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SUMMARY

The question of column end fixity is critically reccmsidersi. An effective
method for determination is established. This method relies upon ihe fact
3 colum for
product of
the Euler
=nd pur-

load approprizte tc the actual end cond
poses, constant.
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INTRODUCTION

Discrepansies between the conditions assumed in theory and those achieved
in the laboratory or in practical application seriously influence the
agreement between theoretical predictions and actual observations on the
stability of structures. Admittedly, methods of data interpretation which
enable valid deductions with regard to the behavior of perfect or ideal
structures to be made from information obtained from tests on imperfect
or realistic structures have been developed.l,2,3 Nevertheless, there
are still some aspects of the question that merit further review and con-
sideration. Prime areas, in this regard, are to be found in the subjects
of boundary restraint and in the development of nondestructive testing
methods that can gjve information with regard to actual behavior under
service conditions.

The subject of boundary restraint has long been recognized for the simple
colum. Indeed, since the very ear%iest tests,l‘ experimentalists have, as
the literature amply 111ustrates, »© striven to develop end fixtures or
restraint devices that would approximate as closely as possible the bound-
ary conditions that the analyst can treat. That they have, in many cases,
closely reached these ldeal conditions is borme out by the expérimental
load values that they have achieved. However, it is equally clear that in
no case do these special devices even begin to approximate the conditionms
met in real structures. We must admit that theoretical and experimentally
achieved boundary conditions are often very mich apart from conditions of
realistic restraint.

The problem is seriously magnified when the instability of a plate is
examined, for even if the plate is uniform, homogeneous, and isotropic,
considerable difficulty is experienced. This viewpoint is readily con-
firmed by a review of the current literature on experimental studies on
plates. When the subject of sandwich plates is considered, the difficul-
ties are compounded. The conditions of edge restraint are much more
complex for structures of this type than for thin plates, a point clearly
made by Benson and Mayers.'

With regard to the subject of shells, the matter is no less important;
hovever, 1t has received attention only in more recent times. The majority
of the work in this area is analytical, but there are several important
contributions.8,9,10,11 12 1q stressing the importance of the subject
with regard to this class of structure, the earlier recognition of the
problem by Love and Southwelll3, 1! cannot be ignored.

In a previous st:udy5 the various attempts that the experimentalist has

made to duplicate, in the laboratory, the conditions prescribed by the
analyst have been reviewed. This work was not intended to extend or refine
these studies. A different approach was followed. From the ocutset, the
viewpoint has been that the designer creates that which has never been;

the analyst investigates-that which has been devised. Thus, the axiom on
vhich the study was based is that the prime purpose of analysts must be to
devise methods of predicting with reliability the behavior of systems which



are subject to the constraints of reality. Mathematical analysis and ex-
perimental study are considered valid only insofar as they lead to evalua-
tions in this sense; in any other fashion they are purely academic exercises.
In the literature that exists on the influence of boundary conditioms on
both stability and strength of structures, this point is frequently lost
sight of. All too often the theoretician gives no indication of how his
prescribed boundary conditions might be achieved in practice or the degree
of error resulting from deviations. On the other hand, the experimentalist
usually tends to conr:ntrate, not on determining the parameters which define
the achievable bour’  les, but rather on attempting to reproduce the condi-
tions which’the th .tician has specified. The practicing engineer, the
designer, requires methods, experimental and theoretical, of obtaining a,
relationship between easily determined parameters and actual restraint.

In this report, we establish a rationale.
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DISCUSSION OF THEORY

We begin this study by asking what is the influence of boundary restraint
on the deflection and/or stability of a simple member under various load-

ing conditions?

We note, in the case of a column under axial compression, that when this
member is pinned at both ends, the critical load level is given by the

expression

T EI
B '_1:2—_ (1)

provided the strut is reasonably slender. If the end fixity condition is
changed from pinned to fixed, then the load level is substantially altered.
It becomes
M EI
et = T B. - (2)
L

Now, consider the same simple member, but instead of applying a destabi-
lizing compressive force, apply a lateral force at its midpoint. There is
no critical load level for this force system from a stability viewpoint,
but there is, of course, a critical stress. So long as the load is not
approaching the level that would induce this stress, the deflection is
linear with load and, for the two end fixity cases considered, is given by

3
6 = —Egt-‘ﬁ (pinned ends) ) (3)

3

= 152 BT (fixed ends) (&)

6

It is clear from these readily established relationships that the change
in end fixity from pinned to fixed causes an increase in critical load
level and a decrease in deflection for a given force. It is inter2sting
to note that the destabilizing force grows by a factor of four; the
deflection decreases to onme-fourth. Consequently, for these two config-

urations, the identity
5 L ()

er Q L8

)
il

is established.

