em - yCy^^)  '    7«^    " 

The supplement of this angle is greater than eup . as can be shown 

by using (3) and (4), together with the definition.  ceup = 7 • That is, 

E is physically capable of maintaining safe-contact for angles greater 

than 9  , but such a strategy is not optimal, 
m 

We consider next the conditions at tangency with the aim of extend- 

ing the trajectories backwards from this point.  The main equation in 

polar coordinates is 

min max[V r+V 9] = -1 , (6) 

cp      i|(      r      9 

where the polar equations  of motion are given in   (11) of Sec.  2.3, 

f = -c9 + 7cClf-9) 

Q   = .q, + i [se + 7s(t-9)]   • 

,,....<„„    {. - n    relates    \lf    to    9     (ambiguously),  while The tangency condition    r = ü    relaxes    y     vu    n 

(6)   reduces  to 

min V  f-cp + i [S9  +  7s(*-9)])  = "1   . (7) 

cp     ö P 

where the angular adjoint  is  identical with    P's     switch function; 

v     = V  y -  V X ^  S   . (8) 

e      x^       y 

The minimizing control of P is thus cp = sgn S = -1 . and  E's 

strategy must maximize V s(^-e) while satisfying r=0.  Since 

V < 0 , at the point on the capture circle where safe contact ends, the 

ambiguity in E's  control is resolved.  Thus. 

1, me - coa^ice/y) (9) 
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is     E's    safe-contact  strategy when    cp = -1   .     In one-dimensional   (tan- 

gential)  notion,   we find  that    E's    angular rate is 

e = i + (se - 7yi-c2e/72)/ß . do) 

and consequently, 

V     = -1/0  = B . (u) 
ß+se-y s/\-c2o/y2 

We may now consider  the  trajectories which arrive at  the  capture 

circle,   there to  begin a  safe-contact path which departs  tangentially at 

the angle    9       given  in   (5).     Just  prior  to contact,   the main equation 
m 

for    cp = -1    is written 

max[V f" + V„e"]  = -1   . (12) 

Since r = ß Is the boundary of the regular region, the angular gradient 

on arrival is continuous. The maximization of (12) implies that 

V 

cdf-e) =  ,,.   r    „ as) 
/vz+(vo/ß)

2 

r  9 

and therefore, using (11) for V /ß , (12) can be solved for 
0 

V     = ^H ___   . (14) 
r v/i-c2e/?a (ß+se-7v/i-c2e/>a) 

This  finally permits   (13)   to  be solved for    i|/~  = e-cos     (ce//)  = *     .   and 

therefore    f    = f    = 0   ,   so  that  trajectories  and strategies  are smooth 

on arrival  at  the  capture circle.     In fact,   the continuity of    ij;    could 

have been anticipated  from  the fact  that 

max(V r"+Vfle")  = max V e+  = -1   , 
i|f""    r        0 i|/+    ö 

i.e.,   because    E's    vectogram  is circular,     H    has a  unique maximum 

relative to    \|/  ,   such  that    \lr"  = \j(+  .     A  typical  safe-contact   trajectory 

for    cp = -1     is shown   in Fig.  3,1, 
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FIGURE 3.1. Safe Contact Arrival and Departure for qp = -1



3.2 Switch Line Replaces Equivocal Line 

For parameters slightly to the left of C  in Fig. 2.4, the point 

A falls between the end B of the barrier and the negative y-axis. 

The points B and A are connected by a switch line  (SL) , on which 

8=0, and A is connected to the capture circle or to the y-axis by 

an EL . 

The disappearance of the EL occurs when the point A falls on the 

capture circle.  This is easily derived as the locus 

c(e/7) = l-ß2/2 , (1) 

which will be labelled  C  in the parameter space drawing at the end of 

this chapter (Fig. 3,9).  For parameters to the left of this line, retro- 

gressive trajectories to A are interrupted by the capturü circle, and 

the point B is connected to the capture circle by the SL . 

The retrogressive switch time is determined as a function of arrival 

angle 9  : 
o 

ce -c(e +T) 
o   o 

S = V y-V x = —   = 0 
x'  y      cS -7 

T = 2 («-9 ) . (2) 
s       o 

The arrival  angle    9     ,   as defined  in Fig.   3.2,   is given by  equating 

T    = T    = ß/7  ,   or    9,   = it-ß/27  .    For all   arrival  angles between    0    and 

9     ,     A    serves  as  a  dispersal  point  for    E  ,   and  it  is  interesting  that 

in this case trajectories can arrive at    A    from  two directions. 

At  the end of   the barrier,   the  trajectory  has  the  slope 

l-x-7c(9  +T) dy o 
dx _    y-7s(e  +TT"  ' 

where the point B is evaluated using c9 =7    together with (1) to 

give, as in (14) of Sec. 2.3, 
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FIGURE 3.2. Trajectories for Parameters Between 
C3 and C5 in Region 11



dx 
Vl-72 

7 
(4) 

This  implies  that    dr/dT = 0    at  this  point.     The  slope of   the    SL 

is 

dx 

y +y  (dTo/de„) 
9     T      s       o 

x +x  (dT /de   )   ' e   T    s    o 
(5) 

where    dt /de    = -2   ,   according to   (2),   and  the  partial  derivatives  fol- 
s      o 

low immediately from   the retrogressive equations  for  the  trajectories. 

Substitution and  simplification yield  the result 

di 
dx =^EE (6) 

S 

which with (4) proves that the SL is tangent to the trajectory at this 

point. 

At the point A , however, where 0/7 = 2(it-ei) , the trajectory 

slope is found in terms of the arrival angle Sj^ , 

dx 

c2e1-rce1 

-s2e1+7se1 

(7) 

This is the same result given for the slope of the SL at this point. 

as can easily be verified. The second extreme trajectory from A ar- 

rives at the capture circle at e = 0 , and its slope at A is 

d£  c(ß/y)   c2ei 
dx " s(ß/r)  -829, 

(8) 

The    EL    slope  at  the  point    A    requires  use of   the  intermediate 

in the equations  of  motion,   and  the result  is  expressible as a  function 

7    and    9    .    It has not been possible to derive analytical conclu- 
*1 ' of 

sions from the expression.  However, numerical studies for a range of 

parameters left of  Cg  in Region I show that the EL slope is not equal 

to either of the values (7) or (8). 

The simplest way of expressing the SL is as a function of arrival 
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FIGURE 3.3. Trajectories for Parameters 
Left of Cg in Region II



angle   ^  .   by using the value    x = 2(n-eo)    in the retrogressive equa- 
tions;   i.e., 

x =    se  [2se    - ß + 2y(n-9  )] 
o        o o 

y = -ce   [2s3    - ß + 27(7t-e   )] 
(9) 

where 0 < eo < cos"
1/  (cf. (14) of Sec. 2.3). 

The qualitative appearance of the trajectories for parameters left 

of C5 , which is given by (1), is as shown in Fig. 3.3.  Since S 

passes smoothly through zero for trajectories intersecting the SL , it 

follows that E is running toward P when the SL is crossed.  Ex- 

cept for the absence of an EL , this configuration is very much like 

that of Fig. 3.2.  We note that in both of these figures, a local maxi- 

mum in the optimal time-to-go occurs at a point on the underside of the 

barrier roughly one-iourth of the way to the end of it. The loci of 

constant V can be regarded as elevation lines on a contour map of the 

playing space.  This concept will be helpful in understanding some re- 

sults to be found in the next section. 

3'3 Switch Envelope and Pursuer's Dispersal Line 

For parameters in the lower portion of Region II, it is found that 

S is not necessarily a locus of discontinuity in P's strategy.  That 

Is, over a certain interval of S , the switch function is positive on 

both sides of it, such that when E is under the barrier here,  P 

"lunges" toward him.  The verb is appropriate because this is always a 

very brief maneuver, soon followed by a turn-away and subsequent safe- 

contact. As mentioned in Sec. 2.5, when cp changes sign across S , 

the barrier is not an optimal path but is only a locus of initial condi- 

tions for the turn-away maneuver. But, when parameters are such that 

the lunge region exists, we can expect P's  switch line to lie to the 

right of S  (which now is an optimal path), somewhat as shown in Fig. 

3.4.  We consider a comparative test of the three retrograde paths 

shown in this figure. 
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At  the point    G1   ,  when the lowest path    T      reaches  the barrier, 

it  Is   found   that  if    P    were  to  switch  to    cp" = +1   ,   thereby forcing    E 

to  switch  to  a  strategy    \J(       perpendicular  to    B   ,   then for    x    on   S  , 

W+.if > -1   . (!) 

The inequality implies that such a switch is to E's advantage and 

hence that q    = +1 is not optimal for such points. It may also happen, 

on the other hand, that at G  on a second path T„ , this double 

switch in strategies leads to the inequality 

W+.r < -1 , (2) 

which means   that    P    can force    E    to  cross  the "+"  contours faster than 

the optimal rate.    Therefore,   these contours are not correct at this 

point   and    E's     strategy  cannot  be given by    W+    in  this  region,  where 

P    lunges  toward    E  , 

If   these  inequalities hold,   then at  some intermediate point    G    of 

the  barrier,   we must find 

W+.x" = V+x"+V+y" = -1   , (3) — x y' ' v  ' 

where the left side can be expressed as a function of e  , by using 
+   - 0 

x = x  to provide T  and  T  in terms of 9  .  Specifically, we 

have 

(4) 

x = i - ex. + (ß-rOsCe +T > 
D      b   up b 

y" = ST + (ß-7T. )c(e +T. ) 
b     ' b   up b 

x+ = -1 + CTO + SS(9O-TO) - 7Tos(VTo) 

(5) 
y = STO + 3c(eo-To) - n0c(*o-To) , 

where * = 9 - cos" (cd  //)  and 9       = COB'1-/  .    Finally, the ad- 
o   o o up 

joint components in (3) are easily found in terms of to  and the retro- 
o 

gressive time from tangency,     T    ; 

Vx = s(VTo)/D 

(6) 
Vy  = c(VXo)/D 
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D =■^1-0^9 /7^O+s0 -7 y/l-c^9 /y^) .

By numerical search methods, we determine the parameters 0^ ,

and T which specify the endpoint G of the SE . Of course, when tt 
b

condition (3) does not hold for any point on !B , the parameters (S,7)

are above the locus of Fig. 2,4. Since, whenever (3) holds, the
barrier always has the qualitative form of Fig, 3.4, the point G is 

the lowest point of a "lunge" region. We then must find the switch line 

which begins at G and which separates this lunge region (cp = +1) 

from the tum-away region (cp = -1) .

To develop generating equations for this line, we first consider a 

group of trajectories parallel to, and right of, S . At the point G ,

cp=+l

FIGURE 3.4. Detail Near Barrier When SE Exists
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we have (3) together with the main equation on the prior side, W •* - 

-1 , which combine to give the slope of the switch line as a function of 

position, 

v"-v+ 
ill - _ x * . (7) 
d* '  v"-V+ 

y y 

On    A   ,  of  course,     |W|   -^  ,   and  so the slope of   the switch line is 

the  same as   the slope of  the local   trajectory,    «   .     As the    SL    is fol- 

lowed away from    3   ,   the incoming trajectories must continue  to be tan- 

gential  to  it.    This  is  so because,   if  they encountered  this  switch line 

at a  non-zero angle,   and  if    P    chose to delay his turn-away.    E   would 

"chatter"  between his  strategies    f    and    t+  ,   thereby remaining on the 

line.     Since    E's    vectogram is a  circle,  however,   this  chatter strategy 

would actually reduce his  speed and hence would not yield    dV/dt = -1   , 

as  did    9 = +1    and    1, * f   .     Hence,   the switch  line is  the envelope of 

the  prior paths,   and  consequently it is called a  "switch envelope"   (SE). 

