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F THE RELATIONSHIP BETWEEN THOSE PHYSICAL PROPERTIES OF

E: UNDERWATER SEDIMENTS THAT AFFECT BOTTOM REFLECTION

by

Tuncay Akal

ABSTRACT

Over the last few years very many cores have been 'taken from various

parts of the ocean bottom, ranging from harbours to abyssal plains.

This study presents the relationship between those physical properties

of the sediments that affect bottom reflection, by using the data

from more than 400 cores taken from various 'physiographic regions of

the Pacific and Atlantic Oceans and the Norwegian, Mediterranean and

Black Seas. The compressional sound velocities and densities

measured in the cores and the Rayleigh reflection coefficients

computed from these values are discussed with respect to their

dependence on porosity. it is found that density and reflection

coefficients can be related to porosity by a simple linear equation,

and sound velocity by a sec6nd-order polynomial equation.
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INTRODUCTION

The bottom of the ocean is covered by sediments with different

physical properties, and a knowledge of these properties is

essential for the understanding of reflection and refraction of

sound from this environment.

The main purpose of this work is to use available marine-sediment

data to obtain a better understanding of the relationship between

those physical properties of bottom sediments that affect bottom

reflection. These data were obtained from 456 cores taken from

various physiographic regions of the Pacific and Atlantic Oceans,

and the Norwegian, Mediterranean and Black Seas (Refs. I to 24).

Compressional velocity, bulk density, and porosity of the marine

sediments are the most important physical properties that determine

the acoustical nature of the bottom, and these properties have

received considerable attention in works already published

(Refs. 6, 7, 9, 10, 14, 15). Many theoretical equations (in which

mathematical models are employed with certain assumptions) and

statistical equations (in which the measured values of these

propertizs are used by applying statistical methods) have been

developed by these authors and tested to some extent with the

limited data.

Because of the difficulties of measuring many properties of the

marine sediments that are necessary for the theoretical equations,

only-the statistical methods have been used here.

2
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1 . THE PHYSICAL PROPERTIES OF THE BOTTOM SEDIMENTS RELATED
!• "iTO BOTTOM REFLECTION

Reflection occurs whenever a wave strikes the interface marking
the change in physical properties between two media. The amount

of energy reflected, and its phase relative to the incident wave,

depend on the ratios between the physical properties on opposite
sides of the interface.

1.1 Reflection Coefficient

For transmission between two fluid media [Fig. 1], such as across

the water/sediment interface, when there is no damping, th,

reflection coefficient, which was originally worked out by

Rayleigh [Ref. 26], is given by

cI

.2sin e- -.-L2 )- Cos2e)°R -P2 • Q2
c2  [Eq. 1]

. sin 6+.j ) -cos, e

where e is the grazing angle, O and c1  are the density and

the sound velocity of water, and p2  and c2  are the density and

the sound velocity of the sedimentary layer respectively.

If the relative density p p2 /p1  and the relative sound velocity

a = c2 /c, are used to present the contrast between the two media

Eq. 1 becomes

R = Lsin e 2 -,/T COS2 9

[Eq. 2j]

p sin e G
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and, for an incident path normal to a reflecting horizon, 'i.e.

e 90o,

R = -i [Eq. 3]
PQ +1

1.2 Critical Angle

When the velocity of sound is greater in the second medium

(a > 1), as the grazing angle is decreased a unique value- is

reached at which the angle of refraction becomes 900. ;This is

known as the critical angle and is given by

c = arccos (1/6) [Eq. 4]cr

When the grazing angle is less than this critical angle, all the

incident acoustic energy is reflected. However, the phase of the

reflected wave is then shifted relative to the phase of the incident

wave by aa angle varying from 00 to 1800 and is given .as

S=-2 arCtan [Eq- 5]'

p sin 8

1.3 Angle of Intromission

In the oceans generally the sound velocity in the top layer of the

bottom is less than in the water above (a < 1); as will be shown

in Chapter 4 this occurred in 89% of the samples studied. In such

conditions there is an angle of intromission at which most of the

' incident energy is transmitted into the sedimentary layer and the

reflection coefficient becomes zero for

2

cos e -/ [Eq. 6]
2
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"[ The phase shift is 00 when the grazing angle is greater than the

intromission angle and 1800 when it is smaller than the intromission

angle.

As can be seen in Eqs. 2, 3, 4, 5 and 6, such acoustical, characte-

ristics of the bottom as the critical angle, the angle of

intromission, the phase shift, and the reflection coefficient, are

primarily influenced by the relative density and relative sound

velocity of the environment as a function of the, grazing angle,,

• :I:

Water •'•C•

Sediment P2 P - ,\

C2N

FiG. 1 GEOMETRY AND NOTATIONS
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2. COMPILATION OF MEASURED DATA

2.1 Sources.

Core data from the NOrth Atlantic Ocean, the Norwegian Sea, the

Mediterranean Sea, and the Black Sea were found in Refs. 1 to 14.

