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The Fundamental works of linsteinI and Smoluchowski 2 concerning

Brownian molecular movement were conocerned with the transposition of

spherioal particles. To be sure, Einstein also considered the ro-

tation around a space-limited axis. However, this is a problem of

less practioal importance. It has already been demonstrated that

it is very difficult to theoreticelly consider the rotational

movement of a particle around its central point as transpositional

movement 3 . The main reason for these differences is as follows:

If'one can conceive of the transpositional movement as a zigzag

line which consists of similar straight lines ot lengthX , whose

directions are quite independent of each other, then one may in

the case of rotational movement assume a series of rotations at

a ponstant angle around axes which are quite independent from each

other and permenantly varying. However, during transposition, a

commutative group forms which is not the case during rotation. The

enumeration of the possibility of a position alteration composed of

n elementary steps is in this case very complicated.

'JThe method given, therefcre, is to prepare a differential

e*,Aation for the probability of a given position for the particles.

This was done by Einstein {a .ei~a' for the transpositional

movement and recently by Perrin4 for the treatment of a special

problem of the rotation around a fixed point.

An should be indicated in the fo4leowkg, this method permits

one to treat quite generally the molecular movement of an az

trs~ry body. Thus, one can deal with, for eza ~le, the auwA.zt.oua

treampositiols and rotations of a tziaxial ellipsoid and oomaequently

the special oases of spheres, needles, and disas.

U



1. The Fundamental Law of Molecul4 Movement

The double kinetic energy of a pasticle, whose position is

defined by 4he general coordinates ql, q2 "''6" qn, i

If this particle is moved in an agitating liquid, then the

heat developed per unit of time is:

Here Aik az well as gik, whose determination represents a

hydrodynamic problem, are functions of the q.

Now the position rank movement equation is developed:

where the Q, are components of the general energy, which in the case

of molecular movement considered by us have a quite irregular in-

flurence on movement. Frequently, Qj has a positive value as well

as a negative value.

Here a certain assumptiom concerning the frictional energy is
made, namely, that it results entirely from the dispersive function
F. Lord Rayleigh (Theory of Sound 1. par. 81) tacitly assumes this
while Lamb (Textbook of Hydrodynamics, Lehrbuch der fydrodynamik,
Leipzig and Berlin, 1907, p. 652) indicated in this regard that
equation (3) is true only when the frictional energy did not po-
sses a gyrostatic fraction that did wtrk. T 5s assumption is
consistent with certain symmetrical propertieh of exioted bodies.



n3.

If one combines equations (1) and (P) into eqiation (3) amd

assumes the movement to be slow enough so that all electron terms

whose squares or products are included in q, osn be disregarded,

then one obtains:

The equations (1), (2), and (4) can in this manner be reduced

to a single form in that one converts simultaneously in the sum of

the squares both of the quadratic forms T and ? by an infinitesimal

transformation

(5) dý
where O& is dependent on q. In this case, the coefficienta of the

transformed form 7 all have the value 1. We have therefore:

(7) az - 4- .

where the QLjgenerally is completely dependent ca q.

If a simplified form is assumed for the movement equation:

where can be combined with Q by the relationship

so that

_- .
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Since equation (5) oan generally not be integrated, then

there exists no finite quantit, for . However, we oan speak

about this in the immediate environment of a point qlO, q 2 o*9.'"

if we give t at this point the value zero. Then, it follows

from (8) rwith consideration of the Boltzmann law of distribution

where QP, =AT , for the means arrived at for saay

particles

(0 z; jK2- 1TA 4-,2

if t is only selected small enough.

Zfl order to clarify the fact that the •,here is an inflnitely

small number, we can write equation (9) in the form:

For the means this gives rise to good resultr for each degree

of freedom. This allows one to describe simply the actually quite

complicated and unoontrolled movement. This is true for each parti-

ole in the very small elementary period IC

thus:

(4.-

wbioh means the point travels in a rectilinear manner of the constant

naglitide A in the space in the saml constant slementary spaco

I
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where

ClO~ ×a ~T-r YL

Sin this ease, the directions of the elementary stop should completely

,abandon the laws of chanea*.

