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ABSTRACT

Volume VIII deals with the following topics:

1. Application of Distribution - Free Tolerance Regions to Pattern

Recognition

Pattern recognition is needed to identify sonar signatures as to
the type of target by which they are generated. Distribution - free
methods are desirable in this context since the probability distributions
underlying the pattern classes are frequently unknown, and it is desirable
to establish some upper bound on at least the expected false-alarm proba-
bility. The recognition method developed has actually been applied to
the recognition of speech wave forms since these are more easily obtainable

than sonar signatures yet pnssess some of the same characteristics.

.. Passive Detection and Tracking using Surface Scattered Signals

Signals reflected from irregular time varying boundaries such as the
sea surface undergo distortion which limits their detcctability and use-
ability for tracking. The properties of this distortion for correlator
processing are related to the statistical constraints placed upon the time
variation and irregularity of the boundary. Two propagation geometries
are analysed. The first deals with the crosscorrelation of surface
reflected and direct transmission paths, and the second with the cross-
correlation of surface scattered signals received at two different locatioms.
This analysis assumes that the signal generated at the target and the
background noise are both gaussian random variables. Three models of the
scattering mechanism are proposed and two are analysed in detail. In all

cases the correlator output is shown to exhibit wvery persistent fluctuations

ii



due to the scattering. The existence of these fluctuations is related tc
the non-gaussian nature of the scattered signals. The fourth order

cunulant is computed to show that well spaced scattered signal samples

may be dependent even when they are uncorrelated. Results are presented for

low pass signal spectra and are investigated as a function of bandwidth.
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l. Introduction

This report is the second of two volumes dealing with work completed
under contract 8050-31-55001 between Yale University and the Electric Boat
Company during the period from July 1, 1968 to Aeril 30, 1970. More
detailed discussions of the results are contained in the two progress
reporte Noe. 42 and 43 which are appended. The companion volume (Vol. VII
of this series) covers work done during the same time period and contains
results submitted originally in progress reports No. 38 through 41. The
present volume is concerned with pattern reczognition and detection of
surface scattered sijnals, and it therefore represents something of a
departure from previous work, where the emphasis was mainly a signal
processing.

The interest in pattern recognition arose initially from the desire
of identifying target types from their sonar signatures, i.e. to determine
whether a received signal was generated by a ship, or a submarine, or
possibly a school of fish., Pattern recognition is however still a rather
inexact discipline relying rather heavily on ad hoc procedures. Hence
the approach taken in a given case depends very strongly on the nature of
the application, and in order to apply pattern recognition techniques to
sonar signature discrimination it would have been necessary to have had on
hand representative samples of sonar signals. These proved to be not
easily available, and it was decided therefore to transform the recognitioa
problem into a speech recognition problem, on the supposition that speech
waveforms would be roughly equivalent to sonar waveforms. This kind of
equivalence would of course exist only for signals from single hydrophones
and information contained in the spatial distribution of sonar signals
from different types of targets is therefore discarded. An initial attempt

at signature discrimination would however probably not have included
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spatial properties in any case, since these call for entirely different
approaches some of which are being considered in current research.
Surface-scattered signals must be considered in sonar detection
and communication systems because in many cases signals will be trans-
mitted to the receiving array not only by the direct path but also by
reflection from the surface (and the bottom). In fact under certain
shadowing conditions the surface-reflected path may be the only one trans-
mitting significant energy. In past work the characteristics of the
propagation path have been largely ignored; i.e. only the most elementary
propagation modecls were used. While many important and valid results were
obtained this way it has always been clear that many other effects observed
in sonar systems could only be analyzed by considering more sophisticated
models, The only previous effort in this direction is contained in Progrees
report No. 13 (Appendix F of Volume II) where the effect of volume
inhomogeneities in producing errors in the bearing estimate were considered.
The surface scattering path studied in the present volume represents

another effort at a more realistic characterization of the propagation path.

II. Application of Distribution-Free Tolerance Regions to Pattern

Recognition

As noted in the introduction, the sonar signature classification
problem has been converted into a speaker recognition problem. The
formulation of the problem dealt with in progress report No. 42 is that

the system is to recognize a main speaker with a fixed expected false

alarm probability. Any test speaker who is not the main speaker is con-
sidered to be an impostor and a false alarm is defined as the error

committed when an impostor is classified as the main speaker. In addition



to fixing the probability of false alarm the system should correctly
recognize the main speaker as often as possible.

It is assumed that the probability distributions governing the class
distributions are unknown. Hence with a finite s=mple size it is imposs-
ible to make precise statements atout any of the error probabilities. The
method of Distribution-Free Tolerance Regions makes it possible to fix the
expected probability of one kind of error, here chosen to be the false alarm.
It does not guarantee anything about the errors of the other kind -
different choices of tolerance regions resulting in different error rates
in any given sample. Thus the hest that can be done is to select a method
that appears to have des;rable properties and can therefore be expected to
do a good job of maximizing the probability of correct classification.

It is assumed that much of the information for the recognition of
speakers is contained in the transition between phonemes as well as in the
phonemes themselves. Fcr this reason a simple word which contained a
dipthong was analyzed by calculating maay short-term spectra over the
length of the word. These spectra were used to form the measurement space
in which the decisicn regions were constructed.

Recordings of 225 utterances by each of three speakers, 25 utterances
by each of 26 impostors, and 10 utterances by each of 30 impostors were
used. These utterances consisted of the sentence "My code is -~ '". digitized
into 10 bit accuracy at 8000 samples per second. Only the word "my" was
actually analyzed.

A short-term spectrum was calculated from 256 samples of the wave-
form by a fast Fourier transform. BHeuce, each spectrum consisted of 128
unique frequency components. The questions of 1) how many spectra to use

and 2) how ccarse each spectrum should be were investigated by forming



3-different 256-dimensional measurement spaces. The first measurement
space was made up of 4 spectra with each spectrum having 64 frequency
components. The second space consisted of 8 spectra with each spectrum
having 32 components. The third space consisted of 16 spectra with each
spectrum having 16 components. The number of frejuency components per
spectrum was reduced from 128 to 64, 32, and 16 by simple averaging.

The amplitude of each spectrum was normalized to make the energy content
of the word constant. The length of the word "my" varied from 900 time
samples (approximately 110 mscc) to 3350 time samples (approximately 420 ms)
according to the particular speaker and the particzular utterance involved.
Typical variation of the length of "my" by the same spesker was from 1500
to 2200 time samples. This variation was normalized by placing the spectra
uniformly across the word "my". Therefore, in the case of the typical
speaker elght spectra would approximately cover the word with little 1if
any overlap.

In the method of Distribution Free Tolerance Regions (DFTR) the
vample space is separated into statistically equivalent blocks by means
of a set of ordering functions. The general procedure is described in
chapter 2 of progress report No. 42, and a more detailed description of
the ordering functions used in the speaker-verification experiment is
given in chapter 3. The union of a certain number of these blocks forms

the acceptance region R,; if a new sample falls into this region it is

A;
classified as being a number of class A (here taken to be the ciass of

main-speaker samples). If the number of main speaker training samples is
n, and if m is the number of statistically equivalent blocks combined to

form the acceptance region RA then

me u(na +1)



where a is the expected value of false alarm probability that is to be
achieved. By chosing the ordering functions to be hyperspheres expanding
from each one of the n, main-spesker training samples one is assured that
at least all of the training samples lie in the repion RA' llopefully
this procedure will therefore do well on rain-speaker test samples as well,
The ordering functions that are combined to form the acceptance
region RA are formed by ordering the impostor training samples. By order-
ing the main-speaker samples as well an estimate of the correct classi-
fication can be obtained. The expected value of the probability of correct

classification obeys the inequality

b
ElP..J> 551

where b is the number of complete blocks in region RA that can be formed
by ordering the main-speaker samples.

To test the system 40 of the 225 available main-speaker samples and
208 of the 6500 impostor samples were used as training samples. The
acceptance region was composed of seven blocks giving an expected false
alarm probability of 7/209 or .0335. A summary of the major results is
given in table 4.4 of progress report 42,

The measured false alarm rate for several different ways of ferming
the acceptance regions is generally within one standard deviation of the
expected value of .0335. Also the probability of miss has roughly the
same order of magnitude and turnec out to be slightly better for the sample
space made up of eight short-time spectra, 32 frequency components per
spectrum, than for the other sample spaces.

The procedure was compared with the conceptually much simpler

nearest-neighbor method, -here a test point is classified according to the

class of the nearest training point. The nearest-neighbor method involves
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much more computation time than the DFTR method and the sample space was
therefore arbitrarily reduced to 48 dimensions. It was found that the
reduction in dimensionality ircreased the miss rate by almost a factor of
10 for the same expected false alarm rate ‘n the DFTR method. The nearest-
neighbor method shows a much smaller error rate than the DFTR method; this
is to be expected since it utilizes information about all the samples while
the DFTR method only uses infcrmation abou: samples that have been ordered.
On the other hand the nearest neighbor method cannot be set up to guarantee
a specified expected false alarm rate, and it also takes much more compu-
taticn time. Thus if computa:ion time is a factor the DFTR method is
definitely superior. The DFTR method is easy to progrem, and once the
system is trained checking out a new test sample only takes a few seconds

of IBM7094 time. The system therefore appears to have practical usefulness.

III. Passive Detection and Tracking Using Surface Scattered Signals

The major effect of surface scattering considered in Progress report
No. 43 is the decorrelation produced in the signals received by pairs of
hydrophones. A system consisting of two hydrophones is therefore postulated,
and it is assumed that the hydrophone signals are processed by a simple
cross-correlator as shown in either Fig. 3.1-1 or 3.4-1 of Progress report
No. &3,

Three different propagation models are considered. The first
considers a direct channel to one of the hydrophones and a surface scatter-
ing channel modelled as a random amplitude and delay model to the second
hydrophone. The transfer function for the direct channel is

e-ij/c
R

where R 18 the line-of-sight distance from target to receiver and c is the

Hd(w) -



speed of sound. The transfer function for the scattering channel is time
varying and has the form

H (w ) = A(p)e d0T(®)

where the amplitude function A(t) and the delay function 1 {t) are considered
to be independent stationary Gaussian random processes whose variation 1is
slow relative to the signal bandwidth.

In the second model both channels between the transmitter and the

two hydrophones are assumed to be random amplitude and delay models with

H (u,t) = Al(t)e-jml(t); Hy(u,t) = Az(c)e'J‘“‘z(‘)

The amplitude function Al(t) and the delay function tl(t) are assumed to
be jointly independent stationary Gaussian random processes, as are Az(t)
and Tz(t); however Al(t) and Az(t) are jointly dependent, as are tl(t) and
Tz(t).

