UNCLASSIFIED

AD NUMBER

AD863260

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; AUG 1969. Other requests shall be referred to Air Force Aero Propulsion Laboratory, Attn: APRT, Wright-Patterson AFB, OH 45433.

AUTHORITY

AFWAL ltr, 22 Dec 1983

THIS PAGE IS UNCLASSIFIED

AD 836 260

AFAPL-TR-69-82

INVESTIGATION OF THE IGNITION PROPERTIES OF FLOWING COMBUSTIBLE GAS MIXTURES

> Darrell W. Walker Larry A. Diehl William A. Strause Rudolph Edse

and hard on the sold of the sold of the second of the sold of the

The Ohio State University Columbus, Ohio

September 1969

Contract F33615-68-C-1580

Air Force Aero Propulsion Laboratory Air Force Systems Command United States Air Force Wright-Patterson Air Force Base, Ohio

FOREWORD

Π

Π

I

Π

Π

Π

TH

Π

PARAMETER ST

T

This report was prepared by W. A. Strauss, D. W. Walker, L. A. Diehl, and R. Edse, of the Department of Aeronautical and Astronautical Engineering of The Ohio State University on Contract No. F33615-68-C-1580, "Investigation of the Conditions Leading to Spontaneous Ignition in Flowing Explosive Gas Mixtures." The work on this task was administered under the direction of the Air Force Aero Propulsion Laboratory (AFSC), Hamjet Engine Division, Wright-Patterson Air Force Base, Ohio, with Mr. W. Lee Bain as Project Engineer.

This technical report covers the research conducted on Contract No. F33615-68-C-1580 during the period 15 April 1968 through 14 July 1969. Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

> W. LEE BAIN Project Engineer Air Force Aero Propulsion Laboratory Wright-Patterson AFB, Ohio 45433

ABL TRACT

Π

ANY A

Ignitive delay times, ignition temperatures, and spontaneous ignitions were determined for several combustible gas mixtures behind incident and reflected shock waves passed into the static or flowing gases.

The conditions leading to spontaneous ignition of floring hydrogen-oxygen mixtures without the presence of shock waves were also determined. Hydrogen air mixture did not ignite spontaneously under the range of experiments conducted.

Although certain observations indicate that the spontaneous ignition can be produced by aerodynamic heating, it must be assumed that other phenomena could als cause these ignitions. The observed high temperatures in the resonating gases should have been sufficient to ignite the hydrogen-air mixtures.

While the ignition temperature and ignition delay time of methane-air and ethylene-air mixtures do not depend on the motion of the unburned gas mixture, those of hydrogen-air mixtures were much lower behind incident than behind reflected shock waves.

A brief discussion of the mechanism of ignition under the various conditions is included.

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Aero Propulsion Laboratory, APRT, Wright-Patterson Air Force Base, Ohio 45433.

TABLE OF CONTENTS

		Page
List of Symb	ools	vii
Section		
I	INTRODUCTION	1
II	APPARAT''S, INSTRUMENTATION, AND METHOD	2
	A. Conventional Shock Tube Apparatus	3
	B. Apparatus for Driving a Shock Wave into Flowing Gas	3 7
	C. Autoignition Apparatus	7
III	RESULTS	9
	A. Shock Ignition Temperatures	14
	B. Ignition Delay Times	14
	C. Autoginition Experiments	14
IV	DISCUSSION OF RESULTS	40
REFERENCES		47
APPENDIX T	COMPOSITION OF TEST GASES	49

 \prod

Π

Π

Π

Π

Π

Π

THE REAL PROPERTY IN

HADRA!

(annual

Manual

Π

. []

5

÷

~~

·

LIST	OF	FIGURES
------	----	---------

•

4

Π

Π

[

Π

B

Γ

Ω

Π

[]

Π

Π

a Navel

the second se

Figure No.		Page
1	Conventional Shock Tube Apparatus	4
2	Apparatus to Shock Initially Flowing Gas Mixtures	5
3	Apperatus for the Study of Spontaneous Ignition in Flowing Fuel-Oxidizer Mixtures	8
¥	Shock Wave Passing from a Shock Tube into Free Space	10
5	Shock Wave Passing from a Shock Tube into a M = 0.36 Airflow	11
6	Shock Wave Passing from a Shock Tube into a M = 0.94 Airflow	12
7	Shock Wave Passing from a Shock Tube into a $M = 1.80$ Airflow	13
8	The Effect of Pressure on the Ignition Temperature of Stoichiometric Methane-Air Mixture (Reflected Shock Data)	17
9	Shock Ignition Temperatures of Hydrogen-Air Mix- tures as a Function of Initial Flow Mach Fumbers	18
10	The Effect of Pressure on the Ignition Temperature of Stoichiometric Hydrogen-Air Mixtures (Reflected Shock Data)	19
11	Ignition Delay Times of Hydrogen-Air Mixtures	20
12	Ignition Delay Times of Methane-Air Mixtures	21
13	Ignition Delay Times of Ethylene-Air Kixtures	22
14	The Variation of Pressure Fluctuations as a Function of Fuel Line Mass Flow Late	35
15	Oscillograph Traces of Pressure Variations in Fuel Line as a Function of Mass Flow Rate through Fuel Lint	3 6
16	Stop Action Schlieren Photographs and End Wall Pressure Variations of a Square Fuel Line	38

LIST OF FIGURES - (Continued)

4126

Figure No.		Page
-7	Streak Schlieren Photograph of Pressure Waves on a Square Fuel Line	39
18	The Effect of Pressure on the Ignition Tempera- ture of Flowing and Static Hydrogen-Air Mixtures	41
19	Ignition Temperature Versus Particle Mach Number for Hydrogen-Air Mixtures	10
20	Conditions Illustrating the Effect of Gas Flow on the Ignition Temperature of Stoichiometric Hydrogen-Air Mixtures	43

LIST OF TABLES

Table No.

I	Shock Ignition Temperstures of Hydrogen-Air Mixtures	15
II	Shock Ignition Temperatures of Stoichiometric Methanc-Air Mixtures	16
111	Shock Ignition Temperatures of Stoichiometric Ethylene-Air Mixtures	16
VL	Ignition Delay Times of Stoichiometric Hydrogen- Air Mixtures	23
V	Ignition Delay Times of Methane-Air Mixtures	25
VT	Tonition Delay Times of Ethylene-Air Mixtures	29

15axt	
Chus Westware	Concerns of
والمستحدث والمستعد والمستعد المستعد	Presson 1
ann fan Grannel, Krimennel Anne	[
	A summary
والمراجع والمراجع المراجع المراجع	
	a statement
a ser an	Province of
والمتحدث والمراجع المحادثة والمحادثة والمحادثة	Tananan I
والما المخمصة سلامة المأتيك المحمل ينسبه معمدانية أشباء والمعاركتين	
Arribert Databaren Arreda	and the second
ليديرين المراجعة الم المراجعة المراجعة الم	
THE ACTORNEY	The second
Harry Callie Yeathers	No. of Contemport

i . .

.....

¥ |

ţ

•

17. CANES

になった。このでいたというない

LIST OF SYMBOLS

frequency

mess flow

pressure

time

temperature

particle speed

mole fraction

ignition delay time

concentration of O2 species

preshock gas conditions

tube (Fig. 2)

conditions at ignition of mixture

mole percent of hydrogen species in mixture

preshock gas flow conditions at inlet of flow tube (Fig. 2)

preshock gas flow conditions 6.4 cm before exit of flow

Mach mmber

.

• ,

10,00	8~*	
AND A DUAL AND A	ß	F
A CHARMER		M
		A
		P
		T t
Same of		
	I	U
		Ĵ
	لالتعالي	5
		[02]
		[0_] #2_
	F	
	Π	Bubscripts
	Π	i
		ig
	Π	î,în
		x et
	Π	
	Π	RC
	Ľ	r
	Π	р
		Ĩ
	ß	0
	E	1
	U	2
	F	
Current Services	L.	

NAS.

.1

RC fuel line charber resonance conditions (Fig. 3) r reflected shock conditions p oxidizer line chamber conditions (Fig. 3) ¥ vave C stagnation in conditions 1 initial gas conditions in conventional shock tube 2 conditions behind incident shockwave vii

L. INTRODUCTION

The performance of a hypersonic ramjet engine is best when the flow of gas in the combustor is supersonic at all times.¹ Fuels presently being considered for the scramjet engine are hydrogen and the lower molecular weight hydrocarbons. The ignition properties of the various fuel-air mixtures at supersonic speeds are of considerable importance to the design of this type combustor. In the first part of the present study, the minimum ignition temperatures and the ignition delay times of potential scramjet propellants were measured as a function of mixture ratio, gas velocity, and pressure. The second phase of this study deals with the autoignition of flowing fuel-oxidizer mixtures. The latter phenomenon represents a serious safety hazard when flowing combustible mixtures are employed.

No.

The minimum is rition temperatures of fuel-air mixtures may be calcul too from the thermal explosion limit theory.? However, available experimental data on the minimum ignition temperatures of various fueloxidizer mixtures indicate that this theory is generally not valid.³ The actual ignition texperatures depend greatly on the technique used to heat the gas mixtures (shocks, external heat addition) and on its initial pressure of the combustible gas mixture. For methane-oxygen mixtures, Shepherd⁴ gave the minimum ignition temperature as 520°K (using incident shock waves) while Kane and associater⁵ reported a value of 840°K; they used a reaction chamber. Fay⁵ and Belles³ measured the minimum ignition temperatures of hydrogen-oxygen mixtures behind incident shock waves and reported values of 630°K and 780°K, respectively. Belles also determined the minimum ignition temperature of a stoichiometric hydrogen-air mixture and reported a value of 637 K (which is 150°K below the value calculated from the explosion limit theory). Craig,⁷ in a study on the effect of additives on the inition delay times of hydrogen-air mixtures, found the minimum ignition besperature to be 440°K. He employed incident shock waves to heat the combustible gas mixtures. However, ignition occurred behind reflected shock weves only when the mixtures exceeded temperatures of 880°K at the same final pressure. The latter author stoributed this discrepency to contamination of the mixture by loose deposits on the inside wall of the shock tube.

The ignition delay times of hydrogen-air and various hydrocarbonair mixtures as a function of temperature behind reflected shock waves have been reported by various authors.²⁻⁷² Montchiloff[®] and Nicholls¹² conducted a theoretical investigation c.' the effect of nitrogen gas on the ignition delay times of hydrogen-saygen mixtures. They concluded that it has practically no effect on the ignition delay times; this result also agrees with experimental data. Data on the ignition delay times of static methane-air mixtures are generally not available in the literature.

