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SUMMARY 

The question of column end fixity is critically reconsidered. An effective 
method for determination is established. This method relies upon the fact 
that there exists a readily determined point in the span of tr.e column :or 
which the deflection due to a given side force is maxl.iaic. The product of 
the coefficient which defines the flexibility at this point and the Suler 
load appropriate to the actual end conditions is, to all indents and pur-
poses, constant. 
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IHTRODUCTION 

Discrepansles between the conditions assumed in theory and those achieved 
in the laboratory or In practical application seriously influence the 
agreement between theoretical predictions and actual observations on the 
stability of structures. Admittedly, methods of data interpretation which 
enable valid deductions with regard to the behavior of perfect or ideal 
stroctures to be made from information obtained from tests on imperfect 
or realistic structures have been developed.l>2,3 Nevertheless, there 
are still some aspects of the question that merit further review and con- 
sideration. Prime areas, in this regard, are to be found in the subjects 
of boundary restraint and in the development of nondestructive testing 
methods that can give information with regard to actual behavior under 
service conditions. 

The subject of boundary restraint has long been recognized for the simple 
column. Indeed, since the very earliest tests, ^ experimentalists have, as 
the literature amply illustrates, 5^ 6 striven to develop end fixtures or 
restraint devices that would approximate as closely as possible the bound- 
ary conditions that the analyst can treat. That they have, in many cases, 
closely reached these ideal conditions is borne out by the experimental 
load values that they have achieved. However, it is equally clear that in 
no case do these special devices even begin to approximate the conditions 
met in real structures. We oust admit that theoretical and experimentally 
achieved boundary conditions are often very much apart from conditions of 
realistic restraint. 

The problem is seriously magnified when the instability of a plate is 
examined, for even if the plate is uniform, homogeneous, and Isotropie, 
considerable difficulty is experienced. This viewpoint is readily con- 
finned by a review of the current literature on experimental studies on 
plates. When the subject of sandwich plates is considered, the difficul- 
ties are compounded. The conditions of edge restraint are much more 
complex for structures of this type than for thin plates, a point clearly 
made by Benson and Mayers.7 

With regard to the subject of shells, the matter is no less important; 
however, it has received attention only in more recent times. The majority 
of the work in this area is analytical, but there are several important 
contributions."^9^ 10* 11 12 in stressing the importance of the subject 
with regard to this class of structure, the earlier recognition of the 
problem by Love and Southwell 13* 1^ cannot be ignored. 

In a previous study the various attempts that the experimentalist hau 
made to duplicate, in the laboratory, the conditions prescribed by thf 
analyst have been reviewed. This work was not intended to extend or refine 
these studies. A different approach was followed. From the outset, the 
viewpoint has been that the designer creates that which has never been; 
the analyst investigates that which has been devised. Thus, the axiom on 
which the study was based is that the prime purpose of analysts nust be to 
devise methods of predicting with reliability the behavior of systems which 



are subject to the constraints of reality.    Mathematical analysis and ex- 
perimental study are considered valid only insofar as they lead to evalua- 
tions in this sense; in any other fashion they are purely academic exercises. 
in the literature that exists on the influence of boundary conditions on 
both stability and strength of structures, this point is frequently lost 
sight of.    All too often the theoretician gives no indication of how his 
prescribed boundary conditions migit be achieved in practice or the degree 
of error resulting from deviations.    On the other hand, the experimentalist 
usually tends to conr anträte,  not on determining the parameters which define 
the achievable bour^    ies, but rather on atten^ting to reproduce the condi- 
tions which* the th»       tician .has specified.   The practicing engineer, the 
designer,  requires methods, experimental and theoretical,  of obtaining a, 
relationship between easily determined parameters and actual restraint. 
In this report, we establish a rationale. 
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DISCUSSIOM OF TBEORY 

We begia this study tjy asking what is the influence of boundary restraint 
on the deflection and/or stability of a simple member under various load- 
ing conditions? 

