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FOREWORD 

The work reported herein was sponsored by the Sandia Corporation, 
Sandia Base, Albuquerque, New Mexico, under authority of the Atomic 
Energy Commission (AEC) Order Number AL 67-255, Sub Order 012^ \ 
and Air Force Systems Command (AFSC)  Program 92ID. 

The results of tests presented were obtained by ARO, Inc.  (a sub- 
sidiary of Sverdrup & Parcel and Associates, Inc.), contract operator 
of the Arnold Engineering Development Center (AEDC),  AFSC, Arnold 
Air Force Station, Tennessee, under Contract F40600-69-C-0001.   The 
test was conducted on March 27,   1969, under ARO Project Number 
VB1892,  and the manuscript was submitted for publication on June 6, 
1969. 

Information \n this report is-esjbargoed under the Department of 
State International Traffic in/ftrms Regulations.    This repojzfe-fiRky be 
released to foreign governments by departments or agejacües of tl 
U. s/Governmeiifc subject to approval of the Atomip^Önergy Comitiis- 
sioX Albuquerqu^j^few Mexico,  or higl^rauthefrity.    Private indivi- 
duals or firms require a Department of State export license. 
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Eugene C. Fletcher 
Lt Colonel,  USAF 
AF Representative,  VKF 
Directorate of Test 

Roy R. Croy, Jr. 
Colonel, USAF 
Director of Test 
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ABSTRACT 

Dynamic stability data were obtained on a slightly blunted 10-deg 
half-angle cone at Mach number 8.   The tests were conducted using a 
unique balance system which allowed the model to have three angular 
degrees of freedom.    Both a symmetrical model and a model having 
compound configurational asymmetries were tested at free-stream 
Reynolds numbers, based on model length, of from 1. 61 x 10^ to 
2.95 x 10  .   Data obtained on the symmetrical model at roll rates up 
to 300 rev/min   showed the damping-in-pitch derivatives tobe nearly 
constant with roll rate. 

This document has been approved ^public rele^^ 

-V.  its distribution is unlimited. J?#jgJ/£^ 
*?r 

This document^'subjecESto special export controls 
and each Uarfsmittal to foreign governments 
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SECTION I 
INTRODUCTION 

Research is being conducted by the Sandia Corporation to study the 
dynamic behavior of a slightly blunted (rn/rD = 0.0156) 10-deg half-angle 
cone.    The research includes computer studies of six-degree-of-freedom 
motion, the present wind tunnel test program,  and a full-scale flight test 
program. 

The purpose of the present wind tunnel tests was to investigate the 
dynamic behavior of a conical model having three angular degrees of 
freedom.   Both a symmetrical model and a model having compound 
asymmetries were tested using the von Karman Gas Dynamics Facility 
(VKF) three-degree-of-freedom dynamic balance (Ref.  1).    The com- 
pound asymmetries were obtained by offsetting the balance pivot point 
from the model centerline to a point in the XZ plane (See Figs.  1 and 2) 
and additionally rotating the principal inertia axes in the XY plane. 

Fig. 1   Coordinate Systems 



Y V 

0.5 deg 

10 deg 

XYZ Principal Axis of 
Configuration 1 

X'Y'Z' Principal Axis of 
Configuration 2 

All Dimensions in Inches 

> 
m 
O n 

to 

Pivot Point 
(Configuration 1) 

Pivot Point 
(Configuration 2) 

■Y' 

Fig. 2  Sketch of the Model 
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The test was conducted in the 50-in.-diam tunnel B (Gas Dynamic 
Wind Tunnel, Hypersonic (B)) of the VKF at a nominal free-stream 
Mach number of 8 and at free-stream Reynolds numbers, based on 
model length, of 2. 92 x 106 and 1. 61 x 106. 

SECTION II 

APPARATUS 

2.1   THREE-DEGREE-OF-FREEDOM DYNAMIC BALANCE 

A sketch of the balance assembly is shown in Fig. 3.   The balance 
consists of a spherical gas bearing pivot, a three-axis variable reluct- 
ance angular transducer, a model release mechanism, and a model 

|locking device.    The spherical gas bearing provides a near-frictionless 
pivot which is desirable for dynamic stability testing at hypersonic 
speeds where it is necessary to minimize tare damping.    The variable 
reluctance angular transducers provide continuous analog signals pro- 
portional to the angular displacements 0 and yff of the nonrolling axes 
(Fig.  1) and provide roll rate data.    Models can be released from an 
initally pitched position with a yaw rate using the displacement arm and 
arm lock (Fig. 3).    Both these initial conditions can be varied.    The 
rotating arms are used to lock the model at zero angle of attack.   The 
turbine and air jets are used to increase or decrease model roll rate 
when the model is in the locked position.   These same air jets, when 
pulsed together, may be used to induce angular motion.    A more de- 
tailed description of the balance system may be found in Ref.  1. 