In the third model one direct channel and one surface scattering
channel are again assumed, but now the surface is itself modelled as a

random sine wave of the form

(x,y,t) = h(t)sin[qsxcosas+q°ysinas - Qst - x(t)]

where h(t) and x(t) are random waveheight and positional phase parameters
that are supposed to be very slowly varying. The parameters 9gs %g» and 00,
are the magnitude and orientation of the propagation vector and temporal
frequency of the surface respectively.

In all cases the sipnal x(t) at the transmitter is assumed to be a
stationary zero - mean Gaussian random process having a power spectral
density Sxx(w). Noise signals nl(t) and nz(t) are assumed to add to the
signals entering the hydrophones; these are wide-range stationary Gaussian

random processes that are independent from the signal x(t), but not



necessarily jointly independent.

It 18 to be noted that in all cases a Gaussian signal is operated
upon by a random channel function; it is therefore not suprising that the
signa} received by the hydrophones is no longer gaussian. As a formal
demonstration of this fact the fourth-order cumulant of the received signal
has been computed and turns out to be non zero under several different input
conditions, and for all three of the assumed Scattering models. (See fig.
4.4-1).

The correlator output signal is denoted by %(t,T,p) where v is the
delay introduced in one of the channels to "steer' the two-hydrophones in
the direction of the target, T is the averaging time, and p is the time at
which averaging starts. In the absence of scattering and of noise = would
show a sharp peak at 1 = T where T, is the "correct' steering delay. As
a result of scattering and/or noise the location of the peak becomes a
random variable depending on the instantaneous scattering conditions during
the averaging period T, and the height and sharpness of tﬁe peak are also
reduced so that under severe scattering no clear peak is discernible. (See
Fig. 4.2-4).

Several criteria may be employed to evaluate the performance of the
correlator. One of these is to form the likelihood ratio of the correlator
output for tv = Ty and to assume that a signal is present (hypothesis Hl is
ture) if the likelihood ratio exceeds some threshold; otherwise hypothesis
Ho - noise only - is assumed to be correct. For reasonable integration
times = 15 approximately Gaussian with zero mean and variance og if Ho is
true, and with a mean Yy and variance oi if Hl is true. It is then a
straight forward matter to compute the false alarm and miss probabilities,

and this is done ir Eqs. (3.8-10) and (3.8-11). The two error probabilities



are seen to depend only on the two normalized standard deviations of =
defined by d° - aolu1 and d1 n ollul. -Unfottunately the dependence is
rather complex and not easily isualized. Furthermore this definition of
error probabilities is somewhat misleading since a small shift of the peak
could result in a very marked reduction of the magnitude of = at T = T,

This would result in rejection of the hypothegis H., even though the peak

1
might still be quite clearly discernible.

Another criterion for evaluating the system may be obtained by con-
sidering the location of the peak of Z to be an estimate of the true value
of 1. Then the variance of this location would be an indication of the
accuracy of the estimate. If it is assumed that there is only a single
peak, then this criterion is equivalent to comouting the variance of the
zero crossing of the derivative %; ; specifically, the quantity of interest

is this variance normalized with respect to the mean slope of %; at =1 !

2 _ Var g!

o 9s! 2
iy

-~

T=T7

Actually, it is just as easy to compute the normalized autocorrelation
function of =, whose va;ue for zero argument is then ofo. A general
expression for this function, denoted by Rr (u) s given in Eq. (4.2-13);
unfortunately it is rather complex. °

As a third criterion the normalized variance di may itself be used
since it contains essentially the same information as ofo. A general
expression for di is given in Eq. (4.2-8), and 18 seen to be quite similar
to the expression for RT (w).

In performing the ZOmputation for these expressions is assumed that

signal and noise spectra, filter transfer functions, and the spectra of

amplitude and delay all have a Gaussian shape; thus the signal spectrum is

9



given by

21 P K
Su(w) "3 exp [- b =5 ]

x fl
x

The autocorrelation function ¢’ the random delay is
R (W) = 03 exp [- ﬂf uzl
etc. (See Eqs. 4.1-17, 4.1-18, 4.2-2, and 4.2-3).

Curves for dl as a function of T are shown in Pigs. 4.2-1, 4.2-2,
4.2-3, and 4.2-5. These curves a:e for the first of three propagation
models, but qualitatively the curves for the other two models are similar.
The most striking feature of all of these curves is a well-defined plateau
over which d1 decreases only very little as T increases. For values of T
smaller or larger than the plateau values the dependence of d1 is propor-
tional to 1T as might be expected from rather general statistical
considerations.

The existence of the plateau is another indication of the fact that
the sipgnals received by the hydrophones is non Gaussian. Qualitatively the
plateau is a resultlof the fluctuations in the instantaneous estimate of Tt
that results from the random delays produced by the surface scattering.

For small integration times an increase in T tends to eliminate fluctuations
due to noise and the randommere of the target signal and to produce a better
definition of the peak in the output. Hence d1 decreases. However dl also
measures the fluctuations of the peak that result from scattering, and when
T has become large enough to eliminate noise and signal effects from the
neak, the fluctuvation due to scattering st{ll persist, Hence d1 remains
essentially constant until the integration time has become so large that the
scattering fluctuation are also being "'washed out".

For the first propagation model (single random amplitude and delay

channel) the level of the plateau in di is

10



2

l:1+(-;i‘-)z] '/‘;.:Z' -1

T

2
where oA is the variance of t}2 amplitude fluctuation Ac is the mean

amplitude of the channel, 03 is the variance of the delay fluctuation, and

S AR R Al
a a  20f 200

1 and 02 are the bandwidths of

the two filters Hl(w) and Hz(w) used in the correlator. Note that the

Here nxis the bandwidth of the signal and Q

plateau will exist even if there is no random delay: this is because d1

measures the total variation of the output peak, not only its motion along

the T axis. The plateau does disappear if both o, and o, are zero, as would

A

be expected. It also becomes less pronounced as the sigral-to-noise ratio
decreases, since the received signal consists then of mostly noise and tends

to be Gaussian.

A similar plateau is found in the expression of RT (0) which is a
)

better indicator of the tracking error than d The plateau here is

2 6
o ga
14 A m

T
2 2%
lc az-c

T

1.

Note that this plateau disappears when g = 0 since amplitude fluctuations
do not affect the tracking error in that case.

Similar plateaus are found in the other propagation models. Expressions
corresponding éo the two given here are Eqs. 4.4-5 and 4.4-8 respectively
for the two-scattering channel model and Fqs. 5.3-12 and 5.3-15 for the
random sine- ave model.

In the random sine-wave model the height of the plateau can be related
to an e.fective Rayleigh parameter.

2 op Sin ¥ Q.

Qfx/c - c

11



where 9 1s the variance of the amplitude, y is the grazing angle, ¢ in
=k
the sound velocity in water and Qfx - (1/0: + 1/0:] vhere ﬂt is the

filter bandwidth (assumed to b: indentical in the two correlator channels)

and Qx 1s the signal bandwidth, suitably defined (See Bq. 5.3-1). The

i and RT (0) 1s roughly unity:

o
the plateau is small for lesser values, and rises steeply for larger values.

critical value of this parameter for both d

It 1s interesting to note the appearance of the Rayleigh parameter in this
context since it is generally a good measure of relative surface roughness.
The height of the plateau can be reduced and the performance of the
system improved by reducing the filter bandwidth Qf. It 18 clear from
the expression for a (where 01 - 02 - Qf) that this makes a >> o and
therefore reduces the second term in the expression for the plateau level.
Physically the effect of reducing the bandwidth of the filter is to screen
out gome of the fluctuation, and it seems reasonable that this should
improve the performance if not carried too far. It could also be expected
that extreme reduction of filter bandwidth would result again in a
worsening of performance, and this is clearly shown in Figs. 4.2-8 and 4.2-9.
Additional results contained in progress report No. 43 deal with other
aspects of the scattering transfer functions for the three models. Expres-
sions have been obtained for the interfrequency correlation function,
frequency epreadiné function, and other moments that will be useful in
signal design and receiver optimization. These expressions are all rather
complex, and details must be obtained from computer calculations. In
general, however, the results for all three models in regard to these

tunctions are qualitatively similar.
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ABSTRACT

The purpose of this work is to investigate a nonparametric
classification procedure based on distribution-free tolerance regions.
The procedure is one which gives some knowledge about how well
the classifier is expected to perform. This is achieved by using
only one sample of statistically independent observations from each
class.

The approach, which is called the hypersphere DFTR
approach, is formulated in a two class problem. The proposed
recognition system is one which can be designed for a given expected
false alarm probability or for a given confidence that the false alarm
probability is less than a given amount. A few procedures are pre-
sented which have certain desirable properties and which appear to
do a good job of minimizing the miss probability.

Three principal DFTR procedures are presented. The small
and large sample properties of these procedures are investigated and
the procedures are compared. A procedure for obtaining a measure
of the miss probability is also presented.

The procedures are tested in an automatic speaker verifica-
tion experiment. A comparison is made of the test false alarm rate
with the 95% upper tolerance limit on the false alarm probability and
also with the expected false alarm probability. In the experiment
all test false alarm rates fell below the 95% upper tolerance limit.
The average test false alarm for the 21 different cases studied here
was approximately equal to 0.8 of the average expected false alarm
probability. '

A comparison is made of the test miss rate with a measure
of the miss probability that was obtained by using a tolerance region
approach. In the speaker verification experiment all test miss rates
fell below the 95% upper tolerance limit. For the 21 different cases
studied, the average test miss rate was equal to 0.82 of the average
expected miss rate.

Finally, the probability of error for the hypersphere DFTR
procedure is theoretically compared with the probability of error
for the nearest-neighbor rule without assuming the form of the class
probability distributions.
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Chapter 1

INTRODUCTION

The ability to recognize and to respond to visual, auditory, or
ofher pa.tterns can be. regarded as a prerequisite for any intelligent
behavior, and it is, in fact, possessed by all living things to some degree.
In general it can probably be said that the more intelligent an animal is
the greater is the repertoire of patterns that it can recognize. Certainly
the number of patterns that can be recognized by human beings, ranging
over auditory patterns such a.s'sp'eech sound, music, sounds of nature,
etc. to visuai patterns such as those made by objects, faces, letters,
etc. is so vast as to defy enumeration. | |

Siace the egrly days of computers, attempts have been made to
enable these supﬁo;edly intglligent machines to recognize patterns also.
To some extent these attempts have been quite successful., Every com-
puter possesses the ability to recogni;é the symbols of its machine-
language alphabet, ‘and the developments in computer software over the
last dozen years have shown that computers can be made to recognize
rather intricate input patterns that seem quite'far removed from the
basic machine language.

