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UNCLASSIFIED ABSTRACT 

(U) This technical report describes analyses and techniques used in the design 

and evaluation of advanced decoy concepts. The work described addresses both the 

design of specific penetration aid elements and the formulation of techniques for 

their evaluation. The three major technical areas covered in this report are: 

1. Investigation of a penetration aid technique that degrades the measurement 

capability of the radar sensor. 

2. The design of a computer program to solve the decoy design problem with 

flexibility in the selection of optimization criteria and constraints. 

3. Studies of the use of certain discrimination techniques for a hard point 

defense system. 

This appendix to this report contains detailed description of the mathematical and 

engineering formulation of the optimum decoy design program. 

EDITED BY: 

EDITORIAL SERVICES SECTION 

R. L. Tucker 
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1.0 INTRODUCTION AND PURi’OSE OR PROGRAM 

1.1 PURPOSE AND GENERAL REMARKS 

The Optimum Decoy Design Program selects optimum decoy configurations which meet 
specified performance, weight, and geometric constraints. Optimum typically means 
minimum weight for a given set of performance and geometric constraints or mini¬ 
mum value of a performance parameter for a given weight and set of geometric 
constraints. Mutually exclusive constraints, for which there is no acceptable 
solution, are identified by the program. The program is capable of operating in 
a mode which allows it to search for any decoy which meets all the constraints, 
(solution-finder) as well as the mode where the search is for the optimum decoy 
within all the constraints. The selection processes involve the minimization of 
non-linear functions subject to non-linear constraints. The analysis portion of 
the program includes trajectory calculations (which can include the effects of 
mass loss, nose blunting, thrust, trailing appendages, and angle of attack), wake 
RCS and length approximations, and effectiveness operations. The program is 
designed primarily for sharp and blunt cone decoys and reference reentry vehicles. 
An option is provided which allows an arbitrary reference reentry vehicle to be 
utilized provided its performance histories are available for input. 

The analysis portion of this program does not represent Avco's most accurate 
prediction techniques but rather represents a carefully balanced set of engineering 
approximations which ere utilized to maintain the required compromise between 
accuracy and running time for configuration selection studies. The analysis 
portion of the program does not explicitly contain calculations for the internal 
arrangements of the equipment inside the decoys or for the exoatmospheric 
observables. The effects of these requirements on the decoy configuration selec¬ 
tion process have usually been included as geometric constraints on the decoy. 

The ADTECH III contract resulted in a computer code which performed the solution- 
finding operations automatically for constraints based on trajectory matching 
requirements (Ref. III-l). The objective of the ADTECH IV effort in this area 
was to develop, document, and deliver a computerized decoy configuration selection 
program which can select optimum decoys considering trajectory, effectiveness, 
and wake performance parameters. This objective was achieved by utilizing and 
extending the results obtained in the ADTECH III computer program. The ADTECH III 
solution-finding program represents the first steps toward the application of 
digital machine optimization to the decoy design problem. The analysis portion 
(function generator) of that program contains the decoy trajectory calculations 
and the comparison of the physical characteristics of the decoy trajectory with 
the reference reentry vehicle trajectory. The synthesis portion of the program 
utilizes a penalty-function equation to transform the constrained design problem 
into an unconstrained search problem. This penalty-function equation was formu¬ 
lated to be compatible with the later extension of the program to include 
optimization capability. Optimization techniques are applied to the transformed 
function until any decoy is obtained which is within all the constraints. During 
the ADTECH IV effort, the ADTECH III program was extended in the analysis portion 
to include effectiveness operations and observables approximation and extended in 
the synthesis portion to include the capability for finding the optimum decoy 
design which is also within all the constraints- 
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The program developed during ADTECH IV, when given an initial decoy design, the 
ranges of interest of the decoy parameters, and the system constraints am*“P “ 
mization criteria, will find the best vehicle which is within all the constrain 
or will establish that there is no solution to the problem. For example, t e 
program is able to find the minimum weight decoy which is within the geometric 
and observables constraints and which has a trajectory that matches a reference 
trajectory within specified tolerances (corridors). The program also is able to 
find the vehicle which minimizes a parameter related to the Avco effectiveness 
model (probability of discrimination) and is also within specified weight an 

geometric constraints. 

