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The Pundamental works of Rinsteinl and Smoluchowski?® conoerni{ng
Brownlan moleoular movement were ooncernsd with the transposition of
spherioal partioles, To be sure, Einstein also considered the ro-
tation around a space-limited axis, However, this is a problsm of
less praotliocal importance, It has already been demonstratsd that
it is very difficult to theoretically consider the rotational
movement of =2 particle around its central point as transpositional
movement®, The main remson for these differences iulas follows:
Ir{one can conceive of the transpositional movement As a zigzag
line which oonsists of similar straight lines of length A , whose
directions are quite independent of each other, then one may in
the case of rotational movement assume a series of rqtations at
& ponstant angle around axes whioh asre quite independent from 2ach
other and permepantly varying. However, during transposition, »
commutative group forms which i1s not the gase during rotation. The
enumeration of the possibllity of a position alteration composed of
n e}ementary steps 18 in this case very complicated,

\JThe method given, therafore,,is to prepere a differential
ey uation for the probebllity of a given position for the partioles,
This was done by Einstein {eited-earilier} for the transpositiocnal

. movement and recently by Perrin4 for the treatment of a speoisnl

prodlem of the rotation around a fixed point,

As should be indiosated in the folldowing, this method peraits
one to treat quite generally the molecular movement of an ar
trary body. Thus, one ocan deal with, for sxample, the simultasaous
transpositions and rotations of a triaxial ellipsoid and consequently
the speciaml cases of spheres, needlss, and disos,
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1. The Frundamental Law of Holecula% Movement

The double kinetic energy of a pazticle, whose position is
defined by che general coordinates q;, Qg eevse Qp is:

(1) ZT: % Ad%; %L -

If this partiole !s moved in an agitating 1liquid, then the
bsat devaloped per unit of time is:

@  2F 2 3% ga

Here Ay, am well as g;,, whose determination represents a

hydrodynamic probdblem, are functions of the q,

¥
Now the positior rank movement equation is developed:

4 (3T AT L JF .
@ de ('% BT N

where the Qi are components of the general energy, which in the oase

of molecular movement considered by us have a quite irregular in-

flurence on moveament. Frequently, Qq has a poasitive value as well

as a negative value,

* Here a certain assumptiom concerning the frictional energy is
made, namely, that it results entirely from the dispersive function
F. Lord Rayleigh {Theory of Sound 1. par. 81) tacitly asasumes this
while Lamb {Textbook of Hydrodynamics, Lehrbuch der Eydrodynamik,
Leipzig and Berlin, 1907, p. 652) indicated in this regard that
equation (3) 1s true only when the friotional energy 414 not po=-
8ses a gyrostatic fraotion that did werk. This assumption is
consistent with certain symmetriocal propertiss of exioted bodies,
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If ope combines eguations (1) and (2) into squation {3) and
agsumes the movement to bs slow enough s¢ that all slectron terms

whose squares or products are inoluded in q, ¢can be disregarded,

then one obtalins:
;A;J.B\l +%5L1£Kt= Qi

The equations (1), (2), and (4) can in this manner bs reduced
to a single form in that one oonterts simultanecusly in the sum of
the squares both of the guadratio forms T and ¥ by an infinitesimal

transformation
o %= Folady

wnere‘#bi_ia depsndent on Q. In this case, the ccefficients of the

transformed form P all have the value 1, We have therefore:

. R
(6) 2T= = &, EL

(ny 2F = g;_

L-|

where the Q,_genera.lly is completely dependent cn q.

If & simplified form is assumed for the movement eguation:
(8) % Ex. + &,

wherse can be oombined with Q by the relationship

Zqu&., =, C{gy

- L

—_— 45 "“‘Eg“

80 that

.
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Sinoe equation (3) oan generally not be integrated, then

| there exists no finite quantit - for E » However, we oan speak
about this in the lmmediate environment of a point q)q, Qoge e
| {f we glve E at this point the value zerc, Then, it follows
[ from (e)rwith consideration of the Boltzmann law of dlstridutioa

where Qg E‘ = ,LT , for the means arrlved at for many
particles

(9) E. = 0; E‘=2LT;¢ (ho12,...%)

if ¢t is only selected amall enough,

Ifl order to clarify the fact that the ‘S&_hera is an iafinitely

small numbter, we ocan vrite egaation (9) in the form:
e
oy d%,=0; 48 c2kTe

Por the means this gives rise to good resulter for each degree
of freedom., This ellows ons to desoribe simply the actually quite !

cumplicated and uncohitrolled movement, This is true for each parti- i

ole in ths ver;y small slementary period T :

: (911} JS: =24 T |

|

' thus:

! 2] 2
| (10) der - = d S_b =28 Ten,
| =

which means the polnt travels in a reotilinear manner of the oonstant j'

magnitude A in the E space in the sasll constant slementary spaco T

\



where

| In this osse, the directiocns of the elementary step should completely
abandon the lews of change®.