While  they are similar in some superficial  respects,   the    SE    dif- 

fers  in an important way from  the    EL    described  in Chapter II.    The 

switch function goes  smoothly  to zero at the endpoint    B    of    8  , which 

is  then tangentially  extended by the    EL .     It was found that    S    = 0 

on  the incoming paths   to  the    EL ,  while    S+ > 0    on the departing tra- 

jectories.     This meant  that    E    could choose  to keej,    S = 0    by running 

radially,  which gave    P's    control as the intermediate value,    p .    By 

contrast,   neither    S"    nor    S+    is  zero along the     SE  .   but  it is known 

that  the component of    W    along the    SE    is  continuous,   so  that  (3) 

holds along  it.    This  implies  that    P's    control  along the    SE    is 

,p-  = +1   .   and hence    E's     arrival  control  is given by  (3)   in terms of 

9       and     T     •    The  expression  (7)  for the    SE    slope is  then solved for 
o o 

the derivative    ^0o^ö^o   • 

As described  in detail  in Appendix A,   the retrogressive integration 

of   the    SE    is valid only  so  long as  the curvature of  the    SE    exceeds 

that of   the  incoming paths.     This  curvature condition is  equivalent  to a 

condition of  derivatives  of    f   .     On the incoming paths,     *    = "1  . 

while on  the    SE  ,     f     is  expressed as a  function of    eo    and    T0teo)   , 
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and its time rate of change Is given In terms of these coordinates. In 

other words, \(r is discontinuous at tangency, except at the upper end 

of the SE .

At the coordinate 0^ , where these curvatures are equal, the SE 

is tangentially extended by a PDL . That this should be so is suggested 

by Fig. 3.5, where the cotangency of PDL , SE and trajectory at their 

meeting point is implied by a finite curvature condition on the trajec­

tory at the junction.

FIGURE 3.5. Detail Near Junction of SE and PDL

The PDL is simpler to construct than the SE , though the PDL 
is given in terms of SE coordinates, which must therefore be stored as 

they are computed. The retrogressive trajectories of either side must 

yield the same point on the PDL , and the time-to-go must be the same 

on the two paths. Denoting the side near the barrier by the super­

script "+" (corresponding to the lunge strategy, o = +Df "e have



cix to0,T2) = dx (91,^1) 

dy+(9o.T2) = dy-Ce^^) (8) 

dv+(e1,T2,eo) = dv"^) . 

where the various angles and times are as defined in Fig. 3.5, The ap- 

propriate differential equations required in generating the PDL are 

symbolically expressed using (8), with 9   taken as a convenient inde- 
o 

pendent  variable   (subscripts  denote partial  differentiation): 

+ +  dT2 - dei -  dTl 
X,    +   X    =   X        +   X  

9       T deo      e de        T de 

+      +^      -^i      .^i 
ye + yt de      y9 de   + yT de 

o o o 

(9) 

At  given values  of   the dependent  variables,   the  gradients    <vV+    and    W~ 

are known for use  in  the  slope  equation,   (7).     This allows  computation 

of 

dT2 ye-
x

eWy/dx) 

dF = "   +  77, - ; - (10> o y -x  (dy/dx) 

and a  straightforward  inversion of   (9) for the remaining two derivatives. 

Initial  values  at   the   point    D    are    T„  = 0   ,     6=6       and    T    =  T     , 
i 1 O 1 O 

the    SE    integration having provided    Q      and     x 
o o 

The upper end of the PDL occurs at the barrier, and these curves 

Join here tangentially owing to the infinite magnitude of the gradient 

vector  vV  at the barrier.* That is, the PDL slope, as given by (7), 

is 

- +     + 
V -V     V 

2i = - -S-iU - ^ , (11) 
dx    v"-V+    v+ 

y y    y 

For some  parameters  near  the lower edge of  Region II,   the    PDL    actually 
extends  outside  the shaded area  of Fig.  2.5(b).     This  illustrates  that 
unless   the entire  space  is filled  with  trajectories,   none of  them  can 
strictly be called "solutions," 
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which is equal to the slope of the adjacent barrier, as obtained using 

(2) of Sec. 2.3, 

£L = - ^ . (12) 
dx    v 

y 

Since    8    is a  trajectory on the "+"  side of   the    PDL  ,   the optimal  time- 

to-go is a  local maximum somewhere to the right of   the tangential junc- 

tion of    PDL    and    8  ,   as will be shown in Fig.  3.7. 

3,4.    Focal  Line 

For parameters which  are near the right  corner of  Region II,  numeri- 

cal  generation of  the    SE    shows  that at some  point  below where the cur- 

vature condition denoting  the start of  the    PDL    is  satisfied,   the    SE 

derivative vanishes,   or    d0 /dt    = 0   .    At  this  point on the    SE ,   the 

velocities obtained by two sets of  controls  are identical;   i.e.,  at  a 

single point,   incoming and outgoing velocities are equal,     x(cp ,>!')   = 

x(cp+,i|r+)   .     The point where this occurs is found   to be the lower end of 

a  "focal line"  (FL),   along which    E    runs regardless of    P's    strategy. 

Furthermore,   the    FL    is  an envelope of arrival  paths on both sides. 

The incoming paths  are tangential because,   if    P    maintains his arrival 

strategy,     E    must do so as well,   in order  to keep    dV/dt = -1  .    As  in 

the case of  the    SE  ,  both  strategies are continuous when a  path joins 

the    FL ,   and  therefore the paths  themselves have continuous slopes  and 

are tangential at  the    FL  . 

The    FL    is,   like the    SE ,  a  local   (sharp)  maximum or crest  in  the 

time-to-go contours,  and for anj; choice of    cp  ,    E    can stay on this 

crest.     Progress down  the line will,   however,  be maximized  if    P    chooses 

an extreme control,     cp = +1   .    As  indicated  in Fig.   3.6,   the    FL    condi- 

tion yields  two equations  in    <l/~    and    \|i    ,   which are    E's    controls 

corresponding to    cp = -1     and    +1   ,   respectively.     Using  the equations, 

then, 

x = -y +  7S\|/    = y + 7si(f 
(1) 

y  = -1  +  x +  roi|'+  = -1 -  x  +  7C\|(     . 
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It is necessary  to have  the adjoints along the    FL    as well,   since 

they are required  in  the subsequent  integration of  the    SE  .     We know 

s\lf/V     = c\|f/V       on  both  sides,   for  either choice of     -p   ,   and   the main 
x        T    y 

equation gives 

V i + V y =  (xs\j/+ycv)/D = -1   . 

This  can be solved  for 

D = -[(y/r) vr-r2 -  7    +  r    -9"] 

and  this denominator   (the inverse of  the gradient magnitude)  is  positive 

for    x    on the    FL  .     The direction of  the  gradient vector on each side 

is parallel  to    E's    strategy,   (2). 

The    FL    has features unlike those of  any other type of  exceptional 

curve found in this  game.    The equations   (1)   show that,   to traverse   the 

FL  ,     P    can choose  either  extreme rate of  turn,   and    E's    strategy de- 

pends on this choice,   according to  (2).     Further,     P    can switch strate- 

gies ad libitum between    +1    and    -1   ,   all with no change in the rela- 

tive  trajectory,   provided  that    E    reacts  immediately.     Examination of 

the vector velocities  in Fig.   3.6 shows  that  no intermediate turn rate 

can produce the same  relative motion as    cp = il   .    These comments  are 

meant  to emphasize the distinction between "chatter" on the    EL  ,   and 

"switching" on the    FL  .    A further observation is  that the switch func- 

tion is never zero on the    FL ,  while it remains at zero for motion 

along the    EL  . 

The upper end of   the    FL    occurs when  its  curvature is   the same  as 

that of an incoming path.    This curvature criterion is simply written as 

a  rate of change of     i|r    along the    FL ,   or 

d^ 

dT 
(4) 

If  this equation is  first satisfied for    rp = -1   ,  for example,   the  in- 

coming trajectories   to the right have  the  same curvature as  the    FL   , 

and hence,  as  shown  in Fig.   3.7,   the    FL    is  extended by an    SE  .     When 

the  time derivatives  are written as  in  (3),   we find  the criterion as 
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ry - v/y^-r^Car^-Kpx) = 0

where 9 = ±1 . For the many cases of the focal line which have been 
analyzed numerically, (5) was first satisfied for 9 = -1 , so that the 

FL is extended by a SE . This means that a "reverse SE with tra­

jectories tangent on the right, and for which (5) would be first satis­

fied for 9 * +1 , is apparently never realized.

Extension of the FL by an SE is straightforward except for the 

initial stop in the integration. When = 0 , using the notation of 
Fig. 3.8, the indeterminacy in the slope of the SE is evaluated by ex-

9=-l

- FL

FIGURE 3.8. Detail Near Junction of SE and FL 

panslon in series. Thus, the slope of the SE is

*** y-7sv"

where

= 1 + - cVj - r^/7]
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The  expression  (7)  follows  from the    SE    condition and  the  trajec- 

tories,   which here are given as  functions of     (T,,!.)   : 

x = -1 +  (X.+DCT,  - yfST1 - 7T1s(>|ff-T1) 

(8) 
y = y^-i^ + (xf+i)sT1 - /^c^-^) . 

The subscript f  denotes a functional dependence on T. .  Then the 

slope (6) is equated to the bilinear form, 

yT +yT<dT
1
/dTf> 

dy f_ 
dx ~ x +x (dTVdT.) ' 

Tf  T   1   f 

which is Inverted to yield 

xf-y    S 
dA   v Tf AA(Ti-Tf; 
dTf "'   x r-y«"  ' B(Ti,Tf) 

T T 

(9) 

It  is easy  to  see  that    A = B = 0    when    ^ = 0  ,   since  then all  veloci- 

ties are  equal;   e.g.,     xT    = x    = S~  .     With close attention to detail. 

It can also be shown that  the first partial derivatives of    A    and    B 

vanish at  this   time.*    Consequently,   (9)  must be expressed as 

2 2 A dV2A dT^.A dTf 

1       ._U-_ LJ LJ_     . (10) 
dTf B        <iT,+2B        d^dT.+B        dx 

Vl    1      TlTf    1    f    Vf    f 

It  can then be shown that,   at    -^ = 0  ,    A-^Tf = ATfTf  = BTfTf = 0  ' 

so that   (10)  becomes linear;   the solution is 

A        +2B 
dTi        Vi    Vf 
dTf BT   T i Vi 

(11) 

vo 

where 

*The upper end of the FL is implied by (5) of Sec. 3.4, and this func- 

tion is a factor of dB/dij . 
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A =   (A -A  Hl-yv)   +   (B  -B  )xv 
Vi       1   2 1   2 

B =   (A -A0)(l-yv)  +   (B -B0)xv 
T. T O      2 O      i 

2     2 
2B =   (r -7 +x+ 

TlTf 

3 Ao = - xv  - y 

Lr rv\        rv        r/J 

i / 2 2    4N/ 4 
A    = y -  Jxv +  (/ x -r )/r v 

A2 =  i(xv+y)C2 -   (yv-x)C2 +  Jy - xv 

B„ = =• yv + x -   i 

2 4 
B    = -x + J(l-yv)  + 7 xy/r v 

B    =  i(yv-x)C2 +  <xv+y)C2 +  J(l-x) + yv 

2 2 
C    = 1 + x/r   - y/r v 

C    =   (y+x/v)/2r2  -   (72-2r2) (xv-y)2/4r v 

v ^(T2/!-2)-!  , 

and    x,y    and    r = v/x2+y2    denote values  at  the Junction of     FL    and     SE  . 