A major difference between the ability of computers and of living
beings to recognize patterns appears, };owever, to be that the latter can

recognize patterns that they have never observed before while the former



can generally not do this., Thus a person has no difficulty in recognizing
an object to be, say, a glgal, even though the precise shape or color
may be quite different from any that he has scen before. Apparently the
human pattern recognizer is able to react to general features that cate-
gorize the pattern without being put off by details that are somehow under-
stood to be irrelevant. This ability is one that, so far, r;lachinc‘s possess
ox?ly very imperfectly,

There are many machine pattern recognition tasks which up to
now have not been solved satisfactorily. Some of these are recognition
of a person from his handwriting, or from his voice, 6r fro-m his picture;
recognition of spoken messages regardless of the speaker; and recognition
of complex structural images from pictures.

Automatic pattern recognition has been attempted in many fields.
For instance, in medicine pattern recognition is generally used by the
doctor for diagnosis. Machine recogniticn is being invesiigated for such
seemingly applicable tasks as the analysis of electrocardiograms, electro-
encephalograms and blood cell photos., Other examples of areas in which
machine pattern recognition is being applied are physics, geology, and
meteorology. In physics, automatic pattern recognition is being used
for particle tracking in bubble chambers. Recognition of the location of
oil deposits through seismic and magnetic signal analysis is being
attempted by geologists. Meteorologists are investigating weather pre-

diction through the analysis of cloud photographs.



Model
An often-used model for a pattern recognizer was proposed by

Marill and Green (1960). This model is shown in Figure 1. It consists

of two important parts, the receptor and the categorizer (or classifier).
The receptor tranaforms the input .data.,. which might be (he

motion of a tra.n.sducer or the output of an optical scanner, into a measure-

ment space of high dimensionality in which observations from the same

class cluster and observations from unlike classes separate. The trans-

formation may be linear or ﬁonlinear, information preserving or

destroying. The categorizer determines the decision regio;m in the

measurement space and tests the proximity of an unclassified observation

to these regions.

Decision Theory

Fundamental to the design of the categorizer is statistical decision
theory, c.f. Wald (1950), Blackwell and Girshick (1954), Anderson (1958).
We briefly review some of this theory that is applicable to our problem.

Suppose an c;bservation is to be classified into one of several
classes. The observation is represented by a measurement vector v
in measurement space y . The classification procedure can be described
as a mapping of measurement space py intothe i=1,...,K classes.

Let Ri be the region of the measurement space which is mapped into

class i, i=1,...,K. If a new observation falls in Ri , it is classified

into class i. Let Ei be the a priori probability that the observation

A-3
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belongs to ciau i, leot f‘(_y_) be the probability density function of the
observation v, assuming that it is a member of class i, and let Ci(j)
be the cost of deciding that v is a member of class j when it is a
member of class 1i.

The expected risk or loss in making decisions is

K K .
T gL Ch f£Vdy. (1.1)
i=1 " j=1 R,

According to the Bayes criterion the expected loss is minimized by

deciding that v belongs to class k when

K . K
& L) Ck< T g L(v) ClH) | (1.2)
i;l : o i=l

for all j.

Suppose the cost of making a correct decision is zero and the

cost of making an incorrect decision is equal to C. Then Ci(j) = (('): ;fli ip
K

By subtracting C X El fi(-Y-) from both sides of equation 1.2 and by

' i=l '
ifj, k

dividing through by C we obtain the decision rule for deciding in favor

of class k. The decision is made that v belongs to class k when
. 3)
§ L < [ (1. 3)

for all j.
It is s'ometimes convenient to formulate the decision rule in terms

of the likelihood ratio,
£

ij ) fJ(X,)

s A"5




Rewriting equation 1.3 in terms of the likelihood ratio, one decides in

favor of class k if

&
s
ij > gk - (1. 4)

for all j.

For a two-class problem, one simply corﬁpares the likelihood
ratio with a constant. Many criteria yield decision rules involving like-
lihood ratio comparisons. Some of these are the Neyman-Pearson
criterion, the Ideal Observer criterion, and the Minimax criterion, c.f{.
Van Trees (1968).

In the following chapters the two-class problem is discussed at
length. For convenience, the two conditional probabilities of error will
be defined as follows. The conditional probability of deciding in favor
of class 2 when the observation belongs to class 1 (false acceptance of

class 2) is cailed the false alarm probability. The mathematical notation

1

for this conditional probability is \
pFA = S fl(z) dv. (1. 5)
RZ -

The conditional probability of deciding in favor of class 1 when the
observation belongs to class 2 is called the miss probability. It is
denoted by

Py, =S £,(v)dy . (1. 6)

5

The use of the terms ''false alarm' and "miss'" implies that classes 2



and 1 are associated respectively with the occurrence or nonoccurrence

qf some event (such as the presence of a ts.rget on a radar screen).

These terms are more appropriate for this thesis than the legs descriptive
""error of the first kind" and '"error of the second kind' because the major
problem dealt with here involves a main class and an impostor class, c.f{.

Section 4.1.

Classification Methods

In general, the conditional joint probability densities, fi(_y_) ;
are not known in pattern recognition problems. Usually the only informa-
tion available for designing the pattern re~ognizer is a limited set of
properly classified data. In this case an optimum solution in the Bayes
sense is not applicable.

Let us briefly define some of the terminology which distinguishes
the classification procedures. A machine is said to '"learn' when it is
able to improve its performance by benefiting from its past experience.
The period of constructing decision regions is called the training period.
This is distinguished from the recognition or test period in which
observations of unknown classifipation are classified. Pattern recognition
may be acconiplished by supervised or unsupervised learning. In the
former, the training observations are of known classification and in the
iatter, which is sometimes called learning without a teacher, the training
observations are of unknown classification.

Some of the methods which have been proposed for solving the



classification problem in pattern recognition are: |

(1) Optimum Solution with Assumed Probability Densities: Functional

forms for the conditional densities fi(z) , 1=1,...,K are assumed to
be known. Some of the parameters of these densities are often estimzted
from training observations. The optimum decision regions are found

for these assumptions. Then new observations are classified. If the

results are not satisfactory, the assumptions are revised and new decision

regions are formed.

(2° Estimation or Approximation of the Probability Densities: The

class probability densities are estimated or approximated using the
training observations. A new observation is then classified according
to "ayes rule, where the estimated probability densities are substituted

for the true probability densities.

(3) Estiination or Approximation cf the Class Discriminating

Boundaries: A structure for the boundary which partitions the measure-

ment space into decision regions is assumed. The structures for the
discriminating boundary range from the simple hyperplane to complex
surfaces of the form El w. ¢i where the Gi are functions of the meas-
urement space and m is finite. The discriminating boundary is then
trained for the ''best'" results. '""Best' results usually means minimum
probability of error when the class probability densities are assumed or

minimum misclassification of the training observations when the class

probability dcns\ities are not assumed,

- A-8



(4) '. Other Intuitive Criteria: These include such approaches as

* maximization of entropy, minimization of intraclass distance around
characteristic points of the 'clas.ses, the Fisher Criterion, and the
nearest-neighbor rule,

Appendix D gives a review of these classification methods along
with the associated references. It should be noted that a comparison of
the abové approaches is very difficult since the criterion for a good
pattern recognizer varies from author to author and since the data sets

on which the pattern recognizers are tested are usually different.

/

Review of the Contents -

It is the intention of the present work to investigate a nonparametric
classification proce_dure based on distribution-free tolerance regions.
This proce&ure is one which gives some knowledge about how well the
classifier is expected to perform. This is achieved by using only one
sample of statistica%ly independent observations from each class. The
classification procedure is then applied to a practical pattern recognition
problem.

In Chapter 2 a brief review of the theory of distribution-free
tolerance regions is preéented. A detailed study of this theory is made
in Appendix A, A review of existing methods for applying the theory of
distribution-free tolerance regions to classification problems also appears
in Chapter 2.

The effectiveness of certain methods for constructing distribution-



free tolerance regions for classification purposes is investigated in
Chapter 3. The 'approach, which is called the hypersphere DFTR approach,
is formulated in a two-class problem. The proposed recognition system
is one which can be designed for a given expected false alarm proba-
bility or for a given confidence th:t the false alarm probability is less
than a given amount. It is assumed that the only information available
for designing the ;'ecognizer is a properly labeled sample of statistically
independent observations from each class. A few procedures are pre-
sented which have certain desirable properties and which appear to do a
gooc/l job of minimizing the miss probability. A procedure f’of obtaining
a measure of the miss probability is also presented. The extension of
the hypersphere DFTR procedure to the multiclass probiem is also
discussed. ‘ -

Chapter 4 report. on an automatic speai or verifica .on system
and its use in testing the hypersphere DFTR classification schemes.

A theoretical comparison of the probability of error for a hyper-
sphere DFTR procedure with the probability of error for the nearest-
neighbor rule is presented in Chapter 5.

Chapter 6 presents conclusions and lists suggestions for further

study.

A-10



Chapter 2

DISTRIBUTION-FREE TOLERANCE REGIONS

AND CLASSIFICATION

Introduction

Existing classification methods which involve the theory of
distribution-free tolerance regions are discussed in this chapter. The
chapter begins with a brief review of the theory of distribution-free
tolerance regions. For further details on this subject, see Appendix A.
Later in Chapter 2 clasgiﬁcation procedures by Anderson (1966) are
presented. Next, the use of statistically equivalent blocks and the
empirical Bayes approach by Patrick (1966) is discussed. iater, a
methcd by Quet;enberry and Gessaman (1968), which involves regions

of indecision, is presented. L

A Brief Review of Distribution-Free Tolerance Regions

Sugpose n, mdppendent observations, Xl, XZ’ 2 RV an, are
available from a population with continuous univariate probability
density f.(x). Let X, <X _ . <...<X denote the observations

it m = *@) (n,)

arranged in asé:ending order of magnitude. It was {irst shown by Wald

(1941) that the amount of probability in (X is distribution-

(r)’ X(nl-r+l)

free. Hence a statement such as
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X, '
E {S x("l'rH) fl(x) dx} = Q O<ac<l (2.1a)

(r)
or
P {SX‘“l'r“’f (x)dx < B} = ¥ 0<g<! (2. 1b)
r 1 - -
Xh) 0575}

can be made even though the density fl(x) is unknown.

The theory of distribution-free tolerance regions was extended
for multivariate distributions by Wald (1943). He formed distribution-
free tolerance regions by suc;essive elimination of sample regions of
the multidimensional space. For example, suppose a statement is to
be r.nade about the amount of probability in the ''center' of the two-

dimensional distribution Fl(xl, xz). Let the independent observations

X.
X, = ( ‘1), R B e

i be arranged in ascending order of magnitude

1
Xi2

of the 15t variate, X . Denote the ordered variate values by

x(l)l < X(Z)l € .o € X(n‘l)1 . Let r be an integer which is less than

-

nI/Z . Let the region for which the first variate X is less than or

equal to the rth gmallest first variate of the n, observations be ''elim-

inated' from the space. That is, the space is partitioned into two

regions. One region, the region [fzx <X )1] will not be considered

1 (r

in further ordering of the observations, hence it is "eliminated''.