Now the quantity % is in essence a flexibility coefficient, and so we may
say for these two cases, at any rate, that the product of the critical
load for a centrally loaded slender column and the flexibility coefficient
for a central lateral force acting on said column is dependent only upon
the length of the column. Symbolically:

8



o _ &
P T =—g— = Constant (¢)
The importance of this relationship, if it can be extended to other cases,

is clear. It provides the simplest possible method of determining.critical
load from easily cbtained quantities.

It is important to note that thne two examples given so far have certain
features in common:

l. They are for geometrically uniform bodies.
2. They are for bodies with symmetry and ideal end support.

To extend the concept further, we begin by systematically removing these
conditions.

In the first case, the restriction toc nonuniform bodies is removed; in
subsequent sections, the support conditions are varied to reflect realistic
restraint, including intermediate support.




NONUNIFORM COLUMNS

To begin, we consider the strut depicted in Figure la. This strut is non-
aniform, the two halves having different cross-sectional areas and moments
thereof. ' ‘

The critical load for a strut that is unsymmetrical about the center has
been investigated by Case,15 who has shown that the value of %cr is given
by the expression

| =z _ & . 2 (7)
P AE.
er Ter Z2ecr

where 1Pcr = the crlppllng load of a strut with two halves lee OA, and
oPer = the crippling load of a strut with two halves like oA’. It is but
a matter of simple calculation to show that if fj is the flexibility co-
efficient for a centrally loaded beam of total length L and of.the form
of OA, and if f2 is the value of this parameter corresponding to a beam
entirely like OA then the flexibility coefficient for the composite beam
is given by

2f = £, + 1, (8)

It follows from equations (7) and (8) that

P P (£, + £.)
lcr « 2 cr A z
P, T = e (9)
1l cr Zer
But R
o 5 TL )
chr*l = 2Pcr'2 - L (10
®
Hence,
* —
£ gl 1
P.E =07t (11)

It is apparent from this that the condition of complete uniformity of
geometry is nmot essemtial. We conclude, too, that the point of load appli-
cation is not, therefore, the point of symmetry tut rather the point of
maximum compliance, To extend the argument, we examine next the case

of a column with continuously varying section geometry. We shall assume
(for convenience) that the variation in EI is described by the expression
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Figure 1. Diagrams of Several of the Be.m Configurations
Studied.



m-er, [ 1-3@° ] (12)

and that the end x = 0 is built in while the end x = L is pinned. It can
be shownl® that this system has a critical load that is given by

EI ET
17.79 =— SP s 17.88 > (13)
L L

This strut has a 33% variation in the value of EI as we proceed from one
end to the other, a variation that is greater than one might expect in a
practical application.

The flexibility coefficient under lateral force can be computed easily
from epergy considerations (Appendix I). There results

L3
f = 0.0109 T (11*)
o
and so
L
P L = 0945 — ¢ (15)

The error between this result and that established in equation (6) amounts
to less than 6%, which, when viewed from a practical point, is excellent.



NONURIFORM SUPPORT

The simple examples given have provided substantial evidence that a practi-
cal method for determirnation of end fixity in columns exists and that its
application would provide a nondestructive process for determining, in the
field, those factors that are not readily amenable to calculation. But
there is some weakness in the argument, since all the results presented
apply to the most mathematically ideal boundary conditions - conditions
that are similar at both ends of the member, a situation unlikely in
practice. There is lack of realism, too, in the sense that we have not
considered the variations in rotational and translational end restraint
which characterize virtually every frame structure. The analysis is, there-
fore, extended to cover these situations.