The conditions behind shock waves driven into flowing combustible gas mixtures are of great practical importance because of the potential application of the detonative c abustion mode in hypersonic ramjet combustors. McKenna¹³ measured detonation wave speeds in flowing (subsonic and supersonic) hydrogen-oxygen mixtures. Hamilton¹⁴ determined the shock ignition characteristics of flowing (subsonic) hydrogen-oxygen mixtures. In the latter study, it was reported that the shock strength required to produce ignition of the mixture decreased with increasing Mach number of the gas flow. Preliminary experiments with flowing fueloxidizer mixtures at this laboratory revealed that autoignitions of these mixtures can occur even when the total temperature of the flowing mixture is far below the established minimum ignition temperature of the mixture. In his investigation of the propagation of detonation waves through flowing combustible gas mixtures, McKenna reported "accidental detonations" which were initiated at various positions along the tube for both supersonic as well as subsonic gas flows. Bollinger et al.¹⁵ reported similar phenomena for hydrogen-oxygen mixtures but at much lower flow velocities. The latter authors suggested that the autoignitions resulted from a catalytic reaction caused by the pyrofuse ignition. In a study of the combustion of hydrogen-air mixtures in a supersonic flowstream, Tanagno et al.¹⁸ reported that ignition of the mixtures occurred at temperatures well below the accepted minimum autoignition temperature of the mixture.

Sector Sector

Since flowing explosive gas mixtures are used in the study of supersonic compution problems, it is imperative that the conditions of autoignition be thoroughly understood. It was the basic purpose of this investigation to study the ignition properties and autoignition characteristics of flowing hydrogen-air and flowing hydrocarbon-air mixtures. From a practical point of view these studies are of great importance because it can be expected that the results will have a great influence on the design of ramjet combustors.

II. APPARATUS, INSTRUMENTATION, AND METHOD

The investigation consists of three separate studies, each of which required different experimental apparatus and instrumentation. A conventional shock tube apparatus was employed to measure the minimum ignition temperatures and ignition delay times in static fuel-air mixtures behind reflected shock waves. Another shock tube apparatus was used to measure the minimum ignition temperatures and the ignition delay times of flowing fuel-air mixtures. In this case, shock waves were driven into the flowing mixtures. A third experimental apparatus was used to study the avoignation properties of fuel-oxidizer mixtures without assistance from a shock tube. The details of these experimental set-ups, and the corresponding instrumentation and operation are discussed in separate paragraphs below.

A. CONVENTIONAL SHOCK JUBE APPARATUS

Figure 1 is a sketch of the conventional shock tube apparatus and instrumentation used for the measurements of the ignition temperatures and delay time of fuel-air mixtures behind reflected shock waves. The driver and driven sections of the tube have an inside diameter of 3.4 cm and are 3.5 and 5.8 meters long, respectively. Mylar burst disphragma rerved to separate the driver and driven sections. Helium - No - Ar gas mixtures were used as the driver gas. The fuel-air mixtures being investigated were prepared in a high-pressure vessel. This vessel was pressurized first with the oxidizer and then with the fuel to provide the desired fuel-to-oxidizer mass ratio (perfect gas conditions were assumed to apply). After both gazes were introduced into the cylinder the gases were mixed with a paddle wheel agitator. The initial pressures of the driven gas were selected to produce the desired pressure behind the incident shock (or reflected shock). All initial pressures were measured with Wallace and Tiernan absolute pressure gages. The conditions of temperature and pressure behind the shock wave were calculated by means of the normal shock relations with the measured incident shock speeds. The arrival of the incident shock wave was indicated by platinum strip thermal gages which were separated by a known distance. From the times (measured with the aid of an oscilioscope) required for the shock to traverse the distance between the two probes the shock speeds were easily determined. Ignition of the mixtures was ascertained by monitoring the radiation from the flames with an RCA 1228 photomultiplier tube. Ignition delay times were determined (detected by a platinum strip thermal gage) and passage of the combustion wave past the same location (as detected by a photomultiplier tube).

B. APPARATUS FOR DRIVING A SHOCK WAVE INTO FLOWING GAS

Figure 2 is a sketch of the apparatus to study the minimum ignition temperatures and ignition delay times of flowing combustible gas mixtures. The system consists of a flow-metering and flow-control apparatus, a mixing chamber, a flow nozzle, a flowing gas tube, and a shock tube assembly.

The fuel and oxidizer flow rates were metered with sharp-edged, flat-plate orifice flow meters. The flow meters were of the "pipe tap design" and conformed to the American Gas Association (AGA) and American Society of Mechanical Engineers (ASME) standards.¹⁷ The nominal inside diameter of the tubes was 5.0 cm. The gas pressure in the meters was regulated with Grove Lome pressure regulators, while the mass flow through the system was throttled by means of Appin control valves. The pressure drop across the flat-plate orifice was resured with a Barton differential pressure indicator, while the gas pressure was measured by a Bourdon pressure gage.

٤

Figure 1 - Conventional Shock Tube Apparatus

5-13 N

and on a

]

trivia

The nozzle assembly was used to produce the desired Mach numbers of the flows of the combustible gas mixtures in the flow tube. The channel through which these flows were passed consisted of a housing capable of holding various axisymmetric nozzles for supersonic and subsonic operation. These nozzles were made of copper to reduce the passibility of burnout when the combustible mixtures ignited. Π

ion Area

Π

Three different length flow-tube sections were used in this study. The lengths of the tubes depended on the desired Mach number (from Fanno flow theory¹⁸) and the characteristics of the combustible mixture being studied. The lengths of the three sections used were 2.9, 2.1, and 0.6 meters. The flow tubes were constructed from stainless steel tubes having an inside diameter of 4.25 cm and an outside diameter of 5.0 cm. This particular inside diameter was selected since it is close to the tube diameters of other researchers making similar studies. Moreover, it was reported by Bollinger¹⁹ that sizes smaller than this value can have significant wall effects. The inside surface of the tube was polished to avoid disturbances of the gas flow.

Pressure transducers and heat transfer gages were used to measure the speed of the shock wave at different positions in the flow tube. The probes were located to permit measurements of the shock speed at the exit of the flow tube as well as at various upstream positions. The former probe position was used primarily for the minimum ignition temperature studies while the latter positions were used primarily for the ignition delay time studies. Ionization probes were used to detect the point at which ignition of the mixtures occurred and to measure the speed of the combustion wave. The times required for the waves to traverse the distance between the probes were obtained from oscilloscope traces in the usual manner.

The Mach number of the gas flow at various positions along the flow tube was determined from pressure measurements at the inlet, the center, and the exit of the flow tube.

The inner diameter of the shock tube was the same as that of the flow tube. For the experiments with hydrogen-air mixtures the shock tube consisted of a 0.75-meter driver section and a 1.2-meter driven section. Measurements in methane-air and ethylene-air mixtures were made with a shock tube having a 1.22-meter driver section and two driven sections 2.9 and 2.75 meters long. The increased length of the shock tube for the latter systems was necessary because these systems have longer ignition delay times and therefore require greater test times. Hydrogen or helium gases were used as driver gas (depending on the shock-d-gas temperatures required). Mylar diaphragms were used for the lower shocked-gas temperatures. Air was used as the buffer gas in the driver section of the shock tube for the hydrogen-air and ethyleneair experiments. Nitrogen gas was used as the buffer in the driven section of the shock tube for the methane-air experiments since the shocked-gas temperatures for this study were very high and ignition of the hydrogen driver and air buffer could occur. A thin aluminum foil diaphragm was placed over the exit of the shock tube to prevent the flowing combustible gas mixture from diffusing into the driven section of the shock tube.

The experimental data collected for the ignition temperatures and ignition delay times in flowing mixtures included the time increments required for the shock or combustion wave to travel between the sensing probes (ionization gages, platinum strip thermal gages, and Kistler piezoelectric pressure transducers). The times were measured with two Tektronix Storage Oscilloscopes (Type 564) and a Dual Beam Tektronix Oscilloscope (Type 555) in the usual manner.

The procedure used to conduct the experiments for measuring the minimum ignition temperature and the ignition delay time follows. The fuel and oxidizer gas flows are adjusted to the proper values to produce the desired fuel-oxidizer mixture ratio, mass flow, and Mach mumber at the exit of the flow tube. The driver section of the shock tube is pressurized until the diaphragm separating the driver and driven section ruptures (breaking pressure is dependent on the displorage thickness). The shock wave moves through the driven section of the shock tuke and breaks the thin alumimm foil at the exit of the shock tube. The shock wave then traverses the space between the shock tube exit and the exit of the flow tube (marimum distance = 5.0 cm for the M = 1.8 flow). The shock wave then passes through the flowing gas mixture in the flow tube. The speed of the wave in the flow tube is measured by the sensing probes. The ignition delay times are measured in a manner similar to that described in Part A of this section of the report.

C. AUTOIGNITION APPARATUS

The flow control and metering equipment was essentially the same as that used for the determination of the ignition properties of flowing gas mixtures (described in Part B of this section). Figure 3 shows the arrangement which was used to test the flowing mixtures for autoignition. The design consisted of individual fuel and oxidizer inlets at the base of the mixture tube. The basic inlet configuration is depicted in Figure 32 while alternate configurations are depicted schematically in Fig. 3b-3e. The fuel and oxidizer inlet tubes were 0.8 cm inside diameter (stainless steel) while the mixing tube was 2.25 cm inside diameter (also stainless). The length of the mixing tube was varied from 6.3 to 50.0 cm.

An apparatus was designed to indicate the presence of electrically charged particles in the flowing combustible gas mixtures. This apparatus was similar to the basic flow configuration equipment (Fig. 3a) and had a mixing tube length of 61 cm. The charge sensing device consisted

E

of (1) an electrostatic probe and (2) a pair of electrostatically charged plates.

The experiments were conducted by first stabilizing the oxidizer (air or oxygen) and then adding the fuel (hydrogen). A wide range of fuel and oxidi or flow rates were checked to establish the autoignition characteristics with the various tube designs. The charge detection experiments were conducted with nonpremixed gases to avoid demage in case of autoignition. Thermocouples and piezoelectric pressure transducers were used to measure the temperature and pressure variations within the feed lines and mixture tube.

III. RESULTS

a Cremun

The various investigations were carried out with commercial gases. The sources and the manufacturers' analyses of these gases are listed in Appendix I. The initial conditions of the flowing mixtures were determined from nozzle theory and Fanno flow theory.¹⁸ The conditions of the shocked gas were calculated from normal shock theory and from measurements of the shock speed. The shock tube and the flow tube were separated (Fig. 2) a distance such that the end of the shock tube did not affect the gas conditions (pressure, Mach number, etc.) at the exit of the flow tube. To correctly evaluate the conditions of the gases behind the shock wave as it passed into the flow tube, it was necessary to know the nature and the form of the shock wave as it passed through the gap between the two tubes. Schlieren stop-action photographs were taken of typical strength shock waves as they passed through the gap into varying gas flows. The speed of the shock wave leaving the shock tube was approximately 700 m/sec. Figures 4, 5, 6, and 7 show the nature of the shock for gas flow Mach numbers of 0.0, 0.36, 0.94, and 1.8, respectively. The gap distances for the various flow cases are given in the figures. For the propagation of a normal shock wave into static air (M = 0, Fig. 4), the normal shock surface at the axis of the system decreases in size and the wave becomes completely spherical after traveling a distance of approximately 5 cm. For the M = 0 experiments, however, no air gap was necessary and it can be expected that the shock is normal in the driven section. For the flowing gas cases, it is seen from Figs. 5-7 that the shock wave traverses the gap between the two tubes in an essentially normal fashion. It can, therefore, be expected that the shock wave in the flow tube is also normal. Of course, losses at the gap will decrease the shock strength. The latter, however, is of no particular significance since the shock speeds were measured in the flow tube. Measurements showed that the decrease in shock speeds for the system with a tube gap were about the same as those without a gap. For the Mach 0.36 and 0.54 cases, there is some evidence that the gases are resonating in the gap region.