1.2 SUMMARY OF THE COMPUTER PROGRAM FORMULATION 

The major elements of the Optimum Decoy Design Program are outlined in Figure II1-1. 
The key problem in formulating this design program has been the integration o 
many subroutines into an efficient engineering design program. These subroutines 
fall into two major categories. The first category includes those subroutines 
which perform the analysis tasks that generate vehicle configurations and that 
generate the aerodynamic and trajectory behavior of these configurations. In 
addition, this portion determines reentry observables, performs a comparison 
analysis between the decoy and reentry vehicle, and places constraints on the 
observable behavior of the R/V and decoy. These constraints are generally of a 

corridor type or of an effectiveness parameter type. 

The general decoy conceptual design which can be modeled by this program is de¬ 
fined by the thirteen independent design variables identified in Figure III_2- 
Besides the normal blunt cone design parameters, provisions are made to consider 
variable geometry techniques, in which the decoy’s geometric and mass charac- 
teristics can be changed in flight at a designated altitude. In addlti°n» 
generator or rocket motor can be incorporated whose operational characterist . 
are controlled by the analysis portion of the program. The decoy design Problem 
then is the search for the numbers defining a decoy configuration which meets 
the systems requirements and constraints and is optimum with respect to some 
specified payoff quantity. This analysis portion of the optimum deJ°V is 
thus a compendium of many Avco analysis procedures that have been effici y 

combined into this program. 

The second major portion of the optimum decoy design program is the synthesis 
section which employs selected optimization techniques to find optimum solutions 
to the decoy design problem. The optimization techniques chosen for inclusion 
in this program are the Daviden Variable Metric Technique, the Rosenbrock R°“tin8 

Coordinate Technique, and the one- and «-variable ' J*" 
formulation of the program will be discussed in more detail in the follow! g 

paragraphs. 

As shown in Figure III-l, the analysis and synthesis portions of the program re¬ 
quire inputs which define the problem statement and the options required for 

obtaining a solution. 

The inputs to the program inciud. the systems requirements, the starting conflgu- 
ration and the ranges of allowable parameter variations. A solution to the 
p^le; can consistai any decoy configuration which meets all the Jtem require¬ 
ments and constraints, or it can be an optimum( decoy configuration «1,10^18 jithin 

all the constraints, depending on whether the solution find! g p 

finding" options are selected. 
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Figure lll-l ADTECH OPTIMUM DECOY DESIGN PROGRAM 



SHAPE CHANGE AT Z TURN 

Figur. 111-2 ILLUSTRATION OF A COMPLEX DESIGN PROBLEM 
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With the inputs to the problem specified, the trajectory and observables of the 
initial decoy are calculated in the analysis portion of the program and these 
data are compared with the reference reentry vehicle data to determine the 
"performance" of this particular decoy. The effects on the performance as a 
result of changing the parameters of the decoy configuration slightly are also 
calculated if required by the synthesis portion of the program. These effects 
are called influence coefficients or partial derivatives or collectively, tie 
gradient. With this information from the analysis portion of the program, the 
synthesis portion of the program changes the decoy configuration to make it more 
acceptable and the analysis is repeated for the new decoy. This process is 
continued until a decoy is determined which meets all the stated requirements 
until it is determined that there is no acceptable decoy. The later case comes 
about because it is possible to state a problem for which there is no solut on 
That is, the problem may be over-constrained. The program is designed to identify 
such a situation and indicate that no solution exists for the stated problem 
In addition, the program defines a decoy which is "closest to being acceptable. 

The term configuration in this context implies the specification of the val^s of 
the design variables. An example is shown in Figure 1II-2 where there are thirteen 
design variables which must be determined. This decoy initially has a weight, Wj , 
and a shape defined by the nose radius, RN] , base radius, RBi , and length, L, . 

At some altitude, ZTURN, the outer shape is removed and the decoy immediately 
after that altitude is defined by the parameters W2, R^, Rß,. and L2- In addition, 

there is an ion generator or rocket motor which initiates at some altitude, , 
and burns out at some altitude, Zoff . The thrust is specified at some value, T, 
and the mass loss due to thrust is determined from the thrust and the specified 
value of specific impulse, I . The decoy design problem then is the search for 
the numbers defining a decoy Configuration which meets all the systems require¬ 

ments and constraints. 