We note,  in the case of a column under axial compression,  that when this 
member is pinned at both ends,  the critical load level is given by the 
expression 

cr L2 

provided the strut is reasonably slender. If the end fixity condition is 
changed from pinned to fixed, then the load level is substantially altered. 
It becomes P 

P  = J^ (2) 
cr     L2 

Now, consider the same simple member, but instead of applying a destabi- 
lizing compressive force, apply a lateral force at its midpoint. There is 
no critical load level for this force system from a stability viewpoint, 
but there is, of course, a critical stress. So long as the load is not 
approaching the level that would induce this stress, the deflection is 
linear with load and, for the two end fixity cases considered, is given by 

6 = IJ^EJ  (pinned ends) _    (3) 

6 = ic^EI  (fiXed ends) (4) 

It is clear from these readily established relationships that the change 
in end fixity from pinned to fixed causes an increase in critical load 
level and a decrease in deflection for a given force. It is inter3sting 
to note that the destabilizing force grows by a factor of four; the 
deflection decreases to one-fourth. Consequently, for these two config- 
urations, the identity 

Pcr * T   "T£~ (5) 

is established. 

6 
Now the quantity — is in essence a flexibility coefficient, and so we may 
say for these two cases, at any rate, that the product of the critical 
load for a centrally loaded slender column and the flexibility coefficient 
for a central lateral force acting on said column is dependent only upon 
the length of the column. Symbolically: 



Per*" = —5H = Constant (6) 

The importance of this relationship, if it can be extended to other cases, 
is clear. It provides the simplest possible method of determining critical 
load from easily obtained quantities. 

It is important to note that the tvo examples given so far have certain 
features in common: 

i 

1. They are for geometrically uniform bodies. 

2. They are for bodies vith symmetry and ideal end support. 

To extend the concept further, ve begin by systematically removing these 
conditions. 

In the first case, the restriction to nonuniform bodies is removed; in 
subsequent sections, the support conditions are varied to reflect realistic 
restraint, including intermediate support. 



NONUNIFORM COLUMNS 

To begin, we consider the strut depicted in Figure la. This strut is non-
•uniform, the two halves having different cross-sectional areas and moments 
thereof. 

The critical load for a strut that is unsynmetrical about the center has 
been investigated by Case,15 who has shown that the value of *Pcr is given 
by the expression 

d (7) 
P " ,P JP cr 1 cr ^ cr 

where iPcr = "the crippling load of a strut with two halves like OA, and 
2p c r = the crippling load of a strut with two halves like OA . It is but 
a matter of simple calculation to show that if fi is the flexibility co-
efficient for a centrally loaded beam of total length L and of,the form 
of OA, and if f2 is the value of this parameter corresponding to a beam 
entirely litre OA7, then the flexibility coefficient for the composite beam 
is given by 

2f = f. + f_ (8) 
x 2 

It follows from equations (?) and (8) that 

, P „ P ( f n + f , ) 
P f = 1 c r V c r ~P £ ( 9 ) 

c r ,P + -P 1 c r ^ c r 

But 
TTL 

Hence, 

,P f . = J f , = T T (10) 1 c r i 2 c r ^ •+-

P f (11) 
c r 

It is apparent from this that the condition of complete uniformity of 
geometry is not essential. We conclude, too, that the point of load appli-
cation is not, therefore, the point of symmetry but rather the point of 
maximum compliance, To extend the argument, we examine next the case 
of a column with continuously varying section geometry. We shall assume 
(for convenience) that the variation in EI is described by the expression 

5 
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and that the end x = 0 is built in while the end x = L is pinned.    It can 
be shown1" that this system has a critical load that is given by 

EI El 
17.79   -p^-   ^ P^ ^ 17.88 —^ (13) 

L C L 

This strut has a 33^ variation in the value of El as we proceed from one 
end to the other, a variation that is greater than one might expect in a 
practical applioation. 

