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W ABSTRACT 

Volume VIII deals with the following topics: 

1. Application of Distribution - Free Tolerance Regions to Pattern 

Recognition 

Pattern recognition is needed to identify sonar signatures as to 

the type of target by which they are generated. Distribution - free 

methods are desirable in this context since the probability distributions 

underlying the pattern classes are frequently unknown, and it is desirable 

to establish some upper bound on at least the expected false-alarm proba- 

bility. The recognition method developed has actually been applied to 

the recognition of speech wave forms since these are more easily obtainable 

than sonar signatures yet possess some of the same characteristics. 

1.    Passive Detection and Tracking using Surface Scattered Signals 

Signals reflected from irregular time varying boundaries such as the 

sea surface undergo distortion which limits their uetcctabillty and use- 

ability for tracking. The properties of this distortion for correlator 

processing are related to the statistical constraints placed upon the time 

variation and irregularity of the boundary. Two propagation geometries 

are analysed.  The first deals with the crosscorrelation of surface 

reflected and direct transmission paths, and the second with the cross- 

correlation of surface scattered signals received at two different locations. 

This analysis assumes that the signal generated at the target and the 

background noise are both gausslan random variables. Three models of the 

scattering mechanism are proposed and two are analysed In detail.  In all 

^ cases the correlator output is shown to exhibit very persistent fluctuations 

ili 



due to the scattering. The existence of these fluctuations is related to 

the non-gausslan nature of the scattered signals. The fourth order 

cusmlant is computed to show that well spaced scattered signal samples 

may be dependent even when they are uncorrelated. Results are presented for 

low pass signal spectra and are Investigated as a function of bandwidth. 
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1, Introduction 

P This report Is the second of two volumes dealing with work completed 

under contract 8050-31-55001 between Yale University and the Electric Boat 

Company during the period from July 1, 1968 to Anril 30, 1970. More 

detailed discussions of the results are contained in the two progress 

reports Nos. 42 and 43 which are appended. The companion volume (Vol. VII 

of this series) covers work done during the same time period and contains 

results submitted originally in progress reports No. 38 through 41. The 

present volume is concerned with pattern recognition and detection of 

surface scattered signals, and it therefore represents something of a 

departure from previous work, where the emphasis was mainly a signal 

processing. 

The interest in pattern recognition arose initially from the desire 

of identifying target types from their sonar signatures, i.e. to determine 

V whether a received signal was generated by a ship, or a submarine, or 

possibly a school of fish. Pattern recognition is however still a rather 

inexact discipline relying rather heavily on ad hoc procedures. Hence 

the approach taken in a given case depends very strongly on the nature of 

the application, and in order to apply pattern recognition techniques to 

sonar signature discrimination it would have been necessary to have had on 

hand representative samples of sonar signals. These proved to be not 

easily available, and it was decided therefore to transform the recognition 
- 

problem into a speech recognition problem, on the supposition that speech 

waveforms would be roughly equivalent to sonar waveforms. This kind of 

equivalence would of course exist only for signals from single hydrophones 

and information contained in the spatial distribution of sonar signals 

from different types of targets Is therefore discarded. An initial attempt 

w 
at signature discrimination would however probably not have included 



spatial properties In any case, since these call for entirely different 

approaches some of which are being considered In current research« 

Surface-scattered signals must be considered In sonar detection 

and conununlcatlon systems because In many cases signals will be trans- 

mitted to the receiving array not only by the direct path but also by 

reflection from the surface (and the bottom). In fact under certain 

shadowing conditions the surface-reflected path may be the only one trans- 

mitting significant energy. In past work the characteristics of the 

propagation path have been largely Ignored; I.e. only the most elementary 

propagation models were used. While many Important and valid results were 

obtained this way It has always been clear that many other effects observed 

in sonar systems could only be analyzed by considering more sophisticated 

models. The only previous effort In this direction is contained In Progress 

report No. 13 (Appendix F of Volume II) where the effect of volume 

inhoraogeneltles in producing errors In the bearing estimate were considered. 

The surface scattering path studied In the present volume represents 

another effort at a more realistic characterization of the propagation path. 

II. Application of Distribution-Free Tolerance Regions to Pattern 

Recognition 

As noted in the introduction, the sonar signature classification 

problem has been converted into a speaker recognition problem. The 

formulation of the problem dealt with in progress report No. 42 is that 

the system is to recognize a main speaker with a fixed expected false 

alarm probability. Any test spesker who is not the main speaker is con- 

sidered to be an impostor and a false alarm is defined as the error 

committed when an impostor is classified as the main speaker.  In addition 

. 
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to fixing the probability of f«li« «lam» tha system should correctly 

recognise the main apeaker aa often aa possible. 

It is assumed that tha probability distributions governing the class 

distributions are unknown. Hence with a finite s -mple else it is imposs- 

ible to make precise statements about any cf the error probabilities. The 

method of Distribution-Free Tolerance Regions makes it possible to fix the 

expected probability of one kind of error, here chosen to be the false alarm. 

It does not guarantee anything about the errors of the other kind - 

different choices of tolerance reglona resulting in different error rates 

in any given sample. Thus the best that can be done is to select a method 

that appears to have desirable properties and can therefore be expected to 

do a good job of maximizing the probability of correct classification. 

It is assumed that much of the Information for the recognition of 

speakers is contained in the transition between phonemes as well as in the 

phonemes themselves. Fcr this reason a simple word which contained a 

dipthong was analyzed by calculating many short-term spectra over the 

length of the word. These spectra were used to form the measurement space 

in which the decision regions were constructed. 

Recordings of 225 utterances by each of three speakers, 25 utterances 

by each of 26 impostors, and 10 utterances by each of 30 impostors were 

used. These utterances consisted of the sentence "My code is - ". digitized 

into 10 bit accuracy at 8000 samples per second. Only the word "my" was 

actually analyzed. 

A short-term spectrum was calculated from 256 samples of the wave- 

form by a fast Fourier transform. Hence, each spectrum consisted of 128 

unique frequency components.  The questions of 1) how many spectra to use 

and 2) how coarse each spectrum should be were investigated by forming 



3-different 256-dlinenslonal mea«urement spactt. The first measurement 

space was mads up of 4 spectra with each spectrum having 64 frequency 

components. The second space consisted of 8 spsctra with each spectrum 

having 32 components. The third spsce consisted of 16 spectra with each 

spectrum having 16 components. The number of frequency components per 

spectrum was reduced from 128 to 64, 32, and 16 by simple averaging. 

The amplitude of each spectrum was normsllzed to make the energy content 

of the word constant. The length of the word "my" varied from 900 time 

samples (approximately 110 msec) to 3350 time samples (approximately 420 ms) 

according to the particular speaker and the particular utterance Involved. 

Typical variation of the length of "my" by the same speaker was from 1500 

to 2200 tine simples. This variation was normalized by placing the spectra 

uniformly across the word "my". Therefore, In the case of the typical 

speaker elpht spectra would approximately cover the word with little If 

( any overlap. 

In the method of Distribution Free Tolerance Regions (DFTR) the 

.ample space Is separated Into statistically äquivalent blocks by means 

of a set of ordering functions. The general procedure Is described In 

chapter 2 of progress report No. 42, and a more detailed description of 

the ordering functions used In the speaker-verification experiment Is 

given In chapter 3. The union of a certain number of these blocks forms 

the acceptance region R.; If a new sample falls Into this region It Is 

classified as being a number of class A (here taken to be the class of 

main-speaker samples). If the number of main speaker training samples is 

n and if m is the number of statistically equivalent blocks combined to 

form the acceptance region R. then 

m ■ o(n + 1) 
«I L 



where a 1« the expecf.ed value of false alarm probability that is to be 

achieved. By chosing the ordering functions to be hyperspheres expanding 

from each one of the n main-speaker training samples one is assured that 

at least all of the training samples lie in the region R.. Hopefully 

this procedure will therefore do well on nain-speaker test samples as well. 

The ordering functions that are combined to form the acceptance 

region R. are formed by ordering Che impostor training samples. By order- 

ing the main-speaker samples aa well an estimate of the correct classi- 

fication can be obtained. The expected value of the probability of correct 

classification obeys the inequality 

where b is the number of complete blocks in region R. that can be formed 

by ordering the main-speaker samples. 

ife To test the system 40 of the 225 available main-speaker samples and 

208 of the 6500 impostor samples were used as training samples. The 

acceptance region was composed of seven blocks giving an expected false 

alarm probability of 7/209 or .0335. A summary of the major results is 

given in table 4.A of progress report 42. 

The measured false alarm rate for several different ways of frrmlng 

the acceptance regions is generally within one standard deviation of the 

expected value of .0335. Also the probability of miss has roughly the 

same order of magnitude and turned out to be slightly better for the sample 

space made up of eight short-time spectra, 32 frequency components per 

spectrum, than for the other sample spaces. 

The procedure was compared with the conceptually much simpler 

nearest-neighbor method, here a test point is classified according to the 

f class of the nearest training point. The nearest-neighbor method involves 



much more computation time than the DFTR method and the sample space was 

therefore arbitrarily reduced to 48 dimensions. It was found that the 

reduction In dimensionality ircreased the miss rate by almost a factor of 

10 for the same expected false alarm rate ^.n the DFTR method. The nearest- 

neighbor method Bhows a much smaller error rate than the DFTR method; this 

is to be expected since it utilizes information about all the samples while 

the DFTR method only uses Information about samples that have been ordered. 

On the other hand the nearest neighbor method cannot be set up to guarantee 

a specified expected false alarm rate, and it also takes much more compu- 

tation time. Thus if computation time is a factor the DFTR method is 

definitely superior. The DFTR method is easy to program, and once the 

system Is trained checking out a new test sample only takes a few seconds 

of IBM7094 time. The system therefore appears to have practical usefulness. 

III. Passive Detection and Tracking Using Surface Scattered Signals 

The major effect of surface scattering considered in Progress report 

No. A3 is the decorrelation produced in the signals received by pairs of 

hydrophones. A system consisting of two hydrophones is therefore postulated, 

and it is assumed that the hydrophone signals are processed by a simple 

cross-correlator as shown in either Fig. 3,1-1 or 3.4-1 of Progress report 

No. ^3. 

Three different propagation models are considered. The first 

considers a direct channel to one of the hydrophones and a surface scatter- 

ing channel modelled as a random amplitude and delay model to the second 

hydrophone. The transfer function for the direct channel is 

-jwR/c 

' 

HJ(üJ) - - 
dN '      R 

where R Is the llne-of-sight distance from target to receiver and c is the 



speed of sound. The transfer function for the scattering channel Is time 

varying and has the form 

where the amplitude function A(t) and the delay function T(t) are considered 

to be Independent stationary Gaussian random processes whose variation Is 

slow relative to the signal bandwidth. 

In the second model both channels between the transmitter and the 

two hydrophones sre assumed to be random amplitude and delay models with 

H^u.t) - A1(t)e-
jwTl(t); H^.t) - A2(t)e-

JwT2(t) 

The amplitude function A, (t) and the delay function T. (t) are assumed to 

be jointly Independent stationary Gaussian random processes, as are A.(t) 

and T.Ct); however A.(t) and A-Ct) are Jointly dependent, as are T.(t) and 

T2(t). 

In the third model one direct channel and one surface scattering 

channel are again assumed, but now the surface Is Itself modelled as a 

random sine wave of the form 

(x,y,t) ■ h(t)sln[q xcoso +q yslno - fl t - x(t)l 
8      8  B      8     8 

where h(t) and x(t) are random wavehelght and positional phase parameters 

that are supposed to be very slowly varying. The parameters q , a , and 0 , 
8    8 * 

are the magnitude and orientation of the propagation vector and temporal 

frequency of the surface respectively. 

In all cases the slpnal x(t) at the transmitter is assumed to be a 

stationary zero - mean Gaussian random process having a power spectral 

density S (w). Noise signals n, (t) and n?(t) are assumed to add to the 

signals entering the hydrophones; these are wide-range stationary Gaussian 

random processes that are Independent from the signal x(t), but not 



necessarily Jointly Independent. 

It Is to be noted that In all cases a Gaussian signal Is operated 

upon by a random channel functionj It Is therefore not suprlslng that the 

signal received by the hydrophones Is no longer gausslan. As a formal 

demonstration of this fact the fourth-order cumulant of the received signal 

has been computed and turns out to be non zero under several different Input 

conditions, and for all three of the assumed scattering models. (See fig. 

4.4-1). 

The correlator output aignal is denoted by S(T,T,P) where T is the 

de ay Introduced in one of the channels to "steer" the two-hydrophones in 

the direction of the target, T is the averaging time, and p is the time at 

which averaging starts. In the absence of scattering and of noise 2 would 

show a sharp peak at T - T , where T is the "correct" steering delay. As 
o       o 

a result of scattering and/or noise the location of the peak becomes a 

random variable depending on the instantaneous scattering conditions during 

the averaging period T, and the height and sharpness of the peak are also 

reduced so that under severe acattering no clear peak is discernible.  (See 

Fig. 4.2-4). 

Several criteria may be employed to evaluate the performance of the 

correlator. One of these la to form the likelihood ratio of the correlator 

output for T ■ T and to assume that a signal is present (hypothesis H. is 
o l 

ture) if the likelihood ratio exceeds some threshold; otherwise hypothesis 

H - noise only - is assumed to be correct. For reasonable integration 
o 

2 
times £ Is approximately Gaussian with zero mean and variance a~ if H is 

2 
true, and with a mean u, and variance a    if H. is true. It is then a 

straight forward matter to compute the false alarm and miss probabilities, 

and this is done lr Eqs. (3.8-10) and (3.8-11). The two error probabilities 

* 
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are seen to depend only on the two normalized standard deviations of H 

defined by d ■ o /g and d. " ^./y.. Unfortunately the dependence la 

rather complex and not easily Isuallzed. Furthermore this definition of 

error probabilities Is somewhat misleading since a small shift of the peak 

could result In a very marked reduction of the magnitude of E at T - T . 
o 

This would result In rejection of the hypothesis H even though the peak 

might still be quite clearly discernible. 

Another criterion for evaluating the system may be obtained by con- 

sidering the location of the peak of H to be an estimate of the true value 

of T. Then the variance of this location would be an Indication of the 

accuracy of the estimate. If It Is assumed that there Is only s single 

peak, then this criterion Is equivalent to computing the variance of the 

zero crossing of the derivative r-~ ; specifically, the quantity of Interest 

Is this variance normalized with respect to the mean slope of r—  at T>T : 

2    far [EM 

1
3T 

J    T - T 
o 

Actually, It Is just as easy to compute the normalized autocorrelation 

2 
function of E, whose value for zero argument Is then a . A general 

expression for this function, denoted byR (\x) M  given In Eq. (4.2-13); 
T 
O 

unfortunately It Is rather complex. 
2 

As a third criterion the normalized variance d. may Itself be used 
2 

since It contains essentially the same Information as a    .    A general 
TO 

2 
expression for d Is given In Eq. (4.2-8), and Is seen to be quite similar 

to the expression for R (y). 
o 

In performing the computation for these expressions Is assumed that 

signal and noise spectra, filter transfer functions, and the spectra of 

amplitude and delay all have a Gaussian shape; thus the signal spectrum is 



given by 

/27 P      r    2 - 

Sxx(w) " -O"5 ^P 
x 

The autocorrelation function c2  the random delay is 

RTT(M) - oj exp [- % flj y2] 

etc. (See Eqs. 4.1-17. 4.1-18, 4.2-2, and 4.2-3). 

Curves for d^  as a function of T are shown in Piss. 4.2-1, 4.2-2, 

4.2-3, and 4.2-5. These curves aie for the first of three propagation 

models, but qualitatively the curves for the other two models are similar. 

The most striking feature of all of these curves Is a well-defined plateau 

over which d. decreases only very little as T Increases. Por values of T 

smaller or larger than the plateau values the dependence of d. is propor- 

tional to Iv^ as might be expectei from rather general statistical 

considerations. 

The existence of the plateau is another Indication of the fact that 

the signals received by the hydrophones Is non Gaussian. Qualitatively the 

plateau is a result of the fluctuations in the Instantaneous estimate of T 

that results from the rsndom delays produced by the surface scattering. 

For small integration times an increase in T tends to eliminate fluctuations 

due to noise and the randomnere of the target signal and to produce a better 

definition of the peak in the output.  Hence d decreases. However d also 

measures the fluctuations of the peak that result from scatterins, and when 

T has become large enough to eliminate noise and signal effects from the 

ppak, the fluctuation due to scatterlnp still persist. Hence d remains 

essentially constant until the integration time has become so large that the 

scattering fluctuation are also being 'washed out". 

For the first propagation model (single random amplitude and delay 

2 
channel) the level of the plateau in d is 

in 

I 



[■ i * iW 
•a -o 

- m T 

- 1 

where a^ is the variance of the amplitude fluctuation A la the mean 

2 
amplitude of the channel, a la the variance of the delay fluctuation, and 

m n2  T n2 2«? 2n2 
m       x    1    2 

Here ft la the bandwidth of the signal and ft. and ft. are the bandwldths of 

the two filters H^w) and H2(w) uaed In the correlator. Note that the 

plateau will exist even If there Is no random delay; this la because d 

meaaurea the total variation of the output peak, not only Its motion alonp 

the T axis. The plateau does disappear If both o and a are zero, as would 
A       T 

be expected.  It also becomes less pronounced as the slgnal-to-nolse ratio 

decreases, since the received signal consists then of mostly noise and tends 

to be Gaussian. 

A similar plateau Is found In the expression of R (0) which Is a 
o 

better Indicator of the tracking error than d.. The plateau here Is 

r   6 o a 
T m 

/a -o 
^- m T -' 

S 

Note that this plateau disappears when o ■ 0 since amplitude fluctuations 

do not affect the tracking error In that case. 

Similar plateaus are found In the other propagation models. Expressions 

corresponding to the two given here are Eqs. 4.A-5 and 4.4-8 respectively 

for the two-scattering channel model and Fqs. 5.3-12 and 5.3-15 for the 

random sine- tve model. 

In the random sine-wave model the height of the plateau can be related 

to an elf active Rayleigh parameter. 

nfx/c 
Jl ah Sin ♦ nfx 

II 



where o is the verltnce of the amplitude, ij; Is the greclng angle» c In 

the sound velocity In veter end nf - (l/n| + l/n2J  where 0f le the 

filter bandwidth (asBurned to b2 Indentleal In the two correlator channels) 

and n^ Is ths signal bandwidth, suitably defined (See Bq. 5.3-1). The 

critical value of this parameter for both d* end R (0) Is roughly unity: 
o 

the plateau is small for lesser values, and rises steeply for larger values. 

It is interesting to note the appearance of the Raylelgh parameter in this 

context since it is generally a good meesure of relative surface roughness. 

The height of the plateau can be reduced end the performance of the 

system improved by reducing the filter bandwidth fl . It Is clear from 

the cxpreaslon for a (where ft, • no ■ Q-) that this makes a >> o end 
m       1        £        t m   T 

therefore reduces the second term in the expression for the plateau level. 

Physically the effect of reducing the bandwidth of the filter Is to screen 

out some of the fluctuation, and it seems reasonable that this should 

( 
improve the performance if not carried too far. It could also be expected 

that extreme reduction of filter bandwidth would result again In a 

worsening of performance, and this is clearly shown In Figs. 4.2-8 and 4.2-9. 

Additional results contained In progress report No. 43 deal with other 

aspects of the scattering transfer functions for the three models. Expres- 

sions have been obtained for the Interfrequency correlation function, 

frequency spreeding function, and other moments that will be useful In 

signal design and receiver optimisation. These expressions are all rather 

complex, end details oust be obtained from computer calculations. In 

general, however, the results for all three models In regard to these 

functions are qualitatively similar. 

I9 
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ABSTRACT 

The purpose of this work is to investigate a nonparametric 
classification procedure based on distribution-free tolerance regions. 
The procedure is one which gives some knowledge about how well 
the classifier is expected to perform.    This is achieved by using 
only one sample of statistically independent observations from each 
class. 

The approach, which is called the hypersphere DFTR 
approach,  is formulated in a two class problem.    The proposed 
recognition system is one which can be designed for a given expected 
false alarm probability or for a given confidence that the false alarm 
probability is less than a given amount.    A few procedures are pre- 
sented which have certain desirable properties and which appear to 
do a good job of minimizing the miss probability. 

Three principal DFTR procedures are presented.    The small 
and large sample properties of these procedures are investigated and 
the procedures are compared.    A procedure for obtaining a measure 
of the miss probability is also presented. 

The procedures are tested in an automatic speaker verifica- 
tion experiment.    A comparison is made of the test false alarm rate 
with the 95% upper tolerance limit on the false alarm probability and 
also with the expected false alarm probability.    In the experiment 
all test false alarm rates fell below the 95% upper tolerance limit. 
The average test false alarm for the 21 different cases studied here 
was approximately equal to 0. 8 of the average expected false alarm 
probability. 

A comparison is made of the test miss rate with a measure 
of the miss probability that was obtained by using a tolerance region 
approach.    In the speaker verification experiment all test miss rates 
fell below the 95% upper tolerance limit.    For the 21 different cases 
studied,  the average test miss rate was equal to 0.82 of the average 
expected miss rate. 

Finally,   the probability of error for the hypersphere DFTR 
proceduio is theoretically compared with the probability of error 
for the nearest-neighbor rule without assuming the form of the class 
probability distributions. 

A-Hi 



TABLE OF  CONTENTS 

-* * 
Chapter   1 

Chapter 2. 

INTRODUCTION 

Review of Contents 

DISTRIBUTION-FREE TOLERANCE REGIONS 
AND CLASSIFICATION 

Page 
A-l 

A-9 

A-ll 

-A Brief Review of Distribution-Free Tolerance 
Regions . A-ll 

Classification Using Distribution-Free 
Tolerance Regions A-16 

^ 0 

Chapter 3. 

3. 1. 
3. 2. 
3. 3. 

3. 4. 
3. 5. 
3. 6. 
3. 7. 
3. 8. 

3. 9. 
3. 10. 

3.11. 

Chapter 4 

4.1. 
4.2. 
4.3. 
4.4. 

4.5. 

4.6. 
4.7. 
4.8. 
4.9. 

THE HYPERSPHERE DFTR APPROACH A-23 

Summary A-23 
Introduction A-23 
Application of Distribution-Free Tolerance 

Regions to Classification A-25 

Discussion of Practical Ordering Functions A-32 
Programming on a Digital Computer A-48 
Large Sample Properties                      i A-50 
An Optimum Ordering Procedure A-59 
A Further Comparison of the AHE and CHS 

Procedures A-62 
Measure of the Miss Probability A-67 
An Ordering Procedure which Gives Distribution- 

Free Measures of Both the False Alarm and 
Miss Errors A-78 

Multi-class Problem A-82 

AUTOMATIC SPEAKER VERIFICATION A-97 

Introduction A-97 
Speaker Recognition Review A-98 
Experimental Setup A-103 
Preliminary Study : Speaker Recognition by 

Analysis of Phonemes A-105 
Measurements for the Speaker Verification 

Experiment A-110 
Data A-117 
Decision Regions A-118 
Reduced Measurement Space A-126 
Comparison of Expected False Alarm Probability 

with Test False Alarm Rate A-131 

A-v 



4.10. 

4.11. 

Chapter 5. 

5.1. 
5.2. 
5.3. 
5.4. 

Chapter i >. 

Appendix A. 

A. 1. 
A. 1.. 
A. 3. 
A-4. 
A. 5. 
A. 6. 
A. 7. 

Appc idix B. 

Appendix C. 

Appendix D. 

I. 

II. 

111. 

IV. 

Comparison of a Measure of the Expected Miss 
Rate with the Test Miss Rate 

7040-7094 Computer Time 
A-136 

A-141 

THEORETICAL COMPARISON OF THE PROBABIL- 
ITY OF ERROR FOR THE AHE-DFTR PROCEDURE 
WITH THE PROBABILITY OF ERROR FOR THE 
NEAREST-NEIGHBOR RULE      . A-144 

Summary    v 

The Nearest-Neighbor Rule 
The AHE-DFTR Procedure 
Intuitive Investigation 

Theory of Distribution-Free Tolerance Regions 

One Dimensional Theory 
Gene ralizätions 
D-Dimensional Theory 
Wald's Ordering 
A General Ordering Procedure 
Discontinuities 
Other Extensions 

Properties of the Beta Distribution 

Discussion of   E{^\    dF   (x) dx j = a 
LJR2 

Review of Classification Methcis in Pattern 
Recognition Given Training Samples of 
Known Classification 

Optimum Solution with Assumed Probability 
Densities 

Estimation or Approximation of the Probability 
Densities 

Estimation or Approxiniation of the Class 
Discriminating Boundaries 

/ 
Other Intuitive Criteria 

A-144 
A-146 
A-151 
A-164 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER 
WORK A-167 

A-173 

A-173 
A-178 
A-183 
A-184 
A-189 
A-196 
A-198 

A-199 

A-201 

A-204 

A-204 

Bibliography 

A-208 

A-213 

A-220 

A-228 

A-vl 



♦ r* 

LIST OF ILLUSTRATIONS 

Figure Page 

1. Model of a pattern recogniser A-4 

2.1. Wald'a method of successive elimination for forming A-14 
distribution-free tolerance regions 

2.2. A general ordering technique for forming distribution-      A-14 
free tolerance regions 

2. 3.      An example by Ouesenberry and Gessaman (1968) A-21 
i 

3.1. A hypersphere ordering A-29 

3.2. All hyperspheres expand (AHE) A-34 

3. 3.       Ordered hyperspheres constant (OHC) A-38 

3.4. All hyperspheres are stopped by one P   observation A-40 

3.5. Conditioned hyperspheres stop(CHS) A-43 

3.6. Composite of the AHE, OHC, and CHS ordering 
procedures A-45 

3. 7.      A comparison in favor of the AHE procedure A-47 

I 
3. 8.       A comparison in favor of the CHS procedure |    A-47 

3. 9.       A one-dimensional example A-52 

3.10. Length of the accept region on the positive real line A-52 

3.11. Length of the accept region on the negative real line A-57 
i 

3.12. Optimum ordering for disjoint probability density 
functions A-57 

3. 13.     Average length of an interval surrounding a P, 
observation (250 observations from each class) A-63 

3. 14.     Average length of an interval surrounding a P? 
observation (500 observations from each class) A-65 

A-vli 



3.15. 

3.16. 

3.17. 

3.18. 

3.19. 

3.20. 

Average length of an interval surrounding a 1^ 
observation (1000 observations from each class) 

A situation with a possibly large miss rate 

An unsuitable ordering for measuring the miss rate 

The OHC-R and CHS-R procedures 

Example of the ordering of Section 3.10 

A two-class hyperplane approach 

3.21. A two-class hypersphere approach 

3.22. A three-class hypersphere approach 

3.23. An alternate three-class hypersphere approach 

3. 24. A hypersphere approach for criterion A 

3.25. A hypersphere approach for criterion B 

4. 1. Chart for obtaining measurements 

4. 2. Four utterances of "My Code,.. " 

5.1. The transformation   Z=min(Z   ,Z?) 

5.2. The transformation   Z = min( |X - Y   |,   IX.-Y   |) 

5. 3. The transformation for equation 5. 64 

A-1. Ordering from a fixed point 

A-2a. Wald's ordering procedure 

A-2b. Not distribution-free    (assuming dependent variables) 

A-3. Illustration of a general ordering procedure 

D-l. Optimum recognition system 

D-2. A partitioning with linear decision functions 

D-3. Discriminant functions 

D-4. Elementary decision rules 

Page 

I    A-66 

A-68 

A-68 
i 

A-77 

A-80 

A-83 

A-83 

A-89 

A-89 

A-93 

A 93 

A-112 

A-115 

A-150 

A-150 

A-160 

A-181 

A-181 

A-181 

A-197 

A-205 

A-215 

A-223 

A-223 

[ 

A-vill 



LIST OF TABLES 

Table 

3.1. 

3.2. 

4.1. 

4.2. 

4.3. 

4.4. 

4.5. 

4.6. 

4.7. 

> f 

Page 

Expected Value and Standard Deviation for  /? = 0.05 
and   y=0.95   and for Different  m   and   n A-32 

A Comparison of the AHE and CHS Procedures A-58 

Text for Phoneme Analysis A-106 

Impostor Data A-114 

Main Speaker — RF   Data A-114 

Three Different 256-Dimensional Measurement Spaces A-121 

Test Errors in 3 Different 256-Dimensional 
Measurement Spaces A-12A 

48 Dimensional Space,  Two Main Speakers A-127 

Comparison of Expected False Alarm Probability 
with Test False Alarm Rate A-133 

1.8a. Co iparisor of a Measure of the Frppcted Miss 
Probability with the Test Miss Rate in the 25t- 
Dimensional Spaces A-138 

4. 8b.        Comparison of a Me xsure of the Expected Miss 
Probability with the Test Miss Rate for the Space of 
6 Spectra with 8 Components/Spectrum A-139 

B-l. Comparison of the Mean, Median, and Mode for Two 
Different Values of  m   and   n .4-200 

A-ix 



Chapter  1 

INTRODUCTION 

The ability to recognize and to respond to visual, auditory, or 

other patterns can be regarded as a prerequisite for any intelligent 

behavior, and it is. In fact, possessed by all living things to some degree, 

In general it can probably be said that the more intelligent an animal is 

the greater is the repertoire of patterns that it can recognize.    Certainly 

the number of patterns that can be recognized by human beings, ranging 

over auditory patterns such as speech sound, music,  sounds of nature, 

etc. to visual patterns such as those made by objects, faces, letters, 

etc. is so vast as to defy enumeration. 

Si ice the early days of computers, attempts have been made to 

enable these supposedly intelligent machines to recognize patterns also. 

To some extent these attempts have been quite successful.   Every com- 

puter possesses the ability to recognize the symbols of its machine- 

language alphabet, and the developments in computer software over the 

last dozen years have shown that computers can be made to recognize 

rather intricate input patterns that seem quite far removed from the 

basic machine language. 

A major difference between the ability of computers and of living 

beings to recognize patterns appears,however, to be that the latter can 

recognize patterns that they have never observed before while the former 
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can generally not do this.    Thus a person has no difficulty in recognizing 

an object to be,  say,  a glass, even though the precise shape or color 

may be quite different from any that he has seen before.   Apparently the 

human pattern recognizer is able to react to general features that cate- 

gorize the pattern without being put off by details that are somehow under- 

stood to be irrelevant.    This ability is one that,   so far, machines possess 

only very imperfectly. 

There are many machine pattern recognition tasks which up to 

now have not been solved satisfactorily.    Some of these are recognition 

of a person from his handwriting,  or from his voice, or from his picture; 

recognition of spoken messages regardless of the speaker; and recognition 

of complex structural images from pictures. 

Automatic pattern recognition has been attempted in many fields. 

For instance,   in medicine pattern recognition is generally used by the 

doctor for diagnosis.    Machine recognition is being inverligated for such 

seemingly applicable tasks as the analysis of electrocardiograms,  electro- 

encephalograms and blood cell photos.    Other examples of areas in which 

machine pattern recognition is being applied are physics,  geology,  and 

meteorology.    In physics,  automatic pattern recognition is being used 

for particle tracking in bubble chambers.    Recognition of the location of 

oil deposits through seismic and magnetic   signal analysis is being 

attempted by geologists.    Meteorologists are investigating weather pre- 

diction through the analysis of cloud photographs. 

A-2 
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Model 

An often-used model for a pattern recognizer was proposed by 

Marill and Green (I960).    This model is shown in Figure 1.   It consists 

of two important parts, the receptor and the categorizer (or classifier). 

The receptor transforms the input data, which might be :he 

motion of a transducer or the output of an optical scanner, into a measure- 

ment space of high dimensionality in which observations from the same 

class cluster and observations from unlike classes separate.    The trans- 

formation may be linear or nonlinear, information preserving or 

destroying.    The categorizer determines the decision regions in the 

measurement space and tests the proximity of an unclassified observation 

to these regions. 

Oecision Theory 

Fundamental to the design of the categorizer is statistical decision 

theory, c.f. Wald (1950),  Blackwell and Girshick (1954), Anderson (1958). 

We briefly review some of this theory that is applicable to our problem. 

Suppose an observation is to be classified into one of several 

classes.    The observation is represented by a measurement vector   v 

in measurement space   v .    The classification procedure can be described 

as a mapping of measurement space   v   into the   i = 1,...,K   classes. 

Let   R.   be the region of the measurement space which is mapped into 

class   i, i = 1,.. ., K .    If a new observation falls in   R. , it is classified 

into class   i .    Let   ^.   be the a priori probability that the observation 
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belongs to class   i , let f (v)  be the probability density function of the 

observation  v , assuming that it is a member of class   i , and let   C.(j) 

be the cost of deciding that   v  is a member of class   j  when it is a 

member of class   i . 

The expected risk or loss in making decisions is 

K K 
E   £  E  C(j)^    f.(v)dv. (1.1) 

i=l       j=l JR. 

According to the Bayes criterion the expected loss is minimized by 

deciding that   v   belongs to class   k  when 

K K 
s L tiM CJOO < s c4 

fit) C.CJ) a. 2) 
1=1 i=l 

for all  j . 

x J Suppose the cost of making a correct decision is zero and the 

cost of making an incorrect decision is equal to   C .    Then   ^-(j) = j n   •_ • 

K 
By subtracting   C   Z/      & MVJ    ^rom both sides of equation 1, 2 and by 

i=l ' 
itj. k 

dividing through by   C   we obtain the decision rule for deciding in favor 

of class   k .    The decision is made that   v   belongs to class   k   when 
t 

Cj'jW^yv) (1.3) 

for all   j . 

It is sometimes convenient to formulate the decision rule in terms 

of the likelihood ratio, 
My) 

kj      f-fv)       ' 
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Rewriting equation 1. 3 in termi of the likelihood ratio, one decides in 

favor of class   k  if 

H^Tf (1•4, 

for all   j . 

For a two-c'ass problem, one simply compares the likelihood 

ratio with a constant.   Many criteria yield decision rules involving like- 

lihood ratio comparisons.    Some of these are the Neyman-Pearson 

criterion,  the Ideal Observer criterion, and the Minimax criterion, c.f. 

Van Trees (1968). 

In the following chapters the two-class problem is discussed at 

length.    For convenience,  the two conditional probabilities of error will 

be defined as follows.    The conditional probability of deciding in favor 

of class 2 when the observation belongs to class 1 (false acceptance of 

class 2) is railed the false alarm probability.    The mathematical notation 

for this conditional probability is ^ 

R2 

The conditional probability of deciding in favor of class 1 when the 

observation belongs to class 2 is called the miss probability.    It is 

denoted by 

PM - \    tzil)
dl- U-6) 

The use of the terms "false alarm" and "miss" implies that classes 2 
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and 1 are associated respectively with the occurrence or nonoccurrence 

of some event (such as the presence of a target on a radar screen). 

These terms are more appropriate for this thesis than the lesb descriptive 

"error of the first kind" and "error of the second kind" because the major 

problem dealt with here involves a main class and an impostor class, c.f. 

Section 4.1. 
« 

Classification Methods 

In general, the conditional joint probability densities,    f.(v) , 

are not known in pattern recognition problems.    Usually the only informa- 

tion available for designing the pattern recognizer is a limited set of 

properly classified data.    In this case an optimum solution in the Bayes 

sense is not applicable. 

I^et us briefly define some of the terminology which distinguishes 

the classification procedures.    A machine is said to "learn" when it is 

able to improve its performance by benefiting from its past experience. 

The period of constructing decision regions is called the training period. 

This is distinguished from the recognition or test period in which 

observations of unknown classification are classified.    Pattern recognition 

may be accomplished by supervised or unsupervised learning.    In the 

former, the training observations are of known classification and in the 

latter,  which is sometimes called learning without a teacher,  the training 

observations are of unknown classification. 
i 

Some of the methods which have been proposed for solving the 
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classification problem in pattern recognition are: 

(1) Optimum Solution with Assumed Probability Densities;   Functional 

forms for the conditional densities   f.(v) ,   i = 1,... ,K   are assumed to 

be known.   Some of the parameters of these densities are often estimated 

from training observations.    The optimum decision regions are found 

for these assumptions.    Then new observations are classified.    If the 

results are not satisfactory, the assumptions are revised and new decision 

regions are formed. 

(2* Estimation or Approximation of the Probability Densities;   The 

class probability densities are estimated or approximated usin^ the 

training observations.   A new observation is then classified according 

to ^.yes rule, where the estimated probability densities are substituted 

for the true probability densities. 

(3) Estimation or Approximation of the Class Discriminating 

Boundaries;   A structure for the boundary which partitions the measure- 

ment space into decision regions is assumed.    The structures for the 

discriminating boundary range from the simple hyperplane to complex 

m 
surfaces of the form    E   w. 0.   where the   0.   are functions of the meas- 

i=l    i   i i 

urement space and   m   is finite.    The discriminating boundary is then 

trained for the "best" results.    "Best" results usually means minimum 

probability of error when the class probability densities are assumed or 

minimum mi solas sification of the training observations when the class 

probability densities are not assumed. 
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(4) Other Intuitive Criteria;   These include euch approaches as 

maximization of entropy, minimization of intraclass distance around 

characteristic points of the classes, the Fisher Criterion,  and the 

nearest-neighbor rule. 

Appendix D gives a review of these classification methods along 

with the associated references.    It should be noted that a comparison of 

the above approaches is very difficult since the criterion for a good 

pattern recognizer varies from author to author and since the data sets 

on which the pattern recognizers are tested are usually different. 

/ 

Review of the Contents 

It is the intention of the present work to investigate a nonparametric 

classification procedure based on distribution-free tolerance regions. 

This procedure is one which gives some knowledge about how well the 

classifier is expected to perform.    This is achieved by using only one 

sample of statistically independent observations from each class.    The 

classification procedure is then applied to a practical pattern recognition 

problem. 

In Chapter 2 a brief review of the theory of distribution-free 

tolerance regions is presented.    A detailed study of this theory is made 

in Appendix A.    A review of existing methods for applying the theory of 

distribution-free tolerance regions to classification problems also appears 

in Chapter 2. 

The effectiveness of certain methods for constructing distribution- 
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free tolerance regions for claBiification purposes is investigated in 

Chapter 3.   The approach, which is called the hypersphere DFTR   approach, 

is formulated in a two-class problem.   The proposed recognition system 

is one which can be designed for a given expected false  alarm proba- 

bility  or for a given confidence thc-t the false alarm probability is less 

than a given amount.    It is assumed that the only information available 

for designing the recognizer is a properly labeled sample of statistically 

independent observations from each class.    A few procedures are pre- 

sented which have certain desirable properties and which appear to do a 

good job of minimizing the miss probability.    A procedure for obtaining 

a measure of the miss probability is also presented.    The extension of 

the hypersphere DFTR procedure to the multiclass problem is also 

discussed. 

Chapter 4 report    on  an automatic speaii jr verifica   on system 

and its use in testing the hypersphere DFTR classification schemes. 

A theoretical comparison of the probability of error for a hyper- 

sphere DFTR procedure with the probability of error for the nearest- 

neighbor rule is presented in Chapter 5. 

Chapter 6 presents conclusions and lists suggestions for further 

study. 

4 
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Chapter 2 

• 

DISTRIBUTION-FREE TOLERANCE REGIONS 

AND CLASSIFICATION 

Introduction 

Existing classificcs-tion methods which involve the theory of 

distribution-free tolerance regions are discussed in this chapter.    The 

chapter begins ^ith a brief review of the theory of distribution-free 

tolerance regions.   For further details on this subject,  see Appendix A. 

Later in Chapter 2 classification procedures by Anderson (1966) are 

presented.    Next, the use of statistically equivalent blocks and the 

empirical Bayes approach by Patrick (1966) is discussed.    Later, a 

method by Quesenberry and Gessaman (1968), which involves regions 

of indecision, is presented. 

A Brief Review of Distribution-Free Tolerance Regions 

Suppose   n.   independent observations,   X.,X0,...,X   ,    are 
\ 1        * 1     £ n. 

available from a population with continuous univariate probability 

density   Mx).    Let   X... < X.^. < .. . < X.    .   denote the observations 
1 U)        (2) (nj) 

arranged in ascending order of magnitude.   It was first shown by Wald 

(1941) that the amount of probability in   (X     , X is distribution- 

free.    Hence a statement such as 
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X(r) 

or 

Pr{S       l''r+1)f1(x)dx<^} = >/ 0<$<l (2.1b) 
X(r) 05^1 

can be made even though the density   £Ax)   is unknown. 

The theory of distribution-free tolerance regions was extended 

for multivariate distributions by Wald (1943).    He formed distribution- 

free tolerance regions by successive elimination of sample regions of 

the multidimensional space.   For example,  suppose a statement is to 

be made about the amount of probability in the "center" of the two- 

dimensional distribution   F.{x.,x?),    Let the independent observations 

/ Xil \ X. =    (       " 1 , 1 = 1,.. , ,n.   be arranged in ascending order of magnitude 
1       xi2

/ 

of the I8* variate,    x. .    Denote the ordered variate values by 

X.... < X.-x. < .. . < X.    ., .    Let   r   be an integer which is less than 
(1)1        (2)1 (njH 

n1/2 .    Let the region for which the first variate   x.   is less than or 

equal to the r^"1 smallest first variate of the   n.   observations be "elim- 

inated" from the space.    That is, the space is partitioned Into two 

regions.    One region,  the region   { x:x- < X.   ..}   will not be considered 

in further ordering of the observations,  hence it is "eliminated"« 

Since the stated interest is in the center portion of   F.(x..,x~),  eliminate 
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the region for which   x, > X.        v.  .    Further eliminate the region for 
1-    (n^r)! 

which the second variate is less than or equal to the s^ smallest second 

variate of the remaining observations.    Here,    s   is an integer which is 

less than   (n -2r)/2 .    Also eliminate the region   { x:x. > X,      _     .   ,_]  . 1 —    Z —    (n -2r-Zs)2 

The remaining region   {x:X < x   < X X.   .:><x   <X ] —    (r)l        1        (n -r)l        (s)2       2        (n1-2r-2s)2 

is distribution-free.    Figure 2.1 shows such a region   R.   for   s = r = 2 . 

The procedures for forming distribution-free tolerance regions 

have been generalized in papers by Scheffe   and Tukey (1945),  Tnkey 

(1947),  Tukey (1948),  Fräser and Wormleighton (1951), Fräser (1951), 

Fräser (1953),  and Kemperman Q956).    A particularly useful general- 

ization is the following:   Suppose that   n    independent observations are 

available from a continuous D-dimensional cumulative distribution 

function   F.(x , x,,. . . , x   ) -• F (x) .    Let   h.( :),  i = l, ...,n.   be   IL 

functions such that   h,(X), . , . ,h    (X)   are random variables with a 
1- nj- 

continuous joint distribution function.    The functions   h.(x)   are called 

ordering functions.    They are used to partition the sample space into 

n.^- 1   mutually exclusive and exhaustive sample regions called "statis- 

tically equivalent blocks. "   The regions are hereafter called simply 

"blocks."   Let  2£n \   ^e ^ie 0bservation which yields the smallest value 

for the first ordering function,    h (x) .    Then the   n.+ 1   blocks 

B, . . . . ,B     ,    can be defined as follows: 
1 n+1 

B I = C^W-11!^!)^ 
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X 
 X  

x        *   x 

 X—  
f       x  ■ 

X(1)1X(2)1 
11 x 

(n~l)l (n)l        1 

Figure 2.1.  Wald'e Method of Sucesslve Elimination for 
Forming Dlstribution-Pree Tolerance Regions. 

Figure 2.2. A General Ordering Technique for Forming 
Distribution-Free Tolerance Regions. 
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where   X/i\   *' tlie observation for which 

B2 = {x:h2(x) <h2{X(2)), h^x) >h1(X    )) (2.2) 

where   X .     is the observation   X,    excluding   X     »   for which   h7(x) 

is minimum, 

h7tX/5\) =     min      h?(
x.) • 

i^d) 

Bk= {x:hk(x) < hk(X(k))l h^x) > hj^^CX^j,), .... 

h1(x)>h1(X(1))} (2.3) 

where   X„.   is the observation, excluding   X...... X..   ,. ,    for which 
— (k) *  —(1)       —(k-1) 

h, (x) is minimum, 

hk(X      )=     min       hk(Xi)    , (2.4) 
1 < i< n. 

—   —   x 
i^d) (k-1) 

and   B      ,   is the space which remains after the   n,   blocks have been 
n. +1 1 

formed, 

B    x   =   X -   (}   B. , '    (2. 5) 
V1 i=l   l 

All ordering functions subsequent to   h,    may depend on the 

blocks previously formed, all known boundary observations,  and on 

certain sets of indices.    For example, let   h-fx) =  |xl .    Let   X ^e 
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the observation that minimises   h., h (X,..) a      min  h.fX.).   Then 
1<l<n

1 

the first block  B     consists of the region inside the hypersphere   |x|   ■ 

|X... | .    The block  B.    along with the observation   X/n   ^a now e^m" 

inated from the sample space.    The information found in the I8* ordering 

(e.g.  the location of   X       ' t^e 8^2e 0''  ^1' e*c* ^ can be U8e<* to ^orm 

subsequent blocks.   For example, the ordering function  h-Cx) = |x-X     | i (1) 

can be used to order the second observation and form the second block. 

Let  2£/9\   ^e *^e observation among the remaining   n. - 1   observations (2) 1 

which yields the smallest value for   h-(x) .   Then 

B2 = {x:h2(x)<h2(X(2)) , h1(x)>h1(X(1))) . 

The formation of the first two blocks in this example is illustrated in 

Figure 2. 2 for a two-dimensional vector   x . 

Note that the first block could have been formed by choosing 

the observation which gives the largest value for   h. (x) .    Of course, 

this block would not be the same as   B.   of Figure 2. 2.    Distribution- 

free tolerance regions can even be formed by choosing the r"1 smallest 
« 

or r^1   largest value for   h.,   c.f. Fräser (1957). 

Classification Using Distribution-Free Tolerance Regions 

Anderson (1966) proposes various multivariate statistical 

techniques based on the properties of statistically equivalent blocks. 

He presents procedures for (I) testing the hypothesis that an unknown 

cumulative distribution is a specified one,  (2) testing the hypothesis 
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that two unknown distributions are identical, and (3) classifying an 

observation into one of two populations.    We are interested in the 

classification techniques.    Let   X.,...,X      be   n   independent vector 
— J ""n 

observations from a population with distribution   F(x)   and   Y .,..., Y 
— — 1 —m 

be   m   independent vector observations from a population   G(y) ,   where 

F(x)   is assumed different from   G(^) .    Let   V   be a new observation 

which is drawn from one of the two populations.    The observation   V 

is to be classified into one of the populations.    Anderson mentions 

several nonparametric classification procedures based on ordering the 

observations. 

In one procedure, the blocks are forrred by ranking the pooled 

X   and   Y    observations.    Consider the block in which   V   falls.    The 

observation   V   is classified according to the majority of observations 

defining the block.    For example,   suppose   V   falls in a block which 

has four sides.   If three of these four sides are drawn through   X 

observations,  then   V   is classified as an   .X   observation.     In another 

procedure the   X   and   Y   observations are ordered separately.    Consider 

the   X-block and the   Tf-block that   V   falls in.    If there are fewer   Y 

observations in the   X-block than   X   observations in the   Y-block, 

V   is classified as an   X   observation.    This procedure is similar to 

the k  -nearest neighbor rule which is discussed in Appendix D.    Other 

similar classification procedures are mentioned.    Anderson points out 

that some of these classification procedures can be made to depend on 

n   and   m   so as   n   and   m   increase the probabilities of misclassification 
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will converge to the probabllitiet of a procedure based on the likelihood 

ratio. 

Patrick (1966) and Patrick and Fisher (1967) present a general 

classification approach*which they refer to as an empirical Bayes 

approach for distribution-free minimum conditional risk learning systems. 

This approach involves the construction of distribution-free tolerance 

regions for each class.    Classification is obtained by comparing the 

volumes of the tolerance regions for the different classes.   For example, 

consider the tolerance regions in which a new observation  V^ falls. 

Note that each class has been ordered separately and for every  V  there 

is one tolerance region to be considered for each class.    The observa- 

tion   V   is classified into the class whose tolerance region has the 11" 

smallest volume, with appropriate compensation being made for the 

loss functions and the a priori class probabilities. 

The approaches of Anderson and of Patrick do not use the blocks 

to obtain an estimate of how well the classifier will perform.   Since 

the decision regions contain partial blocks, this information cannot be 

obtained accurately from classifiers of their design.    This fact becomes 

clearer as we study Chapter 3. 

A different use for distribution-free tolerance regions in class- 

ification is made by Quesenberry and Gessaman (1968).    Emphasis is 

placed upon the control of the distribution of the conditional probabilities 

of error,    i.e. the false alarm probability and the miss probability 

in the two-class problem.    This approach requires a region in the 
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measurement space which is commonly called a reject region or a 

deferred decision region.    If a new observation falls in this region, no 

decision is made.    The problem with their approach is that the size of 

this region depends on the location of the observations from the various 

classes and on the ordering functions chosen.    No control is exercised 

over the size of the reject region.    Hence if the distributions are "close" 

together or if the ordering functions are unhappily chosen, the proba- 

bility of not making a decision can be large. 

Quesenberry and Gesfaman's procedure involves the construction 

of a distribution-free tolerance region   A.   containing    a.   blocks for 
3 ) 

each distribution  F., j = 1, . .., K .    For each set   A.   there is a com- 
J J 

plement set   A . = X - A. .    Let   R.   be the region in which the decision 
) ) ) . 

is made that the new observation comes from distribution   F. .    Let 
J 

R_.   be given by 

R, = Ä       fl    A 
i=l 

J K 

J J   i=1      i 

Let   R     be the region in which no decision is made.    Let   R     be given o r o,        0 

by 

Ro =    ( ."   Ai ) U  (.", *,) 
1=1 1=1 

The probability of deciding any class other than class   j   when the new 

observation is from class   j   is controlled since there are no more 

than   a.   blocks in the regions for deciding any other class.    These ideas 

become more transparent as this approach and the hypcrsphere DFTR 
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approach are investigated in Section 3.11. 

The choice of ordering functions is left to the person who imple- 

ments the classifier.    Quesenberry and Gessaman give examples of 

appropriate ordering functions for (1) two distributions with a monotone 

likelihood ratio and (2) two univariate normal distributions.   The third 

example which was given is repeated below.   Suppose two classes are 

represented in a two-dimensional space by two distributions, both of 

which are thought to be unimodal.    A reasonable choice for  A .   is a 

bounded convex region containing   (n.-a +1)   blocks.    This can be 

accomplished in many ways.    Figure 2.3 shows an artificial example 

which was given to illustrate the   tolerance   region   approach . 

Th'  data was generated by drawing samples of size   n.s n = 81   from 

bivariate normal distributions   P.    and   P?   with mean vectors 

(1*11. ^2)-(0.0).     (^j.^MS.O) 

and covariance matrices 

An ordering which was suggested by Tukey (1947) was then used to construct 

the tolerance regions.    Figure 2. 3 is the resulting figure for a probability 

of . 90 that the conditional probability of either error is less than 0.14. 

The region for deciding class 1 is   R_ ;   tYe region for deciding class 2 

is   R-  ,    and the region for making no decision is   R    . 

A problem with the use of distribution-free tolerance regions 

for estimation of how well the classifier will perform is that the ordering 
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Figure 2«3«    An Example by Quesenberry and Gessaman (1968)* 
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functions and the block» to be used in the decision regions should be 

chosen without any knowledge of the outcome of the observations.    (They 

can, of course, be based on any a priori knowledge.)   Hence if nothing 

is known about the distributions, a classifier which yields very poor 

results can be obtained. 

In the following chapter, ordering procedures are presented for 

the case where nothing is known about the class probability distribu- 

tions.   Use is made of the fact that the location of the observations of 

one class can be used to order the observations of the other classes. 

Hence the decision regions can conform to the "shape" of the classes. 

These ordering procedures create decision regions suitable for multi- 

modal class distributions.    This is, of course, not the case with the 

ordering of Figure 2, 8.   Furthermore, the procedures of the next 

hapter do not yield a reject region,    R    .   Further comparison of this 

approach with the one of Quesenberry and Gessaman is made  in Section 

3.11. 
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Chapter 3 

, 

THE KYPERSPHERE DFTR APPROACH 

■ 

3.1, Summary 

The effectiveness of certain methods for constructing distribu- 

tion-free tolerance regions for classification purposes is investigated 

in this chapter.    The approach is first formulated in a two class problem. 

The proposed recognition system is one which can be designed for a 

given expected false alarm probability (probability of misrecognizing 

a class 1 event as a class 2 event) or for a given confidence that the 

probability of false alarm is less than a given amount.    It is assumed 

that the only information available for designing the recognizer is a 

properly labeled sample of statistically independent observations from 

each class.   A few procedures are presented which have certain desirable 

properties and which appear to do a good job of minimizing the miss 

probability (probability of misrecognizing a class 2 event as a class 1 

event).    A procedure for obtaining a measure of the miss probability 

is also discussed. 

3.2. Introduction 

Let   {P./icO),    where   Os{lf.*«fK}   is a finite parameter 

space» be a class of probability measures defined over measure space 

(X,A,ii) .   Based on  n.   statistically independent observations from 
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P , i s 1,... #K    a method is sought for classifying an unknown observa- 

tion  x  into one of the   K  classes described by  P. . 

Let us consider the case when   K = 2 .    Suppose that the prob- 

ability density functions exist and are defined by 

P.CX < x) = F.Cx) =   ^X  fl(z)d^(z) I«1,2 (3.1) 

Suppose further that the a priori probability that the observation 
2 

x  belongs to class   i   is   £. ;   clearly     S £   = 1 .   Using the Bayes 
* 

Criterion, one decides that   x  belongs to class 1 if 

fjCx)       i2   [C2(l) - C2(2)] 

f2(x) >   il    [C^Z) - Cjd)]   ' 
(3.2) 

C.(j)   is the cost of classifying an observation from class   i   into class   j . 

If the a priori probabilities are unknown, one can use the Neyman- 

Pearson criterion and maximize 

J    dF2(x) (3.3) 
R2 

subject to the condition that 

f    dF  (x) <a 0<a^ 1 . (3.4) 

\ 

It is well known that this criterion also yields a likelihood-ratio test. 

That is,  one decides that   x  belongs to class 1 if 

f, (x) 

f^)>L (3-5) 

where   L   is such that equation 3. 4 is satisfied. 
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In the pattern recognition problem considered here It is assumed 

that the probability densities   tAx), I ■ 1,2   are unknown.   The following 

analogue of the Neyman-Pearson criterion evolves naturally.   Given 

n.   statistically independent observations from  P., i = 1,2  it is desirable 

to maximize 

J     dr2(x) (3.6) 

subject to the condition 

R2 

or subject to the condition 

Pr-[C     dF1(x)<^]'>y 0<fl<l (3.7b) 

* 0<y<1 

Conditions (3.7a) or (3. 7b) can be established even though  FAx) 

is unknown.   This is done through the theory of distribution-free tolerance 

regions.   A tolerance region with the property,   Eff    dF (x)} » a ,   is -R2     1 

known as an o-expected tolerance region.   A tolerance region with the 

property,    Prf T«  dF.fx) >/j) « y ,   is known as a   8   content tolerance -R2     1      - 

region at level   y .    It should be noted that   E( J*    dF  (x)) - a can be 
R2     1 

considered an  Qf-confidence statement that a new observation from F (x) 

will fall in   R. .    This fact is demonstrated in Appendix C. 

3.3,    Application of Distribution-Free Tolerance Regions to Classification 

As previously stated we would like to maximize 
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5    dF2(x) (3.6) 

under one of the following constraint!: 

'R. 

or 

Pr {[    ttli*)<ß]>y 0<ß<1 (3-7b) 
R2 0<ril 

The problem is to order the observations from F  (x)   so that 

R-   consists of the number of blocks   Mm"   required to satisfy (3.7a) or 

(3.7b) and so that  jL  dF (x)   is maximized.    The number of blocks 

needed to satisfy equation 3. 7b can be found by consulting tables of the 

Beta distribution, tables of the cumulative binomial distribution, tables 

by Somerville (1958), or graphs l>y Murphy (1948).    The number of 

jlocks needed to satisfy equation 3. 7a can be obtained from the equation 

E{J     dF.fx)} s m/(n +1) .    Therefore,  if equation 3.7a is to be satisfied, 
2 

m   is the largest integer less than or equal to   (n +1) a . 

The blocks should be constructed so that /_  dF-(x)    is maximized. 
R2 

It is assumed that the only information given about  F (x)   or   F2(x)   is 

that they are continuous cumulative distribution functions.    Therefore, 

given only a finite number of observations from each class, one can   • 

never be certain that   J    dF  (x)    is maximized.   A likely approach is 

to construct   R^    so that it contains as many   P2   observations as posbible. 

All of the   P?   observations can be contained in   R^   if the   P.    observa- 
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tions,   X    f... f X        are ordered by functions which are in some sense -l -nj 

centered about all  n.   of the  P.   observations.    X.   ,,..,X      .    Then 2 2 -1 -n2 

R-   is made up of the first  m blocks established by the ordering. 

To accomplish this ordering consider the continuous functions 

d  .(x,X,    )   of the arbitrary observation vector   x,   where   k=l,...,n2 , 

j=l,..., n..    These functions are basically "distance" functions that 

satisfy the following conditions: 

i. dute x^)) > 0 

v^2)^(k,)=o 

A simple example is 

V* 2k'' ='* --Sk* I (3-9) 

(Note that the subscript  k  is used to label possibly differing functions 

which can be associated with each of the observations from the class   P,* 

The subscript   j   is used to label possibly differing functions used to 

form successive blocks.    The need for such functions is illustrated in 

the next section.) 

The   n+1   blocks   B., B.,...,B   ..   can now be defined as follows: 
1       2 n+1 

First, let   d.fx!,!   be the smallest distance between points from the 

two different classes; i.e. 

1.   The idea of using ordering functions which are centered by the  P2 

observations was suggested by Professor 1. R. Savage. 
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dj«}}})-       min min    ^(X^, X^) (3.10) 
1 < k <» n^    1 < i < n. 

Define the regions   L   , k = lf... .n.   by 

Lkl = {- : dkl(-' -k   ) - dl(-((l1),} (3•11, 

For two-dimensional vectors   x  and a metric as given by 

equation 3. 9, the regions   JL      are seen to be circles centered at the 

points   Xj2)   with radius   d1(2£{}! ) •    (see Fig.  3.1)    The definition of 

d (X       )   is such that at least one of these circles contains a point from 

class 1 on its circumference (the point 2£-      in ^e figure).    The probability 

that there are more than one such points is assumed negligible.    This 

point is labeled   X and is said to be ordered.   It is clear that for 
— (*) 

n-dimensional vectors and for the metric of equation 3. 9, the regions   L.. 

n      hypersphe   ss. 

The first block  B.    is now defined as the union of all the regions 

Lkl: 

n2 
B. «=   U    L.. (3.12) 

1     k-j    kl 

To obtain the second block the distance   d?(X        )   is defined by 

d2(X(2)
))=     min min   ^(X^, X^) <3-13) 

1 '      1 < k < n      1 < i < n. 

The implication of the subscript "2"   of   d     (• )   isthat   d     (• )   and   d    (•) 

can be completely different functions.    The regions   L. 2   arc then defined 
* 

as before by 
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v(l) 
^4 

x(l) 
5 

Figure 3.1.    A Hypersphere Ordering. 
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1 
t 

Lk23{x: d^fe'^jf^V^ll) ,}k!=1"--'n2 (3•14, 

^ ^c2^ ^ and^i^ )    aro both cf tho form of equation 3. 9 then, for 

two-dimensional vectors the regions   L       are circles extending to the 

next closest point of class 1, which is labeled   X/     . 

The second block  B,   is now given by 

B
2=(3iL«,nli (3•l5, 

where   B     is the set of points not contained in  B..   In our example   B^ 

would consist of the union of all the annular areas between the circles of 

radius  djCxj}})  and  ^(X^} ) • 

This procedure is continued, and therefore the r^1 block is given 

by 
n2 '-I 
u  Lkr) n 

k=i   Kr i=i 
B    = (   U    L,   )   n   B, (3.16) 

r       ,   ,     kr   . ,    i 

where 

L,   =|x:dl   (x,x(2,) <d  (X(1)) )       k = l,...,n, 
kr    i—    kr ——k     —   r—r     J 2 

ant' where 

•    d  fxf1!) =     min min       d,   (X^, X(
1
2, ) . 

J*—(r)      .     . ,     - kr%—i      —k 
1 < k < n2     ^ ^ ni 

i^(l)...{r-l) 

The   (n^l)411   block is 

nl nl  _ 
B       .sx-UB. sxfKDB.). (3.17) 

n,+ l i=i     i i=l    i 

It is convenient to think of the blocks as being generated by hyperspheres 

(2) 
(or other hypervolumes, depending on the form of   d     (x. Xj, )   expanding 
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(2) 
from the centers  X      , k s 1,... »n, .   The expansion continues until 

the first observation of class 1 is reached; this observation is thereby 

ordered (i.e. given rank order (l))and the resulting volume Is the first 

block.   Further blocks are generated by further expansions to the remaining 

j (n.-l) Pjobservations. 

The region  R_   is the union of the first  m   blocks formed by this 

ordering, 
m 

R- =   ü   B.   . 

The value for  m  is obtained from the constraints on the design of the 

classifier.   For example, suppose a classifier is to be designed in which 

one has 93% confidence that the false alarm probability will be less than 

0. 05.    Then   6   and  y in equation 3. 7b are equal to 0. 05 and 0. 95, 

respectively.   One of the variables   n.  , the number of  P.   training 

observations, or   m ,   the number of blocks used to construct   R- ,   is 

now fixed.    The value of the other variable can be found from graphs by 

Murphy (1948) or from tables by Somerville (1958).   For example, we find 

from Murphy for  /S = 0. 95 , and  y = . 95 , and n. = 210 observation from 

P. , that 6 blocks may be used to construct  R, .   These numbers give 

an expected value for the false alarm probability of 0. 0284 with a standard 

deviation of 0. 0114.   Table 3.1 shows the mean and standard deviation for 

3 values of  m   and  n.   which satisfy the condition   5 = 0.05   and   y=0.95. 

As seen from the table, when many observations are available from  P   , 

the expected false alarm can be higher for the same   ß   and   y  than when 
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few observation! are available from  P. • 

When a new observation  V   is to be claeilfied, the following rule 

is used.   If   V   falls in   R        V   is classified as a member of class 2. 

Otherwise   V   is classified as a member of class 1. 

Table 3.1.    Expected Value and Standard Deviation 

for ^ = 0.05 and y = 0. 95 and for Different m and n. 

Pr[/R dF^x) < .05} = .95 

n  =430. m- 15 

n  -210,    m- 6 

n  = 58,     m= 1 

Ef/^dFjCx)) alL  dF  (x)} 
^2     1 

0.0348 

0.0284 

0.0170 

0.0088 

0.0114 

0.0167 

3.4.    Discussion of Practical Ordering Functions 

The purpose of this section is to discuss some simple ordering 

procedures based on the idea of expanding functions from the   P.   observa- 

tions.    The relative merits of these procedures when applied to a problem 

with a limited sample size are Investigated.    For simplicity,  let the 

ordering functions be defined as follows: 

dkj(*X(k,) = »kj|x-X(
k

2,l 

A-3? 

JC— i, • . . | n. 

j = 1,... »n. 
(3.18) 



Then the   P    observations are ordered by hyperspheres which expand 

from the   P.   observations. 

Distribution-free tolerance regions can be formed by any of the 

following three ordering procedures: 

(1)    All Hype r sphe re s Expand     (AHE) 

Hyperspheres expand at the same rate from all   P.   observations until 

n. + 1   blocks have been formed.   The first  m   of these blocks make up 

region   R? .   Since the hyperspheres expand at the same rate, let 

a. .= 1,   k = 1,.,, ,n?,   j = 1,.,. ,n. .   Then the ordering functions are 

given by 

^•fe 2£(k)) = lis-x(
k

2)l J = 1 ni 
k- 1 n f3•19, 

The statistically equivalentjblocks are described by equations 3.10 through 

3.17.   This procedure is illustrated in Figure 3.2 for a two-dimensional 

vector   x , m = 3 blocks, n = 6 , n = 33   with the observations X\ ,... ,5C 

represented by O's   and the observations   X;.  f.,.,X        represented by X's. 
-1 -n2 

At times the number of blocks with which region   R?   is formed 

may be small with respect to the number of blocks that are needed for a 

reasonably low miss rate when using the above ordering procedure.    This 

situation can be a direct result of having few   P.   training observations 

with at least   m   P.   training observations being relatively close to the 

P-   observations.   For example, notice the two-dimensional example of 

Figure 3.16.   The circular regions surrounding the   P,   observations are 
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Figure  .5.2.    All Hyperspheres Expand    (AHE). 
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unconnected.   In this case a procedure» which assumes that more   P. 

observations may be found in the vicinity of the   P     observations which 

have previously been ordered, allows the regions centered by the   P- 

observations to expand into regions which are connected and which have 

a larger volume than the regions produced by the AHE ordering procedure. 

The following two procedures use the information from previously ordered 

observations to allow region   R_   to expand faster in directions away 

from the clustered   P.   observations than toward them. 

(2)    Ordered Hyper spheres Slowed 

With this procedure the hyperspheres which order the   P.    observations 

are not allowed to expand as rapidly in subsequent orderings as the other 

hyperspheres.    The functions for ordering the first  P.   observation are 

the same as those for procedure (1).    That is, 

dki^X^^  '^-^k0' k = 1 n2 (3-20) 

The funct7->ns for ordering the second   P.    observation are given by 
» 

dk2(x» X^ > = ak2 ^ - ^k^ ' k « 1.... .n2 

where 

ak2>ald=1 k = (1) 

a. - = a,    = 1 otherwise . k2       kl 

Note that   k = (1)   is any   k   which satisfies 

(»,..     |V(1) '(2) 'V*;;;'^!*;;;-*;:'! • (3-"' 
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The increase of  a nil   t0  ani2   may be vlewed ai a decrease in the rate 

at which the ordering hypenphere   «xpandf from the  P.   observation, 

(2) 
X/j. ,    in search of the next   P.    observation. 

The functions for ordering the r^1   P.   observation are given by 

kr' dv^xr).^ u.xri kr 

wher.« 

(2) 
■k 

(3.23) 

a,     > a.        . 
kr       k,r-1 

kr       k,r-1 

k = (!),..., (r-1) 

otherwise . 

k = (j)    is aiiy   k   which satisfies 

(1) (1)      „(2) 
J—0) «j — (j)     —k     '  * 

(3.24) 

The adjustment of the multiplicative constant   a     , k= (1), ... ,^r-l) 
kr 

is quite arbitrary.   In the speaker recognition experiment to be discussed 

in Chapter 4 the increase of   a,        ,   to   a,      was made very large so that r k, r-1 kr /        o 

the differences in the three ordering procedures would become evident. 

Suppose    a        is determined by 

a,     = (Na,        J kr k,r-1 

akr = ak,r.l 

N 
k = (!),..., (r-1) 

otherwise . (3.25) 

Suppose   N   is a large number.    This causes the hypersph?res which 

order the   P     observations essentially to stop expanding in relation to 

the hyperspheres which have not ordered a   P.    observation.    The ordering 

procedure for this case will be called Ordered Hyperspheres Constant, OHC. 
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Suppose all the hyperspheres have ordered a   P.   observation. 