Π

[

A Statutes a

Training the

CHARMEN STATE

Monton .

Summer .

I

Ī

فيحكوم ناذكا أصورهم والاستشادي

í.

(đ)

A. SHOCK IGNITION TEMPERATURES

The minimum shock ignition temperatures of various flowing fuelair mixtures are tabulated in Tables I, II, and III. The minimum ignition temperatures of flowing stoichiometric methane-air and stoichiometric ethylene-air mixtures at 15 atm pressure are approximately 940°K and 740°K, respectively. A study of the pressure dependence of the ignition temperature of static stoichiometric methane-air mixtures was made. The results of this investigation are plotted in Fig. 8 and tabulated in Table II.

Results of the minimum ignition temperature measurements as a function of initial flow Mach number for various hydrogen-air mixtures are plotted in Fig. 9 and tabulated in Table I. These data indicate that over the pressure range studied the minimum ignition temperature is dependent on the particle speed. The effect of pressure on the static ignition temperature of the stoichiometric hydrogen-air mixture was also studied and the results are tabulated in Table I and plotted in Fig. 10.

B. IGNITION DELAY TIMES

The products of the ignition delay time and the caygen gas concentration of the stoichiometric hydrogen-air, the stoichiometric methaneair, and the stoichiometric ethylene-air mixtures for various temperatures are plotted in Fig. 11, 12, and 13 and tabulated in Tables IV, V, and VI, respectively. These data include the ignition delay times of both flowing as well as static mixtures. As can be seen from these figures, the ignition delay times of the methane-air and the ethyleneair mixtures are dependent only on the static temperature and the oxygen gas concentration. Equations of lines representing mean square fits of the data points are given in the figures. Scatter of the data points is believed to be caused by flame spinning which is known to occur rlow-temperature burning. Ignition delay times of hydrogen-air mixtures. These temperatures are below the minimum ignition temperature of static hydrogen-air mixtures.

C. AUTOIGNITION EXPERIMENTS

Spontaneous ignitions of flowing hydrogen-oxygen mixtures were investigated for a variety of flow rates, and inlet geometries. A systematic study of the autoignition Alenomenon of this mixture was undertaken with the apparatus shown in Fig. 3. To avoid the accumulation of large amounts of unburned fuel and oxidizer in the test bay, the oxidizer flow was always established first and, thereafter, the fuel was added. Inlet configurations other than the dismetrically opposed case (offset and radial variations, shown in Figs. 3b-d)

Mi	% H ₂	Tig(°K)	Т ₀₂ (°К)	$P_2(ats)$	U ₂ (mps)	Ma	Mw	T _i (°K)
Flow	System	Data			,			
0.0 0.36 0.94 0.94 0.94 1.78 1.83 1.76 1.72	29.6 29.6 18.4 25.0 29.6 45.0 29.6 33.6 45.0	538.6 534.7 783.7 621.8 601.1 605.0 774.7 757.0 705.5 684.4	659.5 595.0 908.0 680.0 652.0 656.0 844.0 818.0 746.0 734.5	5.32 5.08 13.58 9.55 9.00 7.71 7.80 6.87 6.75	585.0 422.8 563.0 386.7 375.4 424.8 437.3 427.9 412.1 419.6	1.068 0.775 0.902 0.667 0.650 0.648 0.648 0.685 0.659 0.652 0.610	2.21 2.15 3.29 2.75 2.69 2.705 4.039 4.048 3.76 3.726	288.0 295.1 257.8 259.8 257.8 257.7 188.5 184.0 180.0 188.3

Table I - Shock Ignition Temperatures of Hydrogen-Air Mixtures

A PARTY OF THE PAR

P ₁ (mm Hg)	% H2	Tig(°K)	P2(mm Hg)
Conventional	Shock	Tube Data	
50.0 190.0 517.0	29.6 29.6 29.6	700.0 640.0 570.0	417 1370 2845
P ₁ (mm Fg)	% H2	T _{ig} (°K)	P _r (mm Hg)
Conventional	Shock	Tube Data	
50.0 100.0 160.0 200.0 375.0	29.6 29.6 29.6 29.6 29.6 29.6	800.0 800.0 800.0 860.0 850.0	910 1830 3040 4520 7910

and Selen	
A DESCRIPTION OF A DESC	
Construction of Astronomy	
東京の設計	
	and the second second
36	Terra aller
	1
	C. Parking
	Automotion A
	Normal Statements
A DESCRIPTION OF A DESC	Articles and
and a state of the second second]]
مالية المرام الأطر	[]
	Π
•	I

]

Π

I

مندار وسأدفع أكلاه ككيرو

Mi	Tig(°K)	Т ₀₂ (°К)	$F_2(atm)$	U ₂ (mps)	M2	M _w	T₁(°K)
Flow	Syst:em Da	ta					
0.33 0.90	943.0 923.7	1200.0 1162.0	16.12 19.92	898.0 743.4	1,453 1.214	3.89 4.08	272.4 243.3

Table II - Shock Ignition Temperatures of Stoichiometric Nethane-Air Mixtures

· As sufficiently we have a sufficient of

Π

П

Π

Π

Π

I

Π

E

Π

Π

Ľ

Π

P ₁ (m 4g)	Pr(atm)	Tig(°K)
Conventional	Shock Tube	Data
30.0 40.0 60.0 120 7 280.0	1.735 2.095 3.00 7.55 13.4	1100.0 1100.0 1100.0 1115.0 1015.0
350.0	15.2	960.0

Table III - Shock Ignition Temperatures of Stoichiometric Ethylene-Air Mixtures

Mi	Tig(°K)	T _{o2} (°X)	P ₂ (atm)	U ₂ (mps)	Ma	Mw	T _i (°K)
Flow	System Da	ta					
0.33 0.90	747.6 746.0	967.0 892.0	11.62 15.03	699.4 570.7	1.298 1.053	3.20 3.51	277.9 244.3

P ₁ (m Hg)	P _r (atm)	T _{ig} (°K)
Conventional	Shock Tube	Data
30 300	3.075 6.70	915 730

Π

調理

Π

Π

n

Π

Π

Constant.

I

Π

Figure 8 - The Effect of Pressure on the Ignition Temperature of Stoichiometric Methane-Air Mixture (Reflected Shock Data)

900 Flowing System O Ignition ☑ No Ignition 800 Ignition Temperature (°K) $M_{1} = 1.8$ 700 Mi = 0.94 600 500 20 30 10 40 50 Percent Hydrogen

Π

and the second s

102 104

ALCONAL STREET

Ĩ

No Alert

I

Trans.

Ι

]

Π

Π

Π

Figure 10 - The Effect of Pressure on the Ignition Temperature of Stoichiometric Hydrogen-Air Mixtures (Reflected Shock Data)

Figure 11 - Ignition Delay Times of Hydrogen-Air Mixtures

That Qr .T

ALL STREET

Ĩ

Π

Π

Π

Ω

Π

Π

Party of the

Concernation of the second

Figure 12 - Ignition Delay Times of Methane-Air Mixtures

THE REAL

Ī

Ľ

l

$\dot{m}_{air} = 16$ $\dot{m}_{H_2} = 5.$ $M_{i,in} = 0.$ $M_{i,x} = 0.$.42 gm/sec .325	$P_{i,in} \simeq 1$.296	T _{io} = 278°K T _{i,in} = 272°K T _{i,x} = 271°K	
T ₂ (°K)	P ₂ (atm)	[02] (mol/3)	т (µsəc)	$\begin{bmatrix} 0_2 \end{bmatrix}_T \ge 10^3$ (mol µsec/l)	1000/T ₂ (°K ⁻¹)
759 778 897 930 930 742 724 1051 564 571 564 571 564 572 910 622 735 612 1010 1010 1010 1090	11.00 11.45 14.10 14.75 14.75 10.65 10.22 17.45 6.74 6.74 6.74 15.08 13.77 7.63 10.01 7.39 15.86 15.86 15.86 15.86 15.86 15.86 15.86 15.86 15.86	0.0262 0.0267 0.0284 0.0287 0.0287 0.0259 0.0259 0.0254 0.0216 0.0216 0.0216 0.0216 0.0216 0.0212 0.0216 0.0212 0.0286 0.0273 0.0286 0.0273 0.0282 0.0282 0.0282 0.0282 0.0287 0.0287	$\begin{array}{c} 153.0\\ 170.1\\ 84.1\\ 54.4\\ 85.5\\ 192.5\\ 108.3\\ 28.6\\ 153.0\\ 236.0\\ 236.0\\ 236.0\\ 236.0\\ 153.0\\ 175.5\\ 91.0\\ 153.0\\ $	4.00 4.52 2.38 1.56 2.45 4.98 2.75 0.858 3.30 5.09 4.42 3.30 3.73 2.60 4.35 3.68 2.78 2.96 3.4 0.898 1.56 1.115 0.467 0.598	1. 317 1.285 1.150 1.075 1. 348 1.382 0.952 1.773 1.773 1.773 1.773 1.773 1.773 1.773 1.750 1.773 1.773 1.828 1.03 1.10 1.61 1.36 1.36 1.36 1.36 1.36 1.36 1.63 0.99 0.99* 0.998 0.918
816 877 795	11.53 12.81 11.09	0.0254 0.0265 0.0251	70.9 40.8 76.9	1.8 1.85 1.97	1.225 1.14 1.26

Table IV - Ignition Delay Times of Stoichiometric Hydrogen-Air Mixtures 'Flow System Data)

ALL AND A

 \prod

I

л Ц

Ĩ

A Designed

TTU I

Π

Π

Π

IJ

]

 \prod

adanan ang beraharan baharan ang baharan perangkan ang beraharan beraharan di sebut di sebut di sebut di sebut

*Data obtained at second ionization probe detecting ignition.

fl.