Since the stated interest is in the center portion of Fl(xl,xz), eliminate

A-12



the region for which x Further eliminate the region for

12 % e
1
which the second variate is less than or equal to the sth smallest second

variate of the remaining observations. Here, s is an integer which is

2 X(n -Zr-Zs)Z} ’

less than (nl-Zr)/Z . Also eliminate the region {ﬁ:x
1

2

T : - <
The remaining region {x:X,)) <3 <X onv X()2< %2 % X 2r-20)2]

is distribution-free. Figure 2.1 shows such a regio.n R2 for s=r=2,
The procedures for forming distribution-free tolerance regions
have been generalized in papers by Scheffé and Tukey (1945), Tukey
(1947), Tukey (1948), Fraser and Wormleighton (1951}, Fraser (1951),
Fraser (1953), and Kemperman (1956). A particularly useful general-

ization is the following: Suppose that n, independent observations are

1

available from a continuous D-dimensionai cumulative distribution
function Fl(xl, Xopene ,xD) = Fl(l(_) . Let hi(_":), ah= 156 )0y be n

functions such that hl(_}S), Aok ,hn (X) are random variables with a
: ]
continuous joint distribution function. The functions hi(i) are called

ordering functions. They are used to partition the sample space into

n.+ 1 mutually exclusive and exhaustive sample regions called 'statis-

1

tically equivalent blocks.'" The regions are hereafter called simply

"blocks." Let 5(1) be the observation which yields the smallest value

for the first ordering function, hl(_JE) . Then the n1+ 1 blocks

B % ik . B can be defined as follows:
1 n+l

B, = { xh(x) <h (X )]

(1)
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Figure 2.1, Wald's Method of Sucessive Elimination for
Forming Distribution-Free Tolerance Reglons,

Ly

Figure 2.2. A General Ordering Technlque fof Forning
Distribution-Free Tolerance Regions,
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where _)_((l) is the observation for which

B nlhl"}'{i) '

B, = {x:h,(x) <h,(X , ), h, (x) >h (X )] (2.2)

(2) (1)

where _)i(é) is the observation X, excluding _}_((1) , for which hz(_a_()

is minimum,

hz(l(. ) = min hz(l(_i).

lsif_nl
i# (1)

(2)

By = {xih, () <hy (X ), By () > By (X g0,

where 2(_(1{) is the observation,' excluding 2(_(1). e z(-(k-l) , for which
h.k(>_{_) is minimum,
hEgy) s min X 2.4
<i< ni
i#(),...,(k-1)
and Bn 1 is the space ;vhich remains after the n, blocks have been
1
formed, '
’:} )
(2.5)
1+1 i=1

All ordering functions subsequent to hk may depend on the
blocks previously formed, all known boundary observations, and on

certain sets of indices. For example, let hl(g) = |§| . Let _)_((1) be

A-15
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the observation that minimizes bl' hl(_)S )= min hl(zl) « Then

I<ic<

(1)
the first block Bl consists of the region inside the hypersphere |§| =

(l)' . The block Bl along with the observation l(_(” is now elim-

inated from the sample space. The information found in the 18t ordering

RS

(e.g. the location of X , the size of Bl’ etc.) can be used to form

(1)

subsequent blocks. For example, the ordering function hz(_:g) = |_>_c-.)_(

(1)‘

can be used to order the second observation and form the second block.

Let be the observation among the remaining n,-1 observations

X2) 1

which yields the smallest value for hz(.’i) . Then

B, = {x:h,(x) <h,(X ,)), hy(x)>h (X ).

(2) (1)

The formation of the 'first two blocks in this example is illustrated in
Figure 2.2 for a two-dimensional vector x.

Note that the first block could have been formed by choosing
the observation which gives the largest value for hl (x) . Of course,
this block would not be the same as B. of Figure 2,2. Distribution-

1

th

free tolerance regions can even be formed by choosing the r*" smallest

or rth largest value for hl, c.f. Fraser (1957).

4

Classification Using Distribution-Free Tolerance Regions

Anderson (1966) proposes various multivariate statistical
techniques based on the properties of statistically equivalent blocks.
He presents procedures for (1) testing the hypothesis that an unknown

cumulative distribution is a specified one, (2) testing the hypothesis

A-16



that two unknown distributions are identical, and (3) classifying an
observation into one of two populations. We are interested in the
classification techniques. Let _)El, S ,_)_(_n be n independent vector

observations from a population with distribution F(x) and Y e

1’ " '=m
be m independent vector observations from a population G(y), where
F(x) is assumed different from G(y). Let V be a new observation
which is drawn from one of the two populations. The observation V

is to be classified into one of the i)opulations. Anderson rnentions
several nonparametric classification procedures based on ordering the
observations.

L3

In one procedure, the blocks are formed by ranking the pooled

__)_{ and Y observations. Consider the block in which v falls. The

observation V is classified according to the majority of observations
defining the block. For example, suppose V falls in a block which

has four sides. If three of these four sides are drawn through X
observations, then V is classified as an X observation. In another
procedure the X and Y observations are ordered separately. Consider
the X -block and the Y -block that V falls in. If there are fewer Y
obse?vations in the X -block than X observations in the Y -block,

V is classified as an X observation. This procedgre is similar to

the kn-nearest neighbor rule which is discussed in Appendix D. Other
similar classification procedures are mentioned. Anderson points out

that some of these classification procedures can be made to depend on

n and m soas n and m increase the probabilities of misclassification

A-17



will converge to the probabilities of a procedﬁrc based on the likelihood
ratio. |

Patrick (1966) and Patrick and Fisher (1967) present a general
classification approach-which they refer to as an empirical Bayes
api:ro:xch for distribution-free minimum conditional risk learning systems.
This approach invoives the construction of distribution-free tolerance
regions for each class. Clas sification is obtained by comparing fhe
volumes of the tolerance regions for the different classes. For example,
consider the tolerance regions in which a new observation V falls.

Note that each class has been ordered separately and for every V there
is one tolerance region to be considered for each class. The observa-
tion V is classified into the class whose tolerance region has the
smallest volume, with appropriate compensation being rhade for the

loss functions and the a priori class probabilities.

The approaches of Anderson and of Patrick do not use the blocks
to obtain an estimate of how well the classifier will perform. Since
the decision regions contain partial blocks, this information cannot be
obtained accurately from classifiers of their design. This fact bec;mes
clearer as we study Chapter 3.

A different use for distribution-free tolerance regions in class-
ification is made by Quesenberry and Gessaman (1968). Emphasis is
placed upon the control of the distribution of the conditional probabilities
of error, i.;. the false alarm probability and the miss probability

in the two-class problem. This approach requires a region in the

A-18
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measurement space which is commonly called a reject region or a
deferred decision regior. If a new observation falls in this region, no
decision is made. The problem with their approach is that the size of
this region depends on the location of the observations from the various
classes and on the ordering functions chosen. No control is exercised
over the size of the reject region. Hence if the distributions are "close"
together or if the ordering functions are unhappily chosen, the proba-
bility of not making a decision can be large. -
Quesenberry and Geseaman's procedure involves the construction
of a distribution-free tolerance region Aj containing aj blocks for
each distribution Fj, j=1,...,K. For each set Aj there is a com-

| plement set Aj =X -Aj . Let Rj be the region in which the decision

is made that the new observation comes from .distribution Fj . Let

R,' be given by
: K

R.=A, N A,

S T

i#j
Let Ro be the region in which no decision is made. Let Ro be given

by

R= (0 a)u(n7)

i=1 i
The probability of deciding any class other than class j when the new
obscrvation is from class j is controlled since there are no more
than a..i blocks in the regions for deciding any other class. These idcas

become more transparent as this approach and the hypersphere DFTR

A-19



approach are investigated in Section 3.11,

The choice of ordering functions is left tc; the person who imple-
ments the classifier. Quesenberry and Gessaman give examples of
appropriate ordering functions for (1) two distributions with a monotone
likelihood ratio and (2) two univariate normal distributions. The third
example which was given is repeated beléw. Suppose two classes are
represented in a two-dimensional space by two distributions, both of
which are thought to be unimodal. A reasonable chofce for_. Kj is a

bounded convex region containing (nj- a.+1) blocks. This can be

j
accomplished in many ways. Figure 2.3 shows an artificial example
which was given to illustrate the tolerance region approach.

The data was generated by drawing samples of size n =n,= 81 from

bivariate normal distributions Pl and PZ with mean vectors

(Bypo 1,0 = (0,00, by, 1y5) = (3,0)
and covariance matrices

RICHERIFR

An ordering which was suggested by Tukey (1947) was then used to construct

-~

the tolerance regions. Figure 2.3 is the resulting figure for a probability
of . 90 that the conditional probability of either error is less than 0. 14.
The region for deciding class 1 is Rl; tte region for deciding class 2

is R and the region for making no decision is R

2’ 0°

A problem with the use of distribution-free tolerance regions

for estimation of how well the classifier will perform is that the ordering

A-20



Figure 2,3. An Example by Quesenberry and Gessaman (1968),.
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functions and the blocks to b.e used in the decision regions should be
chosen without any knowledg; of the outcome of the observations. (They
can, of course, be based on any a priori knowledge.) Hence if nothing
is known about the distributions, a 'claasifier which yields very poor
re.sultl can be obtained.

In the following c;hapter, ordéring procedures are presented for
the case where nothing is known about the class probability distribu-
tions. Use is made of the fact that the location of the; observations of
one class can be used to order the observations of the other classes.
Hence the decision regions can conform to the '"‘shape'’ of the classes.
These ordering procedures create decision regions suitable for multi-
modal class distributions.. This is, of course, not the case with the
ordering of Figure 2.8, Furthermore, the procedures of the next

h'apter do not yield a reject region, R Further comparison of this

o L]
approach with the one of Quesenberry and Gessaman is made in Section

3.11.
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Chapter 3

THE HYPERSPHERE DFTR APPROACH

3.1, Summary

The effectivennss of certain methods for constructing distribu-
tion-free tolerahce regions for classification purposes is inveatigatéd
in this chapter. The approach is first formulated in a two class problem.
The proposed recognition sys.tem is one which can be deaig;ed for a
given expected false alarm probability (probability of misr_ecognizing
a class 1 event as a class 2 evgnt) or for a given confidence that the
probability of false alarm is less than a given amount. It is assumed
that the oniy information available for des.igning the recognizer is a
properly labecled sample of statistically independent observations from
each class, A few procedures are presented which have certain desirable
properties and which appear to do a good job of minimizing the miss
probability (probability of misrecognizing a class 2 event as a class 1

event). A procedure for obtaining a measure of the miss prob‘ability

is also discussed.