Then  m > n, .   In ordering the   (n.+ l)"1  P     observation the above pro- 

cedure causes all hyper spheres to expand at the same rate.    Whenever 

the   (nj+lr"   P.    observation is located, the hypersphere which orders 

this observation stops expanding in relation to the other hyperspheres. 

This is because for  m = n,   all   a,        are now large, and therefore the 2, km 0 

(n2+lrn   a     is again   (Na^        )      larger than the others.    Figure 3. 3 

illustrates the OHC procedure for the same sample set as used in Figure 

3.2, where the   X's   and O's   again refer to the   P.   and   P     observations, 

respectively. 

The first block for the OHC procedure is the same as the first 

block for the AHE procedure.    However, in this example the second block 

for the OHC procedure differr from the second block for the AHE procedure. 

This is because the hyperspheres (circles in the figure) expand from all 

X's   except   X.    in search for a new   P.    observation.    The observation, 

which is found is O     and it is intersected by the circle expanding from 

X- .    Then,  in forming the third block, circles expand from all   X's 

except   X.    and   X- .    Observation   O     is found and block   B_   is formed. r        I c 4 3 

(3)     Conditioned Hyperspheres Slowed 

With this procedure the growth of hyperspheres which intersect the   P 

observations is slowed even if these observations have been previously 

ordered by other hyperspheres. 

The ordering functions for   j = 1   are equivalent to the ordering 
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Figure  3,3.     Ordered Hyperspheres Constant  (OHC), 
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functions for  j = 1   for the previouf two procedure!.    The remaining 

ordering functions can be different from thoie of the previous two pro- 

cedures because here an ordering hypersphere is slowed if it comes into 

contact with   X/M *    ^et —Ml   ^e t^e observatior for which 

d^}])-      min min      «^ |X1
(,). X^ | (3.26) 

l<k<n2    l<i<n. 

where 

a. - s a      = 1 otherwise 

and   k 7 (1)   is any  k  which satisfies equation 3.22.    Equation 3.26 can 

be viewed as telling us that during the second ordering the expanding 

hyper spheres have intersected a   P.    observation,   2£ri1*    B*1* this 

observation might well be the   P.   observation  X)      which has already 
1 (1) 

been ordered.   For example, in Figure 3.4, the observation which satisfies 

equation 3.26 is   O    •   But this observation has already been ordered. 

Hence another  P     observation has to be found before the second block is 

completed. 

Therefore, if Xrji ^i[J! '   <*«note   Xrjj by   X/^!   •nd  B2   i8 

given by equations 3.14 and 3.15.   If   Xfil ^ — Ii J»    a block has not been 

completed.    Let 

Gk2 = fc!dk2
(i'42,'idk,x[(!i'} • (3-27) 

Now let 

dv^xl2)) = »vJx-2[2)| (3-28) •k3x-'—k    '     "k3,'•  -k 
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Figure 3^»    All Hyperspheres Stopped by One P,   Observation* 
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where 

ak3 ' "ScZ otherwise . (3.29) 

Note  k ■ [1]  it any  k  for which 

Now let 

d3Öi[(i])=    mln       min   dk3G£i1)'^if^ (3-31) 
1 < k< n.   l<i<&| 

and 

G
k3 = {2idk3(i'42,^d3(XS'}  • <3-32' 

This procedure is continued until  Xr.i^X/il   or   (J+1)>n2'   K 

-fl] ^-(1)   and   ^ + 1) <n2 '   let -M = -(2) *    The 8econdblock i8 

B2S(   U    }\  Gk,r+l)
nil- (3-33) r=l   k=l 

If  j-H>n2  and  xW^xJJJ,   i = l,...,n2,   let 

2 ^<k£n7     ^£^<,li      2 

1^(1) 
and 

Then 

Gi.     ={x:du     (x, x[,)<d     (X)'    )| kn,     I-    kn, - —k      -    n, —(2)   J 

n2      n2 
B 2" V-i kl!1

ek.'+«)nff«- (3-35) 
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Note that the restriction,    (j+ 1) > n    ,    is necessary to eliminate 

the possibility that the procedure enters an Infinite loop.   The condition 

(j-f 1) > n,   was ( hosen especially for the case where the hyperspheres 

stop when they intersect a   P,    observation (equation 3.25 , where   N   is 

a very large number).    In this case all hyperspheres are allowed to expand 

until they intersect the   P.    observation which normally would cause the 

procedure to enter an infinite loop.    Then they are allowed to expand past 

this observation.    F .r example, consider Figure 3.4,    The observation 

O...   will stop every expanding hypersphere.    The condition   (j + l)>n_ 
{1) c. 

allows all four hyperspheres to expand to   O,..   and then to expand past 

O...    to form the second block. 

The extension of this procedure for the formation of  m   blocks 

is straightforward.    Figure 3. 5 illustrates the procedure for the same 

s«ji«plo set as used in Figures 3. 2 and 3; J and for   N   equal to a very 

lar        lumber and 

akr !s(Nak,r.l^ k = (l).  [1],  [2],...,[j] 

a,     = a.        , otherwise . (3,36) 
kr        kfr-l 

This ordering is called CHS,  Conditioned Hyperspheres Stop.   In this 

example the second block for the CHS procedure differs from the second 

block for the OHC procedure.    In forming the second block the hyperspheres 

are expanding from all   X's   except   X.  .    When the hypersphere expanding 

from   X_   intersects   O. , it stops in the CHS procedure, even though a 

block has not been completed.    Hyperspheres continue to expand from 
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Figure 3.5.    Conditioned Hyperspheres Stop (CHS), 
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observation!   X^, X  , X^, and  X,   in iearch of a new O   observation. 

The hypersphere which expancii from  X,   intersects  04   and the second 

block is complete.    Then hyperspheres expand from  X , X-, and   X. 

in search   of a new observation.    The procedure is continued in this 

manner. 

The resulting region  R2   (for m « 3 blocks) is shown in Figure 

3. 6 for each of the three procedures.    In this particular example it is 

seen that the AHE procedure produces a region   R5   which has expanded 

into the   O's   whereas the CHS procedure produces a region   R2   which 

has been stopped by the   O's and has expanded in a direction away from 

the ordered   O's. 

It is evident that these three procedures are not the only procedures 

that can he formulated when hyperspheres expand from the   P,   observa- 

tions.   For example,  one might decide to slow the expansion of any 

ordering hypersphere which is in the vicinity of an ordered   P1    observa- 

tion.    However,  this procedure would bias the estimate of the miss 

probability, which is discussed in section 3. 9. 

A comparison of the three ordering procedures requires iteration 

of all possible sample sets.   Nevertheless,  some general observations 

can be made. 

1)     The AHE procedure is probably preferable to the OHC procedure, 

which is probably preferable to the CHS procedure,  if spurious   P.    obser- 

vations are involved.    This is because hyperspheres in the AHE proce- 

dure,  and in the OHC procedure to a lesser extent, continue to expand 
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Figure 3.6. Composite of the AHE, OHC, and CHS 
Ordering Procedures. 
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past the peripheral   P.   observations.   For example, consider Figure 

3. 7 where two blocks make up   R2 .   The resulting   R,   for the AHE 

and the CHS procedures Is shown in the figure.    Notice that the hyper- 

spheres which expand from   X.    and   X-   stop when they intersect  O... 

in the CHS procedure.    They, of course, do not stop in the AHE procedure. 

The area of   R-   for the AHE procedure is equal to the area of 

R_   for the CHS procedure plus the crosshatched area.   Hence the miss 

probability in this case is less for the AHE procedure than for the CHS 

procedure. 

2)     The CHS procedure is probably preferable to the OHC 

procedure which is probably preferable to the AHE procedure if the   P, 

observations are tightly clustered in two or more clusters and the 

clusters are different distances from the   P-   observations.    This is 

bnrause the hyper spheres in the CHS procedure,  and in the OHC proce- 

are to a lesser extent,  expand more in directions away from the ordered 

P     observations than do the hyperspheres of the AHE procedure.    For 

example, consider Figure 3. 8 where two blocks are formed with the 

AHE and the CHS ordering procedures.    The area of the CHS procedure 

is equal to the area of the AHE procedure plus the crosshatched region 

minus the   shaded area.   Since the crosshatched area is much larger 

than the shaded area,  one may feel that the miss probability in this case 

is less for the CHS procedure than for the AHE procedure, 
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Figure 5.7«    A Comparison in Pavor of the AHE Procedure, 
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Figure 3.6, A Comparison in Favor of the CHS Procedure» 
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3. 5.     Programming on » Digit»! Computer 

Note that these three procedures are very easily programmed on 

a digital computer.    One simply calculates the distance between every 

P     and   P     training observation.    Let the distance between   X.      and 

(2) 
X.      be denoted by  D...    These distances are arranged in a matrix  D , 

where th« i^1 row consists of the distances between   X;       and   X.     , 
-i —j    • 

Consider first the AHE procedure.   A search is made through 

the elements of the matrix for the smallest distance.    Let this distance 

be   D,     .    Then the k*^   P,    observation is ordered and a block is formed, 
kr 1 

The k*^1 row is multiplied by the largest number available on the machine. 

This removes the k^ P.   observation from further ordering.    A search 

is now made through the elements of the new matrix for the smallest 

distance.    This procedure is continued until   m   blocks are formed. 

In the ordered hyperspheres slowed procedure a search is made 

through the elements of the matrix   D   for the smallest distance as before. 

Let this distance be   D      .    The k^1 row is then multiplied by the largest 

number available on the machine.    Thus far, the two procedures are 

the same.    Now the r^h column is multiplied by a number which controls 

the rate at which the hyper sphere expands from the r^1 P2 observation. 
4 

A search is made through the elements of the new matrix for the smallest 

distance.    This procedure is continued with the columns and the rows 

corresponding to the smallest distance being multiplied by the appropriate 

numbers after each block is formed. 
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Now consider the conditioned hypersphere slowed procedure. 

As in the previous two procedures a search is made for the smallest 

distance.    Let this distance   be   D,     .    The r"1 column is now multiplied kr ' 

by a number which controls the rate at which the hypersphere expands 

from the r*" P_ observation.    Unlike the previous two procedures,  the 

k     column remains untouched.    A search is made through the elements 

of the new matrix for the smallest distance.    Let this distance be   D    . 
st 

If   s = k ,    a block has not been formed.    In any case the t**1 column is 

multiplied by a number which controls the rate at which the hypersphere 

expands from the t^ observation.    This procedure is continued until a 

smallest distance   D ,    is found so that   g ?£ k  or until a restriction on gh 

the number of iterations is reached ((j+1) >n     in the above discussion). 

If a smallest distance   D ,    is found so that   g ^ k ,    the second block 
gh 

is formed.    The h*" column is multiplied by a number which controls 

the rate at which the hypersphere expands from the h"1 P-   observation 

and the procedure is continued.    If the restriction on the number of 

iterations is reached, the r^1 row is multiplied by the largest number 

available on the machine.    A search is then made through the elements 

of the new matrix for the smallest distance.   When this distance is 

found, the second block is formed.    The procedure is continued in this 

fashion until   m   blocks are formed. 

Note that when a new observe „ion is to be classified,  the following 
\ 

information must be stored in the computer for the various procedures. 
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1) AHE — all   P2   observations and the value of the m"1 order 

statistic. 

2) OHC — all   P     observations and the value of the   m   order 

statistics along witli the indices of the   P-   observations corresponding 

to the   in   order statistics. 

3) CHS — all   P?   observations and the values of the distances 

along with the corresponding indices of the   P_    observations found in 

the ordering process.    This procedure requires at least as much storage 

as the OHC procedure. 

It is obvious that the information to be stored can be reduced 

further by clustering the   P,   observations and using representative 

points for the clusters (for example the means of the clusters) to order 

the   P.    observations.    However,  this approach biases    the estimate of 

the miss probability as seen in section 3.9. 

On the other hand,  in a situation where too few   P^   observations 

are available,  (see Fig.   3.16) one can sometimes cause the regions of 

R?   to be connected by adding "fictitious"   P?   observations between the 

P      observations whose nearest   P.,   observation is furthest away. 

Hyperspheres expand from these "fictitious"   P?   observations in the 

same manner as they did from the "real"   P-   observations. 

3.6.      Large Sample Properties 

Three methods were proposed in section 3.4 for the classification 

of observations from two different classes.    The large sample properties 
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of these methods are investigated in this section.    The goal for the 

nonparametric method is the emulation of the Neyman-Pearson rule, 

which was stated in equations 3. 3 and 3.4. 

Let   n.   , the number of observations from   P    ,  and   n- , the 

number of observations from   P    ,  approach infinity such that   n  /n- 

is bounded away from zero and infinity.    Let the classifier be designed 

for 

E{SR
div*')^ =« 

where   m < n. + 1 .   Hence   m   approaches infinity while   m/(n1+l) = a 

The false alarm probability converges in probability to the 

desired value   a  as   n.    approaches infinity,  i.e. 

L dFi(- ) > a . 
R

2- 

This follows directly from the Tchebycheff inequality since the variance 

of    f     dF   (x) ,  considered as a random variable,   approaches zero as 
^ R2      1 - 

n.    approaches infinity.    . 

We now wish to determine the outcome (      | _   dF-(x)   as   n,   and J R-      2 ~ 1 

n«    approach infinity.    For simplicity,   suppose that the probability 

densities   f, (x)   and   fp(x)   are continuous, univariate,  unimodal,  and 

nonzero everywhere.    Furthermore,  let   n.  = n^ = n .    Consider the 

DFTR method called All Hyperspheres Expand (AHE). 

Figure 3.9 gives a general picture of the situation to be discussed. 

As in the previous examples, the   P-   observations are represented as 
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Figure 3.10. Length of the Accept Region on the Positive Line. 
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X's   and the  P.   obiervatiom as  O'f . 

At ,n becomes large, the ratio of  P.   observations to  P-   obser- 
1 . M 

\ 
vations in any small region   R  approaches the average likelihood ratio 

existing in this region,    < f (x)/f (x) )_ .   Since   £,{x)   and   f2(x)   were 

assumed to be continuous,  it can be assumed that as   R   becomes very 

small   <f "(x)/f.(x) )   is approximately constant in   R . 
■ 

Consider a small interval   [a#b]   under the peak of  f.fx). 

Suppose that  a  and   f. (x)   are such that in this region 

a< <J^ fjMdx. (3.37) 

The number of   P.    observations (O's in Fig.  3.9) in   [a,b] 

approaches   n f   f1(x)dx   as   n-• • , by Tchebycheffs theorem.    Since 
** el    X 

the number of blocks   "m"   is approximately equal to   an ,    equation 

3. 37 implies that 

m < < n f   f. (x) dx = number of   O's in   [a, b] . 

By the assumption that f?(y.) is nonzero everywhere, there are 

X's in the interval [a,b] with probabilitv 1 , (as n -• " ) . Suppose that 

in the interval  [a,b] 

f2(x)/f1(x) < <   a . 

This means that  mf1(x) > >   ^y^ *    Therefore on the average each 
m 

X   is surrounded by many more than  m  O's.    Then the region   R =   U B. 
d    i=l    l 

consists largely of short, unconnected intervals centered on the   X's. 

We now wish to determine the average length of these intervals.    The 

average number of  O's   in   [a,b]   is   n J  f. (x) dx .    Therefore 
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(b-a)/nj   f.fxjdx   ia the average distance between the   O's .   Since 

each   X   is surrouhdccl by many more than   m   O's , the length of each 

i i , mfb-a) „,,     ,       ,     ,       ,   . interval can be no more than     :    .      The length of each interval 
n  f   f Jx) dx o a   1 

is in fact equal to     • if the   m   closest   O's   to an   X   are as 
n        f , (x) dx J a   1 

likely to be in   [ajbj   as in all other regions.    In this case as   n -^ ^   the 

length of each interval in    [a,b]   is . o;(b-a)/   1    f1(x)dx .    Since this is a 
w a   i 

finite number,  there would be nonzero sections in areas where   f  (x)/f  (x) 

is very small.    This is not the case when   R      is determined by 

f   (x)/f  (x) > C   where    C    is a threshold. 

Note that all assumptions are such as to minimize the extent of 

region   R?    in places where   {,{x)   is large.     Thus if these assumptions 

are removed,   the result holds a fortiori.    For example,  consider the 

assumption 

f2(x)/f1(x) < <  a 

in the interval   [a,b] .    If this assumption is not made, we cannot say 

that each   X   in   [a, b]   is a nucleus for a small section of region   R^ . 

In fact,   several blocks in    [a,b]   may coalesce into connected intervals. 

However,   this only increases the extent of region   R-,    in areas that 

would be excluded by a likelihood ratio test. 

The fact that the AHE-DFTR test does not,   in general,   approach 

the likelihood ratio test can also be demonstrated as followb.    When 

the AHE procedure is used,   the lengths of the intervals surrounding all 
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P      observations are equal.    As   n -» »  the number of   P?   observations 

in a small interval of length   6   around the maximum of   i?{>:)   is greater 

than the number of   P.   observations in a small interval of length   6 

around any other point of   t?{x) .    Hence if the intervals surrounding the 

P-    observations coalesce,  they would most likely coalesce in the region 

where   i?{x)   is a maximum.    Using the likelihood ratio procedure,  the 

smallest accept region is in the vicinity of the maximum of   f  (x)/f  (x). 

The maximum of   f^Cx)   and the maximum of   f?(x)/f.(x)   do not neces-. 

sarily occur at the same point.    Hence,  in general,  the AHE procedure 

does not approach the likelihood ratio procedure as   n   approaches infinity. 

It is not known at this time how to determine the large sample 

properties of the OHC or the CHS procedure.    Therefore,   an example 

was simulated on the computer.    The probability densities were arbitrarily 

chosen to be 

f (x) =   ~-   exp[-|(x- 1.75)2 } 

and 

f2(x) =   -—-  exp[- j (x + 1.75)2} 

Equal a priori probabilities and equal costs of misrecognition were 

assumed.    The optimum decision in a Bayes sense is a decision in favor 

of   P.    if a new observation has a value which is less than zero.    This 

yields a false alarm rate,    P^ .   = 0.0401.    The length of the accept 

region (R-) to the positive side of zero and the length of the accept region 

to the negative side of zero were then found for samples of 24,  49,   99, 
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25r,  500, and 1000 observations from each class for both the AHE and 

the CHS procedures.    The value of   m   was chosen so that 

E { J     dF  (x) } -0.0401 . 
2 

Therefore values of   m   of 1,2,4,10,   20,  and 40 were used for the 

samples of 24,  49,   99,  250,   500,  and 1000,   respectively. 

The accept region   R     for the likelihood ratio criterion is the 

negative real line.    If the DFTR procedures are to approach the likeli- 

hood ratio procedure a3   n - » , the length of the accept region on the 

positive real line should approach zero.    The length of the accept region 

on the positive real line for both the AHE and CHS   DFTR procedures 

is shown in Figure 3.10.    The results are not definitive since they are 

based on one trial.    However,  they indicate that the length of the accept 

region on the positive real line approaches some value other than zero 

for both L'FTR proced   res. 

The length of the accept region on the negative real line is shown 

in Figure 3.11   for both procedures.    If the DFTR tests approach the 

likelihood ratio test,  these curves should continually increase as   n -• ". 

Again the results are not definitive.    However,   it appears that the curves 

approach some finite value rather than infinity. 

Both Figures 3.10 and 3.11 indicate that the CHS procedure 

performs better than the AHE procedure for this particular situation. 

The length of the accept region on the positive real line for the CHS 

procedure is less than or equal to the corresponding length for the AHE 

A-56 



Length 

3.0 ■■AHE 

2.0 •- 

CHS  

1.0-- 

0.0 + t 

-o. 

-t 
2*i 50      100        250 
Number of observations from each class 

500 1000 

Figure 3.11»    Length of the Accept Region on the Negative Line. 
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Figure 3,12. Disjoint probability Density Functions, 
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procedure for all aample-fi except  n = 250.    The length of the accept 

region on the negative real line for the CHS procedure is greater than 

or equal to the corresponding length for the AHE procedure for all 

sample sizes. 

The ratio of the length of the accept region on the negative real 

line to the length of the accept region on the positive real line gives   some 

indication of the relative performance of these procedures.    These ratios 

labeled   R^.TT^   for the AHE procedure and   R^^.,-,   for the CHS procedure 

are shown in Table 3.2 for the various sample sizes. 

Table 3.2.    A Comparison of the AHE and CHS Procedures 

■   ——— —— 

Number of 
Training 

Observations RAHE RCHS 

49 11. ü 13.8 

99 11.4 12.9 

250 15.4 19.2 

500 14.2 19.1 

1000 14.0 19.0 

One sees that these ratios are not steadily increasing with sample size 

as they should if the DFTR procedures are to approach a likelihood 

ratio     -    •eHure.    Note that   R^,TTr,    is greater than   RiTrI_   for all sample 
CHS AHE 

s i /, o s. 
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3. 7.   An Optimum Ordering Procedure 

An ordering which does approach the Neyman-Pearson procedure 

is easily obtained if the class probability distributions are known.    This 

is achieved by simply using ordering functions equal to   f  (x)/f;>(x). 

That is,  the following ordering functions are used: 

hjCx) =h2(x) = ...   =hn(x) = f1(x)/f2(x) ." (.3.38) 

The fact that a DFTR procedure which uses the above ordering 

functions approaches a Neyman-Pearson test is easily demonstrated. 

When the Neyman-Pearson criterion is used,  the accept region is 

R2 = [x:f1(x)/f2(x) <C } 

where   C   is determined so that 

!R   dF (x) = a. 
2 

Let   R'    be the region obtained when statistically equivalent blocks are 

formed by the likelihood ratio ordering functions in equation 3. 38 .    By 

the   Tchebycheff inequality 

f     dF  (x) >    a 
JR^      V  '    p 

where 
m 

Ri =     U   B.    , 
6       i=l    X 

m   is the largest integer satisfying 

m<(n   +1)   , 

and the blocks are given by 
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B = jx:h  (x)<   min       h  (x.)i 
l < i < n 

i'. 
m 

- (x:h    (x) < 
L       m       — 

mm 
1 < i < n 
i/(l)...(ni-l) 

m- 1 
h    (x.)]     n    B. 

i=l 

J A: t m i n 
1 < i < n 

h    (x.) = C      . 
m    i m 

i/(l)...(ni-l) 

Since    h.(x)   = h0(x)  =  ...    -- ll     (x)   , 
1 £ m 

R_       [x:h    (x) < C     }       [x:{(x)/{?{x) < C    ] 

]t now   remains for us to show that    C      —>   C .    But this has to be true 
m   p 

since 

/ 

dFjCx) 

c^OO/y^Cj / 

dFjtx) 

x.-f^xl/^fx) < C] 

and   f   (x) > Ü    and   f   (x) > 0   for all   x.     Therefore the DFTR procedure 

with the  likelihood  ratio ordering functions approaches a Neyman-Pearson 

test.     For example,   let 

f   (x) =    e and f?(x) : - e 

\ Zn ^TT 

whe re ^  > 0  . 

Then 

f1(x)/f2(x)  = e 
2 |j. x 

^ fJ x 
Using    c as an ordering function,   the blocks are 
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B
m=(Vi)' V)] 

Therefore    R'   = (-»,   X      1 . 
2 lm)J 

The accept region to satisfy the Neyman-Pearson criterion is 

(-», z)   where 

\Z f (x)dx = F   (z) = a . 

By  Tchebycheffs  inequality 

X [   (m) f (x)dx = F^X       ) >   a   . 
J  ^ 1 1     (m)      p 

Since   f, (x) > 0   for all   x ,    (F. (x)    is a monotone increasing function) 

X,     v     >  z .    Therefore the accept region for the DFTR procedure 
(m)      p 

using the likelihood ratio ordering functions converges in probability to 

the accept region for the likelihood ratio procedure. 

It should be noted that the AUE,   OHC,   and CHS tests approach 

Neyman-Pearson tests in the limit if the class probability densities are 

disjoint.    That is, 

[     c\F(x) >  a (3.39) 

\ 

and 

f     dF2(x) = 1 (3.4 0) 

R2 
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when V f   (x)f  (x)dx = 0 . 

all x 

For example,  consider the configuration of Figure 3.12.      f, (x) is uniform 

over   [0,lj   and   f  (x)    is uniform over   [2,3] .    The region   R     produced 

by the AHE ordering procedure as   n.    and   n?    approach infinity is as 

shown in the figure.    It is easily seen that conditions (3. 39) and (3.40) 

are satisfied lie re. 

3.8.    A Further Comparison of the AHE and CHS Procedures 

A further comparison of the AHE and CHS procedures can be 

obtained by observing the average length of an interval which surrounds 

a   P.,    observation as the number of blocks used to form the tolerance 

region varies.    This is an appropriate comparison because we believe 

that the additional volume (length) of the accept region that the CHS 

procedure produces over the AHE procedure,   if any,  is located so that 

the probability of correct detection increases and  so that the probability 

of false alarm stays approximately constant (for large n).    In fact,  the 

comparison of the length of the accept region on the positive and negative 

real line in Figures  3. 10 and  3. 11 seems to demonstrate this. 

The average length of an interval surrounding a   P_    observation 

versus the number of blocks used to form   R^    is shown in Figures 3.13, 

3.14,   and  3.15 for samples of 250,   500,   and  1000 observations.    For 

example,   let us consider Figure  3.13.    For 10 blocks used to form    R 

the length of an interval surrounding a   P^    observation for the AHE 
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procedure is .00495.    For the CHS procedure,  241 of the intervals have 

a length of . 0095.    The other 9 intervals vary in length from ,0002 to 

.0069.    This gives an average interval length of .00925. 

As seen in Figure 3.13 no benefit is obtained in using the CHS 

procedure ovi'r tne AHE procedure for   m <   6   blocks in   R,  .    As more 

blocks are added,  the average length of an interval surrounding a   P_ 

observation for the CHS procedure becomes larger than the length of 

an interval for the AHE procedure.    As still more blocks are added,   a 

point is reached where the average length of an interval for the CHS 

procedure becomes much larger than the length of an interval for the 

AHE procedure.     This is the point at which most of the   P.    observations 

in the areas where the   P.    and   P     observations are highly confused 

have been ordered. 

Similar rtirves for samples of 500 and 1000 observations from 

each class are shown in Figures 3.14 and 3.15,   respectively.    These 

curves seem to indicate that a good deal of the benefit of the CHS pro- 

cedure over the AHE procedure had not been revealed for   m/(nf 1) = 

0. 04 01   (m = 20 in the 500 sample experiment and m = 40 in the 1000 

sample experiment).     This value  of   m/(n+l)   was,   of course,  used to 

obtain the results of Figures  3.10 and 3. 11.    If more blocks had been 

used to obtain those figures,   it is likely that a larger improvement in 

tin   CHS performance over the AHE performance would be noted for 

n = 500 and n = 1000. 
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3.9.    Measure of the Miss Probability 

A recognition system has been proposed which classifies with 

a given expected false alarm probability (or with a given confidence that 

the false alarm probability is less than a given quantity).    It also cor- 

rectly classifies all   P      training observations.    Nevertheless,  one can 

find situations in which the classifier may perform poorly.    For example, 

consider the two-dimensional measurement space of Figure  3.16.    A 

classifier is designed using the AHE procedure for an expected false 

alarm probability of 0, 20.    Region   R?   consists of two blocks and is the 

•region inside the three circles which are centered by the    X's.    Since 

none of the regions encircling the    X's   are connected,   one feels that 

the miss probability could be quite large. 

If this classifier is to be used in a practical problem,   a measure 

of the expected miss error is needed.    Then if the expected miss error 

is much larger than desired,   one can redesign the classifier by using 

more    P,    observations,   by using more   P-    observations,   or by using 

a different measurement space. 

Suppose a classifier has been designed by one of the methods 

previously discussed.    The   P,    observations have been ordered with 

hyperspheres which expand from each of the   P-    observations.    Now 

suppose the    P^    observations are ordered,   thus forming blocks with 

respect to    F-(x) .    The number  of   F (x)   blocks which are contained in 

region    R      can be counted and statements such as 
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Figure 3.16. A Situation with a Possibly Large 
Kiss Ra-ce. 

Figure 3.17.  An Unsuitable Ordering for Measuring the 
Kiss Rate, 
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t 

E{^    dF2(x)|<w (3.41) 

R. 

or 

Pr { C     tllr2(x) < 0J > 1/ (3.42) 

can be made.    The quantities    CJ, 0 ,  and   v   are determined from   n_  , 

the number of   P      observations used to design the classifier,  and from 

b ,    the number of   Fp(x)   blocks inside   R    .    This procedure may not 

be distribution-free,  as will be discussed later in this section. 

One can immediately see that if the functions for ordering the 

P     observations are not judiciously chosen,   a very poor estimate of 

the expected miss probability may be obtained.     For example, consider 

Figure 3.17. 

As in the previous figures,  the   P      observations are represented 

by   O's    and the   P      observations by   X's.    The region   R^ ,   as shown, 

was constructed for an expected false alarm probability of 0.1,    Suppose 

a measure of the expected miss probability is desired for this classifier. 

The   X's   can now be ordered so that this measure can be obtained. 

Suppose the   X's are ordered by hyperspheres which expand from all of 

the   O's.    Plowever,  none of the blocks which arc formed by this ordering 

will lie entirely in region    Rp .    Since the theory of distribution-free 

tolerance regions gives no information about the cumulative distribution 

contained in a partial block,  this ordering procedure is useless for 
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making a statement about the cumulative distribution   F?(x)   in   R-. 

Because of the procedure used to order the   P.    observations, 

all   P      observations must lie in   R-.    Hence,  all blocks formed by- 

ordering the   P     observations must have subsets which are contained 

in   R    .    Since the theory of distribution-free tolerance regions gives 

no information about the amount of probability in a partial block,  good 

estimates of the cumulative distribution   PT(X)   in   R?   are made only 

if the ordering procedure is such to allow the blocks which are formed 

to be contained in   R^, . 

Consider the following procedure for ordering the   P?    observa- 

tions.    The procedure consists essentially of first locating a   P 

observation.    A search is then made for another   P     observation with 

a hypersphere which expands from the first   P     observation.    When 

the second   P-    observation is found,   hypcrspheres expand from both 

P     observations in search of a third   P-    observation.    This process 

is continued antil   n0f 1    blocks are formed.     The number of blocks 

contained in   R      is counted,  thereby giving numbers for   co, 0,   and  u 

in equations 3.41 and 3.42. 

The form of the first ordering function   h  (_x)   is arbitrary. 

For simplicity,   let   h   (x)   be linear; 

h  (x) - ATx (3.43) 

(2) 
where    A    is a vector constant.     Pet   Y be the   P     observation which 

— (*) *- 

satisfies 
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h1(Y^!)=       min       ATx!2) 

1 —(1) ,     . —   —i 
l<i<n2 

Here   X/n   ^s usec' ratHer than   X/n   to avo^ ^ie confusion with   X/i! 

which was used wlicn the   P.    observations were being ordered.    Then 

a block   C,    is formed,  where 

Cj = {x:!^^) ^h^Y^j ) | (3.43a) 

But   C     is not contained in   R    . 

Note that a function such as 

V*) = b-Al 

can be used as the first ordering function.    Then   C     may or may not 

be contained in   R     depending on the choice of the vector   A .    Since 

A   cannot be chosen to guarantee that   C    C R    , the estimate of the 

miss probability will vary for a given   R_   with the choice of   A . 

Moreover,   it is unlikely in an unbounded space and without any knowledge 

of the location of the   P-    observations ihzd. the vector   A   will be chosen 

so that the first block is contained in the bounded region   R^  . 

To form the second block a search is made for a   P?    observation 

(2) 
with a hypersphcre which expands from   Y,n *    ^^ ^e secon^ ordering 

function be given by 

h
21^'lni) - lü-Xnl 1  • (3-44) 

(2) 
Let   Y be such that 
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h  (Y^j) =      min        h      (X(2) ,  Y(f! ) . (3.45) 
l<i<n       Z1       l ^{l) 

,.(2) , Y(2) 

Then the second block is given by 

C2 = {-h21(x.Y^)<h2(Y^),h1(x)>h1(Y^)}. (3.46) 

Let the functions for ordering the third   P     observation be given by 

h    (x,  Y(2,) =   |x - Y .(2[| j = 1,2 . (3.47) 
3j-    — (j) '-     — (j)1 

Let 

and 

h_(YS^!)=     min min     h. .(X(2),  Y ^J ) . (3.48) 
3~{3) l<i<n2 j = 1.2       ^-1        -{J) 

X(2),Y(^)    Y(2) 
-i    ^(D'  -(2) 

K  . = (x:h..(x, YJ
2
' ) <h.(Y[2I) ).       j=l,2 . (3.49) 3J       ^     3j -   — (j )    -    3 — (3)    J 

The third bloc]; is given by 

V =   (AK3j)   n    (■",  Ci J=l            J                                1=1 
(3.50) 

The functions for ordering the r      P      observation are given byr 

h   . (x, Y .(2Jl= |x - Y .(2J   | j=l,...,r-l , (3.51) 
rj (j )        -     — (j ) 

T H 

{?.) (2)      (2) 
h   (Y        )=      min min        h   .(X)   , Y   .   ) (3.52) 

r"{r)        l<i<n2 
l<i<*'l   rj~1     "~(J) 

^(2)^(2) (2) 
-i    ^-(l)"*"-(r-l) 
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and 

Krj^V-^Ü) ^ hr(^((r)),} ' j=l,...,r-l. (3.53) 

Then the r'-'1 block is given by 

Cr=   (^rX^^i)- <3-54) 
J=l 1=1 

If the AHE procedure has been used to design the classifier,  the 

regions    L.        (equation 3.16) have the same radius for a particular   k 
kr 

and for all   r = l, . . . ,n? .    Suppose   m   blocks were used to form   R-  . 

If 

Vlg)^   cim(X^))J 

the entire block 

C2 = {x = h21fe.J(
(lj)<h21(lg)

)).h1(x)>h1(YJf|)J 

is contained in   R^ .    For the general case it is easily seen that if 

the entire block    C. ,  i = l,...,n    ,     is contained in   R? .     It is also seen 

that if 

h.(Y.(2J)>d      (X.(I).  ), (3.56) 
i—(i) m   — (m) 

the block   C.   may or may not be contained in   R^ .    If equation 3. 56 is 

satisfied,  0210 must find a point in   C.    which docs not lie in   R,   to show 

that   C,^ R., .      However, to show that   C.    is contained in   R0    one 
12 i 2 

must show that all points which lie in   C.    also lie in   R^.    This is,   of 

A-73 



course,  no easy task.    A conservative statement about the miss probability 

can be made by counting the number of times equation 3. 55 is satisfied 

for    i   1 , . . , , ru . 

Let the total number of blocks contained in   R      (from equation 

3. 55) be   b .    Then 

E -I \      dF2(x) ]• 

R\ 

< 
n2 + l 

(3. 57) 

and the variance   a2   is given by 

2J dF2(x) 

R. 

b(n  + 1 -b) 

{n2+l)   (n2+2) 

(b + l)(n2-b) 

(n2+l)2(n2+2) 

n-+ 1 

b>-v 

b < 
n2+l 

The values of   0   and   i>   in equation 3.42 can be found by consulting 

Murphy's graphs (1948). 

Suppose equation 3.43 is used to form the first block   C.   .    This 

block is not contained in   R? .    Suppose also that   R^,   is bounded.    Note 

that   R?    is always bounded except in the trivial case where   R^   is the 

entire measurement space.    If   R,    is bounded,   the last bluck   C .    is 
2 V ] 

not contained in   R  .    Therefore,  under normal conditions, 

b < n    -   1 

Thi;   1 to ü minimum cxpe   ted miss probability 

r r i 2 
E      \     dF_(x) >    — 

L J_ 2 -   J -    n + 1 
R. 

(3. 58) 
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To be certain that the   P_   blocks are distribution-free , the 

ordering functions and region   R?    should be chosen before the   P» 

observations are taken.    This,  of course,  can not be done here because 

R      is determined from the   P      observations.    Hence this ordering 

procedure may produce an estimate of the probability of a miss which 

is not distribution-free.    This procedure is used here only for obtaining 

a rough estimate of the probability of a miss,   so that the classifier can 

be redesigned if the estimate is much poorer than the desired miss 

probability. 

We expect the estimate to perform this function adequately 

because it measures how well the hyperspheres making up   R?    are con- 

nected.    For example,   any time a   P_   block is counted as contained in 

R     by equation 3. 55 we know that one of the hyperspher^ j making up 

R?    contains the center of another of the hyperspheres making up   R^. 

These two hyperspheres are certainly connected. 

The OHC-R and CHS-R Procedures 

If the OHC or the CHS procedure has been used to design the 

classifier,   all of the hyperspheres which make up   R      do not have the 

same radius.    Therefore,   the number of   P?   blocks contained in   R? 

varies with the   P?   observation with which the ordering starts.    Further- 

more,  with classifiers of the OHC and CHS designs,   the i^" block is not 

necessarily contained in   R?   when 
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Figure 3.18 illustrates this fact with the   X's   representing the   P?   obser- 

vations.    Suppose    R     is the union of the area inside the four hyperspheres 

which are shown with thick lines.    The boundaries for the   C.   blocks are 
i 

shown with narrow lines.    Suppose the ordering function for ordering the 

1st observation is given by    h   (x) = ~,.    Then the observation   X      in the 
1 1 

.(2) figure is the first ordered   P      observation,    Y        .     A hypersphere is 
i (1) 

then allowed to expand from   X     in search for a new   P-   observation. 

(2) 
The observation   Y _    = X?   is located and block   C7   is defined.    Block 

Cv    is contained in   R^.    Now hyperspheres expand from   X     and    X    in 

(2) 
search of a new   P-    observation.    The observation   Y        = X„    is located. 

c (3) J 

Note that 

h^Y^J) <d    (X^  ) . 
3 —(3)    —   m — (m) 

However,  this block is not contained in   K?   because an area outside of 

the hypersphere which makes up   R?    and surrounds   X      (the shaded 

area) is included in block   C   . 

We reason here that our foremost concern is that we measure 

whether the hyperspheres are connected.    Using this reasoning,   we should 

use the radii of the hyperspheres which make up   R?   in ordering the   P 

observations.     These ordering procedures are called the OHC-R and the 

CIIS-R procedures.    The ordering functions are given by 

V^l' m — (m) 

d.(Y'2') 
J-(j) 

x - Y 
(2) 

(j) 
(3.59) 
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L2 

Figure  3.18.    The  OKC-R and CKS-H Procedures. 
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where   d    (X       )   is the radius of the largest hyper sphere making up  R? 

and   d.(Y       )   is the radius of the hypersphere making up   R-,   and centered 

(21 
ky   X(\ •    This equation simply alters the rate of expansion of the hyper- 

f2) 
sphere from the observation  Y       so that a hypersphere expanding from 

any other   P      observation reaches the hypersphere of   R     which was 

centered at that observation at the same time as the hypersphere which 

expands from   Y...    reaches the hypersphere of   R_    which was centered 
-(j ) 2 

(2) 

3. 10.    An Orde rinii, Procedure which Gives Distribution-Free Measures 

of Doth the False Alarm and Miss Errors 

It was concluded in the last section that the procedure given 

there for obtaining a measure of the miss probability may not be independent 

of the disti ibution.     An ordering procedure is presented in this section 

which does give distribution-free measures of both the miss probability 

and the false alarm probability.    However,   the ordering procedure can 

at times yield very poor classification regions as will be seen later. 

As before,  we wish to fix the confidence that the false alarm rate 

is less than a given quantity.    To obtain a distribution-free estimate of 

both the miss probability and the false alarm probability,  we must specify 

the ord-.-ring functions before the outcome ^ f 'he observations is known, 

c.f.   Murphy (19-18).     This can be done by using the ordering functions of 

equations  3.4 3 through  3. 54.    However,  now these functions (with one 
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exception)   are used to simultaneously order both the   P      and the   P.. 

observations,    The exception is the first ordering function which is used 

to order a   P.    observation.    The first block is assigned to   R   =   X-R    . 

The remaining blocks are assigned to region   R     until the number of 

P.    blocks assigned to   R^    is   m .    The number   m   is determined from 

the desired false alarm probability.    "We will illustrate the ordering 

procedure by the two-dimensional example of Figure 3. 19.    Here the 

X's    represent the   P_   observations and the   O's   the   P      observations. 

The number of   P?   observations is   6 ;   the number of   P      observations 

is    9 •      Suppose that   m = 1    gives the expected false alarm probability 

that is desired.    The first ordering function is used to order a   P.,   obser- 

tation.    Suppose   A   in equation 3.43 is chosen so that 

hjCx) -   (1    OWxjN 
U2; 

Tl »e first block   C    = [x : h. (x) < h   (X       )}    (see Fig.   3. 1 9) is assigned 

to   R, =   X - R-, •    The ordering is continued,with equations 3.44 through 

3. 54 being used to order both the   P.    and   P     observations.    This order- 

ing proceeds as follows.    A hypersphere expands from   X in search of 

an observation from either class.     The block is to be added to   R 

regardless of whether the observation is a   P     observation or a   P 

observation.    Luckily,  in our example a   P-    observation   X is found. 

Next,  hyperspheres expand from both   X and   X in search of an 
\*) \^-) 

observation from either class.    A   P^   observation   X is found.    One 
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Fisure 3,].9.  Example of the Orderlnj-; of Section 3.10. 
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may trace through the remaining ordering and find that   X...,  X.,. ,  X,. 
(4)       (5)       (6) 

and   O        are located in that order.    The region   R     is then the shaded 

region of Figure 3. 19.    It contains one complete  P   block, five complete 

P  blocks,   and part of another  P   block.    Hence the expected false alarm 

probability is 1/10 and the expected miss probability is less than 2/7. 

Note that the ordering procedure illustrated above will generally 

yield poor results if   F. (x)   is a multimodal distribution.    This is easily 

seen by noting that a cluster of   X's   in the lower right corner of Figure 

3. 19 would not be included in   R?   before   O,        is found and the ordering 
6 ( 1 ) 

is curtailed.    However,  one does know from the number of   P.   blocks 

in   R     that the classification regions will yield a poor miss probability. 

Then some other classification rule can be used. 

The ordering procedure can be changed so that it is more 

acceptable for multimodal situations.    For example,  if at any time in the 

process (before m   P1    observations are ordered) more   P     blocks are 

being formed than   P      blocks,   a hyperplane     can be used to search for 

a   P„    observation.    The   P-   block which is formed is assigned to region 

R    .    A hypcrsphere is then allowed to expand from the new   P_   observa- 

tion and blocks are again added to region   R?.    We have essentially 

searched for another mode of the   F (x)    distribution. 

The procedure presented in this section is somewhat different 

from the AHE,  OHC,   and CHS procedures presented in section 3.4.    The 

procedure of this section gives distribution-free measures of both the 
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miss probability and the false alarm probability.    However,  it does not 

maximize the number of   P-   training observations which are recognized 

as members of class 2.    Furthermore,  there may be some difficulty in 

making this procedure work well for multimodal distributions.    For this 

reason,   the procedure was not used in the automatic speaker verification 

experiment of the next chapter, 

H. 1 1 .     Multi-class Problem 

The extension of the ordering procedures of this chapter so that 

they are applicable for more than two classes is investigated in this 

section.    Suppose there exist   K   classes where   K >2 .    Using distribu- 

tion-free tolerance  regions,   Cuesenberry and Gessaman (1968) propose 

a classifier in which all probabilities of misclassification are  specified. 

This approach is permitted through the use of a region in which no 

decision is mr.de.     This region will be called the rejection region.     To 

see how this approach differs from the hypersphere DFTR approach, 

consider a l class example.    Suppose the distributions are bivariate and 

unimodal.     Ouesenberry and Gessaman suggest that a reasonable ordering 

might be one which yields a bounded convex region for each class. 

Suppose the ordering of Figure 2. I   is used to order both the    P      and the 

P      observations.     The resulting decision regions might appear as shown 
c 

in Figure   •>. 20.     Region   R      is the  region obtained by ordering the    P. 

observations  and    R      is the  region obtained by ordering the    P-    observa- 

tions.    The decision rule is such that a new observation   V    is classified 
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R. F^OR, 

Figure 3«20, A Two-Class Hyperpiane Approack, 

R]nR2 

Ficure  3.21.     A Two-Class Hypersphere Approach. 
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as a   P      observation if   V c {R.- (R, H R  )} .    It is classified as a   P 

observation if   V f [R  - (R  D R   )).    No decision is made if Ve [(RDR) 

U(R   ^R-,)]   .     The difficulty with this procedure is that a large rejection 

region,     (R   OR   )   U (R.^ R^)  ,   may result according to the ordering 

functions chosen and the proximity of the classes.    Note also for a many- 

variate problem,   an ordering like the one of Figure  3.20 requires many 

blocks to be removed from both    R      and   R     if   R      and    R_    are to be 

closed regions. 

The conditional probabilities of error are specified as follows. 

Let the probability that   V    is classified as a   P.   observation when it is 
J 

a   P.    observation be denoted by   p(j/i)   where   i=l,2,    and j=l,2.    Let 

R      and    R      be such that 

Pr -K    d Fj (iO £ ßj } = Vj (3.601 
JR. 

and 

Pr{^_dF2(x)<fl2} = y2. 
R2 

Note that 

p(2/l) = f dFjCx) (3.61) 

and 
VV^ 

p(i/2) = r      dF2(x) 
JWR2 

Sine    (K-RHRjc    R     and    (R-RflR^jCR 

p(2/l) <   r     dF^x) (3.62) 

Rl 
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and 

p(l/2) <f     dF2(x) . 
P2 

Ther (3.63) 

Pr{p(Z/l)   ^gj }   >yi 

and 

Pr{p(l/2)   <ßz]   >y2 . 

Of course,  expanding hyperspheres can be used for ordering both 

the   P.    and    P      observations when one wishes to specify both probabil- 

ities of error and when one is willing to accept a region in which no deci- 

sion is made.    For example,   see Figure 3.21.    Here the hyperspheres 

(circles in the figure) expand from the   P     observations and order the 

P    observations,  thus forming   R   .    Also,  hyperspheres expand from 

the   P     observations and order the   P-   observations,  thus forming   R  . 

Suppose   R.    and   R     are such that 

PrK    dF^x) ^jSj ] >yi 

R2 
and (3.64) 

Pr{^    dF2(x)<^}=y2. 
Rl 

Since   (R-RflRJCR     and   (R  - RH R) c R       equation 3. 63 is also 

satisfied by the hypersphere DFTR approach.    Note that equation 3. 64 can 

be rewritten as 
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Pr [[[ dF(x) + C     dF(x)]<ß| = v 
V RjO R2 RinR2 

and 

Pr ill  D^
F

2W+L„df2ö]<ß2} = y2- 
(3.65) 

RrRinR2 R1nR2 

Hence equation 3.63 is satisfied if all or part of the region   R  fl R,   is 

adjoined to either   R     or   K? .    This means that there is no need to • 

designate    R  OR      as a rejection region when using the expanding hyper- 

sphere approach.    Another decision rule, for example the nearest-neighbor 

rule,   Fix and Hodges (1951),   can be used to classify an event which occurs 

in region   R  D R;> .    In this case the decision rule is 

if   Vc R  - R fl R 

or   if   VeRHR,,    and   min  |V - xf1 h> min 1V-xf2) 

if   V c R  - R n R2 

(1) .(2) or   if   V<r R  0 Ro    and   min |V - X1   ; |< min |V-x'   ; I 
— 1 Z ;—      —1 :—    —1 

(3.66) 

0 
if  Vc R^ R2 

where d means the decision is made that V is a P observation, 

d means the decision is made that V is a P? observation, and d 

means that no decision is made. 

On ! T hand,   for the ordering procedure of Figure 3.20,   the 

■  of the region   R  H R^     to    R,    or   R_    also satisfies equation 
1 Z 1 Z 

3, 63.    This follows because    R.    and   R     were constructed to satisfy 
1 C* 
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equation 3.60.    Then   R fl R     need not necessarily be designated a rejec- 

tion region for the procedure in Figure 3.20,    Note also that this proce- 

dure need not necessarily yield a rejection region at all if   R  0 R  = 0 , 

the null set.    This is not the case for the hyperaphere procedure of Figure 

3.21.     This follows because the hyperspheres are bounded by the obser- 

vations of the opposite class.    Hence    R  fl R    =0   only if   R   - 0   or   R  = 0, 

a trivial case. 

Now consider the hypersphere-DFTR approach for   K > 2   classes. 

A multiclass decision rule of the Neyman-Pcarson type is used.    The 

particular ordering procedure to follow,   and ultimately,   whether a rejec- 

tion region is needed or not,   depend on the desired outcome of the 

classifier.    For example,  consider the three class problem.    Let the 

probability that   V    is classified as a   P.   observation when   V    is a  P. f / _ j _ j 

observation be denoted by   p(j/i) ,1=1,2,3,    j= 1,2,3.      There are nine 

conditional probabilities of classification which obey the following three 

equations. 

p(l/l) + p(2/l) + p(3/l) = 1 

p(]/2) + p{2/2) + p(3/2) = 1 (3.67) 

p(l/3) + p(2/3) + p(3/3) = 1 

For some problems the following criterion may be desirable. 

(a) Pr[(p(2/1) +p(3/l)]<)3   3 > 7, 
(3.68) 

(b) Pr[[p(l/2) + p(3/2)] </32) >y2 

(c) maximize   p(3/3); (which also minimizes   p(l/3) + p(2/3) ) 
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By analogy to tho 2 class hypersphere DFTR approach, hyperspheres 

expand simultaneously from the   P     and the   P       observations to order 

the   P.    observations.    Also,  hyperspheres expand simultaneously from 

the    P,    and   P^   observations to order the    P^    observations.    Let the i i 2 

P   ,   P   ,  and   P     observations be represented in Figure 3.22 by  O's, 

X's,   and   -'s,   respectively.    Regions   R      and   R     are formed about the 

P      and   P     observations,   respectively,  when a   P.    observation is 

2 2 
ordered.    Regions    R      and   R     are formed about the   P     and   P      obser^ 

vations,   respectively,  when a   P-   observation is ordered.    Since one 

would like to maximize   p(3/3)   and satisfy (a) and (b) in equation 3. 68, 

the following decision rule is a logical choice. 

0 

if   V e R^ D R^ 
- 3 3 

if v c R^ n R^ n R^ n R^ 

if y <r Rj n Rl
? n R^ n R3 

it y c Rj n R^ n R^ n R^ 

2 112 2 1 
or if y e R, n R2 - R3 n R3 n Rj n R2 (e) 

(3.69) 

Note that a rejection region is necessary in this case.    The crosshatching 

in Figure 3.21  illustrates the classification regions for this decision rule 

with the nearest-neighbor rule being used in place of condition (e) above. 

In the region with vertical crosshatching,   the decision is made 

in favor of class 3.    In the region with northeast (NE) crosshatching,  the 

decision is made in favor of class 1.    In the  region with northwest (NW) 
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Figure 3.22, A Three-Class Hypersphere Approach. 

Figure 3.25, An Alternate Three-Class Hypersphere Approach. 
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crosshatching,  tho decision is made in favor of class 2.    The region 

with no crosshatching is the rejection region.    Therefore,  the decision 

rule is 

d ^  .Y ^ (t^e region with vertical crosshatching) 

d if   V e (the region with NW crosshatching) 

d if   V e  (the region with NE crosshatching) 

d if  y c (the region with no crosshatching) 

Generalizing this approach to a problem with   K   classes,  the 

c rite rion is 

(3.70) 

PrfS p(i/l) ±ßJ >y, 
i 1 1 

Pr{E p{i/2) <ß2} >y2 

: (3.71) 

i^K-1 

maximize   p(K/K)   . 

It is  seen that the    P       observations arc encircled by    K-l    regions 
JK 

1 Z K-l 
R     ,     R    , . . .  R and the other observations are encircled by   K-2 

K K K 

regions. The rerulting decision regions are complex and probably very 

coiu.ci 'ive. FI-,-^-.e this docs not seem to be a desirable ordering pro- 

cr'xluro for   K   classes. 
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We now consider an ordering procedure which is better suited to 

the hypcrspherc DFTR approach.    In this procedure,  a hypersphere 

expands from each observation of a particular class and orders the obser- 

vations of all other classes.    Thi.s can be done for all   K   classes.    Hence 

following probabilities   of  error   art   specified. 

Pr{ Zv{l/i)<ßl]>yi 

ih 

Pr[ Sp(2/i) <ß2} > y2 (3.72) 

m 

Pr[ £ p(K/i) <^K} >yK 

Figure 3. 23 illustrates this procedure for the two-dimensional case, 

for   K = 3 classes,  and for the same samples as shown in Figure 3.22. 

Region   R     is obtained by hyperspheres which expand from the   P   obser- 

vations to order the   P      and   P-    observations.    The region   R     in the 

figure is completed when either a   P_    or a   PQ    observation is found. 

Likewise,   region   R?   is completed when the hyperspheres expanding from 

the   P?   observations intersect either a   P     or a   P      observation. 

Region   R      is completed when the hyperspheres expanding from the   P 

observations intersect either a   P      or a   P     observation.    The decision 

rule is given by equation 3. 70. 

A criterion which is well suited for the hypersphere DFTR approach 

is 
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Pr{ 5 p(i/K)<i9K) > yK 

maximize   p{l/l) 

maximize   p(2/2) (3.73) 

maximize   p(K-l/K-l) 

Here hyperspheres expand simultaneously from the   P   ,  P   , . . . ,P 
1        c. K-l 

observations to order the   P      observations.    An example for the 3 class 

problem is shown in Figure 3.24 for the same samples as Figures 3.22 

and 3.23.    Note that a rejection region is unnecessary for this case. 

If one wishes to specify the individual errors,    p(i/j) ,  the following 

criterion works well with the hypersphere DFTR procedure and is easily 

extendable to   K   classes. 

Pr{p(3/2) <^   } > y     ,     maximize   p(^/2) 

Pr(p(2/1) </3  } >y     .     maximize   p(l/l) (3.74) 

Pr{p(l/3) <jS  } >y     ,     maximize   p(3/3) 

This case is represented in Figure 3.25.    The decision rule is 

d. if  Vc R_n R. n R_ 
J — 5 l L 

d if   Ve R n R    n R 
C _        _ (3-75) 

d if   Vc RjD R3 D R2 

d otherwise . 

One may,  of course,  use the nearest-neighbor rule in   R  D R   ,   R  D R-, 
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R 

Figure 3»24. A Hypersphere Approach for Criterion A. 

Figure 3,25. A Hyperspbare Approach for Criterion 3. 
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and   R D R     as shown in the figure. 

In summarizing the utility of the hypersphere DFTR approach in 

the   K   class problem,  it may be stated that 

(1) Jf one wishes to specify the conditional probabilities of error, 

5 p(i/l),    Sp(i/2),...,  5 p(i/K)   where   K   is large and if one is willing 
i i i 

i*l HZ UK 

to tolerate a rejection region,  another ordering procedure (for example 

that of Figure 3.20) might be more appropriate than the hypersphere 

DFTR procedure.    This,  of course,  depends on the proximity of the 

classes,  the modality of the class distributions,  and the dimensionality 

of the space. 

(2) For other situations the hypersphere-DFTR approach might be 

more appropriate because 

(a) The rejection region is unnecessary for certain criteria. 

(b) The classification regions assume the shape of the observa- 

tions; hence the approach works well for multimodal class probability 

distributions. 

(c) The minimu-i number of blocks and hence, the specification 

of error rates is not dependent on the dimensionality of the space,  if a 

bounded region is desired. 

A comment should be made about item (c) above.    One may use a hyper- 

sphere ordering where the hypersphere contracts around each class.    In 

this case the approach is independent of the dimensionality of the space 

and  is  eminantly   suited  for  the  criterion  given   in  equation   3.71. 
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The problem is about what point or points should the hypersphere(s) be 

centered.    Of course,  one could use the median of a certain variate to 

center   a   contracting     hypersphcre .     But many times this is not suitable 

for that median does not "center" the class.    One may consider using 

the sample mean of the observation^.    However,  distribution-free tolerance 

regions are not formed for all distributions when the sample mean is used. 

Nevertheless,   if the class of probability distributions governing the 

populations is restricted,  the sample mean can be used.    For example 

McKay (1935)  showed that in a normal population,   the order statistics 

measured from the sample mean are distributed independently of the 

sample mean. 

Summary 

A classification procedure lias been presented which seems 

reasonable when nothing is known about the class probability distrib\itions 

and when it is desirable to specify some of the conditional probabilities 

of error.    It is assumed that a properly classified sample of independent 

observations is available from each class.    This approach is advocated 

because: 

(1) Appropriate decision regions are formed for multimodal 

probability distributions. 

(2) The aoproach is independent of the dimensionality of the 

sample space. 

(3) The approach is very simple to program on a digital computer. 
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(4) Automatic data reduction results when this approach is used. 

(5) No rejection region is required for certain error criteria. 

(6) The approach indicates when the classification system should 

be redesigned because of expected probabilities of error which arc too 

large. 
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Chapter   4 

AUTOMATIC SPEAKER VERIFICATION 

4.1.      Introduction 

The purpose of this section is to report on an automatic speaker 

verification system and its use in testing the hypersphere DFTR class- 

ification schemes.    A speaker verification system is one which tests 

the purported identity of a speaker from a sample of the speaker's voice. 

An automatic speaker verification system accomplishes this without 

any human intervention in the decision process.    For example,   suppose 

an automatic speaker verification system is to be used for allowing a 

person entrance through a company gate.    The test subject might be 

required to push a button beside the name of the person he purports to 

be.    The test subject then says a required phase, for example,   "My 

name is speaker   X. "   A computer then identifies him as the main 

speaker (the speaker whose identity the test subject has assumed) or an 

impostor. 

This paper uses the terms speaker verification and speaker 

recognition in accordance with their use in the literature.    In a speaker 

verification system the decision is made whether the test speaker is 

Speaker 1 or not Speaker 1.    In a speaker recognition system the decision 

is made whether the test speaker is Speaker 1,  or Speaker 2, . . . ,  or 

Speaker    K. 
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It is assumed in this experiment that the test speaker desires 

recognition as the main speaker. However, no minicry was involved 

in these tests. 

4 . Z. Speaker Recognition Review 

The  relationship between speaker recognition — the  recognition 

of the identity of a speaker from his speech— and speech recognition — 

the recognition of the content of the speech no matter who is talking — 

is quite interesting.    In the first case it is the similarity in the voices 

that makes the recognition process difficult while in the latter case it 

is the difference in the voices that makes the recognition process difficult. 

Hopefully,  what is learned about speaker recognition can be employed 

to improve speech recognition.    The ideal speech processor is one which 

can extract the differences in the voices for speaker identification and 

use the  similarities in the voices for speech recognition. 

The literature contains many papers on speaker recognition. 

In some of the papers the recognition is done by humans,  c.f.   Pollack 

et al.   (1954); in some of the papers by a combination of humans and 

machine,   c.f.   Kersta (196Za) (1962b); and in some of the papers by machine 

alone,   c.f.   Luck (1969). 

Pollack,  Pickett,   and Sumby (1954) tested the ability of humans 

to identify  speakers.    Emphasis was placed on recognition accuracy 

versus duration of speech.    For 8 different male  speakers,   the listeners 

were able to correctly identify the  speakers 70% of the time when a 
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mon.,0/liable word was spoken.    Recognition rates increased to 80% for 

a speech sample of .65 seconds duration and to 90% for a speech sample 

of 1 second duration. 

Compton (1963) studied the ability of 15 listeners to recognize 9 

speakers from recordings of vowels as the vowel duration was varied. 

The recognition rates for the vowel with IPA (International Phonetic 

Association) symbol /i/   ranged from 36% for a speech duration of 25 

milliseconds to 57% for a speech duration of 1500 milliseconds.    He 

found that a shorter bandwidth required a greater duration of speech for 

.the same recognition rate.    He also found that attenuation of the frequen- 

cies below 1020Hz did not affect the ability of the listeners to recognize 

the speakers. 

Bricker and Pruzansky (1966) conducted a speaker recognition 

experiment with 10 speakers and 16 listeners,  all of whom had worked 

together for at least two years.    They used excerpted vowels,  consonant- 

vowel sequences, monosyllabic words,  disyllabic nonsense words and 

sentences.    One of their results was that the recognition rate improved 

directly with the number of phonemes in a speech sample,   even when 

the duration of the speech sample was controlled.    The recognition 

accuracy ranged from 56% for vowels of 117 milliseconds duration to 

98% for sentences of 2.4 seconds duration.    They also reported on a 

computer recognition system which used 60 measurements of each vowel. 

Here they obtained a recognition rate of 79%.    This is a 23% improvement 

over the result obtained by the listeners for this short duration speech 
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segment. 

L. G.  Kersta (1926a),   (1962b),  (1965),   (1966) has employed many 

techniques for extracting speaker identity from spectrograms or 

"voice prints" as he calls them.    Spectrograms are two-dimensional 

pictures of the speech showing the speech magnitude versus frequency 

and time.    Tlds is done in two dimensions by allowing the blackness of 

the spectrogram to be proportional to the magnitude of the speech. 

Kersta achieves remarkable recognition rates.    Some examples are: 

97% or better in (1962a),   99% in (1962b),   96% in (196 5),  better than 90% 

for 120 speakers in (1966).    The references (1962a) and (1962b) report 

on the training of people to identify the speakers from "voice prints« " 

The references (1965) and (1966) deal with computer recognition of the 

speakers from "voice prints." 

Kersta's work has been criticized by various authors.    Ladefoged 

and Vanderslice (1968) in a 17-pagc paper criticize Kersta's technique 

as being more of an art than a science.    They list evidence that at times 

the spectrograms that Kersta uses for identification are readily con- 

fused with spectrograms of different people that Ladefoged and Vander- 

slice have obtained.    Young and Cambell (1967) trained observers to 

identify speakers from monosyllables by Kersta's method of visually 

comparing spectrograms.    The training and test words were spoken in 

different contexts.    Rather poor recognition rates (78% for words in 

the same context,   37. 3% for words in different context) were reported. 
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They listed the techniques which were employed and possible reasons 

why their recognition rates were much poorer than Kersta's. 

Pruzansky (1963) reported on an automatic speaker recognition 

system winch used energy-time-frequency patterns.    Seven band-pass 

filters were used to obtain the frequency components of the measurement 

space.    The time components were obtained by sampling the output of 

each filter at 10 msec intervals.    Seven male and three female speakers 

repeated the required speech four times.    Ten words were excerpted 

for analysis.    Three utterances of each word by each speaker were used 

'to form a reference vector for each word and each speaker.    These 

three utterances plus the 4*" utterance were used to test the system. 

A test observation was classified into the class whose reference vector 

gave maximum correlation with the test vector.    A recognition rate of 

89% was obtained.    Pruzansky and Matthews (1964) investigated a method 

for reducing the number of features used to recognize the speakers. 

Energy-time-frequency patterns were again used.    This time 7 utterances 

were taken.    The first 3 utterances were used to form the reference 

patterns and the last 4 utterances were used as test observations.    A test 

observation was classified into the class whose reference vector was 

closest to the test vector.    A recognition rate of approximately 90% was 

obtained.    Recognition rates of 90% were also achieved by flargreaves 

and Starkweather (1963). 

Li,  Dammann,  and Chapman (1966) reported on an automatic 
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speaker \erification system.    Using one main speaker and 10 impostors 

they received recognition rates from 80% to over 90% depending on the 

phrase which was used.    For the phrase "My name is " they 

received a recognition rate of approximately 85%. 

Glenn and Kleiner (1968) used power spectra which were produced 

during nasal phonations to recognize speakers.    A total of 20 male and 

10 female speakers were used.    Ten occurrences were used to form a 

reference vector.    Ten occurrences of /n/   from a different list were 

used to test the system.    A test observation was classified into the 

class whose reference vector gave maximum correlation with the test 

vector.    The recognition rate increased proportionally to the number 

of observations which were used to find the reference vector.    For one 

observation used as the reference vector the recognition rate was 43%; 

for two observations used to calculate the reference vector,  the recog- 

nition rate was 68%; for 5 observations used to calculate the reference 

vector,   the recognition rate was 82%; and for 10 observations used to 

calculate the reference vector,  the recognition rate was 93%. 

Das (1969) reported on a speaker verification system which 

employed 6 main speakers and 13 impostors.    Fifty training observations 

were taken from each main speaker.    Ninety observations were used to 

test each main speaker and  30 observations were used to test each 

impostor.    Approximately  1600 measurements were obtained from each 

speech segment.    The number of measurements (dimension of the 
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measurement space) was reduced to 200 through tht use of analysis of 

variance. The recognition rates ranged from 91.4% to 98. 6r: with the 

average recognition rate being 95.4%. 

Speaker recognition studies have not been limited to the speakers 

of English.    Solzhenitsyn in The First Circle mentions work in this 

area during the Stalin Era.    In more recent times Ramishvilli (1966) 

reports on an automatic speaker recognition system which achieves a 

recognition rate greater than 90%, 

It should be noted that in most of these experiments that some 

phase of the process was done by the human.    For example in many 

cases the words or phonemes were excerpted manually.    The speaker 

verification experiment which follows has the advantage that it can be 

completely automated. 

4. 3,     Experimental Setup 

The experimental work for this thesis was done on equipment 

at the Applied Research Laboratory (ARL),  Sylvania Electronic Systems, 

Waltham,  Massachusetts,    The equipment for the preliminary study on 

phonemes for speaker recognition and the data for the speaker verifica- 

tion project were graciously furnished by Dr.  James E,   Luck of that 

laboratory.    The equipment consists of a computer program (see Luck 

(1968a),   (1968b)),  a Control Data CDC 3200 computer,   a Texas Instruments 

846 11 bit A/D converter,  a remote control unit,  and other associated 

equipment. 
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Two speaker recognition experiments,  a phoneme extraction 

experiment and a speaker verification experiment,  were done.    The 

speech data for the phoneme experiment was taken in a soundproof room 

at the Audio-Visual Center at Yale University on Ampex professional 

equipment.    It was then played back at ARL on an Ampex PR-10 tape 

recorder and an EDIT computer program.   Luck (1968a),  was used to 

record the data on digital tape. 

The speaker verification data was taken at ARL from a micro- 

phone in a soundproof room.    The speech was band limited,  A/D 

converted and stored on digital tape.    The band-pass filter was flat to 

3kHz and down Z5db at 4kH7..    The A/D conversion rate was 8000 

samples per second at 10 bit accuracy.    The data was recorded on 

digital tape in 2000-24 bit word records.    Each computer word contained 

two 12 bit samples.    The digital tapes were converted at the Yale 

University Computer Center for use on the IBM 7040-7094 DCS system. 

To be able to use the DFTR classification procedures,  the 

utterances must be independent.    This was insured by Dr.   Luck's data 

gathering procedure.    A command from the teletype instructs the com- 

puter to accept data.    At the  same time an indicator light tells the 

speaker to repeat the test sentence.    Then the speaker says the sentence 

.ind the computer processes the data.    There is a one-minute delay 

before the indicator light requests another utterance. 