2.1.1 North Atlantic Ocean and Norwegian Sea

Figure 2 shows the major physiographie regions of the North

Atlantic Ocean and Norwegian Sea, together with the approximate

positions of the cores. The work of Heezen et ai (Ref. 16) is
-here updated with the data obtained from recent surveys (Refs. 1,

-2, 17, 21, 23) and its limit extended from latitude 50ON to 700 N.

The percentage distribution of the major physiographic regions in

the area is shown in Fig.°3. It is seen that 41.7% of the area

consists of continentals rises-, basins and abyssal plains, and, as

shown in the lower part of the figure, 67,4% of the cores were

taken from these regions.

2.1.2 Mediterraneaný,and Black Seas

Figure 4 shows the physiographic regions 'of the Mediterranean and• \ /
Black 1Seas, together with the positions of the cores. This map is

based on Ref. 1 and Refs. 18 to 25 and is updated with unpublished
SACLANTCEN data.' The Black Sea section of:the.map has been

constructed from the bathymetric profiles of Ref. 18.

The percentage distribution of the major physiographic regions in

the Mediterranean and Black Seas is shown in Fig. 5. As can be

seen, most of the cores (52.1%) were taken from basins .and abyssal

plains, which cover only 23.1% of the Mediterranean and Black Seas.

6
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2.:2 -MethcýL

From 456 available cores, 15124'samples for the 4 ensity/porosity

relationship and 8287 samp'les for the sound-velocity/porosity

relationship were obtained and transferred to the computer for

statistical analysis, computation and plotting.

To be able -to handle this la e quantity of-data taken from various

regions by d ifferent methods rd analysed in different conditionAs

with different methods,- 1 b k/density and compressional sound

velocity data were transf 'into relative density and'relative

vel6city with respect to the bottom water values.

The Samples used to obtain the-rel'ationships are not only from the

water/sediment.interface. As can be seen from Fig. 6, 50% of the

cores are more :than 6 m long and 12% are more than 10 m long, the

relitionships Obtained from these samples'are valid for at least

10 M into the sea botgom.
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3. THE RELATIONSHIP BETWEEN MEASURED PHYSICAL PROPERTIES

3.1 Porosity and Relative Density

A marine sediment may be defined as a deposit of different mineral

particles whose pore space is filled by sea water. Its porosity is

given by the percentage volume of the porous space and its bulk

density by the weight of the sample per unit volume.

The relationship of porosity to bulk density has already been

investigated by some authors (Refs. 6, 7, 9, 10, 14, 15) with fewer

data and shown to have a strong linear correlation.

Theoretically this linearity only exists if the dry densities of the

mineral particles are the same for all marine sediments. The density

of the sediment would then be the same as the density of the solid

material at zero porosity, and the same as the density of the water

at 100% porosity. If this relationship is expressed by linear

interpolation for the intermediate values, the equation is given as

P2 = Pp1 + [1-P] pd , [Eq. 71

,where p2 = the density of the sediment,

P1  = the water density,

Pd = the dry density of the mineral particl:es,

P the porosity of the sediment.

To check this linearity for measured values, the relative density

(P 2 /P 1 ) has been plotted as a function of porosity for the 15124

available samples and a regression line fitted by computer. As can

13
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[ be observed from Fig. 7, the points come very close to fitting a

I single straight line given by

S= 2.6 - 1.6 P , [Eq. .8

where, as before, p is the relative wet density and P is the

pOrosity.

If this relationship is applied to Eq. 7, the density o0 the solid

_particles (Pd) in the marine sediments is given as 2. 66. --A

shown in Fig. 7, the measured data fall mostly between the lines

representing dry densities of 2.60 and 2.75. Since this difference

is very small, the relative wet density of the marine sediment can

be calculated from the porosity by using Eq. 8.

3.2 Porosity and Relative-Sound Velocity

Considered as a propagation medium, marine sediments consist of

two basic compondnts: thei-olid pit-icles --and the water-filled

porous spaces. When the compressional seismic wave propagates in

a marine sediment the velocity of this wave is determined by the

elastic properties of the'sediment.

Many authors have proposed equations for the prediction of

compressional wave velocities provided some of the environmental

properties are known. Certain of these equations, which are

particularly, related to this study, are briefly described below.

-AB. Wood [Ref. 28] assumed that, in the mixture, the acoustic

pressure acting on a mineral particl6 is the same as that in a

homogenous'fluid in the same position (the particles are moving in

phase with the fluid), Iand that the bulk modulus and the shear

moduius of the particles are negligible. The velocity of

compressional waves is!expressed as

wr. = • [Eq. 9]

Where. 02 is the compressibility of the sediment. For a suspension

14
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of solid particles in water Wood considers the bulk compressibility

to be equal to the sum of the compressibilities of the individual

particles multiplied by their proportion of the total volume, and

expressed in the following form:,

0 01+ (1 P) Od [Eq. 10]

where , the compressibility of water,

* d-the compressibility of fhe mineral particles in

the sediment,.