3.2. Introduction

Let {Pi/i €0}, where Q={1,...,K} is a finite parameter
space, be a class of probability measures defined aver measure space

(X,A,n) . Based on n, statistically independent observations from
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Pi’ i=1,...,K amethod is sought for classifying an unknown observa-
tion x into one of the K classes described by Pi ¢
Let us consider the case when K = 2, Suppose that the prob-

ability density functions exist and are defined by

Px<x=Fw= {* g@a@  i=1,2 (3.1)

Suppose further that the a priori probability that the observation

2
x belongs to class i is {i; clearly T €i =1, Using the Bayes
i=1

Criterion, one decides that x belongs to class 1 if

£ (x) § £, (G0 - c,@)
f,(x)~ ¢, [c,(2-¢c ()] °

(3.2)

Ci(j) is the cost of classifying an observation from class i into class j.
If the apriori probabiliti-es are unknown, one can use the Neyman-

Pearson criterion and maximize

' S dF, (x) (3.3)
R, |

subject to the condition that

S dF. (x) < & O<acl. (3.4)
l -—
R,

It is well known that this criterion also yields a likelihood-ratio test.
That is, one decides that x belongs to class 1 if

fl(x)
£,(x)

> L (3.5)

where L is such that equation 3.4 is satisfied.
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In the pattern recognition problem considered here it is assumed
that the probability densities f.(x), 1=1,2 are unknown. The following
analogue of the Neyman-Pearson criterion evolves naturally. Given

n, statistically independent observations from P, 1 = 1,2 it is desirable

i

to maximize

S dF, (x) -. (3. 6)

%2

subject to the condition

E { SdeFlﬁ(x) }5 o 0<cacl (3.7a)

or subject to the condition
Pr{S

Conditions (3.7a) or (3. 7b) can be established even though Fl(x)

dF (x)<B}2y  0<B<! (3. 7b)
RZ. ' 0<yc<l

is unknown. This is done through the theory of distribution-free tolerance

regions. A tolerance region with the property, E[IR dFl(x)} =qa, is

known as an g-expected tolerance region. A tolerance region with the

property, Pr{ IR dFl(x) >B} =y, is known as a 8 content tolerance
2
region at level ¥y . It should be noted that E[J'R dFl(x)] = a can be
2

considered an @-confidence statement that a new observation from Fl(x)

will fall in R2 . This fact is demonstrated in Appendix C.

3.3. Application of Distribution-Freé Tolerance Regions to Classification .

As previously stated we would like to maximize

Avu



S dF, (x) - (3.6)
i

under one of the following constraints:

m{g dF (0 }<a 0<azl (3.7a)
Ry
or
Pr{ScWﬂygﬁ}z& 0<f<l (3.7b)
R2 0<yc<l

The problem is to order the observations from Fl(x) so that

R2 consis‘ts of the number of blocks '"m' required to satisfy (3.7a) or

(3.7b) and so that IR dFZ(zc_) is maximized. The number of blocks
2
needed to satisfy equation 3. 7b can be found by consulting tables of the

-

Beta distrit;ution, tables of the cumulative binomial distr'ibution, tables
b): Somerville (1958), or graphs by Murphy (1948). The number of

blocks needed to satisfy equation 3.7a can be obtained from the equation
E{fRz dFl(l‘.)} = m/(nl+l) . Therefore, if equation 3.7a is to be satisfied,
.m is the largest integer less than or equal to (nl+ 1) .

.. The blocks should be constructed so fhat fR sz(_)S) is maximized.
2

It is assumed that the only information given about Fl(ﬁ) or Fz(zc_) is
that they are continuous cumulative distribution functions. Therefore,
given only a finite number of observations from each class, one can

never be certain that IR sz(}_) is maximized. A likely approach is
2

to construct R, so that it contains as many P2 ocbservations as possible.

2

All of the P. observations can he contained in R2 if the P. observa-

2 1
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xH

tions, l peoey Xu) are ordered by functions which are in some sense

@ @)

centered about all n, of the P, observations, X ',..., . Then
. 2 2 =] =n,

R, is made up of the first m blocks established by the orc'lering.l

2
| To accomplish this ordering consider the continuous functions

d (x, (k)) of the arbitrai'y observation vector x, where k=i,... )7y,

j=1,...,n,. These functions are basically "distance" functions that

l L ]
satisfy the following conditions:.

1. e x‘z)

) >0
(3. 8)
(2) [ (2), _
2. d j(X zk )=0
A simple example is
2 2 .
4,5 X0 ) = - X0 | (3.9)

(N'ote that the subscript k is used to label possibly differing functions
which can be associated with each of the observations from the class P,.
The subscript j is used to label possibly differing functions used to
form successive blocks. The n;ed for such functions is illustrated in
the next section.)

The n+l blocks B,,B B can now be defined as follows:

1, Z,oo-, n+l

First, let d (X :l; be the smallest distance between points from the

two different classes; i.e.

1. The idea of using ordering functions which are centered by the P2
observations was suggested by Professor I. R. Savage.
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ax))s  min min d (x“’ x‘z)) (3.10)

(” l<kgn, l1<icn, R

Define the regions L ., k=1,.. 2B, by
(Z) (l)
L= {xea e X )< (xm (3.11)
For two-dimensional vectors x and a metric as given by
equation 3.9, the regions Lkl are seen to be circles centered at the

poiints 5(12) with radius d (X 8; ) . (see Fig. 3.1) The definition of

dl(_)_(::; ) is such that at least one of these circles contains a point from

(1)

class ] on its circumference (the point 52 in the figure). The probability

that there are more than one such points is assumed negligible. This

(1)
—(1)

n-dimensional vectors and for the metric of equation 3.9, the regions L

point is labeled X and is said to be ordered, It is clear that for

kl
hypersphe =s.

The first block Bl is now defined as the union of all the regions

Lkl:

B.= U L (3.12)

To obtain the second block the distance d (X 8; ) is defined by

d (XE;; min min dkz(X(l) -(lf)) (3.13)
1<k< n, 1< ig_nl
i#(1)

The implication of the subscript 2" of d is that dkz(-) and dkl(-)

k2

can be completely different functions. The regions Lkz are then defined

as before by
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x(1)

1
x{)

x{lf | x(1)

£(1)

Filgure 3.1. A Hypersphere Ordering.
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L xm) <d (x“’ }.k:l,...,nz (3. 14)

g2 X 9= X (z)
If %Z(' ) and (Hcl(.) _are both gf the form of equation 3.9 then, for

two-dimensional vectors the regions L . are circles extenciing to the

k2
next closest point of class 1, which is labeled X:;;
The second block Bz is now given by
nz - .
BZ = (kl-J°=1 Lkz) n B1 . (3.15)

where B, is the set of points not contained in B

1 In our example B.

l° 2

would consist of the union of all the annular areas between the circles of

(1) (1)
radius d (X(l)) and dZ(X(Z)

This procedure is continued, and therefore the rth block is given

by
ny r-1
B =( L )N B (3.16)
r k=1 kr i=1 i
where
- (2) (1) _ ‘
L ={x:d X ca x’h}  k=n....m,
anc¢ where
«+ d (X(l) min min (X(l) (2) ) .
— (r ) kr—1 —k
l1<k<n, l<ign
if(1)...(x-1)
The (nl+l)th block is
n) L) [
B =x- U B . =xnN(N B ). (3.17)
n1+l j=1 1 i=1 1

It is convenient to think of the blocks as being generated by hyperspheres

(or other hypervolumes, depending on the form of dk (x, X (k) expanding
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(2)

from the centers -)Sk

the first observation of class 1 is reached; this observation is thereby

yk=1,... »n, . The expansion continues until

ordered (i.e. given rank order (1)) and the resulting volume is the first

" block. Further blocks are generated by further expansions to the remaining

(nl- 1) P1 observations.

" The region R?. is the union of the first m blocks formed by this
ordering,

m
R,= U B, . -

i=1 '
The value for m is obtained from the constraints on the design of the
classifier. For example, suppose a classifier is to be designed in which
one has 95% confidence that the false alarm probability will be less than
0.05. Then B8 and ¥ in equation 3.7b are equal to 0.05 and 0. 95,
the number of P

respectively. One of the variables n training

1’ 1
observations, or m, the number of blocks used to construct Rz , is
now fixed. The value of the other variable can be found from graphs by
Mprphy (1948) or from tables by Somerville (1958). For example, we find
from Murphy for 8=0.95, and ¥ =.95, and n, = 210 observation from
Pl_ , that 6 blocks may be used to construct Rz . These numbers give

an expected valu_e for the false alarm probability of 0. 0284 with a standard
deviation of 0,0114, Table 3.1 shows the mean and standard deviation for
3 values of m and n, which satisfy the condition 8 = 0,05 and ¥=0.95.

As seen from the table, when many observations a:re available from P1 )

the expected false alarm can be higher for the same B and ¥ than when
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few observations are available from P1 .

When a new observation V {s to be classified, the following rule

is used. If V falls

Otherwise V is classified as a member of class 1.

in RZ’

Table 3.1. Expected Value and Standard Deviation

for 8=0.05 and ¥=0.95 and for Different m and n.

Pr{[  dF (x) <.05}=.95

n =430, m=15

1
n1=210, m=6
n1= 58, m=1

2
E{[p dF(x)] ol[p dF, (x)]
2 2
0,.0348 0.0088
0.0284 0.6114
0.0170 0.0167

3.4. Discussion of Practical Ordering Functions

V is clasgsified as a member of class 2.

The purpose of this section is to discuss some simple ordering

procedures based on the idea of expanding functions from the P

2

observa-

tions. The relative merits of these procedures when applied to a problem

with a limited sample size are investigated. For simplicity, let the

ordering functions be defined as follows:

= Xy

(2), _
X ) akjl

akj?- 1
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k=1,...,rx2
j =1.....nl

(3.18)



Then the Pl observations are ordered by hyperspheres which expand

from the PZ observations.