I

I

ł

102-01

P ₁ (mm Hg)	T _r (°K)	Pr(aim)	[0 ₂]	т	$[0_2]_{\tau \times 10^6}$	1000/Tr
			(mol/l)	(µsec)	(mol µsec/2)	(°K-1)
50	1135	2.50	0.00398	40	0.159	0.882
50	988	1.86	0.00341	260	0.867	1.013
50	1107	2.38	0.00389	42	0.163	0.904
50	1307	1.97	0.00345	310	1.07	0.993
50	967	1.81	0.00338	260	0.879	1.035
50	1030	2.06	0.00362	100	0.362	0.972
50	1135	2.51	0.00398	60	0.239	0.882
50	1158	2.60	0.00405	40	0.162	0.863
50	965	1.81	0.00338	140	0.473	1.035
50	920	1.60	0.00316	920	2.91	1.096
50	955	1.76	0.00332	280	0.930	1.047
50	980	1.86	0.00343	200	0.686	1.021
50	994	1.92	0.00349	200	0.715	1.006
50	1082	2.28	0.00279	80	0.303	0.924
50	1046	2.14	0.00370	32	0.118	0.956
50	597	1.93	0.00349	80	0.279	1.005
50	905	1.58	0.00317	1300	4.12	1.110
50	1015	2.01	0.00357	80	0.286	0.985
50	905	1.58	0.0031.4	920	2.89	1.103
50	885	1.51	0.00308	3540	10.9	1.130
50	825	1.28	0.00280	4470	12.5	1.210
50	785	1.15	0.00264	5840	15.4	1.270
140	1015	5.63	0.00560	50	0.28	0.985
80	1055	3.47	0.00592	50	0.296	0.950
120	840	3.20	0.00688	4 140	32.6	1.190
120	855	3.34	0.00/05	2950	20.8	1.170
100	810	2.46	0.00548	3100	3.7.0	1.230
160	825	4.07	0.00889	2980	26.5	1.210
160	815	4.00	0.00885	384C	34.0	1.230
160	870	2.89	0.00596	3860	23.0	1.150
ැත	830	2.58	0.00561	3600	29.2	1.205
100	878	2.97	0.00613	2300	14.1	1.140
100	812	2.48	0.00551	2160	11.9	1.230
100	847	2.73	0.00589	4310	25.4	1.180
100	8 30	2.60	0.00563	4580	25.8	1.205
100	790	2.34	0.00534	4360	23.3	1.267
100	765	2.39	0 .005 62	8340	46.9	1.305
200	913	6.43	0.0127	1000	12.7	1.905
200	875	5.87	0.0120	2200	25.5	1.140
200	895	6.17	0.0125	2900	36.2	1.120
170	905	5.36	0.0107	1200	12.8	1.100
350	905	11.05	0.0219	1700	37.2	1.100
376	852	16.40	0.0219	2280	50.0	1.172
50	885	1.50	0.00306	1805	5.52	1.130
50	900	1.56	0.00317	1550	4.92	1.110
50	965	1.82	0.00338	745	2.52	1.030
50	1070	2.24	0.00377	35	0.132	0.935
50	1003	1.96	0.00347	331	1.15	0.997
50	1035	2.07	0.00364	55	0.200	0.967
50	835	1.32	0.00265	2490	7.1	1.2

Table IV - (Continued) Ignition Delay Times of Stoichicmetric Hydrogen-Air Mixtures (Conventional Shock Tube Data, $T_1 = 300^{\circ}$ K)

PACKET LINE TO A

$\dot{m}_{air} \approx 558.4 \text{ gm/sec}$ $\dot{m}_{CH_2} \approx 32.45 \text{ gm/sec}$		$\eta_{\text{sir}} = 0.905$ $\eta_{\text{CH}_{4}} = 0.095$		T _{lo} = 278°K T _{l,in} = 260°K T _{l,x} = 243°K	
Mi,in = 0.62 Mi,x = 0.90		Pi,in = 1.592 atm Pi,x = 1.056 atm		-1 ₅ X = 2-1 ₅ 1	-
T ₂ (°K)	P ₂ (atm)	[02] (mol/1)	T (µsec)	[02]7 x 10 ⁵ (mol µsec/1)	1060/T_ (°K ⁻¹)
		0.0497 0.0497 0.0509 0.0509 0.0520 0.0520 0.0523 0.0523 0.0523 0.0523 0.0473 $\eta_{air} = 0$ $\eta_{cH_4} = 0$ $P_{i_sin} = 3$ $P_{i_sx} = 0$	0.095 1.028 atm	7.95 8.53 8.00 10.50 6.95 7.40 7.48 10.40 9.35 $T_{10} = 273^{\circ}K$ $T_{1,*n} = 273^{\circ}K$ $T_{1,x} = 272^{\circ}K$	1.083 1.083* 1.057 1.057* 0.580 0.580* 0.5%6 0.5%6 0.5%6
T ₂ (°K)	P ₂ (aim)	$\frac{[\uparrow,]}{(mol/l)}$	τ (μsec)	[02]7 x 10 ⁵ (mol µzec/2)	1000/T ₂ (~K ⁻¹)
967.0 1206.0 1206.0 1045.0 967.0 967.0 967.0 943.0 982.0 982.0	16.8 23.6 23.6 18.95 18.95 16.8 16.8 16.1 16.1 17.2 17.2	0.0403 0.0448 0.0448 0.0458 0.0458 0.0403 0.0394 0.0394 0.0327 0.0327	1559 637 834 1200 1385 1559 2049 1844 1712 1660 1750	6.03 2.85 3.72 5.50 6.33 6.03 8.25 7.28 6.80 6.73 7.10	1.035 0.829* 0.947 0.947* 1.035 1.035 1.050 1.060* 1.020 1.020*

Table V - Ignition Delay Times of Methane-Air Mixtures (Flow System Data)

. .

فقارتك كالابتحم كالشعد

States and the second

ماتا وتشادلان اللار

 \prod

Π

I

Π

Π

I

Π

 \square

franke.

Transa I

The second se

]]

:

*Data obtained at second ionization probe detecting ignition.

Table V (Continued)

INNA

The second se

Contraction of the local division of the loc

Ĩ.

I

Longer Longer

-

erest,

(Conventional Shock Tube Data) Emission Data: Mathane-Oxygen-Nitrogen (9.51:19.0:71-49)

ARRING THE

5. . . . (L. 2)

÷ 2

4

P ₁ (mm Hg)	Т _r (°К)	P _r (atm)	$\begin{bmatrix} 0_2 \end{bmatrix}$ (mel/ℓ)	τ (μsec)	$\frac{[C_2]_{\tau} \times 10^{\beta}}{(\text{mol } \mu \text{sec}/\ell)}$	$1.000/T_{r}$ (°K ⁻¹)
					and a second	
20	1570	2.32	0.00343	466	1.595	0-637
20	1525	2.21	0.00332	617	2.05	0.656
20	1540	2.24	0.00337	306	1.03	0.649
20	1410	1.92	0.00316	536	2.64	0.709
20	1570	2.32	0.00343	425	1.435	0.637
20	1370	1.78	0.00302	1108	3.34	0.729
20	1410	1.92	0.00314	1145	3.58	0.709
20	1650	2.61	0.00366	145	0.53	0.606
20	1520	1.91	0.00292	520	1.52	0.658
20	1490	2.11.	0.00328	435	1.43	0.672
20	1520	1.92	0,70306	725	2.22	0.658
20	1360	1.76	0,00300	1170	3.5	0.735
20	1375	1.80	0.00304	1130	3.44	0.727
20	1250	1.50	0.00280	2750	7.68	0.800
20	1230	1.47	0.00276	2370	6.55	0.813
20	1570	2.32	0.00344	480	16.5	0.637
280	1065	15.1	0.0329	4000	131.7	0.939
280	1060	15.1	0.0331	1430	47.3	0.944
280	1000	13.4	0.0311	1490	46.4	1.000
350	960	15.2	0.0368	4080	150.0	1.042
280	1055	14.7	0.0323	1630	426.0	0.949
60	1360	5.30	0.00914	690	6.3	0.735
50	1230	3.60	0.0088	1580	10.7	0.814
60	1185	4.06	0.00795	1370	10.9	0.843
60	1155	3.80	0.00762	1654	12.6	0.866
60	1120	3.55	0.00735	2640	19.4	0.893
60	1115	3.32	0.00719	2930	21.0	0.930
60	1940	3.08	0.00688	3100	21.3	0.960
60	1030	3.00	0.00616	6000	40.6	0.971
80	1145	4.88	0.0099	2800	27.7	0.873
80	1100	4.46	0.0094	2130	20.0	0.908
90	1080	4.85	0.0104	3000	31,2	0.926
95	1180	6.18	0.0121	1950	23.6	C.925
98	1265	7.41	0.0136	900	12.25	0.79
98	1188	6.45	0.0126	2360	29.7	0.842
100	1160	6.25	0.0125	2450	30.6	0.362
115	1155	7.13	0.0143	850	12.1	0.865
120	1180	8.50	0.0167	1700	28.4	0.847
120	1130	7.72	0.0158	6200	98.0	C.884
120	1160	8.15	0.01 6	1900	31.0	0.862

P ₁ (mm Hg)	T _r (°K)	Pr(atm)	[02] (mol/l)	τ (µsec)	$[0_2]_{T} \times 10^{6}$ (mol µsec/g)	$1000/T_{r}$ (°K ⁻¹)
40	1350	3.40	0.00585	400	2.34	0.74
45	1225	3.16	0.00598	820	4.32	0.816
45	1216	3.14	0.0060	2780	16.6	0.823
48	1125	2.89	0.00595	3090	18.4	0.889
110	1225	7.74	0.0146	2170	31.7	0.815
110	1205	7.50	0.0144	1700	24.5	0.829
112	1080	5.91	0.0127	4330	55.0	0.926
272	875	9.10	0.0241	5200	126.0	1.14
30	1460	3.04	0.00484	350	1.69	0.694
30	1535	3.40	0.00514	250	1.28	0.651
30	1570	3.47	0.00513	115	0,59	0.637
30	1500	3.20	0.00495	270	2.34	0.667
30	1385	C.72	0.00456	530	2.11	0.722
30	1340	2.57	0.00445	1430	6.35	0.746
30	1250	2.25	0.00418	1985	8.3	0.300
30	1360	2.63	0.00449	1130	5.08	0.735
30	1280	2.37	0.00433.	1760	7.6	0.782
30	1260	2.29	0.00123	3290	13.9	0 . 793
30	1255	2.27	0.0042	1950	8.19	0.796
30	1310	2.45	0.00434	1770	7.69	0.763
30	1260	2,29	0.00423	2500	10.6	0.793
30	1250	2.23	0.00418	2400	10.1	0,800
30	1375	2.70	0.00456	830	3.78	0.727
30	1510	3.24	0.00497	680	4.37	0.662
30	1420	2.86	0.00468	740	3.47	0.704
30	1210	2.07	0.00398	1:000	15.9	0.827
30	1275	2.29	0.00417	2360	9.85	0.784
30	1275	2.29	0.00417	2600	10.8	0.784
30	1115	1.8	0.00375	4950	18.5	0.898
30	1155	1.92	0.00386	4760	18.3	0.865
30	1105	1.76	0.00370	4550	18.6	0.905
30	1125	1.82	C.00374	3750	` + _O	0.89
30	1130	1.84	0.00378	2760	_0_4	0,885
<u></u> 40	1153	2.55	0.00514	2370	15.3	0.867
40	1125	2.42	0.00499	3550	17.7	0.883
40	1130	2.45	0.00503	4150	20.9	0.885
40	1060	2.13	U.00466	3330	15.50	0.944
40	1080	2.21	0.00473	3940	18.6	0.926
40	1532	4-40	0.00070	180	1.2	0.653
40	1490	4.20	0.00652	475	3.1	0.671
40	1325	3.37	0.00590	970	5.72	0.755
40	1490	4.21	0.00656	745	4.9	0.671
40	1455	4.00	0.00637	1050	6.7	0.687
40	1275	3.10	0.00565	1560	8.8	0.784