To begin, we consider the case of a uniform member encastre at one end
and pinned at the other (Figure 1b). This is a classical problem and the
various parameters are well established. The critical compressive load is

given by

P = 2.05 le

cr

I (16)

o]

ol

L

The flexibility coefficent at the point of maximum compliance (x = 0.506)
is gliven by

LJ

and, thus, it follows that the product
P_T = €6 w——T} (1£)

This is not precisely of the fcrm of eguetion (£), zut the +% variation
from that value is, nevertheless, smz:l.

Next, we consider the situation shown in Figure lc of a pinned uniform
column but with equal rotational restraint at the ends. The critical
compressive load for this case ic determinec¢ as a function of spring
stiffness from the trznscendental equation:

)




TR A T T TN

eI tan u
kL - u (19)
where
p = 4 H (20)
L-

It is obvious from the support symmetry thnat the point of minimum lateral
stiffness is the midpoint of the team. The flexibility coefficient, f,
is easily determined, in closed form, for this case (s2¢ Appendix II) and

is
2 ) )
w_ B F 3
T L? T | (21)
i KL
The product Pcrf can be written
A )-'vuz [: 5, -l T"'L
- £z —|1l o« —m=F7— -z (2:)
cr 2EI, J  Lr-
™ L1+ =%)

It appears from this result that P_ { is nc longer a constant “or varia-
tions in support but, instiead. vy Teferemce to eguztion (. i in error
by a factor
R N R E | - L (>3)
N ¢ = SR

When the factor @ is plotted against spring stiffnecs, k (Figure 1), it
is clear that the variation from unity is =m211 2and that the maxirmum
error is less than 12% over all values of end fixity. .
These results can be systemitically extended to cases of nonsymmetric

end restraint. Suppose the previous example is taken tut with cne spring
removed. The critical loai for this configuration Is dv-termined from the
transcendental equation

EI -1 1 X -
e N (== 0
kL 2u ( 2u tan zu ) () )
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where again

EI
= (25)
L

The flexibility coefficient must now be determined for given values of
end restraint. The analysis.is somewhat more involved because the point
of maximum value (minimum lateral stiffness) depends on end restraint. A
summary of the procedure used here is given in Appendix IITI. The product
of Peyf and the maximum flexibility coefficient is plotted versurs end
restraint in Figure 3. It is readily apparent here that the product is
approximately constant for unsymmetric changes in end restraint and is
directly proportional to column length. Again, the constant is

N

L
=

and the maximum error is less than 4% for all values of restraint. It is
important. from a practical point to note here that the locus of points of
minimum stiffness shown in Figure 3 does not deviate from the colummn mid-
point by more than 10%.

This example can be continued by taking the above spring stiffress &s
infinite and then adding degrees of rotational restraint to the opposite
end. The critical load for this case is determined from the equation

¢ (u) = ue(u) [(E + yw ] (26)
where
o(u) = g[sixlzeu’ﬁlijand*(u)=‘2%rl_2—i+mi—2u] (27)
and
Por = ba® EIE (28)

Again the flexibility coeflicient and its point of minimum value depend on
end restraint. When the product P.,.f is plotted against restraint, Figure
L, it is clear as before that the result is approximately constant
throughout the complete range of restraint. The maximum deviation from
ML/48 1is less than 4%, and the locus of points of minimum lateral stiff-
ness is within 10% of the column midpoint.
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INTERMEDIATE LATERAL SUPPORT AND HIGHER MODES

The consistency between the many cases studied leads to the prospect that

a ~ n-ral but approximate relationship might exist between the critical
instability load and the flexibility coefficient. However, the formulation
of a general analytic procedure from which such results can be deduced
appears somevhat more complex at present; therefore, it seems more effi-
cient to study the problem further by means of specific examples. Quite
often, in practice, a columm will be supported laterally at one or more
points, such a configuration being adopted generally to improve the load-
carrying ability. In some instances, the intermediate supports can be
considered as a perfectly pinned or clamped restraint, in which case the
column may be subdivided into the intervals between supports, which in turn
may be taken as columns with applied end moments. For many other practical
cases, though, the intermediate supports are far from ideal and, for pur-
poses of analysis, can be represented by rotational and lateral springs
located at discrete points. The spring stiffness, then, can ‘be specified
to reflect closely the stiffnesses of real supports. An example of such

a construction is depicted in Figure 1d, where a pinned column is subjected
to a lateral spring restraint at its midpoint. The critical compressive
axial load for symmetric deflection is determined when the spring reaction
tends to infinity and is defined by

sin u !—- sinu + u(l - 1642 E) cos u ]: 0 (29)
L kL3
where ‘
2 EI
P .=l 2 (30)