From this fundamental law, it one divides (10) by d€3= T
and considers (7) then the friostional heat developed in the unit of
time has the valus _

- 2k Th
AN

4

or if we transform beack from q acsording tov equation (2)
. “T
AF = TV - At

% duk Y \" a
Ths heat developed during this movement has thus a value whioh is
dependent only on the tamperature and the number of degrees of
freedon,

If we multiply thia equation on both sides by dt s ¥ and

take into oonsideration equation (10!}, then we arrive at:
2
o dete Z G dy dga s N

We ocould then also expredse the fundamental law as follows: 1In
the noneuclidien g-space with the volumstrioc determination {11),

the point trgvels ia the elementary spacs T with the corstant A

distance .

* If is not even necessary to assume slementary steps of the same

size. If one does not, then the,%:cr the squation (10') signifies

the quadratic mean of all elementary steps,

}
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. the point et time %t in the volume elomnt&v:‘\@&q‘”é,‘l.a_ J%\ of

the g-spaoce where

(12) 9q = ’3»1‘

signiries the formulation of a partial differsntial egygation
for U, Since the probabblity U is direoctly proportional 2 the
number of particles N in the volums space, then we oan operate
with the quantity N and later replace N with U. A coptinulty
equation is reguired for N and this will now be derived,

The spacev Is limited by the surface o with the exterior
positional scaloulated patterns Vv ., We ask oursslvas how many partie
¢les in the slementary spacew by the elementary steép A pass from
the outaide to the inside through the surfece slsment do- ., Weumee
rastrioted, however, first of all by those particles which fora
the angleo{ with the patterns v , The number in this partioular
group per volume space we termN, , Thus:

(13) =N, = .g.
The calculations yleld § of the actual number since only those
particles whioch are moving towards the surface pass through it,

The number sought by us is:

(14) - Ja'de /o




i

In this oase, however, one musat bear in mind that Ny is a

funotion of Vv and consequently can be described by the Taylor

N.f No * (—%gd\%w

theorenm

i v = 0 and the ncormal point is on the surfece itself. Conse-

quently froa equation (14) there arises:
| b N‘ 2 2
(15) = do [Ndokmsar{(r,v\o)\ Cos™ol

Likewise, the number of particles passing from the interior
to the exterior througnlc at angled, 1s designated by:
J
- 1 3
(151)'\\‘:46; N‘A'V'.' JGY.N‘O\CQQA"E_‘(LN‘“\ X Cos‘d‘k
—Atorg v /o
sp that

N
?a ML >\2 COSzaL

(16) \\"’ “lﬁ ig

the particle increase in volume by movemesnt occurring during

tim® is the particular group oonsidered. We have first cof all

now to summarize overol , that is, to form
i W
F ZN“Cosd- Cosd_‘ZN*

8inoe mcoording to our fundamental law, all directions are probably
equal, then in this n-dimensional space, Cu‘-\-‘-‘ -.!? also because of

Fqu.xtion (lS),? N. Cot el 'S.NT 80 that squation (18) is transformed

into
z 3“
Ad‘%"‘ S0




; The integration over the entirs surface with oconsideration
to equation (10') yields

i AT’ES%%—JO‘

On the other hand, there i3 the inorease in the particle num-

ber in the volume v and in the timey %!irlm It we set theas numbders

squal to each other, employ the Gaussisn prinolple, eand substitute
for N the prbobabllity U which is proportional %o the particle number,

then we obtaln
' - — = /LTJW 3\03 \L

n
whioh ocan be desoribed in the curvilinear, noneunolidian coordinates

,qeg i ph a\l.\
. 4T 3 2 (ygp g

(17) ERIEILY Ao O

In this case %’")'“ is caloulated from Uk by the linear equation:

0 Gor kg4
{18) % Yik 3“‘ {1 foe J::t

2. Rotationel Movement by Spheres

For the treatment of molecular rotational movement by spheres,
ws have introduced as coordinates the Euler angels ¥, @ . The

first two both determine the position of an axis imbedded in a

' aphere with reference to a spatiaslly-fixed reference systea, P sig-

nifies the angle of a plane which goes through each axis,

e ek e b 3 i s
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If p, q, and r aignify the anguiar veloocltles around three
suocessive perpendioular axes within the body, then the heat cf

friction produced in a unit of time is:

(19) & F= wlp* +qdex®)

where according to KirchhoffV:

‘ W = %\TPQ}

whers r,and a_stand for the frictional coefficient efithe liquid
and the radius of %he sphere. ;

Sinoe now® .
PeWimdSm P+ Dios P

@ I%=PSUDcesP +» IS ®
VaVY0los I+ 9

then for the dete mination of voluma:

(22) dst: m(J&l-«- dyi+ { q).z + &Cos?!‘?cl‘ﬂ

We have thus:

Jn= Fea = = W5 Yas = V0 Con J; W= 3!:.= 0

and consequently as a result of equation (18):

Q=5 e 9. TEEd

ay _ COI'@ . 3'= '3‘= :
A\ wWSWr Y 9 3 °

and according to egquation (12):

q = WS> D
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| so that (18) is converted to:

AT'{

Sim T

at
(83)

Ty (AW 2N
*-S\-“; (‘O\y2+ S—%’i"aCDS‘B 31-6?

