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AB"TRACT

This is a two-part technical report that considers the short-time

statistical modeling of atmospheric noise at VLF/LF frequencies and

applies a new noise model to the performance evaluation of various

generic VLF/LF communication modems. In Part One atmospheric noise is

examined mainly from a statistical point of view. Next, various statis-

ticai models for this type of noise are examined; finally, a new model

is developed and compared with available datL. In Part Two this noise

model. is applied to the evaluation of the error probability calculations

of various generic VLF/LF modems. Much of Part Two, particularly in

regard to a receiver system employing no clipping, is based on classic 1

white Gaussian noise analysis applied to generic modems of interest.

When nonlinear clipping is applied, the detailcd statistical behavior of

atmospheric noise becomes more important, and results depend on the de-

tailed structure of the noise.
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PART ONE

ATMOSPHERIC NOISE MODEL

I INTRODUCTION

In Part One we develop an analytical model for atmospheric noise

that is characterized by its "impulsive" phenomena. Specifically, a

new model is developed for radio noise that originates in lightning

discharges and propagates large distances to VLF/LF receiving systems.

The emphasis here is on development of an accurate short-time, statis-

tical noise model that can be easily applied to the evaluation of the

performance of existing VLF/LF communication systems, so that measured

noise parameters (such as average power and deviation of the noise

voltage envelope) and signal parameters can adequately specify system

performance. Noise parameters and estimation of noise parameters are

discussed in the finul report on this project.)* Our goal here is to

model the short-time statistical characteristics of atmospheric noise as

accurately as is necessary for evaluating the performance of VLF/LF

communication systems of interest.

The modeling approach used here is based on the observation that a

Gaussian noise model is inappropriate for received atmospheric. noise,

primarily because Gaussian noise does not have :he large dynamic range

exhibited by the received noise envelope. Generally, the received

atmospheric noise envelope has a log-normal distribution for large

envelope values and a Rayleigh distribution for smaller dynamic ranges.

Since the envelope of a Gaussian process is Rayleigh distributed, atmo-

spheric noise has a Gaussian behavior only for small dynamic ranges.

In a communication system limited by atmospheric noise, the large noise

envelzpes have the most influence on system performance, and so it is

Important to characterizc accurately the large dynamic range behavior of

atmospheric noise.

0

References arv listed at the end of this report.
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We next discuss the background for the noise modeling problem. In

particular, we examine the physical characteristics of atmospheric noise.

Then we discuss existing models for atmospheric noise and introduce the

noise model developed in this study. Finally, the properties of this

I new noise model are examined and compared with available atmospheric

j noise data.
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II PHYSICAL DESCRIPTION OF ATMOSPHERIC NOISE

A. Introduction

The main source of atmospheric noise at frequencies in the VLF

(3-30 kHz) and LF (30-300 kHz) bands is the lightning discharge. Each

flash generates a s, >uence of VLF pulses having certain characteristics.

The thunderstorm--as a whole--has a lifetime during which the nature of

the lightning flashes that take place and their rate of production may

vary. The occurrence of thunderstorms has a climatologically predictable

spatial and temporal pattern. Thus the definition of the thunderstorm

sources of VLF atmospheric noise may be considered under three divisions:

the signals due to a single flash, the sequence of discharges in a single

thunderstorm, and the distribution temporally and spatially of the

centers of thunderstorm activity over the globe.

After the VLF noise signals have been generated, they are propagated

in accordar-e with the established laws of VLF radio propagation. Thus

in order to determine the noise environment at a particular time and

locality, three steps are necessary: first, to establish the nature

of the noise signals emanating from a typical thunderstorm center; next,

to determine the relative activities and the distances of the main

thunderstorm centers from the locality being considered at the specified

time; and, finally, to introduce the modifications caused by propagation

to the noise originating in the various thunderstorm centers.

This chapter summarizes some of the aspects of VLF atmospheric

noise specified above. Particular attention is given to source effects.

Most of the topics summarized here are considered in much greater detail

in Ref. 2.

This chapter was prepared by Dr. E. T. Pierce.
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B. The Signals from a Single Lightning Flash

1. The Flash to Earth

The duration of a discharge to earth varies from a few tens

of milliseconds to over a second; 400 ms is perhaps a reasonable mean

value. The flash is characterized by an initial L stage during which V

a leader moves downward from the cloud towards the earth. This is

succeeded, after contact has been made with the ground, by an inter-

mediate stage characterized by the occurrence of one or more brilliant

return (R) strokes. After the last return stroke there is a further

gradual flow of current during the final (F) stage. The leader stage

of the flash to earth occupies some 50 ms, while 100 ms is a typical

duration for the F stage; thus st of the discharge is occupied by the

intermediate, R, stage.

Figure 1 illustrates the structure of the VLF noise due to a

flash to earth at a distance of 100 km. The field-change records in the

figure [(a)] are typical of those obtained using a bandwidth of 1-1000

Hz; these records are dominated by the electrostatic component of the

change in field. The records of Type (b) are for a bandwidth of 1-100

kHz. It is easily seen, from comparing records of Type (a) and Type

(b), that the main VLF pulses are associated with return strokes (R

pulses), but that small L pulses occur during the leader stage while

somewhat larger K pulses are present in the intermediate and final

stages.

The number of return strokes per flash to earth may vary from

one to ten or more; the average is about three to four. The median

interval between the strokes is some 50 ms, and the distribution of

intervals is skew towards the large-interval end; some 15 percent of

the intervals exceed 100 ms, while about 20 percent are less than 30 ms.

Figure 2 illustrates the typical amplitude spectrum for an R pulse; the

vertical scale applies at a distance of 100 km. Note that the VLF dis-

turbance due to the first return stroke is larger in magnitude and peaks

at a higher frequency than that caused by a subsequent return stroke.

However, the sizes of both the first and the subsequent R pulses vary

6
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over a wide ringe; if the amplitudes are expressed in decibels relative

to the median, the distribution is normal with a standard deviation of

about 6 dB.

The K pulses occur intermittently throughout the intermediate

and final stages. The average time interval between the pulses is

about 10-15 ms, and the distribution of time intervals is skew towards

the large value end. A typi.cal flash to earth produces perhaps 25 K

pulses. The spectrum of an average K pulse tends to peak at a rather

higher frequency--see Fig. 2--than that of an R pulse, while the

:|8
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magnitude is perhaps some 10 percent of that for an R pulse. The ampli-

tude distributions for the K and R pulses appear to be similar, both

being log-normal with a standard deviation of some 6 dB. Thus, since

there are perhaps ten times as many K pulses as R pulses per flash, it

is not unusual for the largest K pulse in a discharge to ground to be

larger than the smallest R pulse.

Irregular L pulses occur during the L stage of the dikcharge.

Typically two or three pulse trains, each consisting of some 60 L pulses

with a total duration of about 3 ms, are produced. 'he disturbance

associated with an individual L pulse is small, and since the L pulses

are generated for a time normally less than 10 ms, the L effects can

usually be neglected by comparison with the K and R phenomena.

2. The Intracloud Discharge

The structure of the VLF noise from a flash within a thunder-

cloud is much simpler than that of the disturbance associated with a

discharge to earth. Intracloud flashes do not generate R pulses, but

they produce intermittent K pulses throughout the duration of the dis-

charge. In addition, small irregular pulses are generated in the initial

stages of the intracloud flash, but their effect is negligible compared

with those of the K pulses.

The durations of flashes to earth and those of intracloud dis-

charges are comparable. Furthermore, the time separation and magnitudes

of the K pulses ere similar for the two types of flash. Thus, to a first

approximation, we may regard the VLF noise due to an intracloud discharge

as being identical to the contribution for a flash to earth associated

with K pulses.

C. Characteristics of a Thunderstorm

An average thunderstorm has a duration of perhaps 2 hours. During

the lifetime of the storm, the flashing rate varies appreciably; the

peak rate is about ten discharges per minute and the average some three

per minute. Most of the discharges in a storm are of the intracloud or

9I.



allied types; typically, some 20 percent of all flashes go to earth, and

this proportion increases with an increase in geographical latitude.

D. Climatology of Thunderstorms

It is usually estimated that about 2000 thunderstorms are active

at any instant and that the rate of lightning occurrence integrated over

the whole surface of the earth is about 100 per second. These figures

are exactly compatible with an average flashing rate per storm of three

per minute.

There are three especially important global centers of thunderstorm

activity: in Southeast Asia, Central Africa, and South America. Each

center has its maximum of activity in the local afternoon; this--see

Fig. 3--leads to a characteristic global diurnal variation in lightning

occurrence. This variation has of course, superimposed seasonal changes.

E. Summary

The procedures for estimating the atmospheric noise at a particular

locality and time, due to global lightning, are now clear. We first

determine the rate of flashing at each of the main thunderstorm centers

from curves such as those of Fig. 3. If for any center the flashing

rate is 5r per second, then we have about 4r intracloud flashes and r

discharges to earth. Each flash to earth gives--on an average--three

to four R pulses, separated by some 50 ms, while all discharges, whether

to earth or not, generate about 25 K pulses at intervals of perhaps 10

ms. We may assume the flash occurrence within a main thunderstorm

center to be random, since many individual storms will be active simul-

taneously. Thus at peak activity one of the main thunderstorm centers

will be producing rbout 5,_ flashes per second, &nd therefore some 35 R

pulses and perhaps 1250 K pulses per second. The bigger R pulses will

give the log-normal high-amplitude end often apparent in an experi-

mentally observed amplitude distribution curve; the smaller R pulses

and the K pulses will yield the small-amplitude Rayleigh end of the

amplitude-distribution curve.