Die flexibility coefficient under lateral force can be computed easily 
from energy considerations (Appendix I).    There results 

L3 
f = 0.0109 -gj- (14) 

o 

and so 

pcrf =0^ "lar ^5) 

The error between this result and that established in equation (6) amounts 
to less than 6^, which, when viewed from a practical point, is excellent. 



NOHUHIFORM SUPPORT 

The simple examples given have provided substantial evidence that a practi- 
cal method for determination of end fixity in columns exists and that its 
application would provide a nondestructive process for determining, in the 
field, those factors that axe  not readily amenable to calculation. But 
there is some weakness in the argument, since all the results presented 
apply to the most mathematically ideal boundary conditions - conditions 
that are similar at both ends of the member, a situation unlikely in 
practice. There is lack of realism, too, in the sense that we have not 
considered the variations in rotational and translational end restraint 
which characterize virtually every frame structure. The analysis is, there- 
fore, extended to cover these situations. 

To begin, we consider the case of a uniform member encastre at one end 
and pinned at the other (Figure lb). This is a classical problem and the 
various parameters are well established. The critical compressive load is 
given by 

P  = 2.05 cr 
T^EI (16) 

Ld 

The flexibility coefficent at the point of maximum compliance (x = O.5Ö6) 
is given by 

T3 

f = 0.00954 |j (17) 

and,   thus,   it followc  that the product 

Pf .0.963 Ä (16) 

This is not precisely of the form of equation (6), but the •+$ variation 
from that value is, nevertheless, small. 

Next, we consider the situation shown in Figure 1c of a pinned uniform 
column but with equal rotational restraint at the ends. The critical 
compressive load for this case is determined as a function of spring 
stiffness from the transcendental equation: 



where 

ill    -     taD u (19) 
kL u K ^^ 

P      =    ^_JI (20) 
cr , ^ 

It is obvious frcra the  support syrnsetry that the point of minimum lateral 
stiffness is the midpoint of the learn.    The  flexibility coefficient,   f, 
is easily determined,   in closed  form,   for this case  (see Appendix II)  and 
is 

f = W  L 1 "   Z 3
ZEI, J W 

The product P    f can be written r cr 

[^^T-SEIT]^ ^) P     f   - 
Tf    u I;(l +    3i) 

KL 

It appears from this result that F    f is no longer a constant for varia- cr ,•   ^ 
tions in support but,   instead,   oy reference  to "^uaticn (■_;,   is  in error 
by a factor 

a;   d\l 4-^   lli (23) 

When the factor a is plotted against spring stiffness,   k (Figure l),   it 
is clear that the variation from unity Is  small and  that the naximm 
error is less than 12^ over all values of end fixity. 

These results can be systematically extended to cases of nonsymraetric 
end restraint.    Suppose the previous example  is  taken but with one spring 
removed.    The critical load for this configuration is du-termiued from the 
transcendental equation 

S=li(  J: i__   ) (PI.) 
kL      ?u v  2u tan cu  J v 
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where again 

P      =   4 u2 ^ (25) 
L 

The flexibility coefficient must now be determined for given values of 
end restraint.    The analysis-is somevhat more involved because the point 
of maximum value (minimum lateral stiffness) depends on end restraint.    A 
summary of the procedure used here is given, in Appendix III.    The product 
of Pcr^ aDd ^e maximum flexibility coefficient is plotted versue end 
restraint in Figure 3»    It is readily apparent here that the product is 
approximately constant for unsymmetric changes in end restraint and ^s 
directly proportional to column length«    -Again,  the constant is 

T5 

and the maximum error is less than 4^ for all values of restraint. It is 
important from a practical point to note here that the locus of points of 
mlnlmim stiffness shown in Figure 3 does not deviate from the column mid- 
point by more than 10^. 