Distribution-_free tolerance regions can be formed by any of the

following three ordering procedures:
(1) All Hyperspheres Expand (AHE)

Hyperspheres expand at the same rate from all P, observations until

1

n1+l blocks have been formed. The first m of these blocks make up

region RZ . Since the hyperspheres expand at the same rate, let
akj= 1, k=1,... Y j=1,... Ry . Then the ordering functions are
given by
d.(x,X(z))=|x-X(2)| j=1,...,n
W= - : (3.19)
k=1,... )0, *

- The statistically equivalent blocks are described by equations 3.10 through
3.17, This procedure is illustrated in figure 3.2 for a two-dimensional

1
vector x, m = 3 blocks, n,= 6 , n,= 33 with the observations X( ) X‘l)

l —1 ’..l ,_nl

(@

represented by O's and the observations )_(‘f), e X represented by X's.
2 o

At times the number of blocks with which region R2 is formed
may be small with respect to the number of blocks that are needed for a
reasonably low miss rate when using the above ordering procedure. This
situation can be a direct result of having few P2 training observations

with at least m P, training observations being relatively close to the

1

P2 observations. For example, notice the two-dimensional example of

Figure 3.16. The circular regions surroﬁnding the PZ obscrvations are
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Figure *,2., All Hyperspheres Expand (AdE),
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unconnected. In this case a procedure, which assumes that more Pl

observations may be found in the vicinity of the Pl observations which
have previoxfsly been ordered, allows the regions centered by the P2
observations to expand into regions which are connected and which have

a larger volume than the regions produced by the AHE ordering procedure.
The followin‘g' two procedures use the information from previously ordered

observations to allow region R, to expand faster in directions away

2

from the clustered Pl observations than toward them.

(2) Ordered Hyperspheres Slowed

With this procedure the hyperspheres which order the P1 observations
A ]

are not allowed to expand as rapidly in subsequent orderings as the other

hyperspheres. The functions for ordering the first P1 observation are

_the same as those for procedure (1). That is,

-

2), _ (2) -
d 6 X )= |x- X 7| k=1...,n, (3.20)
The functi »ns for ordering the second P‘_1 observation are given by
(@) _ (2) i
d ., X ")=a,lx-X | k=1,...,n, (3.21)
where
akZ > ak1 = 1 k =(1)
8, =3, " 1 otherwise .
Note that k = (1) is any k which satisfies
(1, _ 1) o (2)
YKy =2y Igm X, ). (3.22)
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The increase of a o .‘(1)2 may be viewed as a decrease in the ra.te“

an *
at which the ordering hypersphare expands from the Pz observation,

2
_)E:l; , in search of the next Pl observation.

The functions for ordering the rth Pl observation are given by

4 (x x{% Ix - x ¥ (3.23)

X, )=a

kr

wher:
a, >a k=(1),...,(r-1)

a, = a otherwise .

k = (j) is ahy k which satisfies

|xt) o x @ (3. 24)

4% = 2y =) "=

3—=0) j

The adjustment of the multiplicative constant a k=(1),...,{r=-1)

kr’

is quite arbitrary. In the speaker recognition experiment to be discussed

in Chapter 4 the increase of a to a was made very large so that
k, r-1 kr

the differences in the three ordering procedures would become evident,

Suppose a . is determined by
N
akr < (Nak, r_l) k ~ (1),0.-,(1'-1)
a .= ak' rol otherwise . (3.25)

Suppose N is a large number. This causes the hypersph=res which

orvider the Pl observations essentially to stop expanding in relation to

the hyperspheres which have not ordered a Pl observation. The ordering

procedure for this case will be called Ordered Hyperspheres Constant, OHC.
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Suppose all the hyperspheres have ordered a P, observation.

1

Then m>n In ordering the (nz+ l)th P, observation the abcve pro-

2 1

cedure causes all hyperspheres to expand at the same rate. Whenever

the (nz+ l)th P, observation is located, the hypersphere which orders

|

this observation stops expanding in relation to the other hyperspheres.

This is because for m = n, all a, . arenow large, and therefore the

(nz+l)th a, is again (Nak r 1)N larger than the others. Figure 3.3

k

illustrates the OHC procedure for the same sample set as used in Figure

3.2, where the X's and O's again refer to the PZ and Pl observations,

respectively.
' \

The first block for the OHC procedure is the same as the first
block for the AHE procedu1;e. However, in this example the second block
for the OHC procedure differs from the second block for the AHE procedure.
This is because the hyperspheres (circles in the figure) expand from all

X's except X, in search for a new P, observation. The observation,

1 1

which is found is O, and it is intersected by the circle expanding from

3

X Then, in forming the third block, circles expand from all X's

2 [ )

except X, and X

] 2 Observation O4 is found and block B. is formed.

3

(3) Conditioned Hyperspheres Slowed

With this procedure the growth of hyperspheres which intersect the P1
observations is slowed even if these observations have been previously

ordered by other hyperspheres.

The ordering functions for j =1 are equivalent to the ordering
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Figure 3.3, Ordered Hyperspheres Constant (OixC).
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functions for j=1 for the pre;ricu_l two procedures. The remaining
ordering functions can be different from those of the previous two pro-
cedures because here an ordering hypersphere is slowed if it comes into

contact with X‘l) Let X (1) be the observation for which

= —=[1]
(l) (l) (Z)
P, X 3.2
W S, S, R R e
. -"T="2 "="="]
where
K2 > ‘kl =1 . . k= (l) o
.kZ = akl = ] otherwise

»

and k = (1) is any k which satisfies equation 3.22. Equation 3.26 can
be viewed as telling us that duriﬁg the second ordering the expanding
hyperspheres have intersected a I-"’1 observation, _)5[(::)' . But this
obse_rvation might well be the Pl observation le;

been ordered. For :xample, in Figure 3.4, the observat.on which satisfies

which has already

equation 3.26 is O But this observation has already been ordered.

(1)’

Hence another Pl observation has to be found before the second block is

completed.

Therefore, if X[(:} # X(l) is

(1)
Xy denote X[l] by X and B

—(2) 2

(1) _ 5,

gwen by equations 3. 14 and 3.15. If X[l] Xy a block has not been

completed. Let

L (2) 1) |
Gpp = {xidp,00 X, ) < a () '} (3.27)
Now let
2 2
o X =a fx-x19) (3. 28)
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Figure 3.4, All Hyperspheres Stopped by One Pl Observation,
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where

L3>, k= (1), [1]
&3 =2, - _otherwise . (3.
Naote k =[1] is any k for which'
(l) . (1) (2)
X X -X . .
O 2E0)) = N Xp) - Xy E
Now let
(1) (1) (2)
d. (X min min d (X X, ) (3.
3 [1] lsksnz 1<i<n, k3= 2k .
and
(2) (1)
5 = {x: gt X7 ) <dy (X0 )} . (3.
This procedure is continued until Xfl])# Xﬁ; or (j+l)_>_n2 . If
x (1) (1) : (1)_ (1) ' :
—[l] # X(l) and (j+1) < n, , let _)_(_[J] = 2(_(2) The second block is
B, = ( b %o )nB (3
2 =1 k=1 k,r+l 1° *
1t j+12n, and x[(:]’-xﬁ; i=1,.0.,n,, let
(58,_;)- min min 4 (x\V, x) (3.
l_<_k5n2 lsisnl 2
A#()
and
= ( ) (¥)
c.knz- x: dkn X, )<d (x(z) }
Then
nz ny -
B, = (rtil U Gy, r41) B - | (3.

A4l
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Note that the restriction, (j+1) > n, , is necessary to eliminate
the poasibility that the procedure enters an infinite loop. The condition
(j+1) > n, was chosen especially for the case where the hyperspheres
stop when they intersect a I:’1 observation (equation 3.25, where N is
a very Jarge number). In this case all hyperspheres are allowed to expand

until they intersect the P. observation which normally would cause the

)

procedure to enter an infinite loop. Then they are allowed to expand past
this observation. For example, consider Figure 3.4. The observation

O(l) will stop every expanding hypersphere. The condition (j+1) > n,

allows all four hyperspheres to expand to O and then to expand past

(1)
O(l) to form the second block.

The extension of this procedure for the formation of m blocks
is straightforward. Figure 3.5 illustrates the procedure for the same

sainpic set as used in Figurecs 3.2 and 3.5 and for N equal to a very

] wumber and

a

= Na P k= (), 1), [2),...,[]]

k,r-1

kr ak, el . otherwise . (3. 36)

a

This ordering is called CHS, Conditioned Hyperspheres Stop. In this
example the second block for the CHS procedure differs from the second
block for the OHC procedure. In forming the second block the hyperspheres
are expanding from all X's except Xl . When the hypersphere expanding
from X, intersects O,, it stops in the CHS procedure, even though a

2 l

block has not been completed. Hyperspheres continue to expand from
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Figure 3.5, Conditioned hiyperspheres Stop (CHS),
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observations X3, X4, XS, and X6 in lgarch of a new O observation.
The hypersphere which expandf from X3 intersects 04 and the second
block is complete. Then hyperspheres expand from X4, XS, and X6
in search of a new obser.vation. "The procedure is continued in this
manner,

The resulting region RZ (for m = 3 blocks) is shown in Figure
3.6 for each of the three proceaures. In this particular example it is

seen that the AHE procedure produces a region R, which has expanded

2
into the O's whereas the CHS procedure produces a region RZ which
has been stopped by the O's and has expanded in a direction away from
the ordered O's.

It is evident that these three procedures are not the only procedures
that can »e formulated when hyperspheres expand from the P2 observa-
tions. For example, one might decide to slow the expansion of any
ordering hypersphere which is in the vicinity of an ordered P1 observa-
tion. However, this procedure would bias the estimate of the miss
probability, which is discussed in section 3.9. i

A comparison of the three ordering procedures requires iteration
of all possible sample sets. Nevertheless, some general observations
can be made.

1) The AHE proccdure is probably preferable to the OHC procecure,
which is probably preferable to the' CHS procedure, if spurious Pl obser-

vations are involved., This is because hyperspheres in the AHE proce-

dure, and in the OHC procedure to a lesser extent, continue to expand
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'Figure 3.60 Composite of tne AHE, OHC, ana CHS
Ordering Procedures.
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past the peripheral P. observations. For example, consider Figure'

1
3.7 where two blocks make up Rz . The resulting RZ for the AHE
and the CHS procedures is shown in the figure. Notice that the hyper-
spheres which expand from X1 a'nd. XZ stop when they intersect O(l)
in the CHS procedure. They, of course, do not stop in the AHE procedure.
The area of RZ for the AHE procedure is equal to the area of

R2 for the CHS procedure plus the crosshatched area. Hence the miss
probability in this case is less for the AHE procedure than for the CHS
. px:;)cedure.