The problems involved with the specification of "suitable" performance or systems 
requirements is not within the scope of this task. The systems requirements for 
input to the program must be provided from separate studies. For example, velocity 
histories for a reentry vehicle and a decoy are shown in Figure TI1-3. he 
cuestión of whether or not this "match" allows the decoy to perform its mission 
in some environment is considered to be a systems problem outside the scope of 
this computer code. However, once the system requirements are provided, °t 
the essential features of the program is the capability for determining whether 
or not a particular decoy meets the stated requirements. 

In addition to the requirements which may be placed on the trajectory and the 
observables there are design constraints which place limits on the weight an 
geometry of the decoy. For example, the length and base radius might be limited 

by the design of an existing deployment system. 

The search for an acceptable decoy configuration is then typically bounded by a 
number of constraints, some trajectory related, some observables related, and 

some related to the size, shape, and mass of the decoy. 

Provisions are included to constrain each of the design parameters between lower 
and upper limits if desired. The program can accept any combination of the 

constraints which are available in the program. 
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The above sections have described the decoy design problem and the general pro¬ 
cedures utilized to solve the problem. In the following paragraphs the actual 
formulation of the computer program will be discussed in terms of its modules or 
subroutines, starting with the outermost program and proceeding in to the actual 
trajectory calculations. The main program (Figure III-4) accepts the input 
quantities, allows the reentry vehicle data to be input or calls the basic function 
evaluation subroutine (F123) the reentry vehicle data, allows the selection of 
the desired search subroutines which in turn call the function evaluator (FEV) 
and provide for the final output. 

The function evaluator (Figure 111-5) screens the coordinates (decoy design param¬ 
eters) selected by the optimizer to determine if they are compatible with the 
capabilities of the trajectory subroutines. If the coordinates are not acceptable, 
a dummy function is defined to encourage the optimizer to select more reasonable 
designs. If the coordinates are acceptable, the matching subroutine (F123) is 
used to compare the reentry vehicle data with decoy data calculated using the 
trajectory and observables subroutines. The matching subroutine calculates the 
corridor fi notions illustrated by the shaded area in Figure III-6. The corridor 
function immediately indicates whether or not the decoy velocity history is within 
the allowable corridor. If the function is zero, the velocity aspects of the 
trajectory are acceptable; if the function is positive, the velocity history is 
not acceptable. This function also provides a measure of the "amount" the 
velocity history is out of the corridor. Provisions are made for calculating 
corridor functions for nine observable histories: 

a. Velocity, 

b. Deceleration, 

c. Ballistic Coefficient, 

d. Wake length at the first frequency, 

e. Wake length at the second frequency, 

f. Wake length at the third frequency, 

g. Wake RCS at the first frequency, 

h. Wake RCS at the second frequency, 

i. Wake RCS at the third frequency. 

In addition, nine "effectiveness integrals" are also optionally calculated in the 
matching subroutine for use in the probability of discrimination calculation in 
subroutine EFFECT. 

The formulation of the miscellaneous subroutine (MISC) includes calculations of 
the average density of the decoy which may be constrained to aid in obtaining 
reasonable packaging situations. This average density calculation is a first step 
toward the possible requirement for internal packaging logic which can be added 
into this subroutine at some future time. Also provisions are made in this sub¬ 
routine to allow the parameters describing the decoy after a discontinuous shape 
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Figum HI-6 ILLUSTRATION OF A CORRIDOR FUNCTION 
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change to be constrained relative to the parameters describing the decoy just 
before the shape change. For example, the vehicle must not be allowed to gain 
weight at the shape change. 

The subroutine called EFFECT contains the operations for defining a probability 
of discrimination based on any desired combination of the nine performance 
functions. This probability of discrimination can then be constrained or minimized, 
if desired. 

The calculation of the penalty function equation is performed in the function 
evaluator. The penalty function equation provides the fundamental link between the 
function evaluator calculations and the synthesis operations. The penalty function 
equation has been developed to handle all the constraints simultaneously. This 
equation is an adaption of the work of Schmidt and Fox (Ref. III-2). An Avco 
developed programming technique for this equation allows any combination of 
quantities which are available in the program to be constrainted. 