The    SE    continues to extend upward until a curvature condition 

marks  its  tangency with a    PDL  ,   as   in Sec.   3.3.    The    PDL    is   then  found 

to continue until its  tangency with    8  .    This final  integration ends at 

the point where    B     is a trajectory connecting the top of the    PDL    with 

the bottom of   the    SE  ,  as shown in Fig.   3.7.    Also shown in  that figure 

are the contours of   constant    V  ,   and  as mentioned earlier,   a   local 

maximum in time-to-go must exist at  a point on   S    which is   to the right 

of   the    PDL    junction. 
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3.5 Parameter Space; Regions I and II

The current version of the parameter-space diagram is shown in Fig.
3.9. The locus C, is the line above which the SE and the attendant 

4

PDL are not present beneath the barrier. It is determined numerically, 
by seeking to satisfy (3) of Sec. 3.3 at a fixed 7 , and for variable 

P . The curve C represents parameters for which the dispersal point 

A occurs on the capture circle, and is easily found as (1) of Sec.

3.2. Finally, the small triangular zone bounded by and Cg in­

cludes those parameters for which the SE is interrupted by the FL ;

the locus is also determined numerically,
o

2 2FIGURE 3.9. Regions in Parameter Space, p + 7 < 1

In completing Region II of the parameter space, diagrams of optimal 

paths and isochrones have been given in Figs. 3.2 and 3.3, for para­

meters left of Cg . For parameters below , the gross features of

the trajectories in the area under the barrier, including the SE , FL 

and PDL, have been sketched in Figs. 3.4 through 3.8.



We note again that If  the barriers do not intersect on the y-axis, 

the barrier Is not an optimal  path unless the    SE    exists.     In this case 

(6,7    between    C      and    C ),  only that  segment of    8    between  the    SE 

and the    PDL    is an optimal path.    The remainder of it is a locus  (de- 

scribed with    cp = +1 )  of  initial conditions for which    P's    optimal 

strategy is a  turn-away    (cp = -1)   . 
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Chapter  IV 

FURTHER EXTENSIONS,     ß    +   /    > 1 

The classical  results of   the homicidal  chauffeur game have been 

extended  in Chapter  III  to all  parameters satisfying  the inequality 

ß2  +  7
2 < 1   ,   and we have further subdivided   this area  into Regions  I 

and  II,   according to whether or not  the capture region is finite.    The 

approach  taken in this chapter is  basically one of   continuation of  the 

loci   in Fig.   3.9.    Beginning  the extension at  the locus    ^   ,   we will 

work upward in parameter space,  introducing new complexities as required. 

In  this way,   previously defined  loci are followed  to   their ends.     Other 

loci  will  also  enter  the discussion,   and  it will  be found convenient   to 

separate the  parameter space    ß2 + 72  > 1    into  three distinct  regions. 

4.1     A New Barrier 

The equations describing the barrier in Region I were derived in 

Sec. 2.3, starting with the main equation in the terminal payoff form, 

min max[vvx + v y] = 0 . 
cp      \|r x        y 

„2 2 
If   this  equation is   considered  to hold at    r = ß  ,   but with    ß    +7    > I  , 

we have seen  in  (12)   of  Sec.  2.3  that    8    cannot  end  at    9up    with  tan- 

gential velocity.    Neither can both adjoints be zero.    The remaining 

possibility,   if   this   equation holds,   is  that an equilibrium point may 

exist where    x = y = 0  .     For  this  static  interpretation,   the relative 

velocity equations are,  with    P    turning toward    E : 

ßcö - 7s* = o 

1 - ßse - 7c<|f = o  . 

These  can be solved  for  the  equilibrium position and     E's    corresponding 

control, 

se     = (i+ß2-72)/2ß 
eq (2) 

c\|r      =  (l-ß2+72)/2 7  • Teq 

52 



The first of  these equations  implies  that    ß < 1 +  7    in order for the 

equilibrium  to exist.    But,   we will  see that a  barrier is   present for 

ß2  +  y2 > 1    only when    ß     is much  less  than    1 +  7  ,   so  that  the right 

and  left barriers intersect ahead of    P  .    An equilibrium  straiegy for 

P     (for which  the time-to-go  is  infinite)  can be minimizing only if   the 

capture region Is bounded,   since otherwise    P    could  certainly choose a 

better strategy. 

When   the  retrogressive  equations  are  solved with   the  appropriate 

boundary conditions,   the new barrier equations are 

x = 1 -  CT + ßs(öe +■:)  - ns(\|f    +T) 

(3) 
y = ST +  ßc(9eq+T)  - nc(i|/eq+T)   • 

The parameters  for which  the  right and left barriers  intersect 

tangentially on the y-axis  can be obtained as  in Chapter  II,   by eliminat- 

ing    x    between the equations    x(ß,7,T)  = 0  ,   and    S(ß,7,T)   = 0  .    The 

result  is    ß(7)   ,   the extension of    C2    lying  to the right  of    Cj   , 

which  is  given by the following rather unappetizing implicit function of 

the parameters: 

1  +  P^eq-V   "   S% "  74 - V   = 0   * (4) 

In this equation    0 and    \|( are first quadrant functions of     (ß,?)   , 

defined  in   (2). 

The switch function  is 

S = 7 -  c(>if    +T)   , (S) 
eq 

and since    i|f      > e
e    > e

u    = cos~1'>'  •   thls functi°n is Positive for all 
T    yielding    x >0    in  (3),    That  is,   the barriers  never  end before 

meeting on  the y-axis when  the parameters fall  below  the  locus    C2 

given by   (4). 

The  trajectory given by  (3)  differs  in  three respects  from  the 

barrier  trajectory given by   (7)   of  Sec. 2.3: 
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1)     Thu iirrlv:il   velocity  is zero In both  radial  and  tangential 

directions,   though  the equilibrium point Is reached from any 

point on  the barrier In finite  time; 

ii)     Die now barrier  Is not  tangential   to  the capture circle at 

arrival; 

ill)     The new barrier contacts   the capture circle at  the angle 

j    > e eq up 

This  new barrier is  the outer edge of  an angular interval  of  the 

capture circle on which safe-contact motion Is optimal,  with    P    turning 

toward    K  .     Details of   the relative motion,   including the influence of 

an evader's  "dispersal  point"    A  ,   are given in  the next section.     The 

normalized  gradient vector,  which  is  parallel  to    E's    optimal direction, 

is  normal   to  the new barrier,   as was   the case in Region  I.    The gradient 

rotates at  unit  rate with motion of    x    down the barrier,  until arrival 

at  the equilibrium point. 

4,2    Evader's Dispersal  Point and Dispersal  Line 

When  the parameters  ore outside  the  locus    C    ,   but below    C     ,   the 

point    A     (and its  image across  the y-axis)   is  inside rather  than on  the 

new barrier.     This  point  is  located by  the same  equations found in 

Chapter I, 

xA = 1  -  c(ß/7) 

yA = s(ß/7)   , 
(1) 

and  trajectories  from  this evader's dispersal  point are expressed  as 

functions of  the arrival  angle    e < f    < 6 and  the retrogressive 
— o — up 

time,  T : 

x = 1 - ex + (ß-7T)s(ö+T) 
(2) 

y = ST + (ß-7T)c(t)+T) . 

The largest angle, $     , is given by solving the simultaneous equations 

rCt5 ,T ) = ß ,  He! ,T ) = 0 , as detailed in Appendix B-l, and as shown 

In Fig. -1.1. 
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This figure also shows that A is the near end of an evader's 

dispersal line (EDL) extending to the y-axis, there meeting the image 

EDL from the other dispersal point. This EDL is a locus of starting 
points for which E must choose between two equally optimal strategies, 

labelled "+" and for reference purposes in Fig. 4.1. On the 

side, E runs along the tangent to P's minimum turn circle, and the 
game ends as a straight-line chase. The other choice of strategy from

FIGURE 4.1. EDL from Point A In Region 111

the EDL has E running straight until tangential arrival at the cap­

ture circle near the equilibrium point. Subsequent motion here is of 
the safe-contact type until c? decreases to , where E leaves the



circle tor u  short interval betöre termination at eo .  It is easily 

shown that P's  strategy is the same for either choice of E's  (i.e., 

S = V y - V x > 0  if  x > 0 , for either W or  vV+ ). The "-" tra- 

jectories encounter the y-axis as in Chapter II, with P's switch func- 

tion going smoothly to zero along this line. On the barrier side of 

the EDL , though, the switch function is positive as x    approaches the 

brief y-uxis segment of the EDL shown in Fig. 4.1. While it can be 

shown only numerically, there exists a discontinuity in both W and  S 

a.oss this line segment, such that P's  strategy depends on E's 

choice. 

Referring to Fig. B-l, the discontinuity in the gradient across the 

EDL gives an equation for the local slope as 

v--v+ 
^1 = _ 

x x . (3) 
dx ~  v"-V+ 

y y 

Next,   in equating    x+  = x"   .   differential  changes  lead  to relations be- 

tween    de2.dt2,dy1,dT1   .    The appropriate independent variable is    yj  , 

since the other variables are either too nearly static or are not clearly 

monotonic.    Thus,   equating differential positions on either side,  we 

derive simultaneous  differential  equations, 

+ 
de2 + dT2 - " dTl 

X
e  dTT + XT dTT = ^  + XT dy1 

(4) 

+ 
d92   + 

dT2   -    " !li 
+ y. :nr = yv + y. ye d^ + yT ä^ = ^i ^ dy i 

The required trajectories are given in terms of  (y^) or  (e2,T2) 

in Appendix B, as are the adjoints required in (3). The numerical inte- 

gration of the coupled equations proceeds routinely in Region III of 

parameter space, as there are no unusual numerical problems.  It is true 

that de2/dy:l  is nearly zero as e2    approaches eeq . but the deter- 

minant of the coefficient matrix of (4) is 

W    -  IK  =  T2[(7V^V? + *V
2 - ßse2] > 0 . 
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(5) 

which means  that  there are  no  Indeterminacles   In  the integration of   (3) 

and   (4). 

The gradient vector    W    in Region III varies smoothly with position 

except across  the    EDL  ,   and  all of  the contours of  constant    V    inter- 

sect  the  capture circle outside  the usable part.     Note  in particular  that 

as  the new barrier is  approached,   the  time-to-go  approaches  infinity  con- 

tinuously,   while  in Region I,   the  time-to-go  is  discontinuous at    S   . 