Dr.   Luck's system for recording the data is  such that the samples 
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from the A/'D converter are temporarily stored from the moment that 

the indicator light is turned on.    When the amplitude of a sample exceeds 

a certain threshold,  the data which follows that sample along with the 

data just prior to that sample are stored.    A total of 8000 samples are 

stored per utterance, 

4.4.    Preliminary Study; Speaker Recognition by Analysis of Phonemes 

As a first step into speaker recognition we decided to study the 

use of phonemes for the recognition of speakers.    The phonemes to be 

employed were those that required different lip,   jaw,  and tongue positions 

and various sections of the nasal and oral cavities.    It was hoped that 

the different physical constraints placed upon the speech by the different 

speakers would yield the speaker's identity. 

Fifteen adult males were recorded while repeating the words of 

Table 4. 1.    They were requested to speak normally and to pause between 

words.    It should be noted that the words were not excerpted <"rom con- 

nected speech. 

The words which contained the vowels were chosen because they 

exhibit the various tongue positions.    Consider the words "beat,  bit, 

bait,  bet, bat. "   The tongue is positioned toward the front of the mouth 

for the vowels in these words.    For the "ea" of "beat" the vertical 

position of the tongue is high in the mouth.    The vertical position of the 

tongue is lower for the vowel in "bit, " lower still for the vowel in    bait" 

and lowest for the vowel in "bat. "   The horizontal position of the tongue 
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Table 4. 1.    Text for Phoneme Analysis 

Vowels Stops 

beat 

foot 

dough 

bought 

dot 

Fricatives 

Huff 

verve 

jsduce 

zoos 

mesh 

measure 

thin 

then 

£0£ 

bit bob 

bait tat 

bet dad 

bat h}ch. 

but £i£ 

do 
Sonorants 

mum 

none 

lung 

hill 

Dipthong s 

my 

how 

toy 

amuse 

L 
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during the vowels in "do, foot, dough, bought, dot" is in the back of the 

mouth.    The vertical positiox» of the tongue ranges from high for the 

vowel in "do" to low for the vowel in "dot. n 

Words using the consonants were included to see if the informs.- 

tion they exhibit for speaker recog  ition is sufficient to justify the 

higher bandwidth necessary to accommodate them.    Diphthongs were 

included so that the information about the identity of the speakers in th = 

transition between phonemes could be investigaged. 

The first experiment was a spectral comparison of the 11 vowels 

listed in Table 4.1 for the different speakers.    Each of the 15 speakers 

said each of the 11 words containing the vowels.    Each word was said 

once and contributes an utterance.    Thus there were 165 utterances for 

analysis. 

The speech signals were filtered to pass frequencies up to 4kK- 

and digitized at 10,000 samples per second.    The vowels were isolated 

by means of the digital computer program EDIT,  Luck (1968a).    This 

program enables one to examine digital signals in great detail.    Segments 

of the speech can be heard by the researcher and simultaneously observed 

on an oscilloscope.    The speech window can be lengthened or shortenef 

as desired and the speech which is observed in the window can then be 

transferred to digital tape. 

The Fast Fourier Transform,   Cooley and Tukey (1965),  Cochra- 

et.  al,  (1967), was used to obtain the spectral components of the speed-. 
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Four short-term spectra of each vowel were calculated and plotted by 

the computer.    The first spectrum was calculated from the first 256 

samples of the isolated vowel.    The second spectrum was calculated 

from the next 2 56 samples, the third spectrum from the next 2 56 samples 

and the fourth spectrum from the next 2 56 samples.    The total energy 

in each spectrum was made the same.    From inputs   x    and   y , 

1 <t<256 ,  the FFT program computes   a     and   b    where 

2 56 -j2TTtf 

af-f jbf =    ^(X
t
+Jyt)

e f=l....,256 (4.1) 

Note that   x     is the amplitude of the speech signal at time   t   and   y    , 

the imaginary part,   is zero for all   t .    Since the imaginary part is 

zero,  there is symmetry in   a     and   bf   about the midfrequency.    Hence, 

only 128 unique   a.   and 128 unique   b     result.    Let   c.   be defined by 

cf =   V a^ + b^ f=l,...,128 . (4.2) 

The qualitative result from the experiment was that the difference 

in spectra for two different speakers saying the same vowel was not 

much greater than the difference in spectra for the same speaker taken 

at different times during the utterance.    This was concluded from 

visually observing the spectra and by deterministic ally comparing the 

spectra.    The  spectra were deterministically compared as follows. 

Let the   c(,  f--l, . . . , 128 ,  be the coordinates of a measurement space. c 
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Then each spectrum can be represented as a vector in this 128-cijnen- 

sional measurement space.    The distance was calculated between the 

various spectra.    In all cases the closest spectrum to any given spectrum 

was one from the same utterance.    That is,  the closest spectrum to the 

third spectrum of one speaker was either the first,   second,  or fourth 

spectrum of the speaker.    However,   in many oases the distance between 

the first and the fourth spectrum was greater than the distance between 

spectra of different persons. 

This experiment was conducted because in most automatic 

speaker recognition systems the same point in each phoneme is not 

located each time that the phoneme is uttered.        The purpose of thir. 

test was to determine how this variation in locating the phoneme affected 

speaker recognition.    Since the experiment was not very encouraging 

and since the EDIT program required considerable computer time for 

the isolation of the phonemes, we decided to use the information in the 

transitions between phonemes in addition to the short-term spectra of 

the phonemes for the speaker verification experiment. 

* Note that the phonemes here were not extracted automatically but 
rather they were extracted manually through the EDIT computer program, 
In the usual automatic speaker recognition system the phoneme is iso- 
lated by an approximate method.    For example, many times a vcv.el is 
located by finding the point of largest amplitude in speech which has been 
low-pass filtered.    Hence in many trials one is likely to isolate many 
different segments of the phoneme. 
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4. 5.     Measurements for the Speaker Verification Experiment 

It is hypothesized that different speakers differ in some of the 

following aspects:   the si/.e and shape of the nasal and oral cavities, 

the placement of the teeth,  the tongue mass,  and the manner in which 

the tongue,   lips,   and jaws are usec in speaking.    It is assumed that 

much of the information for the recognition of speakers is contained in 

the transition between phonemes as well as in the phonemes themselves. 

For this reason,  a simple word which contained a diphthong was analyzed 

by calculating many short-term spectra over the length of the word. 

.These spectra were used to form the measurement space in which the 

decision regions were constructed. 

Recordings of 225 utterances by each of three speakers and 25 

utterances by each of 26 impostors were furnished by Dr.   James Luck. 

These utterances consisted of the sentence "My code is (and then the 

speaker's initials)" digitized into 10 bit accuracy at 8000 samples per 

second.    Only the word "my" was used in this analysis. 

The word "my" was considered a good word for the speaker 

recognition experiment for the following reasons.    First,   the nasal   /m/ 

is thought to give good measurements for speaker identification because 

of the relatively fixed influence of the nasal cavity.    See Glenn and 

Kleiner (1968) or Wolf (1969).    Also,  the word "my" contains a diphthong 

[/all) and is therefore good for testing the usefulness for speaker identi- 

fication purposes of the information in the transitions between phonemes. L 
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Furthermore, the word "my" is a good word for our purposes because 

very little information is lost from the word when it is filtered at 3.4 

kHz.    Notice that the stop constant "c" in "code" allows the word "my" 

to be isolated by simple amplitude detection.    Therefore,  the recognition 

systeni is easily automated. 

To extract the speaker identity information in the transition 

between phonemes, many short-term spectra were calculated over the 

duration of "my. "   The questions to be answered were:   (1)   How many 

spectra should be used?    (2)   "What should be the frequency resolution 

of each spectrum? 

These questions were answered by utilizing three different 2 56- 

dimensional measurement spaces.    The first measurement space was 

made up of four spectra with each spectrum having 64 frequency com- 

ponents.    The second space consisted of eight spectra with each sj2C- 

trum having 32 frequency components.    The third space consisted of 

16 spectra with each spectrum having 16 frequency components.    Later 

a reduced space consisting of six spectra with each spectrum having 

eight frequency components was used. 

Now consider in detail the procedure for obtaining the measure- 

ments which were used in the experiments.    A chart outlining the 

procedure is shown in Figure 4. 1.    The data from Dr.   Luck was stored 

on digital tape in 2000-24 bit words per record.    Each word contained 

two 12 bit samples of the speech.    The data was blocked at Yale University 
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Read LTew Record 

Unpack Data 

Detect Beginning = STRWD 
and Enaing = EKDWD of 
"my". Calculate length = L 

C L>:Liiiin 

No 

Yes 

Ko 
BNDWD< BMDWB max 

Yes 

Locate Intervals 

Calculate Spectra 

Normalize Spectra 

Write 
"Bad Record" 

i 

Figure 4-.1.  Chart for Obtaining Keasurements, 

C 
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into 460 words per record so that it could be read on the 7040-7094 

DCS system.    The samples were then unpacked and placed in a 36 bit 

word. 

The beginning and ending of the word "my" were located by 

amplitude detection.    The thresholds for the detection were obtained 

from a preliminary study on the first five utterances by the first three 

speakers of the impostor data.    See Table 4.2.   It should be noted that 

some difficulty was incurred in finding the beginning of "my" for the 

second speaker.    This was due to a low amplitude guttural sound produced 

'by this speaker.    Even by inspection it was rather difficult to decide 

where the /m/ begins. 

To ascertain that the word "my" was detected, a minimum 

acceptable word length and an acceptable word position in the record 

was established.    If the length of the word was too short,  a search was 

made for a longer word.    The occurrence of a short word was somet-Lrr.es 

due to an extraneous noise made during the recording.    The computer 

was programmed so that if a word of acceptable length was found but z'r.e 

word was cut off by the end of the record,  the computer rejected this 

.   word.    It then proceeded to read another utterance from the input type. 

Location of the Intervals 

Figure 4.2 shows four typical amplitude versus time waveforrr.; 

of the filtered speech "My code. "   The top waveform includes the 

beginning of the  /d/ in "code. "    The bottom wave form contains none cf 

A-113 



Number 

Table 4.2.     Impostor Data 

Speaker Speaker 

Name        Date Uttered       Number       Name        Date Uttered 

1 R. Freudberg 7-30-68 

2 J. Luck 8-6-68 

3 J. DeLellis 7-3-68 

4 H. Shaffer 7-3-68 
• i        - 

5 C. Howard 7-3-68 

6 H. Manley 7-10-68 

7 K. Lang 7-3^68 

8 L. Abraham 7-3-68 

9 G. Gummings 7-3-68 

10 F. Gassidy 7-3-68 

11 R. Lucy 7-3-68 

12 A. Levesque 7-3-68 

13 J. Boucher 7-3-68 

14 H. ITalewisn 7-3-68 

15 G. Briskman 7-3-68 

16 G. Bethoney 7-3-68 

17 G. Mariano 7-3-68 

18 R . Pike 7-3-68 

19 J. Stoddard 7-3-68 

20 D. Kinsley 7-3-68 

21 R. Hasselboum 7-3-6L 

22 T. MacDonald 7-3-68 

23 J. Waggett 7-3-68 

24 S. Free 7-3-68 

25 G. Beakley 10-16-68 

26 W. Wright 10-16-68 

27 B. Fitzgerald 10-16-68 

Table 4. 3.      Main Speaker - RF-Data 

Sitting Number 

1 

2 

3 

4 

5 

6 

7 

8 

Date 

7-3-68 

7-3-68 

7-3-68 

7-10-68 

7-11-68 

7-16-68 

7-18-68 

7-25-68 

Time 

11:30 a. m. 

12:1 5 a.m. 

1:35p. m. 

3:1 5p. m. 

9:15a.m. 

10:00 a.m. 

? 

11:00a.m. 
L 
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the  /dl.    Notice that the Id has been filtered and is barely visible in the 

figure. 

Above each waveform   is a set of numbered intervals.    These 

intervals show where the spectra are calculated for the four different 

measurement spaces which were used in the experiments.    The intervals 

above the top three    waveforms show the regions analyzed for the three 

different 256 dimensional measurement spaces.    The information in the 

regions outside these intervals  is not used.        Notice that there is con- 

siderable overlap of the intervals when 16 spectra are calculated. 

Each interval is of a fixed duration,   2 56 time samples or 

approximately 32 milliseconds.    The intervals   are   placed uniformly 

across "my. "   The first interval is placed at the "beginning" of the word 

and the last interval is placed at the   "ending" of the word. 

A spectrum is calculated from the 256 time samples in each 

interval by means of the Fast Fourier Transform (FFT).    This means 

that equations 4. 1 and 4.2 are used to obtain    c , . . . ,c for each 

interval.    Now let 

M+f1 

55 )■ c'• 
f,=M#(f,-l)+l 

I f = 1,.. .,128/M (4. 3 

where   M   is a positive intc-ger.    The   d      are used to form the coordinate 

of the measurement space.    For example,  let us consider the first meas- 

urement space where four spectra are used,with each spectrum having 

64 frequency components.    Here the integer   M   of equation 4.3 is equal C 
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to   2   .   This gives 64 frequency compone.its,   d ,... ,d.    , for each 

spectrum.    Let us denote the measurements from all   4   spectra by 

d., . . . ,d     ,  .    Each one of these measurements is used as a coordinate 

of the first measurement space.    Then each utterance of the word "my" 

is represented by a vector in this space.    In these experiments all vectors 

are normalized to have the same length.    This is done to eliminate the 

variation in amplitude of the speech. 

For the second and third measurement spaces, the integer  M   in 

equation 4. 3 was set equal to   4   and   8 ,  respectively.    Since   8   spectra 

are calculated for the second measurement space and 16 for the third 

space,  all three spaces have 256 dimensions.    Note that the first space 

considers spectral detail more important than spectral variation in time. 

The third space does the reverse.    That is,  it considers spectral variation 

in time more important than spectral detail.    One object of the experiment 

is to determine the relative importance of these factors for the recogni- 

tion of speakers. 

4.6.     Data 

Table 4.2 shows the 27 speakers who were recorded on the 

impostor tape and the date of the recordings.    Each speaker recorded 2 5 

utterances of "My code is " at one sitting.    The first   8   utterances 

were used as training observations. The last 17 utterances were used as 

test observations. The number 8 was chosen primarily with the results 

of Glenn and Kleiner (1968) in mind.    It was desirable to use a sufficient 
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number of training observations to get a good representation of the 

speaker but nevertheless to have enough unused observations to exten- 

sively test the verification system. 

The computer program was unable to locate the word "my" in 

3 out of the 675 utterances on the impostor tape.    In the training phase 

this happened for the 2nd utterance of the 24th speaker.    Hence,  the 9"1 

utterance of the 24th speaker was used in its place as a training observa- 

tion.    A total of 8'::26 = 208 impostor observations were used in the 

training phase.    The computer program was unable to locate "my" for 

the 21s* utterance by the 4*^ speaker and the 21st utterance by the 9^ 

speaker.    Hence a total of 17:'';26 - 3 = 439 impostor observations were 

used in the test phase. 

Table 4. 3 shows the main speaker data for R. Freudberg (RF). 

Twenty-five utterances by RF were recorded at each sitting.    The first 

8 utterances at the first 5 sittings were used as main speaker training 

observations.    The computer program was able to locate the word "my" 

for all RF utterances.    Therefore 5:::8 = 40 main speaker training observa- 

tions and 185 main speaker test observations were used.    Note there are 

2 5 main speaker test observations listed with the impostor data. 

4.7.      Decision Regions 

The decision procedures which are used in the speaker verifica- 

tion experiment are summarized in this section.    They were completely 

described in Chapter 3.    Let class   1   be the class of the impostors and 
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class 2 be the class of the main speaker. If a test observation falls in 

region R- it is classified as the main speaker. Otherwise it is classi- 

fied as an impostor. 

(1) AHE (All Hyperspheres Expand) — All hyperspheres expand until 

n. + 1 blocks have been found. The first m of these blocks are used to 

form region   R_. 

(2) OHC (Ordered Hyperspheres Constant) —All hyperspheres expand 

until the first block has been formed (a class   1   observation has been 

ordered).   All hyperspheres except the one which ordered the class    1 

observation expand until another block is formed.    This procedure is 

continued with each hypersphere stopping after it orders a class   1 

observation. 

(3) CHS (Conditioned Hyperspheres Stop) — The hyperspheres which 

order the observations stop as they did in the OHC procedure.    However, 

the procedures differ when an expanding hypersphere intersects a class 

1 observation which has already been ordered by another hypersphere. 

In the CHS procedure the hypersphere stops even though the block has not 

been completed. 

The number of blocks,    m ,   which are used to form the region 

R      should be chosen so that the classifier will produce the desired false 

alarm rate.   In this experiment there was also another objective.    There 

should be a sufficient number of blocks in   R-    so that the differences in 

U 
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the above ordering procedures become evident.    The number m = 7 was 

thought to be a good compromise between a number small enough for a 

respectable false alarm rate and a number large enough to exhibit differ- 

ences in the ordering procedures.    For   m = 7   and   n  = 208   the follovring 

parameters are obtained for the classifier.    P_.    is the false alarm 
FA 

probability,    Pr(')   is the probability of   (• ) »    E(')   is the expected value 

of   (•) f    &{')   is the standard deviation of   (•) . 

Pr(PFA< .055)   =   .95 

E(PFA)     =   .0335 

a(PFA)   =   .0124 

Table 4.4 shows the results which were obtained when the three 

DFTR procedures were trained and tested in the three different 256 

dimensional spaces.    The test false alarm rate,  the test miss rate,  and 

the total error rate are listed for each procedure.    For example,  for 

the AHE procedure in measurement space   1,15 out of 439 impostor 

test observations were classified as the main speaker and 7 out of 185 

main speaker test observations were classified as an impostor.    This 

gives a total error rate of 22/624 = .0352.    The average error rate 

obtained for all three ordering procedures in measurement space   1    was 

.0347.    This compared with an average error rate of .0251 for measure- 

ment space 2 and an average error rate of . 0336 for measurement space 

3.    Along with having the lowest average error rate, measurement space 

2 also had the lowest error rate for each ordering procedure.    It was 
(_ 
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Table 4.4.    Three Different 256-dimensional Measurement Spaces 

Training Data 

40 Main Speaker Training Samples             208 Impostor Training Sample s 

Pr(p^A < -07) = .99                             Pr^A < .055) = .95 

E(PFA) = .0355 

a(PFA) = .0124 

Test Results 

185MainSpeaker Test Samples 439 Impostor Test Samples 

Measurement Space 1-4 spe ctra,    64 components/spectrum 

Procedure        False Alarm Miss                Total Error 

(1)   AHE         15/439 = .0342 7/185 = .0379            .0352 
(2)   OHC        15/439 = .0342 7/185 = .0379            .0352 
(3)   CHS         14/439 = .0319 7/185 = .0379            .0337 

Measurement Space 2-8 spe« :tra,    32 components/spectrum 

Procedure       False Alarm Miss                Total Error 

(1)   AHE         12/439 = .0274 7/185 = .0379            .0305 
(2)   OHC         10/439 = .0228 6/185 ■ .0324            .0256 
(3)   CHS           9/439 = .0205 3/185 = .0162            .0192 

Measurement Space 3-16 spectra,    16 components/spectrum 

Procedure      False Alarm Miss                Total Error 

(1)   AHE           7/439 = .0159 26/185 = .1405          .0529 
(2)   OHC          4/439 = .0091 14/185 = .0756          .0288 
(3)   CHS            8/439 = .0181 4/185 = .0216          .0192 
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therefore judged to be the best space.    One may speculate why this is 

true.    First,  the intervals in which the 8 spectra are calculated usually 

cover the entire utterance of "my" for the main speaker and for most of 

the impostors.    See Figure 4.2.    Therefore much of the information for 

the recognition of the main speaker and most of the impostors should be 

contained in this space.    One can argue that the space of 16 spectra with 

16 components per spectrum emphasized the time element too strongly. 

Hence an impostor who changes phonemes at the same rate as the main 

speaker may be easily classified as the main speaker.     (This seems to 

be the case with Impostor 6 as will be discussed later. )   Also one may 

expect the "time features" to vary more from sitting to sitting than the 

"frequency features. "   Hence one might expect a high miss rate in 

measurement space 3 since the main speaker was recorded at 9 different 

sittings over a period of a month.    This high miss rate is seen in  Table 

4.4 for the AHE and OHC procedures.    Measurement space 1 does not 

perform as well as the other two spaces because (1) less information is 

extracted from the speech    waveform,   (2) a large variation in the place- 

ment of the second and third spectra can occur over different utterances 

and (3) only two adjacent frequency components were averaged,  thus 

possibly resulting in excessive spectral fluctuations. 

Now compare the three ordering procedures.    Very little difference 

is noted in the total error rates for the three procedures in measurement 

space 1.    In the other two spaces the CHS procedure and the OHC procedure 
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easily outperform the AHE procedure.    This might have been expected 

since the CHS and the OHC procedures use the information that becoines 

available during the ordering to select subsequent ordering functions. 

Hence the region   R?   for the-se procedures is somewhat shaped by the 

observations. 

The average error rate for the AHE ordering procedure in the 

three spaces is . 0395.    This compares with an average error rate of 

.0299 for the OHC procedure and an average error rate of . 0240 for the 

CHS procedure. 

A detailed study was made of the training and test data in the 

three spaces.    Table 4. 5 shows the errors made by the particular speakers 

in these spaces.    The errors made by the main speaker are listed by the 

number of the sitting at which the speech was recorded.    lvIS9 is the sitting 

of the main speaker which was recorded on the impostor tape.    The main 

results of this study are: 

(1)   There is a definite correlation between the impostors which 

are closest in Euclidean distance to the main speaker in the training 

phase (this was determined from the ordering) and the impostors which 

made the errors in the test phase.    This indicates that 8 utterances are 

probably sufficient to represent a speaker at one sitting.    For example, 

the four closest impostors in the training phase in measurement  space 1 

were impostors 16,   13,   12,  and 15,  in that order.    The impostors who 

made the most errors during the test phase were impostors 12,   16,   10, 
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Table 4. 5.    Test Errors in 3 Different 256-dimen8lonal 
Measurement Spaces 

Space 1 Space 2 Space 3 

4 spectra                    8 spectra 16 spectra 
64 components 32 components 16 components 

AHE    OHC    CHS    AHE    OHC    CHS    AHE     OHC    CHS 
IMPOSTORS 

IM 2 - ■ - 1 - - - 

IM 6 1 - m 1 1 ■ 5 

IM 9 - - - 1 - - 2 

10 2 2 2 - ■ 2 - 

11 — 1 1 - - 1 m 

12 4 4 4 1 1 1 - 

13 2 1 1 4 2 2 - 

15 1 - - - - 1 - 

16 2 2 2 4 6 2 - 

17 1 1 — - - ■ — 

18 1 1 1 - - - - 

21 - 1 1 - - — - 

22 1 2 2 — — — _ 

Main Speakers 

MS 1 

2 

3 

5 

6 

7 

8 

9 

1 

- — 1 2 2 1 

2 2 - 2 - - 

- - - 1 1 1 

1 1 - 3 2 - 

1 1 - 1 - - 

2 1 1 4 2 ■ 

1 1 1 12 7 2 

: 
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22, and 13.    The four closest impostors in the second space were impcstors 
t 

13,  16,  18,  and 12.    The most errors were made by impostors 16,   13, 

and 12.    The four closest impostors in the 3rd space were impcstors 6, 16, 

13, and 9.   Impostor 6 made the most errors in that space. 

(2) The impostors which were relatively good substitutes for the 

main speaker in one space were not necessarily good substitutes for the 

main speaker in one of the other spaces.    For example, the observations 

of impostor 12 were near the observations of the main speaker in measure- 

ment space 1 but were not in measurement space 3. 

(3) There was a tendency for main speaker observations of the 

same sitting to cluster more than main speaker observations of different 

sittings.    This was manifest in smaller error rates for   MSI, MS2,  MS3, 

MS4, and MS5 than for MS6, MS7,  MS8,  and MS9,  a situation which 

occurred for all cases except the CHS procedure in measurement space 

3.    Furthermore,  the closest main speaker training observation to a 

main speaker test observation from MSI,. . . ,MS5 was usually a training 

observation which was recorded at the same sitting.    This occurred for 

over 70% of the test observations from MSI,. .., MS5. 

(4) The AHE procedure in measurement space 3 yielded a relatively 

poor miss rate.    This was because the training observations from Impostor 

6 were near those of the main speaker.    In the training phase the ordering 

hyperspheres for the AHE procedure continued to expand into the training 

observations of Impostor 6.    Hence the hyperspheres were stopped before 
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they became large enough to yield a good miss rate.    For the CHC and 

CHS procedures, the hyperspheres which were expanding into the training 

observations of Impostor 6 were stopped,  allowing the remaining hyper- 

spheres to become much larger than the hyperspheres for the AHE pro- 

cedure,    Here is a case where the OHC and the CHS procedures clearly 

perform better than the AHE procedure. 

.   . ■ ■■ .   . 

4.8.      Reduced Measurement Space 
1 "  '     ' — '-■■■     ■       —       ■ ■   ■        ii    ■ ■» ^ ■ ■■   i 

> 

In this section the hypersphere DFTR approaches are experimentally 

compared with other classification methods using two different main 

speakers.    Because of the excessive computing time for these experiments 

in a 256-dimensional measurement space,  it was decided to reduce the 

size of the space.    For example, the use of the nearest neighbor rule  in 

a 2 56-dimensional space would have taken approximately 10 hours of 

computing time.    This is partially due to the fact that the pertinent data 

for the nearest-neighbor rule would not fit into the core of the IBM 7094. 

The space which gave the best results in the 3 space experiment 

was that space consisting of 8 spectra with 32 components per spectrum. 

It was decided that approximate coverage of the word "my" with spectra 

was important.    A compromise of 6 spectra placed uniformly across 

"my" was reached for the reduced   dimensional space.    The number of 

components per spectrum was reduced to 8,  making the  reduced space a 

48-dimensicnal space. 

Table 4.6 shows the results for this space when two different main 
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Table 4.6.     48-dimonsional Space, Two Main Speakers 

6 spectra,  8 components/spectrum 

Decision 
Procedure 

RF =Main Speaker JD = Main Speaker 

False Miss Total False Miss Total 
Alarm Error Alarm Error 

Pr(PFA < .055) = .95 
■■ 

E(PFA) = . 0335 

(1)   AHE ,0319 .2972 .1105 .0297 .3162 . 0900 

(2)   OHC .0297 .1837 .0754 .0297 .2991 .0863 

(3)   CHS .0342 .1243 .0609 .0297 .2991 .0863 

Pr(Pr,A < .085) = .95 
FA — 

B (PFA) = • 0574 

(1)   AHE .0550 .2000 .0977 .0388 .1710 .0665 

(2)   OHC .0455 .0650 .0512 .0410 . 1625 . 0665 

(3)   CHS .0387 .0595 .0448 .0434 . 1368 . 0629 

NN Rule .0205 .0216 .0209 .0369 .1111 .0522 

5 MS,    26 IM .0228 .0216 .0224 

1 MS,    26 IM .0137 .0973 .0385 

1 MS,    1 IM .1985 .0000 .1395 
i  
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speakers were used.    The first row showj the DFTR results when 7 blocks 

were used to form   R  .    The next row shows the results when 12 blocks 

were used to form   R«.    The results for the different DFTR procedures 

varied less for speaker   JD   than for speaker   RF.    The average error 

rate over all three DFTR procedures was approximately equal for each 

speaker.    The average error for the 7 block DFTR problem was .0823 

for   RF   and .0875 for   JD .    The average error for the 12 block DFTR 

problem was .0646 for   RF   and .0653 for   JD . 

The nearest-neighbor (NN) rule was then used to classify the 

observations.      The nearest-neighbor rule performed better than the 

best DFTR procedure for both speakers.    This might have been expected 

from the nature of the decision rules.    Both the NN and the DFTR proce- 

dures use the information about all main speaker training observations. 

However,  the DFTR procedures use less information about the impostor 

training observations than the NN rule.    The AHE-DFTR procedure uses 

only the information about the mLI1 impostor training observation to obtain 

the decision regions.    The OHC and the CHS procedures use the informa- 

tion about the first   m   impostor training observations to obtain the 

decision regions.    The NN procedure, however,  uses information about 

all the impostor training observations to obtain the decision regions. 

This allows the main speaker observations to fluctuate more in certain 

See Chapter 5 for details of the NN rule. 
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directions before errors are made than the DFTR procedures allow.  Cther 

differences in the decision rules may tend to cancel.    This, of course, 

depends on the situation.    For example, the NN rule allows the impostor 

test observations which are near the main speaker observations to flucuate 

more before errors result than the DFTR rules allow.    However, the 

DFTR rule allows the main speaker observations to fluctuate more toward 

the nearest impostor observations before errors result.    This is because 

the hyperspheres forming   R     in the DFTR procedures actually intersect 

the closest impostor training observations.    But the hyperplanes forrr.ir.g 

R_    in the NN procedure are constructed midway between each main 

speaker and each impostor training observation. 

Considerations that tend to favor the DFTR rule over the NN rule 

are: 

(1) The NN rule takes 5 times longer to test an observation than 

the DFTR rule.    (This was for 40 main speaker training observations 

and 208 impostor training observations in a 48-dimensional space. )  Thus 

if the rules are compared on an equal computing time basis,  the DFTR 

rules are,  in fact,  superior in performance.    Note further that the CH5- 

DFTR procedure in measurement space 2 is superior in both error ra:e 

and   computing time   to the NN rule in the reduced space.    (The DFTR 

procedures in measurement space 2 took 2 times longer to test than the 

DFTR procedures in the reduced space.    See section 4. 11. ) 

(2) The DFTR rule allows the machine designer to know how 

well the machine is expected to perform; i.e.   it gives information about 
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the expected false alarm and the expected miss rates. 

(3)   The DFTR rule requires storage of the main speaker training 

observations and approximately   m   impostor training observations (more 

for the CHS procedure;  less for the AHE procedure) whereas the NN rule 

requires storage of the main speaker training observations and all of 

the impostor training observations . 

Other decision rules were applied to the data with   RF   as the 

main speaker.    The rule labeled 5 MS,  26 IM in Table 4.6 was obtained 

as follows.    A sample mean was calculated from the 8 main speaker 

training observations at each sitting.    These 5 sample means were used 

as main speaker reference observations.    The sample mean was then 

calculated from the training observations of each impostor.    This gave 

26  impostor reference observations.    The nearest-neighbor rule was then 

employed using the 5 main speaker reference observat    ns and the 26 

impostor reference observations.    Very good results were obtained from 

this procedure as is seen in Table 4.6.    This indicates that the observa- 

tions from each sitting were well clustered. 

For the rule labeled 1 MS,  26 IM,  one reference vector was 

calculated from the main speaker training observations.     The 26 impostor 

reference observations were again used.    The nearest-neighbor rule was 

employed and a rather good error rate resulted.    Note that the miss 

rate jumped from .0216 when 5 main speaker reference observations were 

used to .0973 when 1 main speaker reference observation was used.    This L 
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further indicates that the main speaker observations from all sittings 

are not clustered as well as the main speaker observations from one 

sitting. 

For the rule labeled 1 MS,   1 IM   the impostor training observa- 

tions were averaged to obtain one impostor reference observation.    A 

hypersphere was then constructed midway between the main speaker 

reference observation and the impostor reference observation.    Rather 

poor error rates resulted as seen from the table. 

4.9.    Comparison of Expected False Alarm Probability with Test False 

Alarm Rate 

U 
One of the most important purposes of the speaker recognition 

experiment was the comparison of the probability of false alarm for 

which the pattern recognizer was designed and the false alarm rate which 

was obtained from the test observations.    In one experiment a pattern 

recognizer was designed using 208 impostor training observations,   and 

seven blocks to form region   R^.    Hence this pattern recognizer had the 

following characteristics;   where   P„ .    denotes the false alarm proba- 
FA 

bility, Pr^)   denotes probability,    £(• )   denotes expected value,   and 

(j (• )    denotes standard deviation. 

Pr (Pr<A < .055) = .95 
i A — 

E(PFA) - .0335 

(T(PFA)   = .0124 
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The test results for the pattern recognizers designed by the three hyper- 

sphere DFTR procedures are shown in Table 4.7.    The last two rows 

in this tablo show the results for pattern recognizers which were designed 

using 12 blocks to form   R  .    For this case the characteristics were 

Pr(P_A < .8b) = .95 
FA — 

E(PFA) = '0574 

(T{PFA)  = .0160 . 

Consider the results in the top row of the table.    Here a 256- 

dimensional space consisting of 4 spectra with each spectrum having 64 

frequency components was used.    The main speaker was   RF    and   m = 7 

blocks were used to form region   R^.    Using the training sample,   a 

pattern recognizer was designed in which we are 95% confident that the 

false alarm rate is less than .055.    The expected false alarm rate is 

. 0335.    Using 439 impostor test observations,  a false alarm rate of 

. 0342 was obtained.    A 95% upper confidence limit can be obtained from 

these test results.    For this particular example we are 95% confident 

that the false alarm rate is less than .055. 

The confidence limit on the test results can be obtained as 

follows.    The test observations are assumed to be independent.     Let   n   be 

the total number of impostor test observations.    Let   n^ .    be the number 
' FA 

of impostor test observations which are erroneously classified as the 

main speaker.     The distribution for   n^ .     is given bv 1 FA 

"FA,.     „       """FA 

FA 
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Table 4,7.     Comparison of Expected False Alarm 
Probability with Test False Alarm Rate 

Situation 

|             TRAINING SAMPLE 1            TEST SAMPLE            "j 

95% Upper 
Tolerance Limit 

E(PFA) False 
Alarm 

95% Upper Con-  1 
fidence Limit 

on P^ . 
FA Rate on Test False 

Alarm Rate 

4 spectra 
RF=MS, m=7 

I         (1)   AHE .055 .0335 | .0342 .055 
(2)   OHC .055 .0335 1 .0342 .055 
(3)   CHS .055 .0335 .0319 .05 

8 spectra 
RD=MS, m=7 

\         (1)   AHE .055 .0335 .0274 .04 5 
.      (2)   OHC .055 .0335 .0228 .04 

j         (3)   CHS .055 .0335 .0205 .035 

16 spectra 
RF=MS, m=7 

(1)   AHE .055 .0335 .0159 .03 
(2)   OHC .055 .0335 .0091 .02 
(3)   CHS .055 .0335 .0181 .03 

A spectra 
IcF-MS, m=7 

(1)   AHE .055 .0335 .0319 .05 
(2)   OHC .055 .0335 .0297 .05 
(3)   CHS .055 .0335 .0342 .055 

6 spc ctra 
J^-AIS, m=7 -   1 

(1)   AHE .055 .0335    1 .0297 .05 
(2)   OHC .055 .0335 .0297 .05 
(3)   CHS .055 .0335 .0297 .05 

6 spectra 
KF-^MS, m=12 

(1)   AHE .085 .0574    ! .0550 .08 
(2)   OHC . 085 .0574 .0455 .07 
(3)   CHS 

I 
.085 .0574 .0387 .06 

6 spectra 
N 

JD=MS, m=12 
(1)   AHE .085 .0574   ! .0388 .06 

|         (2)   OHC .085 .0574    i .0410 .065 
(3)   CHS .085 .0574    i .0434 .06 5 

A-133 



See Cramer (1946).   The maximum likelihood estimate of   P„ .    is obtained 
FA 

by equating the partial derivative of the above equation with respect to 

Pp.    to zero.    The maximum likelihood estimate of   P        is given by 

PFA = nFA/n2- 

This is precisely the test false alarm rate,    A 100 T%   upper confidence 

limit can be defined,  with   p(- )   denoting the probability density of   (• ). 

e   A 
Pr(PFAie'   =   rP(PFA/PFA,dP

1 o             PA = T 

From this equation it is possible to find   9   for a given   T .    The values 

of   9   for   r = .95,  which are listed in Table 4.7, were obtained from 

graphs found in Crow,  Davis,  and Maxfield (I960). 

The most important results from this table are: 

(1) All test false alarm rates lie in the 95% upper tolerance limit. 

(2) In all cases we are 95% confident that the true false alarm rate lies 

within the limit obtained from the 95% upper tolerance regions.    A note 

of clarification needs to be made about this.    Assuming that the test false 

alarm rate stays the same,  the upper confidence limit on the false alarm 

rate (at the same confidence level) will decrease as more cbservations 

are tested.    Since more observations were used in the test phase than in 

the training phase,  we want the upper confidence limit on :":.e false alarm 

rate at confidence level 95% to be less than the upper tolerance level on 

the false alarm probability at tolerance level 95%.    This is the result 

A-134 



which was obtained. 

(3) (a)   All test false alarm rates are less than the expected false alarm 

rate plus the standard deviation. 

(b) In 18 out of 21 cases the test false alarm rate is less than the 

expected false alarm rate. 

(c) In 6 out of 21 cases the test false alarm rate is as clc = e as one 

observation out of 439 to the expected false alarm rate.    That is,   if the 

test false alarm rate is less than   Ef P       } ,  one more impostor which is 
FA 

classified as the main speaker will cause the test false alarm rate to be 

greater than ^{P      ).    Likewise,   if the test false alarm rate is greater 

than  EfP.^ A },  one less impostor which is erroneously classified will 
FA 

cause the test false alarm rate to be less than EfP—. } . 
FA 

(d) In 14 out of 21 cases the test false alarm rate falls ir. the 

interval   [E C PFA) - CT { Pp J.   Ef PFA} + ^P
FA)] • 

(4) (a)   In the 1 5 cases where   E { P    A ] = • 0335,  the average test false 

alarm rate,    FA        , obtiinea by summing the 15 test false alarm rates 

and dividing by 1 5 was 

FAA.. = .0267 . AV 

This gives the following relation 

FAAV~.8E{PFA). 

(b)   In the 6 cases where   E { FU»} = • 0574,    EA was found to 

be .0438.    This gives 
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FAAV~.76ECPFA). 

(5)   There are no significant differences in the relationship of the average 

test false alarm rate to the expected false alarm for the various DFTR 

procedures.    The results are; 

For the AHE procedure,    FA        ~ . 82 E [PFA} 

For the OHC procedure,    FA        ~ .75E (P-.. ) 
./i V J? A 

For the CHS  procedure,    FA        ~ . 78 E {PFA}. 

4.10.     Comparison of a Measure of the Expected Miss Rate with the Teft 

Miss Rate 

A method was presented in Chapter 3 for obtaining a measure of 

the expected miss probability.    The method had straightforward applica- 

tion to a classifier constructed by the AHE procedure since all hyper- 

spheres making up region   R      have the same radius.    Hnwever,   for the 

OHC and CHS procedures this is not the case.    P'or these procedures 

the number of   P      blocks contained in   R^    varies with the   P    observaticn 
Cm Cm I* 

with which the ordering starts.    An obvious way to overcome this dilemma 

is to average over the number of blocks which are obtained when each   P., 

observation is used to start the ordering.    This,  however,   is usually a 

prohibitively time consuining process.    The measures of the expected 

miss probability for Iho classifiers designed by the OHC and CHS proce- 

dures were obtained principally by two different methods.    One method, 

labeled OHC-R or CHS-R in Tables 4.8a and 4.8b,  uses the information 

about the  radii of the hyperspheros making up   R     to order the   P- 
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observations.    The method labeled OHC or CHS (no R) in Tables 4. 8a 

and 4. 8b does not use information about these radii in ordering the   P- 

observations.    The ordering functions for the CHC and the CHS procedure 

are given by equation 3. 51.    The ordering functions for the OHC-R and 

the CHS-R procedures are given by equation 3. 59. 

Table 4. 8a compares the measure of the miss probability 

obtained in the training phase with the miss rate obtained in the test phase 

for the 3 different 256-dimensional spaces.    Table 4.8b compares these 

quantities for the experiments in the 48-dimensional space.    Consider 

the first row of Table 4.8a.    For the AHE procedure with main speaker 

RF   and seven   P     blocks used to form   R  ,   37   P     blocks were found 

in region   R   .    Note that there is also at least part of an additional   P 

block in   R_.    The expected miss probability is .0976 for 27 blocks and 

.0732 for 38 blocks.    The miss rate for the 185 main speaker test obser- 

vations was  . 0379.    The 95% upper tolerance limit on the miss probability 

using 37 blocks was .18.    The 95% upper confidence limit on the test 

miss rate was .07.    In the following,  the larger number in the column 

of expected miss probabilities will be denoted by   E     and the smaller 

number by   E   .    Let the standard deviation corresponding to the number 

of complete blocks in   R-   be   a   .    The important results are: 

(1) The expected miss probability for the OHC and the CHS proce- 

dures    is   much too conservative if the information about the radii of the 

hyperspheres making up   R-   is not used in ordering the   P_    observations. 
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Table 4.8a.   Comparison of aMcasurc of the expected Miss Probability 
with the Test Miss Rate in the 256-Dimensional Spaces ( 

Situation 

TRAINING SAMf LE TEST SAMPLE 

Number 
of 

Blocks 

95% Upper         E{P   ] 
Tolerance 
Limit on P 

m 

Miss 
Rate 

95% Upper 
Confidence 
Limiten the 
Miss Rate 

4 spectra 
RF=:MS, M=7 

(1)   AHE 37 . 18 .0732-.0976 .0379 .07 

(2)   OHC 35 .24 .1220-.2463 
.0379 .07 

OHC-R 37 . 18 .0732-.0976 

. (3)   CHS 35 .24 .1220-.1463 

.0379 .07 
CHS-R 37 . 18 .0732-.C976 

8 spectra 
RF=MS, M = 7 

(1)   AHE 38 . 15 .0488-.0732 .0379 .07 

(2)   OHC 36 . 22 .0976-.:220 
.0324 .065 

OHC-R 39 .115 .0244-.0488 

(3)    CHS 36 .22 .0976-.2220 
. 0162 .04       ! 

CHS-R 39 . lib .0244-.:488 
I 

16 spectra 1 
r 

RF^MS, M=7 i 

(1)   AHE 37 . 18 .0732-.:976 . 1405 .20 

(2)   OHC 36 .22 .0976-.1220 
. 0756 

i 

: 

. 12 
OHC-R 38 . 15 .0488-..732 i 

(3)    CHS 36 .22 .0976-.1220 
.0216 .05 

CHS-R 39 .115 .0224-.:488 
! L 
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Table 4, 8b.    Comparison of a Measure of the Expected Miss 
Probability with the Test Miss Rate for the Space of 6 

Spectra with 8 Components/Spectrum 

Situation 

TRAINING SAMPLE TEST SAMPLE 

Number 
of 

Blocks 

95% Upper          E[P    } 
m 

Tolerance 
Limiten P 

m 

Miss 
Rate 

95% Upper 
Confidence 
Limit on the   ; 
Miss Rate    | 

RF=MS, M=7 
(1)   AHE 32 .32 .1951-.2195 .2972 . 37 

(2)   OHC 
OHC-R 32 .32 .1951-.2195 . 1837 .25 

(3)   CHS 
CHS-P. 

32 
35 

.32 

.24 
.1951-.2195 
.1220-.1463 . 1243 . 18 

JD=MS, M^7 
(1)   AHE 18 .68 .5366-.5610 .3162 . 38 

(2)   OHC 
OHC 

20 
20 

.64 

.64 
.4878-.5122 
.4878-.5122 .2991 . 37 

(3)    CHS 
CHS-R 

20 
20 

.64 

.64 
.4878-.5122 
.4878-.5122 .2991 . 37 

RE=MS, M=12 
(1)   AHE 36 .22 .0976-.1220 .2000 .26 

(2)   OHC 
OHC-R 

32 
38 

.32 

.15 
.1951-.2195 
.0488-. 0732 . 0650 . 11 

(3)    CHS 
CHS-R 

32 
37 

.32 

.18 
.1951-.2195 
.0732-.0976 .0595 .10 

JD=:MS, M=12 
(1)   AHE 33 .30 .1707-.1951 .1710 .225 

(2)   OHC 
OHC-R 

20 
34 

.64 

.27 
.4878-.5122 
.1463-.1701 .1625 .22 

t 

(3)   CHS 
CHS-R 

i                 

20 
35 

.64 

.24 
.4878-.5122 
.1220-.1463 . 1368 

1 

i 

.19       ' 
i 
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Let   M denote the average test miss rate for the    7 cases in Tables 

8a and 8b.    Let   EfP    ] be equal to   (E    + E*)/2   for the same  7   case = . 

For the OHC and the CHS procedures, the following results are obtained. 

OHC M        = .48      E{P    1 
AV m  AV 

CHS MAV = .40      E[P    }AV AV m  AV 

These are compared with the following results for OHC-R and CHS-R proce- 

dures. 

OHC-R      MAV = .84      ECPm3AV 

CHS-R       MAir = .68      EfP   } A„   . 
AV m AV 

The result for the AHE procedure   is 

MAV = .94      E{P    )AV   . 
AV m AV 

It is therefore concluded that for a realistic estimate of the expected 

probability of a miss that the radii of the hyperspheres making up   R- 

should be used in ordering the   P?   observations.    Hence from this point 

on v/e will only consider the results for the AHE,  OHC-R,and CHS-R 

procedures. 

It should be noted that the lowest expected miss rate that can be 

achieved with the 40 main speaker training sample    occurs for  E = . 0224 

and    E   = . 0488.    This  occurs  when   39   P2   blocks are contained in   R?. 

Note that 39   P,   blocks arc counted in   R^ for the OHC-R and CHS-R 

procedures in the space consisting of 8 spectra with 32 components per 

i 
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spectrum and for the CHS-R procedure in the space consisting of 16 spec- 

tra with 16 components per spectrum.   In both spaces the test miss rate 

is lower than expected.    This is part of the reason why the   P     ordering 

procedure gives pessimistic results for a classifier of the CHS design. 

Other important results are: 

(2) All test miss rates lie in the 95% upper tolerance limit. 

(3) In 17 out of 21 cases we are 95% confident that the true miss rate lies 

within the limit obtained from the 95% upper tolerance regions. 

(4) (a)   In 19 out of 21 cases the test miss rate is less than   E    + a   . 

(b) In 16 out of 21 cases the test miss rate is less than   E  . 

(c) In 6 out of 21 cases the test miss rate,    M ,  satisfies 

E" < M < E+ . 

(d) In 1 6 out of 21 cases the test miss rate satisfies 

+ + + 
E    -o-    <M<E    +cr    . 

4. 11.      7040-7094 Computer Execution Time 

The approximate 7040-7094 DCS execution times for the speaker 

verification experiments are discussed in this section.    The execution 

time lor the training phase is approximately equal to the time for calcu- 

lation of the spectra plus the time for calculation of the distances ber.veen 

the   P.    and   P-   observations and for ordering them.    Let   "   represent 

seconds in the following equations.    Let   MS   be the number of main 

speaker training observations and   IM   be the number of impostor training 

observations.    First,  consider the space consisting of 6 spectra with 8 
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components per spectrum.    The training time is given by 

Training Time   =   4. 4,,^{MS + IM) + . 035,,*(MS*IM) 

For 40 main speaker training observations and 208 importor training 

observations,   a training time of 23-r- minutes was required.    During the 

test phase,   it is only necessary to calculate the spectra for the test 

utterance and to compare these spectra with those of the main speaker 

training utterances.    Let   UT   be the number of speakers which are 

tested.    Then the testing time is given by 

Testing Time   =   (4.4" + . OSS'^MS) *UT . 

For one test speaker and 40 main speaker training observations,   the 

testing time is 5.8 seconds.    For the 624 test speakers,  a total test time 

of approximately 60 minutes was required. 

For the space consisting of 4 spectra with 64 components per 

Bpectrum,the following equations hold. 

Training Time = 2. 9"*(MS+IM) + . 1 TB'^MS^IM) 

Testing Time    = (2. 9" + . 1 75"*MS)5;< UT 

For 40 main speaker training observations and 208 impostor training 

observations,   a training time of 36-r- minutes was required.    For 624 test 

speakers,  a total test time of approximately 72 minutes was required. 

The time required to test one speaker was approximately 9.9 seconds. 

For the space consisting of 8 spectra with 32 components per 

spectrum,  the following equations hold. 
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Training Time = 4. 9,,*(MS + IM) + . 175"*(MS*IM) 

Testing Time    ^ (4. 9" + . HB'^MS) * UT 

For 40 main speaker training observations and 208 impostor training 

observations,   a training time of approximately 45 minutes was required. 

For 624 test speakers, the total test time was approximately 120 minutes. 

The time required to test one speaker was approximately 11.9 seconds. 

For a space consisting of 16 spectra with each spectrum having 

16 components, the following equations hold. 

Training Time = 7. 4,,*(MS+ IM) + . 175"* (MS*IM) 

Testing Time    = (7.4"+ . 175n*MS)*UT 

For 40 main speaker training observations and 208 impostor training 

observations,  a training time of 55 minutes was required.    For 624 test 

speakers,  the total test time was approximately 150 minutes.    The time 

required to test one speaker was approximately 14.4 seconds. 

On the whole,  these execution times seem satisfactory for a 

practical automatic speaker verification system.    However,  the IBM 7094 

computer is probably larger and faster than a computer which is likely 

to be used in an automatic speaker verification system. 
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Chapte r    5 

THEORETICAL COMPARISON OF  THE   PROBABILITY   OF 

ERROR FOR  THE  AHE-DFTR PROCEDURE WITH THE 

PROBABILITY OF ERROR FOR  THE NEAREST 

NEIGHBOR RULE 

5.1.     Summary 

In this chapter the small sample performance of the AHE-DFTR 

procedure is investigated and compared to the performance of the nearest- 

neighbor rule for the two-class situation. 

Suppose   n    independent observations are available from class   1 
* 

and   n     independent observations are available from class   2 , both on 

the real line.    Let   P—.   , the false alarm probability, be the conditional 

probability that a new observation   V   is classified into class   2   given 

that   V   belongs to class   1 .    Let   P      , the miss probability,  be the con-* 

ditional probability that   V   is classified into class   1   given that   V   belongs 

to class   2 .    See equations 1. 5 and 1, 6.    The following results are 

obtained without specifying the class probability distributions. 

(1)   The false alarm probability and the miss probability are 

derived for the m-block AHE-DFTR procedure when   n    independent 

observations are available from class   1   and one observation is available 

from class   2 . 

(a)   For the above conditions the nearest-neighbor (NN) rule 
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( ) 

and the one-block DFTR procedures yield identical miss^probabilities. 

(b)   This leads to the result that under these conditions the 

miss probability for the m-block AHE-DFTR procedure,    m > 1 ,    is less 

than or equal to the miss probability for the NN procedure. 

(2.)    For   n» > 1   independent observations from class    2   and   n. 
^ 1 

independent observations from class   1   an intuitive comparison is made 

of the miss probabilities for the NN and AHE-DFTR procedures.    The 

result is that the miss probability for the NN rule is less than or equal 

to the miss probability for the one-block AHE-DFTR procedure. 

(3) For one observation from class   2   and one observation from 

class   1   it is shown that th    DFTR false alarm probability   P-,.    is   equal 

to one-half.    Furthermore, for two independent observations from class 

2   and one observation from class   1   it is shown that   ?„, = T .    This 
FA    c 

indicates that the number of class   2   observations does not affect   P1PAi 

a result expected from a consideration of distribution-free tolerance 

region theory. 

(4) It is further shown that the false alarm probability for the 

DFTR rule can be less than the false alarm probability for the nearest- 

neighbor rule. 

The results for   Pr,A   for the DFTR procedures hold regardless FA 

of the dimensionality of the space.    The comparison of   P^   for the NN 

rule with   P       for the DFTR procedure holds regardless of the dimen- 

sionality of the space as long as the same metric is used for both procedures 
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5.2.     The Nearest-Neighbor Rule 

Under the nearest-neighbor rule a new observation is classified 

into the class of its nearest neighbor.    The nearest neighbor is that 

observation which is closest to the new observation in some metric dis- 

tance.    The metric distance used in this chapter is Euclidean distance. 

Suppose there exist two classes, class   1   described by the 

probability distribution   F (z),  and class 2, described by   F  (z).    Let 

z   be a variable on the real line.    Suppose one observation is available 

froni each class.    Let the observations be denoted by   X.   and   Y    , where 

X    is from the population with distribution   F?   and   Y.   is from the 

population with distribution   F   .    Let   V   be a new observation.    Now 

let   Pjp.    be the conditional probability that   V   is classified into class 
* 

2 given that   V   belongs to class 1 and let   P.,   be the conditional proba- 
M 

bility that   V    is classified into class 1 given that   V   belongs to class 2. 

Also let 

Z1 =   |Xr V| (5.1) 
« 

and 

W^  |Yr V| . (5.2) 

Then   P       is the probability that   W. <   Z    given   V ~ F    , where V ~  F 
IW. X i Cm Cm 

denotes that   V   is from the probability distribution   F-.    Likewise, 

P ,A    is th*1 probability that   W   > Z     given   V ~   F   .    The probability 
Jb A 11 1 

distribution of   Z.   given that   V = v   is 

v 0 otherwise. 
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The probability density of   Z.   given that   "V = v   is 

. ; 

tzimltv)m   I f^v-f«^ + ^(v-Sj)        z^O 

I otherwise . 

(5.4) 

A similar distribution and density are obtained for   W   , where   W     is 

substituted for   Z.,    w.   is substituted for   z   ,  and   1   is substituted for 

2 .    Now let 

u = z1 - w1. 

The miss probability is the probability that   U > 0   given   V —   F 

The probability distribution for   U   given   V = v   is 

Fu(u/v)= ^dw^    ^l^w/V^7^- 

(5.5) 

(5.6) 

Since Z  and W  are independent given V = v, 
00 

Fu(u/v) := S dwiFz tu+wi/v)£w<wi/vJ ' 

The miss probability is given by 

CO 

PM = S    £2(v)dv [1 - F^O/v)] 
-00 

where 

(5.7) 

(5.8) 

(5.9) 

GO 

Fu(0/v) = [ dw1[F2(v+w1) - F2(v.w1)][f1(v+w1)+f1(v-v.-1)] 

Since 
00 

C dw^f^v+w^ + f^v-w^] = 1 

therriss probability is given by 

00 n 

PM=\   f2(v)dvS   dw
1[

1-F2(v+wl)+F2(v"Wl)^fl(v+Wl)+fl(v"Wl^ (5,10) 
— oo 0 
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A similar analysis can be made for the false alarm probability with the 

result 

PFA= S £2(v)dv5 dw
1tF2(v+w

1)-F
2(v-wi)]lf1(

v+^1)+'VV'Wl)J {SAl) 

Equivalent results for   P^,   and   P^, A    can be obtained bv letting 
M FA ' 

U = W - Z.  .    These results are listed below because they are used in 

a later analysis. 

PMS \  f2Mdv(\ ^[F^v+z^-F^v-ajJf^Cv+E^+^Cv-Zj)] (5.12) 
'-00 

-^00 

Also let 

1 <i <n 
and 

Z = min    Z. (5.16) 

W = min   W. (5.17) 
1 < i < n. 

( 

FA=5  fl(v,dvS "äZjU-FjCv+ijj + rjCv-ZjjJ^lv+rjj+^Cv-Zj)] (5.13) 
— 00 0 

The fact that equations 5.12 and 3.10 and equations 5.13 and 5.11 

arc rcsp ,tively identical can be seen by integrating equations 5.10 and 

5. U by parts and using equation 5. 9. 

Suppose   n      statistically independent observations   X , . . . ,X 

are available from class 2 and   n     statistically independent observations 

Y,, . . . . Y        are available from class 1.    Let   V   be a new observation. 
1 nl 

Now let 

Z,  =   | X.- V| i = l....,n (5.14) 
i       '     i 2 

and 

W. =   | Y.- V| I el,... ,» (5.15) 
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P      is the probability that  W < Z   given   V ~ F2 .     P is the prob- 

ability that   W > Z   given   V ^ F  . 

Consider the problem of finding the probability distribution for 

Z   when   Z = min (Z , Z   ) .    Figure 5. 1 shows the region for min (z, 2? )< z 

Then 

F_(«) = F     (z) + F     (z) - F {z,z). (5.18) z z1 z2 z1z2 

If the variables   Z    and   Z.   are independent and identically distributed 
1 *> 

with distribution   F      ,   the probability distribution for   Z   is given bv 
Zl 

Fz(z) =1 - [1 - Fz (z)]2. (5.19) 

Suppose   Z = min (Z , Z-, Z.) .    Then 

Fz(z) = Fz(z)+Fz (z)+Fz (z)-Fz z («,«)-Fz z (z,z)-Fz   z (z, z) 

+ F     7        (z,z,z). (5.20) 
Z1Z2Z3 

If the variables    Z , Z   ,  and   Z      are independent and identically 

distributed with distribution   F      , 
Zl 

Fz(z) = 1 - [1 - Fz (z)]3 (5.21) 

These equations are easily extended for    Z = min      Z. . 

i<i<»2 ' 

Again consider finding the distributions of   Z   and   W   given ir. 

equations 5.14 through 5.17.    The probability distribution for    Z.  ,   given 

V = v ,    is given by equation 5, 3.    Since    Z ,   Z-, . . . , Z        are independent 
1       ^ n2 
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Figure  5.1.    The Transfornation Z = Ein(Z,,2  ) 

z=x1-y1     Z=X2-Y1 2=Y1-X1       2=Y1-X2 

Figure  5.2,     Ihe Transforniation Z=Eln( | Y1-x1J, f Y-j-X-1 ). 

L 
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and identically distributed given   V = v , the probability distribution of 

Z   given   V = v   is 
n 

Fz(Z/v) = 1 - [1 - Fz(z/v)]      . (5.22) 

The probability density for   W   in equation 5.17 is easily seen to be 

V1 
fw(w/v) = n^l - Fw (w/v)]        fw (w/v) (5. 23) 

Let   U = Z - W .    Then 

» u+w 
r^u/v)«^   dw  \        dzfw  z{w.2/v) (5.24) 

and 
00 

PM = \ hW**11 - Fu(0/v,] (5-25) 

When the proper substitutions are made, one finds 

»CO j^ 

P    =n   C   f2(v)dvC   dw[l-F2(v+w)+F2(v-w)]      * 

n-1 
[l-F1(v+w) + F1(v-w)]        [f (v+w)+£1(v-w)] . (5.26) 

By a similar procedure one obtains 

n. 
PFA=n2^  f1(v)dv^  dz[l-F1(v+z)+F1(v-*)] l* 

X.00 ^0 

n_-l 
[l-F2(v+z) + F2(v-z)] [£2(v+z) + f2(v-z)] . (5.27) 

5. 3.      The AHE-DFTR Procedure 

Now consider the AHE-DFTR procedure.    Suppose one observation 

is available from each class.    Let   V = v   be a new observation.    By the 
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AHE-DFTR procedure the observation   V   is assigned to class 1 if 

|V. Xj > |YrX1|    . (5.28) 

Let 

Z = |Y1- X, 

and 

(5.29) 

W=   IV-XJ . (5.30) 

Then a miss error is made when   W > Z   given   V ~ F    .    Let   U = W - Z 

then a miss error is made when   U > 0   given   V ~ F    .    Proceeding as 

before with   V ~ F   , 

where 

and 

Then 

00 

Fu(u/x1) = f   Fw(u+Z/x1) fz(«/x1)dz , (5.31) 

r F^u+z/xj) s / F2(x1+u+z) - F2(x1-u-z)       w > 0 

0 ollierwise 

I 
f^z/xl) =     |f1(x1+z)+f1(x-z) 

0 

z > 0 

otherwise 

00 00 

PMS5   f2(xl)dxlS   [l-F2(x1+z) + F2(x1-z)][f1(x1+z)+f1(xrZ)]dZ. (5.32) 
- 00 0 . 

This equation is identical to equation 5.10.    Therefore,  given one sample 

from each class, the AHE-DFTR procedure has the same miss probability 

as the NN rule. 

Consider the error when   V   is classified into class 2 and  V~F . 
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[ 

Now 

{ 0 otherwise      (5.33) 
and 

and 

u(u/x1)=^[F1(Vu+Z)-F1(x1.u.z)][fi(Vz)+fi(v2)]d2> 

^A^^^^V07^' 

(5.34) 

(5.35) 
The n 

^A* S ^Z**!^ tFi(x+z)-F
1(
x

1-
z)Hf1(x1+2)+f1(x1-Z)]dz . (5.36) 

•■00 0 

Noting that the last integral is of the form   \udu ,  the following result 

is obtained. 

This is as expected from the DFTR theory since one block is used to 

form region   R? . 

n   — Class 1 Observations,    1 — Class 2 Observation 

Now suppose n. independent identically distributed observations 

are available from class 1 and one observation is available from class 2. 

Let 

V   |Y. - X, i "     1' 1 = 1,...,^ (5.38) 
and 

Wj* iv.xj 
(5.39) 
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Let 

Z = min    Z. . 
i    • l 

l<i<n 

Suppose   V ~ F^ .    Then a miss error is made when   W > Z .    Let 

(5.40) 

U = W - Z .    The n 

0 

and 

Fw(w 

I 
/Xj) .   j F2(x1+ 

z. > 0      I =1,... ,&. 

otherwise (5.41) 

w) - F2^xi' w) 

0 

w > 0 

otherwise . (5.42) 

Since the    Z.   conditioned on   X    are independent,  it is seen from 

equation 5. 21 that 

nl 
F^z/xj) = 1 - [1 - Fz (z/^)]     . (5.43) 

F   (u/x )   is equal to 

» u-t-z 
FyCu/xj) = f   dz ^       dwfw(w/x1)fz(Z/x1) . (5.44) 

Substituting the density for   f   (z/x )   into equation 5.44 and integrating 

over   w ,    it is found that 

CO V1 
^(u/x^ =^   dzFw(u+z/x1)n1[l-Fz (z^)]  x    fz (z/x^ 

Substituting   u = 0   in equation 5.45 and noting that 

« nr1 
\   IL[1-F    (z/x )]        f    (z/x^)dz=l   one obtains 

(5.45) 

L 
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PMS*S\W S^l-W.) + F2(V.)] * 

n,-l 
n1[l-F1(x1+z)+F1(x1-z)] 1    [f1(x1+Z)+f1(xrz)]. (5.46) 

Note that equation 5. 26 with   n = 1   is identical to equation 5.46. 

Therefore, for   n.   independent observations from class 1 and one observa- 

tion from class 2, the NN rule and the one block DFTR procedure give 

identical miss probabilities. 

Let region   R^   be the union of more than one block   (m > 1) . 

Region R_   becomes larger as each block is added.    Therefore,  for 

•m > 1 ,   n.   class 1 observations, and one class 2 observation, the AHE 

miss probability is less than or equal to the NN miss probability, 

DFTR „NN 
P <    P 

M -      M 
(5.47) 

Then 

We next consider the false alarm probability,    P—.  •    Now 

Fw(w/x1) =   j F^x^ w) - FJCXJ- w) w > 0 

0 otherwise . 

F^O/x^ = \   dz[F2(x1+u + z) - F2(x1-u-z)]n1 

'0 
n,-l 

[l-F1(x1+z)+F1(x1-.z)] 1     [f1(x1+z)+f1(x1-z)]. 

(5.48) 

(5.49) 

Integrating by parts one obtains 

FA 
^ 

+ 1    ' (5.51) 

This is the result predicted by the DFTR theory since one block out of 
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the possible   n + 1  blocks is used to form region   R- . 
1 2 

Let   region   R    be the union of   m   blocks where the AHE ordering 

procedure is used.    Let   Z   be the m^1 smallest of the   Z.,  i = l,...,n^. 

Denote this by 

Z =     min     (m) Z. . (5.52) 
l<i<n 

From the theory of order statistics,   (c.f.  Kendall and Stuart (1958), 

p.  252) the probability density for   Z   is given by 

n I . n.- m 
fZ(') ' (m-Dilvm)!   y^P-yJ fZ1

(z)-    (5-53) 

Substituting equation 5. 53 into equation 5. 35 one obtains   P       when   m 

blocks are used to form   R_   by the AHE procedure. 
2     7 r 

(5.54) 
n - m 

[F^x^ z) - F1(x1- z)]m'1[l - F^Xj+z) +F1(x1- z)] [f^x^ z) + f^xy z)] 

Similarly,    P.^ A    for   m   blocks is 
FA 

PFA(m) = S" ""I W SU dZ'Fl(Xl+ ^ - Fl(Xr Z,]   (m-l)"('n.-m): -co Q 1 

(5.55) 
1 n-m 

[F^l z) - F1(xr z)]m" [1 - Ffo+z) +F1(x1- z)] [f^x^ z) if^- z)]. 

The integral over   z   is simply the expected value of a random variable 

from a Beta distribution with parameters   m   and   n -m + 1 .    Then 

m-block false alarm probability is equal to C 
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m 
PFA(m)=vT- (5•56, 

DFTR Procedure for  n- > 1 

We now use the same techniques to investigate the DFTR probability 

of error when more than one class 2 observation is used.    The equations 

become very complex and can not be carried through in general (i. e. 

without assuming some probability density function).    This section is 

included only to show some of the difficulty which is involved.    An intuitive 

investigation into the problem is made in the next section. 

Suppose two independent observations X. and X? are available 

from class 2 and one observation Y. is available from class 1. Let X. 

and   X-   be given, with  X. < X? .    Let 

Z. =  lY. - X. | I «1.2 
i      '1        i' 

Z   = min(Z , Z  ) 
(5.57) 

Wj =  |V - X. | i = 1, 2 

W  = min(W ,W2) 

The distribution of   Z   given   X   < X-  is, from equation 5.18, 

F_(z) = F_ (z) + F     (z) - F (z. z). (5. 58) 
Z Zl Z2 Z1Z2 

F_ _  (z,z)   has a nonzero value only when   z > —r i_ .    F., _   (z, z)   is 
Z1Z2 2 Z1Z2 

equal to the   F    distribution in the region of overlap of the intervals 

expanding from each   x , 
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Since   X, < X, 
1        2 

Fzz (z zr2 
'z/xl<x2) =  ( r1(x1+«)-ri(x. 

( 0 

Then 

z) z > 
X2-Xl 

otherwise.(5. 59) 

I 

Fz(z/x1<x2)=  I F1(x2+z)-IJ(x1-Z) 

^(x2+ z) - ^(x2- z) +^(x1+z) - ^(Xj- z) 

0 

z > 
x2-z1 

2 

0 <z < 
X2-Xl 

-   -       2 

otherwise. (5. 60) 

The above equation could have been obtained directly fiom Figure 5.2 . 

Error   E     is obtained when   W < Z   and   V ~ F   .    In this case 

Fw(w/x1<x2)=   |F1(x2 + w)-^(x1-w) w> 
:2-*l 

-      2 

X2-Xl 
^{x2 + w) -IJ(x2-w)+^{x-fvv).F(x -w)    0<w< — 

0 otherwise.   (5.61) 

I>et 

and 

U = W - Z 

dz I  f 7. 
z 

Z 

z > m 

ö < z < m 

(5.62) 

dFw.(w/ Xl 
dw 

<xz)     (fw w > m 

0 < w< m (5.63) 

where 

m = 
"z-'h 
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From Figure 5. 3 the distribution for   U < 0   given  x   < x     is 

m        z •       m 
F^O/xj < x2) = 5o dz 5odwf^f"  + ^J* ^ dwf* ^ + 

S dz S dwfz fw (5-64, 
m     m 

These integrals are easily solved.    Consider the first double integral. 