10

-



140

120

TOTAL

z
U o
U)

IiJ

AFRICA

USOUTH
u•"60 - / AMERICA

SOUTH EAST I

0 6 12 Is 24
U OT hours WO ...- • .

FIGURE 3 DIURNAL VARIATION OF LIGHTNING OCCURRENCES

After the characteristics (amplitude and temporal variations in

pulses emitted) of a particular source have been established., the contri-

bution of this source to the noise at the locality being considered can

be derived by introducing the appropriate propagational modification to

the source disturbance. Integration over all sources then gives the

total noise. Note that, if all the significant source centers are very

distant or strongly active at intermediate distances, then the received

noise will be dominated by a very large incidence of smallish pulses.
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Only if the activity is principally due to local storms, or to medium

activity at intermediate distances will the incidence of large isolated

pulses be significant.
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III SUMMARY OF EXISTING MODELS FOR ATMOSPHERIC NOISE

Before a new model for atmospheric noise is described, a brief

summary of available models is now presented. Various analytical models

for received atmospheric noise have been proposed, usually from one of

two points of view. Briefly, the most interesting approach from a

physical point of view takes the received noise to be the weighted sum

of contributions from individual lightning discharges. Although tihis

approach is physically well justifiable, it has the disadvantage that

the resulting models are not analytically tractable. The alternative

approach is an empirical method that yields analytical models chosen to

fit the measured statistics of the noise. Unfortunately, not only is

direct physical support for this procedure lacking, but the existing

empirical models suffer from the fact that only the first-order statis-

tics of the noise are considered while the higher-order statistics are

neglected.

-The models based on the weighted sum of individual lightning dis-

charges are often referred to as filtered-impulse models. 3 -6 These

physically motivated noise models have the typical form

a(t) a•-: ai p(t - ti) ,()

* I i

where the ,,ai are indepenaent, identicaliy distributed random variables

whose distribution is deduced from lightning discharge statistics and

propagation consideration; p(t) gives the form of the noise pulse re-

sulting from an individual lightning stroke, as shaped by the front-end

filter of the receiver; and the Itit are the occurrence times of the

individual lightning strokes. Under the assumption that each individual

lightning stroke is independent of others, various results4-1 have been

obtained on the first-order statistics of the noise. In particular,

probability distributions are typically derived for these models. since

this distribution has been measured quite extensively.4'-,'. Although

the analytical results due to different assumptions on p(t), 1tt,1 and

13



8ai1 result in varying agreement with measured data, the resulting

analytical probability distributions are quite complicated and difficult

to use in performance calculations. Indeed, the resulting probability

distributions often cannot be written in closed form except for some

limiting cases. Also the assumption of independence between xnd'lvidual

lightning strokes which is crucial to the solution of the first-order

statistics of a(t) does not appear to be true at VLF." This means that

any second-order (or higher-order) statistic would not be accurately

modeled by these noise models. Conceivably, the independent assumption

might be eliminated by introducing dependence in the filtered-impulse

modcl, as was done by Furutsu and Ishida, 4 who considered the case of

Poisson-Poisson noise. Although this interdependence model has not yet

been denonstrated to yield the distribution of interlevel-crossing

intervals observed by Watt and Maxwell at VLF, it is already too diffi-

cult to handle for performance calculations.

Noise models based on the empirical method generally consist of

mathematical expressions constructed to fit the measured -' ta on the

first-order statistics of the envelcpe of the received noise. These are

models of the envelope distribution rnd not of the whole noise process

as is the case with filtered-impulse models. Not only are these em-

pirical models not ph, ,ically motivated, but by their construction they

are good for only first-order calculations. Although they are relatively

simple to handle for first-order calculations, their range of application

is limited.

Ibukunz^ presents a good summary of various empirical models that

have been proposed. Several other workers"' have had some success

in finding physical justificatiýu for empirical models. Perhaps the

most important of these models, because of its simplicity and its close-

ness of fit to measured data, is the model that takes the envelope of

the received atmospheric noise to be Rayleigh distributed at low vrlues

of the envelope and log-normally distributed ot high values. Beckmann"

has givei. a good physical argument which supports this model, particu-

larly in the situation where there is little local thunderstorm aztivity.

14



Several workers 0 •'23,14 have proposed models similar to that considered

by Beckmann, although they differ in regard to how much of the two dis-

tributions should be combined to result in the best model.

One of the most important recent atmospheric noise models is due to

Hall15 and is called the generalized "t" model. This modeling effort

takes a point of view different than those leading to either the filtered-

impulse models or the empirical models discussed above. The generalized

"t" model describes the received atmospheric noise as

a(t) = b(t)n(t) , (2)

where n(t) is a narrow-band Gaussian process, and b(t) is a :lowly

varying process, independent of n(t). This model gives some physical

support to perhaps the simplest of the empirical models, 11,96 which has

probability P (V) that the noise envelope exceeds the value V,

-r

P(V) 0 = +, (3)

where V is the average value of the envelope and a and r are two

parameters to be chosen. This empirical model is also the s.me as the

model studied by Mertz.!j-'-ý Not only do the first-order statistics of

Hall's generalized "t" model agree chusely with this class of empirical

models, but it has the advantage over empirical models in that it can

be specified to give a good fit to the higher-order statistics of the

noise also.

Usintg the approach of Hail. we next develop an atmospheric noise

model that is perhaps mathematically simpler than Hall's gene~ralized

"t" model and yet has as good an agreement with first- and second-order

statistical data as the gu-nerali7ed "t."

15
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IV LOG-NORMAL NOISE MODEL

A. Introduction

Turning attention now to the problem of developing a model for re-

ceived atmospheric noise, we note that this noise is always observed

through the passband of some receiver filter. Now, if the receiver is

sufficiently narrow-band, the noise at the receiver output can reasonably

be assumed to be modeled well as a Gaussian process. This follows from

the fact that narrow-band filtered noise is the sum of contributions from

many independent lightning discharges, none of which is dominant at the

filter output. Experimental data indicate, however, that the bandwidth

required to achieve this condition at VLF is less than 50 Hz, so a

Gaussian assumption is not always physically viable at VHF. The goal of

the model development here is the formulation of an analytical model

that is both an accurate description of the received noise and suitable

for application to the calculation of VLF/LF communication system per-

formance. As far as the communication problem is concerned, it appears

necessary to model the atmospheric noise prior to any receiver opera-

tions, so a Gaussian assumption is not always justified. This is par-

ticularly true when nonlinear operations are performed by the receivers.

The modeling problem can be simplified by noting that for communica-

tion application the receiver bandwidths are substantially smaller than

thei band center frequency. This fact enables the received atmospheric

n,_iise to be regarded as a narrow-band random process. This is always

satisfied for communication problems and is not nearly as strong an

assumption as a Gaussian assumption. Almost all the available experi-

mental data4 :,-' have be,,n obtained in narrow-band conditions.

Mensured data on atmospheric noise indicate that this noise has a

Gaussian behavior at low amplitudes and a log-normally distributed

envelope for large amplitudes. Beckmann explains this fact by noting

that measured atmospheric noise usually consists of the effects of many

lightning discharges around the world. When no single discharge domi-

nates at any instant of time, thun, apilying the central limit theorem,

17



we should expect a Gaussian behavior. On the other hand, when a par-

ticular individual discharge dominates, the measured amplitude has the

statistical characteristics of the individual discharge which is essen-

tially log-normal in character. Since the larger amplitudes have the

greater influence on the performance of any communication system, nur

model emphasizes the log-normal characteristic of atmospheric noise.

In particular, we model atmospheric noise as a narrow-band process with

a log-normal envelope with the form

n(t/ ) t 4

a(t) = A e sin t + e(t) ,(4)

where n(t) is a stationary Gaussian process with zero mean end auto-

correlation given by

R (T) n(t)n(t + r) , (5)n

A is a constant (to be determined from noise power estimates), and 9(t)

is a random phase process independent of the Gaussian process n(t).

To illustrate the behavior of the envelope of this model, consider

Fig. 4. In Fig. 4(a), we plot a sample Gaussian process n(t). In Figs.

n(t)
4(b), (c), and (d) we plot e to show how the envelope of this model

behaves for typical values of Vd (voltage deviation, the ratio of the

root-mean-square voltage to the average voltage of the noise envelope).

By proper adjusti..cat of parameters, this model reflects the impulsive

nature of atmospheric noise that has passed through a receiver front-

end filter.

Iii our model given by Eq. (4) we have not yet specified the be-

havior of the phase process 9(t). Measurements of the instantaneous

frequency distribution for atmospheric noise show that it is similar to

the frequency distribution of narrow-band Gaussian noise. Hence, even

Here • is the expected value of x.

18
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thot h the envelope behavior of atmospheric noise and that of Gaussian

noise differ considerably for large envelope values, the phase and fre-

quency behavior are quite similar. We therefore assume that 9(t) be-

haves like the phase of narrow-band Gaussian processes. This means that

at any given instant to, the phase e(to) is a random variable that is

uniformly distributed over [0, 2r] and is independent of the envelope.