The safe-contact  trajectories which follow   the  tangential arrival 

at    So     (see FiB'  B-l)   are described  in polar  coordinates as 

r = -ce + yc(i|r-e) = o 

e = -i + (8e+7v''i-c2e/7z)/0 . 

where    r = ß    has  been used  in  the  angular equation and  where    0™ < 6 

< 9       .    The radial equation gives    E's    control for this motion as 
eq 

(cf.   (9)  of  Sec.  3,1): 

i|r = ö + cos'  (ce/7)   . (6) 

and,   as  expected,     E's     tangential  angular velocity decreases from zero 

as    9     decreases from    9       .     All  tangential  paths depart the capture 
eq 

circle at    9=9,   which has been calculated as  the  initial value of 

9 in the EDL integration. This last portion of the "+" paths (see 

Fig. 4.1) has E running in a straight path In real space, after tan- 

gential departure and before  termination at    9 - S    • 

4,3    Conjugate Point Replaces  Dispersal Point 

As  the speed  ratio  is  increased for parameters above    (^   ,   two  ex- 

treme trajectories from    A    coalesce to a single curve,  which is point- 

tangential  at    9T > 9 and which ends at  the arrival  angle    9=0, 

For larger    7 ,  such that the y-axls Is included in the point-tangential 

trajectory,   the retrogressive  equations from  the y-lntercept are 

x = 1  -  CT    +  (y -7T1)ST1 

(1) 
y = ST1  +   (y1-7T1)cT1   , 
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A uimjugtilc  point,     C   ,   1M  Jounted on  the  lowest such  trujectory by  the 
comli lion     y M, U Here  it  is  enslly seen  tluil  the conjugate 
point  I'oiuli lion   is  met;   i.e.,   when     i 

is,  using   (1): 

0(x,y) 

y /> , the Jucoblun determlnunt 

(l-/)sT, 

(i-/)cT, 

(2) 

An    K1)L     enuinil11 ng  irom    C    murks   the  right   end  of   trajectories   to  the 

y-uxis,   und   the  time «long  these  trnjectories  is    T    < y /y    for those 

nbove  the  point-tungenllul   trajectory.    A  trujectory-slope discontinuity 

occurs  «cross   the    KUL ,   this discontinuity decreasing to zero ut  the 

point    C  .     The   tungency of   the  point-tangential   trajectory and  the    KDL 

;it    C    Implies   that  an  indeterminacy  exists  in  the expressions lor  the 

derivatives  at   this  point.    This  liuletermlnucy  is evaluated  in Appen- 

dix U. 

The  parameter-space  locus  for which  the dispersal   point    A    becomes 

the conjugate point    C    is found by requiring    r(.p,y,-i  )  = ß  ,     f(0,7,T.) 

0  ,  where    T    ^ T,  - (V? ,  using   (1)  with    y,   = Ö Considering  these 

as  two equations  in    t3    and    T,   ,  we determine    TT    US   the smallest  root 

(1-CTj-J/   T:)(7-CT1)   +    (1-7)ST1(S11-J't1)   =   0    . (3) 

When  this  is  solved  numerically  for    T_(J')   ,   the corresponding parameter 

is 

tH?)  = /TT +   (l-7)sTT/{7-c-tT)   , (1) 

and a parameter locus is generated lor all TT in the interval 0 to 

n . This curve will be denoted as C. in the parameter space drawing 

to bo shown as  Fig.   '1.10  in Sec.   'I.ti. 

The  last  point on    C      has  the coordinates    f( = 2   ,     7 - 2/n =   .635  , 

and here    C    is ut  the  right edge of   the capture circle,  with   the  trajec- 

tory departing  tangent la]ly upward.     This means   that     1  - c(y /7)  = 
2 

ß /2  ,   and     s(y /J1)  = 0   .    Together  these conditions imply  that    y.   =  n/ 
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and that the conjugate point region ia bounded from above by the line, 

(5=2, this locus to be denoted as in Fig. 4.10.

For parameters in Region III, the effect of crossing the locus 

is shown in Fig. 4.2. The EOL calculation is discussed in more detail 

in Appendix B, but here it Is noted that the Initial values of and

Eliminating y^ leads to a cubic in ct^ ,

27c^t^ + (1+4 7+7^-(3^)c^i^ - 2[l + 7^+7(l-f'^) ]ct^ + 7^(l-(^^) + 1 = 0 , (5)

and the corresponding ordinate is

Fl = 7T.J. ♦ (l-7)sT.j/(7-CT^) . (6)

FIGURE 4.2. EDL from Point C in Region 111

59



Comparing Fig.  4.1  with Fig.  4.2  illustrates  the difference between tra- 

jectories  lor  parameters  in Region III,   on either side of  the locus 
given by   (4). 

4'4    Pursuer's  Oispersal  Line Replaces Open Barrier 

We  recall   that  in Region II,     P's    strategy when    r = ß    was 

p = +1     with    e  < eup    and    cp = -1    otherwise.    The barrier Intersection 

with  the  capture circle thus marked a  discontinuity in    P's    strateev. 
2 2 

For    ß    +7    > 1   ,   however,  we have seen in Sec.  4.1  that safe-contact 

motion is  possible for   (p  = +1   ,     9 > g^  .    When parameters pass from 

Region  III   to IV,   the equilibrium point  exists as  long as    ß < 1 +  7 , 

but  the barrier from this  point will be open,  since  the parameters will 

then fall  above  the locus  given by  (4)  of  Sec.  4.1.    This barrier starts 

on  the capture circle at    0       ,   and when    cp = +1  ,   the relative inward 

motion will be very slow when    E    is located on the capture circle Just 

ahead of    $       .     Indeed,   the  time-to-go will approach infinity,   so  that 

P    should obviously  turn away     (cp = -1)    when    E    is close to this 

equilibrium point.     Accordingly,   there must be a dispersal  line for    P 

starting on the capture circle slightly in front of  the open barrier, 

which  then loses  its significance. 

Hence,  when  the barrier from    e is open,  capture  in a finite 

time  is  possible from all  initial  conditions,  and we may  think of   this 

barrier as being "replaced" by the    PDL .     We note  that  the gradient and 

P's    switch function are discontinuous across  this  line,   and when  the 

equilibrium point  exists   (i.e.,    jl-y2 < ß < 1 + 7 ),   the    PDL    begins 

at an angle    e„    very slightly less  than    9        as  given by   (2)  of  Sec. 
P eq ' 

4.1.     When    ß > 1  +  7 ,  so  that    9 no longer exists,   the    PDL    may 

begin on  the capture circle at an angle    9    > jr/2   ,   or on  the negative 

y-axis,   or even on  the equivocal  line,  as will  be shown.     The variety of 

possible configurations of    PDL    makes  its  numerical  computation diffi- 

cult,   as  is further implied  by the following possibilities: 

i)     The  trajectory for    cp = +1    can depart  tangentially from  the 

PDL  ,   indicating that  the    SE    is present for  these para- 
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meters.     That is,   the extension above Region  II of    C       (see 

Fig.  3.9)   is required. 

ii)    The    SE  ,   in  turn,  may be interrupted by  the    FL  ;   i.e.,  we 

must locate  the extension of    C„    of Fig.  3.9. 6 

iii)     The dispersal  point    A    is  replaced  by the conjugate point    C 

for  parameters  to  the  right  of     C     ,   as discussed   in  Sec.   4.3. 

iv)    The point    A    may separate  the    SL    from  the    EL  ,   or may 

fall  inside  the capture circle,   the    EDL    no longer existing. 

That is,     C      and    Cr     of Fig.  3.9 must be extended  upward 

out of  Region II. 

These considerations have an obvious  significance  in the computa- 

tion of  the    PDL  ,   but for the  present we restrict attention  to  the 

equations which describe it,  and  to  the determination of   those para- 

meters for which it  exists. 

For parameters  slightly above    C       such  that  the    PDL    exists,   the 

configuration of  exceptional lines will  resemble  that shown in Fig. 

4.3(a).    This  configuration is  representative of  parameters  in the neigh- 

borhood of    ß = 1.4   ,     7 = .6  ,   such  that  the    PDL    Is not Interrupted 

by the    SE    as mentioned above.     The turn-away region resembles   that 

which exists for parameters in Region II,  and when parameters are close 

to the  locus    C    ,   the    EDL    and    PDL    are nearly coincident,   so  that 

they can be  thought of  as "replacing"  the barrier which exists  in 

Region  II. 

In  (b)  of   the figure is shown a  configuration for parameters near 

the values    ß = 1.82   ,     7 = .8   ,   so  that    9 does not  exist,   and such K eq 
that the point    A    has been supplanted by  the conjugate point    C  .     For 

these parameters,   the two dispersal  lines are more widely separated,   and 

the turn-away region  is  proportionately smaller. 

The equations which specify  the    PDL    are  similar  to those described 

in Sec.  3.3.     That is,   the position is   the same for two  different  retro- 

grade paths,   and  the main equation holds  for either of     P's     strategies. 

Using  the notation of Fig.  4.3(a),   for example,   the    PDL    would be found 

61 



by simultaneous solution of the three equations,

+ + dxj _ „ dX2

""e d02 "'t d02 “ *T d02

^ v~-v‘^dy XX

-■■?v
y y

(a) p < 1+7 (b) p > 1+7

FIGURE 4.3. EDL and PDL in Region IV 
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At any point    x  fejiTj)  = x  (e2,T2)   ,   these equations can be solved 

for the indicated derivatives,    e2    having been taken as  the independent 

variable.     The superscripts  in   (1)  are chosen to agree with the sign of 

the switch function.    Hence,   providing  the configuration actually  is  as 

shown in  the figure,   it remains only to find a  set of  "initial"  condi- 

tions  in order for the    PDL    to be numerically calculable. 

The first few attempts  to  integrate  the    PDL    were  carried  out lor 

parameters only slightly above    C     ,   so  that the  relevant initial  condi- 

tions were  those at  the near end  of  the    PDL ,  slightly  inward of    9 
eq 

Initial  conditions  could be found only after numerical   integration of 

the    EDL  ,   the    EL    and  the safe-contact  equations of  retrograde motion 

back to    e       .    The initial conditions required for the    PDL    integra- eq 
tion would  then be    T    = T    = 0     and    e,   = e„ = 9     ,   and hence only    9 

■L « 1 6 p p 

needed  to be determined numerically,  as  described  in Appendix B.     This 

procedure was followed by a  subsequent    PDL    integration,  which con- 

tinued  until  the switch function euualled zero on  the  "+"  side of   it. 

It was found that the end point of  the    PDL   was "close"  to the end point 

of   the    EDL ,   as  pictured  in Ref.  2.     Subsequent numerical  studies 

showed,   however,   that these endpoints are actually coincident,   and  that 

the two dispersal  lines join the    EL    at a  common point,   labelled    B    as 

in the barrier case of Region II.    This means that for configurations 

similar  to that shown in Fig.  4.3(b),   the    PDL   can be profitably inte- 

grated  inward from  the far end,   simultaneously with  the    EL .    This has 

Important numerical  advantages,   particularly when    ß > 1  +  7  ,   such  that 

the approximate location of  the near end of  the    PDL    is  unknown. 

In determining the parameters for which the    PDL    exists,  we con- 

sider the changes  in its appearance due  to changes  in    ß   ,   for a  fixed 

value of     7  ,   this fixed value  lying between    0    and     1   .     The largest 

value    ß    for which it can exist will be found,  and  this  locus     ß(7) 

will be denoted    C     ,  for reference purposes. 

When     7    is  sufficiently small,   the  point    A    is  not  a dispersal 

point,   because the retrogressive switch  time is 

Ts^2(n-eo)<ß/7^TA. 
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Also,   when the point-contact trajectory  is tangent to the capture-circle 

at  the  angle    öT =  t/2   ,   the retrogressive equations  are 

x  = 1 - CT +   (ß-n)s(eo+T)   = ß 
(2) 

y   =   ST +   (ß-7T)c(eo+T)   = 0   . 

But,  at  this point we know    E's    optimal direction must be tangential, 

i^ = a     +   T = it  ,   so   (2)   yields 

X = ß = 1 -  CTT  , (3) 

where     TT    is  the  least  positive  root  to  the equation, 

STT  +   CTT   +   7TT   "   1   =  0    • (4) 

lT 

While this  analysis appears unmotivated,   it may be observed  that, 

when the independent variable is changed to    T'   = T -  TT ,  the trajec- 

tory   (2)   is obviously  symmetric  with respect   to   the x-axis.    That  is, 

with  time    i'     measured  from  tangency at    90 =  n/2   ,   and    \|fo =  n  ,   the 

trajectory is  given by 

X   =   1   +    (ß-lkT*    +   /T'ST* 

y = -(ß-l)sT'  +  7T'CT'    . 