From this fundamental law, it one divides (10) by = L

and considers (7) then the frictional heat developed In the unit of

time has the value S• • It, Th

or if we transform back from q according to equation (2)

Th4 heat developed during this movement has thus a value which is

dependent only on the temperature and the number of degrees of

freedom.

If we multiply this equation on both sides by dt'- 't' and

take into oonsideration equation (10'), then we arrive at:

We could then also expreJi the fundamental law as follows: In

the noneuolidieui q-space with the volumetrio determination 111),

the point trqvels in the elementary space 1 with the corntant )a

distance j
* If is not even necessary to assume olementary steps of the same

size. If one does not, then the I*c the equation (10') signifies

the quadratic mean of all elementary steps.



Now we define Uý-O! ... 0 ct)V as the probability that

the point tt timet in the volume eiin~~I .. ,A of

the q-space where

signifies the formuiation of a peartial differential eqqation

for U. Since the probabblity U is directly proportional to the

number of peartioles N in the vo2line space, then we can operate

with the quantity N and later replace N with U. A coDtinuity

i equation is reltred for N and this will now be derived.

The spaoev is limited by the surface o with ýhe exterior

positional caloulatel patterns V . We ask ourselves how many parti-

ales in the elementary spaoer- by the elementary step A pass from

the outside to the inside through the surface element Jar. We~ane

restricted, however, first of all by those pasrticles which form

the angleox with the patterns V The number in this ptioular

group per volume space we termN,1  Thus.

(13)NN 2_

TMe calculations yield j of the actual number since onlyh those

particles which are moving towaxts the surface pass through it*

The number sought by us is:

0

%Wa
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In this case, however, one must bear in mind that N. is a

function of V and consequently can be desoribad by the Taylor

theorem - % \ IV

if V : 0 and the normal point is on the surface itself. Conse-

quently from equstion (14) there arises:

(15) 2 X

Likewise, the number of particles passing from the interior

to the exterior throu•gha( at an4leck is designated by:

ap that

(18)''Nh X~Cos"4ck

the particle increase in volume by movement ocourring during

tim is the particular group considered. We have first of O1l1

norw to summarize overa , that is, to form

2: N~ cos __OSýO N k
Since according to our fundamental law, all directions are probably

equal, then in this n-dimensional space, C.a.--•- also because of

equation (13),~ INL cose.4 - so that equation (18) is transformed

into

~r -
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The integration over the entire surface with consideration

to eqation (10o) yields

On the other hand, there is the inorease in the particle nun-

ber in the volume V and in the tiae-tSA-cL. If we~ set those numbers

,equal to each other, employ the Gaussian principle, and substitute

for N the prbbability U which is proportional to the particle number,

Ithen we obtain

at

which cau be described in the curvilinear, noneuolidian coordinates
q 6: .

(17) Ate$"•'

In this case is calculated from j& by the linear equation:

2. Rotational Movement by Spheres

For the treatment of molecular rotational movement by saheres,

we have introduced as coordinates the Euler angels•,a . • . The

first two both determine the poaitioa of an axis imbedded in a

sphere with reference to a spatially-fixed reference system., C sig-

nifies the •zgle of a plane which goes throug each axis.



S If p, q, and r signify the angular velocities around three

uocessive perpendioular axes within the body, then the beat of

riotion produced ia a unit of time is:

(19) .1 F =W P*%,*%

Where aooording to Kirohhoff 7 :

where rand 9.stand for the frictional ooeffioient oftthe liquid.

id the radius of the sphere.

