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THE RELATIONSHIP BETWEEN THOSE PHYSICAL PROPERTIES OF
UNDERWATER SEDIMENTS THAT AFFECT BOTTOM REFLECTION

by

Tuncay Akal

A\

N\

ABSTRACT

Over the iast few yéars very many cores have been “taken from various
parts of the ocean bottom, ranging from harbours to abyssal plains.
This study presents the relationship between those physical properties
of the sediments that affect bottom refléction, by using the data
from more than 400 cores.taken from various physiographic regions of
the Pacific and Atlantic Oceans and the Norwégian, Mediterranean and
Black Seas., The compréssional sound véliccities and densities
méasured in thé cores and the Rayleéigh refléction‘coefficients
computed from thesé valués are discussed with respect to their
dépendence on porosity. It is found that density and reflection
coefficiénts can be rélatéd to porésity by a simple linear equation,

and sound Veléciti by a second-ordér polynomial equation.
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INTRODUCTION

The bottom of the ocean is covered by sediments with different
physical properties, and a knowledge of theése properties is
essential for the understanding of reflection and refraction of

sound from this environment.

The main purpose of this work is to use available marine-sediment

data t% obtain a better understanding of the relationship between
thosé physical properties of bottom sedimeénts that affect bottom
reflection. These data were obtained from 456 cores taken from
various physiographic regions of the Pacific and Atlantic Océans,
and the Norwegian, Mediterranean and Black Seas (Réfs. 1 to 24).

Compressional velocity, bulk density, and porosity of the marine
sediments are the most important physical properties that determine
the acoustical nature of the bottom, and these properties have
réceived considerable attention in works already published

(Refs., 6, 7, 9, 10, 14, 15). Many theoretical équations (in which
mathematicglfmgggls are employed with certain assumptions) and
statisticgi equations (in which the measured values of these
propertics are used by applying statistical methods) have been
developed by these authors and testéd to some eéxtent with the
limited data. ’

Because of the difficulties of measuring many properties of the
marine sediments that are necessary for the theoretlcal equations,

only the statistical methods have been used here.
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1. THE PHYSICAL PROPERTIES OF THE BOTTOM SEDIMENTS RELATED
;L5 TO _BOTTOM REFLECTION
é ; . Reflection o6ccurs whenéver a wave strikes the interface marking
% ; the change in physical properties bétween two media. The amount
o of energy reflected, and its phase relative to the incident wave,
w _
3 depend on the ratios between the physical properties on opposite
. ~
2 sides of the interface,
. 1.1  Reflection Coefficient , A
g For transmission between two fluid media [Fig. 1], such as across 2
E the water/sediment interface, when there is no damping, th. !
1 reflection coefficiént, whiéh was originally worked out by
: . Rayleigh [Ref. 26], is given by
,cd
.gz. sin G-J(.él.z) - cos® § .
R ) : 2 '[
. - - qu 1]
L2 §in 9+thL5) - cos® 8
' Py €2
where § is the grazing angle, p, and ¢, are thé density and
the sound velocity of watér, and p, and c, are the density and
the sound velocity of the sediméntary layer respéctively,
If the relative dénsity p = p,/p, and the relative sound velocity
a = ¢,/c; are used to présent the contrast bétween the two media
Eq. 1 becomes - ) . .
R =~ Psiné -'/é; ~ cos® 9 ) . -
. - — . LEQ' 2]
p sin 8 +.Ia-5- ~ cos® §
éﬁ'
7
R
A
%t .
Ag;: v
£
;ﬁ«“ I [T




and, for an incident path normal to a refleécting horizon, i.e.
9&9001 *

-1 ‘
r = 22 [Eq. 3]

1.2 Critical Angleé

~When the velocity of sound is greater in the second médium
reached at which the angle of refraction bécomes 90°., 'This is
known as the critical angle and is given by

. 8., = arccos (1/a) ‘ - ' [Eq. 4]
When the grazing angle is less than this critical angle, all theé
inéidént acoustic enérgy is reflectéd. However, thé phase of the
reflected wave is then shifted relative to thé phase o6f the incident -

wavé by aa anglé varying from 0° to 180° and is given .as

Jcose 5. - 1/a°
$ = -~ 2 arctan -

N . p sin 6

[Eq. 5]