Table V - (Continued)

 $\left[\right]$

Π

Î

Tunud

Π

Π

Π

 \prod

Π

 \Box

Π

I

A STATE

Π

Π

Π

 \square

Ĩ

والمتعادية والمنافعة المتعادين والمعالية المتعادية والمنافع والمراجع المتعادية والمعادية والمعادية والمعالية والمعادية

and the second second second second

and the second second

A set a set a

<u>.</u>

P ₁ (mm Hg)	Τ r (°K)	P _r (atm)	[02] (mol/%)	τ (µsec)	$ \begin{bmatrix} \Omega_2 \end{bmatrix}_{\tau} \times 10^{\beta} \\ (\text{ mol } \mu \text{sec}/\ell) $	1000/T _Y (°K ⁻¹)
40	1270	3.10	0.00565	1ó50	9.34	0.787
40	1236	2.92	0.00548	1790	9.8	0.810
40	1220	2.87	0.00545	2280	12.4	0.820
40	1190	2.71	0.00528	2370	12.5	0.840
100	1250	7.50	0.0139	2200	30.6	0.80
100	1255	7.57	0.0139	1390	19. ^h	0.795
110	1195	7.53	0.0146	2070	30.2	0.837
150	1228	10.85	0.0205	380	7.8	0.814
155	1180	10.30	0.0203	1670	33.8	0.847
200	10%7	11.05	0.0240	1930	46.4	0.93E
75	1250	5.63	0.0104	1590	16.6	0.800
30	1310	2.49	0.00441	1120	4.94	0.764

Table V - (Continued)

AREAD

West Land

devel 7

10.20

A VERTICIA A

Number of

ч

÷

. 110.00

1.1.
	-	-			
m _{air} =	184.4 gm/sec	Neir =	0.9346	T _{io} = 283°K	
^m C ₂ H ₄ =	12.5 gm/sec	[¶] C ₂ H ₄ ⁼	0.0654	T _{i,in} = 278°K	
Mi,in =		Pi in =	1.054 atm	$T_{i,x} = 277^{\circ}K$	
M _{i,x} =	0.33	Pa =	1.003 atm	- ;	
<u>کول</u>		×و1-			
$T_2(^{\circ}K)$	$P_2(atm)$	[0 ₂]	т	$[0_2]_{\rm T} \ge 10^8$	1000/T ₂
-2/ -//	*2(awi)	(mol/2)	(µsec)	$(mol \mu sec/l)$	(°K-1)
747.0	11.65	0.0372	1392	51,60	1.340
1039.5	18,65	3.0428	137	5.86	0.967
844.0	13.95	0.0394		39.20	1.185
844.0	13.95	0.0394	1037	40.80	1.185*
747.0	11.65	0.0372	1430	53.20	1.340
747.0	11.65	0.0372	1546	57.70	1.340*
767.0	12.10	0.0375	1021	38.40	1.305
767.0	12.10	0.0375	1060	39.60	1.305*
825.0	13.53	0.0392	757	29.60	1.212
825.0	13.53	0.0392	778	30.50	1.212
803.0	12.93	0.0386	807	31.00	1.255
803,0	12.93	0.0386	807	31.00	1.255*
1200.7	22.55	0.0447	48.1	2.10	0.833
1200.7	22.55	3.0447	28.9	1.29	0.833
2739-5	18.65	0.0426	191.7	8.18	0.962
1:78.4	19.61	0.0435	55.6	2.42	0.928
÷	565.13 gm/sec	· • -	0 0326	T _{io} = 278°K	
		"air T	0.9346		
	38.3 gm/sec	¶C2H4 [≠]	0.0654	T _{i,in} = 260°K	
M _{i,in} =	0.62	Pi,in =	1.627 ata	Ti,x = 244°K	
Mi,x =	0.90	₽i,x =	1.072 atz		
1075	24.6	0.0548	184	10.10	0.93
990	22.2	0.0537	97	5.20	1.01
1075	24.6	0.0548	142	7.79	0.93
1172	27.5	0.0561	139	7.8	0.85
829	17.45	0.0502	329	16.50	1.207
795	16.42	0.0494	762	37.60	1.26
826	17.35	0.0499	237	11.85	1.21

Table VI - Ignition Delay Times of Ethylene-Air Mixtures (Flow System Data)

......

Post-

Π

 \Box

 \square

 \square

П

 \Box

Π

 \Box

- min

Table VI - (Continued)

Γ

Tarabanan B

La suit

1. · · ·

I

I

I

Ι

I

I

I

I

I

I

j.

-

ş

.mair = 184.38 gm/sec	$\eta_{air} = 0.9568$	$T_{io} = 283^{\circ}K$
m _{C2H4} = 8.065 gm/sec	¶C2H4 0.04322	^T i,in = 278°K
$M_{i,in} = 0.31$	P _{i,in} = 1.054 atm	$T_{i,x} = 277^{\circ}K$
$M_{i,x} = 0.33$	$P_{i,X} = 1.000 \text{ stm}$	

- In the second of a

T ₂(°K)	P ₂ (atm)	[02] (mol/l)	τ (µsec)	[0 ₂]τ x 10 ⁶ (mol μsec/ℓ)	1000/T ₂ (°K ⁻¹)
1042.5 1042.5 977.2 977.2 870.1 1042.5 1042.5 920.2 920.2 870.1 828.4 920.2	18.70 18.70 17.10 17.10 14.50 18.70 18.70 15.75 15.75 14.50 13.50 15.75	0.044 0.044 0.043 0.043 0.043 0.0409 0.044 0.044 0.042 0.042 0.042 0.042 0.042 0.040 0.040	274 165 116 107 235 183 155 319 216 362 635 648	12.10 7.26 4.98 4.60 9.61 8.06 6.82 13.40 9.02 14.80 25.40 27.40	0.959 0.959 1.023 1.023* 1.150* 0.959 0.959* 1.087 1.087* 1.150 1.208 1.087
920.2 720.0 720.0 720.0 720.0	15.75 10.90 10.90 10.90 10.90	0.042 0.0374 0.0374 0.0374 0.0374	604 1013 1013 1097 1223	25.70 37.70 37.70 41.00 45.80	1.087* 1.389 1.389* 1.389 1.389 1.389

*Data obtained at second ionization probe detecting ignition

30

Table VI -	(Continued)
------------	-------------

.

.

-Hochuck Scool School Active States

I

T

Sugaran B

Summer S

Property 1

Transferra 1

Tanana a

 \Box

a substantia di substanti di su

.

(Conventional Shock Tube Data) (Emission Data: Ethylene-Oxygen-Nitrogen (6.54:19.63:73.83)

P ₁ (mm Hg)	Tr(°K)	P _r (atm)	$[0_2]$ (mol/ ℓ)	τ (µsec)	$\begin{bmatrix} 0_2 \end{bmatrix}_T \times 10^8 \\ (\text{mol } \mu \text{sec}/\ell) \end{bmatrix}$	1000/Tr (°K ⁻¹)
204	1140	12.75	0.0267	170	4.54	0.876
300	982	13.50	0.0328	920	30.2	1.018
295	942	12.07	0.0306	1210	37.0	1.062
296	876	10.28	0.02805	1550	43.5	1.141
296	857	9.74	0.02715	2600	70.55	1.168
300	830	9.08	0.0262	3200	83.7	1. 34
ž96	827	8.88	0.02565	4000	102.6	1.21
300	773	7.70	0.0238	6430	153.0	1.294
298	767	7.49	0.02333	5230	124.0	1.306
300	732	6.71	0.0220	6870	151.0	1.369
525	850	16.9	0.046	2790	128.0	1.18
475	893	17.2	0.0447	1300	58.2	1.12 0.8
15	1250	1.132	0.00216	40	0.0864	0.873
15	1145	0.942	0.00195	240	0.47	0.865
15	1153	c.865	0.00194	270	0.523 1.4	0.892
15	1320	0.903	0.00192	730		0.945
15	1058	0.800	0.00179	1430 2280	2.56 3.65	1.036
15	965	0.652	0.00160 0.00210		0.0945	0.826
15	1035	1.062		45 12	0.0234	0.716
15	1150	1.40	0.00199 0.00418		0.1045	0.829
30	1210	2.12	0.00404	25 220	0.89	0.852
30	1175	1.99	0.00404	40	0.168	0.823
30	1215	2.14	0.00404	190	0.44	0.852
30	1175	1.99 1.68	0.00369	830	3.06	0,922
30	1085		0.00296	160	0.632	0.865
30	1155	1.92 1.62	0.00290	1150	4.18	0.938
30	1066	1.02	0.00303	7350	22.2	1.09
30	915	1.34	0.00320	3260	10.4	1.02
30	980 980	1.38	0.00334	3870	12.9	1.01
30	990	.1.50	0.0000	010	<i>)</i>	
Absorptio	on-OH					
30	1120	1.81	0.00383	650	2.5	0.893
30	1042	1.54	0.00354	1940	6.85	0.960
30	990	1.86	0.00392	350	1.37	0.881
30	1087	1.69	0.00370	450	1.67	0.920
30	1140	1.87	0.00392	60	0.236	0.877
100	965	4.35	0.0108	3300	35.6	1.037
100	865	3.34	0.00925	4900	45.2	1.16
80	1035	4.05	0.00935	950	8.9	0.965
70	1100	4.02	0.00875	360	3.16	0.910
				-	~ • • • •	

31

.

P ₁ (mm Hg)	T _r (°K)	P _r (atm)	[02] (mol/1)	τ (µsec)	$ \begin{bmatrix} 0_2 \end{bmatrix}_{\tau} \times 10^8 \\ (\text{mol } \mu \text{sec}/\ell) $	$1000/T_{r}$ (°K ⁻¹)
Reflected		hylene-0x .327:0.98	ygen-Nitrog 2:98.691)	en		
15 1., 15 15 15 15 15 15 15	1333 1450 1312 1270 1320 1120 1115 1080 1175	1.05 1.24 1.02 0.958 0.905 0.750 0.746 0.700 0.830	0.0000954 0.0001325 0.0000850 0.000090 0.0000805 0.0000805 0.000080 0.000085	20 30 65 90 155 1470 1330 1900 1000	0.19 0.3074 0.608 0.436 1.39 11.8 10.7 14.7 8.5	0.752 0.690 0.762 0.789 0.813 0.894 0.897 0.926 0.852
P ₁ (mm Hg)	T ₂ (°K)	F ₂ (atm)	$\begin{bmatrix} 0_2 \\ mol/l \end{bmatrix}$	τ (µsec)	$\begin{bmatrix} 0_2 \end{bmatrix}_{T} \times 10^{6}$ (mol µsec/ t)	1000/T2 (°K ⁻¹)
Incident S		hylers-Oxy .20:4.0:95	vgen-Nitroge 5.8) (mixtur	en e studied	1 by White)	
15 15 15 15 15 15	1205 1355 1420 1520 1500 1170	0.394 0.460 0.500 0.570 0.550 0.375	0.000158 0.000166 0.000171 0.000177 0.000172 0.000156	750.0 468.0 760.0 27.6 22.0 681.0	11.8 7.76 13.0 0.488 0.278 10.6	0.829 0.737 0.704 0.658 0.667 0.855

Table VI - (Continued)

Ð

\$

did not produce autoignition. When the basic configuration apparatus was used (Fig. 3a) and when the oxidizer flow rate was greater than 400 g/sec, sutoignition of the mixture occurred as soon as hydrogen was admitted. On the other hand when the fuel and oxidizer flows were stativ simultaneously, autoignition occurred at approximately the same oxidizer flow rate but only after a time delay. It cannot be stated with certainty that oxygen flow rates of less than 400 g/sec would not lead to autoigniticn. However, for mixing mubes shorter than 6.3 cm, autoignition never occurred, In another apparatus having the same mixing tube dismeter, the fuel end the oxidizer flows entered as parallel jets which were produced by placing a partition into the lower section of the tube. Although various flow speeds and mixture ratios were employed, autoignition never occurred in this apparatus. However, when a small flat plate was placed one inch from the tube exit normal to the flow, ignition occurred quite readily. It should be remembered that the above autoignition data were taken with the apparatus shown in Fig. 3. Other geometries and other scales could produce different results. On the whole it was not possible to establish the precise conditions leading to autoignition because of the complex nature of the phenomenon.