2.2 MODEL 

The conical model (Figs.  2 and 4) was fabricated by the Sandia 
Corporation according to specifications supplied by the VKF.    The 
model had a 10-in. base diameter, a 10-deg half-angle,  and a nose-to- 
base bluntness ratio (rn/r^) of 0. 0156.    Provisions were made to add 
ballast fore and aft of the pivot point to allow both static and dynamic 
balancing.   A sketch of the model (Fig. 2) shows that the model pivot 
point was located both on the centerline for Configuration 1 (zCg/d = 0) 
and 0. 100 in. off of the centerline (zCg/d = 0. 01) in the Z direction for 
Configuration 2 and at stations 55 percent aft from the model nose 
(xCg/i = 0. 55) for both configurations.    These positions denote the 
location of the balance pivot point and, since the center-of-gravity of 
the model-balance system was also positioned at xCg/j£ = 0. 55, are 
henceforth termed the model center-of-gravity positions.   Additionally, 
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Configuration 2 had the principal inertia axes tilted approximately 0. 5 
deg in the body fixed XY plane as shown in Fig. 2.   This axes tilt along 
with the offset center of gravity provided the compound configurational 
asymmetries. 

Displacement     Displacement Arm Lock 
Arm JC(F u"y Yawed Pos I*'0"' 

Note: The displacement arm and 
arm lock are shown engaged. 

Section B-B 

I I I L_ 

2        4 

Inches 

Section A-A 

Displacement     r-Oisplacement Arm 
Ar|^  i Lock (Zero Yaw Pos Ition) 

Solenoid Rotating Arm., 

Cooling 
s"PP'y     Airlines 
Line 

Displacement Arm .Lock 
(Zero Yaw Position) 

/-Turbine Air 
Supply Lines 

-Instrument R 
Turbine Air Supply Line-1' 

Rotating Arm 

Section C-C 

Fig. 3   Balance Assembly 

2.3 WIND TUNNEL 

Tunnel B is a continuous,  closed-circuit, variable density wind 
tunnel with an axisymmetric contoured nozzle and a 50-in.-diam test 
section.    The tunnel can be operated at a nominal Mach number of 6 
or 8 at stagnation pressures from 20 to 300 and 50 to 900 psia, re- 
spectively, at stagnation temperatures up to 1350°R.   The model may 
be injected into the tunnel for a test run and then retracted for model 
cooling or model changes without interrupting the tunnel flow.   A de- 
scription of the tunnel may be found in Ref. 2. 
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Fig, 4   Photograph of the Model 

5 



AEDC-TR-69-151 

SECTION III 
PROCEDURE 

3.1   TUNNEL TESTS 

A typical test run procedure was to inject the model into the test 
section tank and release it at the required initial conditions.    After the 
desired amount of data had been obtained, the model was locked and re- 
tracted into the test section tank.   At this point the model was cooled 
internally by directing cooling air on the model-balancing mounting 
bulkhead and externally by the standard test section tank model nose 
cooling system. 

During the data-taking interval the analog signals, provided by the 
angular transducers, are simultaneously recorded on an analog tape and 
input directly to an analog-to-digital converter for storage on magnetic tape. 
The digital data are then input to the VKF digital computer for final data 
reduction.   A summary of the test conditions is given in Table I. 

TABLE 1 
TEST CONDITIONS 

Wind Tunnel Test Conditions 

Configuration No.      M„, 
Stilling Chamber    Stilli 

Re^ x 10"6        Pressure, psia      Tern 
ng Chamber 
perature, °R 

1170 
1235 

q,,,,  psia    V=, ft/sec 

1 7.90 
2 7.95 

1.61                          125 
2.95                           250 

87.8            3606 
169.9            3709 

Model Parameters 

Configuration No. xCgl&    zce/d     rn/rb     IX, slug-ftz Iy.  slug-ft2 IZJ  slug-ft2 

1 
2 

0.55           0        0.0156          0.0416 
0.55       0.01      0.0156           0.0464 

0.26H6 
0.2874 

0.2686 
0.2877 

3.2  DATA REDUCTION 

The data were reduced using the linear tricyclic theory in nonrolling 
coordinates as developed originally by Nicolaides in Ref. 3.   The equa- 
tion of a model suspended in an airstream and restricted to three angular 
degrees of freedom about a point fixed in space is noted as 

£+[G + iH]f+[J + iKU- LeiVl (1) 
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where 

G--——  (CMq+CMä) 
2 V«, I 

H =   - — P 
I 

<feo Ad 
J  = — CMa 

%*> Ad 

K = " HOT  C"*a  P 

L = -^-^(Cm„   - iC„o) 

i = ^r 

The tricyclic solution to Eq.  (1) is given in Ref.  3 as 

i =  Kne<An + i,i,n)t  -   Kpe(XP+i<uP1t +  Kte£Pl (2>* 

where 

£-(Ap-i<^)(£0-Kt) 
&n  =     

An - Ap + i («Un -dip) 

£-(An-   i6,n) (f0 - Kt) 
K-p  = 

Ap - An + i (<ap -o>„) 

*The subscripts n and p, denoting nutation and precession, are 
used only as a convenient notation.    The nutation arm is identified after 
fitting the data as the arm (K) having the largest absolute frequency 
j(|i«)n| >|(Jp|) and the same rotational direction as the roll rate. 
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Kt =  L  
(P-<un) (P - <up) + An Ap + i[A„ (P-|<yp)-r Ap (P-«un)] 