Sinoe nowI

then for the date mination of volume:

(22) +~ Cos2  F

We have thus:

-ta oonsequently as a result of equation (18):

and aooording to equation (12):

qo ,
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so that (18) is converted to:

It is a question now of integrating this equation. For this

purpose, let 18 make the following reflection: If the initial posi-

tion of the sphere is given by certain values oft ,'\' and ' when

&- I a 0 , and these values ofb ,\' , and C are assumed

for time t , then one can, as is known, through a single rotation

around an appropriately selected axis transform the sphere from

the initial position into the terminal poisition. These axes are

determined by both the Euler anglesOeJ whereas the rotational angle,

which performs the conversion, is designated by0 (when t = O,

then = 0). Then on the grounds of symmetry, it must give an

integral of equation (23), This will be dependent only on! in

ýaddition to-c while e and¶' will be independent. Even this Inte-

gral, however, interest us. We 9a s expressed 0 , T , and T by

Sr , and 5 , replaced each magnitiude in (23) by these, and

determined the intcgral which is depdndent only T and

This idea should now be carried out analytically. A point

ln the sphere at time t has in a spatially-fixed coordinate sys-

tern the coordinates x, y, and z.aeAt time t 0 0, the coordinates

were X0, yo, and zo. Mreover, if we assume further two systems

Sixed in the sphere , , 27 , H, and Z whose axes have

|ireotional cosines relative to the x, y, z axes which in known

""ar are expressed by the Zu-ler angles 0 , C , a s well asm



Q 1$ p and . Whereas the x, yr and z ohan-ge with time, the

, * as wll as -" , H, Z remain constant.

if we we give tho mentioned directional oosines by the shhww:

, _- H z 17 • {

A, . m A , A'Iyi B, B, B,! , , #
'I' y , r lfh j9,

and differentiate the values valid for t z 0 by the index 0, then

geometrioal connections are valid without additional evidence:

A...A. + A,, A + A,,A3 , ca , + ato a, + a$ ma,
(24aI lIGA, + B,3A, + BOA, - #,1 ,41 + (,6% o, + #,a ,

r, + r,,A, + r,, A- ;, + , + .,, "3.

, :- ri ---,, 13, +- ll + i r., B. l 4- + 1 + 736#,
•A,, r 2+8, + Airs, r + A, - +" + a, 91,I(24c) EB,,r, + o r, + s. rr, - , + #,,# , + g.,'8 ,

r +r, +r,, r,+r,-r, 7'.71 + ye w, + y.,o ,.

Since we have assumed for t• - o • +) .•- rp o, thus: 10

f<~C 0'•.--; 0.:• io

Furthermore, for 't O,¢D O, th en10

CA•:~~~ ~~ Co oC)-• ~
A10=Cos TP a~1~.

'r (5, lAzaz-&- £n ?cose B 5 CosTTCos G F. -- S,•,n G

L A :i

I VI I I
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From (24a) with the use of (25), A3 is produced. Likewise,

B3 and 3 are prod,-I.d from (24b) and(24o), Thuxv we obtained:

At ) As,:a c -r eA,8,C, * Flo

Since A3 , B3, %3 depend only oA e and 10 and not on• , and

siaos onlyo is altered during rotation, but not E and ' , then

By using equation (26)

(•) A• pg ± ,3 (Pai.-) * F, f," 0
A' ,. - ar z r (-3 - o

As a result, A3 :%3 (3 does not interest us) is calculated to:

Ali ____(29) j-3 ( .t r•

or with the u'e of (27) and (25') on the left as well as for the

expression for the diveational cosine on the right to a sa ipler

expression: t~j

(30) 2
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&en (24o) and (25) are also taken into consideration:

At,- A.r, + Q \f.L t 0 Y,

If one inserts into the right the value (25') hhen one con-

siders the uze of (30):

from the last equation is oaloulated:

(32) CTZTT

By means of these values, one can eliminate • from the second

equation (31) and thus obtain:

(33) CoS • - Cos - Co s0 • - ,

In order to obtain our objective: the equations (30), (32),

ead (33) give us 9 T, and i as functions of , and 9f

Lastly we can write still another set of equations:

€• (34 LL. w , CosD ,'-J , COS '

This assumes then the for&:

(35) N • U.*

If one now assumes that the dependent variable U is the
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,partial differential equation (23) in addition tol depinds only

)onv\ , then one obtains:

(36) : - -

Since here on the right side, only v but not %A. and v are

present, then our search has finally succeeded.