Now, when k = @ (rigid support), the lowest nontrivial root is u = m,
from which

2EL
Pp_=Li"= (31)
L

and when k = O (no support), the lowest root is u = T/2, from which

2 EI
P_=T = (32)

cr L

g )
These are clearly the cases vwhen two waves and onc wave are produced, and
they establish limits on u. As k is increased from zero, the lowest root
of equation (29) corresponding to symmetric buckling is determined when
the bracketed term vanishes. This happens only so long as

1L




1-160° E <0 (33)
kL

or

kL3 W° EI

34)
161 EI 1’ (

P2

If this value is larger than P,,. for a rigid support, then the column
must buckle with two waves. The tramnsition from one to two waves occurs,
then, when

P = (Pcr) for two waves (35)
or when
K = 161° F—% (36)
L

For k greater than this value, antisymmetric buckling occurs as defined by
equation (30). For k less than this value, symmetric single-wave buckling
occurs at a load when (see equation (29))

- sinu+u(l -1 2E3)COSU=0 (37)

kL

The solution can be represented approximately as

3
=X Tﬁ% (38)

hien the spring stiffness is zero or less than that defined in equation (39),
the point of minimum lateral stiffness is clearly the midpoint. The
flexibility coefficient as shown in Appendix IV is then

3 .
L 1
g ] ()
L . K
I8 EI

15



Using equation ( - '), there results

L
PCI‘f = Qa —:5 ) ()4.0)

where

1 +_16F% EI (1)

The factor @ is then a measure of the deviation of Pf from the constant
value and is plotted versus k in Figure 5. It is evident that the maxi-
mum error is less than 7% and occurs at the transition from the first to
the second btuckle mode.

kL3 2
Now, when ==— > 160", there is an inflection point at L/2, and minimum
lateral st§¥fness clearly does not occur here. It does occur, however, at
two points located midway between the ends and center support. This
requires some modification of our previous results. Consider the simlta-
neous application of a point load, Q, at one of the points and an equal
and oppositely directed load at the other. The sum of the resulting de-
flections is

<

b=g +5, - §%Eff (&)

and, if we de®ine a new flexibility coefficient

& s LJ .
23 - EH (43)
then
s° BT LS ST
7o St
Pcr‘: - Le 192 21 4% (L)

)
N
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which is just the same result as that for the earlier examples.

This approach can also be extended to other situations in which higher
modes are critical. The first example taken is that of a column that is
encastre at both ends and pinned at a center support. In this case, the
buckle mode is again antisymmetric and, using equations (16) and (17),

the points of minimum stiffness occur at X = 0.29 L. and O0.71 L. If
oppositely directed loads, Q, are applied at these points, then it follows
in a similar manner to the previous case:

5 f>+5—2(00981+)9-ﬂ (45)
SRR EI
and
g 2 & —000.21;6ﬁ
2 Q EI _ (46)

The critical compressive load is

_, _EL _ EL
P~ 2.05M 17 - 8.2 = (47)
2
and so
= L
Pcrf2 = 7 13 ; (48)

giving an error of 3%.

If we consider buckling in the third mode for a pinned-ended column, then
one can show that three alternating forces are required and that if

6, + 6, + 6
}'3 = 1_Q2___3 _. (49)
AN
then
I
P_f=F (50)

with zero resulting error.

18
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It is possible to treat higher mode buckling cases with the various
boundary conditions discussed earlier by subdividing the colymm at inflec-
tion points into a series of column elements. As before, the flexibility
coefficient must be defined by applying force: to each element at points
of minimum stiffness and sumning the magnituc:: of the deflections pro-
duced; then

n
b
oy L4 i
T (51)
and
\ . T
P, f = I3 (52)

- t
The Pf product is exact for pinned-ended conditions. Since for higher -

mode buckling with other end conditions, the interior portion of the
column deforms into simusoidal waves, it can be concluded that the error
for these cases diminishes with increasing buckle mode.