. 1.3 Angle of Intrémisééon

In the oceans generally the sound vélocity'in the top layer of the

bottom is léss than in thé water above (¢ < 1); as will bé shown

in Chapter 4 this occurred in 89% of the samples studied. In such
. conditions there is an“aﬁglé of intromiSs}én at which most of the -
e 1ncident energy is transmitted into the sedimentary layer and the
’ reflection coefficient becomes zero for

i

[Eq. 61

s,
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The phase shift is 0° when the grazing angle is greater éhan the -

intromission angle and 180° when it is smallér than the intromission
angle, ' . '

N o
H

As can be seen in Egqs. 2, 3, 4, 5 and 6, such époustical,characte-,

ristics of the bottom as the critical angle, the angle of

intromission, the phasé shift, and the refleéction coefficient, are

primarily influenced by the relative density and relative sonnd

velocity of the ‘environment as a function of the grazing angle..
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2, COMPILATION OF MEASURED DATA

2.1  Sources, - T
// -

w/

¢ Core data from the NOrtﬁ'Atlantic Ocean, the Norwegian Sea, the

Mediterranean Séa, and the Black Sea were found in Refs. 1 to 14.

- ——

2.1.1 North Atlantic Ocean and Norweglan Sea“

A
v

Figure 2 shows the major pﬁY§fographié regions of the North
Atlantic Ocean and Norwegian Séa, together with the approximate

positions of the cores. The work of Heezen et al (Ref. 16) is

‘here updated with the daté obtained from recent surveys ‘(Refs. 1,

2, 17, 21, 23) and its limit extended from latitude 50°N to.70°N.
The percentage distribution of tﬁe major physioéraphic régions in
the area is shown in Fig. 3. 1It.is seen that 41.7% of the area
consists of continental’ rises, basins and abyssal plains, and, as
shown in the lower part of the figure, 67,4% of the cores were

taken from thése regions,

5 g
2.1.2 Mediterranean-and Black Seas
Figure 4 shows the phy51ographlc reglons 'of thé Mediterranean and
Black Seas, together with the positions of the cores. This map is
based on Ref. 1 and Refs. 18 to 25 and is updated w1tﬁ unpublished
SACLAQTCEN data.’ The Black Sea section offthe_map has been
constructed from the bathymetric profiles of Ref. 18.

" The percentage dlstrlbutlon of the major phy51ograph1c regions in

the Medlterranean and Black Seas is shown in Fig. 5. As can be
seen, most of . the cores (52. 1%) were taken from basins .and abyssal

plains, whlch cover only 23.1% of the Mediterranean and Black Seas.




"2.2

" Method
V,From 456 avallable cores, 15124 ‘samples for the ﬁens1ty/por051ty
relatlonshlp and’ 8287 samples for the sound-veloc1ty/por051ty

relatlonshlp were obta;ned and transferred to;the computer for

statistical analysis, computation and plotting.

¢ <7 ‘“\\Q‘ -
. =

Td bé able .to handle this la e quant{ti of data taken from various
reglons by different methods
with dlfferent‘methods,

veloc1ty data weré transf

nd analysed in différeéent condltlons

1 buik density and compre551ona1 sound

¥/

;nto relative density and ‘relative

veldclty w1th respect to the bottom water ‘valués,

t
. . ‘K_ . .

-

The éamplés used to obtain the-relationships are not only from the

watér/sediment.intérface.
4 ©

As car bé seen from Fig. 6, 50% of the

.- cores are more ‘than 6 m long and 12% aré more than 10 m long,

ﬁie

relatiénéhipsobtainedfrom these samplés are valid for at least

[y

[

'

10 m into the sea bottom.
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3. THE RELATIONSHIP BETWEEN MEASURED PHYSICAL PROPERTIES

a

3.1 Porésity and Relative Density

A marine sediment may be defined as a deposi’; of different mineral
particles whose pore space is filled by séa water. Its porosity is
givén by the percentage volumeé of the porous space and its bulk
density by the weight of the sample per unit volume. ‘

‘The felationshib of porosity to bulk déensity has alréady been
investigated by some authors (Refs. 6, 7, 9, 10, 14, 15) with fewer

. ; e
data and shown to have a strong linéar correlation. -
Theoretically this linearity only exists if the dry densities of the
mineéral particles aré the same for all marine sediments, The density
of the sediment would then be the Same as the density of the solid
matérial at zero porosity, and the Same as the density of the water
at 100% porosity. If this rélationship is expressed by linear
interpolation for the intermediaté valués, the equation is given as

po = Ppy + [1-P] py. (Eq. 7]
~where p, = the density of the seédiment,

3 ' py = the water density, - 7 o V \ik
§? Pa = the dry deénsity of thg minerai particl?s,
’ P = the porosity of thé sediment.