2) The CHS procedure is probably preferable to the OHC
procedure which is probably preferable to the AHE procedure if the P1
observations are tightly c.lustered in two or more clusters and the
clusters are different distances from the PZ observations. This is
hecause the hyperspheres in the CHS procedure, and in the OHC proce-
cure to a lesser extent, expand more in directions away from the ordered
Pl observations than do the hyperspheres of the AHE procedure. For
example, consider Figure 3.8 where two blocks are formed with the
AHE and the CHS ordering procedures. The area of the CHS procedure
is equal to the area of the AHE procedure plus the crosshatched region
minus the shaded area. Since the crosshatched area is much larger

than the shaded area, one may feel that the miss probability in this case

is less for the CHS procedure than for the AHE procedure, |
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3.5. Programming on a Digital Computer
Note that these three procedures are very easily programmed on

a digital computer. One simply calculates the distance between every

(1)

- and
i

Pl and PZ training observation. Let the distance between X

2 .
ﬁj ) be dgnoted by Dij' These distances are arranged in a matrix D,
where the ith row consists of the distances between 5:1) and ng)"
j=1,..., n‘2 . |

Consider first the AHE procedure. A search is made through
the elements of the matrix for the smallest distance. Let this distance

be D. . Then the kth P
kr 1

The kth row is multiplied by the largest number available on the machine.

observation is ordered and a block is formed.

This removes the kth P observation from further ordering. A search

1
is now made through the elements of the new matrix for the smallest
distance. This procedure is continued until m blocks are formed.

In the ordered hyperspheres slowed procedure a search is made

through the elements of the matrix D for the smallest distance as before.

Let this distance be D The kth row is then multiplied by the largest

kr °
number available on the machine. Thus far, the two procedures are

the same. Now the rth column is multiplied by a number which controls
the rate at which t};e hypersphere expands from the rth Pz obsefvation.

A search is made through the elements of the new‘matrix for the smallest
distance. This procedure is continued with the columns and .the rows

corresponding to the smallest distance being multiplied by the appropriate

numbers after each block is formed,
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Now consider the conditioned hypersphere slowed procedure,
As in the previous two procedures a search is made for the smallest
distance. Let this distance be Dkr . The rth column is now multiplied
by a number which controls the rate at which the hypersphere expands
from the rth P2 observation. Unlike the pr.evious two procedurcs, the
kth column remains untouched. A search is made through the elements
of the new matrix for the smallest distance. Let this distance be Dst'
If s =k, ablockhas not been formed. In any case the tth column is
multiplied by a number which controls the rate at which the hypersphere
expands from the tth observation. This procedure is continued until a
smallest distance Dgh is found so that g # k or until a restriction on

the number of iterations is reached ((j+1) > n  in the above discussion).

2

If a smallest distance Dgh is found so that g # k, the second block

is formed. The hth column is multiplied by a number which controls
the rate ;1t which the hypersphere expands from the nth P2 observation
and the procedure is co'ntinued. If the restriction on the number of
iterations i.s reached, the rth row is multiplied by the largest numb_er
available on t.he machine., A search is then made through the elements
of the new matrix for the smallest distance. When this distance is
found, the second block is formed. The procedure is continued in this
fashion until m blocks are formed,

Note that when a new observz.ion is to be classified, the following

\

information must be stored in the computer for the various procedures.
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1) AHE - all PZ observations and the value of the mth order

statistic.

2) OHC — all P2 observations and the value of the m order

stalistics along with the indiccs of the P2 obscrvations corresponding
to the m order statistics.

3) CHS — all P2 observations and the values of the distances

along with the corresponding indices of the P2 observations found in
the ordering process. This procedure requires at least as much storage

as the OHC procedure.

It is obvious that the information to be stored can be reduced

further by clustering the P2 observations and using representative

points for the clusters (for example the means of the clusters) to order

the 151 observations. However, this approach biases the estimate of

the miss probability as seen in section 3.9,

On the other hand, in a situation where too few P2 observations

are available, (sce Fig. 3.16) one can sometimes cause the regions of

R2 to be connected by adding ''fictitious" PZ observations between the

P2 observations whose necarest P2 observation is furthest away.

Hyperspheres expand from these 'fictitious" P2 observations in the

same manner as they did from the ''real” P2 observations.

3.6. Large Sample Propertics

—

Three mecthods were proposed in section 3.4 for the classification

of obscrvations from two different classes. The large sample properties
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of these methods are investigated in this section. The goal for the
nonparametric method is the emulation of the Neyman-Pearson rule,
which was stated in equations 3.3 and 3.4,

the number of observations from P and n he

Let ’
e nl l’ th

number of observations from P2 , approach infinity such that n, /n2
is bounded away from zero and infinity., Let the classifier be designed

for

E{SRZdFl(f)} - n!:-ll-l S

where m<n,+1 . Hence m approaches infinity while m/(n1+ 1) = .

1

The false alarm probability converges in probability to the

desired value o as n, approaches infinity, i.e.

1

S dFl(E) —> @ .
RZ-

This follows directly from the Tchebycheff inequality since the variance

of J'R dFl(E‘_) , considered as a random variable, approaches zero as

2
n, approaches infinity.
We now wish to determine the outcome ¢ IR dFZ(_>_c_) as nI— and
2
n, approach infinity. For simplicity, suppose that the probability

densities fl(_>_c_) and f2(§) are continuous, univariate, unimodal, and
nonzero everywhere. Furthermore, let n) =n, =n. Consider the
DF TR method called All Hyperspheres Expand (AHE).

Figure 3.9 gives a general picture of the situation to be discussed.

As in the previous examples, the P2 observations are represented as
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f2(x) £y (x)

Pigure 2.9, A Cne~Dimensional Example.
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Figure 3.10. Length of the Accept Reglon on the Fositive Line,
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X's and the P'l observa.tiom' as O's.

As n becomes lax:ge, the ratio of Pl obagrvationa to PZ obser-
vations in any small region R ;pproaches the average likelihood ratio
exis.ting’ in this region, (fl(x)/fz(x) >R. . Since fl(x) and fz(x) were
assumed to be continuous, it; can'be'assumed that as R becomes very
small (fl'(x) /fz(x) ) is appzloximately constant in R .

Consider a small interval [a,b] under the peak of £, (x).

Suppose that a and fi(:;) are such that in this region
a< <J‘b f,(x)dx . (3.37)
. a 1

The number of P1 observations (O's in Fig. 3.9) in [a,b]
approaches nf:fl(x) dx as n —=®, by Tchebycheffs theorem. Since

the number of blocks '"m!' is approximately equal to an , equation

3.37 implies that
b .
m<<n Iafl(x) dx = number of O's in [a,b].

By the assumption that fz(x) is nonzero everywhere, there are
X's in the interval ’[a,b] with probability 1 , (as n -+ ) . Suppose that
in the interval [a,b]
fz(x)/fl(X) << @.
This means that mfl(x) > >-'~nf2(x) . Therefore on the average each

m
X is surrounded by many rnore than m O's. Then the region R2= U
i=1

consists largely of short, unconnected intervals centered on the X's.

B,
i

We now wish to determine the average length of these intervals. The

average number of O's in [a,b] is nf:fl(x)dx . Therefore

~
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b
(b-a)/nfafl(x_)dx is the average distance between the O's . Since

ecach X is surrounded by many more than m O's , the length of each
m(b-a)
bf <) d

n fa l(>\) X

interval can be no more than The length of each interval

m(h-a)

D 1f the m closest O's to an X are as
nf f (x)dx
a 1

is in fact equal to

likely to be in [a,b] as in all other regions. In this case as n -»® the
length of each interval in [a,b] is. a(b-a) J'afl(x) dx . Since this i5 a
{inite number, there would be nonzero sections in arcas where fl(x)/fz(x)
is very small. This is not the case when R2 is determined by
fl(x)/fz(x) > C wherc C 1is a threshold.

Note that all assumptions are such as to minimize the extent of
region RZ in plac~s where fl(x) is large. Thus if these assumptions

are removed, the result holds a fortiori. For example, consider the

assumption

fz(x)/fl(x) << o

in the interval [a,b] . If this assumption is not made, we cannot say
that ecach X in [a,b] is a nucleus for a small section of region RZ s
In fact, several blocks in [a,b] may coalesce into connected intervals.
However, this only increases the extent of region R2 in areas that
would be excluded by a likelihood ratio test.

The fact that the AHE-DI'TR test does not, in general, approach
the likelihood ratio test can also be demonstrated as follows., When

the AHE procedure is used, the lengths of the intervals surrounding all



PZ observations are equal. As n - ® the number of P2 observations
in a small interval of length € around the maximum of fz(x) is greater
than the number of P2 observations in a small interval of length &
around any other point of fz(x) . Hence if the intervals surrounding the
PZ observaticns coalesce, they would most likely coalesce in the region
where fz(x) is a maximum. Using the likelihood ratio procedure, the
smallest accept region is in the vicinity of the maximum of fz(x)/fl(x).
The maximum of fZ(x) and the maximum of fz(x)/fl(x) do not neces-.
sarily occur at the same point. Hence, in general, the AHE procedure
does not approach the likelihocd ratio procedure as n approaches infinity.
It is not known at this time how to determine the large sample
properties of the OHC or the CHS procedure. Therefore, an exarﬁple

was simulated on the computer. The probability densities were arbitrarily

chosen to be

2

f.(x) = }

1
] exp{-z(x-l.75)

J2T

and

1 2
fz(x)= exp[-i(x+l.75) }

J2m
Equal a priori probabilities and equal costs of misrecognition were
assumed. The optimum decision in a Bayes sense is a decision in favor
of Pl if a new observation has a value which is less than zero. This
yiclds a false alarm rate, PFA = 0.0401. The length of the accept

region (RZ) to the positive side of zcro and the length of the accept region

to the negative side of zero were then found for samples of 24, 49, 99,
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257, 500, and 1000 observations from each class for both the AHE and

the CHS procedures. The value of m was chosen so that

E {J‘depl(x) } ~ 0.0401 .

Thercfore values of m of 1,2,4,10, 20, and 40 were used for the
samples of 24, 49, 99, 250, 500, and }000, re\spectively.

The accept region R2 for the likelihocd ratio criterion is the
negalive real line. If the DFTR procedures are to approach the likeli- |
hood ratio procedure 23 n - «, the length of the accept region on the
positive real line should approach zero. T.he length of the accept region
on the positive real line for both the AHE and CHS DFTR procedures
is shown in Figure 3,10, The results are not definitive since they are
based on one trial. However, they indicate that the lengf:h of the accept
region on the positive real line approaches some value other than zero
for both L'F'TR proced ces.

The length of the accept region on the negative real line is shown
in Figure 3.11 for both procedures. If the DFTR tests approach the
likelihood ratio test, these curves should continually increase as n = =,
Again the results are not definitive. However, it appears that the curves
approach some finite value rather than infinity.

Both Figures 3.10 and 3.11 indicate that the CHS procedure
performs better than the AHI procedure for this particular situation.

The length of the accept region on the positive real line for the CHS

proccdure is less than or equal to the corresponding length for the AHE
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Figure 3.11l., Length of the Accept Reglon on the Negative Line.
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Figure 3,12, DisJoint Probability Density Functioné.
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procedure for all samples except n = 250, The length of the accept
region on the ncéative real line for the CHS procedure is greater than
or cqual to the corresponding length for the AHE procedure for all
sample sizes.