These results suggest a generalized procedure for situations when the
buckling load corresgonds%to higher modes. The maximum generalized flexi-
bility coefficient, 1, = 61/Q, must be determined for,all contemplated
modes by first applying a single concentrated lateral load and then adding
additional loads in an alternating fashion, in each case adjusting the
positions of the loads so that the deflection sum is a maximum. This de-
fines the "maximum flexibility" configuration for that mode, and the mode
with the lowest value will then be preferred, so that

Pcrfn = 8 (53)

19



[ LATERAL RESTRAINT AT OKE END

We have illustrated by the several examples that when the end fixity condi-
tions as regards rotational restraint are varied, the product of the
critical load and the influence coefficient at the point of maximum compli-
ance is very nearly constant for both uniform and nommiform colums. We
novw turn to investigate the influence of variation in lateral restraint at
one end. To study this, we consider the column that is built in at its
root but is free at the tip. The critical ioad for such a colummn when EI
is constant along the length is given by

P =“212"'I
LT,

(54)

T
~

The point of maximum compliance is clearly the tip of the column, and the
flexibility coefficient is from the well-established deflection formula
given by

3
L
f=38 (55)
Thus, the product
re 13 1L
P £-= . SE - D (56)

There is clearly a large discrepancy here. It is interesting, therefore,
to determine at what point along the column the flexibility coefficient
must be determined for this product to have the same value as for the
other cases considered. It follows that, since the coefficient varies with
the cube of the distance of the load point from the root of the columm, the
corresponding  point is defined by the length Ll, where

.

_ oL ~
L =55

A <625L (57)

It is, perhaps, worthwhile to note that this point is not far removed from
that which is determined for the case when the tip is pinned. In that
case, the point of maximum compliance was located at .586 L.

To what degree this near correspondence would be influenced by a reason-
able nonuniformity of section is now studied. The case considered here is
that of a cantilevered column in which the cross-sectional characteristic
is ¢efined by
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2

B -E (1-3%) (58)

&

where EIO is the value of the section parameter at the clamped end and x
is f;?aasuned from that point. The critical load for this structure is given
by

12 EIO
5L

cr

The deflection due to a unit load (the flexibility coefficient) positioned
at a point AL from the fixed ond is given by

-

AL
4

2
- (AL - x) =~ & (60)
1x ]
o ET, [ 1-3 (L)
The point is to determine the value of A which makes the product Pepf have

the value previously established. For this condition to be met, the value
of £ must be given by

3
_ Tt L
! @) W) R 22
A solution of equations {59) and (60) yields the value
A = 0.634 (62)
or
L, = 0.63\L (63)

vhich is remarkably close to the value 0.625 obtained for the uniform
cantilever, equation (56).



I* appears, then, for cantilever-type configurations of uniform or non-
uniform geometry, that the product Perf can be taken as constant with
reasonable error, provided the flexibility coefficient is measured within _
13% of the column midpoint. When the maximum value of the coefficient

falls outside this limit, then, the value at the limit must be used instead. ,

{
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CONCLUSIORS

The research outliiled in this paper has established a pract.cal yet simple
method of determinirg the end fixity of realistic columns. It has been
shown, both analytically and experimentally, that the end fixity coeffi-
clent for a column can be obtained within usual engineering tolerance by
dividing the parameter TPL/48 by the product of the Euler load and the
maximum value of the flexibility coefficient for a point lateral load
applied between 3/8 and 5/8 of the span of the colum. This rul: is appli-
cable for all conditions of restraint, at either end of the column, so

long as tive appliea force is constrained to remain vertical.
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APPENDIX I
FLEXIBILITY COEFFICIENT FOR A TAPERF™ TEAM

Consider the clamped-pinned beam shown in Figure 1b. Tbe section stiffness
EI is variable and is given by

[
- BI, (1-a°F) (64)

where € = x/L and where a is the taper ratin. It is desired to find the
position A for which the flexibility coefficient associated with loads
and displacements at x = AL is maximized. The p- cedure employed here is
the well-known dummy load method.