This means that  the switch function is also symmetric and is therefore 

equal  to zero at both ends of  the tangential  trajectory indicated in 

Fig.   4.4(a).    This  finally means   that parameters  are such  that   the    PDL 

is of  zero length,   having just vanished  into  the capture circle.     Hence, 

our sought function in  parameter space  is obtained by  eliminating    TT 

from   (3)   und  (4).     In a  relatively useful form,   the result is 

7 = 
cos^d-ß) 

(6) 

This function denotes  the  left end of   the  locus    C8     (to be shown 

in Fig.   4.10),   and  it   is appropriate until     7     is  so large that    A    ap- 

pears  on  the capture circle.     The criterion for  this  circumstance is 

TA = 2TT = ß/7 
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which,   Willi   (3)  und   (4),   implies  that     TT =  cos"   (-3/5) 5 2.21.     It  fol- 

lows   thiit  the  last  point on  the locus   (6)   is 

7   = 4/5TT  5   .362 

(7) 
ß  = 8/5  =   1.6   . 

When   (6)  yields a   value of     7 > .302,   the  point    A     is outside  the  cap- 

ture  circle,   and  is   the start of  an EDL.     The condition  (6)  must be  re- 

placed by another,   when    y > .362,  such that    S = 0    on the inner side 

of   the    BDL    when     r = ß  .     That  is,   if     S  = 0    while    r > ß  ,   a    PDL 

exists between  this  point  and   the capture  circle. 

The conditions  described above  are not  subject   to analytic  treat- 

ment,   since  the    EDL    equations must be integrated  numerically.     This 

implies  that    Ö    is   to be adjusted,   at a  fixed    7  ,   until  the  point    B 

at   the junction of     EDL    and    PDL    occurs  at    r = ß   .    The qualitative 

appearance of   the  relevant curves for    ß    Just below    C8    is  shown  in 

Fig.  4.4(b).     This   procedure  is  sufficient  as    7    increases until   the 

i'ispersal  point    A     is  supplanted by  the  conjugate point,   at     7 S   .78  , 

when    C8    is  crossed  by    C7   .    For larger     7  .   the  calculations  relate 

to  the  point    C   ,   and  the conditions  for  the vanishing of  the    PDL    are 

slightly changed.     For    7    greater than about   .7,   the left  end of   the 

PDL    shrinks   toward  its right end at  the point    B  ,   as shown in Fig. 

4.4(c).    As  the speed ratio approaches unity,  it is  found that the con- 

figuration near    B    is very sensitive to parameter changes,  and conse- 

quently the  precise  location of    C8    is  difficult  to assess  in  this 

region.    The  locus   appears   to  pass  through  the point    ß = 2   ,     7 = 1 

in  parameter space,   but  this observation has only a  numerical basis. 

We have discussed safe-contact motion  in Region II for    tp = -1   , 

when    P    turns away from    E  .    Likewise,   tangential  relative motion 

appears for    9 = +1   ,  when    E    is  inboard  of   the  equilibrium point,   for 

parameters   in Region  III.     For parameters  below    ß = 1 + 7    in Region 

IV,   moreover,   safe-contact motion can occur for both of    P's     turn 

directions.     As     ß    approaches    Cg   .   however,   particularly  for large 

7   ,   the turn-away  region does not necessary  border   the capture circle, 

so   that  tangential  motion can occur only for    cp = +1   .     In  this  case, 
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tangential motion appears whenever a point-tangential trajectory Joins 

the point A , or the point C , to the capture circle. These trajec­

tories can be expressed in terms of the arrival angle 9 , and the retro­

gressive time-to-tangency 

equations in 0,7) •

by expanding r = 3 , f = 0 , as two

If the parameters are in the region above , P never turns away

from E , and tangential motion can occur only for cp = +1 . The maximum

angle on the capture circle for which tangential motion is possible is
found by equating the radial acceleration to zero in unconstrained motion,

with r = 3 and f = 0 . Rearranging the result yields an equation

satisfied by this 9 > 90® ,
in

rV = 3s0 - (s0 +7'/l-c^e /7^> = 0 . (8)
mm D

For parameters below C. , the PDL exists, and the maximum angle
O

at which tangential motion occurs for cp = -1 depends on the subsequent 

trajectory. We have determined one such relation in (5) of Sec. 3.1 for 
the case when the departing trajectory encounters the negative y-axis.
In Region IV, the "last" tangential path for cp = -1 may encounter the 
EL or it may not exist at all. That is, all paths departing the circle 

with cp = ”1 ®ay do so non-tangentially, as shown in (a) of Fig. 4.5.

When the speed ratio is high and 3 > 1 + 7 , the shape of the PDL 
is extremely sensitive to parameter changes. Typical trajectory varia­

tions for 7 = .9 are shown in Fig. 4.5 for three slightly different 

values of 3 .

(b) 3=1.916 

FIGURE 4.5. PDL Variations witu 3
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4.5 Other Loci and Trajectories in Regions IV and V

The condition for the disappearance of the EDL (the extension 
above Region II of locus ) Is that the switch function vanish at the 

point A on the point-tangential trajectory. Using the solution for 
this trajectory, the condition requires satisfaction of the equality

= p/7 = = 2(x-e^) , (1)

where 0 and are coupled through
of Appendix B-1.

The result of eliminating 9
ment of C lying between C

1

o

and

and

C„

r«p, f=0,as given In (1)

to give ^(7) Is the seg-
, as will be shown In Fig. 4.10.

O

In Fig. 4.6 Is shown the nature of the switch lines and trajectories for

FIGURE 4.6. Trajectories for Parameters Between 
C3 and C5 In Region IV
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parameters slightly to the left of this portion of C„ 

above C,

Extending
3 • . . . . . .  ''5

is accomplished simply by requiring the dispersal point A to 

fall on the capture circle, using (1) of Sec. 3.2 for 3 < 2 . For 
(3,7) left of Cg , but below , the EI> is absent and the configura­

tion is as shown in Fig. 4.7.

FIGURE 4.7. Trajectories for Parameters Left 
of C5 in Region IV

For parameters in Region V above , the disappearance of the EDL 

again results when A is on the capture circle. This is the same func­

tion as mentioned above, and it extends from 3=7=0 to the point

3=2, 7 = 2/« S .635
intersect at the same point (where 6^

It will be seen in Fig. 4.10 that 
n/2 ).

and C.



The  locus    C^     denotes  the upper border of an area  in which  the    SE 

exists,   and  it  is  found  by fixing    7     und determining the largest    ß    for 

which   the required  cotangency condition holds.     A test of  a  given pair of 

parameters   thus  requires  the retrogressive  integration of  the    EDL  ,     EL 

and  safe-contact  equations,   until    e       is found at  the base of   the    PDL 
P 

on  the  capture circle.     (See Appendix  B.)     Integration of   the    PDL    then 

determines  if   the    SE    is present  by   the condition    do  /dx    = 0   .     If 

this  equation  is  not  satisfied at  any  point  on  the    PDL  ,   the correspond- 

ing parameters  are above  the locus    C 
  4 

Similarly,   the locus    C.    bounds an area of Region IV for which  the 

SE    is  interrupted by a    FL ,  and  this locus  is found as in Sec.  3.4,  by 

integrating the    SE    until  the    FL    condition Is satisfied or not.    This 

again is a straightforward but  tedious numerical  trial  and error pro- 

cedure. 

In Fig.   4.8  is  shown a qualitative sketch of  the switch  line and 

trajectories  resulting for a  pair of   parameters Just above  locus    C       in' 

Region IV.     Here it  is  seen that  the    EDL    meets the y-axis while  the 

PDL ,     SE    and    FL    do not.    This  combination of parameters  generates  the 

most complex  structure believed  to exist in  the game.     As many as  15 

stages are possible for certain initial conditions,  and for these para- 

meters a chase can  include every qualitative feature of  the homicidal 

chauffeur game except  the barrier and  the switch line. 

A brief  discussion of  the 15-stage chase may be instructive.     From 

an initial  position on  the    PDL  ,   as   shown in Fig.  4,8,     P    chooses 

cp = +1    until Just after the forward portion of the    SE    is encountered. 

The turn-away     (tp = -1)    leads    E    down to the    FL ,  on which any number 

of switches by    P    can be performed.     This leads    x    again onto the    SE , 

for which    tp = +1   ,   until the    PDL    is met again, where    P    now chooses 

to  turn away.     Safe-contact with    cp = -1     is  followed by a  reverse chase, 

which  is continued along the    EL   until  the point    B    is reached.    Here 

£    chooses  the    UL    strategy of   the y-axis  and   therefore    (p  =  +1     until 

this  singular arc  is  reached,  when    cp = 0  .     This leads    x    down to  the 
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FIGURE 4.8. A Fifteen-Stage Game in Region IV
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EDL    again,   where    E    chooses  to  run  toward  the right equilibrium  point, 

thus  iorclng    P     to  take    cp = +1   .     The final  stages  Include a  second 

brief  safe-contact  episode. 

Continuing our discussion of   the parameter space loci  in Regions  IV 

and V,   the locus    C7    continues  to    ß = 2   ,  and denotes the border of a 

zone in which a conjugate point  exists.     The array of dispersal  and 

equivocal   lines  when the  point    C    exists,   for     (ß.r)     below    Cg    and to 

the right  of     C       has been shown  in Fig.   4.3(b). 

The  left-hand  portion of    Cg     (.7 <  -362),   above which  the    PDL    does 

not  exist,   is  given by   (6)  of  Sec.   4.4.     This can also be considered as 

the  locus  of   tangential  contact  at    eT  = 90°   .   and  it can be  extended 

upward  to    ß = 2   ,   as  in Fig.  B-2,   where  it provides  a  convenient  refer- 

ence line for  visualizing  the point-tangent  trajectories. 

We can also find a  parameter locus  above which optimal  tangential 

motion does  not occur for    cp = +1   .    When    7 < .503   ,   this  locus   is given 

by  simultaneous  solution of  three equations in    eo  ,     TT    and    ß     (  7    be- 

ing a fixed parameter).    The equations are    r = ß  ,     f = 0  ,  and   (8)  of 

Sec.  4.4,  which  is  equivalent  to    1? = 0     in two-dimensional motion.    This 

locus will be labelled    C10    in the parameter space drawing of Fig. 4.10. 

For    7 >  .503   ,   this curve is  extended  by    C,.   ,  for which    A    is on the 

capture circle,  with    TT = TA •     Typical  trajectory configurations in 

Region V are  shown in Fig.  4.9.     Here  it  is seen that    P    never  turns 

away from    E   ,   but that  safe-contact and  the    EDL    are still  possibilities. 

For sufficiently large    ß ,  as  in  (d)  of  this figure,  only the y-axis re- 

mains as  an exceptional  line. 

4.6    Parameter  Space.  Regions  III.   IV and V 

In  completing our study of   the parameter space for  the game,   it has 

been convenient  to define  three new regions.    These are bounded  by  the 

heavy  lines  in Fig.  4.10.     Region  III  features a  closed  barrier and an 

EDL ,   IV  is  characterized by both    PDL    and    EDL  ,   and  for  parameters  in 

V    the situation becomes  relatively simple again,   the evader's dispersal 

line and safe-contact trajectories disappearing one by one as  this 

region  is  traversed. 
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(c) Parameters Between and (d) Parameters Above and

FIGURE 4.9. Trajectories for Parameters in Region V
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Parameter curve is continued to 7=1, defining the closed

barrier parameters of Region III. Here the new barrier contacts the 

capture circle at an equilibrium point, and in the capture region there 

exists an EDL which starts at a dispersal point, or at a conjugate 

point, this distinction being specified by a parameter locus C .