P the porosity.

-A-,orresponding relation also holds for bulk density, which, is

expressed as Eq. 7.

-Urick [Ref. 29] applied Woodts equation toOthe case of.'dilute

suspensions and obtained an agreement between the theoretical and-

e-xperimental results. 0. Eq aeraoal
Nafe and Drake [Ref°. 15] also showed that Eq. 9 gave reasonable

agreement with the avai-lable, experimental results for the varilation .

* of compressional wave velocities with the porosity of the sediment.

Sh Shumway [Ref. 30] showed that because rigidity ias neglected Wood's

equation has limitations, especiaily on low porosities, and he

introduced a small rigidity modulus and a constant itd give a best'-

fit curve to the data. The compressional wave velocity is expressed

in the following form: -. "

Fv 
7K- --

"- -Shumway (K2  +•b (i P) Y/ P ., [Eq. i1]

where b is'a constant (0.8, chosen by Shumway),--

2K is the bulk niodulus of the sediment,

yj is the particle concentration of particles with a diameter

9g eater than 62.5 microns, where the given values of Y

aie 1.0at P =0.40, 0.3 at P = 0.525 and.zero at P 0.80.

16
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Similar empirical modifications have been introduced by Nafe and ",
Drake [Ref. 15], and Wyllie et al [Ref. 31] to obtain better agreement

"between the experimental and theoretical results; all these studies

dealt with the parameters that are difficult to measure, i.e. bulk

modulus, shear modulus.

To check how the compressional wave velocities vary with the

porosity.'of the marine sediments, data from 8287 samples have been

plotted in Fig. 8 to show this'relationship. The curves obtained

from Wood's and Shumway's equations are plotted in the same figure,

?together with the curve which is given as

16= l.31 - 1.78 P + 1. P2 [Eq. '12]

Thle curve was fitted by the least-squares technique, employing the
.whPle of, the data and using a computer. As c•: be seen from this

figure, the relative velocities range from 1.30 to 0.95, and porosity

ranges'from 0.25 to 0.90. The difference between Wood's curve and

Shumway's curve is significantly high .in the porosities below 0.45,

.owin& to the neglect of-rigidit-y in Wood's equation.

Figure 9 shows the locations-and the number of samples for this

relationship. As can be seen, the sound velocity in 89% of the

samples was less thon that in.water and 83% of these had porosities

between 60% and 82%. Figure 10 also shows the same relationship in

three-dimensional form.- It is recalled that, as seen in Figs. 2

and 4, 66% of the cores used in this study were taken from continental

rises, basins and abyssal plains, where the sediment particles mainly

consist of fine-grained clay minerals.

3.3 Porosity and Refiection Coefficients

The reflection coefficient of the upper layer is dependent on the

product of the density, the sound velocity and the angle of the

incident wave; the reftection coefficient for normal incidence

(900 grazing angle) at a single interface has been computed from
1

,17



relative de;Sit-' and relative sound velocity data and plotted

against por6sity in Fig. 11. As can be seen, there-is a strong

'linear correlation, expressed by the rmgrbssion equation

SR.= 0;'589 -0.59 P [Eq. 13]

The reflection coefficient for the first interface can usually"

be measured directly as 'the ratio between the first peak amplitudes'

.of the direct .and the r'eflected signals. If the reflection loss-at.

normal incidence is known, it will be possible to predict the oti,er.' /

parame~ters by using the statistical relationships between the

physical properties of the~sediment. /

- "" The re]ationships of relative sound velocity with the Rayleigh,-,-'

roflection-coefficient, the porosity, and the relative density,

obtained from the statistical analysis of the data are shownin

Fig. 12.

Figure 13 shows the measured and computed refle-ti-on- losses at

different grazing ,angles [Ref. 31]. Measured reflection losses at

normal incidence have been employed to predict the relative density

and relative sound velocity of the upper layer and these data have
been used to compute (without taking account-of damping or shear

waves) the reflection losses at oblique angles. The zone covered

.by the curves which are obtained from this computation is diagonally

hatched in the same figure. As can be seen, the reflection loss

-curves obtained from normal incidence measurements show a good

agreement with measured reflection losses and with those computed

from the core data. (by taking the damping into account), except

-near the angle of intromission where the effect of damping is

noticeable.

18
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CONCLUSION

a. It has been demonstrated that, by compiling sufficient

data from different oceans and different physiographic regions,

it is possible to derive a statistical relationship between the

properties affecting bottom reflection.

b. The porosity of the marine sediments stands out as the

most important parameter causing variations, in compressional sound

velocity, density, and Rayleigh reflection coefficient.

c. If the reflection loss at normal incidence is known then

by using the statistical relationships it is possible to predict

the physical -properties of the bottom sediments and extrapolate the

-' -- ---- losses for lower grazing angles.
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