Possible ionization of the fuel or oxidizer gas flow was investigated; however, no significant ionization was detected for the flow rates of oxygen or air employed in the previous experiments.

1000

Since the basi tube geometry shown in Fig. 3a readily produced autoignition of the hydrogen-oxygen mixtures, hydrogen-air mixtures were also tested in this apparatus. However, no autoignition of this mixture occurred even at mass flow rates of 500 g/sec air and 30 g/sec hydrogen. These flow rates are higher than those required to produce spontaneous ignition in hydrogen-oxygen mixtures.

With the basic tube configuration shown in Fig. 3a, measurements of the temperature and the pressure at various positions along the mixing tube and inlet tube lines were made. This study revealed tat at certain oxidizer flow rates (without fuel addition) significant temperature and pressure fluctuations occur in the fuel line near the mixing chamber. Zones of high temperature occurred at certain distances from the mixing charber. These hot zones appeared to be produced by a resonance phenomenon in the fuel chamber. A shielded chromel-alumel thermocouple was used to obtain the maximum steady-state temperature. Because of the relatively large thermocouple mess, several minutes were required for the thermocouples to reach temperature equilibrium. The maximum gas temperature measured for a mix line 50 cm long was 770°K, while for a 6.3 cm long tube the maximum temperature measured was 1075°K (radiation losses not accounted for). The stagnation tenperature of the oxidizer flow was 290°K. The slow response of the thermocouple did not permit the measurement of any variation of the gas temperature with time.

The pressure variations along the fuel line were also measured. Standing waves of three different frequencies were observed as a function of the oxidizer mass flow rate. Resonant frequencies of 600, 750, and 2000 Hz appeared. The 2000 Hz mode occurred at a flow which corresponded to that at which spontaneous ignition of the hydrogen-oxygen mixture occurred and also which produced the highest gas temperatures in the fuel line. Sound level measurements at the exit of the mixture tube were also taken. At the 3rd mode (2000 Hz), sound pressure levels of 130 dB were measured.

The above measurements were made in a fuel line which was closed upstream. The pressure probe was located at 'he closed end of the line. To establish whether the same resonance conditions exist with a gas flow in the resonance chamber, the measurements were repeated with various flow rates of air through the fuel line. The resonant frequencies decreased as these flow rates were increased. The 600 and 750 Hz modes were eliminated by moderate amounts of counter flow. Figure 14: shows the decrease of frequency with counter flow for the three modes. The 2000 Hz mode was intermittent for fuel line flow rates above 15 g/sec. Figure 15 shows the average (due to filtering of the electrical signal) wave shape variation caused by various fuel line flow rates.

Streak schlieren photographs and stop action sequential schlierenphotographs were made of the wave pattern in a fuel line consisting of a tube with a 0.95 cm-square cross section and a 10 cm length. Typical photographs of the pressure-time diagrams at the end wall of the type are given in Figs. 16 and 17, respectively for the second characteristic mode (750 Hz). The third and most severe resonant mode (2000 Hz) could not be excited in this fuel line. However, when the corners of the base of the flow tube were filleted, the third mode appeared. As seen in the stop action photographs (Fig. 16), the second mode is a series of normal shocks moving along the length of the fuel line. Also, a series of complicated wave interactions is generated behind the waves. Each photograph of this figure represents the resonant wave configuration at a given time after the main (leading) normal shock has reflected off the back wall of the fuel line chamber. Since the experimental set-up was such that only a single photograph was possible during each experiment, each photograph represents a different cycle. Therefore, the waves and weve interactions vary from one photograph to another. Continuous variations of the wave forms from cycle to cycle are visible in the pressure traces and streak schlieren photographs (Fig. 17).

34

and a second second

mp =: 270 g/sec m_{RC} = 0.0 g/sec F_{RC} = 1916 Hz Π

Π

ł

Π

Lawrence a

THE REAL PROPERTY IN

and installed

interview.

Constant of the second s

I

 $\dot{m}_p = 270 \text{ g/sec}$ $\dot{m}_{RC} = 10.5 \text{ g/sec}$ $F_{RC} = 1629 \text{ Hz}$

 $\dot{m}_{p} = 270 \text{ g/sec}$ $\dot{m}_{RC} = 18.9 \text{ g/sec}$ $F_{R'} = 910 \text{ Hz}$

Time (500 µsec/div)

Figure 15a - Oscillograph Traces of Pressure Variations in Fuel Line as a Function of Mass Flow Rate through Fuel Line

Figure 16 - Stop Action Schlieren Photographs and End Wall Pressure Variations of a Square Fuel Line

I

王王

T

The second se

NAME

Northerness and the second

Transfer I

C. Marine

Π

 \Box

 $\left[\right]$

38

THE AREA AND A REAL AND

IV. DISCUSSION OF RESULTS

The observation that flowing fuel-oxidizer mixtures often ignite spontaneously at temperatures (static and total) far below the measured thermal ignition temperatures of static systems³,⁸,⁷ has led to the speculation that the ignition mechanism of flowing mixtures is somewhat different from that of static mixtures. An investigation of the electrical properties of flowing air and flowing oxygen gases did not reveal any significant buildup of electric charges in these gases. Moreover, the ignition delay times observed in flowing mixtures (Lydrogen-air, methane-air, and ethylene-air Figs. 11, 12, and 13, respectively) do not vary significantly from those observed for nonflowing mixtures. Therefore, the mechanism of ignition of the mixture is not believed to be altered by the ordered flow velocity. Lowever, the fact that the gas mixture is moving is important to the basic problem because of hydrodynamic phenomeum such as stagnation conditions, generation of waves, and wave interactions (resonance). The shock waves were driven into the mixtures in a direction opposite to the mixture velocity. The pertinent ignition test conditions (temperature, pressure, and velocity), therefore, are those which exist behind the shock wave.

The minimum ignition temperatures of flowing hydrogen-air mixtures obtained by this technique (Fig. 2) are presented in Table I. The minimum ignition temperature is a function of the particle Mach number (or particle velocity) and the static pressure of the unburned gas; graphs depicting these relationships are presented in Figs. 18 and 19. The data in these graphs were taken for a variety of hydrogen-air mixture ratios and initial flow Mach numbers. Only the value obtained with a very lean mixture (18 percent hydrogen) deviates significantly from the other measurements.

Pressure is known to have a significant effect on the minimum ignition temperatures of static hydrogen-oxygen-nitrogen mixtures. Lewis and von Elbe² reported three explosion limit regions as a function of pressure (shown in Fig. 10). The authors explained these limits on the basis of reaction kinetics and involve the appearance or disappearance of the N and the HO2 species. The ignition temperatures at various pressures for static hydrogen-air mixtures (measured behind reflected shock waves) are tabulated in Table I and graphically shown in Fig 10. These values fall into the high-pressure region (third explosion limit) and they agree quite well with the reflected shock tube data of Steinberg and Kaskan²⁰ for hydrogen-oxygen mixtures and with the values published by Craig⁷ for hydrogen-air mixtures. The test times of the present shock tube apparatus was limited to 7000 µsec. If longer test times had been available, then it may have been possible that lower minimum ignition temperature values could have been determined since the ignition delay times are longer for lower temperatures. Although the observed ignition temperatures are nearly the same as these reported by Lewis and von Elbe, they do not exhibit the predicted

T

Increased in the second

Ĩ

In the local data

Turning and

Ţ

Į

Ī

A CONTRACTOR

No.

I

1

Π

Figure 19 - Ignition Temperature Versus Particle Mach Number for Hydrogen-Air Mixtures

42

7

ي.

. :

_			
	$P_2 = 1.50 \text{ ATM}$ $T_2 = 565 ^{\circ}\text{K}$ $M_2 = 1.095$		P _r = 5.95 ATM T _r = 860 °K M _r = 0.0
L	(a)	
\int	$P_2 = 5.09 \text{ ATM}$ $T_2 = 539 ^{\circ}\text{K}$ $M_2 = 1.068$	M _w = 2.21	$P_i = 0.98 \text{ ATM}$ $T_i = 300 \text{ °K}$ $M_i = 0.0$
4 ,	(b)	an a
$\left\{ \right.$	$P_2 = 5.09 \text{ ATM}$ $T_2 = 535 \text{ °K}$ $M_2 = 0.78 $	M _w = 2.15	P ₁ = 1.00 ATM T _i = 300 °K M ₁ = 0.36
`	(c)	9 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2
$\left(\right)$	$P_2 = 8.98 \text{ ATM}$ $T_2 = 601 ^{\circ}\text{K}$ $M_2 = 0.65$	M _w = 2.69	P _i = 1.06 ATM T _i = 300 °K M _i = 0.94
	(d)	
	$P_2 = 731 \text{ ATM}$ $T_2 = 757 ^{\circ}\text{K}$ $M_2 = 0.66$	M _w ≈ 4.05	P _i = 4.12 ATM T _i = 300 °K M _i = 1.83
	(e)	
Figu	r 20 - Conditions Illust	rating the Rffed	t of Gas Flow on the

iii iii

Transmit Street

Π

Π

Π

-

Ι

I

 \square

 \prod

Figur 20 - Conditions Illustrating the Effect of Gas Flow on the Ignition Temperature of Stoichiometric Hydrogen-Air Mixtures

trend that the ignition temperatures in the third limit region decrease with increasing pressure.

in the state

The minimum ignition temperatures as a function of static pressure for the case of flowing combustible gas mixtures ar · tabulated in Table I and plotted in Fig. 18. A comparison of these data with those obtained in stationary mixtures (also plotted in the figure) shows that the minimum ignition temperatures are considerably lower when the gases are flowing. This observation agrees with the results obtained by other researchers³,⁶,⁷ who used incident shock waves to measure minimum ignition temperatures. Craig⁷ measured ignition temperatures of hydrogen-air mixtures behind both incident and reflected shock waves. For the stoichiometric hydrogen-air mixture, he obtained ignition temperatures of 440 and 880°K behind the incident (flow) and reflected (static) shock waves, respectively. The measurements were made at static pressures of approximately 1 and 2 atm, respectively. Craig explained the discrepancy by assuming that flaking of solid particles (scale) from the tube wall occurred. Belles³ and Fay⁵ attributed the variation to wave interactions behind the incident shock wave.