The first requisite in the analysis is to obtain the actual moment distri-
bution, for which it is necessary to determine the reaction force, R, at
the end of the beam. Toward this objective, the internal complementary
work is given by

L 2
v —i L:—%:IL dx (65)

I/,

/

Since the reactions do no work, the complementary potential is give‘fl by
an expression identical to equation (65). 1In terms of the unknown redun-
dant R, the moment distribution is given by

RL {1-€) - QL (A-) O s E <A
H={m(bg N<Es1 (66)

Substituting equation (66) and equation (64) into equation (65) gives,
after rearrangement,

/
/

T .
2 2

* L~ 2 [ (1-E)74E (1-8)(n-E)
U = 51 1RI 2= RQI .2
o o 1l-a g a g

LA
P e

v o [ 5L ag ) (67)
o l-a g



Now, the force at the end is that R, among all R's in equilibrium with the
later load Q, which permits compatible deformations of the structure;
equivalently,

QU*
= -0 (68)

Carrying out the indicated differentiation of equation ( 67) and solving
for R, we have

(69)

The deflection, &, of the beam is given by the dummy load method as

M Mldx
= (70)

o
U
ot——

where M, is the moment distribution due to the ‘durmy load. In this case,
the dummy load is applied at the same place as the actual load, Q, so

M (x) = £ My (x) (71)

Substitution into equation (70) gives, after rearrangement,

(6/Q) = %U* (72)
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Thus
- .A' / ]
= L~ ro 1-€) - \ + -
3 (5/3) - f—iﬁz { . (R/Q) (1 ?)a;§} g J i€
1 2
+ (R/Q)aj -(l—'—%? d;} (73)
N 1-a€

Now, equation (69) can be integrated in closed form to yield
R 2 1 J_—’
R.( /Q)=a>\ln(lt—:;:)+23(l+>\)ln 1 - a®\®

1 + an

+ 2 1ln -2 an (74)
V1 - a“2\°
where

P
R O A P (75)

1 i 7-1-_?-28

Furthermo.~, substitution of equations (74) and (75) into equation
(73) gives, after considerable simplification,

5
~-3 L—lgl——— = - R (R/Q)2 TN S
5 1l 1l - an
(L /EIO)

thar 1o V1-aA +2 1In 71;2\_“-23}\ (76)
- Pt

Since it was desired to maximize the influence coefficient, it was
necessary to differentiate equations (74) and (76). Carrying out the
differentiation yields, after simplification,

1 4+ a\ 2.2
. aL)‘) + 22 1n 1-a“\ (17

]

Iy )
R, = (/@) =a 1n(

L




or

elid TG =a[x-(R/q)]1n(l+a")

dan L(Lj/EIO) ) 1l - ax

+ 2 [1 - (R/Q) ] InV1 - ag)\d (78)

Hence, the problem of maximizing the influence coefficient is expressed by

. 46 .
-t g LR Lo (79)

Again, it is apparent that the root .. cannot be found in closed form; a
numerical scheme is necessary.

Newton's method was used here, with the iteration being accomplished via
a digital computer. The maximum flexibility coefficient and the associated
position for a taper ratio, a, of 1/3 were found to be:

A = 0.599 (&))
2

f =1.09 x 10 (81)

Taper Maximizing Pinned-End Flexibility -

Ratio Lambda Reaction Coefficient (x 107)
2 589456 416455 1.01000
2 .593348 418838 1.04138
.3 597658 421547 1.07608
it 602422 L2k6 1.11483
.5 607749 428089 1.15850
06 .613806 432163 1.20853
L7 .620837 437029 1.26699
.8 .629294 443103 1.33743
9 .6L00LE 51192 1.42667
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APPENDIX IT

FLEXTBILITY COEFFICIERT FOR A BEAM WITH EQUAL
ROTATIONAL END RESTRAINT

The problem considered is to determine the maximum flexibility coefficient
of a pinned beam with rotational restraint as shown in Figure lc. A com-
plementary energy aporoach similar to that of Appendix I was used. The
problem is symmetric about the beam midpoint, which is cleasrly the point
of maximm flexibility coefficient. The moment distribution can be written

M=Mo+% OstL/e (82)

so the internal complementary energy is

L P
e gy [P s ghn®ong S (@)

The work done bty the spring reaction forces is - M,0, where 6 is the eud
rotation. The total complementary potential 1s then the sum

- v - M_0 _ (84)

The proper value of M, acting in the structure is determined by the prin-
ciple of minimum total complementary potential: .