B. Properties of the Log-Normal Model

The log-normal narrow-band noise model for atmospheric noise is

given by

a(tj A en(t) sin 1t + G(t) (6)

Assuming stationarity we note that the envelope of this noise,

E(t) = A e , (7)

has autocorrelation given by

RE(r) = E(t)E(t +

2 n(t)+n(t+T) (8)
=A e(8

=A 2 e[2+Rn(T)]

2
where 2 = R (0) is the variance of n(t).

n n

The average power of the noise model is given by

R (0) =a(t)a(t + -) (9)

2 2n(t) 2[w
A e sin t (t)

$ 
r

20
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22n(t) 2wt+GtRa(0) = A e sin2[wt + e(t)]
a0

S~2
2 2 n 1

=A e X

2 2a2
A n

- e (10)

If we assume that the noise has an approximately flat energy distribution

of N watts per hertz across the receiver front-end bandwidth of W Hz,0

then we have the relation

A2 202

N W A - e (11)

o

Consider the average and rms voltages of the envelope. The average

is

E = e(t)
ave

= A e n (12)

and the rms envelope voltage is

E = (t) = A2 e2n(t) t
Ems ; '

: 2 (13)

=A e n

The voltage deviation, Vd, is defined as

vd = 20 go -jvE

- 20 log1 o e (

9d n 10e

21
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Knowledge of Vd gives us the value of a2. Similarly, knowing Vd (hence

nnan) and the noise power density, No, we can find the parameter A. Values

of Vd and of Fa• which is directly related to N0 , are estimated in CCIR

reports. 19

We have now related parameters of our noise model directly to the

measurement parameters that are typically used in world CCIR maps, Our

next task is to show how well this noise model agrees with available

statistical data on atmospheric noise. The measurements required to

check the validity of the model fall into two categories.

The first of these categories, and the one for which the greatest

amount of experimental data is available, is concerned with the first-

order statistics of the random process. The particular measurements

in this category that have been reported in the literature are measure-

ments of the probability distribution of the envelope of the received

noise 4,ý' 1 0 and measurements of the average number of level crossings

per unit time of a fixed level by the envelope of the received noise. 7 ,8

This latter calculation has not been carried out for any of the empirical

models discussed earlier, although Nakai 2 0 has obtained numerical re-

sults in agreement with the experimental data of Watt and Maxwell for a

filtered-impulse model in which the noise pulses occur in a Poisson

manner. Hall 1 5 has also obtaired good agreement with experimental data

with his generalized "t" noise model. In fact, he has also shown good

agreement with second-order experimental data which we discuss next.

The second category of measured data, and the one where far fewer

data are available, is concerned with the second- and higher-order

statistics of the random process. The particular measurements that have

been reported in this category are measurements of the probability dis-

tribution of the time interval between crossings of a specified level by

the envelol.e of the noise. 7  While available experimental data are sparse,

being restricted to a few mneasurements at VLF) it is also true that the

analytical derivation of these statistics is complicated, requiring

machine computation in the general case. Hall was able to compare a

limiting case of his generalized "t" noise model with second-order data

22
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and demonstrated reasonable agreement between his model and the available

data. We use similar approximatioxksto demonstrate agreement of our

log-normal model with higher-order data.

1. First-Order Statistics

The envelope of our log-normal narrow-band atmospheric noise

model is given by

E(t) = A en(t) (15)

We now derive some first-order statistical properties of this envelope

and compare them with available data. At any instant of time,

n
E A e (16)

is a random variable, where n is a zero-mean, Gaussian, random variable
2

with variance a . The probability distribution of E isn

P(V) = P E r-

P PrA en V I

P lre n !ý (v/A) 1 (17)

P rIn • loge(V/A)i

Ilog (V/A))

where

r (Al is the probability of the event A, and
2_x_

(e) = J e dx (18)

23
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is the well-known distribution of a zero-mean, unit-variance Gaussian

random variable. 2 1 Defining

P (V) = 1 - P(V)
0

(logs (V/A) (19)

we compare this probability distribution of the envelope derived from

our model with measured data on the distribution of the envelope ef at-

mospheric noise. Figures 5 and 6 compare the above distribution with

experimental data for various receiver parameters. Note that

2

V = E = A e (20)
ave ave

Hence

P (V) = loge(V/Vave) 0, (21)

2
and an is the only free parameter in the figures.

The plotted results are reasonably self-explanatory, showing

good agreement between the model and the measured data. Again, we point

out that our intention is to model the large envelope variations more

accurately than previously, since these variations have the most in-

fluence on communication system performance. Consequently, our model

matches the experimental dqta more accurately for larger values of the

envelope.

We next :onsider another experimentally measured first-order

statistical property, the average frequency of envelope level crossings.

Consider the envelope process and the level B indicated in Fig. 7(a).

We are concerned with the average number of times E(t) crosses the level

B in T seconds. This is equivalent to asking for the average number of

times the Gaussian process n(t) crosses the level

24
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b = log (B/A) (22)

In Fig. 7(b) the equivalent Gaussian process crossing level b is shown.

We define a counting fuLetion

c(t) = ý6[n(t) - b]j
,• (23)

= 16[E(t) - B]1

which gives a unit impulse ejch time [n(t) b or E(t) = B] the level b

is; crossed by n(t). Since we want to count the number of crossings in

a time interval of length T. the count is given by

N B(T) =jc(t) dt

T (24)S~To

f= 1[n(t) - b1l dt

Using the well-known relationship

d ffig "t) = df(g) dg

d= dT "td• - (25)

6,e get

T

NB(T) j 5[n(t) - bl]fi(t)I dt (26)

Since we have a stationary Gaussian random A riabl,., n(t) and fi(t) arc

statistically independent. This follows from the relation

24t2
iIh T IL d (t) (

i 2 d~t

n Md 2
7 n(t) (27)

-0



Hence,

BN (T) = 81n(t) - b] (737 T (28)

The random variable n(t) has a density function

p (r•) 2exp - - (29)

SO
soo

5(n - b) = f (c - b)pn(a) dry

= P (b) (30)

1 ~ 2I expi - b--
2 2 

2

The probability density of fi(t) is found by noting that the derivative

is a linear operation and that linear operations on a Gaussian process

result in another Gaussian pr,-ess. Thus i(t) is a Gaussian random

variable with zero mean and variance determined as follows:

13(-) n(t)ntt + ¶) (31)

S()

(32)

+ -)

By stationarity we have

R•(-) nit - )I -2 (t) (33)
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so

j dTr
(34)

_- -h(t - 0)6(t)

Hence

R(O) 6- [(t) ]2 (35)

and the probability density of fi(t) is]2
= _ .. .. exp (36)

T2 7"1 (0) 2 [ (
n fino)]

The term 16(t)l is giver by

1(t)I =2 f - P(•jt) dn

(37)

exp - ______

Since R (0) is related to how rapidly the envelope process goes through
n

changes, the quantity 1!I(t) depends on higher-order statistics of the

envelope process.

Combining Eqs. (28) and (30) we find that the average number

of times the envelope of our noise model crosses the level B in T

seconds is given by

16 T) IT IxP log e(B/A) 12 (8
INB(T) = - 2 xp -

n I n

For the special case of T 1, we have

NB(1) lexp - 2 (39)B2 , 2"- 2 .9

n

t1

° I



Figure 8 compares this average level crossing with experimental data.

It shows a basic agreement of the results derived by using our log-normal

model with measured level-crossing results. Again, we note that the

agreement is somewhat better for the larger values of the envelope in-

tensity. The significance of this agreement is, of course, that it is

further verification of the applicability of the model ac far as the

first-order statistics of the noise envelope are concerned. From a

physical point of view, this agreement increases confidence in the log-

normal narrow-band noise model, since it indicates that on the average

the envelope of the received noise is accurately modeled. To complete

the verification of the applicability of this noise model for atmospheric

noise, it remains to investigate the manner in which these variations

occur with time. This is, of course, a function of the second- and

higher-order statistics of the noise, wilich is the next topic of

discussion.

2. Higher-Order Statistics

Completion of the verification of the applicability of the

narrow-band log-normal process to received atmospheric noise requires

investigation into the higher-order statistics of the noise. Although

the average rate of level crossings of the envelope of oursmodel

gererally agrees with observed atmospheric noise, we must yet verify

that the higher-order statistics of the model can be so chosen that the

relationship between the noise process at various distinct times, as

predicted by the model, is consistent with measured results. As men-

tioned earlier, the available experimental data' that are dependent on

the higher-order statistics of the noise consist of measurements of the

probability distribution function of :he interval between successive

crossings of a fixed level by the envelope of the noise. Inspection of

thebo data indicates that at VLF the noise pulses do not in general

occur in a Poisson fashion but rather that received noise pulses are

usually statistically dependent on preceding ones. Generally, calcu-

lotion of the probability distribution of the interlevel-crossing time

interval is difficult, requiring numerical techniques to obtain even an

31
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approximate solution. 2 2 2 4  This is true even for the simplest case of

Gaussian processes, which is the only case that has been treated in any

detail in the literature. 2 3 , 2 4 Even in the Gaussian case, the problem

is further restricted by consideration of Markov processes and a few

other specific spectra. Therefore, we will not attempt to find an exact

solution for the process of interest here but will resort to simplifying

assumptions in order to obtain an approximate solution.

Consider the envelope, E(t), crossing some level B, and let T

be defined as the interval between a down-crossing at the level B and

the next up-crossing of the same level. (This is the statistical data

measured by Watt and Maxwell. 7 ) The probability that T exceeds T is
0

given by

Po T) PrIT > Tel

PrE(t) • B, t{OTo]E(O-) > B,E(O+) < B} (40)

P rIJEMt Bilte 0,T}]E(O-) -> B,E(O+) < BI

- Pr1E(O-) > BE(O+) < B'

where E(O+) is the value of E(t) at a small increment of time after

t ý 0, and E(O-) is the corresponding value at a small increment of

time before t = 0.