■jn.      «z pin 

[f1(x2+Z)+f1(x2-z)+f1(x1+z)+f1(x1-Z)]        (5.65) 

pin      «z pin 
^    dz^   dwf^f^5^   dz[^(x2+z)-^(x2-z)+F1(x1+z)-^(x1-z)]^ 

Recognizing that this integral is of the form   \udu   one obtains 

\    dz^   dwfwfz = 2[F1(x2+m)-^(x2-m) + ^(x1+m)-F1(xrm)]      (5.66) 

Consider the second double integral of equation 5.64.    By straightforward 

integration one obtains 

'm,    -+ -- 

'm     w0 

[1 - F(x2+m) +^(x1- m)] . (5. 67) 

P09       fvm       +   _ 
^   dz^    dwfzfw = [^(x2+m)-^(x2-m)+^(x1+m).^(x1-m)]* 

Now consider the final double integral of equation 5. 64.    Integrating with 

respect to   w   one obtains 

[   dzf   d^fzfw=C  dz[^(x2+z)-^(x1-z).F1(x2+m)+F1(x1-m)]^ 
rn     Jm       "    '     Jm 

[f1(x2+z)+f1(x1-z)] . (5.68) 

Let 

u = ^(x2+z)-^(x1-z) 

du =f1(x2+z)+f1(x1-z) . 

« 
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DH 

W- UfZ 

rigure 5.3.     The Transformation for Equation 5.64. 
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Then the integral becomes 

rw     nz       +  +     rl 
\ dz \  dwf   f    =\     udu - [q(x2+m)-E(x-m^l-FCx. + ml + ^fv-m)] 
Jm    Jm      ^  w    J^(x2+m)-^(x1. m)   ^   1 1   2 ll 

(5.69) 

After integrating and collecting terms, one obtains 

y dz^ dwf^f^ =~[l-F1(x2+m)+F1(xrm)]2 . (5.70) 

Let 

FY =F
1(

X2+m) * ^(V^ 

Fx = F1(x1+m) - F1(x2-m) . (5.71) 

Then 

Fu(0/x1<x2)=i[(Fx+Fy) + (l-Fx)2+2(Fx+Fy)(l.Fx)3 

^iFY + l)2- 

Note that 

, + m ■ x,+ "Z-*!       xl+x2 

and 

1        2 

X2_xl     xl+x2 x2-m=x2-—r- =—r 
Therefore 

T ,VX2N     _  ,'l*XZ 
FY -Ii(^)-n(:lF2)-«- C5.72) 

Then 

and 

Fu(0/x1<x2) =- (5.73) 

XZ 

"^J^WS d»iWi PFA 
'-CO ^OÖ 

1 
2   • (5.74) 
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This is, of course, the answer which was expected from a consideration 

of DFTR theory.    This answer would be expected regardless of the 

number of class X observations used to design the classifier. 

We now wish to obtain an expression for the miss probability for 

one class 1 observation and two class 2 observations.    F-.Jw)   i-: now 
W 

given by 

Vw) = 1
 F_{x_ + w)-F_(x-w) 2V 2 2X 1 w> 

Vxi 
-     2 

x - 
2-Xl 

F2(x2 + w)-F (x2-w)+F2(x+w)-F2(x - w)     0<w< 

otherwise,        (5. 75) 

F  (0/x < x  )   is given by equation 5.64.    The first double integral in that 

equation is equal to 

^   dz^ dwf^f" =^    dz[F2(x2+«)-F2(x2.»)+F2(x1+z).F2(x1.z)]# 

[f1(x2+z)+fI(x2-z)+f1(x1+Z) + f1(xrz)] . (5.76) 

The second double integral is equal to 

^  dz ^   dwf^f^= [F2(x2 + m)-F2(x2-m)+F2(x1+m)-F2(x1-m)]* 

[1 - F^+m) + FjCxj- m)] , (5. 77) 

m     ^0 

The last double integral is equal to 

z 00 

C dz[ dwf^fz = C d/J[f1(x2+ z) +f1(x1- z)][F2(x2+z) - F2(x1- z) - F^+m) +F2(xl- m)] 
m   m m 

= - [F2(x2+ m) - F2(x1- m)] [1 - F^x^ m) iF^- m)] 

00 

+ C dz[f1(x2fZ)+f1(x1-z)][F2(x2+z)-F2(xrz)], (5.78) 
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X   -X 
2    1 

Combining terms and substituting   m =—-—   , one obtains 

Fu(0/x1< x2) = C dz[F2(x2+z)-F2(x2-z) + F2(x1+z)-Fz(x1-z)][f1(x2+z) 

to 

+ f1(x2-z)+f1(x1+z)+f1(x1.z) + r  dtlTz{xl+%)-F2{xl.z)]* 

[f1(x2+Z)+f1(x1.z)] 2 

Fu(0/x1<x2) «C dz[F2{x2+z).F2(x1-z)][f1(x2+z)+f1(x1-z)] 

V3^ 
+ ^     2     dz[F2(x2+ z) - F2(x1- I)] [f^x^ z) +f1(x2- B)] 

2 

0 

V3^ 
+ ^    2     dz[F2(x1+z)-F2(x2-z)][f1(x2+z)+f1(xrz)] 

0 

*2^1 
2 

;'0 
+ ^     2     dz[F2(x1+z)-F2(x2.z)][f1(x1+z) + f1(x2-z)].   (5.79) 

pxx iß given by 

PM ■ 2 f^^^) SXV^P-V0^ < X2)] ' (5-80) 
.00 W-0D 

This equation has not been reduced so that a meaningful comparison can 

DFTR NN 
be made between   P.,       v     and   P.,     without any assumption on the 

M M 

probability distributions.   Hence an intuitive comparison is made below 

of the miss probabilities for the  DFTR and NN procedure when   n- 

class 2 observations and  n.   class 1 observations are available. 
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5.4.     Intuitive InvGstigatio/i 

Intuitive justification of these results can be easily produced. 

For example,  consider again the case when one observation is available 

from each class.    Let a new observation be denoted by   V .    The NN rule 

compares    |V - X |     with    |V - Y. | .    The DFTR procedure con.pares 

[Xj-Y-I   with    |X-V|.    Let   V~F    and replace   V   by   X .    Then 

PMFTR = Pr[(lX!"Yll-lX-Xll)<0] 

and 

P^N  ^PrfdX-Yj -   IX-Xj) <0] . (5.81) 

Note that the random variable     |X     X| -   |X - Y   |     conditioned on   X. 

has the same statistics as the random variable    JX- X   | -   |X-Y   | 

conditioned on   X .    Since     X.    and   X   are independent identically dis- 

tributed random variables,    Pw   for the DFTR rule is equal to   P..   for 
M M 

the nearest-neighbor rule,  a result which was obtained formally in the 

first part of this chapter.    Now let   V 'w F    and replace   V   by   Y .     Then 

the false alarm probability for the DFTR procedure is 

DFTR 1 PFA        =Pr[(|X1-Y1| -   |X1-Y| )<0] =-, (5.82) 

another result previously obtained. 

Now consider a problem for which no results were obtained. 

The problem is to compare   P^,   for the DFTR rule and   Pw   for the 
M M 

nearest-neighbor rule when more than one observation is available from 

class 2.    Specifically,   suppose two observations are available from 
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class 2 and one observation is available from class 1.   Let  V ^ F.   and 

replace   V   by   X .    Then 

DFTR PM =Pr [min(|XrY1|,|X2.Y1|)-min(|X.X1|X-Y2|) <0]  (5.83) 

and 

P^N=Pr[|X.Y1|-min(|X-X1|, JX-XJ <0] (5.84) 

The term immediately preceding the inequality sign is the same 

in both equations.   Note that 

Pr[min(|X1.Y1| JX^YJ)  < 0] > Pr[|X- YJ| < 0] . 

The dependency in the terms,   min( JX - Y j , |X  - Y | )    and 
XX w X 

min( |X-Xj , |X- X   ) )   in the first equation is through   X    and   X    , 

The dependency in the terms    |X-Y|    and   min (|X - X | ,  |X - X   | ) 

of .the second equation is through   X .   Since   X,   X., and X     are 

independent identically distributed random variables, the conclusion is 

made that 

NN        DFTR 
PM    ^PM • 

For the general case of   n    pbservations from class 1 and   n_   observa- 
1 £• 

tions from class 2,    P       for the DFTR procedure is 
M 

DFTR. 
P. . = Pr[min|X.-Y.| -min|X-X. 1 < 0] (5.85) 

l<i<n ^<i<n7 

and   P. .   for the nearest-neighbor rule is 
M 
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M = Prl   min    IX-X.    - 
1™n    ^^jl-    ^n      |X.X.|<0] (5.86) 

Therefore,  the general conclusion i s that for   n    > 1 

NN DFTR 

(5.87) 

This is because the 

distribution f 

re are   («^ i)^   more random variables of ^ 
same 

rom which to find a mini 
timum which is less than zero in 

the DFTR case  than  in the   NN   case      TM    r    .u ixiN   case.    This further lead 

«NN ,   _DFTR a larger difference in   P., and   P^# 
M M 

observations is increased. 

s one to expect 

as the number of class 2 

Note that the false alarm probability for the DFTR rule can be 

smaller than the false alarm probability for the NN rule.    For example, 

available from each class.    Then 
suppose two observations are 

0DFTR 
P

FA        =0.3333. 

If the class probability densities are univariate normals with equal 

variances and with the distance between 

Fix and Hodges (1952) obtained 

^NN 
PFA   = 0.4086 . 

(6.88) 

means equal to the variance! 

(5.89) 
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Chapter 6 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

A study has been made of the application of distribution-free 

tolerance regions to pattern recognition.    Some procedures have been 

presented here for designing a pattern verification system with a given 

confidence that the false alarm probability will be less than a desired 

quantity.    These procedures maximize the number of main class training 

observations which are correctly classified.    In addition,  a method has 

•been given for obtaining a measure of the miss probability.    The procedures 

have been successfully applied to a speaker verification problem. 

The advantages of the hypersphere DFTR classification procedure 

are the following:   (1) The hypersphere DFTR classification procedure 

gives information about how well the classifier is expected to perform. 

This is done without any knowledge of the class probability distributions 

and with only one sample of independent observations from each class. 

(2) The procedure is able to form very complicated, unconnected decision 

regions.    Hence it is useful when multimodal class probability distribu- 

tions are involved.    (3) The hypersphere DFTR procedure is very easily 

programmed on a digital computer.    (4) The procedure is independent 

of the dimensionality of the measurement space.    (5) It offers automatic 

reduction of the data which must be stored in the computer. 

.   It should, however, be noted that this is a distribution-free pro- 

cedure and hence can be expected to be quite inefficient when compared to 
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a procedure based upon a priori knowledge of the class probability distri- 

butions.    The hypersphere DFTR procedure is most applicable to the 
« 

situation in which (1) nothing is known about the probability distributions 

and (2) information about the expected probability of error is desired 

without using a test sample.    The only requirements for using the hyper- 

sphere DFTR approach are (1) a properly labeled sample of independent 

observations must be available from each class and (2) the class proba- 

bility distributions must be stationary. 

The hypersphere DFTR procedures were applied in an automatic 

speaker verification experiment.    Go* d results were obtained by the use 

of many short-term spectra of the word "my".    Error rates as low as 

1. 92% were obtained when a 256-dimensional measurement space was used. 

In a 48-dimcnsional measurement space,  error rates as low as 4.48% 

were obtained. 

Three different ordering procedures were developed and are 

described in detail in Chapter 3.    They were tested on the speaker veri- 

fication data.    Of the three methods,  the CHS procedure gave lower error 

rates on the average than the OHC procedure and the OIIC procedure gave 

lower error rates on the average than the AHE procedure. 

A comparison was made of the false alarm rate which was obtained 

in the speaker verification tests with the 95% upper tolerance level on the 

false alarm probability which was predicted with the DFTR approach. 

All test false alarm rates fell below the 95% upper tolerance limit.    The 

average test false alarm for the 21 different cases studied here was 
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approximately equal to 0. 8 of the average expected false alarm probability 

predicted from the DFTR approach. 

A comparison was made of the test miss rate with a measure of 

the miss probability that was obtained by using a tolerance regions 

approach.    All test miss rates fell below the 95% upper toleranc«   limit. 

For the 21 different cases studied, the average miss rate was equal to 

0. 94 of the average expected miss rate for the AHE procedure.    The 

average miss rate was equal to 0. 84 of the average expected miss rate 

for the OHC-R procedure.    The average expected miss rate was equal to 

'0.68 of the average expected miss rate for the CHS-R procedure. 

Suggestions for Further Work 

There are many mathematical questions which were not resolved 

in Chapter 5.    For example no general expression was obtained for the 

m   block miss probability R .(m) for the AHE procedure for   n_ class 2 M e. > 

observations and   n.   class 1 observations.    If this expression,   and 

similar ones for the OHC and CHS procedures could be obtained,    P   im) 

for the AHE, OHC,   and CHS procedures could be compared.    This would 

probably require assumption of some underlying probability density 

functions.    One would also like to compare the miss probability for the 

m   block AHE procedure with the miss probability for the nearest-neighbor 

rule.    Specific questions for which answers are needed are 

(1)   Is the total probability of error,    £,?„.+  £- PX/r , for the DFTR rule 
1    FA        c    A4 

ever less than the total probability of error for the nearest-neighbor rule 
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n n2    • 
when the a priori probabilities are   £, =  and  £ =      ? 

«1     n1+n2 ^2    ni+n2 

It appears that the ansv/^r to this question may be no.    This follows from 

the fact that the NN procedure uses information about all observations 

from both classes whereas the DFTR procedure uses information about 

all observations from class 2 but only information about those observations 

from class 1 which are used in forming the   m   blocks of region   R-. 

The second question for which one would like an answer is:   What 

is the value of   m   to guarantee that the miss probability for the DFTR 

procedure is less than the miss probability for the nearest-neighbor rule? 

The answer for   n   class 1 observations and 1 class 2 observations has 

been obtained.    For this case   m = 2.    However,  no result has been 

obtained for   n    > 1 .    Consider an example where two observations are 

available from each class.    Then the nearest-neighbor miss probability 

is 

P^N= P^minClX-Xj,  |X.X2|)>min(|X-Y1|>  |X-Y2|)] (6.1) 

and the one-block DFTR miss probability is 

DFTR 
PM (1) = PrfmindX-Xj JX-Xj) ^in^-Y^ , 

|X1-Y2|.lX2-Y1MX2-Y2|)] (6.2) 

and the two-block DFTR miss probability is 

PM   ^^ = Prlmin(lX- ^1 '1X-X
2I) >nuix[min(|X1-Y1l , 

IX^Yj), mln(|X1.YE|,|X2-Y2|)]   . (6.3) 
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NN       DFTR 
It was previously concluded in Chapter 5 that   Pw   < P w       (1) .    Now 

compare the NN probability with two-block AHE-DFTR miss probability. 

Suppose the terms on the right side of the inequalities of equations 6.1 

and 6. 3 are compared.    It is easily seen that 

00 

Pr[min(|X-Y1|,|X-Y2|)<w] = ^ f^y) dy 

[1 - [l-F2(y + w)+F2(y.w)]?'} (6.4) 

and 

Pr[min(|X1-Y1|,|X2-Y1|)<w] = C f2(x)dx 
-« 

; {1- [l-F1(x + w) + F1(x-w)]2} ' (6.5) 

These two terms cannot be compared without some knowledge  of the 

probability distributions.    Suppose both distributions are normal with 

equal variances.    Then one would expect little difference in the (6. 4) and 

(6.5).    Likewise one would expect little difference in 

Pr[min(|X-Y1MX-Y2|)<w]   and    Pr [min ([x^ Yj JX^YJ) <W] . 

Since equations 6.3 involved   max {min(lX - Y | , |X - Y |),  min(|X -Y j, 

• i -i DFTR NN 
X -Y   )J  ,  one expects that   P (2) < P        for two normal distribu- 

c     c M —    M 

tions with equal variances. 

Many of the ordering procedures presented in Chapter 3 were not 

tested experimentally.    For example,  the ordering procedure which gives 

both the expected false alarm probability and the expected miss probability 

(section 3.10) was not tested.    The performance of this procedure would 

be of considerable interest.    In addition,  an experimental comparison of 
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the hyperspherc DFTR procedures with classification procedures which 

were not tested here would be desirable. 
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Appendix  A 

THEORY OF DISTRIBUTION-FREE TOLERANCE REGIONS 

Summary 

This section contains a discussion of the theory of distribution- 

free tolerance regions   (DFTR),  especially that theory which can be 

applied to pattern recognition.    At first, the discussion is limited to one 

dimensional,  continuous probability distribution functions.    The object 

is to make the statement that with probability   y (0<y< 1)   at least 

100|3% (0</3<l)   of an unknown probability distribution is contained in 

the interval between certain order statistics. 

Next, techniques are considered for the construction of regions 

in  P   dimensional space in which at least 100/3%  of an unknown  D 

dimensional distribution is contained with probability   y .    Results for 

discontinuous distributions are then discussed. 

A. 1.     One Dimensional Theory 

Suppose   X   is a random variable with a continuous distribution 

function   F(x) .   The probability that   X   is less than or equal to   x   is 

denoted by 

Pr(X<x) = J^fCyldyrFCx). (A-l) 

Let the differential form of the above equation, 

Pr(x-6x<  X <x) = dF(x) , (A-2) 

be called the probability element of   X . 
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Suppose   (X. , X  , . . . , X )   is a sample of   n   statistically inde- 

pendent observations from a population with continuous distribution   F(x) i 

Population is used here in the usual statistical sense to mean the totality 

of possible outcomes of an experiment.    The probability element of the 

sample is 

n 
Pr(x - 0x,< XLOc,...^   - Öx   < X   < x ) =TrdF(x.) . (A-3) 

1        1        11 n        nun., i 
1=1 

Let   Y.-F(X.),    i::1.,..., n.    The probability element of the   Y.    is 

PCy1-«y1<^<y1 V5yii^W" 11   dy.     0 <y. < 1 
1=1 

otherwise . 

Suppose the observations   X  , X  , . . ., X     are arranged in order 

of increasing magnitude.    The ordered observations,    Xn.,X     ,...,X 

where   X,,, < X,-, < . . .  < X.   v ,  are called order statistics of the 
(1)-    (Z) - -    (n) 

sample.    The intervals   (-", X    ] ,  (X     ,   X.    ] , . . . , (X.    ,»)   are called 
(1/ (i)        v^) . (nJ 

sample blocks.    The random variables   F(X     ), F(X.    ) - F(X     ), . . . , 

l-P^X.   .)   are called coverages of these blocks.    Notice that the coverage 
(n) 

of a given block is the amount of probability from the distribution function 

F(x) in that block.    Since   F(x)   is assumed continuous,   Pr{X..   i^^...} 

= 0,  i = 2,...,n.    Therefore the   <   sign between the order statistics 

can bo replaced by the   <   sign. 

The probability element of the ordered random variables 

Ym s.F0C    ) ,   i =: 1,2 n   is 
(i) (i) 

C 
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Kdy(1)dy(2)...dy(n) 0 Ky^K Y{2)<... <yw<l 

0 otherwise , (A-4) 

To find the value of the constant K, equation (A-4) is integrated over its 

region of definition.    Since   F(x)   is a continuous nondecreasing function 

of   x , the   v.. Ja   and the   x    's   have the same order.    Therefore 
(i) (x) 

O^-.-C2'^'1'"7'2'-^^11        <A"5, 

and   K = n! 

Eventually the statement, 

Pr{[F(X(s)) - F(X(r))] > iS} = y , (A-6) 

is made where     r   and    s    are positive integers with   r < s < n . 

Therefore the marginal, joint distribution of   F(X     )   and   F(X     )   must 

be found.    The probability element of   Y.    = FCX.  .)   and   Y,  , = FiX.  .) r / (r) (r) (s) (s) 

is obtained by integrating equation (A-5) with respect to   Yn\> • ' ' »Y/    i\ 

over the region   0 < y,,. < ... < y.  ,  , with respect to   y.   ,,.,... »y.    ,. 6 '(I) (r) ('+*) (•-*) 

over the region  y,  . < .. . < y,  , , and with respect to   y.   ,,.,... .y,  x (r) (s) (s+1) (n) 

over the region  y,   .<...< y    . 
(s) 'n 

(r)      '(r)-    (r)    '(r)     Ms       '(s)-    (s)    '(s)-' (r)   W7(r)- *(r)^7(r) ' '(s)   w'(s)-    (s)    '(s) 

V(r+1) 
nIdy(r)dy(s)V--i      dy(s+ir--d^n)i    •-•]      dy( 

y(s)     y(s) y(r) y(r) 

pY/y)     r^ifZ) 
dVi)i •••!  dy(ir--dy(r-i) = 

n!dy
(r)dy(s) r-1. ...r.l.. ,«-■ 

(r-1); (s-r-l); (n-s)! y(r) ly(s)'y(r)J l    y(s)J 

^^^(s)^ (A-7' 
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The probability element of the random variable ,    Y,  v- Y,  . . 
(s)       (r) 

is desired.    Therefore let 

(s)        (r) 

and 

Z = Y.   . . 
(r) 

The Jacobian of the transformation is one.    Hence, probability element 

of   W   and   Z   is 

nldzdw z s-r-lr, -.n-s _, . 
■;—rrrr rrrr r. w [1-w- z J 0 < z < w + z < 1  . 
(r-l)'. (s-r-1)! {n-s)l 

Integrating   z   over the range   [0,1-w] , the marginal distribution of 

W = F{Xt   J - F{Xt   J   is obtained, 
(s) (r) 

s-r-1 
nl w dw 1-w      . 

Rr[w.6w< W< wl -(r-1). (t-r-1). (n-t)i ^    z
r-(l.w.z)n-sdz (A-8) ( 

Letting    z = (l-v/)t ,  this equation reduces to 

s-r-1 ,    „      v       .1 

0 

.,   r      c .Ir        1 nlw dw 1-w        P   n      .r-l n- 
Pr[w-6w< W<w} =   (r.1).(s.r_1)1(n.s):     \   (I-)        (1-w) 

(l-trS^dt. 

But 
1 

n-s   r-l (n-s)I(r-l)l 
t        dt = 

(n-s+ r)l 

Therefore 

Pr[w.6 w < W < w] = (s_r.1):^.s + r),   w
8-17-1 (l.w)n-S + r dw 

0 <w < 1 . (A.9) 
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i   I 

• 
Equation (A-9) is recognized as the Beta distribution. 

The probability that   F(X     ) - F(X     )   is greater than or equal 
(s/ (r) 

to  5   is given by 

1    ,      s-r-1 ..      .n-s + r 
Pr[[F(X(g)).F(X)(r))]>^}=^    S: w (1-w) dw 

(8-r-l):(n-s + r)l 

= 1 - l0(8-r, n-s + r + 1) (A-10) 
P 

The function   Io(p,q)   is called the Incomplete Beta Function and its values 

are tabulated in the literature [Pearson (1934)].    Notice that   s-r   appears 

Symmetrie ally in the above equation.    Let   m = n + 1 - (s-r)   be the 

number of intervals which are excluded from the region in which we 

want to contain at least   ß   of the population.    Then Pi{[F(X     )-F(X   .)] > jS] 
(sj (r) 

= y   is given by 

r1 nl n m m 1 
V « \     7 rfn TTT w11""1 i1-™)™'   dw = I0(n+l-m,m) . (A-ll) '     J«   (n-m)l(m-l)l ß 

Given three of the four variables   n,m,#,y   one can solve for the 

fourth.   Murphy (1948) has constructed graphs of  ß   versus   n(n < 500) 

for various   m   and for confidences   •y=0.90,  0.95, 0.99.   Sommerville 

(1958) has tabulated   m   for values of   n = 50 to   n = 1000;   ß = 0. 50, 

0.75, 0.90, 0.95, 0.99; and  y = 0. 50, 0.75, 0.90, 0.95, 0.99.   If 

these graphs and tables do not contain the desired values for   n, m, ß, 

or   y , one can calculate   n   by the following approximation due to Scheffe 

and Tukey (1945), 
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n^[4 XZm;l-YiUß)fomß)*Z{mmlÜ (A"12, 

2 
where   X is the point exceeded with probability   1-y   for the Chi- 2ni;l-y r r / / 

squared distribution with   2m   degrees of freedom.    For   y   and   ß   in 

the range (0. 9,  1.0) the approximation error is generally less than one 

tenth of one percent.    If one wishes to calciilate   ß   for a desired   y, m, 

and large   n   the following approximation may be used. 

ß V 2 2 '        2 
(X,      ,       - 2m  + 16n(n-m)) - (Xo      1      -2m) 

2m;l-y 2m;l-'y  
4n 

(A-13) 

A. 2.      Generalizations 

As one might expect,   the sum of any   m   of the   n+1   blocks 

determined by the ordered observations gives the result (A-ll).    This 

is easily seen by examining the distribution of the coverages.    From 

equation (A-4), the probability element of   Y    =F(X     ) , i=l,...,n   is 

n:%)dy(2)--- dV)      0<yli)
<-'- <y(„)<1 

0 otherwise . 

Let the coverages be denoted by   U.,  i = 1, . . . ,n + 1 .    Let   u., i = 1,. . . ,n + 1 

be the variates corresponding to the random variables  U., i = 1, . . . , n + 1 . 

Lel   Vy(l)'  az"y{Z)-YW V y(i)- y(i-l) Un = y(n)- y(n-l)   and 

= 1-u, - . . .   -u    .    Since the magnitude of the Jacobian of the trans- 
n+i n 

formation from   y/..,...,y.   ,   to   u.,...,u     is one,  the probability 
(1) (n) 1 n 

element of the coverages is 

C 
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n+1 
nJdu.du . ..du 0 < u.,1 = 1,... ,n;   £   u.= 1 

n i i„il 

0 otherwise % (A-14) 

Equation (A-14) is completely symmetrical with respect to the   u. . 

This means that coverage of one block has the same properties as the 

coverage of any other block.    Because of the symmetry,  the distribution 

of the sum of any   t   coverages is the same as the distribution of the 

sum of the first   t   coverages.    The sum of the first   t   coverages is 

t 
E U.= F(X. j -X.x •    Therefore,  the probability element of the sum of 
i=1   i (t)       (t) 

any   t  coverages is given by 

r^t)       r^(2) r C n!dy(t)L •■■\0 %>• • • VD \ • • • y 
y(t)        y(n-l) 

dy(n)- • • %+ir (t.l)Un.r)! '(« (1'y(t),n"t dy(t) (A-15, 

Let   m ■ n + l-t ,    be the number of blocks which are eliminated from 

the interval of interest, and denote   y.    ,  .,   by   w .    The probability 
' (n+l-t) 

element of the coverage of the intervals between any   n + l-m   order 

statistics is given by 

nl n-m .,      .m-l , _ , ,.   «*. 
w (1-w) dw . 0 < w < 1 (A-16) (n-ni)I (m-l)I 

Integrating equation (A-16) over   [ß,l]   one obtains equation (A-ll). 

The idea of coverage is more general than it first appears 

Let the observations again be labeled   X. .,   X     ,.. . , X.   .   where 
(Ij       (^) (n; 
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^/iv < ^/o\ < • • •  < X.   % .    The blocks need not necessarily be defined 
(1)        (2) (n) ' 

as   {-<*>,   X     1 ,  (X,,.,  ^z? J » • • • » (X.   .,00) .    For example consider the 

blocks   [f,X(j))(X(j),  X(.+])] ,X(nJ)< X(n)],  {(X^.^UC-.X^]} 

(X.    ,   X      ] , . . . , (X ,  X J ,   (X f )    where    f  is some number 

on the   real line and   j   is a positive integer with   j < n .    These blocks 

are formed by ordering the observations in the following manner.    See 

Figure A-l.    The blocks are numbered   \lj    ,     (z)    , . . .    in the order 

that they are formed.    The first block is formed by searching for the 

observation whose value is closest to    f while being greater than    f . 

The second block is formed by searching for the second closest observa- 

tion to   f    which is also greater than  f  .    The procedure is continued 

until the largest observation   X.   ,    is found.    A search is made for an 
(n) 

observation greater than   X        and non ^ is found.    To complete the 
(n) 

block,   a search is made from minus infinity for the smallest observation. 

When this observation is found,  the block   (X      , 00) U (-00» X     )   is com- 
(n) (1) 

pleted. The last j-2 blocks are formed by searching for subsequently 

larger observations. The (n+l)^ block is (X |»»f) • Let the cover- 

ages be defined as follows 

ur F(V -F(f'• V F(x(j+i)1"F(V Vj+i 
= i-F(x(n))+F(x(1)) aa= r(x(H)) - F(x(j_2)). 

The Jacobian of the transformation from the random variables 

FtX.,.),..., F(X     )   to the coverages   V.,...,\J      is one.    Hence,  the 
(1) (n) 1 n 

probability element of the coverages is C 
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MM 
X(2)   -    X{i-1)    *   X{i)\i-1)-   la) 

CO 

Figure A-l.    Ordering From a Fixed Point. 

2(5) 

2(1) 

Figure A-2a. Wald's Ordering 
procedure. 

•1(2) 

Figure A-2b,     Dot Distri^uticr.-J 
(Assuming Dependent Variables) 
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nl du, du, ... du 
12 n 

n+1 
0     u , i = i,... ,n    L  u.= 1 

J i=l   1 

otherwise « 
(A-17) 

Therefore,  this ordering procedure produces distribution-free tolerance 

regions, 

It should De noted that only order statistics yield distribution- 

free tolerance regions.    See Robbin (1944). 

Some warning seems appropriate on the selection of intervals in 

which   ß   of the distribution is to be contained with probability   y .    The 

ordering functions and the blocks should,  in general,  be prescribed 

before the sample is taken.    For example,   suppose that one observation, 

X    ,  is taken from the population described by   F(x)   on the real line. 

If the location of   X.   is not known,  one can search for   X    from any 

point    f   as before and have no reason to believe that   X-   will be found 

before one-half the probability measure has been covered.    However, 

if the location of   X.   is known and if an ordering procedure is devised 

so a "search" is made toward   X.   from a point   f    which is a very small 

distance to the left of   X. ,  the amount of probability in   (f, X )   can be 

made much less than the amount of probability in the other "block" 

(-00, f) U (X.,*) .    Hence statistically equivalent blocks are not formed 

in this example.    The blocks can be chosen, however,   on the basis of a 

previous sample when the results are to be applied to a future sample. 

It is seen later that subsequent ordering functions may depend on the 

location of the observations that have previously been ordered.    But the 
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ordering functions should not, in general, depend on the location of any- 

unordered observations. 
« 

A. 3.     D-Dimcnsional Theory 

Thus far, only one-dimensional, continuous distribution functions 

have been discussed.   Multi-dimen üonal distribution-free tolerance 

regions are defined as follows: 

Definition;    Suppose a sample of size   n   is drawn from a continuous, 

D-dimensional distribution function  Ffo, x-,... , x_ ) .    Region   R  is a 

D-dimensional distribution-fr-ie tolerance region if the amount of prob- 

ability from the distribution   F(x1, x?,..., x   )   in region   R  does not 

depend on   F(x.,. .., x_ ) . 

Suppose   X.   and   X_   are two random variables which are 

described by the bivariate distribution function   F{x1,x2) .    Our task is 

to construct distribution-free tolerance regions in space   fx.,x-} . 

Suppose a sample of  n  observations is available from   F(x1,x?) .   It is 

evident from the one-dimensional study that   n   lines,  each of which 

intersects a different observation and lies parallel to the   x.   axis, 

divide the space into statistically equivalent blocks.    The same is true, 

of course, for   n   lines passing through each observation and being 

parallel to the   x-   axis. 

A more general ordering for producing distribution-free tolerance 

regions also becomes evident.    Suppose the observations are ordered 

with the function   h(x1,x-) .    Let   V - h(X.,X?) .    As long as the distribution 
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function of  V, F   (v) , is continuous, it is seen from the one-dimensional 

derivation that the amount of probability between the order statistics 

V/,.1 V        . ..,V.   .   is independent of   F,r(v) .    Hence, the coverages (1)       (2) (n) r y » ö 

defined by the   n   identical curves, each one passing through one of the 

n   observations,  are distribution-free.    These methods for ordering the 

observations are easily extended for distribution functions of more than 

two variates. 

A. 4.     Wald's Ordering 

A more general ordering was proposed by Wald (1943).    Let 

(X , X   , . . . ,X   )   be a set of   D   random variables with continuous prob- 

ability density   F(x1,x-, . . . ,x   ) .    Take a sample of   n   independent 

observations and denote the   Or'1   observation of   X.   by   X,   (i =1, . . . . D;Ck:- 

1, . . . ,n) .    The problem is to construct   D pairs of functions,  L.(X   , . . . , X     ) 
i    11 Dn 

and   M. (X ...... , X^   ),  i = 1, . . . , D ,  so that the distribution of the statistic 
i    11 Dn 

Q=\      •••   \       f(x , . . . , x   ) dx.. . . dx /A-18) 
LD Ll 

is independent of   fta, . . . ,x   ) .    The following construction procedure 

satisfies this requirement.    Let the   X,      be arranged in order of 
la 

increasing magnitude,    X, ...< X, ..,.<.. .  < X,.   .  .    Choose   L = X,.    . 
1(1)        1(2) l(n) 1      l(r.) 

and   M = X       )   where    r     and   s.    are positive integers with   r < s   < n . 

Next consider only the observations for which   Xw     v < X. . < X,,    . . 
Ur^)       lj       ^s^ 

Arrange these observations in order of increasing magnitude of the second 

coordinate,    X'    . < X'     . < ...   < X' ,. .    The prime distinguishes 
2(1)        2(2) Z^-r.-l) 
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the observations for which  X w   \ < xii < xi/   \  from the original n 

observations.    Let   L-= X'       .   and   M,= X'       .   where   r,   and   s»   are 

positive integers with   r2 < s2 - si''rl"^ *    The construction procedure 

is continued in this manner until all   D   variates are exhausted.    A t\vo- 

variate example is shown in Figure A-2a with   r = 2,    s = 8,  r   -1,  s?=5. 

The key to Wald's successful ordering,  as will be seen later,  is 

the successive elimination of blocks which have been formed.    Suppose 

rather than use Wald's ordering, we let   L.= X..    .   and   M.= X..    ., 
i      iCr.) i      i(s.) 

i = 1,. .. ,D   where   r.   and   s.   denote positive integers with r. < s. < n . 
i l r b ii- 

•Therefore for   i = 2,. , ., D   we do not eliminate from subsequent ordering 

those observations which have previously been ordered.    This ordering 

does not yield a region whose coverage is independent of the distribution 

F(x_, ..^Xj^)   for all   r. < s. < n   when  F^, x2,. . . , x   ) ^ F (x^F^x^ 

. . ,F_(x   ) .    For example, the crosshatched region of Figure A-2b is 

not a distribution-free tolerance region when the random variables   X. 

and   X-   are statistically dependent. 

However, if the random variables   X., X?,. . ., X      are statistically 

independent,  each variable cau be ordered separately.    Then the coverage 

of the region defined by   X..    „   and   X..    .,i = 1,. .. , D   is given by the 
i(r.) i(s.) 

i i 

product of the coverages of each variable.   For example, consider a 

bivariate distribution   F(x1,x?)   which satisfies the relationship F(x1,x?) 

F?(X_.     .)   the probability distribution of  W = U •  V   can be calculated 

by integrating 
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i    i   «Vz^^i 
-        L2      Ll p =  —± -i  (A-22) 

5        $    1f(x1,x2)dx1dx2 
■ CO J_/ 

P   is the probability that   X     lies between   L     and   M .    P   is the prob- 

ability that   X     lies betveen   L     and   M     given that   X    lies between 

L.    and   M..    It is evident that 

c 
i   w/v , Biarr^ 

ß2-r  -1 n-s +r n-s  +r 
v (1-u) (1-v) du dv . (A-19) 

Now consider Wald's proof that his ordering scheme produces 

distribution-free tolerance regions.    Consider the bivariate case where 

the random variables are statistically dependent and the joint probability 

density function is continuous.    The object is to show that the distribution 

of the statistic 

M       M 
Q:::S J       f(x1,x2) dXldx2 , . (A-20) 

L2      Ll 

where   L,  M,  L-,   and   M     are given by Wald's ordering,  is independent 
1 JL M £> 

of the probability density function,    f(x1,x2). 

Make the following definitions: 

»       M 
P £   S      S       f(x1,x2)dx1dx2 = FJCMJ) - FjC^) (A-21) 

M2  rMl 

A-186 



u 

L 

Q = PP (A-23) 

If  Lk ■ XL.    .   and   M_ = X^    .   where   r.   and   s,   are positive integers 
1        Ifrj) 1        KSj) 1 1 r 6 

with   r. < s. < n , it is clearly seen from the one-dimensional discussion 

that the probability element of   P   is given by 

, srri"^ n"8i +ri 
B P (1-P) dP (A.24) 

(Sj-r^l)! (n-61+ r^I 

Let   L« = X'       .   and   M_ = X'       .   as defined inWald's construction 
2        2(r2) 2        2(s2) 

procedure.   Since   X'    ...... X' ,.   can be considered as   s,-r-l 
2(1)' 2(s1-r1-l) 1    1 

independent observations on random variable   X-   under the condition 

that   L   < X   < M   , the probability element of   P   is given by 

(s -r -1)! __ B  -r  -1      _ s -r -1-s  +r     _ 
'     ' r(p) (l-P) dP (A-25) (s2.r2-l)!(Vrrs2 + r2.l)I 

Note that equation (A-25) does not involve   LL   and   M. .    Hence, the 

joint prchability element of   P   and   P   is given by the product of equations 

(A-24) and (A-25). 

«! pi   1    (1.P)     1   1 
(n-s1+r1)'(S2-vl);(Vr1.s2+r2.l)' 

— 82"r2''^      — Sl''rl"^"S2+r? — 
(P) (1-P) dPdP (A-26) 

Then the joint probability of   P   and   Q = PP   is given by 
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n-s +r      Bp-ivl s -r -1-s  +r 
K(l-P)       l    lQ£    *     (p.Q) l    *        ^    ^dPdQ 

whore   K   is the multiplicative constant of equation A-26.    By integrating 

P   over the interval   [Q,l]   we obtain 

s2-r  -1    1 n-s +r s -r -1-s  +r 
KdQ   C! C   (1-P) 1 (P-Q) 1    1        Z    ^ dP . 

Let r R = P-Q.    The value of the integral is then 

1 n-s +r s -r -l-s   +r 1-0 n-s +r 
\   (1-P)       1    1 (P-Q) 1    1        ^     ^ dP = ^       (1-Q-R)       i    1 

JQ JQ 

R dR . 

Let   R = (l-Q)T .    Then the above equation reduces to 

n-l-s   +r 1 n-s +r      s -r -1-s  +r 
(1-Q) L (1-Q)^   (1-T) 

0 

Integrating with respect to   T   one finds that the probability element of 

Q   is 

, 8   -r   -1 n-s   +r 
Q ' (1-Q) ^dQ. (A-27) 

(s2-r2-l)i(n.s2+r2)l 

Since equation A-27 is independent of   ffx^x  ) , "Wald's method of 

OJ »Icring produces distribution-free tolerance regions. 

It is convenient to think of Wald's ordering as eliminating blocks 

from the region of interest.    The ls^ ordering   (X,.    .   and   X,.    .) b fa lUj) USj) 
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eliminates the   r    blocks whose   X.   coordinate is less than   X,,    .   and 
1 1 Krj) 

the   n+l-s,   blocks whose   X.   coordinate is greater than   X,,    . .    The 
1 1 0 USj) 

Z™ ordering eliminates   r?   blocks and   s -r -s     blocks for a total 
b lib 

elimination of n+l-s^+r. blocks. By substituting m = n+1 - s
?

+r7 into 

equation A-27 one obtains equation A-16, the equation for the probability 

element for the one-dimensional case. 

A. 5.     A General Ordering Procedure 

Consider a more general method for ordering the observations. 

Assume that a sample   (X,   , X,   ; a = 1.. , . ,n)   is available from a con- 
^ la    2a 

tinuous two-dimensional distribution   F(x1,x_).    Let  w, = h, (x., x?); 

k = 1,.. . ,n   be   n  functions, possibly alike, possibly distinct,   such that 

hJX , X?), . . . ,h (X , X?)   are random variables with a continuous joint 

distribution function.     Since   F(x1,x_)   is assumed to be continuous, 

the functions   w, ,k = 1,. .. ,n   are continuous almost everywhere.    These 

functions are called ordering functions.    They are used to form distribution- 

free tolerance regions in the following manner.    The first ordering function 

h.{x-,x?)   is used to select the observation   (X ..^X-,..)   which satisfies 

max      hJX^X2a) = tyJWX      ) . (A-28) 
a=l,..., n 

Let the region of the sample space for which   h^x^x-) > h^X . .,X_. 

be called block   B.,    and the region of the sample space for which 

h.Cx  , x ) = h  (X        , X       )  be called   T.  .    Then 
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and 

Bi ■ K-v! vvv >hl(xl(l)'x2(l),) 
■ ■ 

^■{(»X.x^.^Xj.x^-hjCXyjj.X      )}   . (A.29) 

Eliminate the block   B.   and the cut   T    from the sample space.    Note 

that the observation   (Xim,X       )    is also eliminated.    Select from the 
1(1)     ^(1) 

remaining   n-1   observations the one which satisfies 

max  vV'W^z'Vr'W- (A-30) 

a* (l) 

Let the region of the sample space for which   h;>(x , X-) > h (X       , X       ) 

and   h (x , x  ) < ^(X      , X       )   be called block   B-   and the region for 

which   h2(x1»x2) = h2^Xi(2)'X2(2)^   and   ^^l'x2^ < ^^Id)'X2(l) be Called 

cut   T    .    Then 

V   {(X1'X2) : hZ(xl'X2) >h2(Xl(2)'X2(2))'  hl(xl'X2) < 

and 

V {^•"z1: ^'"i'^' = hz{xuzyxz{Z)) ■ hi{xi-xz) < 

This procedure is continued until   n   blocks are eliminated from the 

sample space.    The sample space is thereby partitioned into   n + 1 

mutually exclusive and exhaustive blocks by the   n   cuts. 

It is now shown that this procedure produces distribution-free 
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tolerance regions.   Denote the portion of the distribution contained in 

block  B.   (i.e. the coverage of  B.)   by   U.*f i = l,...,n.    To prove 

that the coverages   U.*, i = 1, . .. , n   are distribution-free it is sufficient 

to prove that the probability density of the coverages is uniform.    The 

proof given here follows the one by Wilks (1962).    Consider two random 

variables   X-   and   X,   with distribution   F(x1,x-).    The probability 

element for sample   (X    , X      ; Ot = I,., . ,n)   ie 

Jl**<'i*'*zJ A-32) 
a=l 

Let   (X      , X      )   be the observation which yields the largest value for 
1(1)     ^(1) 

h..{x-tx?).    Let   (X        » X_       ; a = 1,. .. ,n)   be the set of observations 

obtained by deleting   (X.mf X-.   )   from the sample space.    The probability 
1(1)     ^(1) 

element of   (X^X^J   and   (Xla
(1,, X2a

(1); a = 1,..., n-1)   is 

n-1 

"^'"KD-^d)' tdF'xla
(1,'x2a

(1,' (A-33) 

Let   UJ   be the coverage associated with the set of points   (x^x.)   for 

which  h-fx^x») > K-fx..   , x       ) .    The probability element of   Uj   is 

nfl-u^11'1 du| (A-34) 

where 

u1 =   \    dF(x1,x2)     and    dui = dF(x1/1)'x2(i)) • 
Bl 

The probability element of the conditional random variable 
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(Xja     , X ' ^UD'^Zd)' & ~ !>' • ' 'n)   *fl given by the ratio of equation 

A-33 to equation A-34.    This ratio reduces to 

n-1 

la     '   2a ITdF'1' (x. <« . X, J1', 

where 

a=l 

Fix. (1,  x    (1)) 
F{1) (x    (1)   x    (1)) -   —ig 2tt 

1 la   '2a   ; ' l-u| 

Therefore given   (X...., X^QJ 
B
 ^/M» 

x2(n^   the remaining 

observations of the original sample behave like a sample of   n-1   observa- 

tions from the distribution 

F(^,x ) 
FU;(x1,x2) =   —fjj    . (A-36) 

Now let   (X       , X   .., )   be the observation among the remaining 

n-1   observations which yields the largest value for   h_(x , x_) .    Let 

(2) (2) 
(X,        , X..        ; a = 1, .. . , n-2)   be the set of   n-2   observations obtained 

la 2a 

by deleting   (X.-^^X       )   from the   n-1   observations.    The probability 
\\i)      2(2) 

(2)        (2) 
element of   (X.._., X....)   and   (X. v   ' X    *  ' ; a = 1, . . . , n-2)   is 

1(2)     2(2) x   la 2a 

(n-DdF11' (x1(2rx2(2))  T dF11' (XjJ21, xj2') . (A.37) 

Let   B_   be the region for which   h-(x , x_) > h?(X       , X        )   and 

h1(x1,x2)<h1(X1(1)X2(1)) .    Let 

'2 
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be the conditional covt rage associated with  B2 .    Then the probability 

element of  U'    is given by 

(n-1) (l-u^)n"2 du^ . (A-39) 

(Z) 12) 
The probability element of   (X   v   ', X    v  ;; a = 1, . . . , n-2)    is 

TrV' (xj2'. xj2') (A-40, 
CFl 

where 
(1)        (2) (2) 

F'
2
' (x, '2), x.  (2') = '>,'    2tt    ' v ia   *   Zoc   ' l-u' 

Therefore giv^n   (x..».^-.- ) , the remaining   n-2   observations 

behave like a sample from 

F(1) (x   x ) 
F      (X1'X2) =    U^    * (A_41) 

Continuing in the above manner, one concludes that the conditional 

coverages   U', U',...,!!'    have the probability element 
' 1     2      •     n 

nKl-uJ)11"1 (l-ui)n"2 ...  (l-u'l1     du; ...  du'   . (A-42) 
12 n 1 n 

The conditional coverages   (U! ; i = 1, . . . ,n)   are related to the coverages 

(U.* ; i = 1, . . . ,n)   by the following expressions: - 

u; = u^ 

u * 
u.« ^~ 

2     1-U^ 

U • 
U' - 

n      1-U/-...-U     * (A-43) 
1 n-1 
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Rewriting equation A-42 in terms of the   U*    one finds that the 

probability element of the coverages is 

nl du * ...  du  * . (A-44) 
In 

Since this equation is the same as equation A-ll,  the proof is completed. 

The procedure for forming distribution-free tolerance regions 

has beer, further generalized to permit the subsequent ordering functions 

to depend In any way on the information gained in the application of 

previous ordering functions.    See Fräser (1953),   Kemperman (1956). 

The following procedure is one example of a particularly general 

ordering.    Sec Fräser (1957).    Let   h (x)f...,h  (x)   be   n   real-valued 

measurable functions of   x = (x,...,x   ).    Let        max     (r.)h.(X.)   denote 
i-i,... , n 

the   r.     largest value of   h..    Note that   r.   must be an integer which is 
J J J 

less than   n .    Let the observations be ordered as follows.    First, locate 

the observation which gives the    r^     largest value for   h^.    Denote this 

observation by   X_      •    Then 

hjQLjJ B      max      (r^ hj (X.) *< ^ < ^ (A-45) 
i=l,. . ., n 

The sample space is partitioned into two subspaces, 

s1...ri
B{i'hi(5>>W} (A-46a) 

and 

sr1+i...n+i = {s!hifc'<hi£a)))' (A-46b, 

by means of the cut 

T
r = {iS : ^W = ^^d,) }   • (A-46c) 
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The observation  X,..   ii eliminated from any further ordering.   The 

two subspaces   S, and   S    ., .,   are treated separately in further 
i* > i r. r.+1. .. n+l 

ordering.    There are   r.-l   observations in subspace   S. ..r     and   n-r 

observations in subspace   S      . . .    Suppose next we locate the 
L. iX* • • XI iX 

observation which gives the    rth   largest value of   lu(x)   in   S, where 
<i c — 1. . . r 

1 < r    < r -1.    Denote this observation by   X       .    Then 
2 i \L) 

h,(X#,%)»     max        (rJh^XJ l5ro<ri-l   . (A-47) 

i€ Sl... r. 

i2^      ;-      max ^V-i' - r2 - V 
X.cS. 

1 

(Note that   h  (x)   can depend on   X.     .)   The subspace   S is parti- 
t — * — (1) 1. .. r 

tioned into subspaces 

Sl... r = fe ! \^ < h2
(2 (2)' • hlW > \i£ (1)) } (A-^a) 

m 

U and ^ • 

Sr2+ 1... r^ U : h^x) > h^X ^»^(x) > ^(X {i)) ) (A-48b) 

by means of cut 

Tr  = {x:h2(x) = h2(X(2)) , h^x) >h1(X(1)) } # (A-48c) 

The observation   X.-.   is eliminated from further ordering.    Next we 

order in one of the three subspaces   S. ,   S      . , , or S     . , ,. . r 1... r r2+l...r r.+1. ..n+l 

This procedure is continued until   i.+l blocks are formed. 

The two-dimensional example shown in Figure A-3 illustrates 

this ordering procedure.    The coordinates of the space are labeled   x, 

and   x_   and arrows show the direction of increasing magnitude.    The 

three observations are labeled with X's ,    The parameters for the first 
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ordering ure   h (x) = x.   and   p = 2 .   This divides the space into   S 

and   S      .    The parameters   h (x) =  |x-X|nl   and   Pi= 1   are used to 

divide   S       into   S.   and   S    .    The parameters   h.(x) = x     and   p = 1 

are used to divide   S 4   into   S.   and   S    .    A total of four blocks   S, S  , 

S-,  and S     result. 

A. 6.      Discontinuities 

Distribution-free tolerance regions can be constructed when the 

original distribution has a countable number of discontinuities.    In 

dealing with discontinuous distributions,  problems arise from the finite 

probabilities associated with the cuts.    In addition,  the construction pro- 

cedure must incorporate a method for handling ties. 

It has been shown in Scheffe  and Tukey (1945),  Tukey (1948),  and 

Fräser and Wormleighton (1951) that if all cuts adjacent to the blocks of 

interest are included in   R ,  the region of interest,  the following statement 

can be made 

Pr I  ^   dF(x)>^}>   y (A-49) 
R 

where   ß   and   y   are determined from the number of blocks contained 

in   R.      For example if   S.    in Figure A-3 is the region of interest,  the 

cut   T = |x :x   = 21 im j    and the cut   T  =   VS : x:> ^ 2^2 m'  Xl--imJ    must 

be included in   R   so that statement (A-49) can be made. 
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Figure A-3o  Illustration of a General Ordering procedure 
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A. 7.     Other Extensions 

A tolerance region theory which uses statistically equivalent 

blocks has been developed for cases in which the class of probability 

distribution functions is limited.    As might be expected, when the kind of 

distribution function under consideration is restricted, more blc-ks can 

be eliminated from the region of interest for the same    y   and   /3   than 

can be eliminated when nothing is known about the distribution.    A fre- 

f(x) 
quently considered class of distributions is the class for which  ■:—- ; ■-■, 1-F{x) 

the hazard rate,  is a monotone function.    See Hanson and Koopmans (1964) 

and Barlow and Proschan (1966) for further information. 

I 
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Appendix  B 

PROPERTIES OF  THE BETA DISTRIBUTION 

The Beta distribution is given by  the  expression 

« 

,,  . F (n+1) n-rn.     .m-1 
f(x)  =     * '    x (1-x) 0<x<l  .        (B-l) 

r(n-m+l) r(m) 

1 n+l 
The  distribution  is  symmetric  about -r    when    m = —r-   .     It is   skewed 

£t £» 

toward the value     1     when    n-m    is  greater than    m-1    and toward 

the value     0    when    n-m    is  less than    m-1  .      The mean of the  Beta 

distribution is 

n-m+1 
lx=-1^T- (B.2) 

and the variance  is 

a t     - y -       /TTjn     • (B-3) 
(n+l)2(n+2) (n+2) 

At times one may use  the  median or the  mode   rather than the  mean 

to predict the  coverage.      The mode is  easily found  by differentiating 

equation B-l  and   setting the   differential  equal to   zero.     The  mode  is 

found to be 

MODE  =  ^^ . (B-4) 
n-1 

The median is given by 

a 
C             r(n-H) n-m m-1   . \        ^ K\-\) dx = 
J

0   r(n-m+l)r(m) 

yn.m+l,m) = j   . (B-5) 
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One can find values of   ß   in tables of 50 percentage points of the Beta 

function or from tables of the cummulative Binomial distribution by using 

the relation 

|=   S    £) (1-/3) VS • 
8=m 

For values of   n-m   greater than   m-1 , the mean is less than 

the median which is less than the mode.    For example,  consider the 

following table. 

Table B-l.    Comparison of the Mean,  Median and Mode 
for Two Different Values of   m   and   n, 

Conditions Mean Median Mode 

n=65, m=6        0.90909 0.91321 0.92188 

n=60, m=l 0.98361 0.98851 1.00000 
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Appendix   C 

Let   R_   be a distribution-free tolerance region on the continuous 

cumulative probability distribution function   F (x) .    The purpose of this 

appendix is to demonstrate that the expected value of   \ dF (x)       , 

E { C dP^x)      )   = a (C-l) 
R2 

can be considered an   a-confidence statement that a new observation 

from   F (x)   will fall in   R    .    In other words,  equation C-l   is equivalent 

to saying   that the probability is   OC  that a new observation from   F (x) 

will fall in   R^ 

Let   X.   .   and   X.   ,   be the r"1 and s"1 order statistics,   respec- 
(r) (s) 

tively, from the distribution   FJx) ,  r < s < n. .    Let   Y   be a new 

observation from this distribution.    The probability that   Y   falls in 

(x(rr 
X(6)J is 

00
 X V 

P'-'V)" Y < ^s)' = L%) S '    ^W S        ^VV l^ry X(S,'     '
C-2' »00 "_ 00 V 

(r) 

The integral with respect to   y   is 

X(s) J ^ f^yldy = FJCX^J) - F^x^) . (C-3) 

(r) 

The probability element,    f(x/   .. x,   Jdx,   , dx,   , ,    from equation A-7, 
(r)      (s)       (r)      (s) 

Appendix A is 
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r(r)r(n+l-s)r(s-r)       Ll    (r) J 

Making ^he transformation   W = FJX,   J-FJX,    )   and   Z = FAX,   J   and 
1     (s)        1    (r) 1     (r) 

proceeding as in equations A-8 and A-9 of Appendix A,  one obtains 

r1 r(ni+1) s-r-i       nrs+r 

P,(X(r)<Y< X(g))^oW* rit.r^(ai.t+r+1) w (1-w) dw.     (C-5) 

Note that 

r(nl+1) s-r-l,,      X'*'* w (1-w) dw r(s-r) r(n^-s + r+l) 

is the probability density function for the coverage of   (X      ,  X 

(equation A-9).    Then the right side of equation C-5 is the expected cover- 

age of   (X.   .,  X.   .     .    And,   in fact,  by recognizing that 0 (r)       (S)J (r)'      is). 

n,-sfr r(s-r+l)r(n -s+r+1) 
s-r/i      »  ! J w       (1-w) dw = 

o r'ni+2) 

we obtain 
8 - r 

Pr(X/   v < Y < X.   .) = 
(r) -    (s)'       nj+1   ' 

the expected coverage of   (X      ,  X .    Since the blocks are statistically 
(r)       (s) J 

equivalent,  the result holds for any   s-r   blocks.    Hence,  it can be general- 

i/.ed that 

E K   dF^x)]   =   a 
R2 

c 
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where R is a distribution-free tolerance region, can be considered 

an tt-confidence statement that a new observation from R(x) will fall 

in   R2 . 
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Appendix D 

REVIEW OF CLASSIFICATION METHODS IN PATTERN 

RECOGNITION GIVEN TRAINING SAMPLES 

OF KNOWN CLASSIFICATION 

The following is a review of classification methods along the 

guidelines discussed in Chapter  1. 

I.      Optimum Solution with Assumed Probability Densities 

Using this approach the machine designer assumes the form of 

the apriori and conditional probabilities.    Hence "optimum" recognition 

is achieved if the assumptions are correct.    A model for the optimum 

recognition system is shown in Figure D-l.    In this figure   v   is a vector 

in measurement space,    4-    ^s ^ie ^priori probability of a class   i   event, 

f. (vO     is the probability density function of   v   given that   v   is a member 

of class   i    and   C.(j)   is the cost of deciding that   v   is a member of 

class   j   when it is a member of class   i . 

The optimum recognition system is considerably simplified if 

certain arsumptions are made about the   C.(j) .    Suppose the cost of 

making an incorrect decision is equal to one and the cost of making a 

correct decision is equal to zero.     Then the optimum recognition system 

consists of the probability density computer    |. f.(v),   i  =  1 K   and a 

maximum selector.    The inputs to the extremum selector (whether max- 

imum or minimum) are called discriminant functions. 
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Select 
Kin. 

Figure D-l.    Cptimun Recognition System. 
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Let the discriminant functions be denoted by   g,(v),  i = 1, . . . , K. 

Then for the above cost assumptions an optimum recognition system 

classifies v  into class   k   if   g, (v) >g  (v)   for all   i. 
— ^ _  ._ ox _ 

Consider the problem of finding the discriminant functions, which 

are optimum in the Bayes sense, when there are   K   Gaussian classes 

with covariance matrices   L.   and mean vectors   u , ,   i=l,...,K.   Assume 

also that the cost of an incorrect decision is one and that the cost of a 

correct decision is zero.    The discriminant functions are 

«ife'v, .K/2,',V2 exp -i^-ji/srVüii 
(2TT) I  E.| 

1 i=l,...,K '   (D-l) 

T 
where    (• )      denotes the transpose of   (• ) •    Let   h.(v) = log g.(v) . 

Since the log function is a monotonically increasing function of its argu- 

ment,  the log ol   g.(y)   can be used instead of   g.(v) without any change 

in the decision.    In the following log   g.(v)   and   g.(v)   will both be referred 

to as discriminant functions.    The log of   g.(v)   for the Gaussian case is 

h.(v) = log £. - y log (2ir) - j log   \L. | - 

JRv - ^.)T E.'V- Ml        i=l....,K . (D-2) 
ZL—    —i     —i     —    —iJ 

Therefore,  the optimum discriminant functions for Gaussian patterns 

are quadratic functions. 

Consider the case where the covariance matrices are equal. 

Keeping only the terms in equation D-2 which depend on   i ,  the disc rim- 
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inant functions become 

T     -1 1     T     -1 
Mv) = log 4. +v    S     ^> _ -ji     s      H. 

1=1,.. . ,K . (D-3) 

These functions are hyperplanes in   v   space. Note that if K = 2 , 

only one discriminant function,    h(v) = h  (v) - h  (v) , is needed.    If 

h(v) > 0 ,    v   is classified into class  1.    If   h(v) < 0 , v   is classified into 

class 2.    !• or   K = 2,    h(v)    is given by 

h(v) = hjCv) - h2(v) = log y-vT L"1^! - M2) - 

The decision boundary, which is obtained by setting   h(v)    equal to zero, 

is a hyperplane which bisects the line connecting the means.    The hyper- 

plane is inclined to this line at an angle determined by the covariance 

matrix and the relative positions of the means.    If the a priori probabilities 

of each class are equal and the covariance niatrices are proportional to 

the identity matrix (i.e.    E. =yl ,    where   1=1,2 and   y is a constant) 

equation    D-4 becomes 

This is the equation for a hypcrplane which is the perpendicular bisector 

of the line connecting the means of the two distributions. 

If slight changes are made in the assumptions,  different decision 
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boundaries result.    For example,   if the class densities are spherically 

symmetric Gaussian densities which differ only in location and scale, 

the hypersphere is the optimum boundary.    Cooper (1962),   (1963) further 

investigates the hyperplane arid hypersphere as decision boundaries. 

If the mean and/or the variance is unknown,  a "good" estimate 

for these statistics can be used in place of the actual mean and variance. 

Such an estimate for the mean is 

N. 

£(j) =~   S    v. (j) (D-6) 
j 1=1 

where   |Mj)   is the estimate of the mean vector of the jtn clasp,    N.   is 

the number of observations of the jth class,  and   v.(j)   is the i^   obser- 

vation vector of the jth class.    A "good" estimate for the covariance 

matrix is 

£(j) = 5~y  EJ [v.auiMjmv.fj) - ft (j)]T . (D-7) 
j"     i = 1 

II.    Estimation or Approximation of the Probability Densities 

Many of the authors in the statistical literature consider the class 

of probability density estimators, 

A 1     n 

f (v) =-    Z   w(v,V ) . (D-8) 
n n   j=i J 

f   (v)    is the estimate of the probability density   f(v)   when   n   observations 
n 

V    V      are available from   f(v) .    The function   w(v, V.)   might take 

a form such as 

( 
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w 
v-V. 

hr1 
) = 

I 
2 if 

if 

v-V 

v-V.  I 

< 1 

> 1 

(D-9) 

whsre   h   is some function of   n .    Other weighting functions are given 

in Table 1, p.   1068 of Parzen (1962). 

Fix and Hodges (1951) use the following equation to estimate the 

probability density, 

{F  (v + h) - F (v-h) } 
f^  ,   v n n  
^ =    2h  

(D-10) 

where 

Fn(v) = 
(the number of observations < v) 

n 

The parameter   h   is a function of   n   which approaches zero as   n 

approaches infinity.    The form of   h   which gives the "best" results has 

-a 
not been determined.    Rosenblatt (1956) lets   h = ßn      and obtains the   ß 

and   a   which minimize the expected mean square error. 

Loftsgaarden and Ouesenberry (1965) propose   an estimator similar 

to (D-10) for estimating the density function.    Their estimator is 

^  /   »       Mn) - 1 
fn(v)=   --2h- 

(D-l: 

where   k(n)   is some integer which is less than   n .    That is,  they specify 

some number   k(n) .    They then calculate the distance between   v   and 

the   kfn)^1 closest observation to   v .    This distance is substituted for   h. 
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Then rather than specify some distance h and find the number of obser- 

vations k , as Fix and Hodges do, they specify some number of observa- 

tions   k   and find the distance   h .    Consistency is shown for this estimator 

when   k(n)—>•   and   k(n)/n—>0   as   n—>».    They indicate that   k(n) = 

1/2 
n        gave good results on some empirical work. 

These concepts are readily applicable for estimating the density 

function for a D-dimensional vector   v .    For example,  if Euclidean 

distance is used,   equation D-10 becomes 

("the number of observations contained "I 
^  .  . _    Lin a hypcrsphere of radius    r   from  vj 
- l- D   D/2 / * (D-1ZJ 

n[2r    u  /    /Dr(D/2)] n — 

Loftsgaarden and Quesenberry's estimator becomes 

A [k(n) - 1] 
f   (v) =      .     .   . (D-13) 
n- n[ZrDvDn/Dr{D/Z)] 

One sees that these procedures are very easily used in classifica- 

tion.    Rather than compute the class probability densities at a point,   one 

need only count the number of observations of each class within an appro- 

priate radius from the new observation   V.    Under certain costs,   apriori 

probabilities,   and number of observations from each class,  ihe new 

observation is assigned *-o the class which is most heavily represented by 

these observalions.    This procedure,  called the   k     nearest-neighbor n 

rule,   is further discussed in the last section of this appendix. 

Sebestyen {1962a), (1962b) proposes a histogram approach which 

( 
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involves the approximation of the probability density with many Gaussian 

subdcnsities.    Consider this method which is called "adaptive sample 

set construction" by Sebestyen.    Suppose we wish to distinguish events of 

class   F   from those of class   G .    Let us approximate each class probability 

density with many spherically-symmetric multivariate Gaussian densities. 

Suppose we use   K      subclasses to represent class   F   and   K      subclasses 
F CJ 

to represent class   G.    The decision is made in favor of class   F   if 

K. K. 

E  P(F.)p_  (v) >C     E  p{G.) p^ (v) 
i=l i J=l J 

D-14) 

where    C   is a constant,    p(F.)   is the apriori probability of subclass   F.  , 

and   p    (v) is the conditional probability of subclass   F. .    Since the 
i 

apriori probability of a certain subclass is not known,   it is estimated. 

Letting   M       be the number of observations in   F,    and   M       be the 
F. i G. 

number of observations in subclass   G. , the decision rule for deciding 

in favor of class   F   is 

KF 

Z  M    exp 
1=1       1 

D 
-E   [v  - m  (F.)]' 

,      n        n    i 
n=l  

zo2 

K
G 

> C1    z    U^ 
•   1      ^ • 3=l 3 

exp 

-   L   [v   - m   (G )] 
n=l      n "     J 

2a2 

Z 

(n-15) 

Here,    m   (F.)   is the n"1 coordinate of the mean of subclass   F.  ,    D   is 
n    i i 

2 
the number of coordinates,   and   a     is the variance.    The selection of the 
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means of the Bubclasses can be made as follows.    Let us introduce the 

first training observation   V   .    Suppose that   V   is a member of class   F. 

1 1 2 
Wc assign   V   to subclass   F,    with mean   m_ = V     and variance   o i -r   - 
The value of the variance   a     is arbitrarily chosen.    At this point in the 

procedure,    M        in the above equation is equal to one.    Now we introduce 

1 

the second observation   V    .    If   V     is a member of class   F   and within 

a radius   T   (its value is arbitrary) of   m     ,    we set   M     = 2   and let   m_ 
~F1 2 

Fl ~F1 
equal the mean of the lst two observations.    If   V     is a member of class 

F   but lies outside the sphere of radius    T   with center at   V    ,  we assign 

2 2 2 2 
V     to subclass   F.,    with mean   m_ = V     and variance   CT    .    If   V     is a 

member of class   G ,  we assign the sample to subclass   G     with mean 

2 2 
nv-   - ^     an^ variance   a  •    This process is continued until all training 

observations are exhausted.    It is seen that this procedure approximates 

the class probability densities by many Gaussian subdensities.    The 

degree of approximation depends on the original class probability densities, 

2 
the variance   o     ,    the radius   T ,    and the order in which the  samples 

are introduced.    Waltz and Fu (1965) have used this general idea along 

with the gradual reduction of each subset radius to facilitate a more precise 

boundary. 

Sebestyen and Edie (1966) have devised a scheme for estimating 

a multi-dimensional density using hyperellipsoids as estimation ceils. 

Their method allows the size and the  shape of the histogram cells to be 

influenced by the local distribution of the data.    The initial size and shape 

of the first histogram cell is chosen arbitrarily.    The updating and 
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generating of new cells is similar to Sebestyen's sample set construction. 

A difference arises in the handling of observations which fall outside 

existing cells but nevertheless "close" to the boundary.    These events 

are stored for processing at a later time when the average number of 

element/: per cell reaches a certain threshold.    The cell size may increase 

or decrease as more training observations are received for classification. 

One problem with this procedure is that there are many variables which 

must be determined by trial and error.    When the initial training is finished, 

one may decide that too few or too many cells have been generated.     Then 

certain parameters must be changed and the training procedure redone. 

Aizerman etal.   (1964b) use the method of potential functions 

(orthogonal functions) to approximate an unknown probability density. 

They assume that the probability   f(v)   exists and that a finite number N  of 
N 

orthonormal functions    0.(v)   can be selected so that   f{   ) =   E    C.0.(v) . 
i = l     1   ' 

A training algorithm is proposed so that,   as the number of independent, 

identically distributed training observations approaches infinity,   the 

resulting function will converge in probability to   f(v) . 

III.    Estimation or Approximation of the Class Discriminating 

Boundaries 

The object here is to assume a form for the decision boundary 

and to locate the boundary so that the best possible recognition is obtained. 

A simple boundary like a hyperplane or hypersphere is usually employed. 