To check this linearity for measured values, the relative density

(p2/p,) has been plotted as a function of porosity for the 15124

available samples and a regression line fitted by computer. As can
; //‘ \ \
3 /// \
.,_ a . _ / )
- 13 ‘ /




be ;bServed from Fig. 7, the points come very close to fitting a

single straight line given by
p = 2,6 ~1.6P , ] [Eq. 8]

where, as before, p is the relative wet density and P is the

porosity.

If this relationship is applied to Eq. 7, the density of thé'solid
-particles (pd) in thé marine sediménts is given as 2.66. TAS
shéwn in Fig. 7, the measured data fall mostly betweén the 11nes
répresenting dry densitiés of 2.60 and 2. 75. Since this differénce
is véry small, the relative wet density of the marlﬁéﬁéedlment can
bé ¢alculatéd from the porosity by using Bq. 8. )

7 ™~

~

3.2 ' Porosity and Relative Sound Vélécity

Considered as a propagation medium, mariné sédiments consist of

twWo basic componénts: theé solid particles and the water-filled-

_porous spaces. When the compressional seismi¢ wave propagates in

a marine sediment thé velocity 6f this wave is détérmined by the
elastic properties of theé ‘sediment.

N ’ , ¢
Many authors have proposed equations for the prediction of
compressional wave velocities provided somé of the énvironmental

propertiés are known. Certain of thesé équations, which areé

baftiéularly\rélaﬁéd to this study, are briefly described below.

. A:B. Wood [Ref. 287 assumed that, in the mixture, the acoustic

pressure acting on a mineral particlé is the same as that in a
homogenous’ fluid in the same position (the particles are moving in
phase with: the fluld),*and that the bulk modulus and the shear
modulus of the partlcles arée negligible. The velocity of

compre551onal waves ls;expressed as

a = l ’,: : [qu 9]
v B2 P ! ) )

A f

where. B, 1is the compressibility of the sediment. For a suspension

>

14

&

f
e

T -

IR




e s b s s . 3 e _ i : 2
| ., \ . N
, . .
¢ fat . » 4w )
\ ” . - - . R Aﬁ ., Yoy )
ALISO¥Od ONV ALISN3Q JAILV I3Y NIIMLIE JIHSNOILYIY £ °Old
, o » o (%) Ausoioq

e

oy . {474

, |
(d 9l -9'Z=d) aun .co_mmm._oom

(Y, . y
]

1

. -

S sicon 0 T e e R

vy o

N o st L AR

4L L e byt e L T

O.m 1 _,O_Q : _. QO_.O .un

— 00l

ot

r ozl

J

og’l

T

ori
- 0S°L
-09°1
- 04°L
-08°1

~06'L

- Looz

(* /zdgd) Ausuag  aAnejay




of sclid particles 1n water Wbod considers the bulk comppess1b111ty
to be equal to the sum of the compreSS1b111t1es of the individual = . 11
particles multiplied by their proportion of the total VOlume, ana " F

;.  expressed in the follow1ng form°<

B, =Pg + (1-P) gy L [Eq. 10]

8
%

LR

whérée B, = the compressibility- of water,
pd’f'§thé compressibility of the mineral particles in
the sediment,. )

-~

T R T o e T
* S
¢

P = ‘the porosity.

2 . :

-

A‘correspondlng relation also hdlds for bulk den51ty, whlch is

I

expressed as Eq. 7.

Pl

» ¥ I
» "y
- ,,

Urick [Ref 297] applied Wood's equation to, the case of dilute

suspensions and obtained an agreement between the theoretical and

experlmental résults, ) ;

4

&

Nafe and Drake [Ref, 15] also showeéd that Eq. 9 gave reasonable
agreemént with the available experimental results for the variation
of compressional wave velocities with the porosity of the sediment.

A

Shumway [Ref 30] showed that because rLgldlty was neglected Wood's

equatlon has 11m1tat10ns, eSpeclally on 1ow por051t1es, and he

introduced a small rigidity modulus and a constant’tb give a best-

s fit' curve to the data., The compréssional wave velocity is expressed

iu‘f?e following form: . -~

Y J——

:  Cgpymway -/ K *P (L-F) ¥/e.) [Eq. 11]

whére b is' a constant (0.8, chosen by Shuﬁwey)y-“

K, 1s the bulk modulus of the sedlment

Yy is the particle concentratlcn of particles with a diameter
giéaﬁer than 62. S-ﬁicrdns, where the given values of ¥

afe 1.0-at P = 0.40, 0.3 at P = 0.525 and .zero at P = 0.80.