At this point, we make several simplifying assumptions by

considering N time samples of the envelope process and using these time

samples to represent the process. Taking

,o' tl' . '" tN (41)

as the N + 1 time samples, we approximate the desired probability by

Pr{E I l)- 15 B'E( t2 B,''.'"E(tN ý B'Elto)>B
Po Toa) ) 3 (42)PPrIEito) > B,E t1 ) g B}
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Recall that our envelope process

E(t) = A e n(t) (43)

is band-limited to W, so in T seconds there are approximately
o

N =2W T (44)
0

independent samples. Taking samples to be independent, we then have
N

Po(To) k r =1

k =2

From Eq. (17) we have

Nlg (B/5)

PrE(tk < =r ('16)

therefore

loi ge (B/A) 072T°I

In Fig. 9 we plot this distribution along with data taken from

Watt and Maxwell. The assumption of independent samples neglects certain

dependencies between adjacent level crossings. This assumption was

necessary to obtain a simple closed-form expression for P (T ) and is
0 0

not necessarily a limitation of the log-normal model. Indeed, by appro-

priately choosing R nC(), a more accurate :,reement with data is possible,

and only our ability to compute P (T ) in a convenient form is limited.
0 0

In a more general case, for example, we would have
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" "j'" jt2nlKVIN/2ex - 'K dc

0 b 2texp - (+ ) 2 -2lR(t-t)

(48)

where

b - log (B/A)

and

K = •Rn(ti- •jl is an (N + 1)-dimensional covariance matrix.

C. Conclusion

We conclude that the log-normal atmospheric noise model gives good

agreement with measured data, especially for larger- values of th• enve-

lope. This applies for the first-order statistics as well as the higher-

order ones. This model is also relatively easy to handle analytic.2ly

and thus is useful for calculating the performance of communication

systems.
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PART TWO

ERROR PROBABILITIES OF GENERIC VLF/LF MODEMS

I INTRODUCTION

In this part we discuss the performance of various generic VLF/LF

communication systems of interest. The usual performance measure of

probability of error will be expressed in terms of the signal strength

and noise parameters at the receiver's antenna. As we have discussed

in Part One, the noise has an impulsive non-Gaussian behavior which we

have modeled. The receiving systems we will consider can also have

nonlinear clipping which, together with the non-Gaussian noise behavior,

makes computation of the error probabilities difficult if not impossible

without some assumptions. Our assumptions are discussed and justified

as they arise in the development of error probability expressions. We

first discuss the noise model, the signal characteristics, and the re-

ceiving system models before carrying out the development of the error

probability expressions. The VLF/LF communication systems we consider

include binary frequency shift keying (FSK), phase shift keying (PSK),

and minimum shift keying (MSK), all operating in a coherent mode. On-

off keying (CW) and noncoherent FSK are also considered, as weil as

differential phase shift keying (DPSK). Two signaling schemes that use

long sequences of MSK pulses (chips) are also discussed.
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II PROPERTIES OF THE NOISE MODEL

At VLF and LF, the dominant noise source is generally atmospherics.

Local activity often produces more noise, but this is much more variable

and unpredictable. In our application, receivers will usually be located

in areas far from man-made noise sources and hig!- thunderstorm areas.

We therefore assume that the noise is due to atmospherics, which are due

to distant thunderstorm activity.

The short-time noise model we use assumes the form

a~t)= A n(t) F(~
a(t) A e cos 2nf t + q(t (49)o J

where n(t) is a stationary Gaussian process, e(t) is a stationary randam

process independent of n(t), and A is a constant. As we have shown in

Part One, this noise model agrees well with available data. including

second-order level-crossing data. The agreement is particularly good

for large fluctuations of amplitude. Since large fluctuations of noise

amplitude are more important than average noise in terms of causing

errors in any system, it is particularly important to model this region

accurately. We note that for small fluctuations the experimental data

show the noise to behave like a Gaussian process. Althot-h our model

does not give Gaussian noise at small fluctuations, w( ,:aKP use of the

above experimental result as a justification for or.#, 0l f-n• absumptions.

Consider next some of the properties of this noise model and their

relation to measured noise parameters. The phase random variable at time

t is uniformly distributed over (0, 21-1. Hence at any time we have

a(t) A 22n(t) cos 2 [2f t + a(t)

2 (50)
2-1A 2 i n

"lII



where

cos2[2fot +()] 1.(1
22

+'O F2() t + (51)

2 2
u= n (t) (52)

n

Although we have assumed stationcrity in our short-time noise model, it

is clear that there are diurnal and seasonal variations in the noise

characteristics. These slow variations can be accounted for in the two
2

basic parameters of our short-time noise modei given by A and -
n

To rel:te A and "cn to irnportan', measured noise parameters, we now

note that the noise model is valid for the atmospheric noise that has

been filtered through i receiver front-eoid filter 3f bandwidth W. In

our application, W is between 200 liz and 1000 Hz. Assuming that the

atmospheric noise cefore filtering is approximately flat in spectrum

over the filter bandwidth, we have

2 2ý

2 1 2 n
a (t) = - A C = N W2 o

where N is the noise spectral density per unit bandwidth. The envelopeo

of the process is

n(t)
E(t) = A e (54C

which has an average value

1 2

E(t) A e n'55)

and an rms value

2

Et) = A en (56)

A measure of the variability of the noise fluctuations is the quanti ty

V d defined as

42



Vd 20 log1 0  E(t)

20 n- logoe (57)

2

= 10 2 logloen 1

Equations (53) and (57) relate the parameters of our roise model (A, 0)

to the well-known atmospheric noise parameters, V and F (effective
d a

antenna noise figure which is simpJy related to N )

A quant-ity of interest later is the probability that at ary given

time t the envelope E(t) will exceed some level B > 0. In particular,

consider the event
n~t) !

H(B) IE(t) = A e > B (58)

and the probability of this event

P B= Pr H(B)l (59)

The e% ant H(B) is equivalent to the event

log ,B (10)

SAl

P n(t) -ý lOg1 BPB 6e A

e A

wh e ret

(x) = cxp - t 1 -,(x) (62)
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If the envelope E(t) is restricted to be less than or equal to B. then

the resultant envelope c(t) is

e if not H(B)

c(t) =(63)

B if H(B)

with probability density

pc (x) 8 (x -B)PB + [1 -ux)pIloxA) (64)

where

P(x) = exp - (65)2c

I x>B

u(x) (66)
B

0 x< B

and 5(x) is the Dirac delta functiop. The mean square of this "clipped"

envelope is

2 loge (B/A) A2 epg ýf- e2 252
SA°g 2 d,-,2 dry + (67)

2c~

2 2, 2 fl (B/A)I 22

2n n=A e - exp 2n y BPB (7

V n nn

2 I2lg BA 2'l5

2 n - y (n + B2PB
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Using Eq. (61) for P we have
B

c, (1 e ]. /og (B/) 2 a lo\)/
(B/) -2 (6)ec 2 en1 + B (678)7

This noise model is used to compute the desired error probabilities.

The parameters A and 1 are obtained irom measured and predicted values

of F and Vd. Equation (68) is used to approximate the effects of

clipping on the received noise.

fI
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III SIGNAL REPRESENTATION

The modulation system to be used at VLF is strongly limited by the

characteristics of the high-power amplifiers and high-efficiency antennas

that constitute present stationary VLF transmitters. The most desirable

modulation signals would maximize the information transmitted in the

allowed bandwidth through a noisy channel for given fixed peak power.

Given a peak power limitation, the highest average power is radiated

when the transmitted wave has a constant envelope. An additional factor

that necessitates a constant envelope is the final RF amplifier. Existing

high-power VLF facilities use Class C amplifiers because of their effi-

ciency; this mode of operation requires constant envelope and continuous

phase for highest efficiency. Discontinuity in envelope or phase of an

RF wave also causes large transients in the transmitter output. Tran-

sient response of the transmitting system depends upon the system band-

width, which at VLF is generally limited by the high Q inherent to the

most efficient transmitting antennas.

Because of practical limitations on the transmitters at VLF and LF,

we consider only angle-modulated signals, with emphasis on those that

are phase continuous. In particular, we restrict our attention to

binary FSK, PSK, and MSK signaling schemes. One exception that we con-

sider is on-off CW keying.

During a signaling time of T seconds, one of two signals will be

transmitted. Ltting H be the hypothesis that a signal corresponding
0

to "zero" is transmitted and H be the hypothesis that a "one" signal is

sent, we have

H: m (t)M "f cos2-f t + e(t)I (69)

m(t) M T CosTf (t) (70)

as the two types of signal. For FSK wo have

47



Seo(t) = (71)

and (71)
S•~)= - 5ujt

Note that the average power for both signals is P, and let p be the

correlation between m (t) and m Mt). Hence
0 1

f= mo(t)nl(t) dt (72)

The signals we consider have the general form given by Eqs. (69)

and (70). At the receiver the received signal has the form

H r(t) = m (t) + a(t) te[0,T]

0 0

(73)

H r(t) = m (t) + a(t) te[OT]

An exception to this simple binary signaling i, on-off keying and

the two AJ signaling schemes which consist of long sequences of such

binary pulses.