This example can be continued by taking the above spring stiffness as 
infinite and then adding degrees of rotational restraint to the opposite 
end. The critical load for this case is determined from the equation 

cp2(u) = H(u) [3J + t(u) ] (26) 

where 

*w= I [^-^J^'W^iirtsh;]   ^ 
and 

P  = W2 ^ (28) cr       T2 
v  ' 

Li 

Again the flexibility coefficient and its point of mini mum value depend on 
end restraint. When the product Pcrf is plotted against restraint. Figure 
h,  it is clear as before that the result is approximately constant 
throughout the complete range of restraint. The maxinum deviation from 
T^L/W is less than h%  and the locus of points ofminimum lateral stiff- 
ness is within 10^ of the column midpoint. 

11 
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CfTEREEDlATE LATERAL SUPPORT AND HIGHER MODES 

Tho consistency between the many cases studied leads to the prospect that 
a '*• ii' TTII hut approximate relationship might exist between the critical 
instability load and the flexibility coefficient. However, the formilation 
of a general analytic procedure from which such results can be deduced 
appears somewhat more complex at present̂  therefore, it seems more effi-
cient to study the problem further by means of specific exanqples. Quite 
often, in practice, a column will be supported laterally at one or more 
points, such a configuration being adopted generally to in?>rove the load-
carrying ability. In some instances, the intermediate supports can be 
considered as a perfectly pinned or clamped restraint, in which case the 
column nay be subdivided into the intervals between supports, which in turn 
may be taken as columns with applied end moments. For many other practical 
cases, though, the intermediate supports are far from ideal and, for pur-
poses of analysis, can be represented by rotational and lateral springs 
located at discrete points. The spring stiffness, then, can be specified 
to reflect closely the stiffnesses of real supports. An exanple of such 
a construction is depicted in Figure Id, where a pinned column is subjected 
to a lateral spring restraint at its midpoint. The critical compressive 
axial load for synmetric deflection is determined when the spring reaction 
tends to infinity and is defined by 

sin u f- sin u + u(l - l6û  cos u 1 = 0 (29) 
L kL 

where ? FT % 
P._ ̂  7 (30) cr L 

Now, when k = 00 (rigid support), the lowest nontrivial root is u = TT, 
from which 

P = ^ 2 ^ (31) 
cr L 

and when k = 0 (no suppor t ) , the lowest r oo t i s u = TT/2, from which 

p = n 2 ^ (32) 
cr L 

* 

These are clearly the cases when two waves a.nri one wave are produced, and 
they establish limits on u. As k is increased from zero, the lowest root 
of equation (29) corresponding to symmetric buckling is determined when 
the bracketed term vanishes. This happens only so long as 

lU 



! . iöu2 EI  so (33) 

klT 

or 

i6Tr EI    L 

If this value is larger than Pcr for a rigid support, then the column 
must buckle with two waves. The transition from one to two waves occurs, 
then, when 

P = (P ) for two waves (35) \ cr 

or when 

k., i6TT2^ (36) 
IT 

For k greater them this value, antisymmetric buckling occurs as defined by 
equation (30). For k less than this value, symmetric single-wave buckling 
occurs at a load when (see equation (29)) 

- sin u + u(l - l6u —-, ) cos u = 0        (37) 
kL-3 

The solution can be represented approximately as 

p
cr = f1 + "^ ' ^ (36) cr 16TT^ EI        L 

Vien  the spring stiffness is zero or less than that defined in equation (39), 
the point of minimum lateral stiffness is clearly the midpoint. The 
flexibility coefficient as shown in Appendix IV is then 

-) 
f = TBir   L—1

—T-] (39) 
1 + WEI 

15 



Using equation (j  ), there results 

pc/^4 m 

where 

_3ja/_ 

ct=iri6T^Ei (2+1) 

1 + l^ll 

The f8«:tor Qt is then a measure of the deviation of Pf from the constant 
value and is plotted versus k in Figure 5.    It is evident that the maxi- 
mum error is less than 7^ and occurs at the transition from the first to 
the second buckle mode. 