Integration of the Differental Equation and Ch•.racteristios of the

Integral

For the integration of this equation, the method of the parti-

cular integral is employed thus producing:

(37) U' 17 k v%4%'

where the I,, are pure functions of In addition, a new variable,

S, can be introduced:

(38) S~w4- x-

so that now according to equation (34):

x Cosa 4-

with the range of 0_• ) • I.

then satisfied the differential equation:

T'+1(



In order that remain limited to the entire value range of

variable x , vY must be a wnole number, and to be sure, one may

limit ths non-negative whole numbers. The one obtains the

;aoobina polynomellG. , as a solution which can be described by

the hypergeometrioal serles~in the following manonr:

In order to derive the integral, equation (39) oan be trans-

formed by substitution:

In the equation:

As a resultV using known methods one ýt)rains first:

or through reintroduction of on the right side*:

* it is necessaary if2,and : are infinitely on the limits of

the range for one to regard the right side without the other so

that it will be zero.



As a result, one obteins:

CI' 0

TLe functions are thus orthogonal to epkoh other,

Yor the oalculation of the oonstants:

ii
w bear in mind that

fere for abbreviation is applied:

L.+

Then we obtain through continued partial integrations:

and from the polynome determination of follows:

Thus:

a i r2 (=, I- z, , .

I~

2ra, (U ' 61)
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W# have flaally,*

(44) ,-

As later we will employ for the &rgument Ws! , we wish to still

state this quantity:

Aoordilg to equation (40), it is:

a.Ad thus . - f

whioh furthermoEe gives 13

-o that finally:

The Functional Determinants

SSinflJ ff was the probability that the position of the

particles falls in the range between ý and S 4 , • and + 4-

BandV and T* 4. Since we have now presented \ý as a f us tics of

S,• ,•(that U in this case is iudependent of• aed T is not

Important), then we must express Sin +' , however, by

O Ir , ý and their differentilas.

* The formulae (43) and (44) were also Ibnerally derived by H.
Rademaoher, Ztsonr. f. Phys. 39: 462 (7 and 39: 463 (13) 1926.
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Accordilng to (30), (32), and (33):

(48) 2-'

=S

As a result of a simple calculation:

(47) T I aL -4r~J~J f

We must now express however( % and Sin-5 by and 2 Pro&

the laet two equations of (46):

2
+1

Iliaination of Cos 2 ? giv•z as a result:

(49) P -s +
.2v% +S +I

If one inserts this value into the second equation, then one

obtains: : + _ 4 S

80 that:

(50) - (,,r . - .