Let us first consider the use of the hyperplane.    This has been 
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thoroughly treated in the literature,  Highleyman (1962),  Cooper (19621.. 

(1963),  Albert (1963),  Peterson and Mattscn (1966),  Wolff (1966).    We have 

seen that the hyperplane is the optimum boundary for discriminating 

between 2 classes which are described by normal distributions with equal 

covariance matrices and different means.    It can also be seen that ':he 

hyperplane is the optimum boundary for two classes which are equally 

probably a priori, have equal costs of misrecognition,   and have probability 

densities which are eliipsoidally symmetric with equal eccentricities 

and monotonically decreasing from the mean,  c.f.   Cooper (1962). 

It turns out that the hyperplane is the optimum discriminant for 

other cases.    For example,   suppose we wish to discriminate between two 

classes where the sample vectors   v   consist of   D   binary components, 

either zero or one.    If the components of  v   are statistically independent, 

a linear discriminant function is optimum,  c.f.  Minsky (1961),  Nilscn 

(1965). 

.       .                  ,K(K-1) . 
One needs,   in general,    hyperplaies to separate   K 

classes.    Some of these hyperplanes may not be needed depending on the 

location and shape of the pattern classes.    For example,   it may be 

possible to separate each class from all the remaining classes.    In this 

case only   K-1    hyperplanes are required. 

Suppose that we wish to distinguish between 3 classes by using 

hyperplanes.    A general two-dimensional situation is shown in Figure 

D-2.    The classes are represented by the circles labeled (1),   (2),   and (3). 

Boundary   B.      separates class   i   from   class   j .    Two problems become 
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Figure D-2,     A Partitioning with Linear Decision Functions. 
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evident.    (1) For best results,  the 3 hyperplaneö (lines in the figure) 

cannot be positioned independently of one another.    (2) A region may appear 

in which an observation may be classified as belonging to any of the three 

classes.    This region is known by many names such as void region, 

region of indecision, deferred decision region,  or reject region.    This 

is the crosshatched region of Figure D-2. 

Consider problem (1).    Suppose the objective is to minimize the 

number of training observations which are misclassified.    For best per- 

formance,  the boundaries should be determined simultaneously.    However, 

the simultaneous location of hyperplanes for minimum misclass- 

ification is often very difficult.    Hence each hyperplane is usually posi- 

tioned sequentially.    After the hyperplanes are located,  the results may 

not be as good at: expected.    In this case Highleyman (1962) suggests an 

iterative procedure in which all subsequent hyperplanes are located by 

using only the observations which are correctly classified by the previously 

located hyperplanes.    That is,   if   B   ?   in Figure D-2 is located first, 

then   B is located using only the observations of class 2 which are 

correctly classified by   B.   . 

Now consider the void region in which a new observation may be 

classified into class 1,  2,  or 3.    For example,  an observation in the 

crosshatched region of Figure D-2 lies to the class  1   side of   B        and 
1 w 

to the class 3 side of   B     .    Therefore if this observation is compared to 

B   ^    and then to   B   ^ ,  it is classified into class 3.    However,  if the 

observation is compared to   B^0   and then   B,- ,  it is classified into 
c 3 \ c 
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class 1.    Note that a void region will not occur if the class probability 

densities are Gaussian with equal variances and different means.    This 

is because the optimum decision hyperplanes in this case are the perpen- 

dicular bisectors of the lines joining the means of the classes.    Note also 

that if the observations are transformed into a space where the likelihood 

ratios act as coordinates,  no void region results   when Bayes criterion 

is used,   c.f.   Van Trees (1968). 

It was shown in equations D-l,  D-2,  and D-3 that the hyperplane 

is the optimum decision surface for separating two classes which have 

Gaussian distributions with different means and equal covariance matrices 

Anderson and Bahadur (1962) have investigated linear procedures for 

classifying observations from Gaussian distributions with unequal covari- 

iance matrices.    They give methods for constructing a hyperplane which 

minimizes one probability of misclassification,  given the other,   and for 

constructing the optimum hyperplane when a minimax criterion is used. 

Now assume that   f.(v)   Is unknown as it is in most pattern 

recognition problems.    Highleyman (1962) proposes that the optimum 

hyperplane be determined by a search through a set of hyperplanes for 

one which minimizes the maximum likelihood estimate of the expected 

risk.    He suggests that the expected risk be estimated by 

C.(j)e.(jH C.(i)e.(i) 
L_i 3       J 

N 

where   e.(j)    is-the number of observations from class   i   which are class- 
i 

ified into class   j   and   N   is the total number of observations which are 

A-217 



used in the estimate.    If the apriori probabilities   ^.   are known before- 

hand, the number of class    i   observations,    n.  ,    which are used in 

making the estimate should be determined by   n. = £. N. 
i        i 

It is seen that the estimate of the expected risk is a discontinuous 

functioi. because it is determined by a finite number of discrete observa- 

tions.    This prohibits the use of a gradient method in a search for the 

minimum risk.    Highleyman chooses to approximate the abrupt change 

in risk, when the hyperplane is moved from one side of an observation 

to th« other, by a continuous function of distance from the observation to 

the hyperplane.    A convenient approximation for this step function is the 

Gaussian cumulative distribution with mean at the hyperplane location 

2 
and variance   0"   .    The risk function,   which is the sum of t^ese functions 

over dll observations,  is then minimized with respect to the hyperplane 

2 
coordinates by the method of steepest descent.    The variance   cr     is 

reduced and the process repeated until the desired recognition accuracy- 

is achieved. 

Wolff (1966) states that the method of steepest descent contains 

the inherent disadvantage that a relative instead of an absolute minimum 

may be obtained. He employs a variant of the "creeping random 

methoa ' by Brooks (1958) which Wolff states is more appropriate for dis- 

continuous functions and has less chance of yielding a relative minimum. 

The equation of a hyperplane  in D dimensions is   w  v = 0 ,  where 

JL 
w     =   [w    w   , . . w   ]   and   v = 

"1  1 
ri 
• 

KJ 
Wolff's method consists of first 
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selecting a starting position for the hyperplane.    Let the initial weight 

0 
vector   w   be   w  .    The error rate is then determined for this hypcrplar.e. 

The hyperplane is given a displacement (rotation and/or translation) and 

the error rate is calculated for the hyperplane in its new position.    Let 

the new position be described by   w    = w    + ^w    .    If the error rate in the 

new position is less than the error rate in the former position,   the hyper- 

plane is given a displacement from the new position.    In this case 

Z 1 2 
w    = w    + Aw    .    Otherwise the hyperplane is given a displacement from. 

10 2 
the former position   (w    = w    + Aw    ).    The increments of displacement 

1 2 
Aw    ,   Aw  , . . .    are chosen from a random number generator.    Wolff uses 

2 
a Gaussian distribution with zero mean and variance   a      to generate the 

random numbers.    The variance is held constant in the early stage of 

the process and then reduced during the final stages. 

The displacement of the hyperplane depends upon its starting 

position   w     as well as the increment   Aw      .    For certain   w   ,  the 
*   I 1 

increment   Aw needs to be larger than it would for other   w     for the 

same relative displacement.    Wolff eliminates this problem by describir.L 

the hyperplane by a point on a unit sphere in   w   space.    Such a point is 

given by 

cos      (0 ) i = 0 
i 

w. =     )    cos      (0.   .) IT     sin(0   ) i ^ 0,D 
1 { 1+1     Y-\ r 

D 
TTsin^r) i = D 
r = l 
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He then uses the creeping random method to increment the   0 .    Questions 

remain about (1) the rate of convergence,   (2) termination of the search, 

and (3) the best statistics for the random number generator when the 

creeping random method is used. 

IV.     Other Intuitive Criteria 

Many ad hoc optimization criteria have been proposed for the 

solution of pattern recognition problems.    Most of these criteria are 

intuitively appealing and offer a so-called "optimum" solution without 

the use of the class probability densities. 

Consider a criterion which was proposed by R.  A.   Fisher (1925). 

Suppose there are two classes in D-dimensional space.    Suppose it is 

desirable to project these classes onto a line so that the "distance" 

between the classes is as large as possible.    A threshold can be set along 

this line and classification of new observations begun. 

To make the "distance" between the classes large.  Fisher max- 

imizes the scatter between the classes while keeping the scatter among 

observations of the same class constant.    Let   W    be the linear transfor- 

mation to do this.    The problem then is to maximize 

ZT T      2 
(W   v.- W V ) 

V. c class 1 
— i 

V. e class 2 
-J 

while constraining the following equation to be equal to a constant. 
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z2 o^V-w"^.^    ^2 (wTy. - wTv. 
.  c class  1 J V. c clasTz   1 J 

i —i 

)    = C . 
V 
— 1 
V.  c class   I 

J 
V. e class 2 

The solution   W    is the eigenvector of the largest eigenvalue of 

(BA'^XI) = 0 . 

where 

A=       2J   (yi-mj)  (yi-m1)T+        ^2   (Vj - m2)(yi-n^ 
V. € class 1 
— x 

V. e class 2 

is the intraset scatter matrix,  and   B   is the interset scatter matrix, 

m , + m 
B = 
Em , + m _ — 1  +~2\T 

all classes 
A   . 

m      and   m      are the sample means of class 1 and class 2,   respectively. 

Sebestyen (1961),   (1962a) advocates maximizing the scatter between 

classes (interset distance) while keeping the total scatter constant (sum 

of interset and intraset distances).    As expected,  this inethod also yields 

an eigenvalue problem   (BA    - XI) = 0   where   A   and   B   are now given by 

A=     22   (y-yxy-y.) 
..n     rOooo^c.      1 J 1 J all classes 

and 

.B = E (v   - V.)(V. - V.) 
V.e class 1 J * 
— i 

V.e class 2 

One problem with these methods is that the inverse of a large matrix has 

to be computed.    IT one decides to minimize the total scatter while con- 
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2 -1 
straining   W   (e.g.    S W.  = 1) ,    A       disappears from the equation. 

i       1 

However,  this approach does not yield a suitable solution to such a simple 

problem as shown in Figure D-3.    The ellipses labeled (1) and (2) repre- 

sent the contours of constant probabihty for the classes.    A line which 

suitably discriminates between the two classes is labeled as the "ideal 

discriminant".    This line is contrasted with the line which minimizes the 

total scatter. 

Sebestyen (1962a) offers a nonlinear approach to discriminating 

between patterns.    He approximates a generalized discriminant with a 

polynomial function of the coordinates of the measurement space.    A 

search is performed over polynomials of various order starting with the 

first order polynomial and continuing with higher order polynomials until 

a suitable categorizer is found.    However,  for a   high dimensional  space 

and a high order polynomial,   this approach    a.n be very 'ime consuming. 

Widrow and Hoff (I960) introduce a performance criterion which 

states that in a two class problem the distar.ee within the classes should 

be minimized about two fixed points.    They devise an iterative procedure 

for the linear separation of binary patterns.    Patterson and Womack (1966) 

use this criterion and a nonlinear discrimir.a.nt function.    They assume 
n 

a discriminant function of the form   u(W ,   Vi =   £  W.0.(V) ,    where the 
-     -        i=l     l  l " 

0.(v)    are given.    They train the machine tc approximate a discriminant 

function which maps class  1 observations :c point   K      and class 2 obser- 

vations to point   -Kp.    A search technique is used to minimize the mean 

square deviation of   u("W,   V)   from these points.    That is, they minimize 

' 

C 
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ideal discriminant- 

discrlninant for 
minimizing total 

scatter 

Figure D-3.    discriminant Functions. 

Euclidean 
distance correlation 

Figure D-4,    Elementary Decision Hules. 
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where    ( •   )  . .    denotes the average over the class i observations, class x 

There are many simple decision rules which are based upon 

regression,  Euclidean distance,  or correlation.    For example,  a mean 

square regression line (curve,   surface,  etc.) can be determined for each 

class.    One then decides that a new observation   V   is a member of a 

certain class if it is closer to the regression line of that class than to the 

regression line of any other class. 

Another simple decision rule is based upon the Euclidean distance 

from   V     to a characteristic point of the classes (e.g.  the class sample 

means).    The rule decides that   V     belongs to a certain class if   V     is 

closer to the characteristic point of that class than to the corresponding 

characteristic point of any other class. 

In still another rule it is decided that   V  belongs to class 1  if its 

dot product (i.e.  correlation) with the sample  mean of that class is 

larger than its dot product with the sample mean of any other class. 

Figure D-4 illustrates these procedures based on the sample means   m 
1 

and   ra      of class 1  and class 2,   respectively.    One can see that these 

simple schemes only work well for certain class configurations. 

Fix and Hodges (195!) propose that an unknown observation   V   be 

classified as a member of the class of its nearest neighbor (as described 

by an arbitrary metric).    This is the famous nearest-neighbor (NN) rule. 

A more complicated rule,   the    k      nearest-neighbor (k   - NN) rule, n n 
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assigns an unclassified point to the class most heavily represented among 

its k  -nearest neighbors.    Fix and Hodges establish the consistency of 
k 

the k  -NN rule for sequences   k —> »   such that > 0 .    Also.  Fix 
n n n n 

and Hodges (1952) present a numerical investigation of the small sample 

performance of the NN rule and the 3-NN (k  =3) rule under the assump- 
n 

tion of normal statistics. 

Cover and Hart (1967) show that the probability of error for the 

nearest-neighbor rule is less than twice the Bayes probability of error, 

based on an infinite sample.    They further demonstrate that the NN rule 

is admissible among the k  -NN rules for certain classes of distributions. 
n 

These are the classes of distributions for which the distance between any 

two elements of the same class is less than the distance between any two 

elements of different classes.    This,  of course,   rules out any possibility 

of overlap between the classes.    Consider a demonstration  of the admis- 

sibility of the NN rule among the k  -NN rules.    Suppose one class is 
n 

uniformly distributed over the interval   [-2,   -l]   and the other class is 

uniformly distributed over the interval   [1,2] ,    both on the real line. 

Suppose that the apriori probability of occurrence of each class   is equal 

to — .    Let   n   training observations be taken.    Suppose that a new observa 

tion, which is to be classified,  falls in the interval   [1,2] .    To make an 

error by the NN rule all of the   n   training observations must fall in 

1     r» 
[-2,   -l] .    The.probability of this occurring is (—)   .    To make an error 

by the k -NN rule, where   k     is odd,    (k  -l)/2   or more of the   n 
' n n n 
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observations must fall in   [-2, -ll    .    The probability that   (k  - l)/2   of 
n 

(k  -l)/2 
i n V^ 

the   n   observations fall in     [-2, -l]     is     (—) 2-ä    (• ) •      This is,  of 

1     n 
course,   greater than     (—)     .  •   Thus admissiblity is proved for this set 

of distributions. 

The nearest-neighbor rule is sensitive to spurious irJormation 

since an annulus is formed about an observation from one class which 

falls in a region surrounded by observations from different classes. 

Sebestyen (1962c) mentions two rules which eliminate or greatly reduce 

the possibility that an annulus forms around spurious observations. 

These rules have the same effect as the   k  -NN rule in that more than 
n 

one nearest neighbor is considered.    Let     d(V . f     )   be some distance 
—   —m 

measure from point   V   to the rrr"- element of class   F .    The   1s^ rule 

decides that   V    is a member of class   F   if 

MF M^; 
1 "2* 1 

E      ~k         Z = 
m=l   d  (V .f    )      s = l    d  (V.g   ) 

 m —  -^s 

where   M      is the number of elements in class   F    and   k   is an arbitrary 
r 

number chosen to determine the neighborhood of   V     which is to influence 

the decision.    The second rule decides in favor of class    F    if 

MF j MG ! 
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Note that for Euclidean distance and for a large   k ,  this rule essentially 

counts the number of elements from class   F   contained in a radius    r 

from   v   and compares this with the number of elements from class   G   in 

that same radius. 

As has been seen, many classification procedures are available 

for use in pattern recognition.    Since these decision procedures are diffi- 

cult to compare,   some ambiguity is involved in the choice of a decision 

procedure.    The procedure to use depends on the amount of information 

available,  the desired complexity of the decision procedure,   and personal 

preference. 
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ABSTRACT 

Signals reflected fron irregular tine varying boundaries such as 
the sea surface undergo distortion which limits their detectability 
and useability for tracking. The properties of this distortion for 
correlator processing are herein related to the statistical constraints 
placed upon the time variation and irregularity of the boundary. T-vu 
propagation geometries are analysed. The first deals with the cross- 
correlation of surface reflected and direct transmission paths, and 
the second with the cross-correlation of surface scattered signals 
received at two different locations. This analysis assumes that the 
signal generated at the target and the background noise are both 
gaussian random variables. Three models of the scattering mechanism 
are proposed and two are analysed in detail. In all cases the 
correlator output is shown to exhibit very persistent fluctuations 
due to the scattering. The existence of these fluctuations is related 
to the non-gaussian nature of the scattered signals. The fourth order 
cumulant is computed to show that well spaced scattered signal 
samples may be dependent even when they are uncorrelat d. Results 
are presented for fow pass signal spectra and are inve tigated as a 
function of bandwidth. When the receiver is constrain^ J to be steered 
"on target" only the signal energy that is coherent between various 
paths contains information useful for detection or tracking. However, 
when the receiver is not so constrained, signal scattering of a delay 
modulated nature is shown to be useful for detection. 
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CHAPTER I 

INTRODUCTION 

1.0 Preliminary Remarks 

Two important techniques that have been used to improve the 

performance of Sonar detection and communication systems are multipath 

and space diversity signal processing. Multipath signal processing 

capitalizes on the signal replication or echoing that characterizes 

propagation from source to receiver along many paths. Similarly, space 

diversity processing takes advantage of the signal replication which 

occurs at an array of spatially separated receivers when transmission 

is from a common source. 

Multipath Sonar processing is generally difficult to implement in 

practice since it usually requires a detailed knowledge of the 

propagation geometry. When this information is not available or when 

it is difficult to estimate, multipath effects are more often regarded 

as a hindrance than as an aid. However, multipath propagation has 

been studied with great interest for range and depth estimation in 

tracking. Furthermore, in certain receivers concerned with the 

detection of signals of unknown spectrum, multipath replication is the 

sole distinguishing feature which can be used to discriminate between 

targets and noise. 

Space diversity processing on the other hand is more commonly 

exploited and more thoroughly understood. Here the design of signal 

processors is not as dependent on knowledge of specific propagation 

geometry and it is therefore less sensitive, more flexible, and easier 

to implement. Moreover, such signal processing permits discrimination 

against non-directional background noise. This noise rejection can 

frequently be improved by simply increasing the number of receiving 
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2 
elements. 

Clearly, propagation geometries exist which include both raultipath 

and space diversity replication.    Figure 1.0-1 illustrates some typical 

propagation geometries.    Case (c) falls into this mixed space and 

multipath category.    The receivers in these examples are assumed to be 

single-site sensors located at various points in space.    Each sensor is 

assumed to be directional enough to select either by design or by 

accident certain ray paths for reception.    Case (b) is an example 

which illustrates two single-site receivers which suppress the direct 

paths of transmission. 

When the reflections from the boundary do not change the incident 

signal (except possibly for sign)  then the replication is termed 

perfect.    This occurs when sound reflects from a completely smooth 

air-water interface when the sound is incident from within the water 

medium.    In this case the reflection is locally characterized by a 
3 

pressure-release boundary condition. 

However, when the boundary is deformed spatially in some random 

fashion then the signal replication becomes distorted. The spatial 

deformations produce frequency dependent interference effects. At 

certain frequencies and locations these interference effects 

superpose constructively to enhance the strength of transmission. At 

other frequencies or locations, however, the interference is found to 

be destructive producing poor transmission. 

X 

B-2 



(a) Single Multlpath Receiver 

Using Direct and Surface 

Reflected Paths 

(b) Two Element Vertical Array 

Using Only Surface 

Reflected Paths 

R1  R2 

(c) Two Element Horizontal Array 

Using Direct and Surface 

Reflected Paths 

■-V>o 
Rl R2 

(d) Multi-receiver Array 

Using Only Surface Paths 

Figure 1,0-1    Typical Propagation Geometries 

Involving Surface Scattering 
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Constructive interference occurs at any given frequency when 

transmissions over various paths reflecting from randomly oriented 

facets of the irregular boundary arrive at the receiver in phase with 

each other. For far-field reception this results from spatial 

periodicities in the boundary deformations which give rise to effective 

path length differences which are multiples of the wavelength X  of the 
4 

radiation.  Similarly, the degree of power loss during destructive 

interference is determined by the likelihood that the boundary facets 

position and align themselves in such a way as to consistently divert 

energy away from the receiver. Irom the point of view of multiple 

transmission paths, effective path length differences produce signal 

cancellation. The properties of the scattered radiation are thus seen 

to be linked to the statistical properties of the boundary deformations. 

In particular, the two dimensional space spectrum describing the 

harmonic content of the surface irregularities plays an important role. 

In connection with d\is  purely spatial redistribution of reflected 

energy, the interference due to surface deformations introduces frequency 

selective transmission properties. These produce spectral alterations 

in the scattered signal which invariably cause correlation degradation 

and consequently poorer signal detectability. In addition, the 

spatial extent of the active scattering area produces a general 

spreading or smearing of signal correlation over arrival time. 

The irregular surfaces considered here are assumed to be 

instantaneous realizations of a stochastic ensemble of such surfaces. 

Each surface ensemble member generally produces a different scattered 

signal.  If the boundary deformations change in shape as a function 

of time then the scattered signal exhibits fluctuations due to this L 
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motion. For severe scattering this fluctuation can turn into deep 

fading. When the tirje variations arc very slow, signal processors 

operating on the scattered signals are occasionally confronted with 

low signal to noise ratios for long periods of time. 

If the time variations of the surface is assumed to satisfy the 

two dimensional wave equation then the periodic or harmonic components 

of the surface propagate at constant velocities in various directions. 

If the incident radiation is monochromatic these surface motions 

generate side bands near the frequency of tne incident radiation which 

7 
are easily observed.  In this case a discrete harmonic space 

component of the surface with temporal period of 2Tr/n which produces 

constructive interference due to transmission path length differences 

59 
of nX generates signal sidebands at 

«•■[nrj* nfl 

(1.0-1) 

where c is the signal propagation velocity.    Similarly, surfaces with 

diffuse space components produce a general smearing of the signal 

spectrum. 
g 

In agreement with the generally accepted definition, the 

constructive superposition at a certain location and frequency due to 

transmission with path length differences at nX is termed a spectral 

order. We call n the order of interference."1 It is clear that the 

number and strength of orders that are "seen" by the receiver depend 

on the directivity and orientation of the sensors. With highly 

9 
directive sensors it is possible to observe single orders. 
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At higher acoustic frequencies the number and spatial (tensity of 

these orders increases.  Consequontly, the degree of frequency smear or 

shifting which can occur in accordance wich Equation (1.0-1) becomes 

larger. Furthermore, the high frequency components of the incident 

signal which constitute the fine structure of the signal correlation 

are especially susceptible to temporal smearing. Hence, it is desirable 

to have a simple criterion by which one can judge whether significant 

time or frequency smear occurs during reflection. The most universally 

accepted criterion is that of Rayleigh.   It states that if the angle 

of grazing for incident radiation is i(». and if the maximum height of 

the surface irregularities is h then the surface appears smooth if 

kh Sinft.) « 1 (1.0-2) 

where k ■ 27r/X. Although many theoretical efforts have been made to 
« 

refine this crude rule-of-thumb it remains one of the most satisfactory 

criteria available as will be shown in chapter 5. 
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l.1 Doacription of the General Problem 

and Preview of the Results 

This report deals with the passive sonar detection of targets 

generating zero mean Gaussian noise-like signals. The detector is 

assumed to use echos or replicas of the signals which are distorted by 

scattering from an irregular time-varying pressure release surface. 

The target is assumed to radiate in an omni-directional manner into a 

uniform, isovelocity medium which is characterized by rectilinear or 

straight line ray propagation.   The radiated signals are presumed to 

travel along a small number of paths to one or possibly two receivers 
i 

with some of these paths reflecting from the surface. The received 

signals are also assumed to be corrupted by broad-band, additive 

Gaussian background noise. 

Attention is primarily focused on evaluating the effect of the 

slowly varying irregular surface on the performaiice of correlator 

detectors and trackers. Scatter degradation is computed as a function 

of two principle design parameters: 
I 

1. Correlator integration time. 
2. Signal processing bandwidth. 

The technique used to evaluate performance is to compute the mean and 

variance of the correlator output under the two hypotheses of target 

present and target absent. The general nature of the propagation 

geometry is considered known. 

It is shown that slow time variations in the irregularities of the 

surface manifest themselves as persistent fluctuations in the output of 

correlators operating on the scattered signals. These fluctuations are 
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noticeable until the correlator integration interval becomes much 

larger than the relaxation times that describe the temporal behavior 

of the surface. Only at this point does the correlator reliably 

"average out" these variations over the ensemble of possible surface 

deformations. Similar fluctuations are also exhibited in estimates of 

such parameters as target bearing, range or depth which are derived 

from the correlator output. 

The most distinguishing feature of the treatment presented in 

this report is the explicit inclusion of the time-variation of 

scattering. A comprehensive description of the scatter dynamics or 

relaxation mechanisms becomes necessary when the scattering is strong 

enough to force long processing intervals in persuit of reliability. 

A distinction is drawn between long and short term correlator 

fluctuations. 

Of course, when the input signal to noise ratio is high and the 

scattering weak, short integration times may be used. The correlator 

fluctuations are still apparent, but the physics of the scattering may 

now be considered "frozen" for the duration of the processing interval. 

The time variation of the scattering then becomes important only 

onsofar as it describes the average lengths of time during which the 

signal correlation "fades" and remains uniformly weak, the smear due 

to drift being negligible. The "frozen" model is, however, just a 

special case of the dynamic or time-varying model. 

With regard to the signal processing bandwidth it has been noted 

that higher frequency signals tend to be more severely decorrelated 

by scattering. Furthermore, signal to noise ratio tends to decrease 

B-8 



with increasing frequency.    Therefore, it is desirable to be able to 

set the working bandwidth at a value which allows enough usable energy 

to be processed while rejecting excess background noise and unusable, 

badly decorrelated signal.    This value generally depends on the 

statistical roughness of the surface irregularities. 

The exact definition of the optimal processing bandwidth is more 

complex for array processing.    It is interrelated with the question of 

the placement of sensors and interpath coherence.    For if twc sensors 

are placed in close proximity, the scattered energy received by them 

tends to come from nearly identical or overlapping scatter ^acets. 

Even heavily scattered signals can contribute to sensor cross-correlation 

under such circumstances. 

On the other hand, it is a well known fact that background noise 

cross-correlation at widely separated sensors tends to be small.    This 

effect is often used to obtain increased array gain while maintaining 

simplicity of processor design.    It is important to remember, however, 

that scattered signal correlation also drops off with increasing 

separation.    For very large separations the sensors receive signals 

scattered by completely independently positioned and oriented facets. 

Three basic propagation geometries are investigated: 

1. Single-site reception of direct path and surface 
reflected path  (Figure 1.0-la).    In this case 
the signals transmitted over the two paths are 
assumed to be separable through use of directional 
sensors. 

2. Two site reception of surface reflected paths 
(Figure 1.0-lb).    The direct paths are assumed to 
be suppressed in order to prevent the analysis 
From becoming unnecessarily complicated. 
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3. N-site reception of surface-reflected path (Figure 
1.0-Id). Again the direct paths are suppressed. 

The first case is of interest in range and depth estimation while case 

(2) 5 (3) is important in bearing estimation. The third case is 

examined only in a very brief manner in Appendix J. 

Three  different models are examined for surface scattering: 

1. Random time-variable delay and amplitude modulation. 
This model is not particularly realistic, but it is 
suitable for determining the effect of the time- 
variation of the scattering. (Chapter 4) 

2. Randomized one-dimensional surface corrugation 
scattering. This model is slightly more realistic 
than model (1) while remaining reasonably tractable. 
This surface is perfectly correlated along the direction 
parallel to the corrugation. Randomization of the 
model is handled by stochastic parameters. (Chapter 5) 

3. Two dimensionally irregular surface scattering. In 
this case the boundary deformations ax a described 
statistically by a two dimensionally stationary 
spatial correlation function. (Chapter 6) 

Although the simpler models (I) and (2) are not entirely satisfactory 

representatives of real physical scattering, the results derived for 

them do share certain overall similarities the fully stochastic model 

of (3). Moreover, it is possible to obtain some results in closed 

form for the simpler models which are at the time of this writing 

unattainable for the more realistic case. Model (3) is discussed only 

briefly . 

The analyses of models (2) and (3) are approximate. The 

approximations used, however, enjoy a fair degree of popular 

acceptance in the literature. To some extent there is experimental 

12 
justification for this optimism,   but the agreement rapidly becomes 

only qualitative when the restrictions on the approximations are 
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violated. Formally, the results of this report apply only for weak 

to moderate scattering observed in the far-field and at angles of 

grazing large enough so that over-shadowing and multiple scattering 

do not occur. This also implies that most of the scattering comes 

from the vicinity of the surface noar the specular point. It is also 

assumed that the surface displacements and slopes are small and the 

radii of curvature are large compared to X. This in turn implies 

that the surface roughness is very slight and that the incident 

radiation is of low to modeiate frequency. 

Although all of the applications actually analysed in chapters 4 

and 5 only low-pass filtering is examined, chapter 3 is sufficiently 

general to handle narrowband problems. Applications of the formulas 

in chapter 3 to the very narrowbandwidth case must, however, be 

prefaced by the comments in chapter 2. In this limit frequency 

smearing must be properly taken into account. 

Additional material is presented in chapter 2 which is ;mr)ortant 

in applying the general results of chapter 3 to multiple bounce scatter 

propagation. In this case the frequency spreading due to a given 

reflection interacts with that of successive reflections. 
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1.2 A Brief Historical nummary of Surface Scattering and the 

Motivation for the Current Research 

It is not the purpose of this report to present a comprehensive 

cumraary of the development of the theory of scattering from irregular 

13 
surfaces. Beckmann and Spizzichino  have provided a very complete 

14 
bibliography covering publications up to 1963. The article by Lysanov 

compiles a listing of the Russian effort up to 1958. Many of the more 

recent articles on scattc ring are refinements of these earlier treat- 

ments. We shall confine our attention here to a discussion of some of 

the simpler concepts v/hich are building blocks leading to the point of 

view developed in this report. 

The first attempts to analyze rough surface scattering were preceded 

by a long period of study of diffraction and interference effects by 

Fresnel  and Fraunhofer. b    The analysis of the Fraunhofer parallel slit 

problem demonstrated the relation between spatial periodic components 

describing aperture in a screen and the position of interference jnaxima 

for waves passing through the apertures. 

The anal/sis by Payleigh  for the reflection of sound from a 

diffraction grating appears to be the earliest attack on the problem of 

scattering from surface deformations. This analysis assumes an incident 

radiation which is in the form of a monochromatic plane wave. The 

grating is assumed to be in the form of a periodic corrugation ; with, 

for example, the direction of the corrugation along the x-axis: 

C(x) - ;(x + A)   ^ (1.2-1) 

where A is the spatial period of the corrugation. The incoming 

C 
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radiation Is assumed Incident along the x-axis at an angle ty    .    The 

receiver is placed in the infinitely removed far-field observing the 

reradiatlon along the x-axis at angle ty    .    The path length difference 

for two rays connecting the source and receiver which impinge on the 

corrugation at similar points separated by A (see Figure 1.2-1) is 

given oy 

BC - AD ■ A (Cos ty   - Cos \|».) (1.2-2) 

Figure 1.2-1 The Diffraction Grating Problem 

♦i 

For an interference maximum of reradiatlon to occur at an angle of ty 

this path length difference should be a multiple of the wavelength X 

so that 

rm 

Cos \l>      ■ Cos ib. + mX/A 
rm      i 

(1.2-3) 

This relation is called the grating equation and the angles i^   (for 

18 
m » 0, +1, +2, ..,)  are termed Bragg angles.   From the requirement 

that  |Cos(^ )| £ 1 it is seen that propagating orders exist in the 

reradiating field for values of m satisfying tjie Inequalities 

- A (1 + COS O < ■ < | (1 - Cos ^i) (1.2-A) 
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For A/X << 1 only the 0-th order propagates. This order Is termed 

the specular order or mode. For high frequencies (small values of A) 

many propagating orders are possible. Orders for values of m not 

satisfying Equation (1.2-4) are said to be in utoff and they correspond 

to surface waves that do not carry energy away from the boundary. 

Formal extension of path length difference analysis for interference 

20 
to two dimensionally periodic surfaces presents no difficulty. 

An analysis of the scattering of sound from two diriensionally random 

21 
surfaces is presented by Eckart.   This treatment clearly demonstrates 

the connection between the Interference maxima and the surface spectrum. 

His analysis begins with the well known Kirchhoff integral theorem for 

monochromatic reradiation: 

s 

where 

pg(x,y,2,t) - Ps(x,y,z) e"^"*        (b) 

Here p  is the reradiation amplitude, k is the wave number 2-n/X  , 
s 

S is the scattering surface, r is the distance from the receiver point 

P to a point on the surface, and 3/3n is the derivative along the 

outward normal of the surface S . 

Eckart assumes that the surface S is illuminated by an incident 

wave generated by a directional monochromatic point source with a finite 

beam-width: 

Jkr' 
p^x.y^) - Bt(M) ^71- (1-2-6) 
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Here B (8,4») Is the beam function, r* Is the distance from the source 

point Q, and e and ^ are the polar and azlmuthal angles for a 

spherical coordinate system centered at Q . 

The boundary condition on the surface S Is assumed to be a 

pressure release constraint: 

^ + pa - 0 [on S] (1.2-7) 

After making a series of approximations which are explored In greater 

depth In Section 1.4, Eckart arrives at an approximate solution to 

Equation (1.2-5)  subject to Equations  (1.2-6) and  (1.2-7) given by 

S 

Eckart assumed the beam pattern to be narrow enough to permit lineariza- 

tion of tha path length rfr1 as follows: 

r + r1 : r + r • + (a0x + b0y + c0;)        (1.2-9) 
0    0      8     S"'    Ss 

where r  and r ' are the values of r and r1 near the center of 
o      o 

the illuminated area which is considered the origin of the x,y,z 

coordinate system and a ,b ,c  are respectively the sums of the x,y,z 
G  S  8 

direction cosines of r  and r' . On executing the partial derivative 
o      o 

with respect to z  in Equation (1.2-8) and replacing the reciprocal of 

rr* by its value near the center of the illuminated area we have 

(1*0 .'KV.'' ,( Jk(.Wy+c°?) 
Ps(P) Z-if-       rr'   //».<*'♦) «   '/     *««»   a.2-10) 

00   s J 

where c. 6, and $    are all functions of x and y . The result 
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shows that the scattered signal Is approximately composed of a supoc- 

position of replicas of the incident wave which are randomly delayed, 

attenuated and time differentiated (as may be seen from the factor jk 

in Equation 1.2-10). The time derivative should not be surprising since 

22 
the result is In the form of a density over arrival times. 

A 

Finally, by forming the mean square nagnltude for p (P)  Eckart 
8 

obtained the desired relationship between the reradiatlon and the 

statistical properties of the surface. Assuming the surface perturba- 

23 
tion ;(x,y)  to be a stationery random variable  in x and y we 

have from Equation (1.2-10) 

kc0 2 

Ps(P) ps(P)* 
r KC i ^ , 

■kr) // JU.n) Q2(-kc°.kc°,c,n) 
(1.2-11) 

-JMa» 
e d^; dn 

Here the asterisk denotes the complex conjugate and the over-bar 

indicates ensemble averaging.  The function (^("»v^.n) is the second 

order characteristic function corresponding to the two sample probability 

distribution  F[c(x,y) ^(x+^y+n) J I 

Qjfu.v.Cn) - exp(-j[u c(x,y) + v c(x+C.y+n)]) 

mjj  e-J[uUx,y)+vC(x+C.y+n)] dF[Ux,yM(x+C,y+ri) ] 

(1.2-12) 

R 
xy 

The function J(C,n)  is the convolution of the beam patterns projected 

onto the surface: 
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ja.n) -fry // Bele(x»y)»*(x»y)J 

() 

(1.2-13) 

B0le(x+e,y+n).(Kx-K.y+n)] ** dy 

The region R   In Equations (1.2-12) and (1.2-13) is the infinite 
xy 

x-y plane. , 

Eckart assumes C to be a Gaussian random process yielding 

-lj[u2h2+2uvfr(5,n)+v
2h2] 

Q2(u.v.C.n) - e 
5 (1.2-14) 

where h is the mean square value of the (zero mean) deformation c sno 

"^U.n) - Ux.y) c(xH,y+n) (1.2-15) 

is the correlation function for the deformation at two points on the 

surface separated by displacements C and n . The dependence of f 

only on these displacements is a result of the assumption of spatial 

stationarity of C . 

By substituting Equation (1.2-14) into (1.2-11) Eckart obtains 

Ps(P) ps(P)* 
r kc s 
4Trr  , 

o'J 

2 
exp[-k2h2c°2] jj J<c,n) 

R 
Xy (1.2-16) 

2 o2 -Jk(a^+b°r1) 
expfkV~ #r<C,n)]  e s      S      d? dn 

Ignoring the beam pattern convolution function    J(C.n)    for the moment, 

it is seen that the directional and frequency selective properties ?ru 

2 2 
determined on the average by the space transform of cxp[k c0 4' (C,n)] . 

s      C 

In a similar manner Eckart obtains the mean of    p  (P) 
s 
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,..   o. Jk(r +r ') ::—      o  wkc.) e   
o o   rr 

0 0  R (1.2-17) 
xy 

Jk(aVb°y) 
e   8  s  dx dy} 

where the quantity in braces is identical to the mirror reflection term 

A 

p (P)     for    c ■ 0    (as may be seen from Kquatlon  (1.2-10)  and    Q^u)    is 

the one dimensional characteristic function for    C  : 

Q1(u)  - exp(Ju;) (1.2-18) 

Again,  by assuming Gaussian statistics for the variable c    Eckart finds 

-k2h2co2/2 (1.2-19) 
s P8(P) - itain]   0  e 

The mean value p (P)  is termed the coherent reradiation by Eckart. 
s 

While Equation (1.2-10) relies heavily on certain approximations, there 

is good experimental evidence that Equation (1.2-19) is very accurate 

24 
when the restrictions on the approximations are not violated. 

In particular, assuming the incident beam to have an angle of 

grazing Y  and examining the forward coherent reradiation into the 

specular direction defined by 

a° - 0 (a) 

b0 - 0 (b) (1.2-20) 
s 

c0 =-2 sin a        (c) 
s        l 
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we have from Equation (1.2-19)   the coherent reflection coefficient    R  : 

[ps(P)l 2 2      2 
R . __*  . cXp(_2 k'h Sin (I;,) (1.2-21) 

It can be seen that this is a function only of tho Rayleigh parameter 

given in Equation (1.0-2). 

Unfortunately, if we choose to violate restrictions used in obtaining 

these results this agreement breaks down.  For example, if we wish to 

examine a passive detection problem, a narrow beam pattern for the source 

at the target is unlikely. If we set B(6,(j)) ■ 1 and consider 

reradiation from a flat surface (C" 0)  then in the specular direction 

defined by Equations (1.2-20), (1,2-10) yields 

p (P) > » ! (1.2-22) 
8 

The difficulty can be traced to the linearization in Equation (1.2-9). 

This problem is examined further in Section I.A. 
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1.3 Scattering; from Time Varying Surfaces 

The Extended Kirchhoff Integral Equation 

The Kirchhoff formula. Equation (1.2-5), which forms thb basis of 

the Eckart analysis applies strictly only to the case of scattering 

from time Invariant surfaces.  Eckart tacitly assumes that if the 

surface motion is slow compared to the period X/c of the radiation 

then Equation (1.2-5) still applies but with the boundary 

(S(t): z - ;(x,y,t)] (1.3-1) 

which is explicitly time varying. Eckart's analysis of the mean and 

mean square of p (P) did not require an explicit description of the 

time varying behavior. However, we are primarily interested in examining 

space-time correlation functions and the temporal fluctuations in their 

estimates. Therefore, a few qualifying remarks are warranted with regard 

to this approximation. 

The Kirchhoff formula is essentially a restatement of the well known 

wave equation for smell pressure disturbance in Isotropie elastic media 

V^-^r^-f (1.3-2) 
c H 

in terms of an integral equation in which the Integral is over the surface 

S(t) .  The extension of the basic Kirchhoff formula, Equation (1.2-5), 

to the case of time varying boundaries was carried out by U. R. Morgans 

25 in 1929.   We now briefly review his solution. 

Mathematical restrictions placed on the pressure p inside the 

volume V enclosed by the surface S(t)  (see Figure 1.3-1) which are 

necessary for the extended Kirchhoff formula to hold are equivalent to 
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the requirement that V be source-free. Consequently, the solution to 

Equation (1,3-2) is broken into two parts: 

p(t) - p1(t) + p8(t) (1.3-3) 

U 

where both p. (t) and p (t) are solutions to Equation (1.3-2). The 
X 6 

solution p.(t) is thct due to the source of the radiation but In an 

unbounded medium, while p (t)  is the solution which must be added to 
s 

p.(t) in order to satisfy the boundary condition on S(t) .  It is 

assumed that the incident radiating field P1(t) is known so that there 

remains only the problem of obtaining the integral equation for p (t) . 

z-axis 

x-axis 

H» Xn 

Geometry for Time Variable Surface 

in the Kirchhoff Formula 

Figure 1.3-1 

y-axis 
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The Kirchhoff integral equetion for time varying surfacts is obtained 

26 27 28 
in a manner similar to that u^cd in the tine Invariant case.  ' *   One 

begins by considering the wave equations for the scattered wave p  and 
s 

an    auxiliary solution    q    which is used in the derivation: 

2 2 

(a)       72p8 "^^Y- (b)       *2q - -r M u-3-4) 
c 3t c at 

Multiplying Equation (1.3-4b) by p  , Equation (1.3-4a) by q , and then 

taking the difference we have 

2       2 
q 7 p - p  7 q - [7«(q Vp ) - 7p «Vql - [^'Cp  Vq) - Vq'Vp 1 

9     8 8       8 8 o 

- V»[q 7p8 - pg7q] (1.3-5) 

3 Ps     Ä  3  .  3P8     H, 
" q ^T " Ps ^2 " iT {<» IT " Ps ?l} 

We now consider the point P and the time t  at which we ultimately 

desire the value of p  . Following Eckart*s notation we let r denote 

the distance from P . We surround P with a small sphere S'  (see 

Figure 1.3-1) and designate the volume below S(t) and outside S' as 

V' . Integrating Equation (1.3-5) over V' and using Green's Theorem 

^///!?«&-».£>"■ c  v' V (1.3-6) 

S' S(t) 

L 
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Nexc, the derivation of the Kirchhoff formula requires the Integra- 

tion of Equation (1.3-6) with respect to t and it is at this point that 

the time variation of S(t) must be taken into account.  This may be 

done by using the Integrated form of the Stoke's total derivative. For 

any function f(x,y,2,t) 

bJJJt  dV - jfjlf dV + // f vn dS        (1.3-7) 3_ 
t 
V1        Vr        S(t) 

where v  Is the velocity of an element of the surface, dS, taken along 
n 

the outward normal, n . 

Applying Equation (1.3-7 to (1.3-6) and integrating t over -» 

to +• we have 

i///^--*1 t-+«> 

.     Ps 5? dV , 

-H» 

/    dt 4  // vn ^ IT - Ps lf> dS + //   ^ IS1 - Ps ^ dS    (1-3-3) 
C
    S(t) S(t) 

+ jj^-Ps^dS> 
S' 

The volume integral in Equation (1.3-8) may be made zero by forcing q to 

be zero as t -»•+<» .  On specializing q to be the function 

q(r,t) = W(ct-ct +r)/r (1.3-9) 

where W(0  is a very narrow pulse centered around  C c 0 , and which 

is normalized 

W(U dC = 1 (1.3-10) 
/ 
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It becomes possible to evaluate the Integral over S* . If this sphere 

Is centered on P and shrunk In size then the Integral over S* becomes 

/ 
~- (-1/r2) |  W(ct-ct +r) p (r-0,t) c dt  + o(r) 

c  S   0 

Equation  (1.3-8)   then reduces to 

^•V 

+« 

a // dx O" 
xy 

-/_ c c 

(1.3-11) 

(1.3-12) 

where    H(x,y,t)    is the secant of the angle to the z-axis of    n(x,y,t): 

H(x>y,t)  » Sec '•A* & * <^> (1.3-13) 

There remains now only the problem of performing the integral over t 

in Equation (1.3-12), The details of this manipulation are presented in 

Appendix A. The result is 

^-//V^Ttfe« 
R 

3r.!!n 

l!s ^ In £s + ^
n  c2 I Is. 

3n   c2 3t    (l+f/c) 
r 

xy (1.3-1A) 

^^U*?'^*-'" (1+r/c)  t-t -r , z-;(x.y,t) 
0 c 
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The integrand is evaluated at the retardation time t -r/c where r Is 
o 

the distance to the portion dS of the surface lying above dx dy when 

it is positioned to give a disturbance arriving at P at t . The 

determination of r for a given x,y,t  is itself a formidable problem, 

Ignoring terms of the order v /c, f/c, v /c, H/c and Of/9n)/c 
n       n 

which are all quite small for the problems of interest in this report we 

see that Equation (1.3-1A) becomes 

"s^'o' // 
dz dy  ,H   ,aP8   . il fiL .  1. JLr i!jLii 

4TT      
lr  l3n 3n r        c an 3t   )J 

(1.3-15) 

xy 
t»to-r/c,z-;(x,y,t) 

We desire a comparison of this result with the Kirchhoff formula for 

monochromatic radiation Equation (1.2-5). Therefore, we assume that the 

scattered field which varies due to the surface motion is quasi- 

monochromatic or narrow band: 

Ps(x,yfz,t) - P8(x,yfz,t) e'^ (1.3-16) 

where p (x,y,z,t)  is the slowly varying (complex) amplitude.  Inserting 
S 

this into Equation (1.3-15) we have 

p.<p'V 
iTdx dy.H ^Ps , it ££ . 1 il ri^s 

JJ    ATT lr l3n   3n r   c 3n l3t 
ju pe]}]e 

Jkr 

xy 

(1.3-17) 

z=C(x,y,t) 

t«t -r/c 
o 

We assume that the slow variations of the amplitude satisfy the inequality 

suggested by Eckart: 

(1.3-18) 
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Taking advantage of this we find c 

s   o ^-^fr^.^-^^n 
xy 

// 

3„.e 
Jkr 

^L^L[H (e^ 3Ps 

t-to-r/c 

2-C(x,y,t) 

(1.3-19) 

-)}] 

xy 
t-to-r/c 
Z-C(x.y.t) 

«.cUlng that ds - H dx dy „e see that the result is indeed similar to 

the tlV invariant Kirchho.. toraula as ECart suggests, but in see cases 

It is important to render the need for the retardation ti„e in the 

integrand. This occurs „hen differences in retardation «„es „ithin the 

active scattering area hecoae CMparabie to the characteristic period of 

the surface time variations. 

C 
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1.4 The Approximate First Order Solution of the 

Kirchhoff Integral Equation 

In this section we examine more closely the transition from the 

Kirchhoff formula, Equation (1.2-5), to Eckart's approximate solution, 

Equation (1.2-6). We also examine the works of a few other authors which 

either contrast with the Eckart approach or Improve it. 

From the Dirichlet or pressure release condition assumed by Eckart 

we have 

P8(x,y,z,t) - -p^K.y,«)  [z-^(x,y,t)] (1.4-1) 

Inserting this directly into Equation (1.3-19) 

1      ff       ^ 3    e-1kr eikT  8     - 
^V " h JJ   Pi(x^z) I^V + V k ps(*.y.*.vr/c) ds 

S
r(to) (1.4-2) 

Ps 

where    S  (t )    is  the appropriately retarded surface.    Unfortunately,   the 

partial derivative of    p      with respect to    n    in the integrand of 
5 

Equation (1.4-2) is unknown a-priori, and it cannot be assigned in an 

Independent manner from the constraint Equation (1.4-1). Therefore, 

although p  can usually be found quite easily, the problem of solving 

the integral equation (1.4-2) for p  remains a difficult problem. 
s 

Currently, the only serious attempt to solve Integral equations of 

29 
the form (1.4-2) in a straightforward manner is given by Uretsky.   His 

analysis considers only the case of a plane wave reflected from a time 

invariant sinusoidal corrugation. The technique assumes that the normal 

derivative of p  is periodic on the surface along the direction of the 

corrugation and a Fourier expansion is applied.  This results in an 

infinite set of equations in an Infinite number of coefficients.  Uretsky 
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obtains the first few of these coefficients using approximate numerical 

methods. This technique, however, does not lend itself to the problem 

of scattering from arbitrary or random boundaries. 

Other authors such as Rice,  or Marsh, Schulkin and Kneale31 

begin by extending the Rayleigh approach to the case of random surfaces. 

They assume a plane wave expansion for p  with an unknown but position 
8 

invariant space spectral density. These authors attempt to match the 

boundary condition (1.4-1) without making explicit reference to the 

Kirchhoff formula. This tcc.inique, however, also leads to an infinite set 

of equations for various components of the unknown spectral density and 

the solution requires conditions that imply weak scattering. 

Although the plane wave expansion approach appears to be more 

attractive than the Uretsky technique from the point of view of flexibility 

32 
it suffers from a serious defect. Lord and Murphy  show that the assump- 

tion of a constant spatial density of plane waves is in contradiction with 

33 
the Kirchhoff formula. This difficulty was first noted by Lippmann  and 

later explained by Meecham  in an article predating the efforts of Marsh, 

Schulkin and Kneale. Meecham examines the problem of scattering from 

corrugations. Using an argument which is easily generalized to two 

dimensionally random surfaces (see Appendix A) Meechar shows that although 

a plane wave expansion exists, the density of the expansion becomes 

position dependent in the neighborhood of the surface deformations. This 

fact prevents the determination of the far-field wave density from the 

boundary condition Equation (1.4-1). 

Alternatively, Mintzer  proposes a modification of Eckart's analysis 

which is essentially a perturbation-iteration scheme. This results in a 

L 
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very flexible solution which is applicable for time varying random sur- 

faces and which is theoretically more accurate than that obtained from 

plane wave expansions.  In this treatment Equation (l.A-2) is rewritten 

as follows: 

Ps 

W (1,4-3) 

6 ff        Jkr + ^ jj   ^r hr<%<ji'y»i«toÄr/c)" Pi(x»y'z)) ds 

S (t ) 
r o 

where 6 is a parameter of "smallness" which is 1 for the physical 

problem cf interest. However, we consider the general problem of solving 

Equation (1.4-3) with arbitrary 6 £ 1 and use 6 to drive the 

Iterative solution process. 

The choice of the second term as the additive perturbation is 

motivated by the fact that it is identically zero for a flat, perfectly 

reflecting surface.  In this case the boundary acts as a plane of 

synunetry or "mirror" surface which reflects "images" of the sources 

generating p  .  This term is also known to be small when the amount of 

35 
overshadowing of the surface S on itself is slight. ' It should be 

noted that multiple scattering and other effects (such as a certain 

amount of diffraction) are also Included in this term. Nevertheless, we 

broadly refer to this term as the "shadowing" term even when the frequency 

of radiation is too low to cast distinct shadows.  The condition of slight 

overshadowing requires generally large angles of grazing and small surface 

slopes. 
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The standard perturbation-iteration approach to the solution of 

(1.4-3)  Is  to assume that the solution can be grouoed  Into terms of de- 

36 creasing order of magnitude In    6: 

r8 S 0 * e 

TD . ,2 ;(2) 
» +  6     p 
8 • rS 

(l.A-4) 

Substituting (l.A-4) Intu (1.4-3) and collecting terms of equal order In 

6 we have 

^0) <'.V r? / f ki^- ii<«.T.»>)« 
Sr ^ 

il) c.V^/ [4^k('i0)(»'"'V»/e>-n<«'''rt)d8 

S (t ) 
r o 

r^J-ä   f/^ktÜ'-^—VWc)) dS 
S (t ) 
r o 

[for m ^ 2] 

(1.4-5 
(a) 

(b) 

(c) 

Thus, In principle the first Iterative solution is determined by the in- 

coming or free-space solution p., and each successive iteration is obtained 

recursively from the next lower solution. The technioue is, however, 

limited by two drawbacks. First, there is no assurance that the expansion 

in (1.4-4) converges with 6-1 for a given boundary or frequency. Second, 

even the integral for p   cannot be performed exactly owing to the 
s 

complexity of its integrand, especially for P in the near field. 

Despite these limitations the perturbation-iteration method enjoys 

widespread acceptance in the literature. Frequently the Iteration is 
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stopped after only the first term Is obtained: 

p - p(0) (1.4-6) 

This approximation which is exact for the flat surface tends to yield the 

37 
correct frequency behavior even for mild scatterinf».   It is in thi.^ 

approximation that Eckart obtained his results. We shall limit ourselves 

in this report to the situations for which (l.A-6) is sufficiently accurate. 

We now proceed to evaluate (1.4-5a). The normal derivative is 

conveniently computed in operator form as follows: 

JL. = n -7 - " 3x ax " ^ ^ ^- (1.4-7) 
311 H(x.y,t) 

where H(x,y,t) is the secant of the angle between n and the vertical 

and 3c/3x and 3c/3y are the x and y slopes of the surface 

Next we assume a directional point source located at the point Q 

(see Equation (1.2-6)). Examining the normal derivative in (1.4-5a) we have 

IkCr+r») 

klV6^ rr' 

gjkdr+r') 

rr' 

3B (6,^) ^ i a^  i  a*-» 
(1.4-8) 

We consider only the case of wide beam patterns so that 9B (6,(J))/3n can 

be ignored, and we limit ourselves to the far field where 

k » -. -, • (1.4-9) 
r r 

Hence, (1.4-5a) becomes with the use of (1.4-7) and (1.4-R) together 

with the relation dS = dx dy H 
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8 «'•«.' ■ // 

dx dy 
ATT 

JkCr+r') 

rr [thShZ]^'" 
xy 

(1.4-10) 
-r/c 

«-C(x,y,t) 

t-t -r/c 
o 

38 
Following Gulln  and x,y,z coordinate system is selected in such 

a way that both the source point Q and the point of observation P lie in 

the plane defined by y-0, as shown in Figure 1.4*1. The origin of the 

coordinate system is chosen to lie in the plane C ■ 0 (the plane defined 

by mean of the random deformations) and to be located at the specular 

point for wide beamwidth incident radiation. The beam pattern is here 

assumed to be aimed directly at the specular point. This point can be 

determined by finding the intersection of the plane £* 0 and the line 

PQ' where Q' is the flat surface image point for the source. 

t 

Q(x .0,z ) 
p  q 

Source 

S(x,y,0 

x-axis 

P(xp.0..p) 

Receiver 

Figure 1.4-1 
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A key assumption which must be made In order to evaluate (1.^-10) Is 

that the most Important region of the Integration Is In the vicinity of 

the specular point even when the beam pattern Is not very narrow. 

39 
Beckmann  observes that while most of the Integrand varies slowly over 

the surface, the exponent Is very oscillatory. The most Important con- 

tribution to the Integral comes from within the first Fresnel zone of 

this spatial oscillation. The larger higher order Fresnel zones become 

more closely spaced and produce successively smaller contributions of 

alternating sign which tend to cancel. Provided the angle of grazing H' 

for the Incident beam Is large, the first zone Is rather circular and 

centered at the specular point. At lower grazing angles the zones become 

ellipses elongated along the x-axls so that for wide beam patterns there 

are significant contributions made far from the specular point. 

For large grazing angles, overshadowing Is not Important and the 

localized nature of the active scattering region eliminates the need for 

using different retardation times In the Integrand of (1.4-10). It also 

becomes permissible to expand r and r' about the specular point. Retaining 

terms to quadratic order In x/r, x/r', y/r, and y/r' In the exponent of 

(1.4-10) we obtain (see Appendix C) a result which Is slightly more 

38 
accurate than that given by Gulln  for scattering Into the specular direction^ 

00    R 
xy 

+ bs(x,y) (|i| + c° + [a0 - a'0 - a(x,y) + a'(x,y))a0 c° ] 

.k[y2/Re +7(x c°)2/Re - c° Ux,y.t -r /c)]| 
e-3        4   s       s dx dy 
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Here a(x,y), b(x,y), c(x,y) are the x,y,z direction cosines for r and 

a'Cx.y), b'Cx.y), c'Cx.y) are the x,y,z direction cosines for r'. The 

subscript 's" on a, b, or c denotes the sum of the primed and unprlmed 

quantities and the superscript V denotes evaluation of these quantities 

at the specular point. The distances r and r' are the distances from 
o    o 

the specular point to P and Q and 

(1.4-12) 

Now at the specular point a , b , and c satisfy Equation (1.2-20). s  s     s 

Assuming that these quantities do not vary appreciably in the active 

region of scattering (see Appendix C) we have Gulln's result 

AU    o jk(r +r,) Jk c eJ  o o 
Ps(P,to) S / / dx dy B (e.*) 

ATT r r'      ' ' o o ■// 

eJk[y2/Re + i(x C°)
2/Re - c°c(xty,to-ro/c)] 

(l.A-13) 

Finally, we examine the special case of perfect reflection and 

wide boamvldth. Setting £ -* 0, B (6,4) *  1 

.,  o jk(r +r,) a>   «      09 

jk c„ eJ v o o'    r    .. 2.n    r    ...      o.0 

Arr r r' 
o o 

Jkc8 e 

—00 

i k c v       s   ' 

'  e dy   1   eJ 

- e 

An r r' o o W 
(1.A-1A) 

The result Is, of course, exact for all frequencies In spite of the fact that 

at low frequencies (large X) the Fresnel zones are large. It Is seen 

that Gulin's solution is superior to Eckart's for passive detection 

problems because Eckart's solution diverges in this limit. 
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CHAPTER 2 • 

PRELIMINARY DISCUSSION OF 

SIGNAL AND SYSTEM PROPERTIES 

2.0 Introduction 

In this chapter the rropertles assumed for the signals and systems 

used in this report are summarized. Both signals and corrupting background 

noises are taken to be stationary random variables although for the most 

part only wide-sense statlonarity need be assumed. Since the fluctuation 

of the output of finite-time correlators is examined in Chapter 3 it is 

desirable, to assume that the background noise is Gaussian. This slmpllfiLS 

certain fourth order moments that arise in the computation of the variance 

of the fluctuation. For a siailar reason it is desirable to assume that 

the target signals are Gaussian before they are scattered. 

The scattering mechanisms are assumed to be in the form of random, 

linear, time-varying systems. The question of the various degrees of 

statlonarity of these systems required for different problems is examined. 

Several equivalent representations for the effect of scattering are 

discussed. Each representation is useful in various applications. Some 

attention is focused on the problem of cascading two or more random, 

linear, time-varying systems. This problem becomes important in tht. 

processing of signals and in the representation of multiple scattering 

when the frequency smear of a particular scattering system is comparable 

to the bandpass properties of systems following it in the cascade 

arrangement. IVhile the emphasis of the remaining chapters is nlaced on 

wide band detection, these latter results arc needed for analysis or 

narrowband detectors. 
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2.1 Concerning the Nature of tha  Target Signal 

We are restricting out attention to the passive detection of targets 

which generate real, stationary Gaussian signals of zero mean. Consider 

such a signal, x(t) for -• < t < • . It is well-known that x(t) can 

be expressed in terms of a Fourier Transform written in Stieltjes form 

as follows 

^jexpCj, x(t) - — I exp(ja>t) d2(u)) (2.1-1) 

where 2(0))  is termed the spectral distribution corresponding to x(t) . 

From the real nature of the signal x(t) it is seen that the increments 

of the distribution possess conjugate odd symmetry: 

-d2(-U)) - d2(ü))* (2.1-2) 

Using (2.1-1) one may write the correlation between the value of x 

at two times t and t' 

RU.t') - x(t) xU')* •11  expOwt-jw't') d2(a)) dzju')* (2.1-3) 

u) w' (2ir) 

where the overbar denotes ensemble averaging.    By the hypothesis of 

statistical stationarity 

RU.t') - iKt-t') (2.1-A) 

This functional dependence of the signal correlation on only the time 

Following a convention used in the literature, the absence of limits 
on an integral denotes integration throughout the range of the non-zero 
integrand while the symbolic label beneath the integral sign scans the 
domain (-00,00]  in a positive sense. 

B-36 



displacement    t-C*    suggests a relation which can be written symbolically 

as follows: 

•\*   .   O,.   AVf..\   x/ . »N   J,. » dz(w)  dzCo')* - 2n dZ(a))  öCtü-u)')  dw (2.1-5) 

where 6(w) Is the Dlrac delta function and ZCw) Is the power spectrum 

distribution function corresponding to R(T) : 

RW ■ h j expCjwt)  dZCa)     . (2.1-6) 

u 
The random process    z(w)    Is said to have orthogonal Increments when 

Equation (2.1-5)  Is satisfied. 

Although this argument Is rather loosely presented and Its conclusions 

somewhat tersely stated,  these results are derived  In a more rigorous 

43    44 45 
manner by Kolmogorov, ' Doob,  and Yaglora.   The distribution function 

Z(a)) can be shown to consist of three components; a continuous components, 

a component with discrete jump discontinuities, and a continuous 

46 
component with a derivative which vanishes almost everywhere.   Since 

the distribution z(a)) Is a random variable it can be very discontinuous 

for certain ensemble realizations.   These discontinuities in Z(LO) may 

exist in individual realizations e ren when Z(u)) is completely continuous 

or when, in fact, Z(w)  is differentiable and possesses a spectral 

density: 

_  , .   dZ(ü)) /o i -\ 
S (u)) s  .>   . (2.1-/) 
xx     dw 

When this spectral density exists Equation (2.1-5) mav be rewritten as 

follows: 
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dz(w) dzCtü')* - 2Tt S^Cu) öCu-u)') du do»'  . (2.1-8) 

The distribution z(u)) is determined to within a constant by the 

Inverse of Equation (2.1-1). 

T 

.(«) - £! j  SSRil&l  - 1 x(t) dt . (2.1-9) 
-T 

Since the mean of x(t) is zero, using this definition we have 

Q(u) » exp(-J xT u) - exp( -^ uT R u ) (2.1-12) 

It is easily seen that any linear combination of x samples is also a 

48 Gaussian random variable.   In particular, the spectral distribution is 

a continuous linear combination of x values as shown by Equation 

(2.1-10) and it IF therefore Gaussian. 

The Gaussian nature of z(w)  can be used to simplify various higher 

order moments of the increments dz(a)) . Since 

z(a)) - 0    . (2.1-10) 

Given any finite collection of x-samples,    x      for    :L"1,2,...,N   we 

have the following probability density as a consequence of the Gaussian 

hypothesis 

f(2^  . 1 exp( -H xT R"1 x ) (2.1-11) ( 

V(21T)N   |R| 

T 
where x  is the row vector (x-itXo *K)    

and £ is t^e  maCrix 0^ 
f 

elements x x    .    The characteristic function or moment generating 

function corresponding to this density is then 
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d2(w) - 0 (2.1-13) 

odd order moments of the form 

dz(ü)) dzCw')* dzCw") (2.1-14) 

A9 vanish identically.        Furthermore, higher order even moments can be 

expressed in terms of linear  combinations of products of second order 

49 
moments. For the fourth order moment we have 

d2(ü)) dzU)1)* dz(a)M) d2(w")* - 

dz(ü)) dzU')* x dzöTTdzü»771)* + 

dz((i)) dz(uM) x dzU)"1)* dzdü')* + 

(2.1-15) 

dz(a)) dz(u)1")* x dz(u)1)* dz(u),,) 

The second order moments of the first and third tern in Equation 

(2.1-15) may be simplified by direct application of Equation (2.1-8). 

To reduce the second term we invoke Equation (2.1-2): 

dz(a)) dz^") = -dz(a)) dz(-a)")* 

2ff S  (w) 6(aH-w") du da)" 
xx 

(2.1-16) 

and 

dz^'")* dz(a)')* - -dz(-u),M) dz(a),)* 

- 2Tr S  (u)'") 6(u),n+u),) du)M, dw' 
XX 

(2.1-17) 
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Therefore, (2.1-15) becomes 

dz(aj) dz(u)r)* d2(u)M) dtbi111)* . 

" (2n>    S^Ca,) [ÖCw-o)') S  (w") 6(u,,-u,",) + 

«(arfu,") Sxx(ü),,') 6(U'"+u,') + 

6(a)-a)'") S^Cw') 6(ü),-ü),,)] dw du* dü>" du)"' 

(2.1-18) 

Finally, by entirely analogous reasoning wc may represent any pair 

of jointly stationary random variables by using orthogonal Increments: 

^>-k ]>",<*)    ;   xCt^.^/eVt'^^      (2^19) 
Ü) w 

where 

dzx(uJ) dl (»')• • 2« dZ^Cu) «(«-w») d«' / xy 
(2.1-20) 

and where Zxy(u)) Is the cross-spectral distribution corresponding to 

the cross-correlation function for x and y : 

Rxy(T) - x(t) y(t-T) " 2^ jeXP(JWT) dZxy(a,) (2.1-21) 

Assuming Z^d»)    to possess a spectral density Sx (a)) : 

Sxy(w) " dZxv(^ 
dw 

wo have,  following Equation  (2.1-18) 

(2.1-22) 

L 
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— —   " 

dZX(ü,)   dZ
x(ü),)*  d2   (ü)")   dz   (ü)'")"^ - 

S^Cw)  6(^0,") Sxy(a,'")   W+u,') + 
(2.1-23) 

S^Co.)   «(«-«-)  Syx(a,')   «(«'-«")]   duj da.'  da," da/" 

B-41 



• < 

2.2 System Function Description for Linoar Time VarylnK Filters 

As Indicated In Chapter 1 a truly accurate and complete description 

of the effect of random surface scattering on reflected signals is very 

difficult to obtain. Perhaps the only obvious remark which one can 

initially make with some assurance is that at the power levels commonly 

encountered in passive detection the phenomenon of surface scattering is 

linear. This is simply due to the linearity of the basic wave equation 

(1.3-2). Armed with this knowledge alone we may draw several very 

interesting conclusions with regard to optimal and sub-optimal receiver 

design.  However, any effort to compute parameters in such designs or to 

arrive at some sort of understanding of the degree of the optlmality 

attained ultimately requires the construction of a realistic scattering 

model from the underlying physics. 

In this section we examine some of the well-known properties of 

surface scattering that are due to linearity. In particular, we study 

extensions of the techniques used by Ellinthorpe and Nuttal,  Linden- 

laub,  and Kallath  to describe the dynamic input-output relationships 

for Linear Time-varying Filters (hereinafter referred to as LTVF's). 

This notation serves as a vehicle for stating those properties of scatter- 

ing which one can advance without making reference to a specific physical 

model.  The eventual goal is, however, to find approximate physical 

counterparts for the notational conveniences. 

We recall that the outputs y(t) of a LTVF can be related to 

their corresponding inputs by a linear functional relation of the form 

y(t) - / h(ö,t) x(t-a) da (2.2-1) 

a L 
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In particular, we have the following function pair which satisfies this 

mapping 

x(t) - «(t-to) 

y(t) - h(t-to.t) 

(2.2-2) 

which Identifies h(o,t) as the response of the LTVF at time t due 

to a unit strength impulse applied a    units of time previously. The 

parameter o Is therefore an "elapsed-tlme" or memory variable. For a 

given value of a, h(o,t)  fluctuates slowly as a function of t for thf 

class of scattering systems of Interest In this report. Formally we 

Identify these slow fluctuations with the surface motion. On the other 

hand, for fixed t the variation of hCoyt) with o    Is much more rapid 

and generally of short duration. 