It 1s a question now of integrating this equaetion, For this
purpvse, let us make the following reflection: If the initial posi-
’tion of the sphere 1is given by oertalin values orS,Y , and P when
e ys 20 , and these values ot ,¥ , and ¥ are assumed

for time+ , then one oan, as is known, through a gingle rotation
around an appropriately selected axis transform the sphere from

the initial position into the terminal polisition, These axes arse
determined by both the Euler angles8 ¥ whereas the rotational angle,
which performs the conversion, is designated by § (ﬁ_ﬁen t =0,
thend = 0}, Then on the grounds of symmetry, it must give an
integral of equation (23), This will be dependent only ond 4in
asddition to<T while & and ¥ will be independent. XEven this {nte-

"gral, however, interest us, We ra: s expressed~ , Y , and ¥ vy
Ee ¥ , and @ , replaced each magnitiude in (23) by these, and

Letermined the intecgral which is depdndent only T and &,

‘ This idea should now be carried out analytically. A polint

Ln the sphers at time t has in a spatially-fixed coordinate sys-
ten the coordiaates x, y, and z.cAt time ¢ = O, the coordinates

were X0, Yo, &nd z,. Morsover, 17 we assume further two systens
’fixed in the sphers § , N ,C and =, H, and 2 whose axes have
Pirootional cosines relative to the x, y, z exes whioh in known

nm are exprassed by the Buler angles J Y ? as well a»
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} e,V , andd . Whereas the x, y, and z ohange with time, the
E,n o, T a8 well as = , H, 2 remain constant,

If we we give the mentioned direoctional ocosines by the shheme:

- , 4 '
;= H Z lE o §
AL A A o i o o5
. !} By B' Br y, ﬁl ﬁl ﬁl

and differentiate the values valid for t = 0 by the index O, then

ngoomtrioal connections are valid without additionel evidenoe:

ApA T ALA +HALA = a8 + ay 0 + ay, @,
(248) { B A, + By Ay + ByoAy = B + Bye &y + Brg @3,
Mol 4 TooAy + T Ay = 7,48 + 740 ¢ + 7 Ty

{ AB) 4 AppBy + AyBy = a B + e B,y -+ gy By
' . (Q‘b). BioBy + ByoBy 4 BBy = 1081 + B0 5r + On B
DBy Ty By + T By = 7y B+ 7348y + 7m s

AT+ ATy + Al = a7+ a7y + Epa 7y
(240) { B,y My + B,y + BTy = B0 7y + Bra 7y + Bua7s
r\o'rx + Taola 4 Toals = 71071 + 750 75+ 720 Vs

Since we have assumed for ¢ ® 03:"{-’: P- 0, thus: 10
=, #1; Fa-o'-'-D; ‘\o’o
qu » o)‘ B“. 1; X““.O
L (28) |
O\’.s 0, Be® 0) X‘.=1

Furthermore, for ¢ & 0,@- 0, tnenlO;

} FA‘O= Cos \P B.,, = Sin ? rog Q
(251) Aaﬁ‘g'“‘YCosB B2 Cos Yos 8 |:° = Sin ©
A Sin PSe® B, =-Gs PO D [.=Ces ©
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From (24a) with the use of (25), Az 1s produced, Likewisze,
33 apd 1 5 are prod..sd from (24b) and(240), Thusy we odtained:

Az Apst ot 630"{2 + [y oy
ze Bt AuB v BBt T, g,
| Ma=Au ¥ + B Y, + [, Y,

Sinoe Az, B, (5 depend only on O ana ¥ 10 and not cn P , and
since only P 1is altered during rotation, but not O and ¥ , then

2 Ay« A3 B,=8,,;, T,-T,

3 10
By using equation (28)
A, -0 + B, + Tl 20
{28) Ay B+ By (Ba—DN+ T [‘3:‘ O
AsXix B, G+ 1 (=N = 0

As a result, Az:By (l"s does not interest us) is caloulated to:

A, . X + oy
\29) B,  YutB,

or with the ure of (27) and (25'} on the left as well as for the
exprossion for the directional ocosine on the right to a s! spler

f:% V. try -giéi:t-

expression:

that is
’ = X P-vy
(30) Y- =
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when (24¢) and (25) are also taken into consideration:
o= A\.Ye + B, Y.+ Mo Yy
]
FZ: = Abofc + GNYL g r;QY'S

i If one inserts into the right the value (25') bhen one con-
gsidars the usge of (30):

Siw © S\n® = S\lh% QOS f%—t

(31) Sn@Cos P =59 (o5 6 Siw i}i-\- Cin O€os D
Cos B8 = S S0 S.. SZgEtL_+_(}$ G)Cbs 3

from the last equation is caloulated:

(32) tvq © = tg _‘2_. Cin ffia_i

By means of these values, one can eliminate © from the second

equation (31) and thus obdtain:

(33) Cos O = Cos J - & Cos? —2? S\’“‘L;:’V

In order to obtain our objestive: the squations (30), (32),
ead (33) give us © , ¥, and § as funotions of ¥ ¥, and P .
lastly we can write still another set of squations:

(34) Y(’ 1+ 2GCGs9, w-~ Cas %; v = Cos (?ﬁ \P\

This assumes then the form:

{35) N= % e+ we

If one now assumes that the dspendent variable U ia the




-l4-

}paztial difrerential oeguation (23) in addition to t depdnds only
’onv\ , then one obtains:

(35) -bi AT{(’*'\\(’ ‘\\ Tgma“h )

!
i
r
|

Since bhere on the right side, onlyv\ but not w and v are

| present, then our search has finally succeeded,

r Integration of the Differsntel Equation and cha:aoteristica of the

Integral
For the integration of this equation, the msthod of the parti-

cular integral is employed thus producing:
r - 2T\ (nany®
i @ V- = C.e In

where the‘], are pure functions of'Y\. In addition, a new variabdle,

} = , can bes introduced:

(38) M= +x

80 that now according to equation (34):
(38')  xv Cos? -

with the range of 0 < x < 1.

then satisfied the differential equation:

(39)

X {1 => ‘j':-. +('$‘-2 *\ \j'h'ﬁ h\n-v\\\j“:




yw

F L e : ,
4 et — - X

=15a

In order that \j,\ remain limited to the entire value range of
variablex , . must be a wnole numbsr, and to be sure, one may:
1isit ths nop-negative whole numbers, The one obtains the
Jacobina polynomenG., , 88 a solution which ocan be desoribded by

the hypergeometrical seriesFin the following mannar:

(40) \371' Qn (1,%,*w3 F(“#\'-“'Ji.,g\

In order to derive the integral, equation (39) can be trans-
forsed by subatit.tion:

(41) \ﬂh' ' - x o)

in the equation:
.

d , ¥
(42) T; [1‘/‘ (1- XV't 2:}+h(h+\\"\/ e 2~ 0

A8 a resulty using known methods one c,tains first:

th‘h#!\ - m(m*ﬁ]i V ,_i,‘ Zn 2 Ao’-—

\
= \Xk (,_x\y' (2:‘ ZH-Z,: Z“\\.

. or through reintroduction of \3,, on the right side*:

AT RNV

* it {s necessary if2,and X, are infinitely on the limits of

the range for ons to regard the right side without the other so
that it will be zero.
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wher

Then

and

i

i1
we bear in mind that

i Thus:

S?hzm \/ ,:,, Jr:'.) N *m
j:m-..\/“" dxxo wHwm

The functions ("“H Yw are thus orthogonal to Moh other,

=16~
As & result, one obtelins:
(43)
Jor the calcudation of the constants:

Q. = S‘j-. '\/_—;_Jx j\shz d x

Zn L 21“ II(h\ W
Iy "

¢ for abbreviation is applied:

W = d xn Th (I ﬂh*'/'l

n d x*

we obtain through continued partial integrations:

O = (=" 2*" 11w
1L 2wy

(n)
Wy Ly A‘,
J

from the polynom denerminabion of \3\ , follows:

kﬁ = (=) 2" 1Tt

i
o, = 2 lres™ S NN
E(Zn\ (‘ x\

m(h\\ JI (Y\ ‘L\n Y\*’LB w
IL (en) I (2n+ N T
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We have fipally®
i \ [ 1= x TC
A — .
(44) j‘sn 'S dx 2.

As later we will employ 3“ror the argument xt! , we wish to still
| state this quantity:
Ascording to equation (40), it is: | ]

3 \jn (N= F (hﬂ,—h,?'_-,l)

 and thusl?: (- L)1 (- 2)

"ﬁh (.1\ - If(‘“"%ylf(h-%)

which furthermoke give 513 :

r 3 T(-‘-—\\\
AT Do, Serned AW T TR

r10 that finally:

(45) \3“ (1) = (-~ \\“ (QY\* D

The Functional Determinants

U 51nYd9éy d @ was the provability that the position of the
partioles falls in the range between 9 and G+ d9 , ¥ ana¥+d ¢,
| and P and P+ dP. Since we have now presented \) as a fww tion of
 Q,V ,Q (¢bat O iz this case is independent of 5 and Y is not
izportant), then we must express Sin IdY d v d P , however, by
e ,v, ¢ end their differentials.

* The formulas (43) and (44) were also generally derived by H,
Rademscher, Ztschr. f. Phys. 39: 462 (7 and 39: 463 (13) 1926,
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According to (30), (32), and {33):

r\y= —:I’—-?;-\-ﬂ

t 3

Y - & ) -
tlg QT%TS\M‘ZIJ

S'—'Qos@: Co:S"eCo&a%.S%a':%:f

(46)

A8 a result of a simple calculation:

wn dwde s (o) ) e Bt d9dvi e

We must now express however (s, 91.'—*- and Sind by v and & , Froa

the ladt two squations of (46):
kN

~ V43
(46)Cor” X = e s T 0t R

Cos® XX

Klimination of Cos® % glvés as a result:

G +N s+ 1)
(49) a WY ¥
G 2 TSN S+i

If one inserts this value into the Bs¢ond equation, then one

obtalna: s O 2edysa | =5
——— N —— - a % - ————
Ces z R (y2 ey ! P Sw' T 2(vva))
80 that:

(av2 e 32 (=)
-2
() ' T = (2 +0\2

As a result, we caen obtain from equaticns (47), (49), and (50):

NadDdvdp- i—s  d¥dvds
vdip 2/\/"’ Y




<
¥
;
1

.'FH‘E m— ‘::--.------u-n—-----------.\

~19a

and from the second squation: (4%):
- - -—
940 - Cere ) Yo
Thus, with the obvious suppression of the minus signs:

S ddDdpdyp =2 §\‘h9694?.l':—%t}8

or, since according to (468), (34), and (38) s =» 2x - 1: ;

(50) S YIS dvdp=1S0d0dw = d~

Here according to equation (38'), x = Cos® —Qi .