Now,  when •==—    > l6TI ,   there is an inflection point at L/2,   and minimum 
lateral stiffness clearly does not occur here.    It does occur,  however,   at 
two points located midway between the ends and center support.    This 
requires some modification of our previous results.    Consider the simulta- 
neous application of a point load,  Q,   at one of the points and an equal 
and oppositely directed load at the other.    The sum of the resulting de- 
flections is 

0 —1 + l-j     9£-El ^; 

and, if we define a new flexibility coefficient 

LJ 

then 

192 El 

41^ El   Lj     '^L 

(^3) 

cr 2    T2   192 EI   40 v  ; 

1, 



4-> 

CO <u « 
3 u 
a? 
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i B "3 i) 
3 S 

S* 
^ 3J 
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o 

e 
•H 
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which is just the same result as that for the earlier examples. 

This approach can also be extended to other situations in which higher 
modes are critical. The first example taken is that of a column that is 
encastre at both ends and pinned at a center support. In this case, the 
buckle mode is again antisymmetric and, using equations (l6) and (17)> 
the points of ndnimum stiffness occur at X = 0.29 L and 0.71 L. If 
oppositely directed loads, Q, are applied at these points, then it follows 
in a similar manner to the previous case: 

6 = 61 + 62 = 2 (.00984) SL|i. (U5) 

and 

?2 S | = 0.002W ^ {li6) 

The critical ccanpressive load is 

P  = 2.05TT2 -P* = 8.2^ % (U?) 
(|)2        L2 

and so 

giving em error of 3^» 

*J2    '    -^W <«) 

If we consider buckling in the third mode for a pinned-ended column,  then 
one can show that three alternating forces are required and that if 

~        61 + 62 + S 

th-^n 

V - 4 (50) 

with zero resulting error. 

18 



It is possible to treat higher mode buckling cases with the various 
boundary conditions discussed earlier by subdividing the colynm at inflec- 
tion points into a series of column elements. As before, the flexibility 
coefficient must be defined by applying forces, to each element at points 
of nrin-iTwim stiffness and summing the fflagnituckc of the deflections pro- 
duced; then 

n 
Z 6, 

?n ' IT W 

and 

The Pf product is exact for pinned-ended conditions. Since for higher 
mode buckling, with other end conditions, the interior portion of the 
column deforms into sinusoidal waves, it can be concluded that the error 
for these cases diminishes with increasing buckle mode. 

These results suggest a generalized procedure for situations when the 
buckling load corresponds-to higher modes. The maximum generalized flexi- 
bility coefficient, rn = c 6i/Q> must be determined for4all contemplated 
modes by first applying a single concentrated lateral load and then adding 
additional loads in an alternating fashion, in each case adjusting the 
positions of the loads so that the deflection stun is a maximum. This de- 
fines the "maximum flexibility" configuration for that mode, and the mode 
with the lowest value will then be preferred, so that 

*X ~  4 (53) er n 
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( LATERAL RESTMIM! AT ÖHE EBP 

We have illustrated by the several examples that when the end fixity comii- 
tions as regards rotational restraint axe varied, the product of the 
critical load and the influence coefficient at the point of mxtomm compli- 
ance is very nearly constant for both uniform and noounlform columns. We 
now turn to investigate the influence of variation in lateral restraint at 
one end. To study this, ve consider the column that is built in at its 
root but is free at the tip. The critical joad for such a column vhen El 
is constant along the length is given by 

«   Tr EI /„ix 

The point of maxiaam ccompliance is clearly the tip of the column, and the 
flexibility coefficient is from the veil-established deflection formula 
given by 

L3 
f'-TSf (55) 

Thus,   the product 

cr       ^T    3^=12^ (56) 

There is clearly a large discrepancy here. It is interesting, therefore, 
to determine at what point along the column the flexibility coefficient 
must be determined for this product to have the same value as for the 
other cases considered. It follows that, since the coefficient varies with 
the cube of the distance of the load point from the root of the column, the 
corresponding point is defined by the length L,, where 

5L 
L1 = fi ~ .625L (57) 

It is, perhaps, worthwhile to note that this point is not far removed from 
that which is determined for the case when the tip is pinned.    In that 
case,  the point of maximum compliance was located at .586 L. 