As a result, we can obtain from equations (47), (49), and (50):

~~~ThP 2 ix EI4 Irb
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and from the second equation: (4):

Thus, with the obvious suppression of the minus signs:

or, since according to (46), (34), and (38) B - 2x - 1:

Here according to equation (38f), xz a os 2 
- ,

Thus, one obtains:

This is the probability that in this case that the position

at time proceeds from tne position at time by a rotation

around the angle >, S '

around the axis given byE and * . As was to be expected, all

of the angular orientations are quite possible.

If one designates V(x,t)dx the probability for this, that at

time t , the quantity x between x and x'dx remcains independent

of it, around whose aixs takes place the rotation necessary for

the transformation from the initial to the terzinal position, then

one has to integrate over Cand T and take into consideration

(37) and (40).

(VV~,' r C,,• Ge.O ij %laow
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The constants Cn are determined by restrictions that for tc o

andx

(52) V

aud for each value of T

0

We can substitute the restriction (52) by the following also:

(0 ,) I' > x

"d then transform to the limit Lw•i-mO. Because of (53),

so that in the final case, neither t nor A occur anymore.

The following equation

(5-4) '

which is derived from (51) is multiplied by a-nd integrated

from 0 to 1. As a result of (52'), one obtains

Since the left side has the provisiona',& ýJwhich are valid for t

then (44) and (45) are used:

8o that finally:

sinoe later we will use only the first portion of the series, there
Is not objection or this limitiza C{,",,,i,',-
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Whon t , only the first remains, n 0 corresponding

to the portion remaining. One obtains in this case:

that in, the probability that the potnt lies in the elementgoij

-4, F1- . S'"'3wo
TrTT

However, accor~ ggtbo (50'), tiis in the same as-L

Hiow6ver, aiur an infinitely longer per3.od of time, there is an

equi.l probability of the orientation occurrences.

from %58), the average *alu6 of Cos and Cos 2 4r can be

obtained. As previoumn.y mentioned, the • is the rotation around
ny axis aad transforms the particle from the Anitial position to

the position held at time -C .

Acoording to (38'), Cos f a 2x a 1j Furthe:

as a result one obtains:

(57) Cos~ £

I uý.tiplicetion of this expression byV(G,wx, Integration from

0 to 1, and consideration of formulae (43) and (44) ia the inte-

gral, one obtains:

- A

o---S + 3 e.

058
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These expressions play a rol.e in the theory of polarized

fluorescaace in which case one makes the assumption that the

noIecule excited a; time t - 0 esits later the absorbed energy

at time t in the form of fluorescent radiation. One c&n as a

gau.t ca.lculate the contribution which the molecular rotations

provide regarding the delay time t for the depolarization of the

fluorescent light.

Sobservation: If eaih partiile has an axis fixý in space whose

orientation is obtained very easily again, then U would satisfy

the equation:

with the accessory aonditions

as well as:

The one obtains T

&.ad consequently

nese formulae are easily disbinquiihed froA those for variable

axes (58). For very sMall values of t-- , the equations (58)

are apnverted to the one given by Zinstein:

: ~4T_.
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ia obtained u.nder conditiCns izilax to thOse for (58).

3. Orientation of Rotational Bodies

ir it is only a question of determining the probability of

the axial position of rotational bodies (for example, needles

a discs) whichirepresents the oriettation of the particles

in the case of arrested topical &xis, then one proceeds accordng

to (21) with the standard determination

wherez and \'a0 are the frictional resistances which occur during

rotatioa around an axis perpendicular to the topical axis as well

as around the topical axis. In this case, one obtains the partial

dirferential equation for U:

If the topical axis initially has the positionb= • , then

U would be independent of * and f for all times. Thus one ob-

tains

(5gw) ".b -t 7z

where x ,•is used with the limits:

(60) \-k , -r 0
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ID this manner, U is concisely determined.

Similarly, as in the previous paragraph, we substitute the

restrictions agiAn by the following:

&ad then transform over the limit limt-wO , where At- I is

required according to (611.

A solution to (5g') is:

where R, is understood to be the spherical functions,

Multiplication o1 U(x,O) with P (x)dx, intergration from -1 to

i-, consideration of the equation Pn(1)z 1 and integration of the

spherical functions gives -thus:

(62) U e._7(, )

For the mean ITiT, then one obtains:

(63) r)

