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ABSTRACT

This report demonstrates, from experimental studies, that the classic
critical loads computed from small displacement theory are correct for
perfect shells under ideal loading conditions. The method used is an
implicit rather than an explicit one. It makes use of the fact that for a
realistic structure, the elastic deformation can be associated with the
initial displacement from ideal form, the load which produces the motion,
and the classic load for the structure by the hyperbolic expression

Pcr
N Y%

By choosing the variables to be 6/‘P and §, the relationship can be

presented in the form of a straight line whose slope corresponds to the
critical load for the ideal case. This is, in essence, the method

developed by Aryton and Perry, in 1889, to analyze column data. The
generalization to include other structures was foreseen by Southwell in his
classic paper of 1932, although he offered no proof. In effect, a general
proof exists in the theory of elastic stability as presented by Wester-
gaard in 1922. However, the practical application to shells has, until now,
not been made.

By using this technique, the behaviour of cylinders under the action of
external pressure, torsion, and axial load and of the instability of
spheres and spherical caps under the action of external pressure is
examined. In the main, the analyses are conducted on experimental data
already published. However, there are notable exceptions, the cylindrical
shell under axial load being a case in point.
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INTRODUCTION

Shell structures are very common. For over a century, engineers have
investigated experimentally and discussed theoretically their behavior
under various loading conditions. The extent of this endeavor is clear
from the fact that some 23391:2books and papers were written in the field
prior to 1956. Nevertheless, many facets of the subject are still unre-
solved. Indeed, it has become traditional to expect wide divergence
between experimental results and theoretical predictions when certain prob-
lems of stability are considered. This is particularly so for circular
cylindrical shells under axial compression and spherical shells under
external pressure. The exact causes of the discrepancy are hard to iden-
tify. However, one factor of importance is easily recognized. Theories
are normally developed for ideal bodies with perfect loading conditions
and boundary restraint; whereas tests are always made with realistic
structures imperfectly loaded and constrained. Thus, if agreement between
theory and experiment is to be achieved, it will be through an implicit
rather than an explicit process. The Southwell3 technique, which has
already been demonstrated to have genera& applicability in questions of
elastic stability of plates and columms, 'is such a process. The present
paper establishes the validity of this technique for shell problems.

The analytical basis of the work is older than the Southwell concept itself,
being found in the study made by WestergaardSin 1922. 1In this very general
analysis, the relationship among elastic deformation, the initial deviation
from ideal form, the load level, the critical load and its harmonics was
derived. The starting point was the Lagrangian expressed in generalized
coordinates. Westergaard considered not only initial geometric variances
but also nonhomogeneity and eccentricities of loading. He applied the
theory of minimum potential and obtained a general relationship among the
actual load (P), the critical load for a particular mode (pPer), the ampli-
tude of that component of the initial irregularity which corresponds to the
nthmo?e)(nso), and the appropriate associated component of elastic deflec-
tion (6).

This relationship is

nfer T (1)

Clearly, there are n terms of this type and the total elastic deflection
of the structure under the given load system is
P

Y 3
: =né1 nfer® i (2)
which is, of course, identical to the Southwell formulation for the column.
In many problems, the first mode predominates, and, thus, a single-term
expression of the type given in equation (2) adequately describes the

behavior. Hence, the relationship between 6 and P is hyperbolic. However,
if the variables are taken as §/P and §, the relationship is linear.

1



EXPERIMENTAL 1EVIDENCE

To illustrate the process, we chose the simplesi curved structure with the
most elementary loading; viz, 2 circular arch compressed by a point load at
its vertex. Langhaar, Boresi, and Carver™ have cxamined this problem both
theoretically and experimentally. The arch which they used was of 10-inches
radius and was mede from a strip of aluminum Z.5 in. wide and .031 in. thick.
It was simply supported at its ends. The load displacement relationship
obtained in the test is given iu Figure 1. When this iz plotted in the
Scutuwell fashion, the characteristic stra.ight line (Figure 1) is obtained.
The critical load determined from this line is L4.12 1bs, which is in excel-
lent agreement with the theoretically predicted value of 4.17 1bs.

A somevwhat more complex problem is the behavior of a tube under =2xiernal
pressure (p). This problem has been treated anslytically by Sturm', and
the validity of his solution has been well established by his own tests
and those of Cleaver.® However, from the viewpolnt of this paper, the most
important factor in Sturm's analysis lies in his demonstration that for a
slightly imperfect cylinder, the initial radial deformation amplitude is
related to the subsequent amplitude by the equation
PO

o)
— (3)
cr
This equation is, of course, identical to the general cquation derived by
Westergaard and clearly shows that a Southwell representation of test data
should be applicable. When the load displacement data given in Figure 16
and 18 of Sturm's paper are replotted in the Southwell form, the straight
lines given in Figures 2 and 3 of this report are obtained. The critical
loads obtained from the several slopes are in excellent agreement with the
theoretical predictions.,

§ =

Subsequent to the work of Sturm, & number of experimental studies were made
on the stability of ring-reinforced circular cylinders under external
pressure loading. (In one particular series of tests, the shells failed by
general instability.) It is with reference to the interprctation of these
tests that the first practical application9of the Southwell method to chell
bodies is recorded. Galletly and Reynolds” made the analysis. In thelr
paper, they noted the applicability of the Southwell process to many prob-
lems and suggected a modification for the case in question. This was the
use of strains instead of displacements, a step which is readily seen
admissable and which is analytically demonstrated in Westergaard's paper.
The results which they obtained are most iwportant. For the first test
vhich they report, observations were made at 21 different points on the
body. The critical loads derived from these measurements are in excellent
agreenent with one another. They are listed in Table I.