Thus, one obtains:

UL SwddYdwd p- ﬁ\l(mﬂﬁm Od0dWdx

This is the probability that in this case that the position

at time prooeeds from tne position at time by a rotation
around the angle @ ( 2
x = Cos -?*

around the axis given by@ e.nd"P o« AsS was to be expected, all
of the angular orientations are quite possible.

If one designates V(x,t)dx the probability for this, that at
time ¢ , the quantity x between x and X + dx remeins independent
of 1%, around whose aixs takas place the rotation necessary for
the transformation from the iaitial to the terminal position, then

one has to integrate over © and ¥ and take into consideration
(37) and (40),

== -ﬂ\(hﬁ\\f‘
(s Voo = wwwix > Q¢ G. (g
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8inoce later we will use only the first
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The constants C, are determined by restrictions that for T~ o

and x ¥1 @

s2) V=0

and for each value of T :
(52) Sv(x,t\ de =1
o

We can substitute the restriction (52) by the following also:

Cowe T=20 An) I>x>~¢ V=A

- X =0
(52') I-g >x > ©

end tnen transform to the limit Lime-ao. Because of (53),
8o that iz the final ocase, neither & nor R ocour anymore .

The following equation

(54) \ (%, 6y = b TT '\) 4—;—"—- %: Q“\jh (x\

which is derived from (51) is multiplied by \y)x and integrated

' from 0 to 1. As a result of (62'), one obtains

- » [ R  §
A S adem WG JWEE ) de
Since the left side has ths proviaion'&mhwhich are valid for ¢ ‘:

then {44) and (45) are used:
" ah-o-l

{55) Q {"1\ 511-:..

80 that finally:

ha}ff
Vi s 2 YRS e G, 1 9)

(56) hee

Portion of the sge
I8 20t objection of this limiting twuesien ries, thers
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whon £ = co , oniy the first remains, n s O gorresponding

to the portion remaining., One obdtains in this case: 1
Nix, N . ..__.‘p:.q‘\’ = x
T - O w x

that 15, the probahility that the polnt lies in the element d8J ¥dx

is: i=x v O d F
R VACTIRP P YLE

4T

Howsver, accordtagtto (50'), this is the same &9;‘;4&;%3?1%"-
Howsver, alter an infinively longer period of time, there is an
equsl probabllity of the orientation ocourrenoces.

Prom (58), the average value of Cos & and cos® § ocan be
obtained. ASs previous)y mentioned, the Q is the rotation eround
any axis and trensforos the particle from the ganitial position to
the position held at time T .

Acoording to (38'), Cos Q 3 2x x 1 Further:

Gar L 5 Gyol-~ex: Cp=[-lax +x?

as a result one obtains:

Co+ G . - ~ ’\,
(57) Cosg=-°—,_-——, Cos@ .%-r.‘%’_.',%

5;}: multiplicetion of this expression byV(x,v\Jx, integration from

0 to 1, and consideration of formulae (43) and (44) in the inte-

gra’, one obtains;:

3 ~akTx
s = ~c*g e "
(%8) ..;#T-t. ™
-_— (R Ix
{ 3 =
Cos’§ = 7T "% ¢ +=e  °
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These expressions play a role in the theory of polarized
-f;uorescence15 in which case one makos the assumption that the

aolecule exsited av time t = O enmits later the absorbed snergy

at tize ¢t in the form of flucresosnt radiation. One csn as a
! tesuit calculate the contritution which the molecular rotations

provide regarding the delay time t for the depolarization of the

flucrescent light.
ybservation: If eash partisle has an axis theeJ in space whose

 orientation 18 obtained very easily again, then U would satisfy

i the equation:

i

; »y AT DV
LS I &

- o with the accesscry sonditions

“aim ks 0 ) Y= 0 \l'o
as woll as:
l S0

| Suéwal

! The ope odbtains AT

- w

o>
Uri'?-q--'?zuu“?-t

wr y

Yz

! and oonsequently

t 4*
. . - ;
. -éks-z 2 W
| (s6') Ton =@ 5 Cost” a(Q*Q }

' These formulas are eaaily dissinquished from thoas for variable

axes (58), JFor very small values of !é;:t , the equations (58)

are opaverted to the one given by Einstein:
T

-

o ——

o —— ety e e

s = a4t
\

Lo

TR o i et o |
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whereas &;’ = E:&__-l—t