and hence to the mean value formula . T

which Perrin (already cited) had already found without integration

of (59').,

H



-25-

4. General Molecular Moveent ofK Rotational Bodies

In addition to the Zuler snmgi.s ,Z ,T which deterzine

the orientation of particles, we do not introduce the apktial-

orientated coordinatesaxes x, y, z, but we indicated by the

aiddle point of the coordinate systems, which coincide with the

aid-point of the particle,at time t 0 0, three axial pokitLtns

perpendicular to each other which are parallel to the principal

axis of the particle in its immediate orientation. ql, q2 , q 3

are termed the oooddinates of the particle mid-point in this

sTstem4 Thus:

(84) ) -rZ

Iwere C, , p ( are expressed .in definite ways by the Euler

angle.

Now, the standard determination is:

Here wiandw signify the frictional coetficients for transposi-

tions perpendicular as well as parallel to the topical axis,

whereas w and w' are the coefficients for the rotations as des-

oribed in the previous paragraph. Now, a differential equation

for U can be written:

(65)

k.
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AM integral Independent ofa , . that has the limitations

as well as

-- U 0-\1

By means of (84) is obtained:

Consequently: 14 A+Y44

For the progression (oan be translated locootion also) Rf

particles, we are interested only in the mean value:

(689)

8 1 ac e we can Introduce from the
ulform sphere the point- as poles, as the polar

T 3ph 1e thehePoa

diatance, and I as geographical longitude, and obtain from (68)

by insertion of (67)

r r
t.' •- ') e. -.. -,

-O..-

TVxr
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if k (flattened rotational body), then one has:

Obere 9 is the Guassian error integral. In the case of 4J<L

(lengthened rotational body), one obtains in. t is case:

(69b)

Hers?

In both cases, in order for--%AT-z and R to

describe accurately the behavior of probability except the factor

S, one has to employ needles with the frictional coefficient

•. lHowever, if this is not the case, then V is smaller in the

first case and much larger in the second.

In order to clarify all the other cearses of diffusion reactions

In the case of discs and needles, we would like to assume that the

needle radius C is s6lected such that the frictional coefficient

"\Q."' _ is equal to the frictional coefficient of discs in

the displacement in their own plane,%-i , where O- represents

the disc radius (see par. C). In other words, P_ The

frictional coefficient for displacement parallel to the topical

axis i~f the dis is W,~ i-4ab (see par. 5). For the behavior dT

"In the case of this function, one should bear in mind what has

been said by R. Gans, Wied. Ann. 49: 168 (1916).



tae probability functionVc which is valid for discs (see formnla

(6a)) and for the V. measutred for a sphere, which is derived

from (69a) when , , one obtains

Me table present d as a functionA , = rand the

figure illustraies the relationship.

0,3 1,1S8
0,5 1,180

0,a lpo.
1.0 0,914
1,3, 0,6"
1,0 0,b40

8,0 0,143
4,0 0,xi

4S-

The Ooncentrations obtained by diffusion are thus in both oases

quite different.



The quadratic mean WA one obtains in the

si~p165t way from (68), in which one considers that'O.

--Qua, the result is:

One obtains the formula:

if one sets

(71)

It one had previously not assumed a topical axis but rather the

ujmaetrcal behavior of a triaxial ellipsoid, then one have instead

ot(66): PT ________ 4Qz-TX +W' 9" + '~4)

and aocordingly:

That denotes in this case that the standard determination then also

divides into two terms, the first of which includes only the dql,

dq 2 , dq3, whereas the second is dependent only on , ,

and their differentials, so that the differential equation corre-

spoadiag to (65) breaks d.wn into two terms of similar properties.

The average mobility in this case is the arithmetic means of

tbe mobilities in orientation of their principal three axes.

rl



5. The Resistance Coefficients

In the theory of Browlnan movemeab, the resistance coeffi-

oleat$ play an important role whioh will now be discussed. f

be aur, one has control over many practical situations that occur

if one knows the values for an ellipsoid. Spheres, discs, and

zeedles are speoial cases of this. Although there is no problem

determining the doubtful coefficients for triaxial ellipsoids,

we would like to confine ourselves to extended and flattened ro-
tational ellipsoids whose half-axes are a a b and o.

One is concerned with both of the resistance coeffioients for

transpositions orientated to the topical axis and perpendicular

to it, which were designated as w3 and w, in the preceding para-

Araph, that is, the force which is necessary to give the particle

the velocity 1 in the orientation concerned in a fluid with the

frictional coefficient p . Further, there is the question of the