The ratio of the length of the accept region on the negative real
line to the length of the accept region on the positive real line gives some
indication of the relative performance of these procedures. These ratios
labeled RA

for the AHE procedure and R for the CHS procedure

HE CHS

are shown in Table 3.2 for the various sample sizes.

Table 3,2, A Comparison of the AHE and CHS Procedures

,H Jumber cf - - T
.
| obs. 'thltrilins RanI ‘CHS
49 11.0 13.8
99 11.4 12.9
250 15.4
500 14.2 19.1
1000 14.0 _19.0

One sces that these ratios are not steadily increasing with sample size

as they should if the DFTR procedures are to approach a likelihood

-
!

\

. . L

>+ that | is greater tha

R .. n R . for all sample
CHS CAHE ‘
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3,7. An Optimum Ordering Procedure

An ordering which does approach the Neyman-Pearson procedure
is easily obtained if the class probability distributions are known. This
is achieved by simply using ordering functions equal to fl(x)/fz(x).

That is, the following ordering functions are used:

hy(x) = hy(x) = ... = hn'l(x') = £, (x)/£,(x) . (3.38)

The fact that a DFTR procedure which uses the above ordering
functions approaches a Neyman-Pearson test is easily dernonstrated.

When the Neyman-Pearson criterion is used, the accept region is
R, = {x:f (x)/f,(x) <C ]

where C is determined so that

dF¥.(x) = o .
fr o,

Let R'2 be the region obtained when statistically equivalent blocks are

formed by the likelihood ratio ordering functions in equation 3. 38 . By
the Tchebycheff inequality

'fR' dFl(x) '—p—> o
2
where

m N
=
RZ .U Bi ’
i=1
m is the largest integer satisfying

mf_(n1+l) ,

and the blocks are given by
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B = {x:hl(x) = lr.min hl(xi)}

|
l<i<n
- =1
m- 1
2 = {x h (%) « min h (%)) N B
m m = m i
l1<i<n 1=1

let min SN HR=NC

] <1 <n

1
if(l)... (m-=-1)

Since h (\) h.)(X) = = (.\) 5
1 & nm

RZ : {x:h] (x) < C } - [x:fl(:-:)/fd(_\‘)_«:(} 3.

11 - m I

It now remains for us to show that Cm —;> C . But this has to be true

/ (lFl(x) “"Ij)—> / . dFl(x)
{x:fl(

x)/f,(x) <C_} {x:f,(x)/f,(x) < C}

1

sinc e

and fl(.\;) > 0 and fz(x) >0 for all x. Therefore the DFTR procedure

with the likelihood ratio ordering functions appioaches a Neyman-Pearson

test., For example, let

1 2 ) 2
- = (x-p) - S(x+p)
1 2 )| 2
fl(\) = —e¢ and IZ().) = —— e
Jen Jem
where >0,
Then
. 2ux
), = e o
fl(.\ 12(\) €
. &1 bS . :

Using ¢ as an ordering function, the blocxs are
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Bl = (..&' X(l)]

B, = (X ]

ay e

s (X(m-l)’ )im)]

. = _
Therefore RZ (-, )im)] .

The accept region to satisfy the Neyman-Pearson criterion is

(-»,z) where

Sz £ dx=F (a) = .

-0

By Tchebycheff's inequality

) —> «a .
P

X
S (m) £ (x)dx = )X

-0

Since fl(x) >0 for all x, (Fl(x) is a monolone increcasing function)
X(m) —I;-> z . Therefore the accept region for the DFTR procedure

using the likelihood ratio ordering functions converges in probability to
the accept region for the likelihood ratio procedure.

It should be noted that the AHIL, OHC, and CHS tests approach
Neyman-Pearson tests in the limit if the class probability densities are

disjoint. That is,

S dF (%) — « (3.39)
R

and

S dF,(x) = 1 (3.40)
R
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-

when Sfl(x)fz(x)dx =0.

all x
I'or example, consider the configuration of Figure 3.12, fl(x) is uniform
over [0,1] and fz(x) is uniform over [2,3]. The region RZ produced

by the AHI ordering procedure as n, and n, approach infinity is as

1

shown in the figure. It is easily seen that conditions (3. 39) and (3. 40)

are satisfied here.

3.8. A T'urther Comparison of the AHE and CHS Procedures

A further comparison of the AHEE and CHS procedures can be

"obtained by observing the average length of an interval which surrounds

a PZ observation as the number of blocks used to form the tolerance
region varies, This i1s an appropriate comparison because we believe
that the additional volume (length) of the accept region that the CHS
procedurc produces over the AHLE procedurce, if any, is locat‘cd so that
the probability of correct detection increases and so that the probability
of false alarm stays approximately constant (for large n). In fact, the
comparison of the length of the accept region on the positive and negative
real line in Figures 3,10 and 3.11 secems to demonstrate this.

The average length of an interval surrounding a PZ observation
versus the number of blocks used to form R2 is shown in Figures 3.13,
.14, and 5.15 for samples of 250, 500, and 1000 observations. For
example, let us consider Figure 3.13. For 10 blocks used to form R

2

the length of an interval surrounding a PZ observation for the AHE
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procedure is .00495. For the CHS proc;edure, 241 of the intervals have
a length of . 0095. The other 9 intervals vary in length from , 0002 to
. 0069, This gives an average interval length of . 00925,

As scen in INigure 3.13 no benefit is obtained in using the CHS
procedure over the AHE procedure for m < 6 blocks in RZ . As more
blocks are added, the average length of an intcrvéll surrounding a PZ
observation for the CHS procedure becomes larger than the length of
an interval for the AHE procedure. As still more blocks are added, a
point is reached where the average length of an interval for the CHS
. procedure becomes much larger than the length of an interval for the
AHLE procedure. This is the point at which most of the P, observations

1
in the areas where the Pl and P2 observations are highly confused
have been ordered.

Similar curves for samples of 500 and 1000 observations from
each class are shown in Figures 3.14 and 3.15, respectively. These
curves secin to indicate that a good deal of the benefit of the CHS pro-
cedure over the AHE procedure had not been revealed for m/(n+1) =
0.0401 (m = 20 in the 500 sample expcriment and m = 40 in the 1000
sample experiment). This value of m/(n+1) was, of course, used to
obtain the results of Figures 3.10 and 3.11. If more blocks had been
usced to obtain these figures, it is likely that a larger improvement in

the CHS performance over the AIE performance would be noted for

n = 500 and n = 1000.
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3.9. Measure of the Miss Probability

A recognition system has been proposed which classifies with
a given expectcd‘ false alarm probability (or with a given confidc;nce that
the false alarm probabiiity 1s less than a given quantity). It also cor-
rectly classifies all PZ training ohYservations. Nevertheless, one can
find situations in which the classifier may perform poorly. For example,
consider the two-dimensional measurement space of Figure 3.16. A
classifier is designed using the AHE procedure {or an expected false
alarm probability of 0.20. Region R2 consists of two blocks and is the
-region inside the three circles which are centered by the X's. Since
none of the regions encircling the X's are connected, one fecls that
the miss probability could be quite large.

If this classifier is to be used in a practical problem, a measure
of the expected miss error is needed. Then if the expected miss error
is much larger than desired, one can redesign the classifier by using

more P, observations, by using more P, observations, or by using

1 2

a different measurement space.

Suppose a classifier has been designed by one of the methods
previously discussed. The P1 observations have been ordered with
hyperspheres which expand from each of the ‘PZ observations. Now
supposc the PZ ohservations are ordered, thus forming blocks with

rcsp(»'ct to FZ(—'E) . The number of FZ(._\:) blocks which are contained in

region R2 can be counted and statements such as
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E{{ ar}<o (3. 41)
i“i?.

or

Pr {S aF,(x) < 9} > v | (3.42)

Ra

can be made. The quantities w, #, and v are determined from n, ,

the number of P, observations used to design the classifier, and from

2

b, the number of FZ(;_() blocks inside RZ . This procedure may not
be distribution-frce, as will be discussed later in this section.

One can immediately see that if the functions for ordering the

F‘2 observations are not judiciously chosen, a very poor estimate of

e

the expected miss probability may be obtained. 7 or example, consider
Figure 3.17.

As in the previous {igures, the P, obsecrvations are represcnted

1

by O's and the P, observations by X's. The region R.2 , as shown,

2
was constructed for an expected false alarm probability of 0.1. Suppose
a measure of the expected miss probability is desired for this cAlassifier.
The X's can now be ordered so that this measure can be obtained.
Suppose the X's are ordered by hyperspheres which expand from all of
the O's. However, none of the blocks which are formed by this o;dering
will lie entirely in region R2 . Since the theory of distribution-freec

tolerance regions gives no information about the cumulative distribution

contained in a partial block, this ordering procedure is uscless for
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making a statement about the cumulative distribution Fz(x) in RZ'

Because of the procedure used to order the Pl observations,

all PZ observations must lie in RZ' Hence, all blocks formed by

ordering the PZ observations must have subsets which are contained

in Rz . Since the theory of distribution-free tolerance regions gives

no information about the amount of probability in a partial block, good

estimates of the cumulative distribution FZ(_>_<_) in R, are made only

2

if the ordering procedure is such to allow the blocks which are formed

to be contained in RZ 3

Consider the following procedure for ordering the P2 observa-

tions. The procedure consists essentially of first locating a Pz

observation. A search is then made for another PZ observation with

a hypersphere which expands from the first PZ obscrvation. When

the second I’Z observation is found, hyperspheres expand from both

1’2 obscrvations in search of a third PZ observation. This process

is continucd until n,+1 Dblocks are formed. The number of blocks
[

contained in R2 is counted, thereby giving numbers for w, #, and v

in equations 3.41 and 3. 42,

The form of the first ordering function hl(_)_:) 1s arbitrary.

For simplicity, let h (x) be linear;

] -

b (x) - Tl (3.43)

2 ) .
where A is a vector constant,  l.et Y(l; be the PZ observation which

satisfice
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(2) : T . (2)

M), A
- -2
2

Herc -Y—EI; is used rather than E(_Ef; to avoid the confusion with _)_(8;
which was used when the P1 observations were being ordered. Then
a block Cl is formed, where

c ={x:h (x) < h (Y(Z))} (3.43a)

1 — 1 ="="1"=(1)

But C1 1s not contained in R2 .

Note that a function such as

can be used as the first ordering function. Then C1 may or may not

be contained in R2 depending on the choice of the vector A . Since

A cannot be chosen to guarantee that C1 & RZ , the estimate of the

miss probability will vary for a given R, with the choice of A .

2

Morecover, it is unlikely in an unbounded space and without any knowledge

of the location of the P2 obscrvations that the vector é will be chosen
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