It is seen that the critical loads range from 1681b tc 178 1lb, with a mean
of 172.2 1b., These values compare wel}owith the theorctical load of 173 1b
computed in accordance with Kendrick's theory.

The second set of data presented 5y these researchers is a comparison of the
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TABLY 1. COMPARISON OF MULTIOBSERVATIONS

ON SINGLE SPECIMEN

e ——y

Station |Southwell | |Station | Southwell
No. load No. Load
1 172 12 171
2 171 13 172
3 173 14 174
4 171 15 173
5 173 16 169
6 169 17 168
7 171 18 174
8 178 196 174
9 174 20 168
10 173 21 174
11 174
Mean value of load 172.2
Theoretical value 173
Ratio of mean value _
theoretical value ~ - 995

b—_—_——_—_g




results of tests made on five similarly constructed shells, whose theoretical
collapse pressures are 150 nsi and 1000 psi. The ratios of the critical load
levels computed from Kendrick's theory and the values deduced from the tests
are given in Table II. Again, the comparisons are seen to be very good indeed.
Donneunin his classic paper on the Southwell method appears to have been

the first to consider whether or not the process could be applied to the
thin-walled circular cylinder under axial load. Heexamined the problem
analytically, taking as his starting point his approximate solution for the
instability of & cylinder under axial compression in which he had comsidered
initial deviationes from cylindrical shape.

He chose the deflection function to be given by

T s ' T12R 2Mx
w=Ws1n-L—sini—+W(W+2w )-81,_2- . cos - (4)

The reason for this cholce lay in the fact that “he second term was most
useful in annulling some of the second-order extension with first-order
extensions and, thus, was effective in reducing the internal energy. This
initial deviation from cylindrical form was taken to be given by
1
w! = w_ w (5)
W
From this basis, he computed that the relationship among the load, the

critical load, and the initial and subsequent deformations would be given
by

M*R2
1+— . (wWe2W') (W+W')
PN B LL (6)
LGSR N MR (weow')® (2Wsu')
Litece i Wan!
8L T+

wvhere P _ is the critical load for the perfect shell and is given by the
r
normal Squa.tion
E.t. 1

P = . = . 2TRt
cr 1’3(1-512) R (1)

It is clear that if Donnell's large displacement derivation is true, there
must be some classes of shells for which the multiplying factor on the
Southwell form ig ngt unity. But it 1is apparent that if W and W' are smell
compared with 2L°/M°R or when W' is very small compared with W, the South-
well plot should yleld accurate results.

In view of Donnell's analytical development and the acute interest in circu-
lar cylinders under axial compiession, it might be thought that the question
would have been experimentally resalved. Unfortunately, at the time that
Donnell was studying this problem, it was not technically feasible to use
noncontacting displacement transducers to measure the radilal movement of the
wall of an axially compressed shell model with the degree of accuracy

6



TABLE II., COMPARISON OF SINGLE OBSERVATIONS
CN A RANGE OF SPECIMENS

Specimen Southwell Load

No. Theoretical Load

1 1.011

2 1.022

3 .861

4 1.076

5 .882
Average .970




required to verify the analysis. Thus, Donnell wvas constrained to
theoretical observation only.

Fl{igge}2 in his text on "Stresses in Shells), appears to be the next author
to refer application of the Southwell plot to test results on shell bodies.
In his discussion, he emphasizes that more than one mwode may be involved in
the total deformation; thus, since in meny shells th-re exist a onumber of
critical loads immediately above the lowest one, several terms of the dis-
placement series may grow to infinity together. In tnis detail, then, the
cylinder under axial compression differs from the column for which the
eigenvalues are significantly separated.

However, he states that if care is taken to measure o displacement which is
large for the lowest buckling load but small for all »thers, then the
Southwell technique is applicable. He substantiated his remark by refer-
ence to unpublished experiments conducted by Kromm e&nd Flugge in the early
1940's. These tests were made on cylinders under various combinations of
axial compression and torsion. Professor Flligge has remarked that Southwell
Plots were obtained only when the predominant loading was torsional.