resistance coefficients w' and w for rotations around the topical

azxs as well as around an axis peependioular to it, that Is, the

torsional moments which are necessary in order to give the paerti-

ole the angular veltoity 1 around the axis concerned.

1. Transpositions

The appropriate formulae, which were derived by OberbacC16,

17are found again in the works of Lamb17 The resistance coeffi-

clent for transpositions of an extended rotational ellipsoid

PerpendiculaLr to the topical axis is shown in:

IG L T r P



ere r signifies the numerical eocentricity (e zr-- ).1or the

sphere •.o ), the well known Stokes formula is arrived at:

0or rods (as o), one derives from (72)

(72') 0-

41.1931 iAs J÷n Z). If movement occurs orientated to the topi-

Cai &--is, then one ol1taiIL

!~ (73) Vc

Yor rods, this transforms to;

(731) L -S- + -

If the rotational ellipsoid is flattened, then obtains for gve-

scnt perpendicular to the topical axis ( c€l= e. )

"sd in the limited case of the oiroular discto co- a):

(74') 32_



-32-

ýz the other hand, for movement orientated to the topical axis:

Cz

azd in the limited case of circular disos:

2. Rotations

Tte resistance coefficients for rotations around the half-

azoe were obtained from an investigation by Xdwardes This

wrk, as far as I aq concerned, has been little coqnsideration

fM should be ptilled out of oblivion.

Furthermore, it is likewise noted that the formula essential

to us for the torsional moment, which is found on page 77 of th"

olted paper, is inworreot, since orie aileeady knows in this con-

nection that when a a b = c, it does not transform into the well

Xrowa Kirchhoff foramla (20). The numerical factor 32/5 derived

by Edwardes must be beplaced by 1/3._1 In other respeotd, all is

In order of which I have convinced myself by examination, particu-

larly the velocity field at infinity which is enough to calculate

tVe torsicnal moment.

According to this, a rotation around the a-axis with the en-

q.lar velocity Lo developes a flow velhoity whose components are

ezpressed by the formulae:

S, S

'b 5"b 2, "b ý, - "

~-~ -



#ýGjeas the liquid pressure is:

j• , density; ý-, visoosity of the liquid).

Here is stated:

i •ere D is defined as:

& n4 A ". defined by"

SThueS?' is the pobtential, of an ellipsoid that hew uniform meas with

teie denaity-.-•- £uttther, d" Is an abbreviation f•r:

One Is easily &ele to 'verify that the values for uq 1, W, 9

at, *ppr~pi~ate for differential equatoio,• to: slower movement

lo
SZ.



j., aBitated liquids as well as for..the limiting conditions u Z 0,

* ..w4; w -W wy which are valid for seirfaces.

The tors3mal moment, which is necessary for the maintenance of

retation. can be ascertained from the values for u, v, w at in-

rfrtte distances. There one assumes, however, the single value

_e _- forJ-2 since can in this case conceive of the total pro-

•- which represents the potential SZ , concentratedPOrtion --3-7

in the coordinate system.

7hus, the resistance coefficient for rotations a&ound an axis

pezrendicular to the topical axis (a-as) of an elongated ellip-

sold can be calculated using the usually valid formula:

621134-c I

(76) ~ ~

-I- _:

Sheaz =o 0 sphere), this transforms into the well known Kirchhoff

tormula Srpa3 , whereas for a rod (alcx), the value assumes:

(76t) 22I

Qn the other hand, when one wishes to find the moment around the

topical axis, the expression used is:

(77) ~CL -

v2,ich for a rod tranaforms into:

( )3

It7
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If tte rotational ellipscid is flattened, then for the rotation

arond a axis perpendiculb-' to the topical axis, one used:

(7)3 QC :€+

rot iroculaz discs, this transforms iuto (liata ):

(78') C

for rotations around the topical axis:

for rotations around an axis of rotation lying in the plane of the

diso, see (78').

Probably it need scarcely be mentioned that rotations around a

topical axis, particularly rotations around spheres, cannot be

produced by impulsions by molecules. When one speaks of such

rotations, then it means that the particle does not have exactly

tte form of a rotational body.

According to theaabove, the coefficient Lo is dependent on two

Yariables c and . Using statistios on transposition observations,

One can according to Par. 4, formula (71) determine which is

according to (72) and (73) as well as (74) and (75) an expression

of the formc4, (ý. The measurement of the flash time of non-spherical,

p artially illuminated particles according to the not yet published

SIudies of Miss Stadies p.-oduoes an average for the determination

oTr , which according to (76) and (78) has the form= (E
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j this manner, it is possible to determinee and c- separately,

F at is, the size and form of the particle.
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