W7

o]

16
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Similar empirical modifications have been introduced by Nafe and

: B
: £
S

i

dealt with the parameters that are difficult to measure, i.e. bulk

:

modulus:, shear modulus.

PHEI

o

Ed

To check how the compressional wave velocities vary with the
porosity. of the marine sediments, data from 8287 samples have been

plotted in Fig. 8 to show this ' relationship. The curves obtained

)together with the curve which is given as

*

*.

THe curve was fitted by the least-squares technlque employing the

‘whole of the_ data and using a computer, As cﬂﬁ be ‘seen from this
\ ‘ranges from 0.25 to 0.90. The difference between WOod's curve and
.owing to the neglect of rigidity in Wood's equation.
Figure 9 shows tﬁe iocations—and the number of samples for this
relat%énship. As can be seen, the souhd‘velocity in 89% of the

: three—dimensional form.-~ It is recalledsthat as seen in Figs. 2

consist of fine-grained clay m1nerals.

~

3.3 Porosity‘and Ref lection Coefficients
/‘
The reflection- coexflclentofthe upper layer is dependent on the
product of the density, the sound ve1001ty and the angle of the
incident wave; the reflection coefficient for normal incidence
K90° grazing angle) at a sinéle interface has been computed from
’

¢ s

L id

17
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3

Y
4

Drake [Ref, 15], and Wyllie et al [Ref. 31] to obtain better agreement

between the experimental and theoretical results; all these studies

from Wood's and Shumwdy's equatipns are plotted in the same flgure,

& = 1.631 - 1.78 P + 1.2 P2 E [Eq. 12]

flgure, the relative velocities range from 1.30 to 0.95, and porosity

Shumway's curve is significantly high in the porosities below 0.45,

samples was less than that in water and 83% of these had porosities

between 60% and 82%, Figure 10 also shows the same relationship in

and 4, 66% of the cores used in this study were taken from continental

rises, basins and abyssal plains, where the sediment partlcles malnly




relatlve den51ti)and relative sound veloc1ty data and plotted
_agalnst por051ty in Fig. ll. As can be seen, there .is a strong
- 'linear correlation, expressed by the regression equation
o ' R,=0:589 - 0.59 P . [Eq. 13]
r . : - :
The reflectlon coefflclent for the first 1nterface can usually
be measured dlrectly as “the ratlo between the first peak amplltudes'
of the direct .and the reflected signals. If the reflection loss at-
" normal incidence is known, it will be possible to predict the otier’
.parameters by using the statistical relationships between the
physical properties of the.sediment. C.
The relationships of relative sound velocity with the Rayleig@;
reflection coefficient, the porosity, and the relative dens@ﬁ&,
obtained from the statistical analysis of the data are shoﬁh'in
Fig. 12. N f(

" - Figure 13 shows the measured and computed re?IEEtionﬁiosses at
difﬁeﬁent gpazing;angles [Ref. 31]. Measured reflection losses at
normai‘incidence have been employed to predict the relative density
andbfelative sound velocity'of the upper layer and these data have
been used to compute (without taking acoount of damping or shear
waves) the reflection losses at oblique angles. The zone covered

. by the curves which are obtained from this computation is diagonally
hatched in the same figure. As can be seen, the reflection loss
veur;es obtained from normal incidence measurements show a good
aéreemeﬁt with measured reflection losses an with those computed

‘ from the core data. (by taking the damping into account), except

3 ‘near the .angle of intromission where the effect of damping is

noticeable,

o

J4

AR AN

18

:
(S
c 3
. K.
: & -
i
A

4 3 _

“y




RO

@ U

ALISOYOd ANV ALID0TIA-ANNOS JAILVIIY NI3ML38 JIHSNOILYTIE 8 %0l

(7.) Asouo,
08 09 or oz
1 1 | | | | i 8.0
‘.\..n.\..\.....\....H...wM .\.V
o D - 001
x
& X
* . §
x 'z %Mwn e aAIND  S,POOM ~ oLl .
aAIND m&m&vﬁ A*.% X
X * 2 vw /./
x&m x X X XX X/.
X RN\ X
x M X X X YA
x| xR ON‘—
. Y - x * ’
(,d Tl +d 841 ~1€9°1=D) 3A¥ND TVINONA1Od
x X o
- 0£'1
£
~ oYl
(S31dNVS 1838)
| - 051
/ i . !
il i i . ki, L 3 i T LTI 1 ARV v

ane|ay

Ayo0j8p  punog
19

°)