If the decoy design is within all the constraints, the penalty function will be 
zero; if not, the penalty function will have some positive value. This formula¬ 
tion immediately provides identification of acceptable designs. Information about 
the penalty function, F , and its behavior as the decoy design is changed is 
generated and used to proceed from a starting configuration to an acceptable 
solution and then to an optimum solution, if desired. 

Typically, the behavior of the penalty function is sampled for each of the design 
variables being considered and all variables are then changed simultaneously to 
proceed to a new configuration. 

An illustration of the use of the penalty function is shown in Figure III-7 for 
two independent variables. Conceptually, an optimization technique is applied to 
the penalty function to find decoy designs with smaller values of the function 
until a design is found where the function is zero. This implies that the final 
decoy is within the trajectory and observable corridors and is within all stated 
geometric and other constraints. This process is repeated with a sequence of 
tighter constraints in order to obtain an optimum solution. 

If a minimum is located where the function is not zero, this implies that the 
stated problem is overconstrained. If multimodel functions are suspected, it may 
be advisable to start the search from several different starting points to build 
confidence that there is not a better solution in some other part of the allowable 
search volume. 

The use of this form of penalty function has provided an immediate identification 
of acceptable solutions, a procedure for identifying impossible problems, and has 
mathematically transformed a constrained optimization problem into a sequence of 
unconstrained optimization problems. 

The synthesis portion of the program is designed to perform a sequence of searches 
for decoys which have zero values of the penalty function. As shown in Figure III-4, 
four techniques have been mechanized for selection by the user of the code de¬ 
pending on the nature of the decoy design problem and on the experience the user 
has with optimization techniques. The search techniques consist of the Davidon 
Variable Metric Technique, the Rosenbrock Rotating Coordinate Technique, and the 
one- and two-variable Fibonacci techniques. 
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This optimum decoy design program has been utilized on several programs to design 
decoys. Its utility has been demonstrated on programs like the Nlke-X Targets 
Program and it is being utilized in examining Tethered Radar Reflector (TRR) de¬ 
signs in the program of that name. As a result of the effort pursued under this 
task, the penetration aids community now has a tool that economically performs 
a series of parametric evaluations that normally would take an engineer many 
months of effort. Unlike most parametric studies, this program rigorously chooses 
an optimum design and ensures that no configuration has been left out of considera¬ 
tion for a given requirement. 

1.3 IDENTIFICATION OF DOCUMENTATION ELEMENTS 

The documentation for this code is in three parts. The volume entitled, 
"Numerical Description of the Optimum Decoy Design Program" (Appendix I) 
contains descriptions of each subroutine, descriptions of the numerical methods 
employed, correlation of program segments with their function descriptions and a 
complete listing of the source program and preset deck. The numerical description 
volume is primarily intended for the professional programmer who is required 
to understand the internal detailed operation of the code. The second part is 
entitled "User's Manual for the Optimum Decoy Design Program" (Appendix II). 
This manual contains detailed descriptions of the input symbols, input sheets, 
sample inputs, and corresponding sample outputs, along with descriptions of the 
output and tests of the correctness of the operation of the program. The user's 
manual is primarily intended for immediate reference by the personnel preparing 
inputs for the code. The third part is entitled "Mathematical Formulation of 
the Optimum Decoy Design Program" (Appendix III) and contains the basic equations 
and procedures which are mechanized in the code. This part is of use to all 
personnel involved with the code; however, it is primarily intended to provide a 
description of the state-of-the-art of the technology utilized in the code which 
will guide the current users and will serve as a baseline for futher improvement 
in the code. The three parts of the description overlap in some areas in order 
to provide more complete explanations; however, it is expected that a careful 
user of the code would read all three parts to reduce the chance of misunder¬ 
standing the description in any une part. In particular, the User's Manual 
presupposed an understanding of this Mathematical Formulation document. These 
three parts of the program description are designed to be independent of the 
task-by-task discussion of the portion of the effort accomplished during ADTECH IV 
which is included in the main body of the ADTECH IV final report. 