To what degree this near correspondence would be influenced by a reason- 
able nonuniformity of section is now studied.    The case considered here is 
that of a cantilevered column in which the cross-sectional characteristic 
is cefined by 
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Ix2 

KI = EIo(l-|%) (58) 
Li 

where EI   is the value of the section parameter at the cl«m)ed end and x 
is measured from that point.    The critical load for this structure is given 
by 17 ' 

12 KC 
Pcr = -T^ (59) r       5L 

The deflection due to a unit load (the flexibility coefficient) positioned 
at a point XL from the fixed end is given by 

XL                    2 

=   J _JM-JÜ -.   to (ft)) 

o^oL1-?^] 

The point is to determine the value of X which makes the product Pcrf have 
the value previously established. For this condition to be met, the value 
of f mist be given by 

f=(i2) (1*0) 'ir (6l) 

A solution of equations (59) and (60) yields the value 

X = 0.634 (62) 

or 

1^ = 0.63^ (63) 

which is remarkably close to the value O.625    obtained for the uniform 
cantilever, equation (56). 
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I* appears, then, for cantilever-type configurations of unifonn or non- 
unifora gecnetry, that the product Per? can he taken as constant with 
reasonable error, provided the flexibility coefficient is measured vithin _ 
13£ of the column midpoint. When the madjam value of the coefficient 
falls outside this limit, then, the value at the limit must be used instead. 
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COHCLÜSIOHS 

The research outlined In this paper has established a practical yet simple 
method of determining the end fixity of realiftic columns. It has been 
shown, both analytically and experimentally, that the end fixity coeffi- 
cient for a column can be obtained within usual engineering tolerance by 
dividing the parameter Tl2!/^ by the product of the Euler load and the 
nuMrfiwyii value of the flexibility coefficient for a point lateral load 
applied between 3/8 and 5/8 of the span of the colrunn. This rul3 is appli- 
cable for all conditions of restraint, at either end of the column, so 
long as the applied force is constrained to remain vertical. 
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APPENDIX I 

FLEXlBILIT5f COEFFIdEWT FOR A TAPERT" ^EAM 

Consider the clamped-pinned beam shown in Figure lb.    The section stiffness 
El is variable and is given by 

El = El 
o (l-a2?2) (6U) 

where  § = x/L and where a is the taper ratio.    It is desired to find the 
position \ for which the flexibility coefficient associated with loads 
and displacements at x = \L is maximized.    The p- -cedure employed here is 
the well-known dumny load method. 

The first requisite in the analysis is to obtain the actual moment distri- 
bution,  for which it is necessary to determine the reaction force, R,  at 
the end of the beam.    Toward this objective,  the internal complementary 
work is given by 

/-r 4l 2EI    d* (65' 
/ / 

Since the reactions do no work, the complementary potential is giveh by 
an expression identical to equation (65). In terms of the unknown redun- 
dant R, the moment distribution is given by 

,RL (1-5) - QL (\-S) 0 * § * \ 

"l = IBL (l-§) X * § * 1 (66) 

Substituting equation (66) and equation (64) into equation (65) gives, 
after rearrangement. 

2 El    I        -       -,     -— -       .    -- o o      1-a ^ o      1-a c, 
l-J^    -HQji^d^ 

X .2 
Q2 J (^-.r   <i§ } (67) 

o    1-a t' 
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Now, the force at the end is that R, among all R's in equilibrium with the 
later load Q, which permits compatible deformations of the structure; 
equivalently, 

IF = 0 (68) 

Carrying out the indicated differentiation of equation (6?) and solving 
for R, we have 

J ™-s)  d§ 
(R/Q)= f ±2-£  (69) 

o       1-a § 

The deflection, 6, of the beam is given by the dumny load method as 

6 = I ^ (70) 
o 

where MQ is the moment distribution due to the dummy load. In this case, 
the dumny load is applied at the same place as the actual load, Q, so 

/ 

Mo (x) = ^ Ml (x) (71) 

Substitution into equation (70) gives, after rearrangement. 