W

iz obtalaed under conditicns simllar to these for {858},

3. Orlentation of Rotational Bodies

Ir it 18 only a questlon of determining the probability of

the axial position of rotational bodies (for example, needles

' end discs) whiochirepresents the orieitation of the particles

in the case of arrested toplcal uxis, then one proceeds accorddng

to (21) with the standard determination

ds2s w(dT*+ NN .94 tPQ\., w' ( Cos &J\y + d ?\1

whersw and w'are the frictional resistences whioh occur during

rotation around an axis perpendicular to the topical axis as well

as around the topical axis. In this case, one obtains the partial

differential equation for U:

U T B (33NN,
== 2T LTs 33 (sm ® 33 ) seny

w
(59) a
o(—_%\:)a —QQOS%;—:':‘T:)'Q‘* o'

If the topical axis initially has the position: o , then

tains

oY
(89') Dt
where % » €Yy L8 used with the limita:

(60) Wihin T2 0 awndx F V=0

WihnA Y ew' ot ® -«

)

; U would bs independent of ¥ and ® for all times. Thus one ob-




% -24~

In this manner, U is conclsely determined.
Similarly, as in the previous paragraph, we substitute the

F restrictions agadn by the following:

When ¥z 0 ant ~{<¢x < 1= ¢ U=o
(60') v t20 @) \-pex €1 U= A
gnd then transform over the 1limit lime-»0 , where Ae= 1 is
} required according to (61%.
A solution to (59') is;:

.o Tt (nd
U<y = Z Cu € " ?n ("\
: ne o

whers P.\ i3 understood to be the spherical functions.

Multiplication ol U(x,0) with P (x)dx, intergration from -1 to
+1, consideration of the equation P,{(l)x 1 and integration of the
spherical functions gives G, « 9%’1 , thus:

2. 2w ninedy ALY
(62) u' Z la+\ e L1 T ) P“ (!3
“2 o0

For the meen P {x], then one obtaias:

A T2
h -h{n+) TG
63) ), (x) - f?“(x\ Uix= e
...‘
. 3
and hence to the mean value formula _@,4&
- _ath ' --—A - ,,.2‘_ e e
X = Q WY y XT < 'é' 3

wniioh Perrin (already olted) had already found without integration
o2 (S9t),,

YR,

LTI TS e
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- are termed the cooedinates of the partiole mid-poizt in this

25

4, General Molecular Movewment of
Rotational Bodles

In addition to the Euler sngdes v , Y , P which deter=mine
the orlentation of particles, we do not introduce the spatial-
orisntated coordinatesaxes x, y, z, but we indicated by the
siddle point of the ocoordinate systems, which ocolncide with the
ald-point of the particle,at time t = O, three axlal pokitions
perpendicular to each cother whioch are parallel to the principal
axis of the particle in its immediate orientation. Q;, qp, Q3

system. Thus:
Q\s‘: <. x + P,tsq— X, &
(64) %: S, ¥+ @‘\S¥‘€;2~
Cg‘:-(,x + (5,\:\ “* Vsz.

where ol ,P » ¥ are expressed .in definite ways by the EBuler

angle,

Now, the standard determination is:
2 sy, (éq‘, + &%\+ w é'\a v wl(d Fesvad ﬁlvw" w' (e Ty J‘P}\
Here w’.and 13 3ignify the frictional coefficients for transposi-
tions perpendicular es well as parallel to the topical axis,
whereas w and w' are the coefficients for the rotations as des-

orived ir the previous paragraph. Now, & differential equation

for U can be written:

L RBON L, P
'QT[_-“-‘O \\ .b%l‘ \03 3\:
{85) &. - \L s
+ Sin B ‘b% S a K o) b * Sind 3
o {DPU

\ WSt Y G2 ‘o‘\\)\
~°1?a &COS %-;’Yﬁb ?* \Ql 'b(? )
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o lotegral independent of ¥ , ¥ , P that has the limitations

“Aun Tz 0 od L0, Q%0 Q%0 U=0

as well as

55\5'\)3% «lc\,_ «XCQ- |

e _ e N, = W \t\‘r "'I c\“-}
(66) &*Wt"'ﬁ\y

8y means cf (64) ls obtalined:
w, (q¢ *\,\ +\>,c\ = WA (uy-w) By + By \’_‘2\
wliewe YUe x‘w\t - 2%

Consequently: W _a WBa=W, RN
L AR - bl SR
s —2_ e .
(e7) U QLP 3 Tﬂt

Por the progression {can be translated locemotlion also) ér

particles, we are interested only in the mean value:

) V| ma’g”\)\sw yivdply

e
Sincew,= s\l,\%(qs‘\)"?s‘s‘“ ; ¥,=(sd , we can introduce from the
uniform sphere the point X , L, % ag poles, 6 as the polar
dlatance, andrl as geographical longitude, and obtain from (688)
by 4
¥y inserticn of (67) e \.A‘“ =0 acte
LW, NG, *T j‘ S 5

‘V'zm e Je S B4d 8

- N .'l !
-\, N, “ATr S 0y -
(rrehTe)X ¢

e

-
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If \0,>W, (flattened rotacional bdody), then one has:
- . L2 A [ Wy -w