( 1D/2D

Cw o R Y_X«YE?% s "

Leunons




PRI I

K3 rrse s

/
|

ol ot

oo

hiiiiied
ety

ot i
i
'

i
.

g

it

-

H

ST

YT
o

00339003033 3002~4IMO VM

» r

- .
POYIOVO0V0O0N0000200000 :oco‘aao:oo
N Y .
22320 :a:aa:aaa;s.;o..:oacue'::.m-,a'
.

3390902203099 23290VIDP33I2 IV NI
.
.

20200 2909375905"000590390-6“"’93 .
-
PIVIIDOD0INTINSONOD0200C@ I INIIND~IHDD

M -

D IDOHDIIY IIIIVOTINTIVININONANOD DD

2V IPOOVDIIBOIPV00D0IO :ooo.c'v—a::[g *
odovusvunoro 900:0:@93909".‘:'-:0:'
P .
DDODQOQ?OUOODJOOOOQ3330-73,0:050
. .
0020209223090 00002000200~¢
'y ped
-oa:ooaoaooc:oaoo:oococaoﬁmzuco.
-
oo°°o°°°°oo°°°oeooooouoNou:go'ﬁl:l
Y+ 73 .
“
oooooooaaooocooeoooooaaoﬁl-:oh—sl
A

]
1]

OO0V 0CCVOOI000020803ID

— e
-

26

3

OO0V VAVNANOOBODO00QPO PO Dom

“3 32
O,
837

2002232599998 330020900958000M
'

_23_1e,

22__ 23
Q

% -

959:’39959’009500000 ?90-02
3

DIVVCIVDVDIIPODIVIINDOD IO

2
T
59
20
1

3
LYY
L '

0095059979“00”"’5~°-’°‘V5::‘:

$3 203 555 Y03 743 340 275 24
le
1

DO VVD 2073003V 0I0Tme I~ =

1s
56
125 2903 216 213 263 3176 o4t

D]
V]

49 <3
1

TS T WY VG T S
70

w2
0y
1)
T
1
|

D2O0ICNO0V2V0MOOCDVO00O0D m NP

16
]
B
0
.

14
L]
TS

U

[T

DVD 330327 DOOODOO MO~ =i N

Pérosity (%)

1
<3
1 4
.
]
[8
1

33300’?3903003050—1535"&3
-

VELOCITY AND POROCSITY

3T

10
26
&9
)
e
v
]

'
-
v
i

DIDIIVIVIIOONOOONOOIDIDO~ VA

10
11}
5
)
[}

n v

38
20

VOV OIVIVDOODII0IODDO I~

10

DIV 2002000223039 md0om ‘NQ‘V‘I.M\"'O’)
-

VIO )aoﬂ:"vw-"dt—lﬂwﬂﬁlﬂ o

:
5933J??QOOQOJ:ON:&DOON.&O‘l‘dd::OO-
ot

2O N

OTP0D00D00NIODOIMOmMMOPumEe o
- <

no:oeo}g

2I30IODIDO00DOD0 JO‘N'VJ‘NO‘\N‘\I‘—N?Q
A N ot .-
.
DOV IVO0000OO0I0OO~NLUNNE ONDANOM~NOO O‘
-

0O00PVO00O0QO000CPOOOMREANNETNOO OO

OOO0OI00O0TIOID2000NMUME~NDIO DD 22000,

BETWEEN RELATIVE SOUND

o',OOO3000050003-09930000500009OI

FiG. 9 LOCATIONS AND NUMBERS OF SAMPLES USED FOR ESTABLISHING RELATIONSHIP

.
oooooooOooouoo-omo-aeooqoa,ooOoaorg
QODIV000CI2ANOOPmmmIFIBIOCOD QOQGOOI ol
92993200 ::4-:9-—'!0.:996039'::13:-0:’

.o~
QOU9ION IODIIAINIIDONINIIDIIONNOIND I, *
07FIMNOT0002093907020330 oowalﬂoaeo ol