FIGURE 4.10. Regions in Parameter Space 
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In Region IV very complex games are possible, as the barrier is re- 

placed by the EDL-PDL combination. The upper boundary to this region, 

C     ,   specifies  the disappearance of    P's    turn-away  strategy,   and  the 
Ö 

other  curves  in this  region are  extensions of  loci first defined for 

Regions  II  and III.     In particular,   the possibility  exists  for both  the 

SE    and    FL    in Region  IV,   and  safe-contact  is optimal  for both extreme 

strategies  of    P  . 

The loci of Region V are continuations of   those  in  IV,   except for 

C   , above which the  conjugate  point  disappears,   and    C10   ,   above which 

safe-contact for    cp = +1    disappears.     The high maneuverability of    P  , 

when    ß    is  above    C      or    C       ,   means  that an optimal  game  is  simply 

played  by both  players,     P's     strategy being at most  a   sharp  turn fol- 

lowed by a  straight chase,   and     E's     path being straight  throughout. 

The  parameter char.t of  Fig.   4.10 also includes  an unlabelled dashed 

line which  passes diagonally  through  the space.     This  locus  corresponds 

to  a  configuration in which  the    EL     (or    EDL )   passes  behind    P    and  to 

the  point     x  = 0  ,     y = -ß   .     While not an important  locus  in  the sense 

of  denoting  the presence or absence of  switch  lines,   dispersal   lines, 

etc.,   it does  assist  in the  sketching of qualitative features of  a 

specific  game. 
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Chapter V 

CONCLUSIONS 

It has been shown that  the type of  solution to the homicidal chauf- 

feur game is determined by  the values of  two independent parameters. 

The speed ratio and    P's    maneuverability ratio are the two parameters 

of   the game,   and the form of  the solution is believed to be known for 

all combinations of  these parameters.    An optimally played game can con- 

sist of from one to fifteen stages, depending upon the parameters and 

the  initial  relative position. 

The exceptional  lines  which arise in the game border the regular 

regions  in the relative space,   and  the exceptional  lines  themselves may 

or may not be  trajectories.     In Table I  are given  the distinguishing 

characteristics of   the exceptional lines which can occur in the solution 

to  the game. 

The barrier is  an optimal path when it is closed,  such that the 

capture region is finite.     When the barriers are open,  a range of para- 

meters exists for which a  segment of  the barrier is an optimal path, 

along which    P    lunges toward    E .    The remaining portion is a  locus ol 

initial conditions  for which    P's    strategy is a  turn-away.    The uni- 

versal line,  or singular arc,  corresponds to straight-line motion of 

both players,   and is found  to occur for all  values of the parameters. 

Dispersal  lines  for    P    are found  to exist  both as a  straight line 

directly behind    P    and as curved lines to  the right and left of    P  . 

For initial conditions on these lines,    P    must choose between a hard 

left and a hard right turn,   and    E's    strategy depends on this choice. 

Similarly,  a dispersal line for    E    is found as a  locus of  initial con- 

ditions for which     E    chooses from  two equivalent  strategies.    For most 

parameters,     P's    strategy does not depend on    E's    choice.    However, 

when a segment of    E's    dispersal line falls directly ahead of  the 

pursuer,    P's    strategy does depend on    E's    choice. 

Safe contact motion,   for which    E    follows a curved path in real 

space,  is found to occur for both extreme turn directions of    P . 
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TABLE I 

EXCEPTIONAL LINES AND THEIR CHARACTERISTICS 

Line Definition and Characteristics 

Barrier,   across which    W    is  discontinuous.     It may be 
open  (Region  II),   in which case  it is  an optimal  path only 
if     S    has  the  same  sifn on either side of   it.     It may also 
be closed   (Regions  I  and  III)   and  it  denotes  a discontinuity 
in    V    in Regions  I  and  II. 

UL 

PDL 
y 

PDL 

EDL 
a 

EDL 
c 

1D+ 

1D~ 

EL 

SE 

FL 

Universal  line,   a  portion of  the y-axis which  Is a  path cor- 
responding to  straight  line motion of  both  players,   across 
which    W    is  continuous,  and along which    S = S = 0  . 

A portion of   the negative y-axis which is  a  pursuer's  dis- 
persal  line,   on which    P   must choose between hard left and 
hard  right  turns.    Both    W    and    S    are discontinuous 
across  this  line. 

Pursuer's  dispersal   line for    x ^ 0   ,   which  is found by 
numerical   integration.     Both    'vV    and    S    are discontinuous, 
and     S    changes  sign,   across  this  line. 

Evader's  dispersal  line emanating from a dispersal  point    A 
and across which    W    and    S    are discontinuous,   but    S    re- 
tains its sign across  it. 

Evader's  dispersal  line  emanating from a  conjugate point    C  . 

Safe contact motion   (r = ß  ,     r = 0)   for which    P    turns 
toward    E  ,   who follows a  curved  path  in real  space while 
maintaining safe contact. 

Safe contact motion for which    P    turns  away from    E  , 

Equivocal  line,   along which    S  = 0    and    E    has a  choice of 
two strategies,   one of which keeps    x    on  the    EL .    W    and 
S    are discontinuous across this line. 

SL Switch line,   along which    S = 0    and  across which    P's    stra- 
tegy switches.     E's     strategy  across   the    SL    is continuous, 
since   W    and    S    are smooth across  it. 

Switch envelope,   across which     vV    and    S    are discontinuous, 
and which  is  a   trajectory or not,   according to    P's    choice. 

Focal line, across which W and S are discontinuous, and 
which is a trajectory requiring either ;p = +1 or cp = -I , 
according  to    P's    choice. 
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Other exceptional lines which can also be optimal trajectories Include 

the equivocal line, the switch envelope, and the focal line. While 
these lines are more difficult to explain or justify on physical grounds, 

their appearance in the solution adds interest to the problem. In fact, 
a general conclusion of the study is that a more complete understanding 

of the theory often follows from attempting a solution to a particular 

application. Thus, for example, it is unlikely that the switch envelope 
phenomenon could have been predicted from a purely analytical attack on 

the problem.

As to the parameters for which each type of exceptional line occurs. 

Fig. 5.1 labels twenty significant subregions of the parameter space, 
and Table II summarizes by listing the exceptional lines which exist in 

each subregion, using the notation given in Table I.

FIGURE 5.1. Definitions of Subregions



TABLE  II 

DISTRIBUTION OF  EXCEPTIONAL LINES 

Region 
Sub- 

region 

ExceDtlonal  Lines Present  in  Each Subregion 

» UL PDL 
y 

PUL EDL 
a 

EDL 
c 

1D+ ID" EL ;iL SE FL 

I X X 

II a 
b 
c 
d 
e 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X X 

III a 
b 

X 

X 

X 

X 

X 

X 

X 

X 

IV a 
b 
c 
d 
e 
f 

B 
h 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

V a 
b 
c 
d 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

The loci    C, C      and    C      which separate   the five regions of   the 

parameter space are  particularly significant because 

i)     for     (ß,7)    "bove    ^  .   the barrier through    ^up    no  longer 

exists,   and  the  time-to-go is everywhere continuous; 

li)    for     (P,r)    below    C2   ,   the capture region is finite; 

iii)    for     (ß(7)    above    Cg  .     P    never  turns  away from    E  . 

It is  to be noted  that minor changes  in  the  configuration can occur 

even in a  specific  subregion of  parameter space.     Thus,   for example,   the 

configuration of Fig.  4.8 occurs only for parameters  in :.  minute strip 

at  the lower  edge of  subregion IVe.     Similarly,   near the upper edge of 
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subregion IVf, the PDL may or may not contact the capture circle. The 

loci separating these various possibilities, however, are not considered 

Important enough to be calculated, particularly since this would entail 

very lengthy trial and error methods. 
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APPENDIX A 

SWITCH ENVELOPE 

The SE appears for parameters near the lower boundary of Regions II 

and IV.  In Region II, it is specified as beginning on the barrier at the 

lower bound of points for which P saves time by turning toward E.  The 

criterion for this occurrence is 

V X + V y = 1, (1) 
x       y v,■' 

where 

V* = s(* -t )/D 
X     o  o 

Vy = C( VT0)/D 

*0 = Öo - co,-hceo/y) 

(2) 

D =Vi-c2e/72 (ß + se -Vi-c2e /y2) , 

and where 

x = y - 78(eup+Tb) 

i - x - rc(eup+tb) 

(3) 

Retrogressive trajectories needed in this study are the barrier, 

constructed with q> = +1, 

x = 1 - CT. + (ß - n. )s(ei +TK) b        b   up b 
(4) 

y = sTb + (ß - nb)c(eup+Tb) , 

and the turn-away paths   (q) = -1) which encounter the capture circle 

t'snuentially, 

X     =   -1   +   CT     +   ßB(fl   -T   )   -   7T   8(\|f  -T   ) o o    o o       o    o 

+ (5) 
y    = BT    + ßcO  -T  )  -  7T c(| -T  ) . o o    o o      o    o 
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The SE exists It and only if (1) holds at some point,  Tb, on the 

barrier.  To 1'ind such a point, a barrier time t. > 0 is chosen, and 

the resulting  (x.y)  are solved for the parameters  ^eo
,T

0^  u»i
n8 (5). 

These are then used in (2) and (3) so that the left side of (1) can be 

evaluated.  The time r  is adjusted until this left side equals 1, or 
b 

until it is found that the left side is always less than 1, for all 

T < 2(n - 9 ).  For parameters between C  and C4, the results of the 

iteration are initial values of 9o, To and f  = 9up + Tb, which are 

then used as initial conditions in the retrogressive SE Integration. 

The local slope of the SE is then expressed as a bilinear function 

of the unknown dR 'dt , o  o 

y + yn(de Mi  ) 
iS -       T   9   0  0 (6) 
dx ' x + xa(d9 /da )  ' -t   9   o   o 

and (1) is used with the incoming velocity on the SE, 

x = y - 7St 

y" = 1 - X - 7c\|r" , 

to give an equation for E's prior control,  *". Following some simpli- 

fication, this equation is* 

cof-vV = R(eo,To) = l + f {°<VV"cVß,s'^eo/''2) •   (7) 

The prior control then permits calculation of the SE slope in terms of 

(9 ,T ): o o 

äz _ i -x - yzf (8) 
dx -   y - 7st 

»While multiple-valued, the inverse-cosine operation is trouble-free if 
It is recalled that  f remains practically normal to the barrier as 
the SE is integrated away from it. 
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Finally, (6) gives 

do      y - x (dy/dx) 
_° = _ -1 1—  (9) 
dTo     y, - x9{dy/dx) ' 

and numerical Integration of (9) for a small change in the independent 

variable (here taken as T ) is followed by updated values for x on 
o - 

the  SE.    The derivative  in   (9)   is never  indeterminate.     This  retrogres- 

sive integration  proceeds  until  either of  two  geometric  circumstances 

arises: 

1)  the  curvature of  the  incoming  path equals  that of  the 

SE,   Implying that  the SE is here  tangentially extended 

by a  PDL,   or 

11)  the derivative   (9)  equals zero,   implying  that  the depart- 

ing trajectory is tangential to the SE, which In this 

case is tangentially Joined to an FL. 