(6/Q) = -%U* (72) 
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„.. ,_ , ■—. an^w—luitiH^)»—IW 

Thus 

T ( ^ A) - : EI o 1 - a I 

(R/Q)2 J   1L^1_    d§ \ 
\    1 - a2r      J 

Now,   equation (69) can be integrated  in closed form to yield 

MR/(a)- a\ in (Y-T^) + 2a (1 + X) in 

I 
(73) 

,,   , 1 + a\ 
+ 2  In w ij    - 2 a\ I TTf 

VI - a"^ 
(7U) 

where 

R,   = 
2  ,     1 + a        i     . 

a    In r    + ^ In 1 - a /T T    n .      1 + a a    + 2 In - 2a (75) 

Furthermov^   substitution of equations (7U) and (75)  into equation 
(73) gives,  after considerable simplification. 

^3 Qa) 
(L3/EI ) 

r,  /-R/^N2 2 2 ,       1 + a\ V A)   + a ^ ln r^x 

+ ha\ In  \/ 1 - a2\2 + 2 In      } + aX    ^    - 2a\    (76) TT: 2^ a \ 

Since  it was desired to maximize the influence coefficient,   it was 
necessary to differentiate equations (7U) and (76).    Carrying out the 
differentiation yields,   after simplification. 

Ri K 
(F/Q) = a2 ln (H^) + 2a ln r, 2^2 \J l-a \ (77) 
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or 

a 
dX    L(LJ/EI0)  J L J ! -  a- 

2 [l - (R/Q) ] in /TT ax (78) 

Hence,   the problem of maximizing the influence coefficient is expressed by 

f M ^1-^ 
(L3/*T  )   J 

=     0 (79) 

'El 

Again,   it is apparent that the root ,. cannot be found in closed form; a 
numerical scheme is necessary. 

Newton's method was used here,  with the iteration being accomplished via 
a digital computer.    The maxlmua flexibility coefficient aod the associated 
position for a taper ratio,  a,   of l/3 were found to be: 

\ = 0.599 (80) 

f = 1.09 x 10 -2 
(81) 

Taper Maximizing Pinned-End Flexibility 
Ratio Lambda Reaction Coefficient (x 10 

«»- .589456 .416455 1.01000 
.2 .5933^8 .418838 1.04138 
• 3 .597658 .1*21547 1.07608 
.h .602^22 .1*246 1.111*83 
.5 .6077^9 .1*28089 1.15850 
.6 .613806 .432163 1.20853 
.7 .620837 .437029 1.26699 
.8 .629294 .443103 1.33743 
.9 .6^40046 .451192 1.42667 
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APPENDIX II 

FLEXIBILITY COEFFICIEirr FOR A BEAM WTIH EQUAL 
 ROTATIONAL EgD REgERAIMT  

The problem considered Is to determine the maximum flexibility coefficient 
of a pinned beam with rotational restraint as shown in Figure 1c.   A com- 
plementary energy approach similar to that of Appendix I was used.    The 
problem is symmetric about the beam midpoint, which is cle«ii-ly the poin^ 
of maxi Timm flexibility coefficient.   The moment distribution can be written 

M=M+3|     0 * x i.L/2 (82) 

so the internal complementary energy is 

L 
h1 

u* '   Fiii   I -^  =  Flä ^o   * »o* + ^ <83) 

The work done by the spring reaction forces is - MQQ, where 9 is the e*id 
rotation.   The total complementary potential is then the sum 

TT* =   U* -    MB (SU) 
o 

The proper value of V^ acting in the structure is determined by the prin- 
ciple of minimum total complementary potential: 

Using equation (8U) in equation (85) and solving for M   yields 

M   =    ^r (86) 
°       8(l + g) 

The midpoint deflection can. now easily be found either by the dunny load 
method or equlvalently by Castigliano'? First Theorem: 

■    ».| (37) 
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Using the latter approach requires determination of the strain energy U: 

V-älj^o**,^*^)*^ (68) 

Now, using equations (86) and (88) in equation (87)  gives,  after some 
manipulation. 