To examine the effects of the gas flow further, it is worthwhile to compare several of the ignition temperature data points which have similar conditions. In Fig. 20 these data are compiled for a stoichiometric hydrogen-air mixture; Fig. 20a gives the minimum ignition conditions behind a reflected shock wave. The pressure in this case is 5.45 atm, while the ignition temperature is 860°K. Figures 20b-d give the ignition temperatures behind incident shock waves where the static pressure is approximately 7.1 atm. The minimum ignition temperature for these cases is 539, 535, and 601°K for conditions where the particle Mach rumber is 1.0, 0.75, and 0.65, respectively. The last data point in this series has a higher ignition temperature, which tends to suggest that the ignition is related to the particle Mach number (velocity). For the case shown in Fig. 20e, the minimum ignition temperature was 757°K at a static pressure of 7.8 atm. The particle Mach number for this case was 0.66. When the particle Mach number, pressure, and tenperature are slightly below these values, no ignition can be expected. The values of pressure and temperature for ignition of cases shown in Figs. 20b-d are considerably below those of the latter case. These data give further evidence that the particle Mach number has an effect on the ignition of the mixture. No ignitions were observed at temperatures lower than the static ignition temperature when the particle Mach numbers were less than 0.60 (Table I). For the result in Fig. 20a the reflected wave is propagating into a mixture having a static temperature of 540°K, a pressure of 2.7 atm, and a Mach number of 1.095. That this condition did not lead to ignition indicates that the static pressure of the flowing mixture also influences the ignition temperature of the mixture.

á

A graph showing the ignition temperatures as a function of particle Mach number for all mixtures studied is given in Fig. 19. Cally the lean

mixture data points deviated from the overall trend of the data. Generally, the lowest ignition temperatures occur for a Mach number between 0.8 and 1.0. As stated above, Belles³ suggested that the minimum ignition temperature for flowing gas mixtures is affected by wave interactions. Hydrodynamic resonance generated by a flowing gas has been observed in another phase of the present investigation (to be discussed later). This phenomenon has been found to produce temperatures and pressures which are considerably higher than the initial static values. Powerful acoustic waves due to flow over cavities have been reported by East²¹ and Plumbee et al.²² Shapiro²³ analysed the resonance problem in an approximate manner and concluded that local temperatures in resonance waves can reach values several times the stagnation values.

The minimum ignition temperature values obtained for stolchiometric ethylene-air and methane-air for both flowing and static cases are given in Tables II and III. In both of these systems, the minimum ignition temperatures were found to depend only on the static pressure. The maximum ignition lelay times for these systems were found to be 2200 and 3400 usec. If longer test times had been available, an effect of the particle gas flow might have been detected. The ignition temperatures obtained for these two systems agree with the values obtained in static mixtures by Kane et al.⁵ Shepherd⁴ measured the ignition temperatures of methane-oxygen and ethylene-oxygen mixtures behind incident shock waves (flowing gases) and reported ignition temperatures several hundred degrees below those observed in stationary mixtures. Assuring that diluents have no effect on the minimum ignition temperatures (as in the hydrogen-oxygen case), then flowing methane-___ and flowing ethylene-air mixtures may also be expected to ignite at temperatures lower than those observed for static mixtures. Here again, ignition would probably be caused by higher local temperatures and pressures as a result of wave interaction phenomenan.

The ignition delay times of stoichiometric methane-air, hydrogenair, and ethylene-air mixtures as a function of temperature are tabulated in Tables IV, V, and VI and graphically shown in Figs. 11, 12, and 13, respectively. Using the method of least mean squares, empirical equations representing the experimental data were obtained. They are given in the figures. As seen from Fig. 12, the ignition delay times for the methane-air mixtures are the same for both the flowing and the static mixtures. These results are in agreement with those observed with lean methane-oxygen mixtures reported by Asaba.24 The ignition delay times of static hydrogen-air mixtures (Fig. 11) agree generally with the static ignition delays reported by Shott and Kinsey.11 For flowing mixtures whose temperatures are below the static minimum ignition temperature, the ignition delay times tend to level cut. Since it has been established that no significant changes in the electrical properties of the gases occur at the temperatures and flow velocities involved, no changes in the kinetics of the ignition mechanism are believed to occur. Therefore, the lower ignition delay times for these mixtures suggest that the temperatures of these flowing mixtures are (at least

, ¥.

locally) higher than the average values calculated from shock theory. These higher temperatures are probably the result of heating by wave interactions (resonance).

Most of the ignition delay time measurements of ethylene-air mixtures (Fig. 13) have been made at higher pressures and lower temperatures than those generally available in the literature. For the static mixtures at low pressures and high temperatures, the results generally agree with those of Mullany⁶ and also with those of White.²⁵ The ignition delay times for this mixture increase suddenly by a factor of 100 near 1150°K. Apparently a significant change in the overall kinetic mechanism occurs at the higher temperatures. It is noted from Fig. 13 that the ignition delay times in flowing gases are shorter than the corresponding values in static mixtures.

Autoignitions of flowing hydrogen-oxygen mixtures have been found to depend on the mass flows and the geometry of the flow apparatus. For the apparatus shown in Fig. 3a, a minimum mass flow of 400 g/sec was required to produce autoignition in the mixtures. At this mass flow rate, a 2000 Hz resonant frequency (third mode) was excited in the fuel line. This mode was exited only when the fuel and oxidizer lines to the mixing chamber were dismetrically opposed. This resonant mode was set up in the hydrogen line whether a hydrogen flow existed or not. When the mixing tube was shortened to 6.3 cm no ignition occurred although resonance still occurred in the fuel line. When resonance occurred, the gases were found to have pressures and tempera tures several times higher than the initial stagnation conditions. Approximate calculations by Shapiro²³ indicate that resonating gases in chambers can exceed the average temperature values by a factor of approximately 4. The measured temperatures (110C°K) are higher than those required for thermal ignition of hydrogen-oxygen mixtures. The temperatures were even sufficiently high for thermal ignition of hydrogenair mixtures. An examination of the experimental procedure shows that autoignitions of the hydrogen-oxygen mixtures were most easily produced when the oxygen flow was stabilized first and the hydrogen flow was added later. Oxygen gas was prevented from diffusing into the fuel line by a check valve. The hydrogen line acted as resonance chamber. The oxygen gas was heated by this resonance. When hydrogen was added to the heated oxygen, ignition occurred. Ignition of hydrogen-air mixtures possibly did not occur because of their longer ignition delay times.

「正式の

- State

STATISTICS IN CONTRACT

Contraction of the second

(1) ····

Schlieren photographs of the second res nami mode (Figs. 15 and 16) in a 0.95-cm-square fuel line indicate that a series of strong shock waves and wave interactions occur during each cycle of this mode. In this tube the third and most severe resonant mode did not appear. However, when fillets were placed in the corners of this square mixing tube, the third resonant mode appeared. This observation suggests that the corners influence the formation of the waves in the fuel line. The analysis of the complicated wave structure of the various resonant mode is still in progress. Also, the possibility that ignition is caused by a mechanism different from zerodynamic resonance is still under study.

REFERENCES

- 1. Ferri, A., "A Review of Problems in Application of Supersonic Combustion," J. Roy Aeron. Soc., 68:645, (1964), 575-597.
- 2. Lewis, B., and von Elbe G., Combustion, Flames and Explosions of <u>Gases</u>, 2nd ed. New York: Academic Press, Inc., (1961).
- Belles, F. E., and Ehlers, J., "Shock Wave Ignition of H₂-O₂. Diluont Mixtures Nec: Deconation Limits," <u>ALS Journal</u>, <u>32</u>:2 (February, 1962), 215-220.
- Shephera, W. C. F., "The Ignition of Gas Mixtures by Impulsive Pressures," Third Symposium on Combustion. Flame and Explosion Phenomena, Baltimore: The Williams & Wilkins Company, (1949), 301-316.

Ţ

- 5. Kane, G. P.; Chamberlain, E. A. (.; and Townend, D. T. A., "The Spontaneous Ignition under Pressure of the Simpler Aliphatic Hydrocarbons, Alcohols, and Aldehydes, '<u>Chem. Soc</u>. (1937), 436-443.
- Fay, J. A., "Some Experiments on the Initiation of Detonation in 2H₂-O₂ Mixtures by Uniform Shock Waves," <u>Fourth Symposium</u> (International) <u>on Combustion</u>. Baltimore: The Williams & Wilkins Company, (1953), 501-507.
- 7. Craig, R. R., "Shock Tube Study of the Ignition Delay in Hydrogen-Air Mixtures near the Second Explosion Limit," M. Sc. Thesis, The Ohio State University, Columbus, Ohio, (1966).
- Mullaney, G. J.; Peh, S. Ku.; and Botch, W. D., "Determination of Induction Times in One-Dimensional Detonations (H₂, C₂H₂, and C₂H₄)," <u>AIAA Journal, 3</u> (May, 1965), 873-875.
- Momtchiloff, I. N.; Taback, E. D.; and Buswell, R. F., "Kinetics in Hydrogen-Air Flow Systems. I. Calculation of Ignition Delays for Hypersonic Ranjets," <u>Ninth Symposium</u> (International) on Combustion, New York and London: Academic Press, (1962), 220-230.
- 10. Bascombe, K. N., "Calculation of Ignition Delays in the Hydrogen-Air Systems," Combustion and Flame, 11 (February, 1967), 2-10.
- Schott, G. L., and Kinsey, J. L., "Kinetic Studies of Hydroxyl Radicals in Shock Waves. II. Induction Times in the Hydrogen-Orygen Reaction," <u>Chem. Phys.</u>, 29:5, (November, 1955), 1177-1182.
- Nicholls, J. A., Adamson Jr., Y. C.; and Morrison, R. B., "Ignition Time Delay of Hydrogen-Oxygen-Diluent Mixtures at High Temperatures," <u>AIAA Journal</u>, <u>1</u>.10, (October, 1963), 2253-2257.