The first case  is equivalent to a  requirement on  the  time-derivative 

of     t      for motion  along  the  SE,   in  that  the  integration proceeds only 

while    d>|r~/dT    < 1.    This derivative is expressed more conveniently as 

d£ = afM0n dx {10) 
dT    " dy/de0    dx 

where,  using (7), 

d)|f                n.                                    R dx 
di|f  _  _o e _ n + T       1  o 
do          do " S(^"_J, +T ) ~ l         •(*"-'!'+-[  ) do 

o               o              T      V.   vo                                        o     o o 

g- = yö + yT  (dVdöo) 
o 

■T^- = 1 - x - yet"  . 

When    dt'/dT    =  1,   a  PDL starts,   as shown  in  Fig.   3.3,   and it   is  neces- 

sary  to have  the adjoints on  the prior  side,  which are: 
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V = si|r /D 
(11) 

V" = c ♦"/!)" • 
y 

The denominator In (11) is expressed in terms of the current position 

on the SE, using the main equation on the prior side to give 

(12) 
(l-x)ci|f + ys* - 7 • 

^„i »t thfi barrier this function vanishes, and 
Because the SE is tangential at the barrier, 

the adjoints are infinite, at this lowest point of the SE. 

The integration of the SE when parameters are in Region IV is much 

the same, except that the barrier no longer exists.  The lower end of 

the SE is instead coincident and cotangential with the upper end of a 

PDL and with a trajectory for cp - +1. as shown in Fig. 4.8.  The con- 

.,/d, = 0).  The prior trajectory thus taKes the place of the barri 

i thl analysis above, and the integration of the SK then proceed-, with 

„o mdeterminacies, by calculating the derivative according to (9). 
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APPENDIX B

COMPUTATION OF DISPERSAL LINES

B-1 Evader's Dispersal Line

In the simplest case, which serves to illustrate the steps involved, 

we may consider the configuration of Fig. B-1, for which the parameters 

fall in Regions III or IV, to the left of locus C.^. The equations which 

determine the EDL are three, in the four variables indicated.

For a given pair (^,7) it is first necessary to calculate the 

initial values 0,^,, tg point-tangential trajectory leaving the

point A farthest to the right in the Figure. This trajectory is read­

ily expressed in terms of 9^ and the retrogressive time to tangency 

T,j, such that r(0^,'T,j.) = § and f(0^,x,j,) = 0, or

FIGURE B-1. Notation Near Dispersal Point A
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1  - CTT + (t3-7tT)[fl(ö0+TT)-seo]   - ß7TT + Jr2^    = 0 

s^ +  (tä-7TT)[c(0o+TT)-rl   -  7[8(9o+TT)-seo1   = 0  . 

(1) 

Fixing 9  and  T- at convenient values permits calculation of 

the corresponding ß,7 shown In Flg. B-2, to the left of the locus C7. 

The Initial value of the time variable shown in Fig, B-l is Tg = ß/7—rT. 

When the conjugate point C is present (ß,7 right of C7), the equa- 

tions take the form 

1 - CTT + (y1-7TT)sTT + JC^-nj) - ß 1 = 0 

(2) 

(1-7)STT + (y1-7TT)(<.TT - 7) = 0 . 

which can then be solved for the parameters, given convenient levels of 

y  and T™.  These functions of  (ß^)  »r« a^'°  shown in Fig. B-2, to 

the right of locus C .  The points of special interest in this Figure 

are: 

1) The tangency angle is 9 = 90° along the diagonal dashed 

locus, and in general can be found by 

ßc0T = STT + (ß-7TT)c(eo+TT), 

where 9  and T_ are read from the Figure. 
O        T 

11) The arrival angle 9  approaches 90° as 7 approaches 0. 

ill) The locus C   denotes the parameters above which tangential 

motion does not occur. For y <  .503, C10 is determined 

by the requirement that in free motion,  r = 0 at tan- 

gency, and for  .503 < 7 < .632, it is determined by having 

A fall on the capture circle. The locus is completed with 

the straight line ß = 2, along which TT = Jt. 

In developing the EDL by numerical integration, it is necessary only 

to express the positions and adjoints as functions of the parameters 

(y ,T ) or  (9 ,T„).  Referring to the general solutions of Chap. I 
11 2  * 

and to Fig. B-l, these are: 
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FIGURE B-2. Parametric Solutions lor Points A and C
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x+ = 1  - CT2 + ßs(e2+T2) - yt^d^g+Tg) 

y+ = ST2 + ßc(92+T2)  - 7t2c(t2+T2) 

x    = 1 - CT1 +  (y1-7't1)sT1 

ST1 +  (y1-7t1)cT1 

Vx =  B(1lf2+T2)/D 

(3) 

(4) 

Vy = cCV^)/» (5) 

Jl-c20o/72 (ß - so, - y4\-c26 /y2) 

v" = st./d-r) 
X 1 

v" = ct./d-r) 
y        i 

(6) 

These functions and their derivatives are used in (3) and (4) of Sec. 

4.2, which are then solved for the derivatives d-^/dy^ dögA^ and 

dx/dy^ 

For parameters in the range <l-y   < ß < 1+r , the equilibrium point 

9   exists, and as the EDL is integrated outward toward the point B 

(where it meets the PDL), the angle 92 is very nearly equal to 9eq. 

For numerical reasons, therefore, a more suitable variable is £, de- 

fined by e"^ = 9  - 92, as will be discussed in App. B-2. 

In terms of this variable, the slope of the EDL is then express- 

ible as 

^      D sTl - (i-7)8(w a_ »(yy 
dx ~   D CT1 - (l-7)c(t2+T2)      ^W 

since 
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D = e"5 ß c9eq/7 

^2  * ^eq 

and further substitution permits cancellation of e b  from numerator and 

denominator of the derivatives; the results are: 

Ül 1ÜS3Ü£^ 
dy1 '  "  y[l  - c(*eq+T2-T1)] 

dy1 " 7(i-y)T2(ß - seeq) 

^2       yi: ni 
dyl ' 72T2[1 - c^eq+V^l^ 

The initial values of the four parameters are easily computed (.Vj^* . 

T =p/7 l     T  and 6  from Fig. B-2), and the equations (7) are integrated 

simultaneously until the switch function vanishes on the inner side (this 

occurs long before S = 0 on the outer side) of the EDL, or when 

s = v+y - w\ = c^q - ßs^eq-eeq) - c(teq+T2) = 0 . 

For parameters right of C7, the conjugate point C marks the near 

end of the EDL, and because the trajectories on either side reduce to the 

same path at C, the necessary derivatives are indeterminate.  Referring 

to Fig. B-3, the two paths give, at the point C, 

Xc   =   1   -   C^   =   1   "   CT2  +   ß8(e2+T2)   -   7T2S(>1'2+T2) 

yc  =   ST1   =   8T2   H-   ßc(92+T2)   -   n2C(VV    • 

and equating adjoints provides two more equations, 
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•^1 = '^2 -^2

1 - 7 = - S02 - 7Vl^-c\/7^)

The last equation is solved for terms of the parameters,

and then the preceding equations give Initial values for

(l-7)c0o

2

= Tg + 02 + cos”^(c02/7>

Yl = .

FIGURE B-3. Notation Near Conjugate Point C

90



The Indeterminacy at    C    requires that second-order expressions  for 

the derivatives be found.     The slope of the EDL is 

dy . *x jt 

y      y 

and when expanded to second order in   AT., AT-, A©   , we  find 

2 2 2De 
Atf - AT,    =   T—^- Aö     , 

1 2 1-72' 

where    Dg = ÖD/ä92,  as given by  (5).    Likewise,  expressing changes in    x 

and    y    to second-order yields,  after some effort, 

AyiATi + 5<l-2y)^i - ^) = (ßce2/7 - n2*e)Ae2 

Ay1 + (I-/)(A^ - AT2) = 0. 

Eliminating A0  and AT„ gives a large quadratic in AT,/Ay, , but 
«        « II 

when the Identity 

ßce2/7 - rve = De 

Is used,   the quadratic becomes the very simple  linear expression, 

AT 
—L 2-37 

Äy1 
= 2(1-7) (27-1)   * 

The other two derivatives then follow as 

^2 

(9) 

Ay1 " 2(1-7) (27-1) 

_2_=    Z  
Av2 ;—2 2        U-y>'e2 
^1 2(27-l)c92[8e2 +  7^1-c202/7 5 ^ ^ 

7(l-c e2/7 ) 
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These expressions are useful only for the first step of the Integra- 

tion,  after which  it can proceed normally,   the indeterminacy no longer 

existing. 

B-2    Pursuer's Dispersal  Line 

We  first discuss  the  near indeterminacy in  the construction of  the 

PDL which exists just under the barrier for parameters near    Cg    in 

Region II.     For  these parameters,   it may  happen  that  (9) of  Sec.   3.3  is 

"numerically" indeterminate,  as it is based on differencing nearly equal 

numbers.    A straightforward means of overcoming this problem consists of 

finding a point on the PDL which is  "far away" from the indeterminacy. 

That is, an intelligent  guess is made as to the parameters  (e^Tj^T^ 

which correspond to a convenient value of    9^    This value    eo    is known 

from the integration of  the SE and is taken back from the end of the SE, 

where    to = 0 and    9,  = 0   .    The PDL conditions are   written at this 

estimated  point  as 

x+(eo,T2) =x-(e1.T1) 

y+(9o)t2) = y-^.V U) 

^WV -v"('tx) 

where initially only    9      is known.    The initial estimates of the other 

variables allow calculation of the six indicated quantities,  though,  and 

linearization gives 

x" 69,   + x" 6T,   - x* 8T    SE X+ - x" = AX 
9        1 t       1 T       * 

y9 6öi + y~i &Ti " yT 6'C2 - y+ - y" = Ay (2) 

-V0 801 + VT 5Tl " VT 8T2 * V+ - V" = AV, 

where the 3x3 matrix of partial derivatives is evaluated using the 
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current estimates of the sought quantities.     Inverting the matrix gives 

corrections to the previous estimates as 

-1 
60, 

BT, 

8T, 

e 

e 

-y 

-i 

+' 
T 

Ax 

+ 
■t 

Ay 

AV 
J U    - 

(3) 

and the steps are then repeated until the calculated errors are negligi- 

bly small.     The result of  the process Just described is a  set of variables 

(ÖJITJ."!«)     and a corresponding point    (x,y)    on  the PDL.     The numerical 

Integration of the PDL can then proceed in either direction;  i.e.,   toward 

or away from the numerical  indeterminacy.     In a typical case,  integration 

toward the indeterminacy is carried out only until  the computed values of, 

say,    tg    become noisy as the point D of the SE is approached from above. 

We next consider the numerical problems associated with the genera- 

tion of  the PDL which exists  for   (ß,7)  in Region  IV.     For  parameters  in 

the  lower  portion of  this  region,   the equilibrium  point     0 is defined 

on the capture circle,  and the near end of  the PDL begins  Just above the 

possible  equilibrium as in  Fig,   4.3(a).    When the  parameters are closer 

to  the upper edge of Region  IV,     8        is no  longer defined   (according to 

(2)  of  Sec.   4.1)  and  the PDL may  resemble  the  locus of Fig.   4.3(b). 