"TIEIL1- Ml + S) J (89) 

at the beam midpoint,  from which the flexibility coefficient is determined 
as 

O 
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APPEHDIX m 
FLEXIBILITY COEFFICIEirr TOR A PDDIED BEAM WITH ROTATIONAL 
 REglRAJlfr AT OHE EHD  

The maxlmim flexibility coefficient for the pin-ended beam with rotational 
restraint at one end (Figure 1c with the leftmost spiring removed) can be 
determined with good accuracy by a Ravleigh-Ritz procedure.   This method 
consists of choosing an approximate nmction for the deflected shape of 
the beam and then adjusting the unspecified parameters in the function by 
mlnari zing the total potential energy in the system. 

For the present case,  ^.he deflection function 

W =   I   A   sin 5££ (91) 
m=l   in L 

consisting of the first N sin terms was chosen.    Tbe total potential energy 
can t^en be written 

n = |lf(5f| )' dx + |[^f-aw(M) (92) 
~    b      äx 

The proper values of the constants, A ,  are determined by requiring that 
iT assume a minimun value; i.e., 

0 = |?     for i = 1,2  ....N (93) 

Substituting equation (91) in equation (92) and carrying out the indicated 
operations yields an algebraic equation.    Using this in equation (93)^   then, 
rives a set of simultaneous  linear equations determining the constants, 
A  ,   as follows: 
n 

(x T Ara -      H m" ^s (nT) [ ^^    nH cos (nTT)  J 

= 2 ^^r    sin (\mlT) for m = 1,2  ....N 
El 

(9U) 
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These equations can be solved in a straightforward manner for the constants, 
'«BU given a valne, \, for the load position. For the present case, a 
direct numerical solution was completed and the resulting coefficients, A . 
were used to find the flexibility coefficient at the point \L: 

f = | = *fi (95) 

Values of \ were adjusted in an iteration srheme until the flexibility 
coefficient assumed a maximun value.    The results are presented in Figure 3. 
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APPENDIX IV 
FLEXIBILflY CQEFFICXEWr FOR A PINNED BEAM 

WITH mSRMEDIATE LATERAL SUPPORT 

The oaxlnun flexibility coefficient for the pinned beam shown in Figure Id 
with a lateral spring support at its midpoint can be determined in a direct 
manner by energy methods.    For values of spring stiffness less than that 
given in equation (36),  i. e., 

k < 16T12 ^ (96) 
L^ 

the point of mwYjTmyti flexibility coefficient (ndnimun stiffness) is the 
midpoint.    If a load, Q,  is applied here,  the moment distribution is 

M = ^ " R x 0 i x i Ij/2 

= lf£ x - (Q - R)(x - L/2) §   ^ x ^ L (97) 

where R is the upward reaction due to the spring.    Essentially, the same 
energy procedure outlined In Appenaixes I and II is vised here.    The total 
complementary potential can be written 

% 
n* = W   1    (^f^)2<ix-R(.6) *     (98) 

0 

where 6 is the midpoint deflectiou .?.n the downward direction of Q.    As 
before,  the unknown reaction, R, has that value which minimizes TT; equiva- 
lently, 

n      OTT* 
0 = OR (99) 

Using equation (96)  in equation (99) and simplifying gives the result 

k  
kB EI R = TJT^F (100) 

1+       3 kL^ 

3U 
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V 

The deflection of the spring is just the deflection at the midpoint due to 
Q. . Thus, 

1 + WEi 

and the flexibility coefficient is gi-ven by 

1 + Wm. 
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