By substituting v • t-o Into Equation (2.2-1) we obtain a slightly 

different but equivalent representation of the input-output relation: 

x(v) dv (2.2-3) y(t) f h'(v, 

In this representation the new weighting function h^v.t)  is the 

reflected and translated impulse response 

h'Kt) - h(t-v,t) (2.2-4) 

For this representation we have the function pair 

x(t) - «(t-to) 

y(t) - ^'(^.t) 
(2.2-5) 

Therefore, h'(v,t)  is the impulse response at time t due to excita- 

tion at time v . Whereas a is a relative time variable, the parameter 
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v Is an absolute time. Although the easy identification of the "fest" 

and "slow" axes is an attractive feature in the unprined impulse response, 

Lindenlaub Indicates that for certain applications the primed notation is 

more advantageous. 

We now consider three classes of Fourier transforms on the primed 

and unprlmed weighting functions; primary axis transforms, secondary axis 

transforms, and dual or combined transforms: 

A)  Primary or First Axis Transforms 

In both the primed and unprlmed systems of notation the response of 

the LTVF to sinusoidal excitation assumes a role of Importance. This is 

primarily due to the fact that the sinusoidal response is frequently more 

readily accessible from physical considerations than the impulse response. 

Moreover, the approximations used in the analysis of scattering tend to 

be better at some frequencies than at others. Thus, we define primary 

axis transforms H(tD,t) and H'Cw.t) which are generated by the substi- 

tution of 

x(t) « expC+Jwt) (2.2-6) 

into Equations (2.2-1) and (2.2-3) 

H(w.t) - y(t)/exp(+jwt) - / h(a,t) exp(-ju)a) do (2.2-7) 

a 

H'^.t) - y(t)        - /h'Kt) exp(+juv) dv        (2.2-8) 

v 

The quantity Hda.t) is termed the "instantaneous transfer function'' by 

64 
Zedch  while H'^.t)  is termed the sinewave response by Lindenlaub. 

The positive sign convention used in the exponent In Equation (2.2-6) 

is opposite to that used in Equation (1.2-5), Equation (1.2-16) and the L 
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general literature on surface scattering, "but It leads to slightly more 

symmetric results In this chapter.    The difference In conventions Is 

reconciled at a later point In this report. 

The primed and unprlmed transforms are related by 

H'Cu.t)  - H(w,t)  exp(+jü)t) (2.2-9) 

For fixed u both H,(a>lt) and HCw.t) are slowly varying with t . 

These primary axis transforms can be used to restate Equation (2.2-1), 

the basic linear functional relation for general excitations: 

y(t) - |-- fv^t)  dzx(w) ■ —• TlUast) exp(+jwt) d2x(w)    (2.2-10) 

where z (w) is the distribution corresponding to x(t) via Equation 

(2.1-1). 

B)    Secondary Axis Transforms 

By transforming the second axis of the primed and unprlmed impulse 

response we obtain another useful pair of system functions.    These are 

written in terms of spectral distributions 

h(o.t) -~ Jexp(JYt) dG(o,Y) (2.2-11) 

Y 

h'Kt) -~-  fexp(JYt) dCT<vtY) (2.2-12) 

Y 

We here adopt the convention that    dG(a,Y)     represents an increment 
in the distribution    G    over    Y    with    o    normally an independent 
parameter.    When ambiguity might arise,  the notation    d G(a,ß)    denotes 
dG(ö,Y)•(36/3Y)    assuming the derivative exists. Y 
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where if h, h1, G, and G' aro all well-behaved functions on their 

primary axes we have 

+T 

G(o.Y) - JS f mi=m Z I  h(0|t) dt (2.2.^, 

+T 

G'(V.Y) - £; f ggfclj^ - 1 h'(v.t) dt (2.2-14) 

Substituting Equation (2.2-11) Into Equation (2.2-1) we obtain 

y(t) - j f*it~a)  exp(jYt) dG^;Y? da (2.2-15) 

a  Y 

or, applying Equations (2.1-19a,b) and using uniqueness for the Increment 

representation 

dzy(w) - Jje'^^)0 d^iv-y) ^^  da (2.2-16) 

o Y 

Following Elllnthorpe and Nuttall we observe that the quantity 

dw2x(w-Y)  exp(-J(a)-Y)a) (2.2-17) 

Is the spectral Increment for a a time delayed and a Y frequency 

shifted replica of the input signal x(t) . Thus, since Equation 

(2.2-16) represents the spectral Increments of y(t) as a superposition 

of these terms, G(aty)    measures the extent to which the input is spread 

along the delay and frequency axes. For this reason G(O,Y)  IS termed 

the system distributional "spreading" function. 

By comparison, on applying similar methods to Equations (2.2-3) and 

(2.2-14) one obtains 

C 
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dzy(Y) - JKCV) dG'^>Y) dv (2.2-18) 

This relation is considerably simpler than Equntion (2.2-16), but the 

interpretation of. G^V.Y) is not as intuitively appealing as it is for 

G(afY) .  Following Lindenlaub we refer to Gf(v,Y) simply as the Impulse 

spectral distribution. The relation between the impulse spectrum and the 

system spreading function can be found by substituting Equation (2.2-4) 

into Equation (2.2-14) and applying Equation (2.2-11); 

+T 

G'(V.Y) - g;J sakiillzi (i. J eJY't dG ^^     , dt    (2.2.: 

The complexity of this relation accounts for the simplicity of Equation 

(2.2-18) and the usefulness of the primed kernel depends on its avail- 

ability from other considerations. 

C)  Dual Axis Transforms 

Finally, we explore the fourth transform pair in this symmetric 

class of system functions. These are the primed and unprimed bi-frcquency 

relations; 

dg(w,Y) ■ / exp(-jü)c) dG(a,Y) do (2.2-20) 

o 
dg'^.Y) ■ rexp(+ja)v) dG'Cv.y) dv        (2.2-21) 

v 

The relation of these bi-frcquency spectral distributions to t\\2  fast 

axis system functions may be found by transforming Equation (2.2-11) and 

Equation (2.2-12) on a and v respectively; 

hU.t) - JJ-J ejYt dg(cü.Y) (2.2-22) 
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a'do.t)  - ^ jjyt dg'Cw.y) (2.2-23) 

Y 

Furthenaore, by applying the Inverses of Equation (2.2-7) and Equation 

U.2-8)   these become 

h(o,t)  -   /7.^t*«0 ^Ol^ (2.2_24) 

b) Y 

h^v.t)  -   ffe^Yt-cov)  dK>,Y> |tt (2.2-25) 

u Y 

On substitution of Equation (2.2-9) Into Equation (2.2-23) and comparing 

with Equation (2.2-22) we find by uniqueness that 

dg'fa.Y) ■ d «(w.Y-w) (2.2-26) 

The quantity g(u),Y) Is termed the bl-frequency spectral distribution 

function (following the notation of Elllnthorpe) while g'dj.Y) Is 

termed the sinewave spectral distribution function (following Lindenlaub). 

By executing the integration over o In Equation (2.2-16) and Invoking 

Equation (2.2-20) we obtain the last set of input-output relations for the 

fundamental system functions: 

dzy(u)) " 2n / dy^'y»^  Vx^'^    (a) 

Y 

- |- / d gG/.w-u') d »• U1)      (b)     (2.2-27 

~ | dg^co'.o,) dzx(u,•) (c) 

U) c 
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By comparison with the distribution G(a,Y) which measures the spread of 

frequency shifts for various arrival delays, gCw.y) measures the total 

amount of "leakage" of signal at input frequency u into output frequency 

Y cycles displaced from 10 . It therefore offers a natural scheme for 

analysis or decomposition of system response into side bands. 
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By comparison with the distribution G(O,Y) which measures the spread of 

frequency shifts for various arrival delays, g(u(Y) measures the total 

amount of "leakage11 of signal at input frequency u into output frequency 

Y cycles displaced from u . It therefore offers a natural scheme for 

analysis or decomposition of system response into side bands. 

L 
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2.3 Cascaded Linear Time Varying Systems 

Lindenlaub observes that the input-output working relationships for 

LTVF's are generally somewhat simpler when expressed in terms of the 

primed system functions. This feature makes the primed notation 

especially suitable for analysis of cascaded chains of LTVF's (see 

Figure 2.3-1). To illustrate this let us consider n LTVF's cascaded 

in this manner. By repeated application of Equation (2.2-3) one can 

immediately show that the overall impulse response h' (v,t) for the 

cascade is given by 

hin(v it) ■ J j ... / h^v.v^ dv1 h^(v1,v2) dv. 

Vl v2 'n-l (2.3-1) 

... dv    .  h*(v .,0 
n-1 n n-l 

Although this expression is very symmetric it is clear that generally 

the n systems in the chain cannot be permuted or interchanged without 

changing the overall behavior of the chain. 

h^v.v^ h'Cvj.Vj) 

j 

~]— 
hin(v.t) 

Cascade of n Linear Time Varying Filters 

Figure 2.3-1 

Since h'(v -iiV.)  is usually not known a-priori in many practical 

situations a frequency domain counterpart for Equation (2.3-1) is 
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desirable.    By utilizing Iquations  (2.2-12)  and  (2.2-25)  one obtains the 

following intermediate result 

j h^v.Vj) dvj h^(vrv2) 

//fe^i^vk^vV 
(2.3-2) 

JYoV 2V2 

Yl Y2 

Through continued application of Equation (2.2-25)  and a final use of 

Equation  (2.3-23) we obtain 

Hin(U.t) //•••/ s(-"V fc d8;(vv k 
Yi Y2 

•••  ■J- dg'   ,(Y„  ,.>„  .)  i- H'(Y„   ..t) Zir      n-Z   'n-Z    n-1    ZTT    n    n-l 

(2.3-3) 

Clearly, K«n) alternative representations for cascaded systems are 

possible.  In particular, it is occasionally useful to force the first 

system in the chain to be represented by its sinewave response. For a 

two element chain we have the especially simple result due to Lindenlaub: 

H{2(w,t) 
/ 

H|(ü),V1) h^(v1,t) dv1 (2.3-4) 

Since the scattering system is usually the first element in a typical 

chain, it is very advantageous to have the leading element a primary 

axis transform. 

As in Equation (2.3-3) we may extend Equation (2.3-4) by sequential 
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application of Equation (2.2-25) followed by a final use of Equation 

(2.2-8) with the following result for long chains: 

Vl Y2    Vl (2.3-5) 

•••j?4«;.x<V2'Vi)27";<Vrt) 

Finally, by consecutive application of Equation (2.2-27) one can 

easily generate still another relation: 

Yl Y2    Vl (2.3-6) 

••• 27d8n(Vl'Y) 
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2.4 Stationary Stochastic Syste« Correlations 

In section 2.2 the properties of general LTVF's are examined 

subject to general excitations.  No explicit use is made there, however, 

of the possible random nature of either the signals or the systems.  In 

this section we Investigate various properties of Random Linear Time- 

Varying Filters  (RLTVF's)  subject to excitation by stationary random 

variables. The loss of signal correlation on passage through RLTVF's 

is measured from several points of view. The degradation of the cross- 

correlation between the input and output is determined. The deteriora- 

tion of the auto-correlation of the output with respect to the input is 

obtained. In addition, we examine the cross-correlation between outputs 

of RLTVF's taken in parallel and in series cascade. 

We distinguish in the following between averages carried out over 

the ensemble of excitations, the ensemble of random or scattering filters, 

and the union of these two sets.  Ensemble averaging over excitations is 

denoted by an overbar labeled 'V while RLTVF ensemble averaging is 

denoted by "s" . 

Also discussed is the definition used for system stochastic statlon- 

arity and a variety of useful system correlation functions. 

A)  The Input-to-Output Cross Decorrelation Function 

The simplest stochastic input-output relation for a single RLTVF 

concerns the Input-output cross-correlation: 

R (T) 
xy 

   /' 8 ; 
x(t+T) y(t) ■ / h(ö,t) x(t+T) x(t-o) 

f  h (o) R  (T-O) d(a 
/  c    xx 
a 

T H (u) S  (a)) exp(+jü)T) ~ 
/    C      XX J     2lT 

u 

f     D (T.O') R  (OV) do' 
/     C XX 

do 

(a) 

(b) 

(O 

(2.4-1) 
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where 

 • 

(a)  h (o) - h(o,t)     ;    (b)  H (w) - HCu.t) (2.A-2) c c 

are respectively the so-called coherent impulse response and coherent 

transfer functions for the RLTVF . These are related by 

hc(a) -J*ci*)  eJwa^ (2.4-3) 
u> 

Equations (2.4-2)» of course, assume system stationarity at least In the 

mean* 

Because scattering invariably causes loss of correlation we refer 

to 

D^x.o') - h^T-a') (2.4-4) 

as the Input-to-output cross decorrelation function or the "straight- 

through" coherency degradation. 

B) The Output Auto Decorrelation Function 

The second stochastic input-output relation for a single RLTVF 

concerns the output auto-correlation: 

R (t.t') - y(t) yU')* - 
yy (2.4-5) 

,     2    r  r    s x 
(~)  / / H(wft) HMw'.t')  expOwt-jw't') dzju)  dz^w')* 

to tür 
X      X 

.1 

Assuming that x(t)  is a stationary random variable in the wide-sense 

then from Equations (2.1-5) and (2.1-8) 
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(2-21) 

W6»^ mh  /♦(w.w.t.t1) expaC't-t')«) dZ (w)  • 
yy ** j « (2.A-6) 

r   w . 
-  ♦((u.w.t.t1) expCjCt-t')^ S (u) « 

J XX     XTT 

0) 

where the latter equality holds In a spectral density S (u>) exists. 

Here we define 

♦ (w.aj'.t.t') - H(a),t) ^((D'.t') (2.4-7) 

as the Interfrequency system correlation function. It can be seen that 

a sufficient condition for the output of the RLTVF, y(t), to be 

stationary In the wide sense Is 

♦ (w^t»^) - ♦(w.u.t-t') C?.4-8) 

We call such a system a wide sense stationary system (WSS).  For this 

class of systems we have 

Ryy(T) - fa   f*(«,«i,T) eJü)T dZxx(W) 

CO 

(2.4-9) 

Note that since the mean of x(t)  Is assumed to be zero, y(t)  Is also 

zero mean. 

Now we define a more restrictive class of RLTVF's which satisfy a 

broader type of statlonarlty: 

♦ (u^u'.t.t') • ♦(üsw'.t-t1) (2.4-10) 

Such systems are here termed Interfrcquency-wlde-sense stationary (IWSS). 

All of the random scattering systems to be studied satisfy this condition 

L 
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An Important property of this class of systems Is that one may define for 

It a new spectral distribution: 

w 
(2.4-11) 

We refer to the function A as the "tri-frequency" spectral distribution. 

By substituting Equation (2.4-11) into Equation (2.4-9) we obtain a 

stochastic input-output relation 

yy (2.4-12) 

"hj    eJW,T (j^ jdü).A(a)>ü),U
,-a)) dZxx(a))} 

U* fa) 

By the uniqueness of the spectral increment representation this becomes 

(2.4-13) 

From the similarity between Equations (2.4-13) and (2.2-27) is seen that 

the function Afoj.u^u'-w) operates on the input power spectral increments 

dZ (w) in the same way that gdü.üj'-w) operates on dz (w) . That is, A A. A 

dttfA(«tW,««.w)/dw« - r(w,fa)') is called a bi-frequency function by 

Zadeh and others in the literature. 
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A   measures the average amount of Input power at frequency    u   which Is 

parametrlcally "pumped" into output  frequency    u . 

This relationship between the tri-frequency and bi-frequcncy 

functions can be obtained by a more direct method. Starting with 

Equation  (2.2-22) we have 

♦ ((^(At-t')  -  (—)    j I  ej(Yt"Y,t,)  dgCw.Y)  dgMw'.Y') (2.4-1A) 
Y Y1 

This in turn suggests the relation 

( 

dgkw.Y) dgMw'.Y1) - 2TT 6iy~y')  dACw.w'.Y) (2.4-15) 

That is, the increments in the bi-frequency distribution function are 

orthogonal even at different values of the fast axis transform frequencies. 

The orthogonality of the bi-frequency function inr'-ements obviously 

carries over to the increments of the system spreading function distribu- 

tion. Inverting Equation (2.2-20) we find 

dG(a,Y) dG*(o,,Yf) - 

2 

<fc> 
U) Ü) 

exp^juo+jüj'o') dg(ui,Y) dg*(w,,Yl) du da)' 

2ir öCY-Y') dB(a.o,,Y) 

where 

dB(o,of,Y) " / / dAdü.u'.Y) exp{-j (uo-uj'a') } "^ ^ 

b) CD 

(2.4-16) 

(2.4-17) 

This result may be combined with Equation (2.2-16) to yield a power spectrum 
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spreading function relationship 

dz (w) dz (w1)* - 2Tr dCw-w') dZ (w) - y*'  v yy 

// //2irdZxx(ü)'Y) 6^-w,-Y+Y,) (^) dG(o,Y) dGÄCo'.Y') 

o o Y Y 

exp{-J((ü-Y)a+j(ü)'-Y,)o1} do do' (2.4-18) 

Using Equation (2.4-16) and Integrating Equation (2.4-18) with respect to 

fa)' and Y ' 

.... /// dZ (    , , , 
yy     J J J      xx 

Y o a' 

dZ (U-Y) exp{-j(ü>-Y)(ö-o,)) dB(öfo
,,Y) do do' 

(2.4-19) 

- // dZxx(ü)"Y) ^P^-K^-Y)0^ dC^",Y:) do" 

Y o- 

where o ■ a -o and 

dC(o,,,Y) - / dB(o,o+an,Y) do (2.4-20) 

Here C might be termed the power spectrum "smearing" function. 

Equation (2.4-20) shows that the output signal correlation can be 

represented as a distribution replicas of the input correlation which 

are shifted in frequency and over arrival times. 

This leads us immediately to the most enlightening stochastic 

input-output relation. From Equation (2.4-19) we have 

R (T) 
yy 

f j fdZxx(a,-Y) exp{j(a,-Y)(T-o)} (^;) 

o w Y 
ejYT dC(o,Y) du do 

/ a      xx 

(2.4-21) 
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where D  is the auto-decorrclatlon function: 
a 

Da(T.a') - Jexp(JYT) 
dC^ ^ 

exp(jYT) dB(o,,.o"+T-d,.Y) do" (2.A-22) 

Y 0 

'^/ ///exP{^r^^,,-",(^-T-ö,))} dA(a)V,Y) ^l?* d0" 2lT 2lT 
o" Y w a)' 

Performing first the integral ever o", then the integral over w1 and 

finally applying the definition of the tri-frequency function given in 

Equation (2.4-11) we find 

D (T,O') ■ / ♦(a),u),T) e a 
+ja)(T+o,) dw 

2TT 

CD 

(2.4-23) 

Alternatively, the nuto-decorrelation function can be written in terms of 

the second moment of the impulse response: 

Da(T>o') - / H(a).t) H*(u,t-T) expC+jwd+o1)} | i\ i dw 

u 
(2.4-24) 

*\\  du h(a,t) h(o,,,t-T) cxp{ju)(o-o"+T+o,)} ^ do do" 

0) 0 0 

Again, by performing first the integril over w and then over o" this 

reduces to 

D (T,O') 
a 

j h(o, t) MO+T+O1 ,t-T) dO (2.4-25) 
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Equation (2.4-23) is  for our purpom » man  useful than Equation (2.4-25). 

However, Che latter relation Is Important because It demonstrates that 

the smearing of the signal correlation function c . be noticeable even 

when the Instantaneous Impulsu response tends to be narrower than the 

Input correlation width. This occurs when the slow system variations 

tend to translate the Instantaneous centrold of the Impulse response 

along the delay axis. 

C) Parallel RLTVF Cross Decorrelatlon 

By entirely analogous reasoning we may extend all of the single 

RLTVF decorrelatlon equations to the problem of describing the 

decorrelatlon of the outputs of two RLTVF's In parallel and excited 

from a common source (see Figure 2.4-1). 

x(t) 

H^w.t) — y^O 

H2(a>.t) — y2(t) 

Parallel RLTVF Decorrelatlon 

Figure 2.4-1 

L 

Here one distinguishes between ensemble averages carried out over the 

random parameters of H1(w,t)  and H2(ü),t) by denoting the former by 

Ms.M and the latter with "s." . Again one defines a system correlation 

function: 

^(oMo'.t.t') - H^w.t) H^.o'.t')* 

^((Aw.t'.t)* 

Sl82 

(2.4-26) 
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One defines interfrequency „Ide-sense cross stationarlty    (IW8CS)    by 

♦12(».»',t,t') - t12(«,,-,t-t') (2.4.27j 

U is net HtncuU  to see that all of Rations (2.4-5) through (2.4-25) 

-y be rewritten „1th the appropriate  .„- subscripts. The relations 

of primary Interest are summarized here: 

R   (T) 
^2 27r j *i2(ü,»ü,»T) expCjux) dZ^Cw) 

u 

j D^d.o') Rxx(a') da' 

(2.A-28) 

(2.4-29) 

(2.4-30) 

(2.4-31) 

D12(T.a)  - j *12(a,.a,,a)  exp{+jw(T+a)} |ä 

0) 

J ^(c'.t) h2(o
,+T+a,t-T) do' 

(2.4-32) 

(2.4-33) 

Here A12(u)>w
l ,tü")  and D12(T,O)  are termed the cross tri-frequency 

function and the output cross decorrelation function respectively. 

D)  Series Cascade Output Auto-Decorrelation 

Finally, we examine the problem of cascading RLTVF's.  For the two 

filter cascade shown in Figure 2.4-2 we have from Equation (2.3-3) 
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Y 
(2.4-3A) 

where Equations (2.2-9) and (2.2-26) are used.  From this the system 

inter-frequency correlation function for the cascade may be computed. 

Assuming independence between the random parameters of systems a and 

b we have 

♦^(cü.u'.a) - Hab(a)ft) H^U',t-ö)* 

{(^) jj   Hb(a),t) Hb(w
,,t-a)* cxp{J(Y-Y,)t+jv'a) (2.A-35) 

Y Y 

dga(üj,Y-w) dg (Oü'.Y'-U»')*} expl-jdü-üj^t-jw'a) 

Invoking Equations  (2.4-7),   (2.4-15)  and performing the integration over 

Y*    this becomes 

♦ab(a),u)',ö) , SEEld«2ljfb(YtYH<>fw»>q) 

exp(+jY0) d A (W.CJ'.Y-W) 

(2.A-36) 

x(t) 

Cascade RLTVF Decorrelation 

Figure 2.4-2 

y(t) 
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The cascade Crl-frequency function and auto-decorrelatlon function are 

then readily generated. For example, by rewriting Equation (2.4-11) as 

follows: 

Y.Y-UH-W'.O) ■ j^ f   ej(u,M'fü)"Y)o d^CY.Y-o^'y-^-Y) 

»' 

and substituting the result Into Equation (2.4-36) we have 

du)MAab(<i,»w,,w,,) " 2n j d
Y

A
a(w.w,.Y-w) 

du)"Ab ^Y * Y'^" *' •*M+Il»-Y) 

(2.4-37) 

(2.4-30) 

Finally,  the auto-decorrelatlon function for the cascade is particu- 

larly simple to obtain.    Using Equation (2.4-21) we have 

Dab(T'ö,) " / Db(T»0,,)  Da(ö',»a,) d0,, (2.4-39) 

where D (o'^o) and 0.(1.0") are the auto-decorrelatlon functions for 
a b 

systems a and b respectively. 

Another useful relation which is effectively the dual of Equation 

(2.4-36) may be obtained by starting with Equation (2.3-4): 

• 1>,««,0) - ^J(W-W,)t+Jw,ö H' (W,t)H' (W',t-o)* ab ab ab 

.j(«.«»)t-jW»of f Ha(a)tv) Ha(^,v')*e^( wv-w'v') 

V V 

h. (t-v,t) h. (t-o-v'.t-o) dv dv' 
b        D 

(2.4-40) 

. 
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or 

ab J    Vw»w,^,,> ■ **        T (w-w',afV..) dvM  (2>A^ ,---•41) 
v" 

where 

o' 
(2.A-42) 

might be termed the extended auto-decorrelation function for system b 

because 

Tb(0,T,a) - Db(T,c) (2.4-43) 

Rewritten In the frequency domain Equation (2.4-42) becomes 

'  Tb(Y.a.v) - (|j) / / / e^0' •b(y
,,vw.v) 

a' Y' Y" 

(2.4-44) 
expfjY'a'-jY'^a'-HH-v)} daf dY* dY*' 

- / VY"-Y.Y'>) «JYH(V+0) g 
Y" 

where the last equality is obtained by first integrating over a' and 

then over Y' . The relative usefulness of the dual Equations 

(2.4-41) and (2.4-36) depends on the ease of integration. 
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2.5 Time Invariant and Slowly Varying Systems 

Before closing this chapter we simplify various quantities derived 

in sections 2.2 and 2.A for the case of time-invariance. First we have 

the specialized versions of the eight fundamental system functions: 

a) h(o,t) - hf(o) b) h'Cv^) - hf(v-t) (2.5-1) 

c) H(a),t) - HfM d) H'Cw.t) - Hf(a)) e
+:,U,t 

e) dG(o,Y) - hf(a) 6(Y) dy f) dG'Cv.y) - Hf(Y) e*
jYV dy 

g) dg(a),Y) ■ 2« 6(r) Hf(ü)) dy h) dg'Cu.Y) - 2n ö(Y-U)) Hf(a>) dy 

where the "fixed"' or static impulse response is related to its transfer 

function by the usual formula 

h£(o) - TH^ü)) exp(+ja)o) |j (2.5-2) 

0) 

Thus, Equations (2.5-1) (e) through (h) show that there exists spreading 

only along the "delay" axis and no frequency "leakage" when the system is 

tla« invariart.  For a very slowly time-varying system the frequency smear 

therefore tends to be narrow. 

For the completely time invariant system the input-output relations 

reduce to the familiar forms: 

a) y(t) - /hf(o) x(t-o) do     b) y(t) - f Hf(u)) eiu>t  dz^u)  (2.5-3) 

0 0) 

The stochastic system correlation function and distributions are reduced 

for time invariance as follows: 
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a) 

b) 

c) 

d) 

e) 

f) 

♦(u.ui'.o) - ^U,«») . H^u,) Hf(w')* 

dACw.u'.a)") - ^(u.u,') 6((ü..) duM 

dBCo.o'.Y) - hf(a) hf(a') 6(Y) dy 

T(Y.T.a) - f  e^0' h^ 
(a') hf(a'+T+a) da» - T (Y.a+T)      (2.5-4) 

Da(T.o) - Tf(0.O+T) 

dCCo'-.v) - T^O.a") 6(Y) dy 

For purely non-random filters the overbar la deleted. 

From Equation (2.5-4b) It Is seen that in the limit of very slowly 

time-varying systems the tri-frequency distribution weights the point 

a)"«0 very heavily. Thus, in Equation (2.4-36) the distribution A 

for the first system of a two system cascade weights the point Yru 

heavily. Therefore, provided the function *. (Y.Y"4
^* »a)  is suitably 

smooth in the vicinity of this point we have the approximate result that 

(2.5-5) 

In this limit, of courso, the order of the systems in the chain may be 

reversed.  In fact, to the same limit we have 

"ab^»0 ■* H,>.t) HK(u),t) a (2.5-6) 
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CHAPTER 3 

STATISTICS OF THE 

FINITE TIME CORRELATOR OUTPUT 

3.0 Introduction 

In this chapter practical multlpath and array correlator detector- 

trackers are considered. The mean and variance of the correlator output 

are determined. The correlator input consists of signals which may be 

degraded by surface scattering and additive, Gaussian, stationary back- 

ground noise. The signals are assumed to be Gaussian and stationary when 

they are emitted at the target. The scattering is represented by passage 

of the signal through an interfrequency wide-sense stationary RLTVF. 

Although the IWSS assumption guarantees that the scattered signals retain 

their statlonarity, it is not safe to assume that they remain Gaussian 

processes. The departure from Gaussian statistics is examined. 

It is shown that correlator output exhibits fluctuations that Include 

contributions due to the noise, to the randomness of the target signal, 

and to the time-variation and randomness of the scattering. These 

fluctuations are termed estimation noise since the output of the correlator 

operating during the finite interval [0,T]  is only an estimate of the 

ergodic mean value obtained as T -♦■ • .  Of the three components of the 

output variance, the fluctuation due to the slow time-variation of the 

scattering 1) by far the most persistent.  This component occasionally 

forces the use of extremely long processing intervals. Expressions for 

the error probabilities of a two sidt.d test on correlator output are 

derived. 
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3.1 Cross-correlg.tion of Direct and Surface Reflected Paths 

In this section we consider a propagation geometry In which both 

direct and surface reflected paths are received by a single receiver (see 

Figure 1.0-la). It Is assumed that each path can be processed separately 

by the receiver. This might be accomplished by using rulti-directlonal 

sensors, but the exact nature of the separation will not concern us at 

this point. A block diagram for the situation Is shown In Figure 3.1-1. 

. _ n^t) _  

.x(t) Surface Bounce, 

1 
\ H^«) 1     1 

1 

z(t) 

1 Ct) 

r^ 

• p+T^ 
1       ^ 
3^ 

2 Ct) 

Direct Path 

Propagation 

J n2(t) ' ( 

Signal Processing 

Direct vs. Surface Reflected 

Cross-correlator Processing 

Figure 3.1-1 

The two channels are assumed to be corrupted by Independent noises 

n.(t) and n2(t) . The filters H (w) and H2(u)) have been Included 

In order to provide pre-processing before correlation. The variable 

delay parameter T has been Included as a "search" parameter for 

estimating the multipath replication delay. The direct path is assumed 

to transmit a delayed and attenuated version of the emitted signal 

(3.1-1) 
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where R  Is the line-of-sight distance from target to receiver. Follow- 

ing Equation (2.4-34) we define the cascade responses 

Hsl(a,'t) " "27"" /H1(Y) ^  «V^"^ (3.1-2) 

Hd2(«) - Hd(ü)) H2(a.) (3.1-3) 

The correlator operates during the interval [p,p+T]  to yield the 

output E(T,T,P)  at time p+T .  Since the correlator acquires random 

data for only a finite time T, E is a random variable. Its mean is 

easily computed (using Equation (2.2-10)): 

p+T 

2(T,I,p) T / yl(t) y2(t)*  dt 

P+T 

T /   ^ i fH^w) d2nl(a)) + Hgl(w.t) dz^iu)]  exp(ja)t)} 

U) 

1 

'    (3.1-4) 
i 
i 

{h  I  lH2(w,) dzn2(u,,) +Hd2(ü),) dzx
(a,,)J expfjw^t-T)}}* dt 

On expanding the product: 

P+T 

ECt.T.p)  -* {( b'lhs (a))   [H^w')* dz Aui) dz „(u)')* Z ni nz 
(J     b) 

+ Hd2(a)
,)* dznl(ü))  dzx(a,,)*J + Hfil(u).t)   (^(o)')* dzx(cj)  dzn2(a)') 

+ Hd2(w,)* dzx(u)  dzx(w,)*]J  exp{j(u-u),)t+ju,,T)} dt (3.1-5) 
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Invoking the independence of n.Ct), n2(t) and x(t)  and applying 

Equation (2.1-5) this becomes 

     i r f   JUT 
H(T,T,p) -1^1   dt] (  / Hd(u))* H2(U)* H8l(ü),t) —j- dZxx(u))] 

U) (3.1-6) 

The mean of H (w.t)  can be obtained by averaplng Equation (3.1-2) and 
S X 

applying the following relation (which may be verified by insertion In 

Equation (2.2-22)^ 

dg (ü),Y-W) "2^11 (w) 6(Y-W) dy 
s c 

(3.1 7) 

with the result that 

H .(w.t) - H (w) H.dj) 
8i C     1 

(3.]~C) 

Finally, substituting this into Equation (3.1-6) we have 

H(T.T,p) = j H (a)) H,(u))* H^co) H0(ü)) w c    d     12 

+jü)T 

IT" dZxx(w) (3.1-9) 
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3.2 Second Order Statistics for the Output of the Cross-correlator 

In this section we regard the output 5(T,T,P) of the cross- 

correlator shown in Figure (3.1-1) as a time series which Is a random 

function of the initial starting time p for the integrator. This oitput 

fluctuates aVout its mean, causing uncertainty about the possibility of 

the existence of target signal correlation. The most general second order 

statistic that is of interest In analysis of this fluctuation Is the 

cross-covariance of E itself at two values T and Tf for the replice- 

tion delay parameter and for two values p and p'  for the starting 

time: 

MT.T'.T.P.P') = Ed.T.p) Ed'.T.p') - 5(T,T,p) Ed'.T.p')     (3.2-1) 

This quantity determines the spectrum of the output fluctuation, the per- 

sistence and magnitude of these fluctuations, and the degree of dependence 

of fluctutations at different values of the replication delay parameter. 

In this section we focus attention on the computation of the first 

term in Equation (3.2-1). The method used is essentially that given by 

Davenport and Root,  Laning and Battln,  and Bendat  (see also 

Usher ).  From the definition of S we have 

E(T,T,p)   E(T,,T,V)     » 

p+T      p'+T (3.2-2) 

(f)       I I lUx.x'.t.t')  dt dt' 
2 

v/here we define 

* / /. 

lUT.T'.t.t')  - y^t)  y1(tT)   z(t-r)  ZU'-T') (3.2-3) 
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At this point it Is assumed that this fourth order moment Is stationary, 

that is, we assume that the relation 

nd.T'.t.t') - iKT.T'.t-t') (3.2-4) 

holds. We shall return to this assumption in sections 3.3 and 3.5 to 

determine the conditions under which Equation (3.2-A) may be applied. 

When Equation (3.2-4) is valid it suggests the change of variable 

v - t-t1 

(3.2-5) 
dv - -dt' 

Substituting this into Equation (3.2-2) we have 

2  P+T    t-p' 

H(T>T.p) Ed'.T.p') - (%)       f        i   ( n(T,T\v) dv } dt   (3.2-6) 
Jp Vp'-T 

Next, noting that the integration over t is between fixed limits while 

the integrand is a function of only v we seek to reverse this situation 

by interchanging the order of integration. Unfortunately, this forces us 

to break the integral up into two terms, one for the range v < p - p' 

(area A in Figure 3.2-lb)  and the other for the range v > p - p' 

(area B) 
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t' 

(p,p'+T)     (p+T, 

p'+T) 

(p.p')    (p+T.p') 

(p+T.p-p'+T) 

(o.p-p') 
(P^.p-p') 

( V - t - t1 } 

t-v+p'+1 

(P.P-P'-T) 

(a) (b) 

Regions of Integration 

Before (a) and After (b) Transformation 

Figure 3.2-1 

Executing the interchange of order we have: 

H(T,T,P) EdM.p') 

4)  ( 
p-p'     v+p'+T 

f   dv /    dt nCx.t'.v) + 

p-p'-T   p 

p-p'-M    p+T 

dv f      dt IKT.T'.V)} 

P-P v+p' 

(3.2-7) 

L 
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The integration over    t    is now easily perfonned giving the result 

(3.2-8) 

:(T,T,p)   Ed'.T.p')   - 

2 P-Pf 

(7)    {   f [T+v-Cp-p')] n(T.Tf.v) dv + 

P-P'-T 

p-p'+T 

f (T-v+Cp-p')]   IKT.T'.V)  dv  ) 

VP' 

- Y [V1(P-p'+T)  - V^p-p'-T)] 

-  (p     (V^p-p'-T)   - 2 V2(pV)  + V^p-p'+T)] 

+ tejp- lV1(p-p,-T)   - 2 V1(p-p')  + V1(p-p,+T)   ] 

which is a function of (p-p') . Here we define 

a)  V^O  - I    IUT.T'.V) dv     b)  V2U)  '    j     *  nü,T?,v) d^ 

0 o (3.2-9 

Equation (3.2-8) simplifies greatly for the case p-p' and T » i' . 

In this case we may interchange t and tf in Equation (3.2-3) yielding 

IKT» T,V) - lid, T,-V) (3.2-1C) 

Applying this to the first integral of Equation (3.2-8) we obtain the 

well-known result 
c 

T 

^ J 5(T,T,P) Ed.T.p) - 2 (J)     [T-v] IUT.T.V) dv      (3.2-11) 

1        I2 

2 [ Y VT> " fp V2(T) ) 
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3.3 Correlator Fluctuation for Direct and" 

Surface Reflected Multlpath Processor 

In this section we compute the fourth order product function 

nd.T'.t.t1)  defined in Equation (3.2-3) for the direct vs. surface 

reflected path processor shown in Figure 3.1-1. Rewriting Equation 

(3.2-3) in the frequency domain proves to be useful in later computatiions 

Thus, we have from Equation (3.2-3) 

nd.i'.t.t') = 

(JL)4 {  ((I       r eJ(uH-(Jü")t-j(a)'W')t
,-j(a)"T-u)'"T') [ 

U a)' a/' a)M, 

[ H^w) clznl(a)) + Hsl(aJ,t) dzx(w)  ]  | 

i 

j (3.3-1) 
[ H^u,') dz^)  + U8l(a,'.t) dTOT p  | 

i 

i 

[ H2(a)") d2n2(W") + Hd2(a)M) dl^C»") ] 

r 
i 

[  H^u^') dzn2(u),") + Hd2(a),i,) dz^u)"')  ]*  "I } 

On expanding the product of the four factors in Equation (3.3-1) we 

obtain 16 tenr.s.  By the mutual independence and zero mean of n. (t), 

n~(t) and x(t)  all but 4 of these terms are found to be zero.  The 

remaining terms are as follows: 

L 
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nCT.x'.ct') 

4 
(i-)  { (((!    eJ(^-^ ^t-j^'W^t'-jC^T-a,"'!') 

,,i  ,.11  ..m 

H.Cu) Mü)')* dz .(w) dz .(w1)* [ 
11      nl    nl 

H2(W
M) H2(u.",)* dz^Cw") dz^Cu)1")* + 

rid2(w,,) Hd2(tt,,,)* dzx(u),,) dlBx<w,">* J 
(3.3-2) 

+ Hsl(a),t) ^j^Cw'.t')* F 

H0(tü
n) H0(u),M)* dz (w) dz (u)')* dz 0(a)") dz 9(UJ

,M
)* 2    2       x    x      n2     n2 

u + Hd2(a.M) H^Cw"')* dzx(u)) dzx(u)f)* dzx(W
,,) dz^'")* 1 } 

We now make the following assumptions: 

(1) The noises n^Ct) and n2(t) are wid J sense 
stationary. 

(2) The signal x(t) emitted at the target is a 
Gaussian process and stationary. 

(3) The scattering RLTVF is interfrequency-wide 
sense stationary (IWSS). 

■   (3.3-3) 

(    ) 

Therefore,  using Equation  (2.1-8)   and   (2.1-18) 
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nCt.T'.t.t') - 

2 
(!_)    I     I        I        (    ,J<Wf«,,)t-j(ü>,W,)t,-j(«HT-«,,,T») ( 

|H (a.)|2 S n (w) ÖU-O)1) 6(w,,-w
,,,) I 

nlnl 

U.Cu")!2 Siu)  S .^ (w") 6(0)-^') 6(a)"-w",) xx   n2n2 

+ H^^u)") H^Cu)"')* I 

SU)  6(tt-«•) Svv(w") 6(W"-V") + 

S (w) «(wfww) S  (u)"') 6(a),,!-Hi)
,) + 

XX XX 

r(«) 6(u-a),M) Sxx(W
f) 5(M,-«M) ] 1 ) S  («) 6(W-u),M) S „(wf) 5(M,-«M) 11] da) dtt* dw" da),M 

where 

*  (w.w'.p) - H  (w.t) H  (üj'.t-y) 
6 X 6 X S X 

/ e^ H.Cy) HMY-UH-W') d A (lu.to'.Y-w)       (3.3-5) J I    i        Y s 

is the interfrequency system correlation function for the cascade of the 

scattering and filter #1.  Separating the last two terms of Equation 

(3.3-4) and performing two integrals over frequency for all terms we 

have: 

C 
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nd.T'.t.t') 

%> ' J 
JW) (t-tO-jCt-T»)« i\,.n 

|R2(w
H) rv|2 

0)  fa) 

[|H (u))|  Sn n (fa)) + 4> (w.iü.t-t1) Svv(fa))] 

MM 2 [Sn n (a)") + |H.(fa)")r S^^")] ) dm dm"  }        (3.3-6) 

(b     ( / ] •,!(-.»'.t-f) Hd2(U)* Hd2(.') Sxx(u) Sxx(w') 
w  fa! 

Thus, It can be seen that when the assumptions (3.3-3) are satisfied 

Equation (3.2-4) does Indeed hold. Finally, from Equation (3.2-1) and 

taking p - p-p') we have 

AU.TM^P
1
) - ACT.TM.P-P*) 

- MT.T'.T.JJ) 

Substituting Equation (3.3-6) into (3.2-8) we may rewrite Equation 

(3.2-1) in summary form: 

(3.3-7) 

MT.T'.T.U) - (p    { 

y+T 

[T+v-p] + I       [T-v+u] 

p-T 
J 

{[^(V) + I2(V)] ^(V-T+T
1) + I^T.T'.V) + 

^(T'+V^-V.V)} dv} - ^(T,!1) 

(3.3-8) 
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where: 

I^v) 

I2(v) = 

u 

eJ H.Cu))       S (OJ) 5* 
1 11 ^ 

(3.3-9) 

( ^uv   .     f v   c    / v  dw (3.3-10) 

u 

I3(v)  «     f e^   |H2(a))|2   [Sn n  (W)  +  |Hd(a,)|2  S^C«)] f;      (3.3-11) 

0) 

(T.T'.V)  »     f    r eJ(ü)T-a),T,)   ^i((ü>w.fV)  ^^w)* H^Cu)')   (3.3-1 

0)      0)' j       j     « 

2) 

S     (w)   S     (a)')  TT- T- 
XX XX 27T   2TI 

^(T.T')   =  S(T,T,p)   Hd'.T.p')  - 

[     I H (w)  HJ(a))* H.(a))  H0(u)* e+Jü,T  S     (w) » 1 (3.3-13) 
l       c a i. I XX TT 

id 

I     j  [^(w')* Hd(u)')   H1(u),)* ^(u)') e J S     (u )  -r— J 
xx 2Tr 

, 

U) 
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3.A Two Receiver Array Croso-correlator Processing 

In this section we apply the same technique used In section 3.1 to 

the problem of two channel array cross-correlation. In this case the 

propagation geometry for the two channels Is assumed similar in nature 

and statistically correlated. This geometry might consist only of a pair 

of surface reflected paths (see Figure 1.0-lb), or for a slight increase 

in complexity, one might include direct transmission (Figure 1.0-lc). 

The geometry is, In fact, arbitrary for the purposes of this section with 

the exception of the assumption of statistical symmetry between the two 

channels. A block diagram for this processor is shown in Figure 3.A-1. 

n^t) 

x(t)- 

r 
x      r """ 

i ..      /s.\ • 
H1(a),t) —©-; H£(tt) 

y, v«.y 
i 

s 
rv^ 

Channel 1 
,                    i 

i                    i A ,^\. 
i                         V rV^ 

H2(u),t) 
1 r?)   ■ Hf(u) ^r\ 

i 

1 
l 

l 
Channel 2 

.         i 

i   ttj(t) ' 
y2(t) 

i 

Two ReceiN 

Cross-coi 

Propagatloi 
Si* 

rer Arraj 

rrelator 

;nal Proce 

1 

iS£ ing 

Figure 3.4-1 

As a special case, when the two receivers are drawn together so that they 

coalesce,  S becomes an auto-correlation estimate. 

For the analysis of this section n^t) and n?(t)  are not assumed 

to be independent. Wc define the cascade responses 
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Hlf(«,t)  - ^j-   /Hf(Y) ejYt dgl(ü).Y-w) (3.4-1) 

H2f(a).t)  - ^-yjp /Hf(Y) ejYt dg^y-u,) (3.4-2) 

Following Equation  (3.1-4) we compute the mean of    H 

Hd.T.p) 

P+T  

T   i        {h j [Hf(ü,)  d2nl(ul)  + ^f^»^  dz
x(^l  exp(ju)t)} (3.4-3) 

p a) 

[~    / (H^o,')  dzn2(to') + H2f(a),.t-T)  dz^a)1)]  expfjaj'(t-x) }}* dt 

P+T , 

T /   ^^  / /[Hf(ü,> [H^')* dznl(a)) dzn2(u') 

p a) a) 

l2f(üJt,t-T)* d2ni(a)) dzx(a),)*] + Hlf(w,t) [^(u
1)* d«x(w) dz^ii»')*] 

+  Hlf(ü),t) H2 (w'.t-i)* dzx(a)) dzx(u),)*] exp{J (ü)-ü)') t+jw'i}}* dt 

Once again, we assume that the signal x(t) is independent from the 

background noise in each of the two channels. Also, we assume wide- 

sense stationary signals and noises, and wide-sense stationary (WSS) 

scattering. Allowing for the dependence of n (t)  and n2(t) we have 

5(1,1,0) 

w 12       f f 

(3.4-4) 
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where the parallel system cross-correlation function for the series 

cascade of scattering and filters is obtained in the same manner as 

Equation (2.A-36): 

* ? (co,a),T) - H  (w.t) H ((i),t-T)* = 
f f "     Zt (3.4-5) 

3«T   / . 
Tfi~   j  Hf(Y) Hf(Y)* •

JY dA12(w,u>,Y-w) 
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3.5 Cross-correlator Fluctuation for the Two Receiver Array 

We now apply the analysis of section 3.3 to the problem of describing 

the correlator fluctuation for the two receiver array. The equivalent of 

Equation (3.3-lb) for this case is 

nd.T'.t.t') - 

(L-)4 {  [ [  f      f   ej(wfa)
M)t-J(u,•+a),•,)t•-J(a.••T-(u•"T,) 

U)  b)'   0)   b) 

[ Hf(a)) dznl(u)) + Hlf(w.t) dzx(to) ]   , 

[ 1^(0)') dz^Ca)') +Hlf(aJ^t
,) dz^u)') ]* 

[ Hf(ttH) dzn2(a,") + H2f(a)",t<T) dzx(a.,,) ] 

(3.5-1) 

[ H^u,"') dz^Cü,"') + H^C^'.t'-T') dzx(a),,,) ]* 

Once again, on expanding this product we obtain sixteen terms. For this 

case, however, we are assuming that n.(t) and n3(t) are partially 

correlated. Nevertheless, the signal x(t) remains independent of the 

noises. Therefore, of the sixteen terras in the product all but eight of 

these are still found to be zero. Equation (3.5-1) becomes 
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, n(T.T'.t.f) - (i/{ j [   [    [ J(üH-ü)M)t-j(wl+w,,,)t,-J(a)"T-a)MITl) 

0)  0)   U)   b) 

[Hf(u)) H^u,1)* Hf(»
M) Hf(u)M,)* 

dznl(ü)) dz^Co)')* dz^^") dz^Ca)"')* ] + 

[Hf(«) ^(üJ')* H2f(a),,,t-T) H2f(a),,^t,-T,)* 

dz .(w) dz ,(0)')* dz (uM) dz (a)"')* ] + 
nl    nl      x     x 

[Hf(«) Hf(uJ
,,) H^CwV)* H^Ctü'".^--^)* 

dz .(w) dz .(w") dz (a)')* dz (u)"1)* ] + 
nl    n2     x      x 

[Hf(u)) Hf(a)"
,)* H^U'.t')* H2f(a)n,t-T) 

dz^.do) dzn„(^),,,)* dz^Ca)')* dzv(a)n) ] + nl     n«       xx 

[Hf(a)')* Hf(«
w) Hlf(W,t) H2f(W

,,^t,-T,)* 

(3.5-2) 

dz^Cu)')* dl^di") dzx(W) dzx(W
,M)* ] + 

[H^u)')* H^a/")* Hlf(u).t) H2f(W
,,.t-T) 

dz^Cu)')* dz^Ca)"')* dzx(a)) dzx(W
,,) ] + 

[Hf(u»
H) Hf(w

,M)* Blf(«te) Hlf(u)^t
,)* 

dz ,(ü)") dzt,9(a)n,)* dzv(ü)) dz^Ccü')* ] + nz      n/       xx 

[Hlf(a»,t) nif(a),,t')* H2f(a)M>t-T) H2f (a.M, .t'-T')* 

dz (a)) dz (w1)* dz (w") dz (ü)'")* ] } 
Ä Ä Ä A 
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We now make Che following assumptions: 

(1) nAt)    and n-Ct) are Jointly stationary and     \ 
Gaussian. 

(2) The signal x(t) emitted at the target Is a 
stationary Gaussian process. 

(3) The systems H (u.t)  and ILCw.t)  belong to a 
class of cross-fourth-order-interrrequency station- 
ary systems (CFOIS) satisfying the relation 

•[^(«,««,U)Mftt
M,
l t.t-M.t-u'.tV) 

) (3.5-3) 

(3.5-4) Mw.t) R^^.t-y)* ^((At-y1) H2(w
M,,t-w")* - 

•{4J(ll,l»,,«H,»,,,,V,W,,WM) 

In general, the fourth order system correlation function for the cascade 

of scattering and filters may be obtained as in Equation (2.4-A1) from 

the definitions (3.5-4), (3.4-1) and (3.4-2): 

f f 

f  f A**],       ,  „ ,.,  ,  „ .,,x +J(u,u,-a)Mu"W,ü,M) 
(3.5-5) 

u" u"' 

,[4J 
f 

Ti•t,(w-a),w,-u),,^y.u^u,^u^u,^u,,,) du« du,: du"' 

where the appropriate extension of Equation (2.4-42) is 

14] TjHJ(Y,u.ii,,y,,.u\ü,,
fo

,M) - 

(3.5-6) 

re+jYÖ hf(o) hf(a-^i+u
,) h^c-y'+u") h^oV+u'") do 
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When assumptions (3.5-3) hold, using (2.1-18), (2.1-23), (2.1-16) and 

(2.1-17) we have 

nd,!'^,!') - 

*>' // / / 
<. -Vv«  <.."   ,.MI 

ej(u)+w
,,)t-j(w,+u,,,)tl-j(u)"T~a)M,T,) 

W W Hi"     w 

H£(«) H^o)')* Hf(aJ,,) Hf(ü),,,)* [ 

Sn n   (w) «((D-u)') S   (w") 6(u),,-w,M) + 
nlnl n2n2 

S   («) 6(uH-a)M) S   (a)'") 6(ü),,,+w,) + 
n1n2 n1n2 

S   (W) 6(a)-a),,l) S   (a)') 6(w,-a)") ] 
nl 2 n2nl 

|Hf(a))|
2 ^(«".«".t-t'-T+T») (3>5_7) 

Sn n (w) 6(u)-a),) S  (a)") 6(ü),,-a,,M) 
nlnl xx 

+ |H («)|2 »   (u)",,aJ•
,^T,) 

■"■f f 

Sn n (u)) 6(aH-ajM) S  (u)"') 6(aJl+oJ
M,) n - n ^ XX 

+ lM(o)|2 *9 , (u»,t«
,,t-t,-T) 

ß. m  (w) 6(w-a)"f) S^do1) 6(a)"-w,) 

,M2 

nln2,~'  ' '** 

+ |H (a)')|^ ♦, 9 (^«.t-t'+T») 
^ f 

Sn n (a)') 6(a),-u)") S  (w) 6(a)-u)
,,,) 

"«^•i xx 

+ |H.(ttIM) 2 *   (u),a),-T)* 
f f 

S^ . (w'") Odo'+u)'") S„„(a)) 6(0^0)") n.n. - xx 
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+ 1^(0,") I2 ^(w.w.t-t') 

n ä n — xx 

+ •} ; (a),u)^u)^u)n^t-t^T,t-t,+T,) [ 
f f 

( 

S (u)) öCUJ-W
1
) S (u»M) 6(w,,-a)if) + 

XX XX 

SVV(ü)) ö(a)W) S >'") 6(a),,,+a),) + 

S  (w) 6(a)-u),M) S (u)') öCW'-ü)") ] 
XX XX 

»  J..H J..III da) da}' du ' du 

Upon rearranging terms and performing two integrals over frequency for 

all terms we have 

nCr.TV.t') »= ( 
fe.1-// 

1((ü+a)") (t-O-jCT-T'V 

0)  (0 

|Hf(u))|
2 [|lif((.")i

2 Sn n (M) Sn n (u") f       f      n1n1   n2n2 

+ ^(«".«".t-t'-T+T1) Sn n («) 8^(0)") ] 

MM2 + ^(usco.t-t1) |H-(w")r S   (u") S (w) 1 f   '  n2n     xx If 

+ *{AJ (aJ,w,a),,,(i)",t-t'fT,t-t
,+T') S  («) S (u)") ] dtt dw" } 

Xr^r XX      XX       / 

0)  <JJ 

-j(-a)T-U)"'T') 

Hf(u)|
2 [I^C«"')!2 S^ „ («) Sn n (a)"') 

nln2    nln2 

^lf2f(«M,.«MSf)sV2(«)sÄ(w"') ] 

L 
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+ ♦, , (ü.,U,+T ) |Hf(u"")|
2 Sn . (<,•') S(v) 

+ »J4! (u).-u),,^-W,u)"^t-t^T>t-t
,+T,) S^Cw) Svv(a)fM) I dwda,"' } 

• 'h>' 11 ^JCW+W
1) (t-t^-jCw'T-WT1) 

0)  0) 

iHf(W)r iiM«,)r B« „ c«) s,, n («•) 1 f      ' f   '  n1n2    n2n1 
(3.5-8) 

2flf ^^    xx 

.M2 + *. 7  (w^.t-t'+T
1) |H,(tt,)r S^ n (W

,) Svv(w) 

+ *{ l  (w.w'^'.oj^-t'.x^-t'+T') S  (w) S (tu1) 1 dw dw' ) 

It follows again that the assumptions stated Imply that   üCT»t'ttyt') 

is  a function of the displacement t-t' . Therefore, the results of 

section 3.2 apply. 

Rewriting Equation (3.5-8) in summary form we have the equivalent of 

Equation (3.3-8) 

MT.TV.W)  - (±)     {  [ 

M+T 

[T+V-VJ] +   /     [T-v+y]   ] 

i 

/ 

{M (v) M (V-T+T') + K  (V-T+T') M  (V)  + K (V) M  (V-T+T') 
a a a a a a 

+ M (V+T*) H  (T-V) + K  (V+T') M (V-T) + K (T-V) M  (-V-T') 
C C C C CO 

+ ^(T.T'.V) + ^(T.T'^V)  + ^(T.T'.V)} dv} - ^(T.T') 

(3.5-9) 
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where we have assumed symmetry between the two channels, defining the 

quantities 

Snn(<ü) "Kr,    M " S« „ (W) (3.5-10) nn     r^n      n-n. 

♦ (W,CJ,U) • ♦   (a),w,u) - ♦, 0 (w.cü.u)       (3.5-11) a ^^        Vf 

and  the  Integrals 

Ma(u)  -JeJu,u  |Hf(W)|2Snn(W)^ (3.5-12) 

Ka(u)  -   fe:, WU •  (w.w.u)  S     (») fw- (3.5-13) a        *        xx        2Tr 

%M • j J*' \*tM\2 s^M % (3.5-U) 

K (u)  -  f •J"U ♦,   , (üJ.U.O)  S    («) fSf (3.5-15) 
C / *-f   f xx ^^ 

u    u1 

♦^(«.«.«».«•.U.T.Uft«)   S^C«)   Sxx(a)')  -2- — 

T   /       »     \ 1((x)^4•a),T,) 
J2(T,T'IU)   -    /     /  eJV 

(D      0)' 

AI^I   / i i ,   i\   o     /  \   o     /   i\   du du' ♦x^(«.,-»■.-a,(U>.T.u+T')  S^M  Sxx(U') ^2^- 
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J,<T.f,u) -  //ejlu (U+T'HU'CU-T)] 

■   * ** AA /TT   ^TT 

i   2       r 
J4(T»T,)  "  ^     {  l Ml 2  (',',8«T) S

xx(
w>  eJWT dw 1 

^      f f 

[J ^ 2 («•t«'lT»)  Sxx(u,')  e^'1' du»'   ]   } 

- KC(T) K^T«) 

(3.5-18) 

(3.5-19) 
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3.6 Correlator Tracking Error 

In both the multlpath and array type cross-correlators of Figures 

3.1-1 and 3.4-1 a target is detected when the appropriate signal replica- 

tion produces a peak of the output H which is reliably discernible 

above the estimation noise (see Figure 3.6-la). This peak of 5(T,T,P) 

occurs in the vicinity of the value of the replication delay T  for 

any given value of the "read-out" time p+T .  Since 5 is a random 

variable the position of the peak fluctuates around the true value T  . 

Once the target is acquired in the display of E as a function of T It 

is usually desirable to obtain and track the peak with increased accuracy 

5 and 5'  as a Function of T 

For a Given p 

Figure 3.6-1 

A suitable method of measuring the accuracy of this scheme of 

estimating T  is to obtain the variance of the location of the main 

peak in 5 .60»61>62 xhis is equivalent to obtaining the variance of the 

corresponding zero crossing in the derivative of E 

E'(T,T.p) - •— E(T.T.P) (3.6-1) L 
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This assumes Chat Che derivative exists In the vicinity of this null. 

Furthermore, It Is assumed that only one isolated null exists near T . 

This In turn requires appropriate limitations on the bandwidth of the 

signals and noises (which are normally satisfied). 

Asymptotically with large T we expect the variance of the zero 

crossing to approach the variance of E1 divided by the mean slope of 

8' at the null £ squared; 

o -»• VarlH1] 
T   i—i. 
0  r3 E'".2 IVJ 

ToT 

3T      ST'        3T      ST' 

r 32E(T.Ttp)| 

L    3T
2     J 

3T ax1 

"a2E(x.T.p) 

3x' 

L 
x»x ex 

X»=X'»T 

(3.6-2) 

To be valid this formula requires T to be large enough so that the 

fluctuation of the zero crossing is smaller than the width of the 

correlation peak. This permits the linearization Implied by Equation 

(3.6-2) (see Figure 3.6-1). 

By entirely similar reasoning we may consider the zero-crossing to 

be a function of p and compute an auto-correlation function for this 
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random variable: 

R    (u) ♦ . 3T at' 
il 

T 
2  - .1.    11-- i 2 0 

a'ECt.T.o) 

ar2 

(3.6-3) 

T"T'-T 

This quantity measures the persistence of the tracking errors In the same 

way that A measures the perslstance of fluctuations In H . 
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3.7 Concerning the Departure of the Statistics of the 

Scattered Signals from the Gaussian 

A key assumption made in sections 3.3 and 3.5 is that the target 

signal x(t) Is Gaussian. I.e. its time samples are statistically 

described by the probability density Equation (2.J.-11). After passage 

of such a signal through a random scattering system the Joint probability 

density of the scattered signal samples is usually no longer Gaussian. 

Making certain assumptions about convergence» the Joint density for N 

samples of a non-Gaussian process can be written in terms of an Edgeworth 

expansion  as follows: 

f(y1»y2»'"»yN) 

co N 

«p £ (-i)u v„,...„, 17 'TOT (if:)Vi)) e(yi,y2 V   (3-7-1) 
v>3 i*! 

where all possible permutations of the v. are taken subject to 

N 
v - E v (3.7-2) 

1-1 1 

and where Ö(y. ,y0,... ,y.t) is the Gaussian density given by Equation 
1 '     " —___ 

T 
(2.1-11) using the correlation matrix R ■ ^ X 

The constants tc are termed the cumulants for the joint 
VlV--VN 

density f and the parameter v denotes the order of the cumulants. 

Cumulants of order 1 are defined as the means of the y  (these are 

zero in the present context). Cumulants of order 2 are correlations 

between samples and are elements of the matrix R . Cumulants of order 

3 or higher can be obtained as in vhe  case of cne-dimensional probability 
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(3-29) 

densities from the various moments: 

M 

\V"lN "   /    /    "*   /   IT lykkl  f(yl,y2 V  dyl dy2  ••'  dyN 
yi y2     y*yml (3.7-3) 

This is accomplished by forming the characteristic function corresponding 

to Equation (3.7-1): 

Q(u1,u2 Ujj)  - 

N x 

1 + E y. l    i if lTry ^V kl 

\>1 k-1 

N 

exp {SL V2-^   I ^(JUi) ll) 

(3.7-4) 

v>l 

where all permutations of  the    v      and    \.     are taken subject to the 

constraints Equation  (3.7-2)  and 

N 
I 

k»l 
(3.7-5) 

By taking the log of Equation (3.7-4) and equating coefficients of equal 

products of the u  the relations giving the cumulants In terms of the 

moments are obtained. 

When all cumulants of order 3 or greater are zero the density f 

reduces to uhe Gaussian function 6 . Hence the cumulants of order >_ 3 

measure the departure of f from 6 . Because scattering is modeled 

here as a linear process, the odd order moments and cumulants of f are 

zero due to Equation (2.1-14) and kindred relations. Therefore, the 

L 
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fourth order cumulants are Che first to produce non-Gaussian behavior. 

The next group to contribute are cumulants of sixth order. 

We consider here only tba nature of the fourth order cumulant. It 

suffices to consider a four sample density (N ■ A) in order to obtain 

the general form of the relation between the cumulants and the moments. 

We have from Equation (3.7-4) 

•"llll ' Pllll " P0011 U1100 " P0101 y1010 " W1001 y0110        (3.7-6) 

Forcing the two channels in Figure 3.4-1 to be the same, particularizing 

K-((ü) to be 1 , and taking the four earaples at times t, t1, t-T, t'-t • »t 

we have 

M1111 - Hd^'.t.t') (a) (3.7-7) 

Muoo » ^(t-t'.T^p) (b) 

»J0011 - 5(t-t
l-T+TlfT,p) (c) 

W1010 " E^T»P> (d> 

P0101 - S(T^,T,p) (e) 

M1001 - ^(t-t'+T'.T.p) (f) 

M0110 - ^(t'-t+T.T.p)* (g) 

Substituting these into Equation (3,7-6) and using Equation (3.5-8) we 

have 
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(3.7-8) 

*mi(v.T.T>) - £) I  j j   l0W S^') 
0)  U)' 

- ♦(<!),w»v) ♦(ü),,a),,V-T+Tl) ]  + 

- »(W.O),!) •(M,V«
,
VT*) ]  + 

- ♦(aj,,ü),,v-T) ♦((ü.io»^!') ] du dw' ) 

- [VT.T'.V) - K (v) K (V-T+T1)] 
i a    a 

+ [J.CT.T'.V) - K (T) K (T1)] 
*■ a   a 

+ [JOC^T'.V) - K (V^-T1) K (T-V)] 
J a      a 

The integrals for J,, J«, J,, and K  are evaluated for various models 
x      i      J a 

for scattering in the remaining chapters of this report. In general, the 

result for <..   ,(V,T,T') is found to be non-zero. The scattered signal 
i i J. I 

is therefore a non-Gaussian process. 
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3.8 The Two-Slded Likelihood Ratio Decision Scheme for the 

Correlator Detector 

It Is clear from the discussion of section 3.7 that since the 

probability density for the scattered signal Is generally non-Gaussian, 

joint statistics for a two channel array or multlpath configurations are 

also non-Gaussian. Evidence presented In the remainder of this report 

indicates the importance of taking into account this departure from 

Gaussian statistics In describing the scattered signals. The design of 

optimal detectors for such signals is not a trivial task, and we shall not 

undertake this problem. 

in lieu of a formal attack on the optimal detector design problem we 

regard the detector structures of Figures 3.1-1 and 3.A-1 as essentially 

fixed and inquire how best to decide whether a target is present from the 

output 5(T,T,P) . We begin by examining the case for which the replica- 

tion delay parameter T is fixed or "steered" to the correct value TO 

given that a target is present. We call this the "on-target" detection 

problem since we effectively evaluate the ability of the detector to 

function properly while it is "looking" directly at the target. 

Given the correlator output 5(T ,T,p) one must decide between two 

hypotheses: 

Hft:    The target is not present. 0 (The correlator output is due to noise only.) 

H.:    The target is present. 
(The correlator output contains a component 

due to the presence of signal.) 

We assume that the correlator integration interval T is large enough 

68 
so that H(T ,T»p) tends to be a Gaussian random variable  under either 
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hypothesis. We then have the following probability densities for £ : 

U0:     f0(5) - -==— exp{^(E - Bj2/0*) (3.8-1) 
2ir a 

H,:     f.CH) - -=- exp{-J5(H - B.)2/©?} (3.8-2) 
1       i    V 2tr o1 

1   ^ 

As a practical matter S- is either rero or approximately zero for 

most problems considered, so we set it to aero here. 

Now the likelihood ratio procedure for deciding between the two 

alternative hypotheses H and H. given a measured value for E is 

to decide in favor of H  if 

fjWHh (3-3"3) 

and in favor of ri. if 

f0(=) 

m ' Kth (3-8-*) 

The performance of such a decision scheme depends on the choice of the 

threshold value K   and on the parameters 0-, 5., and a, which are 

determined by the statistics of the signals, noises and scattering. 

These latter parameters may be computed from Equations (3.1-9) and 

(3.3-8) for the multipath detector or (3.4-4) and (3.5-9) for the two- 

element array detector. 

The critical values of E for which equality holds in Equation 

(3.8-3) are obtained by substituting Equations (3.8-1) and (3.8-2) and 

taking the natural logarithm yielding 

B-100 



'2 A • v * 2)+2 

"l 

2 2 

92 

2 -2 L„ A (3.8-5) 

The solution for the roots of this quadratic leads to the critical 

values: 

-  n do ".' 
±  H2   H2 do - di 

where 

0  - 

K . drt th 0, 1 + 2 [d^ dj] in (^-^) ] 

1  - 

(3.8-6) 

(3.8-7) 

u 
are the standard deviations of the correlator output under the two 

hypotheses H  and H  normalized by the mean under H . 

In general» the variance 0  is greater than öO (see Figure 

(3.8-1) ). The special case of d -► d0 in Equation (3.8-6) for which 

one critical value tends to • arises only in the case of very weak 

signal-to-nolse ratios. Therefore, the two critical values divide 

The Decision Regions for the Two-Sided Detector (Kth*l) 

Figure 3.8-1 
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the range -•<«<• into three decision intervals: 

-oo < E < 5_ Decide in favor of H. . 

=_<=<=+ Decide in favor of H0 ,      (3.8-0) 

H < 5 < » Decide in favor of K. . 