In our research, we have fourd that if well-made thin-walled shells are
tested with extreme care to ensure uniformity of load distribution, and if
noncontacting probes of high resolution are used to determine the wall
motion, load-displacement relationships of the hyperbolic type are obtained.
Data for typical tests are given in Figures 4 and 5. Both these observa-
tionslgere made on the same shell. The data have been plotted in the Lund-
quist™ manncr. The agreement between the classic critical loads and the
values computed for tnese plots is good (maximum error, 1.98%). The
cylinder used was msle from a thick-walled tube of aluminum by machining
and was circular to within 1/1,000 in. and was uniform in thickness to
better than 1/10,000 in. It had an R/t of 335 and an.l&/D of 1.87. The
test was made in which loading was via a thermal ram. Deflection
measurements were made using algotonic sensor, an electro-optical measur-
ing device of high resolution. The test is fully described in reference
16.

In the case of torsional loading, it is much easier to determine experi-
mentally the wall motions during instability. Consequentially, it is
relatively easy to obtain §90d results in this case. A typical set of
data, obtained from a test™' on an orthotropic cylinder, i1is given in
Figure 6.

The literature contains mich material with reference to the instability of
spheres and spherical caps under the action of normal point loads, uniform
external oressure and combinations thereof. This has been examined in
Reference 18.

The experimental work of Ashwelllgand Evan-Ivanowski, Cheng, and Loo2oon
spherical caps subjected to a concentrated load at the apex provides
several cases in which the load-displacement curves can be successfully
analyzed by the Southwell method. The load-displacement curve and the
corresponding Southwell line are given in Figure 7 for Ashwell's test on a

8
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specimen with a N\ of 6.4. The corresponding case f.r the Evan-Ivancwski,

Cheng, ang Loo research (A=6.3) is given in Figure <. The critical values
of P'R/Et derived from the plots are 1n very close agreement, belng 3.09

and 3.1 unlts, respectively.

Although the majority of the data cannot be analyzed in this fashion, it 1s
interesting to note that those results which can be so treated appear to be
consistent and co agree reasonably well with Ashwell's computed values. It
would seem, however, that beforz a positive statemcnt is made in this regard,
another series of tests should be made with the method of correlating via
load displacement firmly in mind from the onset. Tuie behavior of a spherical
cap under uniform external pressurg.has been considored analytically and
experimentally by Kaplan and Fung. ™ The majority of their data is amenable
to this method of analysis, and a typical 5/p versu. & plet is given in
Figure 9. 1In Figure 10, the deduced critical proscures are plotted as a
function of the geometiric parameter A\, which descrives the caps,

It is seen that all the points are on a smooth curve. The lower portion of
this curve corresponds very well with that computed by Kaplan and Fung as
an approximate solution to their equations.

The spherical cap under combined loading, a normal force at the apex and a
distributeggpressure, has been examined experimentally by Loo and Evan-
Ivanowski.  Many of their load-displacement curves can be analyzed by thc
Southwell method, but there is no theory available for comparison.

The behavior of complete spheres under external pressure loading is another
area ir which problems of correlating test data currently exist.

An experimental study was made on a thin-walled nickel spherc to check the
possibility of relating radizl displacement, pressure, and theoretical
critical external pressure. The experiment is reported in full6in RefSr-
enc2 18. The basic material had a Young's modulus of 29.3 X 10 1b/in.” as
determined by routine material tests. This value was confirmed for
several points on the sphere by measurement of decrcase in radius as a
function of pressure. The shell was elastically buckled;* when the point
of buckle inception had been thus established, a test was made using a
sensitive noncontacting displacement probe located at, or very near, the
buckle center. The variation of displacement with pressure is clearly
seen in Figure 11. There are two properties of this curve which are both
apparent and important. First, the initial deflection is linear. Second,
the final displacement curve is hyperbolic. The hyperbolic curve gives

an excellent Southwell plot (Figure 12), whose slope corresponds closely

*The sphere was restrained ageinsl excessive motion by the use of an
internal mandrel. As & result, on the second and subsequent buckling
tests, the load levels for instability reached the same value as on the
initial test.
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to the critical load computed on classic theory when ~“he modulus has the
value indicated by the initial slope.

2
The data presented by Thompsonthave also been examin:d in the same manner.12
The conclusions reached were identical. The Southwell plot predicts the
classic critical load for this sphere, also. It should be noted that in
this case, too, the buckle generating defect was located at a point which
was characterized by an apparent reduced modulus. The modulus value used
in the data correlation was that which corresponded to the initial linear

portion of the load-displacement curve.

16



CONCLUSIONS

The experimental and theoretilcal study preserted in this report concludes

& broad analysis which has been conducted on the range of applicability of
the Southwell plot as a means of data interpretation for tests on shells.
The results presented. when taken in conjunction with those given in a
previous report for plate structures, provide evidence that the method is of
absolute generality. However, it may be reasoned in the case of structures
in which many buckles can be formed, that the true process of buckiing may
be controlled by the individual character of the structures, In this case,
imperfcction could influence local boundary values and would thus show as

an appar«nt lowering or an elevating in critical load as given by the South-
well plot. If this i. so, we should anticipate that the distribution of
Southwell valuee will be essentially normal if many observations are made at
devious points over the body.

With this process, thcn, we fecl confident in asserting that theories for
perfect todies which give ccotimutes not in agreement with experimental values
derived on the basis of Southwell-type plots must be considered inadequate,
incomplete, or in error.
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