L (85)

Using equation (84) in equation (85) and solving for Mo yields

M- —ik 86
° 8(1+%) ()

The midpoint defiection can now easily be found either by the dummy load
method or equivalently by Castigliano's First Theorem:

oU
=R (87)

30



Using the latter approach requires determination of the strain energy U:

M2

U=ﬁ(lmo +M%+gi)+— (88)

Now, using equations (86) and (88) in equation (87) gives, after some
manipulation,

1%__[1 u(1+EI)] y 2

/

at the beam midpoint, from which the flexibility coefficient is determined
as .

f=%=13'8'?1[1 EI)] (90)
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APPENDIX IIT
FLEXIBILITY COEFFICIENT FOR A PINNED BEAM WITH ROTATIONAL
RESTRATET AT ONE END

The maximum flexibility coefficient for the pin-ended beam with rotational
restraint at one end (Figure lc with the leftmost spring removed) can be
determined with good accurazy by a Rayleigh-Ritz procedure. This method
“consists of choosing an approximate tion for the deflected shape of .
the beam and then adjusting the unspecified parameters in the function by
minmizing the total potertial energy in the system.

For the present case, " he deflection function

N
mllx
W= I A sin== (91)
m=1

consisting of the first N sin terms was chosen. The total potential energy
can tren be written

2 2
- S n I RPN Y | 1) e (92)

The proper values of the constants, Ai’ are determined by requiring that
il assume a minimum value; i.e.,

O:—' f0r1= 1,2 .oooN (93)

Substituting equation (91) in equation (92) and carrying out the indicated
cperations yields an algebraic equation. Using this in equation (93), then,
~ives a set of simultaneous linear equations determining the constants,

A'_l, as follows:

1

ENE KI‘ TN 3 [ -~ r ]
(=) L A (n7) | ,Z,A, o cos (n'T)

5 gé—i sin (MmF) for m = 1,2 ....N
(94)
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These equations can be solved in a straightforward manner for the constants,
Am, given a valre, A\, for the load position. For the present case, a
direct numerical solution was completed and the resulting coefficients, A -
were used to find the flexibility coefficient at the point AL:

. M) (95)

5
=3 Q

Values of A were adjusted in an iteration sclieme until the flexibility
coefficient assumed a maximum value., The results are presented in Figure 3.
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APPENDIX IV
FLEXIBILITY COEFFICIENT FOR A PINNED BEAM
WITH INTERMEDIATE LATERAL SUPPORT

The maximum flexibility coefficient for the pinmed beam shown iz Figure 1d
with a lateral spring support at its midpoint can be determined ir a direct
manner by energy methods. For values of spring stiffness less than ihat
given in equation (36), i. e.,

K < 16 _E_§ (96)
L

the point of maximum flexibility coefficient (minimum stiffness) is the
midpoint. If a load, Q, is applied here, the moment distribution is

M:Q_;_Rx osst/a

=Q—;—Rx-(q-3)(x-L/2)%sx5L (97)

vhere R is the upward reaction due tec the spring. Essentially, the same
energy procedure outlined in Appeniixes I and II is used here. The total
complementary potential can be written

L
/,
d(g—;—g x)? ax - R(-8) " (98)

m -

2
B .
0

vhere § i1s the midpoint deflectious 'n the downward direction of Q. As
before, the unknown reacticrz, R, has that value which minimizes TT*; equiva-

lently,

0=
3R (99)
Using equation (9¢) in equation (99) and simplifying gives the result

RER QEE BT (100)

1+
kL3

3L

~—-
\‘,
\



The deflection of the spring is just the deflection at the midpoint due to
Q. - Thlls, :

3
_R _ QL 1
d'k'hBEI[ kL3 ] (101)
1+T4rEI

and the flexibility coefficient is given by
>

3
L 1
f = 5 kL3‘ } (102)
1+ 188 :
35
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