Given any threshold value K .  and the parameters d. and d. 

one may evaluate the decision scheme Equation (3.8-8) by computing the 

probability of Incorrect decisions. The probability « of coiranitting 

a type I error (false alarm)  is equal to the probability of E 

incorrectly exceeding one of the critical values E  : 

«- /   f0(H) a * j  t f0(H) d= 

i - k irr*—)- ü-±r ) i 
2      ^"o    ^"o (3.8-9) 

/7 id^ - dj)  1 v 1 

where 9(2) Is the error function : 

*    2 
6(2) - — / e"y dy (3.8-lu) 

&   0 

' 

c 
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Similarly, the probability B of a type II error or false dismissal is 

determined by the probability that 5 Incorrectly lies within the 

critical levels H. when in fact a target is present: 
+ 

g 

/  fl<S> i -  /    fA~) dH 

 1 

1 + 2 UQ - d^] *n(-^—^) )} 

(3.8-11) 

^(d^-dj) do  V 0    1       di 

2      2 
In general, the "on-target" normalized variances d0 and d1 are 

overly pessimistic indicators of the performance of the correlator 

detectors. This is true because the peak of measured correlation 

5(T,T,P) usually does not occur precisely at the correct location T^ 

(see section 3.6). Consequently, a detector which initiates a search for 

the peak in the vicinity of T  performs somewhat better. A procedure 

for evaluating this "search" detector for certain classes of signals is 

discussed in Appendix D. 

Finally we note the importance of using the two-sided test Equation 

(3.8-8) in cases of moderate or strong scattering. In such situations 

5. may be quite small while a. may be much greater than oQ    leading 

to sign changes in the peak of correlation (see Figure (3.8-1). Failure 

to use the two-sided test when this occurs can produce sizable losses in 

dctectability. 
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CHAPTER 4 

THE RAMXH AMPLITUDE AKD DELAY 

HCLEL FOR SCATTERING 

A.O Introduction 

In this chapter surface scattering Is modeled as a time-vary- 

ing system with the transfer function 

H(ü),t) - A(t) e'J(ÜT(t)        (A.0-1) 

where the amplitude A(t) and delay T(t) are considered independent, 

stationary, Gaussian random variables. This simple model is used by 

73     Ik 75 Price,  Green,  Turin,  and others in studies of communication 

through ionospheric and tropospheric channels. It serves as an ex- 

ample which produces certain effects on correlator outputs which are 

typical of more complex and realistic models. 

The mean and variance of the outputs from tnultipath and array 

crosG-ccrralators are computed using the formulas derived in Chapter 

3.' It is shown that as the correlator Integration time is Increased 

from zero the output variance at first decreases rapidly. However, 

at the point where reliable correlation begins to emerge in the 

absence of scattering the variance passes through a 'settling ' period 

during which averaging over slowly varying scattering fluctuations 

takes place. The persistence of these fluctuations is computed and 

related to the A-the order cumulant of the scattered signal. 

L 
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A.l First And Second Order Sygfe Statistics For 

The Random Amplitude And Delay Model 

It is assumed that the amplitude and delay in (A.0-1) have 

the mean values 

     n    r + r« 
a) A(t) -  S---A,     b) T(t)-"-5 —-T.      (A.1-1) 

where the distances r and r are defined in Figure 1.4-1 and ns is oo 8 

a constant less than one. We define the correlation functions 

2 
a)    R^Cp) - A(t) A(t-w) b)    RTT(y) - T(t)T(t-y)- T* (A.2.1-2) 

vhere for convenience R.Ä is defined as a non-central moment. AA 

Since A(t) and T(t) are independent 

HCw^t) - H (w) • A(t) e~^r(t)    »A  Q (1)(a)) (A.1-3) 

where    Q      (w)  Is the one dimensional characteristic function for 

T(t).  From the assumed statlonarity of T» Q      (w)  is time invariant. 

In a similar manner, 

4>(w,a)  ,vi) - H(a)>t) H(a)1 »t-p)* 

.(2) A(t) A(t-p)  exp{-JU)T(t)-fja)
,T(t-p)} - R^Cp) Q^; (a),-«'fp)     (A.l-A) 

(2) 
V7here Q   (w w'jp) is the characteristic futiction for the two- 

dimensional probability distribution for T. Statlonarity of T and A 

therefore guarantees that the scattering system ir5.ll be Interfrequency wide 

sense stationary (IV'SS). However, in the case of i(t) the requirenent is 
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for stationarlty of the two sample distribution whereas A(t) need 

only be vride sense stationary. 

Although the Instantaneous Impulse reponse corresponding to 

(4.0-1) Is of Infinitesimal duration, 

h(v,t) - A(t) 6(v-T(t)) (4.1-5) 

the average or coherent response is of finite width : 

hc(v) - J   ejü,v Hc(«) |f - Ac fT(v)      (4.1-6) 

' .ere    f (v)  is the probability density for x.  Imnedlate corollaries 

are obtained from (2.4-1)  and  (2.4-4) 

(a)    Dc(ii,v)  -    Ac fT(u-v) b)    R^OJ)  
m *c f 

R
xx(u"v>fT

(v)  dv 

(4.1-7) 

Similarly, 

h(v,t)  h(v\t.|i)    -    j j  cJWv-Ja)V H(^t) H(üJ,|t.p)  da,   & 

w w' 2n    2TT 

-    RAA(IJ)  fT (v'v,>y) (4,:L"8) 

where    f (vjV'.y)  is the two sample probability density corresponding 
T 

to Q  (w.u'.p). The auto decorrelation function is also readily 

found from (2.4-23) 

Da(y>v) » R^M)  j'eJü)[T(t)-T(t-y)] CJü)(M+V) ^ 

RAA(,J) £
6T 

(lJ+v»w) (A'1"9) 

:> 
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where f. (v,vi) is the probability density for the difference v 

between the values of T at times t and t-w. It follows from 

(2.A-21) that 

Ryy(p) - R
AA

(M)
  f RXX(M"V) f6T(y>tV)  dv (A.1-10) 

For the special case of Gaussian T we have 

2 2, 
Hc(o)) - Ac exp{-l/2(ü) oT) - jon^ 

(^(w^'.p)" KAv)  exp {-l/2[ib)2+u),2)a2-2m'R    (p))-j(a)-(ü,)T } AA 

Dc(P»v) 

TT 

exp{-l/2(w-v-T )2/o^} 
S    T 

•5? 

D,(,.v) - RAA(P) «XP {-l/2(^v)
2/toT

2-RT(M)l ) 

A 2* [  0^-RT(w)] 

(A.1-11) 

(4.112) 

(A.1-13) 

(A.1-13) 

For this case the trifrequency spectral density becomes 

dA(cü W) 

dw'" 

exp{-J2 uJ+v'hah-iim-mnx.yV im*)* s (u)") 
T 6     (U* ni » On. 

(A.l-IA) 

where 

8n(ü)") -    Je "J<Al P^Cy)     [RTT(M)Jn dy (A.1-15) 

Similarly, applying  (2.4-20)  to (2.4-17)  and using (A.1-1A) we 
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obtain the power spectrum smearing density t 

dC (v.Y)    m    f    exp(Jü)v)    dA(u),tjtY)    dw 

(4.1-16) 

1 V    8n(Y)   df   H(2n>/      v        \exp,/-v2 

T      n-0 T T T 

v;here   H n'(z)  Is the m-th order Kermlte polynomial. 

In order to inteL-pret (4.1-1A)  and (4.1-16)  let 

RAA(w) - a^ exp(-l/2M2n^) + A2 (A.1-17) 

RTT(y) - oj exp(-l/2uV) (A. 1-18) 

From the definition of s (Y) in (A.1-15) we have 

1 2/ft2 
2    F/ßA       .       1 

Sn(Y) .!T  f gA e + A2!   exp{ 2Y2/(nflT)
2)  (A. 1-18) 

^Tn n  L  / nA 2 J 
T     /-si;  ^ 

It is seen that the frequency smear for larger values of n is wider. 

From this we can conclude that the higher order and more intricate 

Hermite functions in (A.1-16) represent the comoonents of scattering 

which exhibit the greatest fading. From equation (A.1-1A) it can 

be seen that these components are excited by the higher frequency 

components of the output. The wider frequency smear at higher frequencies 

is characteristic of delay modulation. 

B-.108 



4.2   Multlpath Corrtelator Fluctuationa for 

the Random Amplitude and Delay Kodel 

Following section 3.8 we define normalized covariances 

djd.T.u)    m       ^(T>'T*T>y)|HJ      j-0,1 (4.2-1) 

UCY T p)  I2 

where A(T,T,T,II) must be evaluated under hypothesis H (noise only) 

and H1 (signal plus noise present) while E(T,T,U) IS understood to 

be computed for H.. We compute here the normalized covariances for the 

configuration shown in Figure 3.1-1 assuming for simplicity that the 

spectra for the signal and background noise are given respectively by 

•)   S^Cw) . lülLs «P(V2 A£) C4.2-2) 
n 
X 

and 2  2 2 fi2 

b) s   , ,    ^T P , ^ /nn3.  , „   , , -^T P , -,SU ' n2 
BJBJW .   ^ . c) S   (») n2 e 

Also for simplicity we assume that the filters H.(u) and lUCa) are 

as follows     2  9 

■^/ QI V/ 4 
a) ^(w) - e b) H2(u) - e      ^     (4.2-3) 

Here P , P ., P » are the signal and noise powers respectively. It 

is assumed that the bandwidths D , 0., f^» nni» 
and nn2 

arc a11 very 

large compared with the fading bandwidths of the functions s (y) in 

(4.1-15) so that equation (2.5-5)may be used. 
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The direct path transfer function la written as 

-jut 
Hd(u)) - Ad e   d 

where T^ - R /c and A. ■ 1/Rd. Using these definitions  (and assuming the 

statistics  for A(t)  & T(t) discussed in section A.l) the mean output 

of the correlator under hypothesis H. becomes 

1 2 2 
z m       o Ed.T.p)    - Ad Ac Px /M e ' ^        u (4.2-5) 

x 

v/here x    ■ t    - T.    and o        s        d 

2 
1 a+1 

(4.2-6) 
2 9 2 2 

nm 
nx 2ni 2n2 

The mean exhibits a peak of magnitude      A.A P n /ß      at T* T K       e        dcxmx       o 

corresponding to the true target laocation. 

Let ua assume that RÄA(p) and R  (y)  are as Riven in (4.1-17) 
Ax* T T 

and  (4.1-18).  Then using the results of Appendix E.l we have the 

following  result for the ! on-target1' normalized covarlance for the 

null hypothesis II-.   : 

do(VT'w) ' 

^2A2A2 P P        fi , 0 o M-T T A.A x x       nl n2 p 

d c 

li+T , 

+    j    [T-v+yJ «P^^  Ininl + n2n21}    dv ^ 
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Similarly, we have the "on-target' normalized .ovarlance for the 

hypothesis K. : 

dJ(To.T,u) 

x    ■ 

2 2 2 
d c 

j       [T+v-w] +      f  iT-v+p] 

M-T y 

v p   M n ,    ' 

p ,. /fl, 

x nl 

2 2 

RAA(V) L 
Q 

0L 
2 . R    (v)] 

TT 

exp' j^)_ 

L2 

-i 

n 2 
+ 2[O

T 
Ix 

TT 
(v)] 

J 

x nl 

o 9 
-l/2v n;n2 

x      2,   n,    v        '1/2v2filx-.    (4.2-8) 
+   A. /     ix )   e dlT~J n 

RAA<V)  'i exp 
2    r-^2 

-1 

fi2 AA -   R2   (v) 
x        m TT

N 

[f [ - - R"i 

2    2 
AcAd 

ft2/«2 

x    m 

RAA(V> 
2 

a n -1 

/ "^ - R2  (v) m        TT 

dv 

The effective bandx.'idthr a,   ,  n.   ,,    and P.  0    are defined in 
Ix      Inl 2n2 

Appendix E.l and 

a      « 1/ß m m 
(A.2-9) 
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We nov; restrict our attention to the special case of 

(a) Pnl 
■ Pn2   -». 

"nl 
■ nn2   -."n 

"l • 02-ßf 

(b) 

(c) 

We may easily compute the normalized covarlances for various numerical 

examples, but exact closed-fo"m expressions are not readily obtained 

for all of the Integrals Involved. 

2 
For example, Figure A.2-1 displays d^T ,T,0)for a » 0 and 

for various values of o  using typical values for other relevant parara- 

2 
cters. Figure 4.2-2 shows d-(x ,T,0) with ö4 ■ 0.5 while a Is varied. 

i  O A T 

In either example It Is seen that as the Integration time T Is Increas- 

ed from 0 normalized variance at first decreases somewhat. However, 

this Initial progress Is halted just when reliable correlation begins 

to emerge for certain realizations of the random scattering system. - 

At this point large uncertainties exist In the correlator output which 

reflect the variability of the scattering. These uncertainties show 

no reduction with increaalng T until T becomes comparable with the 

time constants of the scattering mechanisms. Once T Is Increased 

beyond this point the normalized Variance again decreases rapidly. 

It is during this period that the correlator averages over different 

scattering ensemble members. 

The covarlance d.(r0,Tt\i)   of the correlator output H(t,T,p) at two 

different times p and p + y is plotted In Figure 4.2-3. 
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LOG d?(r0lT.O) VS.   LOG   T  FOR  VARIOUS  a 
Fig. 4.2-1 

LOG T 

A 

LOGCMTO.T.O)  VS.   LOG   T  FOR  VARIOUS  „r T 

Fig. 4.2-2 
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SAMPLE OFS FOR SMALL T 

Flg. 4.2-4 a 

SAMPLES OF » FOR LARGE T 

Fig. 4.2-4b 
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It can be seen chat the correlator output for two different starting 

times p and p+y rapidly becomes decorrelated for small T. As T is 

increases to the point where discemable correlation begins to 

emerge, the fluctuations of the output become extremely persistent. 

A second sample of E initiated at p+y will not exhibit independent 

fluctuations since the scattering systemhas not changed substantially. 

Sample correlator outputs in these two regions of behavior are shown 

in Figure 4.2-4. 7or this range of T the fluctuation of the correlator 

output appears to be localized in the vicinity of T . This may be 

2 
verified by considering d^Cx.T.y) for T ^ TQ in Equation (4.2-8). For 

much larger values of T the fluctuations will be still more persistent 

but smaller magnitude as more variations of the scattering are Included 

in the processing Interval. 

A careful examination of the terms in Equation (4,2-8) shows that 

most important contribution to the output variance in the 

region of persistent fluctuation arises fron the two Integrals 

IA(T,T
I
,V) and I5(T,T') in (3,3-8). The magnitude of this plateau 

of uncertainty for the model we are considering is approximately 

H 2 
aA 

■)1 
2 a m 

A2 
A 

C 

/ * /   a    - m < 

-1 (4.2-11) 

This is also approximately true in cases of high to moderate signal 

2 
to noise ratios. In Flg'jre 4.2-5 d^T ,T,0) is plotted for various 

signal to noise ratlos (P /? ). Only in the case of very weak ratios 
n x 

2 
does the plateau become masked by noise. In Figure 4.2-5 d (x ,T,0) 

is plotted for the same sequence of signal to noise ratios. In roughly 
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the same range of T that (4.2-11) la valid we have approxinately 

dd  ,T,0)-1    1_    (ln_       "x     \2     /2        "inl "2112 (4.2-12) 
T    n^n Px    7       A2A2     /, , 

k       n d c   / nlnl + n2n2 

Assuming that H tends to be Gaussian vre may use these curves 

2 2 
for d      and d.   to compute for a given T the receiver operating 

characteristic  (a plot of a vs.  0 parameterized by K h). Figure 

A.2-7 gives one such curve corresponding to the circled points in 

Figures A.2- Sand A.2-6. Also given for comparison is the related curve for 

the case of no scattering  (obtained by setting o    ■ a.  ■» 0 and A   « 1). 
T A C 

In addition, the corresponding curves for these two cases are plotted for 

a one sided detector. 

It is clear that with the choice of parameter values selected 

for these curves the scattering significantly Increases the false 

dismissal probability 0 for any fixed false alarm probability a. 

It can also be seen that under the assumption that E is Gaussian the 

one sided detector produces still larger values of ß. Furthermore, 

these latter increases result in a receiver operating characteristic 

which is not everywhere convex upward. This is clear manifestation 

that the one sided test departs markedly from the likelihood 

strategy in such situations. Kowever, it is important to stress 

that this result Is due to the assumption of symmetry in f (5) and 

f.(5) under the hypothesis that these functions are Gaussian. Given 

that A(t)is itself Gaussian this hypothesis is not unreasonable. 

We turn briefly to the question of parameter optimisation in 

the adopted receiver design. As might be expected, the rather 
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F(g. 4.2-5b 
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REF:   Fig. 4.2-5a%b 
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simplistic model of (A.0-1) presents us with few alternatives. For 

example, it is clear that there is nothinp; one can do to filter out 

the effect th3 slow amplitude variations A(t). This might not be 

the case were we to assume A(t) to be frequency dependent, but we 

choose to ignore such effects in this chapter. On the other hand, 

assuming that our purpose is to improve ''on-target' detectability, 

it is clear that the plateau of normalized variance in (A.2-11) can 

be reduced by decreasing the working bandwidth fi  until a   >> o . 

This strategy effectively screens out the incoherent delay modulated 

signal fluctuations. The receiver operating characteristics of 

Figure A.2-8 demonstrate , however, that if fL, is made too small, 
r 

performance can actually worsen. Figure A.2-9 illustrates how in 

practice the plateau of Equation (A.2-11) can become masked by the 

other terms in Equation (A.2-8) before the theoretical minimum of 

2 2 2 
o./A  can be achieved for d.. 
AC JL 

Within the limitation just described it is seen that the strategy 

of screening cut incoherent signil definitely leads to an Improvement 

of detectability when the receiver is :onstralned to be steered 

on target. When this constraint is removed (see Appendix D) a certain 

information content is found to exist in the incoherent scattered 

signal v/hich is due to the non-gaussian nature of this signal. The 

unconstrained receiver improves performance by attempting to estimate 

the location of the delay modulated peak of correlation. The magni- 

tude of this peak is always greater than or equal to the mapnitude 

of E at T . 
o 
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Although some of the Incoherent scattered signal contains 

Information useful for detection purposes, clearly none of it Is use- 

ful for tracl'inp in this case. The covarlance R  (y) of the peak 
o 

location estimate is obviously a suitable, straightforward neasure of 

the magnitude and persistence of traking errors. By applying the 

results of Appendix E.l  to Equation (3.6-3) ve have 

Vi y+T 3 
K  Cu) .      ( x/ m) 

2 2 2 
räTA d c 

f   J    [T+v-y] +        f  [T-v+y] j    [ 

y~T y 

t(M(H e -l^2oLa 
p    '^ n . x nl 

-1 
RAA(V) 

v 1_+ 2[o2 - RTT(V)   ] 

ft2 

2      fllx 

x n2 

-1/2v2n2n2 
(4.2-13) 

(lü) [v2V U • A2 /fi",   \ P 2^2 
+ Ad 

n 
x 

-i/2v2n2 

*] (-1) 

Ad RAA(V) 

oj<A* - ^T(v))3 
x       m TT 

fRTt(v) 

exp(-[Om - R 
TT 

(v)]"1 V
2
){RTT(V)- v2[a2 + \T(v)]2} J   j 

As can be seen from    equation A.2-13   the covarlance of the tracking 

error exhibits a plateau of uncertainty of approximately 
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1+      0A   \o2 qTn (4.2-14) 
T 

A2     / 
c 3 

i 
T 

which is also reduced by increasing a      until it is much greater c    m 
2    2      2 than o      yielding a minimum of  (1 + a./A ) a    . 

T    ' ACT 
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A.3 Second and Fourth Order Cross System Statistics 

for the Two Channel Pandom Amplitude and Delay Model 

In this section we consider some of the joint statistics for 

the pair of channels described by the random amplitude and delay 

system functions : 
-JWT (t) -jWTj(t) 

HjU.t) - A1(t) e     
x  ;  H2(u,t) - A2(t) e (A.3-1) 

v;here /.,(t) and x.Ct) are considered Jointly Independent, as are 

AjCt) and T2(t). However, A-Ct) and A2(t) are assumed jointly de- 

pendent, as are i-Ct) and T7(t). All four variables are taken to 

be jointly Gaussian with the means 

' AjU) « A2(t) - Ac  ;        T1(t) -    T8l  ;      T2(t) - Te2 (A.3-2) 

VJe again define correlation functions for these parameters  : 

RAA(w)  "    V0 Al(t"u)      "    A2(t:) A2(t"y) (^.3-3) 

RTT(P) - T1(t)  T1(t-y)    - T^ - T2(t)  T2(t-y)    - T82 (A.3-A) 

P-Ac(y)  - A^t) A2(t-u) (A.3-5) 

Rtc(M)   = x^t)  T2(t-y)  - TglTs2 (4J3.6) 

Once again F. . and R.   are defined as non-central moments for con- 

venience. Assuming statlonarity for these parameters we have the 

following system correlation functions : 

<D44(a)X,u)-R.A(y) exo{-l/2[(ü)
2+a)f2)a^a ^aw'P  (lOH^-w')!  HA.3-7) jj        AA xa      xa 5j 
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for j ■ 1 and 2, and 

2  2 2 
«.-(tJvwV.p)« R. (p) exp{-l/2[(w +U)1 )a -lirn'R    (u)] 
1/ A. T        TC 

c a (4.3-8) 

-j(«Tsl-«'Ti2)) 

where o  « R A(0). Obviously, the second order statlonarity of 

relations (4.3-3) through (A.3-6) results in interfrequency wide 

sense cross stationary channels (IWSCS). This taken together with the 

assuirption that the amplitudes and delays are Gaussian processes 

implies that the two channels are also Jointly cross fourth order 

interfrequency stationary (CFOIS). Thus, 

tA]   ,  .  „  ,  ,,„ T 
» 

[43(«,w,,
>w,:,,p,yl V) ^ Rj^ £ (£)exp{~l/2(i)    R^ T  (£)w- w    TS ) 

1,2 ll"2 
(4.3-9) 

where 

P        (u) 
-T    T       — 

12 

T 
T 
-s 

ü   - (W.M'.U ) 
T 

U)     ■   (w,-w   ,U)   ,-Ü)     ) 

<T
6X'+TsrT82'+ts2) 

P.TO(0)     RTa(M)      r.^Cu1)       RTC(M") 

RTa(p)       RTa(0) RTC(P'-M)       RT^-M) 

RTJli')     S     (p'-u)   R     (0) 
TC TC Ta 

RTa(.'-.') 

RTC(wr)    RTC(M
,:
-U) *Ta^"V)   RTa(0) 

(4.3-10) 

(4.3-11) 

(4.3-12) 

(4.3-13) 

RA4A    ^  " Al(t:)  Al(t^) V^M7) A^t-y1') (4.3-14) 
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As special cases we have 

♦[Aj («.«,«• .»•.V.T.V+T«) - lj^| (V.T.V+T1)  x 

2 
1 2 2 (A.3-15) 

exp{--l/2[a11(v,T>T
,)a) +2a12(v,T,T

,)cüw,+o13(v,T,T')u)
, ]} 

*jAJ (W^W'.-W.U'.V.T.V+T1) - RIA| (V.T.V-K') 

exp{-l/2[a21(vfT,T
,)a>2+2a22(v,T,T

f)a)a),+a23(v,T,T
l)w,2]}  x     (A. 3-16) 

expC-jCurt-a)1)^^^)} 

W [A] 
*. , (WjOj' .w'WjV.T.V+T1) - R      (V.T.V+T1)   X 

» A A A1A2 

exp{-l/2[a31(v,T,T
,)u)2l-2a32(v,T,T

,)a)w,+a33(v,T,T
,)a) 2]}   x    (A.3-17) 

exp{-j(ü)-ü),)(Tgl-TB2)} 

where 

a.-Cv.T.T') - 2[R (0) - RTfl(v)] (A.3-18) 
11 ta     Ta 

2a12(v,T,T') - 2[RTC(T) + «TC(T
,)1 (A.3-19) 

- 2[RTC(T-V) + RTC (V+T
1
;] 

a^Cv,!,!1) - 2[RT (0) - R^CT-V-T')] (A.3-20) 
1J ta     xa 

O^CV.T.T
1
) - 2[RT (0) - RT (T)] (A.3-21) 

21 Ta      TC 

2a9,(v,T,T
,) - 2[R (v)+R (T-V-T')] 

£.4. TC     Ta 

- 2[R (V+T
1
) + R (T-V)] (A.3-22) 

TCV TC 

B-127 



a23(v,T,T')  - 2[P.Ta(0) - R^/^^J (4.3.23) 

(^(v,!,!') - 2[RTa(0) - RTC(V+T')] (4.3-24) 

2a32(v,T,T
f) - ^[R^CT-V-T

1
)] (4.3-25) 

+ 2[R (T) + R  (T
1
)] 

TC TC 

cXooCv,!^') - 2[R (0) - RT (T-V)] (4.3-26 

These latter parameters satisfy the symmetry relations 

«n^'VV ■ «L^'VV (A-3-27) 

«ai^VV  " ^a^^o'V (4.3-28) 

Finally, under the Gaussian hypothesis for A-  and A« we have 

A1A2 

[RA (T) RA (T
1
) + RA (T) RA (V+T

!
-T) + RAc(v+T

f) RAC(V-T)] . 
c    c       a     a 

(4. -29) 

+ Ac [ RAa(v+T'"T) + RAc(T,) + RAc(v+T,) 

+ RAa(v)+RAc(T)+RAc(v-T)J+Ac 
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4.4 Array Correlator Fluctuations for the 

Two Channel Random Amplitude and Delay Model 

Once again we compute the normalized output variances as In 

section 4.2. We consider the spectra (4.2-2) and filters (4.2-3) 

subject to the symmetry assumptions (4.2-10) and Introduce the noise 

cross spectral density 

/27 P 

1 2/r>2 
-2   nc 

S   (u) 
n1n2 

nc 
Q 

(4.4-1) 
nc 

The mean output of the correlator is then 

E(T,T,p)  - 
nc 

2n2 
0*^ .      fnc e (c) v  nc ' 

RAC<
T> Px 

exp{-(T"To)  [ 1_ + 2(a^ 

(4.4-2) 

-1 
RTC(T)] ] } 

Q 
fx Q, f 1 . 2[a2 -R (T) '] 

x; —r + ^ TC TC 
Y nt 

fx 

2 2 
Assuming that iß.   »1 this mean exhibits a peak at T»T of 

RA (T ) P 
Ac o   x 

*\    1T+ 2[o - R (T )] 
V 02    

l TC    TO 
ftfx c 

Thus, to this level of approximation using the results of Appendix E.2 

^   x I *>..'.")$ n'[4+2!o"'Ric (V1] p p ß. ß, 
na nc 

T2 »J (TO) 
(na nc fna fnc   \ 

p.? nl / p2 rx "f 
(4.4-3) 

/ 

y-T 

[T+v-y] + 

y+T 

/ 
[T-v+y] [exp{-v^na) + exp{-(v

2+T*)ß*nc)] dv 
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and 

2 ß' 
dJ(t,T,li)    ~     "x V   +

2
KC-

R
TCW1 

"fx 

T   W 

f 
M-T 

W+T 

[T+v-p] +   f     [T-v+y] 
2 2 

P fir                         f        2n2           t na fna    expl-v fi,      ) 

p2 (i2 

x x 

2RAa(v)    <Pna
/Px>    "fna 

+        /l 
n    n    /--- + 2[o"   - R   (v)] na   x y   2 l  tc        TCV /J 

exp Li [4a + [a_   + 2[aT
2
a - RTt(v)l]      ] 

L oL J fx 

2 2 
P i) . 2.   2^2 

^_ca\^-_fncj   exp{-(v +To)fifnc } + 

(4.A-A) 

/       R    (Vv)e ^)fl     *    <V^ 
x   '    fnc   Ac     _____       v   x   _    fnc Ac  

n   fi   /-4    + 2[a2   - R   (T -v)] n   fl   AT nc x/Ä2            l  TC        TC    o      J nc xyß2 

(e) 
n 

+ 2[<r   - R   (T +V)] 1    TC TC      C 

fx •fx 

Rl   J(TO,V,V+TO) 

Q 

exp r —-i  

•"il^'VV + •l2(w,To,to) 

/ ail(v'To'To)2 - a12(v'To»To)2 
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exp 

^a21(v'VTo)2 - a22(v'VTo)2 

1    2 
-1      [qj^VfVTo) - 2a32(v>T0>T0) -f a'33(v>Tc.To)l 

a,31(v'To'To) »M^VV" a32(v'To'To)2 

/ 'h^^o'V "M^^o'V " ^^^o'V 

\ 

1 dv -1 
/ 

where the a* are defined In Appendix E.2 and use has been made of 

symmetry relations A.3-27 and A.3-28. 

2 
The plateau of uncertainty In d-Cr ,T,0) for this case is roughly 

R1*12<V0'V 1 + 2[RTa(0)  - RTC(T0)1 il fx 1    («.4-5) 

rz *fRT.(0) - Rtc(To)l n£x 

As In the case of the multlpath processor the level of uncertainty 

decreases as the bandwidth of the processed signal decreases. Whereas 

in the case of the multlpath processor this Improvement ceased when 

the working bandwidth decreased below a critical frequency of 1/a 

2 1/2 
the critical frequency for (4.4-5) is roughly l/[2{a  - R (T )}] "  , 

\a TC   O 

For incoherent channels (R  (T ) ■ 0) the critical frequency is about the 
TC  O 

same in both cases. On the other hand, for perfectly correlated channels 

2 
(R    (T  )  e    c      )   the critical frequency becomes infinite. For the model 

TC     o Ta i / 

considered this behavior might  therefore depend on the steering delay,too. 

Only amplitude fluctuations contribute to the level of the plateau of 

uncertainty when operating below the critical frequency.  However,   the 

other terms of  (A.4-4) generally Increase with decreasing frequency 

so that  the higher critical frequency available for partially correlated 
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Channels makes array processing attractive. 

Similar statements apply to the covarlance for the tracking error. 

In order to shorten the expressions that arise we write 

0j<v) 0 
r" + 2[aT2a -RTa

(v"' -A 
fx fi2(v)    02 

c      wfx 

+ 2[o - R (v)] 
ta  TC 

(4,A-6) 

and we contract the notation a . (V,T »T )to a.. . Ignoring the 

derivatives of very slowly varying terras we obtain 

.    [Muh™)]2 

T2 RAC(TO)2 

p y+T 

j       [T+v-y] +   f   [T-v+y] 
y+T y 

/    na    \f       fna \ 
IF2    A  £      I 

2«2 in« \ [o#.. v    -  i] exp(-v n. a) fna fna 
12 , 

„    , N        P fi, .A (vK exp{-2v  (fi^    +ft„(v))} R.   (v)  /      na \ /   fna Aa 

x na x 

fna    a 

X    {n2(v)in
2(v)v2-i)+n

2
natn2

nav2-in 

2 2 1 

+   ,   P caU" fnc\   (To " v2) exp{"2  tv2 + To ^ 
X       f 

( ) 

x      na     x 

n2 v fnc 

(A.A.7) 

CRAc(v+To) V^o5 (v+To) 
1 2 2      i    2 2 

r 4^ n (V+T ) -2(T -v) n:    ] exp[-2  c   o'  v o   fnc 
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12 1 
+ RAc(To"v)"c(v"T)(v"ro)     exP[-2 V «c(To"v)  " I(v+To)2nfnc ]   ("1) 

^   ^  (To^>v: To>        f il " Ml+*12^ 
-v 

exp ^ 0^+0^2 

[ a1..  - a10]      r   ,2        2 , 11        12J       [a^ - a12] 

3/2 

11 

[o21 " a22] 

3/2     + 

.4v2  [q31-2a32 -a331 

2 exp/ 2        2— 

+    [fjl I a32][a32 " a33]v   1      l [a31 a33 - a32] 
32 2| 2      3/2 

[a31a33 " a32 ] J [a31a33 " a32 1 

I \ I dv 

J 
,- 

The uncertainty plateau in this case becomes 

"i*1   (To'0'To> 
( 1+ 2{a?a - RTC(T0^ n2fxl 

R;C <TO) [ 1+ A{a2    - R    (T  )} fi2 ]3/2 

TE TC     o fx 

X 
2[  o'    - R    (T )] 

xa TC     o 
(A.4-8) 

In this  case, however,  not only does the critical frequency 

rise with increasing coherence between the two channels,  but  the 

raagnitude of the plateau below the critical frequency decreases. 
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2 
In the limit that rt (T ) - (J   It is clear that the amplitude 

TC  0     TC 

fluctuations have no effect on the plateau which, in fact, disappears. 

The other terms in (4.A-7) do still contribute uncertainty for small 

T and are affected by amplitude fluctuations unless the background 

noise terms dominate* 

Some of the effects discussed in this chapter are peculiar 

to the model of frequency insensitive amplitude and delay fluctuations. 

In particular, the bahavior of the various plateaus of uncertainty 

as a function of frequency is very simple. However, the root cause 

for the existence of these persistent levels of uncertainty 

Is the non-gaussian nature of the scattered signals, and this is not a 

unique property for this simple example. While it is generally 

necessary to compute all of the cusailants for a non-gaussian density 

in order to specify it, some insight is gained by examining only the 

[A] 
fourth order cumulant MJ^, (v,!,!1) which can easily be computed 

from (3.7-8) and the moments computed in Appendix D, The result for 

some typical values of the relevant parameters is shown in Figure 

(4.A-1). The cumulant exhibits a plateau of dependence over a span 

of time identical to the settling time of the  various correlators. 
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CHAPTER 5 

THE RANDOMIZED SINUSOIDAL 

SURFACE MODEL 

5.0 Introduction 

Having obtained variance expressions for evaluating the 

performance of various detectors and trackers using the random 

amplitude and delay model we now consider the problem of scatter- 

ing from a sinusoidal boundary. In this case a receiver Is excit- 

ed by reradlatlon from an Illuminated area on a surface of the 

form 

C(x,y,t) » h(t) Sln[q x cos a + q y Sin a - 0 t - x(t)) (5.0.1) 
S        8    8        6    8 

where h(t) and x(t) are random wavehelght and positional phase 

parame ers and are considered to be very slowly varying. The parameters 

q , o , and fl are the magnitude and orientation of the propagation 
So        8 

vector and temporal frequency for the surface respectively. This 

74 
model was investigated by Gulln   for fixed h and x« 

The primary advantage of this model Is that with certain 

simplifying assumptions the space integrals of equation (l.A-3) 

can be pcrfcrmed yielding a reliable expression for H(a)tt) for low 

to moderate values of the Rayleigh parameter (1.0-2). This means 

that the results are most relevant for the frequency range of passive 

detection. The various integrals over frequency required for the 

computation of various moments of the received signals even with 

this sirpllfication are still very difficult. Results are presented 

here in the form of series which converge with reasonable speed. 
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5.1 Gulln's Solution for H(ü),t) and the 

ABSociated Impulse Response 

By substituting the equation for the boundary ?(x,y,t) Into 

(1.4-13) Gulin obtained the following Integral for H(u>,t): 

.      ,    ,        -Ja)(r +r,)    • 
H(w.t)  ■ > ,in ♦    e     "   0    0    r     J ( 2 h(t-ro/c)  Sin ^) 

2 c r   r1 / c oo fc 

Ummrn 

x exp[tJnns(t-ro/c)+jnx(t-ro/c)J (5.1-1) 

9        7 9 
f    f B  (8,(|>)  exp{jw / xjslnjK       ^_   -Jnq(x cos a + y sin a)} dx dy 

C        R R e e 

The space Integral Is generally not executable unless simplifying 

assumptions are made about the beam pattern. Consider the case of 

an omnidirectional receiver for which B (e,<J>) ■♦ 1. The. conditions 

necessary for the expansions of Appendix C In this limit are only 

marginally satisfied and succeed primarily because of the localized 

nature of the active scattering region as stated in section I.A. 

However, this approximation makes It possible to perform the integral 

In closed form so that we have 

-JT6U)  - 2 

H(«.t) c_ze   V   Jn[A(t)a,l e+j^ (5#1.2) 

r + r     n«-» 
o   o 

x exp[+jnß (t - r /c)+Jnx(t - r/c)) 

Where A(t)  . 2 hill}  sin t (5.1-3) 

t* « t-r /c o 
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n   s  e   cos a . ein o B .     L    +    j 
sin2 * 

and r + r* 
T  -  0    0 

(5.1-A) 

s     c (5.1-5) 

If the vavehelght h(t) and phase x(t) are slowly varying then 

it can be seen from (5.1-2) that the time variation of the frequency 

5° 
reponse contains major sidebands at frequencies nil  .     Cassedy 

8 

recognized that each sideband corresponds to a single Bragg order 

of scattering. In practice, at any given frequency the beamwldth 

limits the number of excited orders that are received. Furthermore, 

higher orders are excited at higher frequencies so that for any 

fixed bandwidth only the first few orders need be retained in (5.1-6). 

For the applications of this chapter we assume that the model will 

be bandwidth rather than beamwldth limited. 

Additional insight is gained concerning this model if we 

examine the impulse response corresponding to (5.1-6). Unfortunately, 

the first power dependence on frequency in the exponent again 

prevents us from obtaining simple closed form expressions. However, 

h(T,t) can usefully be regarded as a sum of convolutions as follows: 

h(T,t) ^  I        I j    f5,(T-p)fJ(p)dp       (5.1-6) 
(r + r!)  n»-»  "• o   o 

x exp{+jnfic(t - r /c) +jnx(t - r /c)} ] i'n 

78 
where ll is 1 for even and 1 for n odd and where from Vat son 

n J 

(p.405,sec.13,42,M): 

«  Jw(t-T ) 
f"(t) -Je    s J [A(t)u)] da) 
1    -. n      2^ 
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^        Co8{n 8ln'1[(t-T )/A(t)]> 
8 

/ A2(t) - t2 

-1 
Sln{n Sin [(t-T )/A(t)} 

8 

/7 (t) - t' 

0 

|t-T8|<A(t) 

n even 

|t-T |>A(t) 
8        (5.1-9) 

|t-Tß|<A(t) 

n c 3d 

|t-x |>A(t) 

I 

and from Erdell 79 (Vol.1, p.244,#31) 

fJCt) 
•  Jut+jBn 

|  e     u  du 
U 

(6(t) + / B J1(2n/B
,t ) t « 0        (5.1-8) 

0 t < 0 

These two function«- are eketched in figures (5.1-la,b), The width 

of f"(t) is 2A(t) or 4 h(t,) Sin %  /c. This Is the difference In 

travel time between rays reflected from Imaginary planes tangent to 

the upper and lower peaks of the sinusoidal boundary. The singular- 

ities at the extremities of this Interval suggest the importance 

of the points of inflection of the surface. Due t  he 6 - function 

in (5.1-8) these singularities appear as the result of the convolu- 

tions in (5.1-6). The Bessel function in (5.1-8) becomes more 

oscillatory with increasing n and R . In this limit the curvature de- 

viation of the incoming wavefront from planar is negligible over the 

active scattering region. For large B/A its effect is to introduce 

very high frequency oscillations which may actually lie outside the 

processing bandwidth in which case, they may be Ignored. Figure 

(5.1-2) illustrates this effect. 
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I 

5.2 First and Second Order Statistics 

For the Sinufloidal Boundary Model 

We assume that Che phase x(0 is A sun of two Independent 

random variables: 

X(t) - X0 + X^t) (5.2-1) 

where x    ie *  random initial phase which uniformly distributed 

between [-fr.n] and XiCO ^B  a stationary, zero mean Gaussian process. 

The wavehelght h(t) is also taken to be a stationary, zero mean 

Gaussian process so that the coherent frequency response becomes 

K((ü,t) « H (w) - (5.2-2) 
c 

OB 

-e        s J      Jo I 2ü)h Sin 4> \    exp/^J^^       dh 
(ro + r;) -«       I     c ) 12 a^ I  A27ah 

= e "3V      exp ( -*2*l^2A        Io l*
2'2

hSin2* 
(r   + r') \ c2 / Ü \      c2 
oo 

The phase x(t) and wavehelght h(t) are assumed Independent. Since 

computationally this result Implicitly contains series 

representations for the exponential and Bessel functions it is 

worthwhile to consider an alternative scheme for performing the 

Integral in (5.2-2). By formally writing down the series for 

an exponential and Bessel function we have for Jjp - 1 ■ 0 

J  Vl<z> - fti)^ * exp(-zV2p) x 

(5.2-3) 

n 2 k 

'1 iiH-fe) ht(-i')> 
n«o k^o 
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This series converges very rapidly for values of r up to abouc 

2 or 3 which Is sufficient for applications Involving weak or 

moderate scattering. In fact» for some applications one may 

obtain qualitatively accurate results for small z by stopping 

with the first term. On rearranging the series we obtain 

\liz)  , Oitfo^expZ-t2^  []   A(m.p)   /.n* 1  (5.2-A) 
rrVm^     \ 2p /  m-o  ml    (2p/ r(»ip) 

where 

(m\     iMk (5.2-5) 

and where 

A(o'p)-I  vgy. -^ 
k-o 

(a)b - r(a+b)/r(a) (5.2-6) 

In particular» for J (z) we have p « 2. Hence» (5.2-2) becomes 

H  (o))- c 

-Jü)T 
- e          8                      1 

(r    f r')        /■       — 
"0 '  '^      /l+ li/al S1*2* 

X      ) 
L        2mfl m»o 

c2 

■ 2u2o^    Sln2i|; \ m 

(2m).'    A(m.2)l-         2              J 
2 

(mI)               f 1+ 2i/ol Sin2* ' 

(5.2-7) 

m 

This result converges very rapidly for small values of the Raylelgh 

parameter kn Sin ^, while for large values the frequency behavior 

Is still primarily determined by the first term. Furthermore» when 

written In this form the result Is easier to Integrate In various 

applications. For example, the coherent Impulse response corresponding 

to (5.2-7) Is given by 

B-144 



h (T) - —=±       S     \     IllI rfltg^aO! A(m(2) 

(5.2-8) 

^     ac2»       "       e-G-,) e 
8 

/r"ah Sin ^ 

(T - T ) 

where again the first term is the most important one for low 

frequency applications. 

The sane philosophy must be applied in obtaining the second 

order statistics since without this technique it is not possible 

to perform the appropriate averages. Kence we have 

»(•.«'.T). } M  Jn(A(t-TVJ 

(SA-9) 
3 jnß T 

x    exp{JBn' /I    -    lU    Qv(-n.n,T) e      s 

'w u''        x 

J(tt-«,)T        - 2 
      \        1    _    exp{jBn   / 1 - 1 )} Q    (-n,n,T) c Cos nß T 

(r+r')2       L^ 2 1"     »''      Xl " 

e_ 

o    o 

J      J 1 ACi^n-H)      AQn^n-fl)   /  u)'  Sin $ h(t-r)  \ 2,n+n 

l"0 mBo    [q(ii+l) J 

2i+n 2 » 2 2 

/ M Sin j> h(t) . exp{[^ h  (t) +0^' h (t-T)] Sln^Jt-    ) 
I c / (n+l)c2 
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where the ntetlonarlcy of h(t) and XiCt) has bean employed and where 

0 (n.n'.t) Is the characteristic function for the random variables 

xAt)  and XiCt-x). It should be emphasized again that only the 

terms for low values of \  and m need be retained for low frequency 

applications. The c are 2 for n j 0  and 1 for n-0. . 

Th>; remaining average over h(t) and h(t-T) becomes 

a) Sin if) I . (a   Sin ^ i h h  t      t-T 

2ll/oh"rh(T) 

^h l^ - rh(T)      h    h    T (5.2-10) 
4    2/ 42 

2 
,2 ..  2  . *«o. 

(j*    Sin    i^       .      h 
2 ,22 ü 

(n+1) c' K-rS<TV / j 
2 

where o.     ai.d r, (x)  are the variance and correlation function n n 

respectively for h(t).    This average can be transformed as follows: 

D- [f 
n,i,m J   J 

A;ht-2B;htht-t
+c;hlT , 

t        t-T e n n      n dh^ dh t        t-T 

A 2IT / A'C'-B^ (5.2-11) 
n n    n 

" Dn,i,mp2i-ta,2m+n(n) 

v/here M! .   is the Joint moment of the h(t) and h(t-T)  as computed from 
1 |K 

the modified Gaussian distribution shown and where 

/      c     , I 2l+n /     •  c.     ,   i2n>fn      [A'C1 - B'2]^ (5.2-12) co Sin ifr I /   oj'  Sin ^ t n n        n  J 

to* - rlum 
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A* 
n 

2        2 
ü)    Sin   ji 

(iri-1) c2 

B' 

(oj - r2(x)) 

n n        n 

(a* - r*(T)) 

(5.2-13) 

(5.2-14) 

2H^Sln!1   + 
0.. 

n 

:n+l) A. (cj - r2(T)) 

A'C  - B'2)'1 

n n        n 

(5.2-15) 

and 

(A- C  - B'2)-1 - 4 ^i5^ 
n    n        n (nfl)2 c4 

/ 

(o* - r*(T)) 

(5.2-16) 

{ 
[o)2+u),2J 

2        2 
2 a^ Sin    <! n 

(n+1)  v.' 

+ 1 

Thus,   (5.2-9)  becomes 

♦ (ü),ü)',T) 

J 8 

<ro+rn)2 
o    o 

r 1       exp {jBn/1 - 1 > > Q (-n,n.T)e 
1     M2 U   7-J     x 

n»o 

Cos nß T s 

(5.2-17) 

[4(n+l)]l+ln xl 

til^ll   AOn^n+l)    D;,x,0Vil+n,2n+n(n) 

m! 

00 00 

} I 
\BO m^o 

It should be noted that both D*    and y! . (n) are functions of n,i,m j,K 

T. The most natural scheme for truncating these series Is to retain 

terms only up to a fixed value for 2(n+i+n)  since this sets the order 

of the approximation In terms of frequency times wavehelght. 
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Writing down all moments up to order 4 ve h«v« 

n-o, l-O, m-o Ko^ • • 1 

n»o, fl» m-o V'2oM • • A' 
0 

n-o, \-o, m-1 "02«" ' •Cö 
n-1. 1-0. tt-0 .1,(1) ■ • •• 

n-o, l-l. 3-1 V'niO) • ' *M + 2B'2 

n-2. 1-0, rn^o uJ2(22V ■ A^C^ + 2t'2
2 

n-1. l-l» Ü-0 V^'.l) • • >*i»l 
n-l, 1-0, m-»l U&l) ■ ■ 3CIBi 
n-o, \-2, o-o "io'0' ■ -i2 

n»o. l-O, m=2 >'ö.'1<
0> ■ •^ 

(5.2-18) 

It can be seen that all cf the moments U .?1 ,7  (n) can be 

written in the following form: 

wn+2 i,n+2m(n) 
nti tm 

(w.w'tT) 

[A'C» - B!2)-(n+i-ha) 
n n  n 

(5.2-19) 

where the P    (C^ü)*,!) are polynomials in u) and u' of order 

2(n+\vtn) in frequency and containing only even powers of u and 

w'. 
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We write them In terms of frequency nomallsed by the Raylelgh 

parameter: 

n^*^ln 0   9 1 '     9 9    0 
2w a^ Sin V I I**   % Sln V h Pn.t.*(ü'wf'T)- ] Gnfttm

(P'^T>( 
p.q.O ^1)C2        (n+l)c2 

The first several of the coefficients G   (p.q.t) have been 
Hfl iID 

tabulated In Appendix G. Using (5.2-20), (5.2-16) and  (5.2-12) 

we have 

Dn,i,my n+2i ,n+2m^ 

n+i-hn 

{(n+DIl-p^t)])  '+^' T c        11,(p,q>T)£2(,>+,)+nC'2(<,4,,,)+n 

n / Bfi fM n n 
p.q-o 

W^'2 [1-PH<T)] + UIH*] + l)1+n4f,rt4i (5.2-21) n n n n   n 

where we define the normalized auto-covarlance function for h(t): 

r.(T) 
Ph(T) - ■^r- (5.2-22) 

o 

and 

^    /-2 ah Sin »    M    ;    el        /T % Sin ^ q,»        (5.2-23) 
^n      / n+1       c n * / n+1       c 

are the normalized frequencies. As a practical matter,  the fourth 

Ort., aepenaenoe on freque„cy <„ «- t.„ ^'^^(O.      c.eaees 

certain difficulties when performing various Integrals over frequency. 
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In order to circumvent these difficulties, we rewrite the denominator 

of (5.2-21) as follows: 

U^U-P^T)] + UIHI
2
) ♦ l}1*1^ 

n 'n 

{ -^n2ph<T> + u?+l)<c:2♦l»llf,i,^, 
'n"n Kh n  "n (5.2-2A) 

t( ^+l)a,2+l)]n+l4l,H",5(l - n   n f ' PV(T) K2K'2    .n+l+nHj« 
h    n n 

(cn+1) (cn2+1> 

Next we note that 

0 <   p2(T) A,2 < 1 
n n n 

a2+i)a,2+i) n   n 

(5.2-25) 

and for the large T or for small C and C' the lower boundary Is 

80 
approached. Using the result that 

-a 
(1-z) a - ^U;,-!) 

we have that (5.2-25) becomes 

(5.2-26v 

(cfcfci-pv^)] + [c>c:2] + i)n+i4ia^ n n n n 

V  r(i-Hn-H*r-M<)  _1  tph(T) €nCn ] 

L .. . o o 
r"0 r( +n+m+i5)    r!  fC2+l) (C ,2"»-l) ]n+l+nH"r+,i n   n 

(5.2-27) 

Of all the expansions made thus far In the analysis this last one 

converges least rapidly. However, convergence la worst for the case of 

T • 0, and then only for ^C* greater than 1. In this case alternative 
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procedures can be used to perform the various Integrals that arise. 

For example, by writing 

 1  

uV2fi-P^T)] + ^ + ^2+i}n+l+m+i: 
n n n n       n 

(5.2-28) 

{LK W"hn+n+J5 f l+{52e,2Il-p2(T))}r+mfn+J5 

I    (1 +?+ vh    J 
n n ____„_ 

n vn 

/      rd-tofn+rH-^) 1 {"^n f1-Ph(T)1} 

™    FCt^i.fn^)   r! (l+^+r2)1^^^ n n 

The convergence of this series Is more rapid for x near 0 and ££' 

greater than unity. Unfortunately, this representation* falls to 

converge at all for frequencies too high for the condition 

^n ^ t^h"' t    , (5.2-29) 
2     2 (l +d + V*) n   n 

to be satisfied. Therefore, In order to avoid questions of con- 

vergence for Integrals of these functions over frequency we will 

use (5.2-27) throughout the rest of the analysis. Computatlona'ly- 

(5.2-28) still offers advantages for certain applications. However, m 

incidental advantage of (5,2-27) Is that It Is a sum of terms which 

are factored In such a way that multiple integrals over C and C1 can 

be performed with greater ease. 

It should be noted that the density (5.2-11) Is singular for 
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T - o as arc the coefficients GM , ..(p.q,!), but the product 
nt i ,ui 

[I-P^CT)] G       m(p.q,T) which arises In (5.2-21) remains finite. 
I* XI y l |Ul 

Substituting (5.2-27)  and  (5.2-21)  Into (5.2-17) we obtain 

♦(w.uj T) 
(5.2-29) 

e  

o    o 

 8___   r        1 exp{jBn / 1 - 1   i ) Q (-n,n,T)e Cos n« T 

(r+r')2       I     t*^ I»     S1"!        Xl n 8 

o    o n-o 

n+i+m a.        oo «0 

)    ) 1 A(i.2n-t-l)      A(mt2n-H) J    r(\4n-hn+i4^    1    \ 

i»o    m=o    [4(n+l) r*o PiQ^o 

{(n+l)tl-p2(T)J),+n+nGn ,    Cp.,,t)Ip»<t)Jr ^(r+^O+n^Cr^+m)^ 
n n, i tm n n n 

n n 

for the interfrequency systen correlation function, and for lomparlson 

with (4.1-14) we have the trl-frequency spectral density: 

dAQoXX')    B (5.2-30) 
dw" 

CO 

e li^!H2lg      Y I      expfJEn2! 1 - 1  ,> e    \      \    A(\ ^n-t-DAdn^n-H) 

oo           n^o^ |«o m»o 

i+n+nH-r-fi) 1    ^        S        _ (a>")Cn ^ (r4-q-KnHn 
^      Tr:^:f^) FT   ^ n,i.m.p,q 
r=o •—     - p.qBo [a^i)(c:2+i)in+l'h,H,rt 

n n 

where 

S     , (ü),f) - 
n,i,in,p,q,r (5.2-31) 

| e '1*"' Qx  (-n,n>T){(n+l)[l-p2(T)]}l+n4in{p2(T)}r Gn>i >m(p.q,T)Cosnfi8T dr 

Is the spectrum of the slow variations of the scattering. When the 
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time variations of the surface positional phase XiCO  and vaveheight 

h(t) are slow compared to the mean tranelatlonal frequency 0    then 

the presence of the term Cos nft    T In (5.2-32) produces sidebands In 

S    . (u") which is not the case In (A. 1-15). Since the ? nt\,m,p,q,r n 

decrease with Increasing n for fixed w and since 5    ■ 1, higher order 

sidebamfs are excited at higher values of w. 

Similar comments apply to the smearing function 

dC(vtY)    . (5.2-32) 
dy 

» eo    «o « n+\-Hn 
/T r        £n        r    r      A(\ .an-f-DAfa^n+l)     ^    r(\4n^HH-^)  1_ r 

/-^ i\2        Z      /  M2    lit i /      r(\+m+n+r)       ,  / (r+r') L      (nl)      L    L 1J m» L        * r| L 
o   o n-o i"o m«o r«o P»q=0 

s
., m n 0 >")^:>2("H+mfr)+,s n,i,m,p,q,r n 

n 
where the scaled delay spread parameter v* is given by 

n  / 
nfl 
2  o. Sin 4/ 

That is, the more intricate delay distorti ns fade more rapidly. Thus, 

while this model is more complex than the random amplitude and 

delay model of Chapter A because of the detailed nature of K(u),t), 

many of the general properties of the two scattering models are 

the same. 
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5.3 Multipath Correlator Fluctuations 

for the Random Sinusoidal Boundary 

The spectra (4.2-2) and filters (A.2-3) were chosen to be 

Gaussian shaped In order to simplify the various Integrals over 

frequency that arise in the analysis of the random amplitude and 

delay model. However, the Gaussian shape is not suitable for use 

with expression (5.2-29) for *(W,U),,T) In computing the normalized 

2    2       h 
covarlances (4.2-1). This is primarily due to the factor UC^DU^ +1)1 

in the denominator of each of the terms in (5.2-29). The presonce of 

these branch point singularities Inevitably leads to Bessel functions 

or other functions which are poorly tabulated or otherwise unfamilar. 

In order to circumvent these difficulties we assume in this 

case that the spectra are of exponential form: 

a) S O.)-1"» e-l",l/nx        '     (5.3-1) 
xx    -jj- 

X 

n1n1     n2n2     g 
n 

These spectra have roughly the same power in the band from 0 to 

u =ß as the spectra in (4.2-2) although they tend to zero less 

rapidly for large CJ. Similarly, we take the filters as 

u / x * t ^        -%l»|/af * (5.3-2) Hl(a)) • H2(w) - e 
^, '  t 

The direct path transfer function is given by (3.1-1). Using 

equation (3.4-5) and the expression for the coherent response Hc(a)). 
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given in (5.2-2) we have 

-R^      f  x 

? -Jj. JZZL   ACn.2)      g   d_ n'0 2     f-')2 . [IT?f^ (5-3-v 
o 

^Wnfo?^St•«/.■^[•fx-iCT-v] _e  deo) 

where the s^o! RE stand, for the "real part of" the enclosed quantity 

and where 

,ft ' 4 = ^T + r- (5.3.4) 

CnV^ ah Sin ip (S. 3- 5) 

T      e   T      -   T 
0       s      Td (5.3-6) 

Now the integral over normalized frequency arises several times in the 

analysis of this model for the scattering system and so it is worth 

examining in some detail. Using the contour integral representation 
82 

given by Slater ^ (p. 25, #1.6.1.6) for the hypergeometric function 

(5.2-26) we have that for a > 0 

f 

ijo» 2nj (5.3-7) 

where the contour implied must pass from -j» to +J00 between -a and 0. 

Using this the integral in (5.3-3) becomes 
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I- p        -uz    ,,        2.-0   j e (1 + u )       du 

J 00 

fr(a+s)    r,   v  f     -zu     p*2s    ,   ds 
"fSr r('s) J e    u    du^T - 

-j» o 

f       r(p^i)    r(a^s)      f   .    ds   a 
J Tp+2s+i r(a)        n s)   TtJ 
•1 00 

jco 

p*l 
nW  (z)P      j    (4-)S   rC%>*»*%) rftp+s+i) r(a*s) r(.s) ^f- 

-J-  z 

„        1 f21
p*1    r13 , 4   Jjp^^p*!^^ 

B ^ rW     llJ       G31 l"7 0       ' 

where the contour is further restricted to pass from -j« to +j» between 

0 and the larger of -hp-h and -a.    The Cm (x) function is called a 

83 Meijer function and the integral defining it always converges 

provided RE(z)>0.    The contour is normally closed in the left half 

plane for the purpose of evaluating the integral although an asymptotic 

82 
representation can be obtained by closing in the right half plane 

Since for the applications of interest here the quantity a is either an 

integer or a half integer, some of the poles of r(a+s) overlay the 

poles of T(}ip*%*s)  or r(^p+l+s) in the integrand of the defining integral 

thereby making them second order. By a translation and reflection 

change of variables we can rewrite (5.3-8) in a more compact form: 
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[       UP     e-2U   (1  ♦  uVa     dU 

j" 

2v r(a) 
t 2 s . 

J      i^j)   r(-s) r(Jj-s) r(a-p-Ji-s) Tip*h*s)   Ä 

(5.3-9) 

.31    2 1 G.-rz  )       H-^P      ) 
2TI r(a)        ^ 4^ 0,Jj,a->5p-V 

Another obvious property of the Maijer function notation is the 

simplicity of differentiation: 

A m    r31   ,2 Wl(p*«)       )     (5.3-10) 
0,J5,a-%(p+in)-^j 

Although the Meijer function serves as a convenient identification of 

the contour integral, it tells us nothing about how to compute its 

values for various z.    Computation schemes are discussed in Appendix I 

where series representations are presented. 

Nevertheless, using this notation we can express the mean of the 

output for the multipath correlator using (5.3'3) and (5.3-9): 

-c P /O       ■ 
E(T'T'P)' ddÄ E 1      (2n) I 

d^o^o^    n=0    2n+1    (n!)2 

(5.3-11) 

.31 . 
-ferU   G»(%[co^x-"-Vj 0,    h,   0 " 

Roughly speaking, the peak of correlation which occurs at T = T . 

width which is on the order of 1/c for very wide bandwidths o      ' 
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(small a.). For very small bandwidths the peak width approaches af 

as it should. 

The integrals I. (kal to 4) which arise in the expression (3.3-8) 

for the variance of the output of the correlator have been summarized 

in Appendix H. Their derivation is straightforward because all multiple 

integrals that occur can be written as sums of iterated integrals of 

the form given in (5.3-9). It is unnecessary to write down the full 

expression for the variance since the presentation of the I. in Appendix 

H is already in a format suitable for numerical computation provided a 

basic program is constructed to implement equation (3.3-8). 

Instead, we concentrate on examining the plateau of variance for 

this model corresponding to (4.2-11) for the random amplitude and delay 

model. From chapter 4 we know that this plateau is given by 

Lim     4V o* o    J        j gs Lim 

lr(T
0»T»P)J 

P/fJ *>      f f        C      2 m       to 

2     t    \      \    (^r)     QY (-n.n.u) C   Cos(nn O) Z     E 
[H(To,T,p)|Vj(ro^r    ^0im

i      n- xl n s    1=0 m=0 

1 A(l,2n-»-l)    A^^n^l)    " 1 ^____ 
r.,    ..-.l+m 1! ml 0      r(l+m+n+^) r(l+m+n+r+^) rl 

TS 3-12"! n+l+m ,, Al*ri    2, ,-1 ,l*m+n _ , s v •        -» 

p,q=0 

2,        .  .2 
1  13  ^   L 0,*5,n+m+p '  i    r-Oi') dp 
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where the OM) are defined by (5.1-8). As mentioned in connection 

with that definition, the convolutions in (5.3-12) become less 

important when the receiver and source are at great distance from the 

active scattering region provided that the grazing angle ij; is not too 

small. 

The plateau (5.3-12) is plotted versus /la.   Sin ij/ß /c in figure (5.3-1) 

for the limit for which the convolutions can be ignored. It can be 

seen that similar  comments can be made about the behavior of the 

plateau for this model above and below the critical frequency ( at 

roughly ß, = c ) as were made for the simpler model of chapter 4. 

2 
The plateau is not dependent on the variance o - of the positional 

phase fluctuations of the surface since the characteristic function 

Q .(-n.njU) is unity for o * 0. We note, however, that if x1(t) is 

gaussian we have 

Qxl(-n,n,ü) » wqpC-o^n p-pxl(wj|} (5.3-13) 

8[Qxl(-l,l,o)] 
n2 

so that the rate of decay of the plateau of uncertainty with increasing 

2 
u is enhanced when a . is large. This is due to the improved averaging 

over the surface fluctuations. The dependence of the critical 

frequency only on the Ruyleigh parameter suggests that the variable 

h(t) is analogous to a random delay. Again one must conclude that only 

the coherent signal energy contains useful information if we use the 

"on-target" normalized correlator output variance as the critereon of 

performance. This must be qualified as in chapter 4 by the comments 

made in Appendix D. 
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Just as in chapter 4 we may make a more confident evaluation of 

the tracker performance. Using (5.3-11) and (5.3-10) we have 

3   r=rT T «-»T - o x x  r   1   (2n; I 77 L=CT, T, P)J - R fr CT) * ^r —7 
21 dv o oy n^-O 2   (nl) 

31 
R£L j» yy  G13(V fa. -j(T-T )1 l2n r(n+^)    v c L fx ^ ^  o J 

(5.3-14) 

h-n-1 
0.    h.      -1)} 

whicli is the quantity In the denominator of (3.6-3). The appropriate 

integrals for the evaluation of the covariance of the tracking error, 

R (M) arf also presented in Appendix H. We write here only the 

plateau of uncercainty: 

(P /ft ) x x 

"3   17 T .12  R^(r +rn2 n«0 ' 
—öT =(T,T,P)    dv O O' 

dl* JT=T 

00 f    {   C 2 
I I I & QxlC-n,n,u) cn Cos(nnsu) 

r  j.    1  .  A(lt2n-«-l) A(m,2n+1     T      1  
l~0 mto lJFtT)] I!       ml   ^ r(l+m+n+^) r(l+in+n+r^) rl 

n+l+m 9    , j 
I {(n+l)[l-p'(u)]}

1+m+n G    rp,q,u) ipf(v))T 

p.qrO n n,i,m        n 

1  REf-^n^lH^C»^^^]2!^^-1}-} f'C.) dU 

..A» 
^.jcnG^^<

:n^f.-^•)] I^I!--)? f^OO d,. 

2 . The quantity R (0)/c is plotted in figure (5.3-2) versus ft- /c 

and can be seen to be essentially the same as figure (5.3-1). 
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Figure 5.3-1 

Normalized Variance Plateau vs. Working Bandwidth 
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Normalized Delay Estimate Error vs. Working Bandwidth 
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5.4 Second and Fourth Order Cross System Statistics 

for the Two Channel Random Sinusoidal Boundary 

In attempting to generalize the single channel transfer function 

model of (5.1-2) we must take into account the fact that each receiver 

"sees" different (although possibly overlapping) active regions on the 

surface. Furthermore, the parameters describing the surface such as 

the local waveheight, positional phase, or the orientation angle a may 

be different in these regions. In this section we consider a model in 

which the local wavehtights h1(t), h2(t) and positional phases x1(t) 

and X2(t) are dependent on the relative location of the specular 

points for the two receivers. The distances from the source to the 

receivers is considered large compared to the separation between the 

two receivers. 

If the source is located at Q(x ,y ,z ) and if the two receivers 
q q q 

are at P1(x .»y ..z .) and P2(x 2,z 2) then the specular points 

Ol^xol'y 1 ^  anci 02^xo2*yo2'0^ have coorclinates given by 

z .X ♦x .z 

J  q  PJ 

z .y +y .z 
. p/q yvi  q (5.4.lb) 

•'oj    Z + Z v     "^ J   q  PJ 

The horizontal distance between these two points is thus. 

y (xo2-xol)2 + ^o2-yol)2, 

This displacement alone would account for a positional phase 

difference of 

xs B qs{(xo2 " *ol> Cos as + (yo2 " ^ Sin as} (5-4-2) 
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However, we consider here a slightly more general model in which the 

waveheights hjCt), h2(t) and positional phases XjCO, X^Ct) "seen" by 

the two receivers are loosely coupled random variables. In order to 

account for the fixed positional phase displacement (5.4-2) the "initial" 

phases for the two surface areas are taken as x and x ♦ Xs 

respectively with x uniformly distributed over the interval -ir,ir . 

The two channels therefore become 

HAmtt)  - -•" V   Z        Jn[A4(t.r ./C)ü,1 e'^i" '* 
1 (r .♦r« ) n—  n l   01 

exp[+jnßs(t-rol/c)+jnxi(t-roi/c)+jn{xo+(i-l)xs)] 

(5.4-3) 

( j 

for i-1,2 

where r . and r 2 are the respective distances of the two receivers 

from their specular points and where 

A^t) « 
2h. (t) Sin \l>. 

iv y    i 

q c R . 
B. --t—Si 
i    4 

r  2 
Cos a      9 

 5-2. + Sin a 
LSin il>. - 

(5.4-4) 

(5.4-5) 

T . = (r .♦r,.)/c 
si    01  01/ 

R . 
ei 

2r .r'. 
01 01 

r .+rl. 
01  01 

(5.4-6) 

(5.4-7) 

We make the usual assumptions about the stationarity of the random 

parameters h.(t) and x-(t). We further assume that the distances of 

the source and receivers from the specular points is great enough so 
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5.4 Second and Fourth Order Cross System Statistics 

for the Two Channel Random Sinusoidal Boundary 

In attempting to generalize the single channel transfer function 

model of (5.1-2) we must take into account the fact that each receiver 

"sees" different (although possibly overlapping) active regions on the 

surface. Furthermore, the parameters describing the surface such as 

th& local waveheight, positional phase, or the orientation angle a may 

be different in these regions. In this section we consider a model in 

which the local waveheights h1(t), h2(t) and positional phases x1(t) 

and XjU) are dependent on the relative location of the specular 

points for the two receivers. The distances from the source to the 

receivers is considered large compared to the _eparation between the 

two receivers. 

If the source is located at Q(x ,y ,2 ) and if the two receivers 
q q q 

are at P1(x . v .,2 ) and P2(x 2,z ,) then the specular points 

0«(x i,y - 0) and O?^^'^*0^ have coor<linates given by 

2 .x ♦x .2 

J  q  P3 

2 .y +y .2 
. ,, p/q ypp 9 (5.4-ib) 

'oj     2  + 2 y J 
J       q  PJ 

The horizontal distance between these two points is thus, 

/ 
(xo2-xoi)2 + ^-y»!)2, 

This displacement alone would account for a positional phase 

difference of 

X, ■ V(xo2 " xoP Cos as * ^02 " ^ol3 Sln 's' (5-4-2) 
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However, we consider here a slightly more general model in which the 

waveheights hjCt), h2Ct) and positional phases XjCt), X2Ct) "seen" by 

the two receivers are loosely coupled random variables. In order to 

account for the fixed positional phase displ ;ement (5.4-2) the "initial" 

phases for the two surface areas are taken as x and x ■•■ X 

respectively with x uniformly distributed over the interval -Tr,Tr . 