V‘ I, Wy Q“'T"v . .ﬁ P ( d’r& s

(69a) (e A TAR 2 (o

Y Y

fere Q' is the Guassian error integral. In the case of &Jy< W,

(iengthened rotational body), one obtains in this case:
. B Y
' wi o X (32:2;; )

(890) V"o kT € TGN
T

Hers*

F (o) = ge‘a ds

In both cases, in order for 4:;;.“: v and S\?J:‘:“:c R to

desoribe acourately the behavior of probability except the factor
ETA , one has to employ needles with ths frictional coefficient
\),+ However, i1f this is not the case, then V is smaller in the

| first case and much larger in the second,

In order to clarify all the other cesrses of diffusion reactions

in the case of discs and nesdles, we would like to assume that the

needls radius ¢ is salected such that the frictional ocoefficient

A \w‘c. is equal to the frictional coeffioient of discs in
the displacement in their own plane,\).-_}r\g , where Q_ represents
the disc radiua (see par. €). In other words, m:"% ¢ .« The
frictional ooceffioient for displacement parallel to the topioal

&xis Of the dis is WOy 3—%», (see par. 6). For the behavior df

* 1In the case of this function, one should bear in aind what has

been said by R, Gans, Wied. Ann. 49: 168 (1916),
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tne probability functionVYe which is valid for discs (ses formula
(63a)) and for the V. measured for a sphere, which is derived
froz (89a) when W, =W, , one obta;ns
Vo Ow. D(Wae v)

Sy ——2 11

Vi s -

Ve, o
The teble preseits T~ as & runctiont\ Ykic ¥and the
rigure illustra&es the relationship.

V.

v

1325
1,189

000

boovoovomwwemwo
Rod
E:

0
1,
1,
2,
L2
4,
1 ]

-

1 H I ;/,E;:

3 « &

rgr - 0 :

The ooncentrations obtained by diffusion are thus in both ocases
quite different,
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The quadratic mean ¥4 = 8_" sZ3 a —‘ﬁi one odtains in the

sizplest way from (68), in which one considers that Ye %ﬂi’.‘ - q\} .

Thus, the result is:

(70)

Oos obtalns the formula:
= 2 4T
W

it ooe sets

(71) _‘\t‘T ) %—(% N J‘:’\

It one had previously not assumed a topical axis but rather the

symaetrical behavior of a triaxial ellipsoid, then one have instead
of (68): |y s NS W, “okm (Wqd vwiql 10 Q)

(aw Ty €
and socordingly:

. L | {
(71') W w, g WOy

That denotes in this case that the standard determination then also

divides into two terms, the first of which includes on.y the dqy,

dqy, 4q,, whereas the second is dependent only on v, Y, P

and thelir differentials, 8o that the differential equation corre-

sponding to (65) breaks @own into two terms of similar properties,
The average mobility in this case is the arithzetic means of

the mobllities in orientation of their principal $hree axes.,
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5. The Reslstanee Coeffiolents

In the theory of Eromni{an movememb, the resistance cocaffi-
clents play an important role which will now bde discussed., T
be sure, one has control over many practical situations that occur
if one xnows tLe values for an ellipsoid. Spheres, discs, and
ceedles are special cases of this. Although there is no problem
determining the doudbtful coefficients for triaxial ellipsoids,
we would like to confine ourselves to extended and flattened ro-
tational ellipsolds whose half-axes are a = b and c.

One 58 oconcerned with both of the resistance pocefficients for
transpositions orientated to the topical Axis and perpendicular
to it, which were designated as ws and w, in the preceding para-
eroph, that 1s, the force which 18 necessary to give the particle
the velooity 1 in the orientation oconcerned in a fluid with the
friotional ooerrioientfu « Xurther, there is the queation of the
resistance coefficients w' and w for rotations around the toploal
axis as well as around an axis peependiocular to it, that is, the
torsional moments which are necessary in order to give the parti-

cle the angular velboity 1 around the exis concerned.

1. Transpositions

The appropriate formulae, which were derived by Oberbackls,

17

are found again in the works of Lambd The resistance coeffi-

clent for transpositions of an extended rotational ellipsoia
perpendioular to the topical axis is shown 1ia:

TeTU Mt

It | :
€ T Loy =%

(78) w, 2

Liras o .
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Aot
sweret signifies the numerical ecceatriocity (&e —a&' ).Por the

sphere £=o0 ), the well known Stokes formula 1s arrived at:

we hn‘rc

por rods (a<t o), one derives from (72)

(721)

L3,

T &

<
(IO o * L\93)

{1.,1831 is 4+ 1n 2).

If movement ooccurs orientated to the topi-

cal azis, then one oltains

(73)

\‘-\'\'}:&Q
A\ 2 ‘g
24 S i-c [

For rods, this transforas to:

(73}

If the rotational ellipsoid 1s flattened, thea obtains for move-

\Oy

rupe

=

[
Lw - t 0.\a3)

scnt perpendicular %o the topical axis (g2 a2-c¢* ).