13. McKenna, W. W., "An Investigation of the Behavior of a Detonation Wave in a Flowing Combustible Mixture," Ph.D. Dissertation, The Okio State University, Columbus, Ohio, (1966); (also ARL 66-0112, Wright-Patterson AFE, Onio, June, 1966). Π

Contex-

Here i

難

議員

- 14. Hamilton, L. A., "An Experimental Investigation of Shock Initiated Detonation Waves in a Flowing Combustible Mixture," Ph.D. Dissertation, The Ohio State University, Columbus, Ohio, (1967); (also ARL 67-0202, Wright-Patterson AFB, Ohio, October, 1967).
- Bollinger, L. E., et al., "Formation of Detonation Waves in Flowing Hydrogen-Oxygen and Methane-Oxygen Mixtures," <u>AIAA Journal</u>, 4: 10 (October, 1966), 1773-1776.
- Tamango, J.: Pruchman, I.; and Slutsky, S., "Supersonic Combustion in Premixed Hydrocarbon-Air Flow," GASL Technical Report No. 602, Contract No. AFOSR 66-0872, (May, 1966).
- 17. "Fluid Meters, Their Theory and Application, Part 1"(ASME, New York, 1937), 4th ed.
- 18. Liepmann, H. W., and Rushko, A., Elements of Gasdynamics, 1st ed. New York and London: John Wiley & Sons, Inc., (1957).
- 19. Bollinger, L. E.; Fong, M. C.; Laughrey, J. A.; and R. Edse, NASA TN D-1983, (June, 1963).
- Steinburg, M., and Kaskan, W. E., "The Ignition of Combustible Mixtures by Shock Waves," Fifth Symposium (International) on Combustion, New York: Reinhold Publishing Corp., (1955), 664-671.
- 21. East, L. F., "Aerodynamic Induced Resonance in Rectangular Cavities," J. Sound and Vibrations, 3, (1966), 277-287.
- Flumbee, H. E.; Gibson, J. S.; Lassiter, L. W., "Theoretical and Experimental Investigation of the Acoustic Response of Cavities in Aerodynamic Flow," WADC TR-61-65 (March, 1962).
- 23. Shapiro, A. H., "On the Maximum Attainable Temperature in Resonance Tubes," <u>Aero/Space Sciences</u>, <u>27</u>:1 (January, 1960), 66-67.
- 24. Asaba, T.; Yoneda, N.; Kakihara, N.; and Hikita, T., "A Shock Tube Study of Ignition of Methane-Oxygen Mixtures," <u>Ninth Symposium</u> (International) on Combustion, New York and London: Academic Press, (1962), 193-200.
- 25. White, D. R., "Density Induction Times in Very Lean Mixtures of D₂, H₂, C₂H₂, and C₂H₄, with O₂," Eleventh Symposium (International) on Combustion, Pittsburgh: The Combustion Institute, (1967), 147-154.

APPENDIX I

COMPOSITION OF TEST GASES

Hydrogen Gas:

Manufacturer Burdett Manufacturing Co. Grade Commercial Purity 99.8% Dew Point ~75°F Impurities He, N_2 , O_2 , CO_2 , H_2O , COOxygen Gas: Manufacturer Liquid Carbonic Co. Grade Commercial Purity 99**.**% Impurities Ar - 0.04% N2 - 0.20% $CO_2 = 20 \text{ PFM}$ H₂O = 20 PFM CR4 - 25 PHM Methine Gas: Manufacturer Matheson Co., Inc. Grade Technical Purity 97.0% Impurities CO2 - 0.3% $N_2 = 0.74$ $O_2 = 0.25$ $C_2H_6 = 1.3\%$ Propane = 0.3% Higher Alkanes = 0.2% Ethylene Gau: Manufacturer taker and Co. Grade Technical Purity 96.7% $CH_4 = 0.9\%$ $C_2H_6 = 2.3\%$ $C_3H_8 = 0.1\%$ Dew Point -50°F Impurities Air: Pumped at this laboratory Dew Point -140°F Cil - none 49

> . پېچ

Ĩ The second se -----I I ------ And and a second ----------

and the second second second second

Security Classification	UMENT CONTROL DATA - R		
, (Seculty classification of title, body of abs	· · · · · · · · · · · · · · · · · · ·		overall report (s. clussified)
ORIGINATING ACTIVITY (Corporate suthor)			ECURITY CLASSIFICATION
Aeronautical and Astronautica	al Research Laboratory		
The Ohio State University		26 GROUP	
REPORT TITLE			
INVESTIGATION OF THE IGNITION	N PROPERTIES OF FLOWING	COMBUSTI	BLE GAS MIXTURES
DESCRIPTIVE NOTES (Type of report and inclusion	ve dules)		······································
Final Technical Report			
Walker, D. W., Diehl, L. A.			
August 1969	7#. TOTAL NO 0	F PAGES	16. NO OF REFS
B. CONTRACT OR GRANT NO	SH. ORIGINATOR	S REPORT NU	
F33615-6 6- C-1580			
B. PROJECT NO. 3012			
- Task No. 301206	90 OTHER REPO	RT NOIS (Aay	other numbers that may be assign
	his report;	·TR-69-82	,
d.	AFAPL	-1R-09-02	
	AFAPL		
	AFSC		
2. ABSTRACT	wright-h	itterson I	FB, Ohio 45433
-> Ignition delay times, igni	tion temperatures, and	spontaneo	nus ignitions were
determined for several conbusti		l incident	; and reflected shock
waves passed into the static or	flowing gases.		
The conditions leading to	sportaneous indition of	flowing	hydrogen-oxygen mix
The conditions leading to tures without the presence of a			
tures without the presence of a	shock waves were also a	etermined,	. Hydrogen air mixt
tures without the presence of a did not ignite spontaneously un	shock waves were also inder the range of exper-	etermined. iments con	. Hydrogen air mixt nducted.
tures without the presence of a did not ignite spontaneously un Although certain observati	shock waves were also žender the range of exper- ions indicate that the s	etermined. iments con spontaneou	. Hydrogen air mixt nducted. us ignition can be p
tures without the presence of a did not ignite spontaneously un	shock waves were also in nder the range of exper- ions indicate that the it must be assumed that	etermined, iments con spontaneou other pho	. Hydrogen air mixt nducted. us ignition can be p enomena could also
tures without the presence of a did not ignite spontaneously un Although certain observati duced by aerodynamic heating, i cause these ignitions. The obs	shock waves were also in inder the range of exper- ions indicate that the it must be assumed that served high temperature	etermined, iments con spontaneou other pho s in the p	. Hydrogen air mixt nducted. us ignition can be p enomena cculd also
tures without the presence of a did not ignite spontaneously un Although certain observati duced by aerodynamic heating, i cause these ignitions. The observations is the observation of the set of th	shock waves were also inder the range of exper- ions indicate that the sit must be assumed that served high temperature the hydrogen-air mixture	etermined, iments con spontaneou other pho s in the pr res.	, Hydrogen air mixt nducted. as ignition can be p momena cculd also resonating gases sho
tures without the presence of a did not ignite spontaneously un Although certain observation duced by aerodynamic heating, is cause these ignitions. The observation have been sufficient to ignite While the ignition temperature	shock waves were also in der the range of exper- ions indicate that the it must be assumed that served high temperature the hydrogen-air mixture acure and ignition delay	sternined, iments con spontaneou other pho s in the p res. y time of	Hydrogen air mixt nducted. us ignition can be p momena could also resonating gases sho metbane-air and
tures without the presence of a did not ignite spontaneously un Although certain observation duced by aerodynamic heating, is cause these ignitions. The observation have been sufficient to ignite	shock waves were also and ander the range of exper- ions indicate that the it must be assumed that served high temperature the hydrogen-air mixture ature and ignition delay spend on the motion of	etermined, iments con spontaneou other pho s in the pho- res. y time of the unburn	Hydrogen air mixt nducted. us ignition can be p enomena cculd also resonating gases sho metbane-air and ned gas mixture, tho
tures without the presence of a did not ignite spontaneously un Although certain observation duced by aerodynamic heating, is cause these ignitions. The observation have been sufficient to ignite While the ignition temperate sthylene-air mixtures do not do of hydrogen-air mixtures were start	shock waves were also and ander the range of exper- ions indicate that the it must be assumed that served high temperature the hydrogen-air mixture ature and ignition delay spend on the motion of	etermined, iments con spontaneou other pho s in the pho- res. y time of the unburn	Hydrogen air mixt nducted. us ignition can be p enomena cculd also resonating gases sho metbane-air and ned gas mixture, tho
tures without the presence of a did not ignite spontaneously un Although certain observation duced by aerodynamic heating, is cause these ignitions. The observation have been sufficient to ignite While the ignition temperate ethylene-air mixtures do not do of hydrogen-air mixtures were survey.	shock waves were also in inder the range of exper- ions indicate that the it must be assumed that served high temperature the hydrogen-air mixture ature and ignition delay epend on the motion of buch lower behind incid	sternined, iments con spontaneou other pho s in the pho res. y time of the unburn ent than 1	Hydrogen air mixt nducted. as ignition can be p momena could also resonating gases sho metbane-air and ned gas mixture, tho behind reflected sho
tures without the presence of a did not ignite spontaneously un Although certain observation duced by aerodynamic heating, is cause these ignitions. The observation have been sufficient to ignite While the ignition temperate ethylene-air mixtures do not do of hydrogen-air mixtures were s waves. A brief discussion of the	shock waves were also in inder the range of exper- ions indicate that the it must be assumed that served high temperature the hydrogen-air mixture ature and ignition delay epend on the motion of buch lower behind incid	sternined, iments con spontaneou other pho s in the pho res. y time of the unburn ent than 1	Hydrogen air mixt nducted. as ignition can be p momena could also resonating gases sho metbane-air and ned gas mixture, tho behind reflected sho
tures without the presence of a did not ignite spontaneously un Although certain observation duced by aerodynamic heating, is cause these ignitions. The observation have been sufficient to ignite While the ignition temperate ethylene-air mixtures do not do of hydrogen-air mixtures were s waves.	shock waves were also in inder the range of exper- ions indicate that the it must be assumed that served high temperature the hydrogen-air mixture ature and ignition delay epend on the motion of buch lower behind incid	sternined, iments con spontaneou other pho s in the pho res. y time of the unburn ent than 1	Hydrogen air mixt nducted. as ignition can be p momena could also resonating gases sho metbane-air and ned gas mixture, tho behind reflected sho
tures without the presence of a did not ignite spontaneously un Although certain observation duced by aerodynamic heating, is cause these ignitions. The observation have been sufficient to ignite While the ignition temperate of hydrogen-air mixtures do not do of hydrogen-air mixtures were s waves. A brief discussion of the	shock waves were also in inder the range of exper- ions indicate that the it must be assumed that served high temperature the hydrogen-air mixture ature and ignition delay epend on the motion of buch lower behind incid	sternined, iments con spontaneou other pho s in the pho res. y time of the unburn ent than 1	Hydrogen air mixt nducted. as ignition can be p momena could also resonating gases sho metbane-air and ned gas mixture, tho behind reflected sho
tures without the presence of a did not ignite spontaneously un Although certain observation duced by aerodynamic heating, is cause these ignitions. The observation have been sufficient to ignite While the ignition temperate of hydrogen-air mixtures do not do of hydrogen-air mixtures were s waves. A brief discussion of the	shock waves were also in inder the range of exper- ions indicate that the it must be assumed that served high temperature the hydrogen-air mixture ature and ignition delay epend on the motion of buch lower behind incid	etermined, iments con spontaneou other pho s in the r res. y time of the unburn ent than 1 under the	Hydrogen air mixt nducted. as ignition can be p momena could also resonating gases sho metbane-air and ned gas mixture, tho behind reflected sho

Ţ

x,

Participal Participad Participad

Π

Π

 \prod

 \Box

 \Box

[]

[

[

•