For the type of configuration shown in  (a) of  this Figure,  it is 

qualitatively clear that the safe-contact motion is very slow at posi- 

tions between    8      and    9_,  because the time on this brief  segment  is 
p 

practically equal to the time required for the  "long way around",  via 

the EL and the positive y-axis,  say.    Hence,    9      may be nearly equal  to 

9       (where    9 = 0    for   cp = +1)  in which case an appropriate dependent 
eq 

variable is    £,  as defined in Section B-l.     In the  region of parameter 

space between   ß =v 1-7^    and    ß s l+y,  the smallest value of this vari- 

able,     £,  is found to be in the range    2 to 5,  corresponding to angles 

between point-tangency and equilibrium of  from    .4°  to 8°,   virtually at 

the near end of the EDL.    At the other extreme,  the largest value of 
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occurs in measuring the very small angle between the PDL and the equili- 

brium point.  A typical value encountered, for parameters near locus C , 
-435 

is f; = 1000, which corresponds to an angular separation of 10    ra- 

dians*.  These facts imply that  ^ is a necessary type of variable for 

use in numerically integrating the PDL, when ß < 1+7. 

The solutions to be used for at least the beginning of the PDL are 

x+ = 1 - CT1 + ßsCej+tj) - rT1s(\|/1+'t1) 

y+ = si1  + ßcCSj+Tj) - njCdlfj+Tj^ 

(4) 

and 

-1 + CT2 + Me2-T2) - 7T28 0|f2-T2) 

y = ST2 + ßc(92-T2) - rt2c
(VT2) 

(5) 

where 

^2 = 92 - co8"
1(ce2/r) 

The set (5) may require replacement by equations describing motion to the 

negative y-axis, or to the EL, as suggested by Fig. 4.3. 

According to the definition of the PDL, we first locate the angular 

coordinate 6  at its near end, such that the total time to termination 
P 

is the same by two paths.  For parameters below ß = 1+7, the configura- 

tion is as shown in Fig. B-4. 

» The angle subtended by an electron at a radial distance of one light- 
-30 

year is about 10   radians. 
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FIGURE B-4. Detail of PDL Near Capture Circle 

The integral for the elapsed time during safe-contact with ia

0o

'«■/

^ dd
’ - m9 - y-J l~c^e/y^
T

where the denominator la zero Just outside the upper limit of integra­

tion, at d s 0 ■¥ e**^ . An accurate evaluation of the integral is
eq p

accomplished by expressing the integrand as

dW ' D<«) -

By adding and subtracting the linear term in a Taylor series, the dif­

ference of the first two terms remains small as 0 approaches 

while the last term is integrable as a logarithmic factor, using

■>.<%> - -



Approximating the upper limit of integration in (6) by 9  then 

gives 

^ = - ^(VV 3 - *n(W - VWvV •      (7) 

where 
öeq 

(8) 

9T 

has been determined numerically. This procedure results in initial val- 

ues of t;, T = T =0, and 9 = 9 , as required for the integration of 

the coupled PDL equations. 

Because the Initial values of t,    are quite large (in contrast to 

their values at e„), it is essential to express both numerator and de- 

nominator of the derivatives as factors of e ^  Following cancellation 

of this term, we find 

^    DeWi-c29eq/y2 s/i-cVy2 s^-y + g "(»ggr^V  ( (9) 

dTi = ßr ^i-c^eq/y2 N/I-C
2

92/7
2
 (ß + 8e2 - vJi-^e^yni^i^ ' 

where 

^- = c^  - ßs(9eq+t1)   -  rCc^+T,)  - V^eq+Vl   • 

In terms of this derivative,  the remaining two are written 

^2= 
Rv XT : JS y^ do) 

dTi    x; y- - y; x" 

(11) 
dT2 Rx "e - R

y 
x9 

dTl \ y9  - yT X0 
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tngital integration of (9)-(ll) then generates the PDL until one of 

two things occurs: 

1) The derivative d^/d^ vanishes, implying that dö^d^ = 0, 

so the PDL condition becomes 

^   y: * y>W    < _ . Ill  . 
dx = <^>x/dV    <      vy-vy 

Together with the main equation, W+- x+ = -1, this implies 

the SE condition, w"- x+ = -1.  Hence, when d^/d-^ = 0, a 

switch envelope begins. This occurs for parameters below C4 

in Region IV. 

ii) The PDL meets the EDL at the point B, where the switch func- 

tion S = 0.  In this case, for parameters above Cj, it is 

often more convenient to perform the integration of the PDL 

from the point B inward, rather than from the capture 

circle outward. 

In the first case, the SE is generated as described in App. A, while 

in the second case, a different set of equations is required to generate 

the PDL.  Referring to Fig. B-5, we have a relation between 9,^ and ^ 

from the »witch function equation,  s = V+ y - V+ x = 0, which yields 

^♦V = 7 Wi-cV?2 V - s9i " Wi-cVr2) 
(12) 

The object of the  following analysis is a set of differential equations 

relating    -t  ,   T  ,   V  and    ^  thus permitting simultaneous generation 

of both EL and LL.    Taking    Te    as the independent variable,  the PDL 

equations give 

do +d^             _          .   dT2 

x
+  i- + x    —- = x + x      -r— X9cKe 

+ XTdte          te        T2dTe                                    (i3) 

de +dT         .       .   dT2 
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FIGURE B-5. Detail Near Junction of PDL and EDL

and

+ y^ (dT /dT )

^ - e ^2 ^ ^

dx “

v" -
X X

6 A

(14)

where

Vx = s(i|f^-r2)/Dj(x,y)

Vy = c(^^-T2)/D^(x,y)

X = s(4r^+t^)/D(0^)

Vy = c(^^+«r^)/D(0^) .

At the point B, of course, W = W , because = T_ = 0; hence
0 A

♦i+tl = = tan"^(Xg/yg) , and
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D1 = - y/r - y = D = N/I-C2^//4^ +»6^7 ■Jl-c^^y2) ■ 

The indeterminacy of  (14) can then be evaluated by I'Hopital'g rule.    Af- 

ter cross-multiplying, we find 

-      - d't2 dei dT2      dTl v , 

e      2    e e e e 
(15) 

- -  dT2 d9l d'r2 dTl ^ 9 + (XT +xt dT^V-^e^ - Dy(dr + dT' " C^ry)((P-x/r2)] = o 
e      2    e e e e 

where the subscript    9    is an abbreviation for the partial derivative, 

d/dd  .     The pair of equations  (13)  is then solved for 

^i = A1  +  A2(dT2/dTe) 
e 

e 

where 

Aj^ =  (y+7r)($-l)/A 

A2 = - 2(y+7r)/A 

A3 = [(Ajtg-ßce^a+y/TT) + ßr>/l-c2ei/7:s($-x/r2)]/A 

A4 = [^^^-PcejXl+y/jT) - ßr v/l-c^/^d+x/r2)]/^ 

A = T1[(se1 + r^i-c^/y2)2 - ßse^ 

and 

2 i  4 
v r -x+r Vr -2x 
'= 1 ' 7       r(r-y) 

(16) 
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Substitution Into (15) yields a quadratic with Intimidating co- 

efficients, 

/d'V2\2 dT2 A(d-r) + B äT + c =0 (17) 

where 

A = y"  [(Dey+Dxi|re)A2 + Dx^+D]  + x^  [ (Dex-Dyi|fe)A2-Dy(A4+l)] 

B = y^  [(Dey+Dx1|f9)A2 + Dx(A4+l)] 
e 

and 

+ y^ [(Dey+i>»*e)A
1 + DxA3 + rx(q5-x/r2)] 

+ x"  [ (Dflx-Dyi|ra)A, - Dy(A +1)] 

+ x" [ (Dex-Dyi|re)A1 - DyAg -  (r+yy) (qp-x/r2)] 

C = y"  [ (Dey+Dx^e)Al  + DxAg +  7x($-x/r2)] 

+ x" [(DgX-Dy^gjAj^ - DyA3 -  (r+ry) (Jp-x/r2)] 
e 

The positive root to  (17)  Is then given by 

dt /dt    =  (- B - ^B2 - 4AC)/2A, (18) 
2      e 

which permits calculation of the remaining derivatives by (16), and the 

local slope of the PDL by (14). 
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APPENDIX C 

TRAJECTORIES  IN REAL SPACE 

It !• interesting and Instructive to determine the motion of    P    and 

E    in the fixed coordinate system,  using (1) and  (2) of Sec.   1.2.    The 

integration is simple  to carry out,  requiring only   (p(t)    and    \|f(t)    for 

any initial condition,   so  that 
t 

x_(t) = x_   +y sep(i) dj 
Po    'o t 

yP(t)  = "Po +Jf ^^^ ^ 

(1) 

where 

and 

6  (t)  =  6,,    +   / (pU) di 
P PQ      •V) 

/tpC 

xe(t) = xe    + r/"[M'(5)+öp(e)] dj 
'* °  t (2) 

ye(t) = ye   + 7fc[i,ii)+efw\ de 
O ''o 

In these equations, of course, <p(t) and ifif)    have been deter- 

mined by retrogressive Integration of the equations of relative motion, 

and either control or both may be discontinuous when an exceptional line 

is crossed. Because the relative trajectory has been computed for dis- 

crete time Intervals, it is obviously important to choose a "proper" 

step size, such that the intermediate switch times can be accurately 

estimated, and yet so that the total computer time required is not 

excessive. 

In real space, E's motion is often a sequence of straight lines, as 

might be expected intuitively.  In portions of the game, however, E fol- 

lows a curved path, as in safe-contact motion, and along the EL, the SE 

and the FL. 

Motion along the EL (Ref. I) has E following a gradually curved pur- 

suit path in real space, while P turns at an intermediate rate. Both 
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pathe can be interrupted whenever E chooses to  flee along the tangent  to 

P's minimum-turn circle,  whereupon P turn« at maximum rate. 

The FL trajectories also present interesting real space characteris- 

tics.     If P so chooses,  his path can be a series of brief tangential 

circular arcs,   while E's corresponding motion is an equal number of near- 

ly straight Jagged segments having a sawtooth appearance.    On the other 

hand,  the SE trajectory  for P is a sharp right  turn, while E's strategy 

thereon is a  transcendental  function of  the relative position which 

amounts  to a gentle curve in real  space.     When  P finally  turns  away, 

causing E to leave the SE, E's strategy is again discontinuous. 

The equilibrium point in Region III corresponds to the following 

real space  trajectory:  As E traverses the barrier towards the equilibrium 

point,  he is following a straight path in real  space.    After arrival at 

the capture circle,   however, with zero relative velocity,  E's path is a 

circle of radius    y,   P's path in real space being a concentric unit cir- 

cle,  described at the  same angular rate. 

For initial conditions slightly inward of  the barrier,  E's path dur- 

ing safe-contact motion is  "nearly" circular.     That is,  P's motion is 

circular and E is moving very slowly tangentially inward to the usable 

part.    The same characteristics hold for parameters in Region IV,  if E's 

path brings him to the capture circle at an angle between    9_    and    9   . 
T p 

In the course of  this research,  brief animated films were prepared 

of multi-stage chases  for three sets of parameters,  using the computing 

and plotting facilities of the Stanford Computation Center,     In the films, 

the chauffeur was represented by the capture circle, and the pedestrian 

by a small  square.    The pursuer was  typically drawn in six successive po- 

sitions during the time required to traverse one diameter of the capture 

circle,  and each drawing was photographed four  times,   the standard 16mm 

projector speed  being 24 frames/sec.    A representative lOO-second film 

of a chase,   shown in both relative and real coordinate systems,   required 

some 400 simple drawings of P and E,  together with a  few coordinate lines. 

The Calcomp plotting facility at the Stanford Computation Center was used 
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for this task, and subsequent camera work was ably executed by animation 

specialists at the Stanford Film Workshop. 
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