The two channels therefore become 

HjKt) e-^s.w 

(roi+r;i) n- 

I   jjA^t-r^/Oa.Je-^i11^ 

x exp[+jnflsCt-rol/c)+jnxi(t-roi/c)+jn{xo*(i-l)xs)] 

(5.4-3) 

I 

for l«l,2 

where r - and r 2 are the respective distances of the two receivers 

from their specular points and where 

2h. (t) Sin \li. 
A. (t) s -i ^ 
i c 

B. s 
q2c R ei 
T 

rCos a, - s e. i  x— + Sm a 
.Sin^ - 

(5.4-4) 

(5.4-5) 

T . = (r .+rl.)/c si  v 01 oi' 

R , « 
2r .r». 

01 01 
ei  r .♦r'. 

01  01 

(5.4-6) 

(5.4-7) 

We make the usual assumptions about the stationarity of the random 

parameters h. (t) and xi(t). We further assume that the distances of 

the source and receivers from the  specular points is great enough so 
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that ^ * <»2 ■ <>, and that the dimensions of the array are small enough 

that so that the retardation time difference (r - - r J/c is negligible 

on the time scale of the slow time variations of the waveheight and 

positional phase variations. The spherical attenuation factor 

l/(r .♦r'.) is replaced by l/(r +r') where r and r1 are nominal values 01     01 0    0 0 o 

for r .  and r'   .    Thus, oi oi 

♦ik(w,u,
>T) » 

e-^si^sk"')      " 1 2Bi Bk 

(Vr;)2 n^O     (n!)7     ^ "    hj   "   ST il QxixkC-n,n,T)  % 

(5.4-8) 

L     s     s Jl=0 m-0 C^4^1^ 1 u'       rao    rC1+m*n+^r: 

n+l+m , 1 

-2(r+p+l)+n    -l2(r+q+m)+n 
(phA(0)r      ^5 ^ 1 c 1 k [(^ * l) C^2 * D] n+1+m+r+,i 

where we have assumed that the two channels have similar statistical 

properties (i.e. a. - ■ a.« a «).    The waveheights 3i.(t) are taken to 

be independent of the positional phase fluctuations x-(t).    Again, 

asserting these parameters to be Gaussian random variables we achieve 

fourth order cross stationär!ty.    The fourth order system moment is, 

however, a great deal more complicated owing to a nore complex cancellatioc 
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mm ii mi—ii    

of positional phases: 

H1(a).t) ^(w'.t-y)* H2(a)".t-u') H2(ü)'" »t-p1 ^i 

-jT8l(a,-u)')- jTi2(a)"-W"») •   •  «  w 

(r +r')4 1       I     I     I J-o j-og-oj-o   (5#^9) 

Jnl 2w hl(t) Sin h   Jn2/2u, hi(t"y) Sln ^i 

Jn3 2u,,h2(t-»J,,> Sin ♦a  JnA/2",,,h2(t"w,")Sin h \ 
j        ■   „_    j   I        c ' 

^(^-n^-n^Cn^+x^ + jCn^-^p'+t^y") nß  ^J^- n/4)x8 

where 
[A] 

Xlx2 1 z 3 ^ (5.A-10) 

exp{+j[n1x1(t)+n2x1(t-u)-m3x2(t-^J,)+nAX2(t-y
,,)]) 

Is the fourth order characteristic function for the time varying 

positional phase fluctuations. Carrying out the average over the 

"Initial" phase x we find that only those terms for which 

nl " n2 + n3 " n4 " 0 (5*4-11) 
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are retained, thereby yielding fourth order statlonarlty. It is also 

clear that for any four numbers nltn2,n3,n4 that satisfy this condition, 

the numbers -n^ -n^-n^-n^ satisfy It too. For example, the following 

are the possible combinations for InJ+lnJ+lnJ+ln. | ■ 2: 

nl n2 n3 n4 

0 0 0 0 

1 1 0 0 

0 0 1 1 

1 0 0 1 

0 1 1 0 

1 0 -1 0 

0 1 0 -1 

1 -1 0 0 

0 0 -1 -1 

1 0 0 -1 

0 -1 -1 0 

1 0 1 0 

0 -1 0 1 

Figure 5.A- -1 

The proliferation of terms beyond these of second order Imposes a 

practical limit on the usefulness of this model to weak scattering. 

In order to apply the expansion (5.2-4) for the Bessel function 

to (5.4-9) we must first isolate Bessel functions of negative order by 

utilizing the identity 

J_n(2) - (-l)
n Jn(z) (5.4-12) 

This can be rewritten as 

Jjz) - j(|n|"n)J.   |(z) (5.4-13) V" ' J J|n| 

which leaves the Bessel function unaltered if n is positive but 
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yields the appropriate factor of (-l)n if n l8 neE«tive. Using 

this (5.4-9) becomes 

•J*J (-••»••••••••••,v,v»') - ^ : ü j 
(ro + r;>4 nrn2+n3'nA-0 

oe>
        •        »        oo y. 

I        J       I       J TT r       I1"!1'"! A(B1.2|n1|+.) 
,nl*0 ""z"0 ""s"0 "A*0 Mnil •^(In

il
+0],D1 (tn.)! 

D
; - ^„ JS> exP{JBl ^ - Ü2 ,  .  jB2 ^3 - ^4    1 }    eJ(n3-nA)xs 

QXlx2 (n1»"n2'n3"nA,V,V,,vM) «P^(V"n3V,■hl4V,'^ (5.4-14) 

where 

«- {a),ü)^U
,^ü),,,} (5.4-15) 

and 

IP - {in1,in2,in3,in4} n - { n^^in^n^} (5.4-16) 

The v •    (n) are raoments computed using the distribution for 

h - {h1(t),h1(t-v),h2(t-v,).h2(t-v")} (5.4-17) 

modified in a manner anologous to that used in (5.2-11). We assume 

that h is Gaussian with a correlation matrix ]Llh2^ which we here 

abbreviate simply as R. Again, using transformations similar to those 

used to obtain equation  (5.2-11) we have 

"».a® " jjJJ "IO2"1^1 hjCt-v)^!"^! h2(^')2Vln3l 
(5.4-18) 

h2(t-v")^M     e-^\'i\   dhi(t) dhi{t.v) ., ^ 
A2n)A IR»' 

'—n 
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where the correlation matrix R' (which is a function of both the 

n and of the frequencies w) for the modified density Is formed as 

follows : 

pi - /u - «~1--1  -- "1 (5.A-19) ^-(W^+R-1)-1.^ 

Here the matrix H     is a diagonal matrix which contains the 

dependence on frequency : 

a) 

"RJT+I 

U 
.2 

n2 +1 

w 
,,2 

|nJ+l 

u ...2 

|nj+l 

The normalizing constant of the modified density D'     (*)  of equation 

(5.4-14)   is given by 

D' 

1-1 

e*j     ■  i 2m.+ n.    -t Sin ji    a». 11 
L v    c    / 

(5.4-21) 

dXZ 

where U  is the universe of R'. Expressions for the moments generated 

by equation (5.4-18) may be derived by setting the equivalent order 

cumulont for h equal to zero since the parent distribution is 

49 
Gaussian. Lanning and liattin  present the general moment as a 

combination of second order moments. From this fact alone we may 

conclude that similar to equation (5.2-19) one may write these 
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moments as polynomials divided by the determinant of U raised to 
—n 

various powers : 

n,m •— 

P  (w) 
t~Z (5.A-22) 

Ik  |n |-hn 
Ü 1   x  1 

n" 

If we retain only those terms for the values of the n. tabulated 

In figure (5.A-1) then only second order moments are needed and these 

are the elements of the R' matrix Itself, Using only to the second 

order In frequency times vravehelght 

♦1%«'.«",«'!V>,, e^cX(^,^Ts2(ü>M^",> \l\*      r    (5.4- 23) 
(r +r,)^ 
o o 

I^OOOo'^14 Sln2 *    [ "fyi®* »,2»22® + W,,2R33®+ W^,,2R^(0)]} 
c 

,   Sin2 t    < «W*   lll1100l    R^dlOO) Q^d^l.O.O^CosCn^exp^bJl-l )} 
2 ""'"' ■ ' *• A   A ft)  Id' 

c 

+ w"w,,,Koill    R34(0011) ^l^0'0»1»'^ 
Cos(n8(v,-v,f)+2xs) exp{ .1B2/i-l     [ ) 

+ M W,M  IfilOOl'    Ri4(1001> ^2 Cl.0t0f-Ifv) Co8(n8v"+xs) exp{j/V^2_]} 

+ a,,a,,, 1^0110!    *22i0110) Qv(lv2(<W,l,0,v) 

C08(fi (v-v,)+xe) exV{-llDl~\.    r 
8 S Vu)"'' 

-»$ 

+ WW"  I^IOIO1    Ri3<1010> Qxli2a.0,-l,0tv)  Cos(ß8v'-x8) «cpt{j/Bl ^2   [) 

+ ^'^''I^OlOl1  R24(0101) ^lj2(0.-1.0,l,v) 
Cos(ß (v-v")-xJexp{-j|Bl + B2   )  }} ] 8 8 l^T     S"1"' 
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where v - (v.v'.v"), and where the RMn) are eleaents of Che matrix 

R' given by 

Rijfe)' 

l+j 
(5.4-24) 

The luj^ are the IJ-th minors of the determinant |ü | and (5.4-24) 

is a special case of (5.4-22). 

Of crucial importance to the performance of various integrals 

for the variance calculations is the functional dependence of |u| 

on the frequencies w eiuie  this determinant is raised to a fractional 

power in all of the terrac in (5.4-23). We denote the Inverse of the 

correlation matrix for the waveheights R by M and define normalized 

frequencies in this case by 

v/^ 26 \n±\  +X 

a. Sin $ to 
n 

(5.4-25) 

with similar connections for the pairs (C 2>u,)>(€ vw") and (5 A>w",) 

The constant 3 is chosen later through convergence considerations. 

.2 

U 

MU+?n 
M 

ßa 

M 
21 

12 

22 U' 

M 
13 

M 
14 

M 
23 

M 
24 

M 
31 «32 ßah M.vK 33 sn3 

M 
34 

M 
41 

M 
42     M43  M44+en4 

ßa' 

Just as the minor IML is formed from the determinant |M| by deleting 

the i-th row and J-th column, we define a second order minor |M|  . 
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which is formed by deleting both Che 1-th and k-th rows and Che j-th 

and i-th columns from |M| . For examp.le, 

»n.is 

M12   M14 

M32   M34 

(5.4-27) 

Similarly, minors of third order IML. .    are the elements of M 

itself. Using this notation» 

S I 2 2 2 2 
~n   n^ n^ n^ n* 

ßoh 

+ i^ 

ninj 

*2< 

iWk 
2 2 2 
ni ni A 
A3«6 
eah 

|M| li,JJ,kk 

11 
tl    ■    Mi 

(5.A-28) 

where again, 

M - R 
-1 

(5.A-29) 

Unfortunately, this polynomial is of eighth order in frequency. 

Although for the applications of Interest in equations (3.5-16) through 

(3.5-18) the squares o2  various frequencies are taken equal in pairs, 

(5.A-28) is still more formidable than the denominator of (5.2-21). 

However, we may use a series expansion again which is valid for all 

frequencies and also produces convenient factorization of frequency 

dependence 

(IILIIlDv 

[ i + 

l(^+l)(^ +l)(^+l)(^+l]v 
nl    n2    n3    nA 

 S(£nl»£n2>£n3»gn4) 

[af^lHC? +i)(^ +i)(^+l)] 
nl   n2    n3   n4 
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where 2.- (p^PjtPß.P^) •»<» fron (5.4-32) 

1 '*\ >**    ^n  •*« >Jr  - J C
r<a^ O

1 ^q2 5^q3 5^4 nl n2  n3 n4      £  r     nl  n2  n3  n4 

(5.4-34) 

We may also write (5.4-21) in terms of the normalized frequencies 

1-1 (5.4-35) 

Just as In the case of the second order moment, the coefficients In 

(5.4-32) are singular for v - (O.T ,T ) where 

T0. T81-TS2I (5.4-36) 

in the mean path delay difference for the two receivers. However, the 

product IRI
1
* I0!!"1™! G  (p.v) remains finite. 

ii,m *- —■ 

Finally, we summarize by writing 

„.  M. (n). K IWl^V+r^-, . .Wn^ 
-'-   -•- j0   radnj+m^)   VT '^       (5.4-37-, 

J I   On>B(lL.v)Cr(a.v) { ff   , (|nll+1) ^i'^l  (P^^+I^lj 

((£
2 +l)(r2 +l)(r2 +1)(£

2 +l)]I:(,5'nll+ml)+I+ls 
nl    n2     3    4   1 

The results may be substituted Into (5.4-14) to complete that 

expression. 
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CHAPTSR 6 

POSSIBLE EXTENSIONS OF THE PRESENT WORK 

AND SUGGESTIONS FOR FUTURE RESEARCH 

6.0 Extensions to the Fully Random Boundary 

In chapter 5 we have considered the scattering surface to be a 

sinusoidal boundary with random parameters. More generally we are 

interested in an arbitrary random boundary C(x,y,t) with known stnistical 

properties. In particular, with the assumption of gaussian statistics, 

only the spatial and temporal correlation function 

^(Cn.T) - C(x,y,t) C(x-C,y-n,t.T) (6.0-1) 

need be specified. 

The coherent transfer function is easily obtained from (1.4-3) in 

the limit B (9,*) -► 1 
e 

J«(r0+ri) /c 
H» « e,r .»N        Q (wSin^/c) (6.0-2) 

2 2   2 
it (i) w a.  Sin ty 

- "e s       A-   5 
' fv^ c2 

The result is the same as Eckart's reflection coefficient (1.2-21) for 

directional reception. 

Unfortunately, equation (6.0-2) is about the only trivial 

statement one can make about the fully random surface model. If we 

advance to second order moments we immediately run into difficulty. 

From (1.4-13) we have 

2 c 
00 

2 

frF") JJll   dxl dx2 dh ^2 Befei'*P Vl'V 
O  0 
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"»K««!   -  -'4)    (C,0)2  .   (^     .   „.yZ)]       1 
^ 

dxj dx2 dyj dy2 W9,,j 

Again, to .UpUiy »tter, w. uk. BeCe,« * , „d uum gausslan 

statistics for ; to get 

2 ^FTr-' 

a
c Sin^ 2       2 

e-%C ) (ü)  +0)'   ) -JT   ((.).(.)») 
e 'f 

•xpf-j^ . ^  ^ + (wy2 , ^j _^ } ( 

- e 

^expf^   ^(Xj-x^yj-y^T) Sin2 ^ 

dXj dx2 d/j dy2 (6.0-4) 

The most difficult feature of this integral is the dependence of V 

only on the differences 

Xl " X2' ^1 ■ ^ 

whereas the remainder of the integrand is dependent on the quantities 

and 

WXj - u'x* 

2 2 uyj  -  u'y* 
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In certain cases transformations or reductions of the integral in 

(6.0-4) are possible. For example, if only the value of ♦(O),W|T;. for 

(i) ■ (u1 is desired, then one may write 

w(Xj - x^) ■ «(Xj ♦ x2)(x1 - x2) (6.0-5) 

"(yj - y2
2)  - o>(y1 ♦ y2)(y1 - yj (6.0-6) 

Making the substitutions 

(6.0-7) 

•we find that 

(6.0-8) 

5 ' Xl ' x2 V " x1 * x2 

o o 

SB 

e-  (QC Sin* ü)J2        f M   ' 
J     J     J     i 

exp{-j  [U'(c°)    * nn'] J^} 

xexp{(iliM)
2    yU,n>T)1 

dC dn d5! dn' 

One can immediately perform the integral over the primed coordinates 

r    0 2    1 
t-jL«' (cs) *nn'] ./cRe ^ dn.     (6 0_9) 

ft 2 
5(C0)  CD 

-«(-dh—) «(SSr) 

.00 

cRe J     ^cR^' 
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. 

Thus, a. «... 2 

.(....0 —JL_   A-*?*)    &-PcC0]f 
(rÄ

+rA) V (6.0-10) 0     0 

where 

PC(T) j  (6.0-11) 
.0C 

As a corollary one can conclude that 

♦ (u,«,©)  ■ H(ü),t) H((u,t)* 

cv^ 
(6.0-12) 

This last result is true due to the stationarity of C and does not 

depend on the gaussian assumption. It does however, cuaw very heavily 

on the truncation of the expansion for the exponent in (1.4-13) at 

quadratic orders in x and y and at first order in C. While (6.0-12) 

gives the very simplistic average energy transmission which is flat 

over an infinite bandwidth, it does at least conserve energy. 

Furthermore, from (2.4-30) it follows that the autocorrelation function 

for a wideband signal is left largely unaltered by this scattering 

model. 

These ' atements are quite general and qualitatively correct. 

However, nothing much can be said about the fluctuation of the 

correlator output for the multipath detector unless we can obtain 

♦ (a),ü)!T) for to ^ a)' in (3.3-12) for I4(T,TIV). In this case the 

transformations (6.0-5) and (6.0-6) are not possible one must be 

prepared to do each integral over x-, x», y- and y2 separately. This 

is clear since either u or w1 may be chosen to be zero independently. 
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In any case, if it is desired to describe the decrease in the 

plateau of variance of the correlator output for long integration 

times one must have an expression for VCCn^T).    This in itself is a 

non-trivial task. 

In general * (e,n,T) satisfies the sane wave equation as C(x,y,t). 

If we choose to ignore dispersion in these waves then 

sr      an       c    at       6 (6.0-13) 

Therefore, the behavior of VC^n,!) as a function of T for a given 

*c(C,n,o)    is that of an initial deformation on an infinite membrane. 

The progression of ^AKtr]tt) is therefore determined by a superposition 

of linear surface waves, 

00 

Vf.n.r) - /1 vqx,V ej IV+ v - 0(vV T] dqx dqy 
.00 

(6.0-14) 

where 

nCqx'V ss cs ^VV (6.0-15) 

and cs is the propagation velocity for surface waves. Tbe quantity 

E (q .q ) is the space spectrum  for c and is determined from v A y 

.CO 

(6.0-16) 

The  integral (6.0-14) is often difficult to perform. 
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In order to gain insight into the behavior of *   let us assume 

that E^ is rotationally symmetric in the q   q   plane so that x   y 

VVV " EC  (q) (6.0-17) 

q ■ ^nrr 
qx

+qy (6.0-18) 

We may then write (6.0-14) as 

Vr,T) ■ J EC(qxV Jo(^cos(<»T)<»dT     (6.0-19) 

For example,  assume that 

eV/A2 

Ec(q)  =  ~  (6.0-20) 

Substituting  (6.0-20) into  (6.0-19)  and using the expansion (5.2-3) 

*     for the Bessel function 

^ m=0       m* ^cs (6.0-21) 

q2m    e"f"H   + ^    Cos(qT)  dq ^ 
A 2c 
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.  r   tS&S.    (tf*   r(2,+i) 
■•o     ■! "7 

2 -■-,s 2 

*4 * ^ .- -r-j 
A""       2c' s 

1      *    r 1    . r 

Az        2c: A2      2c: 
s s 

where the D     are parabolic cylinder functions.    ?or small r and T the 
2 

first term is informative: T 

T 
2(-j   * —j ) 

1 A   2c 1     e s 
Vr'T) -      r~ r— ~ 

A   2c2 

(6.0-22) 

Hence, a circular ridge of correlation propagates outward with 

increasing T. 

The combination of this circular symmetry with the cartesean 

geometry implicit with (6.0-4) presents many difficulties. 

A less ambitious approach to (6.0-4) would assume C to be a random 

corrugation rather than a general irregular surface. In that case the 

correlation function could be written as a sum of a "left" going and a 

"right" going component just as one treats the propagation of waves 

on a string. Further simplifications arise if the corrugation is 
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aligned with either the x or y axis for then one may perform 2 of the 

space integrals with great ease. 

For example, if 

»5(M,o) « fc(C) (6.0-23) 

then (6.0-4) becomes 

♦(«»wit) 
2 

2a) Sin ii    r 1 r  1      1 lr r'^ JfTPJ 
0 0        v O  0 

exp{ .^-L|i2t) [J . u.2] .jts(w.u.) 1 

(6.0-24) 

exp{ OXJO' ^([xj-xj »et) 

+ ^ ( [Xl " X2] -ct) 1 dx- dx. 

We will not pursue this integral further since an adequate treatment 

would be somewhat lengthy. 

Instead, we confine our attention for the remainder of this 

section to the fourth order moment: 

•j 2 (u),a)^w•^(i)••^p,^i•,u,•) - (-—r) 
* - 0 0 

16 cj w1 wM a)'" Sin i^ Sin>. 
•j^^w-w1) - jTs2(u),,-w",) 

B-180 



f/Iff 111    *» ^ ^s ^ 
.ee 

dy1 dy2 dy3 dy4 

BeOj,^) Bc*(e2,4»2) Be(e3f(J.3) Be*(e4,*4) 

expi-j [u)xj - u)'(x2+Ax)2] Sin2^} 

exp{-j [wy2 - u'Cy^Ay)2]} 

exp{-j [w"x2 - ü),M   (x4 + Ax)2J Sin2^} 

exp{-j [a)"y2 - ••••   (y4 * Ax)^) 

•^Ic    [»CjC«!^!^}  - w'CjCx^Ax^^Ay.t-u)]   Sini^ 

exp{^-  j^ü)" ;2 (x3,y3,t-y') 

-a)"' C2(x4+Ax,y4+Ay,t-y")|   Sin^2 . 

(6.0-25) 

where Ax and Ay are the x and y displacements of the specular points 

for the two receivers. We assume that the grazing angles »h and i|»2 

and distances Re. and Re, "seen" by the two receivers may be slightly 

different. 

This 8-fold integral contains the 4-th order characteristic 

function for K*  and Cj« This in turn is a function of the 12 

differences in coordinates 
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X, - X, 

xi-x: 
xi" *< 
Xo - X, 

X« - X. 

X, - X, 

*1 

^3 

"1 

Clearly such an integral poses a formidable challenge. Yet in order to 

be of any real use this integral must be performed for a wide range of 

frequencies. Furthermore for the applications discussed in chapter 3 

this integral must itself be integrable as a function of frequency. 

The 8-fold space integral of (6.0-25) may be reduced to a 4-fold 

integral by restricting attention to corrugations but we will not 

write this result here. 

We have here barely written down the relevant integrals for the 

fully random model. While at the time of this writing some progress 

has been made by the author with equation (6.0-4), nothing has yet 

appeared in the literature approaching a solution of (6.0-25). Both of 

these integrals are presented only as suggestions for future research or 

motivations for experimental studies. 
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6.1  Other Suggestions for Future Research 

In closing It would be worthwhile to Indicate a few other areas 

of research which have only been treated briefly In thifl work. These 

arc listed In ascend].ng order of complexity: 

1) Analysis of large arrays. Some relevant material on 
this problem is presented in Appendix J. 

2) Derivation and computation of cumulants of higher order than 
the fourth. This xesaaroh would be useful for investigations of 
optimal receiver e'esign. Since the received signal is non- 
gauss ian, the optimal receiver would presumably be non-quadratic. 

3) Narrow band detection. While the applications studied 
In this work treat low pass types of spectra, the results of 
chapter 3 are general enough to be used in a study of the 
effect of the frequency smear due to the time variation of 
the scatterl |« 

4) Multiple surface reflection. In this case some of the 
discussions in chapter 2 with respect to cascaded RLTVP's is 
useful for the narrow band case. 

5) Analysis of scattering at low grazing angles. In this 
case the active scattering region is not localized to the 
vicinity of the specular polnt^,76. Also, shadowing and 
multiple scattering become imporcant unless the surface is not 
very rough. 

Of these topics the second one concerning optimal receiver design is 

probably the most interesting. Presumably such a detector would be 

self adaptive with respect to the slow axis time variations of the 

scattering, perhaps identifying some of the coherent properties of the 

scattering model. It should be possible to show that that the Information 

lost by constraining the correlator detector to be steered "on-target" * 

would be captured by the optimal detector. 

*As discussed in Appendix D- 
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APPENDIX A 

MORGAN'S DERIVATION OF EQUATION (1.3-14) 

The transition from Equation (1.3-12) to Equation (1.3-14) is 

facilitated by executing the partial derivative of q with respect to 

n and rewriting the partial of q with respect to t in terms of the 

total time derivative. From the definition of the auxiliary wave q 

in Equation (1.3-9) we have 

l|a.^u.ct.cto+t 
3r   r  c 3t 

(A.1-1) 

where W'fO is the derivative of the narrow pulse function W(5) with 

respect to its argument, and t and r are regarded as independent 

variables. Next we have 

lA.lfLl£./. Axli&vll     . 
3n      3r 3n re 3t    3n 

and by straightforward application of the chain rule 

ida.ila + iaidr.ilq.. /a + iiavl; 
c dt      c 3t      3r c dt      c 3t      v    r      c 3t/  c 

(1+r/c) ^ U - ^ c 3t     cr 

(A.1-2) 

(A.1-3) 

Solving this  for    3q/3t    and also substituting into Equation (A.1-2) 

(a) ill 
c 3t 

(1 is. + ai) 
c dt      cr 

(1+r/c) 
(b) la 

3n 

/i la... SA HN 
vc dt      r/  an' 

(1+r/c) 
(A.l-A) 
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Substituting Equation (A.l-4a,b) into Equation (1.3-12) we have directly 

cif-j) 

R -• c        (1+r/c) 
xy (A.1-5) 

C dC   (1+r/c)  8 

2-C(x,y,y) 

where H is defined in Equation (1.3-13). Equation (A.1-5) is the svm 

of two terms one of which is multiplied by q and the other of which Is 

multiplied by dq/dt . Now in the liult of very narrow W(0 

q . iKil ^ 1  6(t . [t - i)) (A.1-6) 
r  r(l+i/c)      0  c 

Using this the first term of Equation (A.1-5) is easily reduced to the 

first three terms of Equation (1.3-1A). The second term in Equation 

(A.1-5) is similarly reducible after integration by parts and utilizing 

the fact that q is zero for t ■ +• . 
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APPENDIX B 

THE PLANE Wi.VE EXPANSION FOR SURFACE SCATTERING 

Meecham'e derivation of the plane wave expansion for surface 

scattering Is readily extended to surfaces with two-dimensional and even 

slowly arylng Irregularities. The analysis proceeds from an expansion 

40 
given by Levlne and Schwinger  for the free-space point source Green's 

function exp(Jkr)/r which occurs In Equation (1.4-3) 

! 2 JJJ (k2 +k
2 +k

2 
r x  y  z 

r   2 2 J^     (k2 +k
2 +k2 - k2) x  y  z 

-y )+/k -1 

(B.l-1) 

j(k (x -x )+k (y -y )+/k -k -k (z -z )] 
i  rre   x s p   y 8 p        x   y   s p'j 

f-   ~ ==Z= dk dk 
2-^ /2 ,2 ,2 x  y 

v'k -k -k 
x  y 

7T 

where 

r = /(x -x )2 + (/ -y )2 + (z -z )2 (B.l-2) 
s p      s P      s  P 

and where In the context of Equation (l.A-3) P(x ,y ,z ) Is the 

observation point and S(x ,y ,z ) is a point on the surface. 
s  s s 

The sign in Equation (B.l-1) is assigned as follows. Note that 

free-space Green's function represents an outgoing wave emanating from 

P . This wave must be "upgoing" when 7    > z      and "downgoing" wheu 
c   p 

z < z . The result of the second equality in Equation (B.l-1) is in 
s   p 

the form of a plane wave expansion for this outgoing wave provided the 

"+" sign is used when z > z  and the "-" sign is used when z < z & 8    P S    p 

This position dependence of the space-spectral density of the plane wave 
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expansion for the point source Green's function leads to a similar 

dependence in plane wave expansions for surface scattered waves. 

Substituting Equation (B.l-1) into (l.A-3) we inanedlately have the 

plane wave expansion for the scattered signal received at P 

-J [k x +k y +X2 -k2 -k2 z ] 
P.^J " ff Mk .k ,2 .t ) e "    x p   y'p x     y    p' dk   dk so      JJ    +   x    y    p    o x     y 

  (B.l-3) 

rr -j[k x +k y -A2 -k2 -k2 z ] 
+ // A (k tk ,z  ft )  e       XP    y P x      y    P    dk    dk 
JJ    ~    *    7    p    0 xy 

in which the (unknoTC-) wave density Is given by 

A
±
(kx>Vz

P»V a^//(Plit^±|^tPe(x.y.z,Vr/c)]) dS 

S^Ct.z ) (B.l-4) r    o   p 

Here S—(t ,2 ) is that portion of the appropriately retarded surface 

S (t ) which lies above z (for the "+" sign) or below z  (for the r o p e ' p 

"-" sign) and 

j[k x + k y + /k2 -k2 -k2 z ] 
xs   y's—     x  y  S

J 
C
±
(x»*y»'ti) = " /, ; = W      (B.i-5) 

A    -kZ -k^ x  y 

Equation (B.l-3) shows that when portions of the surface lie above and 

below the level z  of the receiver the density of upgoing and down- 

going waves becomes oosition dependent. However, when z < z  for 
P   s 

all z  we have only downgoing waves and the density of these plane 
s 
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(B.l-6) 

waves becomes position Invariant  (sec Figure B.l-1): 

A (k ,k ,s ,C ) - 0 -   x* y* p* o 

A^(k ,k ,s ,t ) - A(k ,k ,t ) +   x* y' p* o x x* y* o7 

This argument which Is, of course, only approximate In the case of the 

time varying surface Is seen to be exact for the fixed surface case. 

(a) 

Situations for (a) Position Dependent 

and (b) Position Invariant 

Plane Wave Expansions 

(b) 
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APPENDIX C 

SPECULAR POINT EXP/NSIONS FOR r AND r1 
* 

In order to simplify some of the mathematics necessary for obtaining 

the expansions for r and r* about the specular point we follow the 

38 development used by Gulin.   We begin by defining P(x ,0,2 ) to be the 

observation point, Q(x ,0,2 ) to be the source location and S(x,y,c) 

to be a point on the surface. The origin of coordinates is taken to be 

at the specular point (see Figure 1.4-1). Let x. be the x-axis 

component of the distance between the source point Q and the surface 

point S . If L is the x-axis separation between P and Q then 

z 
x.-x-x -x+ ( r9—) L (C.l-1) 
1       q      z + z 

q  P 

First we expand r and rf to second order in C to obtain 

r - »4? + y2 + a - C)2 
1 D p (C.l-2) 

V 2 r2 R--R-+I1- VR)^ 2R+' • • 

r» - AL-x.)2 + y2 + (z,, ~02  - 
1 q (C.l-3) 

* C o r2 
R' --17+ [1 " Uq/R') ] 2^+ * ' * 

where 

(a)  R - [x2 + y2 + z2]*5 ;  (b)  R' « [(L-x.)2 + y2 + z2^   (C.l-4) 1     p i     . q 

Here R and R* are respectively the distances from the projection of 
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the surface point S onto the plane C - 0 to the points P and Q 

(see Figure C.l-1). 

Q(x .0,2 ) 
q  q 

The Definitions of R and R1 

Figure C.l-1 

P(x .0,z ) 
P   P 

We next expand R and R' In powers of the displacements x and y 

from the specular point. First note that if iK is the gra2lng angle 

of incident radiation at the specular point then 

CtnC^) 
2+2 
p  q 

(C.l-5) 

Thus,   (C.l-4a)  becomes 

R l(x + z    Ctn(iK))2 + y2 + 22]J$ - 
P 1 D 

2 2 
o 9 i x    + 22 x Ctn(^ )  + y 

[t*  (1 + CtnZ(.M)p • [1 + % 5 E r1  
P % I1 + Ctn C^)] 

,     (2 2 x Ctnity.))' 
_i E L_ 
8Zp [1 + Ctn2«i ))2 

+ .   .   .  ] 

(C.l-6) 
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Next, defining ro to be the distance from P to the specular point we 

have 

ro " zp U + Ctn2^)]15 

- z CscC^) 

Substituting this into Equation (C.l-6) 

v
2 x2 Sin2(^.)    (x2+y2)2 

R c ro + r + x ^^"'i) + —2^^ " + o[ r—**] 
o or o 

In a similar manner from Equation (C.l-4b) 

R1 - [(x - z CtnCiL >)2 + y2 + z2]*5 - 
q   i       q 

2 

(C.l-7) 

(C.l-8) 

2        2     l<                x - 2z x Ctnd//.) + y 
(2q (1 + CtnUtJ)]*  • [1 + r

9 2        (C-:L-9) 
22q  [1 + Ctn 0^)] 

,  (2 z x Ctn(^))2 

82J [1 + Ctn^^)]^ 

Finally, defining the distance from Q to the specular point to be r' 
o 

we have 

r^ ■ 2 CscC^) (C.l-10) 

and 

,  y2 x2 Sin2(^ )     (x2+y2)2 x 
R ' ro + rT " x C08^) + —2P ' + Oi f-] (C.l-11) 

Zro ^ o (r')^ o 

hext,  examining the reciprocal of r we find 

B-191 



(C.l-12) 

i    i M 

, 2     x Cos(^)      x2 Sin2(y;.) 
• r    [1 " ^ ^2 +       r T1- + •   •   •  J   • 

o r* o 2 rz 

o o 

II + -l-+ ... 1 
r o 

, 2     x 008(4» )      x2 Sin2(i|;.)      zc 
li»52+ 2       +2+...J 

o r o 2 r r o oo 

Similarly, 

!        1 v2       x Co8^4)      x2 Sin2(^)      z c 
r. - rr [i - ij -^r rr-^- r^ + -^ + . • .1     (c.i-13) 

ro r!2 ro 2 r'2 r'2 

Multiplying these two reciprocals together we obtain 

7~r - ~T [1 + x CosC^)  (^- - ir) 
0   0 ^00 (C.1-1A) 

-  C^J + -^T)   ty2 + x2(C082(iM + Sin2(ij; ))   - » C] +  •   •   J 
r   r1 p 

o  o 

where terms up to second order in x and y and up to first order in 

C have been retained. 

The sum of r and r1 can be found to second order in a similar 

manner: 

2   2 ... 2 
[y + x Sin «».)] 

1 - r + r' + - r +r' - ro + r^ + * 2 C SinC^)  . 
e 

+ t
2 t ll-(z/ro)

2)^+tl- U/r;)
2)^)*... 

o       n      o 
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The second order term In c In Equation (C.l-15) will not be of importance 

in forming JkCr+r') in the exponent of Equation (1.^-10) provided 

2nCo8 (^) -£_ « l (C.l-16) 

where h « Max( | J;(x,y,t) |) and X  ■ 2-n/k . 

Next, we evaluate the various partial derivatives of r+r' 

~[r+r'] » 2 Sin2^)   (|-)  -  (7" + 77)  Sin2^) 
• 00 

5 - k as(x.y)   (c^) 

J~ U+r'] - 2 (|-) - <J- + Jr)  =  [b(x.y) + b'(x,y)]   (-1) 
e o        o 

- " bg(x,y) 

(C.l-17) 

(C.l-18) 

—[r+r') - 2 SinC^) ■ c° (C.l-19) 

where a(x,y), h(xty)t  c(x,y) are the x,y,z direction cosines for r , 

and a'Cx^y), b!(x,y), c'Cxty) are x,y,2 direction cosines for r' . 

The subscript "s" on a»b, or c denotes the sum of primed and unprimed 

quantities while the superscript "0" denotes the evaluation of these 

quantities at the specular point. Here we have used the following: 

x-x X X-X X 
-Ej— • .(x.y), f'-a0  :    -Sp— ' a'Cx.y), ^ . ,.0 

o 0 o o 
(C.l-20) 

J * - b(x.y) *    *,   s  -  b'Cx.y) 
o o 

Using Equations  (C.l-14),   (l.A-7)  and  (C.l-17)  through  (C.l-19)  we 
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obtain the following 

o o 

t^ a8(x.y) (c8
0)2 (g) + b8(x.y) (|i) + c°) « 

(C.X-2X) 

TV C .,{..y) (0°)  (|i) + bs(x,y) (|i) + c 
o o 

+ [a0 - a*0 - a(x,y) + a^x.y)] a0 c°J 

The result may be used to obtain Equation (1.4-11). 

It Is of interest here to investigate the magnitude of the terms 

x/r, x/r1, y/r and y/r' .  In the vicinity of the edge of the active 

scattering area which is roughly the first Fresnel zone (see Figure 

C.l-2) these terms take on their maximum values.  If the points P and 

Q are located at the same depth r - r1 * R./Cosdp,) where R. is the 

direct or line-of-sight distance betv/een P and Q , For moderate 

grazing angles the value of x at the semi-major axis edge of the first 

/  41 Fresnel zone is approximately given by    [A R.]/Sin(ij; )   .        The terms of 

interest are then of the order of mapnitude    [/x/R.]  Ctn(^ )    and are 

negligible if Equation  (1.4-9)  holds.    In a similar manner the correction 

terms in Equations  (C.l-8)  and  (C.l-11) are of order    [A/R,]    z 
d   p 

4 3 
Cos (^,)/(A Sin (^,)]  and can be ignored to the same extent. 
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+ [/n^j/SinC^) 

The First Fresnel Zone 

Figure C.l-2 
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APPENDIX D 

REFINEHENTS IN THE CRITERIA FOR DETECTABILITY 

D.l Peak Displacement Corrections for the Combined 

Correlator Detector-Tracker 

In section 3.8 ve examined the problem of detecting a target when 

the replication delay parameter T is "steered" to the (known) "on 

target" condition (T ■ T ). In most practical applications, however, 

the parameter T  Is not known a-prlorl. For this reason many standard 

detectors employ a kind of composite hypothesis test or detector-tracker 

scheme which emulates the mode of operation of optimum maximum likelihood 

processors.   In this Implementation we envisage a large number of 

parallel correlator detectors each with a different, fixed value of T 

covering the range of possible values for T . T.he processor outputs 

are scanned simultaneously over T for a peak of correlation. 

As noted in section 3.6 the peak of correlation is generally not 

located at the correct value T . This is true even in the absence of 
o 

scattering, but the presence of a certain amount of delay modulation in 

most scattering models aggravates this problem. While the effect of 

scatter delay modulation on tracking errors may be great, the impact on 

signal detectability need not be as significant. Hence, the "on target" 

normalized variances 

A(T ,T .T,w)|H     2 

d^(T .T,u) -   0 0    2 - ; d'(T ,T,p) - 
0 0       (E(VT,p)]2      1 0 

A(T ,T ,T,y)|H 0  0  1 

lH(To,T,p)]2 
(D.l-1) 

are usuallv overly pessimistic indicators of detector performance 
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It is desirable to compensate for errors that arise in the evaluation 

of the correlator detector due to variation in the location of the peak. 

In this section we exeitlne a set of correction terms that approximately 

perform this compensation and that are valid In the same limit as the 

results of section 3.6. That lsy we assume that the processing interval 

T Is large enough so that the maximum deviation between the location of 

the peak, T , In any realization 5(T,T,P) and the mean location T 

Is much less than the signal correlation width. We also assume sufficient 

signal bandwidth limitation so that the second derivative of E with 

respect to T exists. Furthermore, we assume that E" Is essentially 

fixed in the vicinity of location of the peak at its mean value, i.e. 

H
I,
(T,T,P) S E

M
(T ,T,p) . This In turn implies that the null in E(T,T,P) 

at T  is well separated from any neighboring zeros. 

The correction technique consists essentially in fitting a parabola 

to the correlation function estimate E(T,T,P) at T " T . The location 

of the maximum for this parabola is an approxlmant to the location of the 

peak T  (see Figure D.l-1). 

The Quadratic Approxlmant to E 

Figure D.l-1 
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The equation for the quadratic approxlmant It 

fd) - a(T-T )2 + bd-T) + c . (L..1-2) 
0        o 

:. f'Ct) - 2a(T-T ) + b (D.l-3) 
o 

f"(r)  - 2a . (D.l-A) 

(D.l-8) 

Fitting this to E(T,T,P)  at T - T : 
o 

a - ^5M(TofT,p) (D.l-5) 

b - E'd^T.p) (D.l-6) 

c - H(TO.T,P) (D.l-7) 

The approxlmant has Its peak at the location 

S'^.T^p) 
Tp " To " 5"(TolT,p) 

To the extent that E'^T ,T,p) is approximately equal to Its mean 

value this result is, equivalent to the discussion of section 3.6. 

The value of fit)    at the peak is 

[H'CT .T^p)]2 

f(Tp) " " 25"(VT,p)  + 5(VT'P) (D-1-9) 

(E'(T .T.p)J2 

" -+ H(To.T,p) 
2E"(To,T,p) 

It should be noted that in order for thii analysis to be meaningful 

the curvature of E(T,Ttp)  should be roward the T-axls at T  . 
o 

Kence, from the following approximate result for the mean height of 

the peak 

L 
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       [H'(T T.p)r ,D, 10x 
f(T )   -  S(T  .T^p) 2  (D.l-10) 

2 H-'CT^T.P) 

we have approximately 

|f(Tp)| > |fi(TolT,p)| (D.l-11) 

For this analysis to be accurate, however, the correction term should be 

small compared with E(T ,T,p) . 

Similarly, the correction to the variance becomes 

Var[f(Tp)] 

[E'(TO,T,P)]
2
   [»'(T^T.p))2  2 

([H(TO,T,P) - H(To.T,p)] - (2 g..(; >T>p) - t2 i^ >TtP) )>) 

VardE'Cr ,T,P))
2} 

= Var[H(T ,T,p)] + " s  (D.l-12) 
0       A [5

,,
(TO,T,P)]

Z 

- tH(To,T,p) - E(To,T,p)] [5'(To,T,p)r (' 
5n(TÄ,T.p) 

The assumption that the correction to the mean in Equation (D.l-10) is 

small does not guarantee that the corrections to the variance are small 

Indeed, when slowly varying delay modulation dominates any amplitude 

modulation present in the scattering model, these correction terms 

become very significant. 

A closer examination of Equation (D.l-12) reveals that in order to 

relate all of the correction terms for the variance of the detector 
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Output to the spectra of the input signal« and appropriate system 

functions one must evaluate many Integrals. The primary origin of this 

comp «icy is the requirement for the evaluation of the eighth order 

moment of Var{[E,(To>T,p)] } . Using the same technique applied in 

connection with the derivation of Equation (2.1-18) one can show that 

(2p)-th order moments of the increments dz (w) give rise under the 

Gaussian hypothesis to 

2P x pi 
(D.l-13) 

distinct integrals. The presence of additive noise compounds this 

difficulty. For the case of p - 4 there are a minimum of 105 different 

integrals! 

However, for p ■ 3 there are only 15 integrals for the signal- 

only terms. Thus, evaluation of the last correction term in Equation 

(D.l-12) is at least partially tractable. When the scattering fluctua- 

tions produce much more amplitude modulation than delay modulation 

Equation (D.l-12) may be reduced approximately to 

Var(f(Tp)] " Var[E(T0.T,p)l 

(D.l-14) 

(T ,T,p) [H'(T ,T,p)]2 + 5(T ,T,p) [5'(T ,T,p)l2 

0 0 0 0 

H'^T .T,p) 5"(T ,T,p) 
O 0 

2 
The quantities 5(T ,Tfp), E"(T ,Tfp) and [H'd ,T,p)]  can be 

0 0 o 

evaluated easily from integrals obtained elsewhere in this report,  but 

the third order moment    5(T  ,T,p)   [H'(T   ,T,p)]    requires a separate 
o o 

development. 
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APPENDIX    E 

VARIANCE    INTEGRALS    FOR 

RANDOM    AmiTUDE    AND    DEtAY    MODEL 

E.l     Multlpath    Processor 

The Integrals In (3.3-9)  through (3.3-13) are evaluated here 

for the spectra (4.2-2),  the filters (A.2-3), and the propagation 

model described by (4.1-11),  (4.1-12), and (4.2-4): 

I1(v) e *      nx exp{-w        1   ♦    1        } da) 

"i ßnl ' »      of      n2. j   2* 

-kjp,!   fteL)    expf-l/av2^2^) 

where 

(E.l-2) 

"mi     /«f    «nl
: 

I 2 [o2  +  o2   +     T     "    ' dw 
27T 

.RAA(v)   ^P, 

"xA    +2(oJ-R    (v)] 
/02 T        TTV 'J (E.l-3) 

xl 

^ ßlx J     . 
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where 

t-/F5 (E.l-4) 

Similarly, 

l3(v)  - k^ Pn2   I  
2n2   \    ■ .      2 2-. 

eXp{tn2n2> 
n2 

+ ^PX/   "ix   exp{-lv2
n

2}" 

(E.l-5) 

with 

fi 2n2 ■/ S       n2, 2 n2 
(E.l-6) 

Also,  applying (A.1-12)   and (3.3-12) 

I4(T,T',V) - 
Mx-x^O-J^Cx.-x^) ^    ,    2    2 p2 

1    2    d    x 

0)  (0' fl' 

fcAA(v) •«»<-1     (^+ü),Z)a^ ~ 2M>' R    (v)llda) do,' 
.  2  L L TT     Jj 2TT 2« 

12,2  A2 „2 
kl k2 Ad Px R 

fixVaA-RT2T(v) 
AA (v)  expJ-1    a^ -R^Cv)!'1 f[(T- 

(E.l-7) 

vv2 

2,  2 
+   (T'-T.+Tj)*).;   -   2(T-T6+Td)(,'-Te+Td)   «^(v) 

where 
1. 

2        2        1 
am " 0T + T" +      2    T      2 

(E.l-8) 
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niiKiiiiinniii. u i 

Finally, using (4.2-5) and defining 0 - l/a 
m n 

k? k.2 A,2 A2 p2 

IjT,!»)   -        *      2     d     C  \ 

K 

fi2 exp{.in2 [(T-T +T )2 

^ TO 8     u 
(E.l-9) 

Thua, we have 

nCi.T1^) - k2 k2 P2< 
r.P nl 1/     "    l 

"2        Inl 
(E.l-10) 

+ ^ exp U T1       + 2^ - RITM, -4 

ßxl - 

r P fl /  n2  / 'Jsl 
[** ,l0n2 

xl    ■!<—'>2»L^5 0 

1  «x   J 

Ifv-t+T')2«^ 

■ 

Ad R^Cv) 

^ Am " RTt<v) 

+ exp 

+   (T'-To)    )OB   -   2(T.t0)       (T'-To)RiT(v)' 

[-i("«i - »Jt{«)]-1 [rcv+T-- V 

2 ,     2 
+      (T-V-To)      ]   ttm  -   2(vfT'-To)(T-V-to)RiT(v)"]l 

where 

T0   '   T8   *   Td (E.l-11) 

is the tnultlpath replication delay or steering parameter. 
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E.2   Array Processing 

In this section vt evaluate the Integrals In (3.5-12) through 

(3.5-19)  for the noise cross-spectrum (4.4-1),  the filters and signal 

spectra of section 4.2 and the fourth order and second order statistics 

of sections 4.1 and 4.3. Following the derivation of (E.l-1) and (E.l-3), 

12 2 
M(v).2nk2p     lJ!t!ia_] ^r atna 

a    ' t    na ' 

K  (v) a 

2wRAa(v)kf    Px 

n na 

V \   +2Ka-RTa^J 4 

(E.2-1) 

(E.2-2) 

exp; - Vlk + 2(otV lT.(v)]l    i 

- — 2 2 
0 Q. 2v n* 

w / \      o    i 2 „      /     fnc | fnc Mc(v) -2, k£Pnc(-—le 

nc 

]") 
(E.2-3) 

c 

2n R.   (v) k* P Ac f    x 

x /^ 
+ 2{ö'    - R    (v)] 

*   TC TC 
(E.2-4) 

r 2 
exp; -v 

I 2 

-li 
+ 2[a?    - R,  (v)jl     i 

n TC TC 

fx 

where (E.2-5) 

a) 

fna 
i- +4 

2 2 
f na 

b)      1_ 

Q fnc f no 
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- "■■'!' 

and 

n 
fx irk 

(E.2-6) 

Next we define the following modified parameters from (4.3-18) 

to (4.3-26) : 

«ijCv^.i») -(^(V.T.T») + ij- 
nfx 

(E.2-7) 

Using these we obtain 

J 

(E.2-8) 

expf^La'^v.x.T^^^v.T.T^^'+a^^.T,!').'2]} dW dW' 

r-a 

n 
2L exp 
2 

.%..2. 
2 fah(v.T.T')v'-2ai2(v.T,T')v(T-T'-v) 

^(V.T.T'XT-T'-V)?] 

f«il<V»T.T,)43(v.T,T') - «^(V^T.T')) 

-RJ^d.V.NH-T') 

y 0|1(v>T,T
,)0|3(vfT,T

,) - 012(v>TfT
l) 

Similarly, 

VT»T''V) B / 
h) co 

f 

J[W(T-Tä)+UJ
,
(T

,
-Tä)] P' 

fi^ 

(E.2-9) 

exp(-2[ »^(V.T.T'^^Cv.T.T'^^^Cv.T.t.)«.^, ^ ^ 
'21' •23" 
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_ - 

JE. ^P 
0* 

-2 [ «il(v.T.T')(T.Tj^„(v.T,T»)(T-TJ(T..Tj •21 o' ^22 

•S3(V'T'T,><T,-V'I 
^^(v.T.T^a^Cv.T.T«) -a^2(v.T.T')l 

-4!2(T»V»V+T,> 

'XlKT.Oo^V.T,!») ^(V.T.T») •21' •23 22 

I 

and finally, 

J3(T,T'.V) -f I 
0) 0)' 

e 
JCWCV+T^+W'CV-T)) Pf  x e -^W-W)T0   (E.2-10) _x 

.2 

.vA • \...»2i 
«P{-2 1'»31(V.T.T

,)Ü)'+2«J2(V,T,T
,)»I»

,+0^(V.T.T')U"]) d» d»1 

P2 
x exp 

n2 

ri 2 
-2 [o,31(v,T.T

,)(V+T»-To)^2a32(v,T,T
,)(v+T»-To)(v-T-To) 

ta^T.Oa^Cv.T,!') -^2(V.T.T»)] 

^^(T.V.VfT1) 

/' a'^v.T.T^a^Cv,!,!') -a^Cv.T.T') 

the replication time In this case Is 

To ■ Tsl - T82 
(E.2-11) 

Using these formulas we have 

2 .2 
If Ü*SÄ] exp{.l[v2+(v-T+T,)2lß^a} 

RAa(v-T+T,)(Pna/Px)fifna (E.2-12) 
n
na"x/l   ^laT

2
a-HTa(v.T+T')] 

fx 
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<       2   1 9 -1 
exp     -V   fl- -(V   fvT*) 2 ^ 

RAa(v)     (Pna/Px)iJfna 
+   

fx 

2        2 
+ /!ca)/^fnc\   expf-ltCv+x')^ (v-T)2)fi2    } 

I    2  yi   2     ' 2 *nc 
x      "f 

RA  (V+T*)  (Pnc/Px)nfnc 
+ ^  

"no ßx/   f.+ 2^VR
Tc(v+T,>3 

0fx 

2 o ^ 
exp{.i (v.VT')2f 1     + 2[aT

2
a - R^Cv+x')]]        -l(T.v)2n2    ) 

A2 2 
I    fx i 

RA  (T-v)(Pnc/Px)nfnc Ac 

fi„Cßx/-T+2[0--RTC(-V)) 
fx 

2.  , ftr  2 exp{-l(x.Vv)  | i_+ 2[a*a - RTC(T-V)]] "UV+T')2^} 

' fifx J 2 

"x    1'2 
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exp 

-l(a{1(v.T.T,)v2-2a12(v,T.T,)v(T-T,-v) 

+a'3(v.T,T,)(T-T,-vr   ] 

-l[«^1(v,T,T,)(T-T0)*-2a22(v,TfT,)(T-T0)(T,-T0) 

exp  ^(V^^'XT'-^)2] 

2 
[a^Cv.T.T^a^Cv.T,!1)  - 022^,1,1')] 

/  a^Cv.TjT^al.Cv.T.T») - a22(v,T,T,) 

I 

exp 

-l[a^1(v,T,T,)(v+T,-To)    -2a32(v,T,T,)(v+Tf-To)(v-T-To) 

+0^3^.1,T'XV-T-T^2  1 

[o*  (v.T.T^a* (V.T.T1) -a2 (V,T,T')] 31 33 32 

/ a^Cv.T.T^a^Cv.T,!1)  -a^Cv.T,!1) 
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APPENDIX Q 

TABULATION OF THE FIRST FEW G (p.q.t) 
n,t,m 

The followlnß la a tabulation of the flrat few coefficients 

0    (p»<IiT) of the polynomials P    ((D,«
1
 ,T) defined by equation n,i,m ntitD 

(5.2-19), All unlisted coefficients for a given polynomial are zero, 

po,o.o(a,*w,»T> 

Gc,c:o
(0'0»T) ■ 1 (0.1-1) 

P
O,I,O

(W
'
ü,,
>
T) 

Go.i,o(0»0»T) 
0h (1 - PK<T)) (G.l-2) h 

G0,1.0(1'0'T> " 1 

po,oti
(w,w,,T) 

pi,o,o(ü,»a,,»T> 

(G.l-3) 

30>0>1(O.O,T) = c0flf0(o,o,T)      (c ^A) 

'O^l^0'1^ " S.1,0(1>0'T) (G.1.5) 

ph(T) 
G1,0.0(0'0»T) ■ (G.l-6) 

% a - Ph
2(T)) 
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po.iti
(<,,'h,,>T) 

c0tM(i.M) -   i (G.W) 

0,1,1 0'1'1 ol   (1  -  pJ(T)) 

G0,1.1(0'0»T) 

P2.0t0
(to,'h,,'T) 

(1 - ^<T))«J 

G2f0f0(0.0. ) - 00tXt0(0#Ott> 

G2.0,0(1'0' > - ^.O.O^1' > - G0fl,0(O'O'T> 

ölt0t0a.i.T) -1 

!itiio^l^) 

P1>(M(u,a,'.T) 

Glfl>0(l,0,T) - 3 G1>0t0(0.0,T) 

G1.1.0(0'0'T) " ÖltOf0
(0'0'T)O0.1.0(0'0'T) 

Glt0>1(0.1,T) -    3 G1>0(0(0,0,T) 

(C.l-8) 

(G.l-9) 

(G.l-10) 

(G.l-11) 

(G.l-12) 

(G.l-13) 

(G.l-14) 

(G.l-15) 
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'0.2.QO"»"''*) 

Vo^»"''*) 

G0,2.0(2»0'T> " 1 

G0,2.0(1'0»T> - 2G0.1,o(0»0»T> 

G0.2,0(0'0»T) ■ G0,1.0(0'0'T>2 

(G.l-16) 

(G.l-17) 

(G.l-18) 

(G.l-19) 

G0,0,2(O'2'T> " 1 

G0t0>2(o,i,T) « e0t2i0a,o,T) 

%Qt2(0>0.r) - G0>2f0(O.O.T) 

(G.1-2C) 

(G.l-21) 

(G.l-22) 
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APPENDIX H 

VARIANCE INTEGRALS FOR 

THE RANDOM SINUSOIDAL BOUNDARY MODEL 

H.l Multipath Processor 

In this section we evaluate (3.3-9) through (3.3-13) for the 

spectra (5.3-1), the filters (5.3-2) and the random sinusoidal boundary 

discussed in sections (5.1) through (S.2): 

,   , .v        nl fn2' nl 

^■/rFrFi (H-1-1) 
üß

fnl 

T   . ,      Pn2rtfn2/nn2 1      Px nfx/fix 
^Cu) ■ ♦ R-2 - * "IA/>^ (H.l-2) 

0 flfn2 u \ 

Using (5.3-8); 

P /fi •     c CO 00 

I rul s   x   x   2      r      "   a   Qv Cn,n,u) e   Cos(nn u)    E       Z 
2l J      (r ♦r') TiPT       yi n s iro roJ      n«0    in,J 1 1-0   msO 

n+l+m 1      l4.   Ad^n^l)    A(in,2n^l)       -   r(Un^Tn^r^)    1        n  , 

((Ml)   l-Ph
2(»)),+,MGBjl>B(p.,.u)   p'M' p,^ 

The corresponding expression for I-fr,!1,^  is much more difficult 

obtain in closed form because of the inverse first power of frequency 

in the exponent of (5.2-29).    As in (5.1-6)  this is handled by 
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convolution v/ith the function flj(u) defined by (5.1-8). Unfortunately, 

the convolution must either be executed numerically or taken in the 

limit of large distances from the boundary. In the latter case the 

convolution can be ignored as discussed in section (5.1). In the former 

case we write: 

2  2 

R^wr   n«o'   ^  n-       1 

OS   OB 

r r     1_ 1im A(I,2iHl) A(m.2n*l)  .     1    1 

{(n+l)[l-p2(u)p
1+"'+n Gn)ljmCp#q.u) |>*(U)1 

r ---j 

n+l+m 
Z 
qtzQ 

(H.l-3) 

(2r) r(n+l+m-»-r+^) 

RE 

2 ? ^Jsn-r-p-1 

OX 

RE {G" C^n [afx^(T-,'-To)]2  Jr^-'r1"' )) f2(,J') ^ dV' 
<5A U i'JinT'l—CJ 

Expressions (H.l-1) through (H.l-3) can easily be used in conjunction 

with (3.3-8) to compute the correlator output variance. To compute 

the tracking error we need the following derivatives: 

3Z   It(U-T+T«) T  3' 

(H.l-4) 

J£ fi3 

%2      fn2 
[i a2rnfn2(u-T.T')l

2] 

P *  ^fifn2(ü-T+T,^2] 5/2 

♦ VL [^-2LnfxCu^T')]
2] 

0x  [1 - [nfx(o-T+T')]
2J 

5/2 
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and 

x'   X •     .4 

00 00 

1=0    m=0 

n+l+m 
"pTn+ 

1       um ACl,2n+l)    ACm^n^l)    I 1 1 n^ 

raO 

(H.l-S) 

2-.*i r u.*») ci-pfca i1-- cn(1(m(p,q,U) ^M] 
(2ir)^ r(n-»-l+m+r+Js) 

.13   ,2 
RE {"^n G31 (K [«fti^^^-V]*     'i^-r-p-l-lw f?(dw) 

RE{+jcnG3i ^n^HT'-W-tJO2   ^Jjn-r-q-m } f?(du') 
0,Ji,n+l-q ;/ 

These can readily be substituted into (5.3-16) to obtain 

the tracking variance. 
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Appendix I 

Numerical Evaluation of the ^C2) 

I.1 Relation to Struv^'s and Weber's Functions 

78 
Following Watson  (p. 331, sec. 10.41, #2) 

1 r31 r2
2 h      )      I   -Zu,^ 2ra  . 

0 a.i-i) 

- %r(i-a) rft) ft2)a"% [s_a+Js (Z)-Y.a^C2)J 

where S (2) is Struve's function 

sv(« =Bf0 nfeifafeiTai (I-1-2) 

and Yv(2) is Weber's function defined in general by 

YvCZ) "  Sin (VTT) (I'1-3) 

For integer values of v (1.1-2) becomes 

Yn(2)  = - -^T" "     ^        (n"k'1)!    ^^ + 7   *»») J  (Z)     (1.1-4) n ksO ir .       n 

w       k,0 {Kk*l)+Kn*k+1)}    ^T^tjl    = (-l)n Y-n(2) 

where 

and 

09 

JJ2) ■  (,i2)V    E      H<Z2)k rT ,  .. 

^(2) *^M (1.1-6) TTzT 
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is the digamma function. Again for integer values of Z we have 

n-1 

k-1 

-1 
(1.1-7) 

where    Y ■ 0.57721566. 

./e can extend (1.1-1) by successive differentiation. First we 

note the following 

(  V r^       r(k»l)   3k-p (1.1-8) 

The result is valid for k>-l and is zero for k-p « -1,-2,-3... 

For example: 

(ai)P[wns.nn)] 
km0    r(k+3/2)  r(k-r.3/2)  r(2k+2-p) ZP 

k  ,, 2,2k+2n, 

1^2J     Lft»)    Jn(Z)J   - Jo    klr(n+k+l)  r(2k*2v-p+ 

2^1) 
1) 

(1.1-9) 

1 
ZP 

(I.1-10) 

(af)p [Mn v.n(z)] = lull 
n 

n-1 
Jtf1    (n-k-1)!   ftZ)2k r(2k^l)    J 
k^O T!      r(2k-p+l) ZP 

- j     (gfjP-   [»„(W]    (g^)2    [ft2)
n J,.»)] P! 

v!(p-v).r v=0 

k«0 

Xk^-l) ♦ ^(n^-k^l)}  (-%2)2k42n r(2k>2n+l) 
k!    (n+k): r(2k+2n-p+l)        ZP 

(I.1-11) 
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Using (1.1-9) through (I.l-U) and (5.3-9) 

.2  1 r31 (Z' Ä%J-   /"Pe^CHuVadu 

(-l)pJrr(.a) r(%) (gf)1^ I ftl)*^ [S.^W - Y.a.%C2)]} 

(1.1-12) 

Provided a»n*% where n is an integer, we may use (i.1-9) through (I.1-11) 

directly. However, if a«h (I•1-12) is indeterminate because 

and  r(-n) « ±». 

S.n.%(« • *.„.,,» 

n 
(-1)" J^CI) 

(1.1-13) 
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1.2 Evaluation in the Special Case of Integer Values of a. 

The limit a * n in (1.1-12) must be approached with caution. Taking 

(1.1-13) as a starting point we have from (1.1-2) using a ■ n - E 

2k 

(-i)    ^  riC^PiRT rOc+i+c) 

and from (1.1-3) 

Y -  (n+Ji)+e(Z) a 

(1.2-1) 

(-l)"*1 Cos(7rc) 

t n sinCiTe) rk2r(n+^+e   i (:l)k       ftZ)2k 
C"1] Cos(Tre)   (,5Z) .*.      r(k+l)  r(-n-^e+k+l) 

* Ilüü     r^^n^)-c     * (-l)k      (W2k 

* Cosine)       (W J0      rdc^l)  TM-c+M) 

(1.2-2) 

Now 
W)«,,.tnW) 

E AnCiZ)   ... 

(1.2-3) 

(-l)n    » 
r(-n+e)  a T(Un.t)  Sin(trE) 

(1.2-4) 

J-(n^)-fE (g)  (-l)n Sin(TTE) - Jn+**-c(Z) 
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and 

TT^T 5 TOT l1'*^ (1.2-5) 

where a ^ 0,-1,-2.... Substituting (1.2-3) through (I.2-S) into 

(1.2-1) and (1.2-2) we have 

lim   HTi-n+t) rft)  (hi) n^-c 

•-Mo-« - Y-(n*W+cW] 

,*«        r(l*nj   SinCnc) e-»o 

"So   TT$m  W)2k-(n+ytl rc-k«) SIBCOM)*-
1 

«^ ^-M (-«• Jo r|i;^;4l) [1-. ♦(*« 

Sin(ire)      ,    -(n+^+E    " (-l)k      ftZ) 2k 

sflc^iy 

- (W^   I-. taM)   (-«» Jo ..^x)^)     t1*« »»^l) 

WM   W)n««i -(W"'18   »^   r(-k+n) 
kf0 rt^r w2)**" 

»n(W) JntJs(.) ♦ (-!)"   J^ m 

*(k+l)tiKk+n*!j+l)] 

(1.2-6) 
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Finally, 

2w f(n)     G13    (h \o,ht'n%P'd 

I P 0'lU A ur ■ ■       du 

4nl 

n-1 
- E 

k=0 
C-k-m)    r(2k*2)   Qq2) 

k+Jj 

(1.2-7) 

2?   (^p- [»«W)3 (i)p [(wn ^4 Trfe 

n ♦ (-l)ff E 
k=0 

C-%Z2)k      r(2k»l) 

7        (-l)k    (^)2k*n^r(2k'»-n*3/2)rn>Ck»l)^(k-ni»3/2)] 
^    klrCn+'j+k+i) fCWVi-p) 2P  k»0 

In computing the digamma function for fractional arguhients the following 

is useful: 

(1.2-8) 
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1.3 The Asymptotic Expansion 

For large Z the scries in the two preceedlng sections converge too 

slowly to be useful. Fortunately, a simple asymptotic formula can be 

used for all values of a. Equation (1.1-8) must be altered, however, 

to accomodate k<-l: 

{£f w*. i=a^a. »k-p 
(T.3-1) 

Using this we obtain 

CO 

[   UP --2u  --2.-a e        (1+u )       du = 

(1.3-2) 

d^P ( c"» 
>m 

E      (-l)m (a)m(2m)! 

m-O m! l2ml 

I 
fflsQ 

(-^"^(^m r(P»2m-H) 

ml  22m+1-P 
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Appendix J 

Extensions to Large Arrays 

J.l The N Element Cross Correlator 

The  analysis of section 4.3 and 4.4 for a two element cross- 

correlator is sufficiently general to cover larger arrays. In this 

section we consider configuration shown in figure (J.l-1) 

y(t) 

^S(T,T,p) 

Figure J.l-1 

We consider the receivers to be uniformly spaced in a linear array 

with steering delays T. that are multiples of a common steering 

parameter T: 

T.  « (i-l)T 
i 

lim'l ...,N I (J.l-1) 
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The filtered output of the summer is thus 

yM  " r f2?|[Hf(ü)d8n.(w)*Hi C«».t-Tl)df(«)] e"jü,Ti } 
u 

(J.l-2) 

One can readily show that 

N     N 
H(T,T,p)  n    l      t    {±[[\ H (a))|2    dZn .  (a.) 

i-i k-l    ^ i   L     * ni\ 

*    « 
* f -' 

(J.l-3) 

Furthermore, the general second order moment ACT,!',?^) is given by 

A(T.TM,IO = 
N      N      N      N 
IEEE      {(i)^ 

1 =1 k»! i-i m*l        1 J       [T+V.U] 

y+T 

f T-v+y Mik(v-Ti+Tk5 M
ln(v-T£";) 

+ Mik (v-vTk> «».^t«;' + M
ta(v-T

4
+^ «ik^-^^p 

♦ M.   (V+T'-T.) M.. (V+T'-I.)    +    M.   (V+T'-T.) K.. (V+T'-T.) 
imv     m   i'    lkv     k   t im       m   i'    lkv     k   t' 

+ Kin.(u+T;-V v^k-v + jikL(TrTi'VTk'v^k-Ti)    (j-1-4) 

f21 
♦  J-i «      (T

B-T. .T'-T,'.V+T'-T. v T(3)      , , v   1 ikAm ^    i> m    k'      k    i)    ♦   Jlk[m (VVV^VV  J dv 

-^.(T.-T.)   K,     (T'-T')    } 
il   H   iJ    knr m   k**  i 
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where T and T
1
 are two steering parameters with 

tj  -   (i-l)T T^  -   (k-l)T' 

and 

Mik(v).   |.J-    |Hf(U)|
2   .^00    ^ (J.l-5) 

CÜ      0) 

(4) 

JikI.^'T,>- f /  .^(v+T,)+tt,(v-T3 
(!)       0)' 

(J.l-6) 

•l^,   t-.-.-'.-'.v.t.v^.) S^MS^.') ^ ^- lJA.ri 

(J.l-8) 

^A (y'l,,'li,'-'v'T'v* T,) Sxx^ V-^   #    IT      CJ.1-« 
'rt 

f4") 
The fourth order moments i* * are formed by anology with (3.5-4) by 

*ijU,ni  (a),u)',a)",ü)'".y,u,,M")  = 

1 k * ra (J.l-lO) 
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