The following sections of this volume describe the formulation of the Optimum 
Decoy Design Program in detail. The material in Sections 2.0 through 6.0 in this 
volume and in Sections 2.0 through 6.0 of the numerical description volume 
(Appendix I) are organized in roughly the same order. The breakdowns of the 
individual sections have been made different in some cases to best serve the 
needs of each volume. 
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2.0 OPTIMIZATION TECHNIQUE 

The techniques described in this section include the definition and utilization 
of a penalty function transformation, the calculation of the gradient of the 
penalty function, and the description of the various search techniques which 
can be applied to the penalty function. 

2.1 PENALTY FUNCTION TRANSFORMATION 

The penalty function used in this program allows the constrained optimization 
problem to be solved as a sequence of unconstrained problems. This section 
contains descriptions of the penalty function equation, the technique for 
defining a dummy function if the current search point is outside the capability 
of the trajectory modules, and the techniques for tightening a constraint after 

each unconstrained search. 

2.1.1 Function Evaluation 

The analysis portion of the program (including the calculation of the corridor 
functions, miscellaneous quantities, and effectiveness parameters) characterizes 
each decoy by a set of numbers called y¡ . The selection of the desired com¬ 
bination of these quantities to be used in the penalty function is made by the 
user by means of input codes. The penalty function equation is shown in Fig¬ 
ure III-5. The notation used will be defined in paragraph 2.1.3 of this volume. 
An alternate way of describing the calculation of the value of the penalty 
function, F, is as follows. Let F be the sum of the NP individual constraint 

terms, f¡ : 

NP 

where each term is: 

0.0 if the constrained quantity is within the limits 

amount out of the limits if not within limits 

where k¡ and I are inputs. If the penalty function, F, is zero, the decoy is 
within all the constraints. If the penalty function is not zero, then its 
magnitude represents the "amount" that this decoy is unacceptable. The penalty 
function thus reduces the entire set of performance histories and design con¬ 
straint situations to a single number (F). Optimization techniques can then be 
applied to find the decoys which result in smaller values of the penalty function 
until a decoy is found which has a penalty function value of zero. This would 
then complete one "Solution-finding" operation. The detail of the process of 
utilizing a sequence of solution-finding operations to obtain an optimum solu¬ 
tion will be discussed in paragraph 2.1.3. 
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2. 1.2 Screening Operations 

It is possible for an optimizer to specify that a decoy be evaluated which 1S n° 

physically meaningful or which is outside the capability of the trajectory modu 

A testing procedure has been set up which "screens" out such situations and de¬ 

fines a Salue for the penalty function, F, which is equal to the sum of the last 

calculated value from the penalty function equation,!) , to the amount the decoy 

failed the screening test: 

15 

D + £ S¡|<LL¡ X; >* <X: - UL;> 
2 \ 

where S' is input; and the parameters, X; , the lower limits LL, , and the upper 

limits 1 UL ■ are given in Table III-I. It is assumed in this formulation that 

íhe reference reentry vehicle and the initial decoy are input so that both pass 

the screening test. Otherwise, it is likely that the search process will g 

unstable. 

2.1.3 Sequential Optimization 

a technioue for formulating the solution-finding problem was discussed in para¬ 

graph 2. hi of this volume. This technique has been extended to allow Pe^°™ce 

8 Capción constraints to be included in the search for an optimum decoy config 

following form: 

M 

kl <Vl 
UBi >‘ £ 4 LB; - y; <y; - UB; ,e\ 

where: 

F is the penalty function which is searched for a zero or a minimum by 

the optimizer 

kj is the multiplier (scale factor) for the quentity being minimized 

yj is the quantity being minimized 

UB; is an upper bound on the quantity being minimized 

K is the exponent which is normally 2 but can be set to 1 for special 

problems 

M is the total number of terms in the penalty equation 
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TABLE lll-l 

SUMMARY OF SCREENING LIMITS 

1 tern 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Conditions Lower Limit 

If ZTURN >0.0 

If ZTURN >0.0 

If ZTURN >0.0 

If ZTURN >0.0 

If ZTURN >0.0 

If NTHRUST 4 0 

If NTH RUST = 1 

If NTHRUST = 2 

If NTHRUST= 1 

If NTHRUST= 2 

0.0 

0.0 

0.0 

0.0 

3.0 

3.0 

4.0 

4.0 

-10.0 

0.0 

0.0 

ZO FI¬ 

TO 

ZST 

T0N 

Parameter 

«Nj 

Rn2 

n2/i'b2 Vk 
LAI 

LA2 

THETA1 

THETA2 

ZTURN 

W2 

ISP 

ZON 

TON 

Z0FF 

T0FF 

Upper Limit 

10000.0 

10000.0 

0.6 

0.6 

168.0 

168.0 

40.0 

40.0 

Z0 

W1 

10000.0 

ZO 

T0FF 

ZÖN 

TST 

Units 

inches 

inches 

inches 

inches 

degrees 

degrees 

feet 

pounds 

seconds 

feet 

seconds 

feet 

seconds 
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ki is the multiplier (scale factor) for each constraint 