(74)

Vo To e

W, = oo
YT oracy) 4—;—,&-\“ S ¢ ~ -t

and in the limited case of the oiroular discf{c <& a):

(74')

W,

32 o

3

= —— e ey -
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(o the other hand, for movement orientated to the topical axis:

W, = Py
{ |- g : -Cn .
(7e) -;T-((-:lt"\“%c—au?h:
e2d in the limited case of clrcular disos:

(751) D, = \Q‘xo\

2. Rotations

The resistance occefficlents for rotations around the half=
axes were odbtained from an investigation dy Bdwardesle. This
work, a8 far as I am concerned, has been little comsideration

snd should be pnlled out of cblivion.

Furtnermore, it is likewise noted that the formula essential

10 us for the torsional moment, which is found on page 77 of the

¢lted paper, is é&noorrect, since ane akready kXnows in this con-

teotion that when a ® b = ¢, it does not transform into the well
knowa Kirchhoff formmla (20)., The numeriocal factor 32/5 derived
by Edwardes must be beplaced by 16/3.. In other respectd, all is

ia order of whioh I have convinoced myself by examination, particu-

larly the velocity field at infinity whioh is saough to calculate

the torsicnal moment,

According to this, a rotation around the a-axis with the an-

Q-:ar vslocity w developes a flow veldolty whose components are

exprassed by the formulae:

Rt a-[cn _ﬁ_ _B&a '3‘5).‘\

e
\334.,32. 34-33

Vr gleag ®ASR 1’&_;&1&
&333\1 btz 'b.a"\ ¢ 14—1
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?1 ,\5.;9&8 the liquid pressure is:
4 . Popi Y
- Lo T _ "
P-?Qfa_(5 CBGBBBL

f e density; e viscosity of the liquid),

Here 18 stated:

. vaere D is defined as:

= e 8) (b2 8)cE + §)

and A lg defined by:
3 X i 22 - |
— - - T e

atrh b er CheA

Thus, 52 is the potentisl of an ellipsoid that haw uniform mass with

) f
the density - » further, O i8 an abbreviation for:
4ATabhe,
k, .- w
T B ¢ e C
i | azele

| - Ra f _ds_ e 0 ds
‘ J T O S

One ig eusily avle to verify that the valuss for u, v, ¥, p

Art appropriste for 4ifferential equatious for slower movement
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{4 agitated liguids as well as for:.the limiting oonditions u = O,

g = -wz; W =¥ wy which are valld for sgrfaces.

The torsimal moment, whish i8 necessary for the malatonance of

rotation, ocan be ascertained from the velues for u, v, w at in-
fiaite dlstances. There one assumes, however, the single value
—-%-' -{;— forJe since can An this case ooncelve of the total pro-
portion -..33.-_, whish represents the potentiesl 52 , concentrated
{n the coordinate system,

Thus, the resistan.oe coeffioient for rotations apround an axis
perperidioular to the topical axis (z-zx«is) of an elongated ellip-

goid can bs calculated using the usually wvalid formula:
N ' ST T S Sl

3 bA R + 2 C
2-¢?
7 L Vemp 3
(78] D ‘?tfxt_.j&%“,( _ - g3
g8 t- ¢ © oA

seau& =0 (sphere), this transforms into the well known Kirchhoff

forsula 8 pad, whereas for a rod (a« ¢), the value assumes:

TP . a !
W = a“C
(76') 3 P - Q>

C
< W3 o

-~

(o the other hand, when one wishes to find the moment around the

topical axis, the expression used is:

R IR 1
(77) \Q - _&Qac T _ | - gb )
3 -1 ——— -_—
< wed Sy

which for a rod transforms into:

3

(. T A
(770) W = -—é—h‘—&c \.S_‘

c‘-

Leg
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1t the rotational ellipscid 18 flattered, then for the rotation

e —— e ——————

eround an axis perpendiculer to the toplcal axis, one usead:

a-¢g?
W= WTTw g T -
(78) 300 LB ae) ED—aneshe

for eiroular disos, this transforms iuto (limes1 ):

- 32 3
(787) Wr g pe

Yor rotations around the topical axis:

‘e ETCH o
(79) W 3 L Sall 4

For rotations around an axis of rotation lying in the plane of the
d4isc, ses (78']},

Probably it need scarcely be mentioned that rotations around a
topleal axis, particularly rotations around spheres, cannot bdbe
produced by impulsions by molecules, When one speaks of such
rotations, then it means that the particle does not have exactly
tte fora of a rotational body,

According to theaabove, the coefficlent w is dependent on two
variables ¢ and € , Using statisties on transposition observations,
6ne ocan according to Par. 4, formula (71) determine-\'g- , which is
sccording to (72) and (73) as well as (74) and (75) an expression
of the 1‘<>rmc-f‘I (s The measuremect of the flssh time of non-spherical,
partially {lluminated particles according to the not yet published
studies of Miza Stadies produces an average for the determination

ofw , which according to (76) and (78) has the form C’f. (6).
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Io this manner, It 18 possible to determine¢ and ¢ separately,

.at 18, the size and form of the particle,
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