.                                      (G+ iH) ±y/G2- i2GH- H2- 4 (J - iK) 
K,p   -   ><Un,p   = ^  

The model damping rates {\n, Ap) and angular frequencies (u^, up) 
are obtained try fitting Eq. (2) plus a constant complex vector to the 
model displacement-time history using a least-squares differential 
correction method.    The solution is "fitted" over short overlapping seg- 
ments of the displacement-time history.   Once the model damping rates 
and frequencies have been determined, the aerodynamic coefficients 
may be obtained using the following relationships: 

2 V     I 
C|M< + CM

« 
= "^Tld3 ■ (An + V 

i 
Mfl  =  -rrr (<Un<Up - A„ Ap) 

2 VM I 1 
CMpg = ~   q~ Ad2      -p(An<uP + V„) 

SECTION IV 
RESULTS AND DISCUSSION 

All data were obtained at a nominal Mach number of 8 (Table I). 
Only representative data obtained from the symmetrical model 
(Configuration 1) are presented; the analysis of the results obtained on 
Configuration 2 will be published at a later date by the Sandia Corpora- 
tion. 

The tests were conducted at Reynolds numbers which were low 
enough to provide a laminar boundary layer over the full length of the 
model.    Previous experience with conical models (Refs. 4 and 5) at 
hypersonic speeds has shown the damping derivatives to be higher when 
the model boundary layer is partially laminar or partially turbulent 
than when a laminar or near fully turbulent boundary layer exists on the 
model.   Data obtained under the latter conditions are thought to be 
representative of a larger portion of the vehicle reentry trajectory. 

8 
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Typical motion patterns obtained from the symmetrical model for 
various spin rates are shown in Fig. 5.    These data indicate the uni- 
formity with which the motion may be defined as the symbols represent 
only every tenth data point obtained. 

a. P - 0 

Fig. 5  Typical Motion Patterns from Configuration 1, MM  = 7.9, Re£ 1.61 xlOe 

9 
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At  - 0.0133  sec 

tip,   deg 

-6 -«- 

b.  P  =  23 rpm 

Fig. 5  Continued 
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i $•  «Jeg 

At  - 0.0133 sec 

-6A 

c.   P =   126 rpm 

Fig. 5  Continued 
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iV't  deg 

At  - 0.0133 sec 

-8-«- 

d.  P = 214 rpm 

Fig. 5  Continued 
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1$,   deg 

J1 

e.   P  - 271 rpm 
Fig. 5  Continued 
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-8 J- 

f.   P  =  225 rpm 

Fig. 5 Continued 
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At  - 0.0133  see 

-8-L 

g.  P  = 313 rpm 

Fig. 5  Continued 
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At  -  0.0133  sec 

6-L 

h.   P  = 236 rpm 

Fig. 5   Concluded 
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The static and dynamic derivatives (Cj^ and CMq + CM^) are shown 
in Fig. 6 as a function of Pd/2Va> (also P in rev/min).    The derivatives 
were evaluated for a mean oscillation amplitude of 5 deg.   No effect of 
Pd/2V<D was noted for CM#; however, as may be seen in the figure, 
CMq + CMQ. appeared to decrease slightly with increasing Pd/2VBB.    The 
data are compared with the unsteady flow field theory of Brong (Ref. 6). 
The experimental values obtained for CM^ agree quite well with the 
theory (Brongs' results yield the same value as the Stone-Kopal results). 
The damping derivatives are, however,  somewhat lower than the theory. 

10 deg 

r /r.   - 0.0156 n     D 

d =  10  in. 
x„/l =  0.55 eg 
a    /d - 0 eg 

M    =7.90 
00 

Re    -=1.61  x 10 6 

■a 
eg 
u 

u 
+ 

Theory   (Hef.   6),  P = 0 

 o- 'ö 0 O 

16 24 32 

Pd/^V^,   x 10   ,  rad 
40 

* 
0.8 |-        £ 

Theory  (Ref.   6),   P = 0 

ana* 

-0.4 

•o—o- 

J_ 
16 24 
Pd/2V  ,   rad 

OO 

 L_ 

32 40 

100 200 

P,  rev/min 
300 400 

Fig. 6  Static and Dynamic Derivatives as a Function of Pd/2Voo, Configuration 1, 

Mean Oscillation Amplitude  =»  5 deg 
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SECTION V 
CONCLUSIONS 

Wind tunnel tests at M,,, = 8 were conducted using a dynamic bal- 
ance having three angular degrees of freedom.   Data obtained on a 
symmetrical 10-deg half-angle cone (rnlr-^ = 0.0156, xCg/j£ = 0. 55) 
at B.ejt =' I. 16 x 10° showed the static stability parameter, C$j[a> t° 
be invariant with model roll rate (0 < P < 313 rev/min) and the damp- 
ing derivatives, CMq + ^M'a> to decrease slightly-with increasing 
roll rate. 
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