IV COHERENT BINARY RECEIVER MODEL

We now consider how the coherent receiver processes the signal

r(t), te[OT] to determine which binary signal was sent. If the noise

a(t), te[OIT] is a Gaussian process, then the minimum-probability-of-

error receiver has the form shown in Fig. 10. Recall that a(t), te[OT]

is in our case a non-Gaussian process which is impulsive in character.

rlt)! M 0o W0 FX> IKH

m I (t)tF X>O PICK HI

fo D-7045-49tRi

FIGURE 10 COHERENT RECEIVER MODEL-NO CLIPPING

Since the noise fluctuation often exceeds the signal peak, in many re-

ceivers a nonlinear clipping function is intzoduced in the receiving

system before the correlation stage. Thus receivers typically have the

form given by Fig. 11, where

(B y( t) >, B

r' (t) y(t) -B < y(t) 1 B .(74)

Sy(t) < - B

r( 0
!~~~~ rt ,--r (t) In (t

FIGURE 11 COHERENT RECEIVER MODEL-CLIPPING
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On the basis of our assumed noise model, the optimum maximum likeli-

hood receiver will certainly be different from the above receiver. In-

deed, the above receiver is not an optimum receiver for any known noise

model; rather, it evolved from classical Gaussian noise receivers with

the nonlinearity introduced to get rid of the non-Gaussian impulsiveness

of the noise.

The nonlinear clipping of the received signal is difficult to

analyze. Watt, 2 6 however, has shown that if the clipping level is

greater than the signal peak then most of the slipping effect is on the

noise peaks. He has shown experimentally that the distribution of sig-

nal and atmospheric noise at a level twice or more above the signal peak

is approximately the result of noise only. We therefore make the assump-

tion that when the clipping level is above the signal peak only the

noise signal peaks are clipped. When one considers the impulsive nature

of the noise and the fact that the nonlinear clipper is designed to cl"?

nigh noise peaks, this assumption is reasonable. The resulting signal

is shown in Fig. 11, where

n(t) r2f 1
r(t) = A e cos [2rft + 9(t)] + m(t)

(75)

r'(t)= c(t)cos[2•f t + 9(t)] + M(t)

where m(t) is either m (t) or m (t), and c(t) is given by Eq. (63).
0 1

After passing through the nonlinear clipper, the received clipped

signal is now processed in the usual correlator receiver, which computes

a like) ihood function >. on which it bases a decision. Since correlation

is a linear operatior, if the noise process

iC Clt os 12-f 0 ,@t (76)

is Gaussian, then . is a Gaussian random variable. Even if the 1ooisce

process is non-Gaussian, if the Jntcgrntif.n time T is large comparce. to

the correlation time of the nois: ,,.. '. approaches a Gaussian



random variable in distribution. This approximation gets better as T

increases. The correlation time of the noise process is roughly

1 ,(77)

which for W = 1000 Hz is 0.5 ms. We consider the signal time for each

bit of approximately 20 ms to be roughly 40 correlation times. Recall

that for small fluctuations the atmospheric noise process has a Gaussian

distribution (Rayleigh envelope) and that large fluctuations which could

normally change the distribution of the likelihood ratio X have been

clipped so that their effect on % is reduced. These arguments lead us

to conclude that, although the clipped noise process given by Expression

(76) is Gaussian only for small fluctuations, because of clipping and

the large integration time, X can be approximated as a Gaussian random

variable. Certainly this approximation is less accurate for the -ails

of the distribution of X'.. Determination of the accuracy of this assump-

tion is beyond the scope of this study. We also see that, because of

uncertainties in determining signal and noise parameters, more accuracy

in the error expression i., not worth the additional effort.

From Fig. 11 we see that *. is given by

T

r'(t[mo(t) -lt 1t (78)

where

I
r (t) c(t) cos 2-f t AM + M(t) (79)OI o

Suppose that H is true and consequently that m(t) m (t)0. Then we

have

f c(t) cos2for et) IneM -mllt dt t 0 - 1) PT (80)

An error or wrung decision occurs ýf is greater than zero. This event

occurs with probabillt3 P givcn by
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Pe= r{ > °1I} (81)

Def ining

a'(t) = c(t) cos[2nf t + q(t)] (82)

and

T

g a'(t)m o(t) - m1 (t)I dt (83)

we have

P PrIg > (1 - 0) PTIHI, (84)

Clearly,

g =0 (85)

and

T T

2 2
7g 2 1 'a(Ya (,Yo - M I C)UrM (3) -iI(_~ dodS (86)

The noise process a'(t) is essentially white compared to the narrow-band

signals m (t) and m (c). Hence

a a a' (2W) sin 2"'W( - .) (87)
2W ?,W', - 3)

is like a Dirac delta function in Eq. (86). This gives

T
.2 a in doa'(-. [m () - l.,) d

g 2W
o f

______(884)

2 a ,'( ,)
2 2(1 - Z) PT
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We know that

sin 2ryWt
lim 2W _ =(t) (89)

For the front-end bandwidth W sufficiently large that m (t) and m (t)
o

remain unchanged by the front-end filter, this assumption is valid. But

S(ry) (t) cos f2r t + q(t) (90)

i c2 L o

c (7t)

Hence

2 1 2
. c-(t) (1 - 0) PT (91)

The error probability is then

n 2-PTT(1 T

(92)

By symmetry %e see that the error probability when m is sent is the
0

Ssame. Hence P represents the total error probability. by collecting

Sall tersrn this is given by

S(..93)

• :h I' e f
2 2 n Jnl

(q4)

I



22

1 2 n
N W - A e , (95)

2

Vd = g0 j2 log 0 e (96)

Although not all the receivers we consider have a nonlinear clipper

in the front, nonintentional clipping often occurs when the dynamic range

of the receiver is exceeded by a noise spike. Consequently, Eq. (94)

should still be valid without a clipper if the clip level B is chosen to

be as large as the maximum signal level. Note that

li2 • = (97)

and

2 log e(B/A)
lira 2A 0 , (98)

hence for large B, c2 approaches

2"2 2 2,'n

lim c A e , (99)

being the same as the case for no clipping.

The probability-of-error expression of Eq. (93) applies for coherent

FSK, PSK, and MSK signaling schemes. We have developed this expression

here mainly to present a re---sentative calculation of probability of

error and to point out the assumptions made throughout the remainder of

Part Two. Although the error calculations may differ for other communi-

cation systems of interest, many of the results of this chapter are re-

ferred to in later chapters. We now consider specific modulation-

demodulation schemes, then compute error probabilities, and finally plot

curves of these probabilities for typical parameters.
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V PROBABILITY-OF-ERROR CALCULATIONS

This chapter develops probability-of-error expressions for various

generic modulation-demodulation systems. These systems and the parameters I
chosen correspond roughly to e-,isting and plenned future VLF/LF communi-

cation systems.

In all cases, we consider modulation-demodulation systems for binary

signals denoting Marks and Spaces. We denote T as the time duration of

a single-channel binary signal. In some cases an information bit may

require the transmission of several channel bits (sometimes referred to

as "chips"). We also assume that the noise in the channel has a con-

stant spectral density iver the bandwidth, W, of the receiver'j front-

end bandpass filter. This spectral density is denoted as N watts pero

hertz. In all cases signal power is constant and given by P watts per

second.

Throughout most of this chapter we assume that the signaling time

is much greater than l/W, so the test statistics upon which a decision

is based can be approximated as Gaussian randcm variables. With clipping

introduced, this assumption is even more accurate, since large noise

peaks are eliminated, and low noise levels which pass through the clipper

behave like Gaussian noise. This Gaussian assumption is especially goud

foi- an interesting case where integration times are very long compared

to lIW. In the Appendix we take the case where T < 1W and W is greater

than a few hundred nertz. HalliF calls this case the "short-duration"

signal and notes that it is very uncommon at VLF and LF. In this case

we use the approach of Bello 2e to compute error probabilities.

A. Binary On-Off Keying (CV)

On-off keying is perhaps the simplest modulation technique for

transmitting binary information. An on-off-keyed radio system can be

described as trnnsmitting pulses

5
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sin wot + for Mark

m(t) = (100)

0 for Space

where the signal duration is T seconds, and the power of the Mark pulse

is P.

The signal (Mark or Space) is transmitted over a channel which adds

atmospheric noise of constant spectral density N over the receiver
0

front-end bandwidth, W. We consider two types of noncoherent receiver

systems, one with clipping in the front end and one without clipping.

We first consider a noncoherent receiver with no clipping. This

consists of a bandpass filter matched to the MarR pulse (except for an

unknown phase), followed by an envelope detector sampled at time T as

shown in Fig. 12, where

h(t) = sin wo(T - t) te :0,T]

r 0m~y + M ---4m-h MENVELOPE "
r(t)DETECTOR

0-7045-132

FIGURE 12 NONCOHERENT DETECTION OF CW PULSE--NO CLIPPING

2
The sampled test statistic, R , is given by

2 2 2
R r + r (101)

s c

where

S~T

r = r(t) sin w t dt

T (102)T

r = r(t) cos w t dt
c o
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2
The decision rul3 is to compare R with a threshold as follows:

R2 2
R > 8 choose Mark

(103)

R 2 2 choose Space

If a Mark is sent, we have

r(t) = /7 sin1U)ot + + a(t) (104)

and

r =/PTsin + +n5 s

(105)

r =/P'T cos + n

where

T2
n f a(t) sin w t dt (106)

and

ni = a(t) -• cos wot dt (107)

are approximated as independent Gaussian random variables with zero mean

and variance N '2. This assumes that T is large enough to include many
0

independent samples of the noise. Under this assumption the random
2

variable R is a noncentral chi-squaro random variable of order 2. When

Mark is sent, the error probability is

S2 2 2 2
P = Pr = r + r IMark

e rI s c
1 (108)

= ~ T 
-

T-
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where

Q(a b) t exp - + a2  1(at) dt (109)2 o

is the Marcum Q-function. 2 7  If a Space is sent, we have

r =n
s s

(110)

r = n
C C

2
and R is a chi-square rando'n variable of order 2. When Space is sent,

the error probability is given by

- 2 =r2 +r 2  6Ipa

Pe r r pace

= exp

Assuming that Marks and Spaces occur with equal probability, the total

unconditioned binary error probability is

1 1 PT2
e Q- FN exp- (112)

Figure 13 gives this error versus signal-to-noise ratio, PT/No, for

00various normalized thresholds, b =-F'2No.