05953"0‘39 'V"A’O?’OﬁﬂOQOQDIQ‘,‘\’D g

- -

] -

AyoojaA punog  aApelRYy R -

SRURUEEE B

ST

e

4,




) ALISONOd ANY ALIDOT13A-ANNOS
JAILYI3Y NIIMLIG dIHSNOILYTIY JFHL 40 NOILY.LNISIHAIY TYNOISNIWIG-33UHL 0L *Old W
3 .n.b.u m
=700l W

4
| ) :
- |
~ i
.
'

* '
- sajdwes "
_ Jo Jaquiny _

‘ 002 B

’
:
L2l
*
’ e ————— " 7 4 _
of’l oA ol'L " 001 S
" -:
Ayiaojap punog aaneay
t
o5 ,
N ~
< FHTEFANR I TE RONE LR A DRI : ’ _ . . B e .vu -&Eﬂ%@%,
? . N I L R L A T e |
P s 2 ’ i L L > TN b G ThE s NI TN ) et 20, > 34k 0 ’ Lolo o




,__ - - - . o ;J
| B
ﬂ ALISO¥0d ANV LNIIDI4330D NOILD3143Y IHL NIIMLIE JIHSNOILYI3Y 1L °"9Id
i
A o\ov Aysouod
\ 1 1 0z .
0’0 |
ot
s )
MM 114 M'r.
i )
i 0
w =
] 3 )
g 8ty o |
y e
i ” ) S
: 9 (=} P
H ] a
: =4
., 14X Noo —~ .
b ]
| . B
; 4} AR ,
. .W ,
A i
b , %
L oL
v
| ﬁ S
A
| :
| -] I A
* @pysso vo , o
. omoete e v bo s . cm,“ . . . s . > , P v . . T i e5%K,S.ﬂa_.ixg_a/.siz...ﬁa
! o e w it o " w‘» { s s G 0 o4 s IR ST T R




v
gl SR R W%“me
;

A NI MI 0 v

-

120

110 4

(a.ay/ay)

Sound Velocity

s

-

élative

LTS
v

8

Relative Density  (pap,/P,)

Atk PSP Sy Ao A 1 Py n a i

i 2 TR 7 BT 13 )

Porosity (%)

7 0 50 80 70

Rgflection Loss (Cﬁ) .
) 03 o2 - w 00
“  Reflection Coefficient (Rzpa-1/pa+l)

8 12 13 14 15 18 17 1819 20 25 30 40
4

FIG. 12 RELATIONSHIP BETWEEN RELATIVE SOUND-VELOCITY AND THE REFLECTION
COEFFICIENT, THE POROS!ITY AND THE RELATIVE DENSITY. )

23

3




JONIAIDNI 40 STTIONV LNI¥I4IQ LV S3SSOT GILNAWOD ANV A3ANSYIW €L "1
)«\2‘ .
n sso7 {gp
I - o€
o) \
I
. /A SjuBWIANSEaW  OUPIDUI :
i [ewJou Wolj payoIpald
2 ' c: o
o._. m ::m . (Yibua| anem,/gp £0 DBuidweq) o
I : -
°l ejeq ai10) woi4 pandwo) —————
o
O\ °
N painseap 3
g .
Y|
! . <
/ o~
‘ \.
%
]
q/
4
!
I R
[ -
1 ) .
\
I/
17 -
wm ot
! sokeq saddn sso uondapay
/ |
Y/ ,,
i | | | | | | i S
0¢ oe ov 01°] 09 oL 03] 06
9]Buy Buizeud T
ks bt e ARG

ot

N -
TR A Rt s s €1 %
> 0
K 3 " | '
B 3y e Lot




T

_ AT TR T TR T R TR L L o
5 == ST

’“5%%§§¥f?§§§§&ﬁﬁﬁ@%§m@é@@gumwm ; s : ,*}, e e
CONCLUSION

s R R e

i

\

a., It has been demonstrated that, by compiling sufficient
data from different oceans and different physiographic regions,

it is possible to derive a statistical relationship between the
properties affecting bottom reflection.

b. The porosity of the marine sediq;nts stands out as the
. 5 .
most important parameter causing variations in compressional sound

velocity, density, and Rayleigh reflection coefficient.

c. If the reflection loss at normal incidence is known then
by using the statistical relationships it is possible to predict
the physical properties of the bottom sediments and extrapolate the

& T —=—.-]osses for lower grazing angles,
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