Stein and Jones2 B show that the threshold 2 that minimizes the

error probability is approximately

2 PT

which gives a minimum error probability

1 1 1 2PTPT I jI TI
P -2 2 Q 2 (-i * • exp - 1 + (11-1)
e 2 2 Q N %I 2P=o 4N;

This is also plotted in Fig. 13.
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FIGURE 13 BINARY ERROR PROBABILITY FOR ON-OFF
KEYING-NO CLIPPING f

For large signal-to-noise ratio

PTS"11 ( 15
U

we have

Qj/r T (116)
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where

t2
J(a) = ] exp- - dt (117)

is well-tabulated.2 1  For large signal-to-noise ratio, we thus have

e 2 _V +N 2 •p N

1.'or the receiver with front-end clipping, we have the situation

shown in Fig. 14. This receiver differs from the previous case in that

rlt) ( r3(t) ENVELOPEI :DETECTOR T

0-7045-51

FIGURE 14 NONCOHEREN: DETECTION OF CW PULSE-CLIPPING

r(t) is clipped for Ir(t)l ý- B. As shown in the previous chapter. when

B -- 2"/P , (119)

mcst of the portion of the signal that is clipped is the part of the re-

ceived signal that is due to high noise peaks. We therefore assume that

the clipper output is approximated by

r1 lt -Mlt) 2'a(t) ,(120)

where

a' '" clt) sin ,t (t) . (121)

as in Eq. (79). The clipped noise is assumed to have spectral density
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.2

N 0 - (122)o 2W

where c is given by Eq. (94).

Using the new noise density N' after clipping, we have the error
0

expression

1 1 / 2PT 6252\ 62~
P - - - -- I +-exp-- . (123)
e 2 2 N0 2'

This expression depends on signal-to-ncise ratio, P/No, detection
2

threshold, 2 , clipping level, B, receiver front bandwidth, W, signal

duration, T3 and noise parameter, V In Fig. 15 we plot P versus
d e

P/N for optimum thresholds and T = 0.02, W 1000 Hz, =2, B =4,
0

and various values of Vd.

L. Binary Frequency-Shift Keying (FSK)

One of the most common type of binary signaling schemes is the FSK

signaling scheme with a modulation index of one. This scheme results

in a Mark-Spice signal sequence which has constant amplitude and con-

tinuous phase. The two signal pulses are

m (t) =17 sinLIot A- It] for Mark

(124)

m (t) = ' sin[ilot - 'Xtl for Space

where

x is the center Lreqdency and
0

-= " 'T. both in rad ions per second.

This frequency deviation, .,, corresponds to a modulation index of

one and results in the two pulses m (t) and m (t) being orthogonal.

That is.

f mo( t) (it 0 (125)
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KEYVING-CLIPPING

62



We consider coherent and noncoherent detection of these FSK signals

undor the two conditions of clipping and no -:lipping in the front end of

the receiving system. Classical coherent detection withouc ary nonlinear

clipping is diagrammed in Fig. 16, where

h(t) M P m(T t)
11 (126)

m (T - t)

0 0V

-AT

h M?
T

rlt):mr(t)*a ot)

FIGURE 16 COHERENT DETECTION OF FSK-NO CLIPPING

The sampied test statistic is g'iven by

Sr -r

where

T] r(t 0 T .*,it dt

(127#
T

6."



The decision rule is to compare X with zero, as follows,

X > 0 choose Mark

(128)

X • 0 choose Space

where, as usual, we assume that Marks and Spaces occur with equal proba-

bility. Note that the coherent receiver is merely another representa-

tion of the correlation receiver of Fig. 10. The error probability with
2 2 2Ayno clipping is given by Eq. (93) with p = 0 and c = A e2. Hence

Pe P( ) N (129)

since

2T2
2 n

A e 2N W (130)
0

With clipping in the front end we :Lave, from Eq. (93) with p 0,

= @ PWT- (131)

where

2~ 2 n2ciog (B/'A) - 22 n 2 (loge(B/A))c 
2) l ~ 

(132)

2•2

1 2 n
NoW -- A e

(133)

V = 10 2 log 1e

Choosing

B = 6(13)
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we rewrite Pe in terms of parameters P, N, 0 , Vd) T, and W:

IPT
p (I 2 PT , (135)N 01 I(D) + 02 N (E)

where o N

D 20 loge/) + 10 loge(P/N°) - 2

D 9 d loe 10(136)

tdI
20 -log 10

10 e
and

20 log(•//W) + 10 log (P/N ) + 2 Vd log 10

E e e 0 d e(137)

_d20 _ loge 10

Figure 17 plots P for FSV signals for various parameters of interest.
e

Here S represents the clipping levei vaove the signal peak of /77. For

example, • = 2 ii~e~ns chat the clippinr level is set at B = 2/7 or twice

the signal peak amplitude.

For rnco.,ecent detection without clipping, we have filters matched

to the M:--, ad Dace puises (except for an unknown phase), followed by

onvtelopc, detfctors sampied at time TY as shown in Fig. 18, %here the

sampled test statistic ', is given by I
2 2
R _ R

1

2 2 2
R r1 + l (138) 1I

2 2 2R .: r r
o Os oc

The terms r annd r are the sine and cosine components of the received
is I

signal relative to the Mark frequency. Similarly, r and r are the
os OC

components relative to the Space frequency.

Recalling that mi () and m (t) are ortAogonal or uncorrelated. we

sce that the m-atched filter.; hi(t) and h (t) are also orthogonal. This
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DETECTOR T

_ _ _ ~t + a t

rlt~mtlt)t k• 0

0 T,

D JETrECTOR To7040-47

SFIGURE 18 NONCOHERENT DETECTION OF FSK-NO CLIPPING

means that the outputs at time T of the matched filters have noise com-

ponents that are uncorrelated and, since they are assumed to be Gaussian

random variables, independent. Assuming a Mark is sent, we then have
1'• a noncentral chi-square random variable and R, a central chi-

square random variable. Perhaps a conceptually simpler representation

of the noncoherent receiver process is that given in Fig. 19, where

xc t)

-- f,(t is (-__

r (t) +o' () -

e)- ?04g-.61

FIGURE 19 NONCOHERENT FSK DETECTOR REPRESENTATIONI
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t)= cos Wot + hwt

bls (t) = sinot + hUt

(139)

It) V= LCos - ]U~

0s (t) = ./isin W 0t - Awtl

If a Mark is sent, the probability of error is found from the dis-

triut on f 2  2
1 o R2 First, define vectors

ri r
rlcl :cl

r =' r (140)-1 [2::LlsJ osj

Since a Mark is sent, r consists of signal plus noise, while r consists

of noise alone. Hence,

r/. =s=n(141)--i

LrsJ / sin e + nls

- --s s

[1 F
r n

where e is an unknown phase term, and nl c, nls, no , no are independent,

zero-mean Gaussian random variables with connon variance N '2. Using the

oc oo

-0 -0

notation

11!1112 2 2
= rlc + r1 s

68
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we have

2 12 12

(143)

R2 = 2

The probability of error is

P= P1' < OJHPe ri

(12 24
P= r R - R 0 O- H1

Bu = p f •l r' + nll 2 _ m nol2 2IO i p(144)

2 2

= ' l +

p Prnln112 > Ila + nl 11 21 al PI -p (146)

But

R2ln 1 R x (145)

so

P ,'llo112 _z I a + exo p _l- (146

Also.

S e N (147)
6n ) 7__N N1
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I

Hence

p~ ~ _ p- + +Ill
e Ii= Nexp - Nd -

(148)

expl o I

or

P 1- I PT (149)Pe 2 x 2N--

Although this expression is derived for FSK signals, it applies in

general for noncoherent detection of binary orthogonal signals.

With nonlinear clipping, we can follow arguments similar to the

earlier results ýo get an error probability

P = 1exp, PT , (150)e :2 2NoIJ

where N' satisfies
0

N'W 1 2
o ,2(151)

or, in terms of basic parameters,

N' = N 1 -_ (D) a (152)o 0 1 pW)

where D and E are given - Eqs. (136) and (137). Equation (150) is

plotted for various parameters in Fig. 20.

C. Binary Phase-Shift Keying (PSK)

Although PSK is not commonly used at VLF/LF, we present it here

because it is similar to the minimum-shift-keying (MSK) scheme now

planned for several new VLF/LF systems. For binary PSK, the two signals

are
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l(t) --= sin w t for Mark

(153)

m (t) -= sin w t for Space

Note that for this signal set we have simply

P=- (154)

Coherent detection without any nonlinear clipping is simply represented

in the receiver of Fig. 10, and the error probability is given by Eq.

2 2 2 C2
(93) with p = -1 and c = A e n. Hence,

P P (155)

Since

2 2
2 n

A e 2N W (156)
0

We plot this curve in Fig. 21 where

( ) 10 logo( ) (157)

With clipping in the front end, we have from Eq. (93) with 1 = -

PC V(158)

where, a., b~fror.

2 A2 21 (n ( A) \

/ ~ 159)

72

C,



LC
1• 0.! T 0 02S

I 10. r-4-

II

.4 10" ,- .,

10-6

0 5 ' 5 20 25 50 35 40
SIGNAL-'0-NOISE RATiO,PIN, - -d 0-704-71

FIGURE 21 BINARY ERROR PROBABILITY FOR COHERENT FSK-

NO CLIPPINIS

Again, choosing the clipping level,

B a (160)

we cnn write P in terms of parameters P, N , E, 1' T, and W,

""ll 2PT (161)

N 11 (D) + a'( (11Ii

where D) and E are defined in Eqs. (136) and (137).

Noncoherent detection of PSK signals does not exist, except perhaps

:th a phase reference signal. Suppose, for example, bt~side the Mark-

Space signals we lia'e a reference signal giv'.n by

q(t) ,2P sin L t ( (162)
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which is first transmitted during time [-T,0]. Then, during time interval

[-TO],

r'(t) = sin(wot + 9) + n'(t) tg[-T,O] (163)

is received, while during [OT],

r(t) = /W sin(Lut + e) + n(t) for Mark

(164)

r(t) = - /77 sin(wot + + n(t) for Space

is received.

Th) situation is equivalent to receiving a total signal

re(t) t¢[-T,]

rT(t) = (165)

r(t) t([OT]

in [-TT] on which to base a decision on whether a Mark or a Space hns

been sent. Defining signals

q(t) t C[-TO I

MTl(t) =,(166)

iml(t) tc[O,T]

and

qlt) t C (-T.0 J

M W (167)

oM (t) t [O,
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we have

T o T
m 1(tOm d fq (t)dt= q + mo0(t)m (t)dt (18IT =J-T

= PT PT

=0

We have the situation where two orthogonal signals are transmitted over

[-T,Tj with a random phase e. Noncoherent detection of such signals is

precisely the same as noncoherent detection of FSK signals (orthogonal

signals) of total duration 2T. Hence, from Eq. (149), we have

P 1 P_ R (169)
Pe =2" xIN

for noncoherent detection of PSK signals with a reference sigaal es

stated above. For the case with clipping we have, from the results of

FSK, the error probability

P 1 exp T (170)e 2 N, 10o

where

01 0 ;

The most common reference signal is the prcviously transmitted Mark or

Space signal. This means that each transmitte-d signal is modulate! rela-

tive to the previously transmitted signal. This efficient mode of non-

coherent operation, called differential-phase shift keying (DPSK),

r.:sults in the binary error probabilities given above.
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D. Binary Minimum-Shift Keying (MSK)

Minimum shift keying is a patented scheme developed by the Collins

Radio Company. This modulation scheme gives a signal in tie channel

that looks like FSK with a modulation index of m = 1/2. Normally FSK

modulation with m = 1/2 would require discontinuous phase changes, which

would be difficult for VLF/LF transmitters to handle. The MSK scheme

gives continuous phase and an improved performance equival3nt to that of

PSK mod-,lat i n.

Consider a basic information source that generates a Mark or Space

once every T seconds. This binary information sequence is alternativ.ly

used to modulate two PSK modulators that are 7/2 radians out of phas-;e

with each other. This results in two PSK signal sequences where phase

changes occur at odd times (T, 3T, 5T, ... ) in one and at even times

(0, 2T, 4T, ... ) in the other. The t-,'. PSK signals are amplitude modu-

lated by /27 sin w1 t and /2F cos iLt, respectt',ely, and summed before

transmission. See Fig. 22, where Li Ti/2T)

fiPsin w(t

ysin(jc t+6 x) - -

SORC -f2WCos wit + (~t)
TT A(I +0

2 i OS(Wt6)

O-M045-45

FIGURE 22 MSK MCDULATOR REPRESENTATION

S(t) --: 'sin 1lt sin(lot + -1 C I cos! cs ot

109x changes at T", 3T, 5T, ... (172)

10 = changes at 0, 2T. -IT,
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The signal S(t) shown above appears as a continuous phase FSK

signal with a modulation index of m = 1/2. Coherent detection is accom-

plished by separating the signal plua noise into two separate PSK-like

signal-plus-noise sequences which are detected separately as shown in

Fig. 23, where

(t) = sin Wit sin %ot
(173)

oc(t) = _j/cos wlt cos %t

and

2T

f 0 s(t) (t(t) dt -0

s c

S3T (174)

I3T

FIUE2 CO (t) t(t) dt ET0

S~~r(t) T

- --> I 0,2T, ... 0-70o45-48

SFIGURE 23 COHERENT MVSK DETECTOR-NO CLIPPING

Since each side of the detector is essentielly a PSK detector, the

performance is that of coherent PSK detection with average power 1/2 P

and signal duration 2T which results in total signal energy PT per trans-

mitted Mark or Space. HIence, for each transmitted bit, the error proba-

bility for this coherent detector is

t.. 17
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P /7P777(175)

when no clipping is employed. This is plotted in Fig. 24 for T = 0.02.

Tr 0.02 s10"*

> 10-2..

CD 10-3

0
0.

w

•,10-5
z

106

• -• , I i I , I , , I I I

0 5 10 15 20 25 30 35 40
SIGNAL. -TO-NOISE RATIO, P/N 0  dFI D-7o4--16

FIGURE 24 BINARY ERROR PROBABILITY FOR COHERENT MSK-
NO CLIPPING

With clipping we have

P- 2PT J (176)
N{ 1 t(D) + a ¢(E

01 0

just as in normal PSK signaling schemes. These probabilities are plotted

in Fig. 25.

We were able to treat each side of the detector separately because

of the orthogonality property of ca(t) and c (t) shown in Eq. (17-1) and

the fact that we have exact knowledge of the signal phase. We considr
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now the difficult problem of operating in a differential mode similar to

differential phase shift keying.

Suppose we have a reference signal

q(t) = sin w t sin wyt + cos w)t Cos) (177)

which is transmitted during [-T,T] and received as

r (t) /TV sin Wit sin(uot -t ) + cos Wit coS(wot + y- 9) + n'(t)
0 y

(178)

Defining

o M(t) = sin 1t sin Wt
ss

o0(t) =-s Msin wu1 t cos Wot
If

(179)

0 s cos W1t sin Ujt

0 Mt ='Cos Y tCos "iut
cc T

we now consider how uncertainty in the phase of the transmitted signal

can cause some mutual interference between the two PSK sides of the

detector. Consider

T

r= r'(t)0 (t) dt (180)s -T ss

T

=sin VT u1t sin ,x t - sin 'iot dt

T

+ sin i;it cos W lt cos xt y - sin xt dt

0nt
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But

T

2sin 2wt sin W sin w t dt(181)
f 0 0

= /P'lcos e

and

T

1sin w-t cos dlt cos Wt + ]sin wt dt

T
1 f sin 2Wit -in e sin y

f f

Y= 0 in [-2T,2T]

= - in [-2T,2T]

2 15T sin e ey' 0 in [-2T,0O, •T , in [n,2T) •182)

y, y

- - PT sin I Ty = in [-2T,o], qy = 0 in (0,2T]
y y

In summary, we have

r' TT cos n '

= 0 in [-2T,2T]

= -, in [-2T,2T]

sin a a' 0 in [-2T,o]I ey = in [o02T] (183)

- " sin e ev in [-2T.O, a:1 0 in [0.2T]

y
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Similarly,

r'= - /Tsin e + n
c c

0 Y= 0 in [-2T,2TJ

i= r in [-2T,2TJ
2

+ -2P Cos 9=0 in [-2T)O0, O y in CO2T (184)

2
S os = T in [-2T,0], = 0 in [0,2T]

oy y

Here n' and n' are independent zero-mean Gaussian random variables with
s c

variance N /2. Defining the random variable that takes on one of three
0

values with the following probabilities,

p

8= 0 p= , (185)

1

we can represent the sine and cosine components of our reference signal

as

=r' , cos 9 + nI + sin

(186)

r' /-7 sin + n' + L /IPT cos9

This shows that, besides the noise terms n' and n$' the reference signal
s c'

can be corruptL' by a strong interference term due to the signals in the

other half of the detector. This means that using MSK in a bit-by..bit

differential mode is impractical. We shall see, however, that taking a

long stream of such channel bits (chips) to form a reference for another

long stream of bits (or chips) can result in good performance.
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Suppose that we now take N binary MSK channel bits or chips to

transmit a single Mark or Space. This can be accomplished, for example

by transmitting a pseudo-random binary sequence of chips for Mark and

its negative for Space. Assume that we take N pseudo-randomly generated

binary MSK chips to transmit a Mark or Space, and suppose that the N

bits of the previously transmitted Mark or Space are used as a phase

reference. This means that we have a noncoherent differential mode of

operation on N chips, similar to the differential PSK scheme described

earlier.

Collecting the N sine and cosine components of our previously trans-

mitted signal, we have

N

IR'E r'(k)

k=l

N

= N/T cos + ne(k) (187)

k=l

N

+ _,/T sin e 6 kTT

k=l

and

N

R' r'(k)

k=l

N

- Ni/T sin + n'(k) (188)
1:c

k=l

N

+ -'T sin A

k=l

as the sine and cosine components of our reference sequence where the

th
index k corresponds to the k chip in the reference sequence. The terms
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N

N' =T- n'(k) (189)

k=l

and

N

N' n'(k) (190)

k=l

are independent zero-mean Gaussian random variables with variance NN /2.
0

Assuming that chip sequences are pseudo-randomly, generated, we can take

the random variables N=1 to be independent, so that the sequence
N

D' =2--. 8 k (191)

k=l

approaches a Gaussian random variable in distribution as N gets large.

The sine and cosine components of the reference signal are thus

2R' = N cos e + N' + -2 T sin e D'

(192)
2

R = - N/TI sin 9 + N' + - /P' cos 9 D'C C _T"

where N', N', and Do
where a are independent zero-mean Gaussian random variable-s

(D' being assumed to be Gaussian) with variances

S2 2

N N =NN /2
s C 0

D N/2 (193)

Note that the noise components due to the interference,

9

"T• sin A D'

(19-1)
2
yr cos A D'
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form a vector that is orthogonal to the signal vector formed by

N/1F cos 0

(195)

-N/•r sin e

This means that, since noise that is orthogonal to the signal vector can

only cause errors, the noise term due to interference is equivalent to a

noise vector having equal energy in all directions of energy,

- P7I N (196)
2

in any given direction. A similar argument applies to the transmitted

signal. Hence the differential MSK sequence of length N performs like

a differential PSK scheme with signal energy

2N PT (197)

and noise spectral density

'NPT

(+ (198)

The error probability is thus

P - exp-N • PT (199)No 2/
or.

I ) ( 2 JPTPj
2.exp N (200)e = • P No 2PTl

This expression, which assumes that no clipping has occurred, is plotted

io Fig. 26. With clipping we have
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FIGURE 26 BINARY ERROR PROBABILITY FOR DIFFERENTIAL MSK

where, as before,

N' N I- V(D) + 2W) E (202)
00

E. M-ary Minimum Shift Keying

We now consider schemes that take N binary MSK chips to transmit

one of M messages. In general, the performance of these schemes is

difficult to evaluate, so we must resort to finding upper bounds on the

error probabilities. In this section, we restrict ourselves to two

M-ary signal schemes, coherent orthogonal signals, and coherent pseudo-

randomly generated signals.

Suppose that the M signals consisting of a sequence of binary MSK

chips are represented by
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It

N-1

sit) =M sijp(t - jT) t 6 [O,NT] i = 1, ... , M , (203)

j _-o

where

_i 1'andslj 1II

p(t) is a pulse of duration T and energy PT.

Also, let

r(t) te[0ONT]

be the received signal which consists of the transmitted signal plus

additive atmospheric noise with spectral density N /2 as before. De-e

fining
NT

Ilffl 2 = NT f 2 (t) dt (204)

for any time function f(l) over [0,NT), we consider events

ik ,jr- SkI2l < HIr - si2i is sent (205)

for i, k = 1, 2, ... ), M. If the ith signal is transmitted and an optimum

white Gaussian noise receiver is used (as in the case of interest), the
th signal is mistakenly assumed to have been sent by the receiver when

the event e ik occurs. This event occurs with probability

P e :p nri iki rn 2 1
(11Sk - sill) (206)

th
In general, when the i signal is transmitted, an error occurs if one

or more of the events %

* k 1. 2. M k j (207)
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th
occurs. Hence, the error probability when the i signal is transmitted

is given by

,,ells, is set P~ e ii} (208)

k#u I•k~i

A well-known property of probabilities is that the probability of a union

of events is less than the sum of the probabilities of each event. Hence,

we have a bound

M

p els, is sent !g E Prek (209)

k=l
k1i

or
1M

P lels is sent j( . - (210)Sr i

When there is an orthogonal signal set, then

NT

Ns iWs k(t) dt = 0 k i 1 (211)

and

2
si - Sk 1  = 2NPT k j i (212)

Thus, for the orthogonal signal set, we have

M

P IS~ is sent) Z: 1( I-)- (213)

k=l

k-i i

or

I s, is sent8 < M (214)
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Since this bound does not depend on which signal is sent, the error

probability when any signal is sent has the same bound. The probability

of error, Pe when any signal is sent is thus bounded by,

P < M (215)

which is plotted in Fig. 27.

I" " I'

-ORTHOGONAL
S\ -- - RANDOM

T z 0.02s
0- M'32

>.7 N0 -, 1500
I-

_J

'0

0

10

S .1

O IO4

S1-7

20 -iS -i0 -5 0 5 '0 15 20
I•SIGNAL-TO-NOISE RATIO, P/N0  dO o. r . "

FIGURE 27 CHARACTER ERROR PROBABILITY
OF MSK SEQUENCES

When the signals are not orthogonal but are generated pseudo-

randomly by independent pseudo-random-sequence generators, Eq. (213)
thstill applies. Hence, when the i signal is sent, the error probability

is bounded by
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Ii

M /I~ Is sil I
Pr 1Ils is sent~ s!! 7 1Q ~ 5i (216)

k=l1
k/i

In general, we are interested not in the performance of a given pseudo-

randomly generated signal set but in the average performance when a large

class of such signal sets are used. Hence, when sa is sent, we are

interested in the average error probability where we average over the

whole ensemble of pseudo-randomly generated signal sets. Taking averages

of Eq. (216) we have,

M _ _ _
Pr ls is sentI (I Is o (217)

Sk=l0
k =11 k• i

The error function has a bound

x21
V(x) < exp - (218)

so that Eq. (217) can be further bounded by

P is sent < exp (219)

k=l 0

k/i

Note that

IlSk - sill 2 = / kt - si(t)] dt

N-1 
(220)

'PT• 
Skj- sij]2

j_-O

Thus

l exp - S kj sij)2 (221)
ex1  4N eop ITTj 4N.
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We assume that the ensemble of signal sets is generated in such a manner

that the components of any signal are essentially independent of each

other and of other signal components and take on either +1 or -1 with

equal probability. Hence,
SN-i1

N-1 expl- PT (S - 2. = exp - s.
To 4No ki ij) 4Po (sk •J lj T

(222)

= [I+ i ex-p L- N0

The total probability of error, given that s. is transmitted, iJs bounded1

by

M
I ' IPT~i (23SPr els. is sent < + exp- (223)

k=l

or

P Me M M + - exp LNo1J(224)

is the bound on the probability that any signal transmitted gives an

error. Equation (224) can be written in a more familiar form as,

2

P M exp- N log PT (225)Pe ~1+ exp(-

This is plotted in Fig. 27.

In both Eq. (215) and Eq. (225), for the case of front end non-

linear clipping, the term N is again replaced by

0

as before.
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In the preceding derivation of the performance of typical equip-

ment modems in the presence of atmospheric noise, improvement is shown

to result from wideband clipping at the front end of the receiver. The

development accounts for the reduction in impulsive noise by the clipper

and hence predicts an improvement in signal-to-noise ratio in the stages

of the receiver following the clipper. While the predicted improvement

is valid when the clipping level is well above the rms noise level in

the wideband portion of the receiver, when the noise clipper is active

an appreciable fraction of the time these predictions become inaccurate.

One reason for this inaccuracy is that account is not taken of the loss

in signal energy as a result of the operation of the noise clipper.

An approximate correction may be made as follows:

let P = probability that the noise level exceeds the clipping
B

level, B.

Then, during the time that the clipper is saturated by large noise pulses,

no signal power is transmitted through the clipper, and the loss in big-

nal power is given by:
P 1

All appropriate curves in this report include this correction.
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:1

VI CONCLUSION

We have computed the performance of several generic VLF/LF

modulation-demodulation schemes, using the atmoýpheric noise model de-

veloped in Part One. In general, these calculations assume that the

integration time T (baud time) is large enough so that the integrator

output is Gaussian in distribution. When clipping is performed before

integration, this assumption is even better. For the case of no clipping,Ithis analysis results in classical white Gaussian noise error proba-

bilities. With clipping, the detail properties of atmospheric noise

become important, and such parameters as front-end bandwidth (W), clip

level relative to signal peak (s), and noise voltage deviation (Vd) be-
d

come important.
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APPENDIX

Here we consider coherent PSK and MSK performance when the inte-

gration time T is small compared to the atmospheric noise correlation

time and when no clipping is introduced. First consider the PSK signals

S (t) / 27 sin w t 0 ! t ! T
0 0

(227)

S (t) M - sin ,w t 0 ! t • T

Suppose that the signal S (t) is transmitted. The received signal is
0

then

r(t) = A en(t) cos Wt + ] + S (t) (228)

The coherent receiver correlates the received signal with

AS(t) = S (t) - S (t)0 1
(229)

= 2/fP sin w t

to obtain the test statistics

T

S= r(t) LS(t) dt

T (230)

= 2PT + 2 A e Cos + ] + /MV sin wt dt

The receiver bases its decision on ). in the following way:

If .x.> 0 , choose S
0

(231)

If 0 , choose S
1
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We now make the assumption that T is small enough so that n(t) and

Sare essentially constant over the time interval [0,TJ. Therefore

X =2PT + 2A en 1  cos Wet + sin wtdt
0 0

(232)

= 2PT + /2A en T sin

An error occurs if X ! 0 when S M is transmitted. Hence the0

error probability is

Pe = Pr 1- 0S° is sentl

=p2PT + /27A en T sin 0 (233)

= P l (n2si
rI A= Pr e sine• •--..--

Since we assume that 0 is completely unknown, we assume that it has

uniform probability over [0,2r]. Consequently, its probability density

is

1 0 !9• 2rT

P (0) = (234)

o elsewhere

Since sin e can be positive or negative with equal probability, by .

9ymmetry we have

P= P e sin 8 Ž (235)e r - -

Clearly, when n • e • 2v

e sin e (236)
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Pe Pr esin A 2r

J e P n lei do (237)

-e A sin d

2TT/I- 2 )de

By symmetry vwe note that the same error probability applies when

S (t) is transmitted. Hence the total binary error probability for co-
1

herent binary PSK with integration time T smaller than the noise corre-

lation time is given by

TT 11 g A n

P= e f I e (Asin dl do (238)

This error probability is generally difficult to evaluate except by

approximation and computer techniques. Coherent MSK also ..as this form

for the probability of making a binary error.
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