LBi is the lower bound for each constraint 

y¡ is the value of each item being constrained 

UB; is the upper bound for each constraint 

''A> is I A if A is positive 

I 0.0 if A is zero or negative 

Note that the user should input a lower bound for the quantity being minimized 
which is well below the expected minimum. This drops the first "lower bound" 
term from the equation and thus this term is not shown in the equation above. 

There are two cases to be considered. The first is where the quantity being 
minimized is a calculated value or a design variable and the second is where 
the quantity is an input quantity which is not an active design variable. 

For the cases where the quantity being minimized, Vj, is a calculated value or a 
design variable, the procedure is to input the exponents, the upper and lower 
bounds, and the multipliers. The first upper bound, UB, , is selected to be 
reasonably large (based on experience and judgment). The multipliers, , are 
allowed for numerical purposes and do not theoretically enter into the process 
at all. The first solution-finding operation is initiated from an input initial 
decoy configuration. The optimizer modifies the configuration until every con¬ 
straint is satisfied. At this point every term of the penalty equation is zero 
and the value of the penalty function, F, is therefore zero. The parameters 
describing this acceptable decoy are carried over to describe the initial con¬ 
figuration for the next solution-finding step. The first upper bound, UBj , is 
reduced for the second solution-finding operation. Each time that it is possible 
to find an acceptable decoy, the constraint is tightened by a factor, w ,., and 
the process is repeated: RI- 

(UB,)[+1 = WRF(yi)l 

After a series of solution-finding problems, the constraint will have become so 
tight that a solution is no longer possible. In this situation, the search 
procedure finds that F has a minimum and that it is not possible ti find a 
decoy where F equals zero, thus it is not possible to find a decoy which satis¬ 
fies all the imposed constraints. The next-to-the-last decoy then is declared 
the optimum (within the tolerance implied by the factor, WRF). The process 
described here is the one mechanized in the program; however, it is recognized 
that it may be desirable in the future to incorporate more sophisticated methods 
for finding the smallest compatible value of the upper bound UB,. Approaching 
the optimum from the "acceptable" side has been found to be a practical technique 
for design work. 

A parallel procedure is used when the quantity being minimized, y, , is an input 
which has not been identified as a design variable. After each successful 
solution-finding operation, the value of the input itself is changed: 
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Again, tlie solution-finding process is repeated until it is no longer possible to 
find a solution. The nexi-to-the-last decoy is then declared the optimum (within 
the implied tolerance). 

When the general multivariable optimizers are used, the exponents in the penalty 
equation must have a value of two so that the first derivatives of the function 
with respect to the design variables will be continuous. However, since the 
Fibonacci techniques do not have any continuity restrictions, the exponents can 
be set to a value of one and the constrained optimum can be searched for directly 
For one- and two-var.able problems where Fibonacci techniques are applicable, 
setting the exponents to one and providing suitable 1; multipliers eliminates 
the need for the series of solution-finding operations discussed above. 

2.2 GRADIENT OF THE PENALTY FUNCTION 

The gradient of the penalty function is calculated using finite differences. The 
increments, \X¡ , are inputs to the program. Each element of the gradient is 
calculated as: 

F(\j t \Xj) - I* (Xj) 

2.3 SEARCH LOGIC 

Four separate search techniques are mechanized for possible selection by the user 
The first is the Davidon Variable Metric Method for Minimization which is a 
multivariable unconstrained technique which utilizes the gradient and an approxi¬ 
mation of the matrix of second partial derivatives to locate the minimum. The 
second technique is the Rosenbrock Rotating Coordinate Method which locates the 
unconstrained minimum of a multivariable function without the direct calculation 
of the gradient. The third technique is the one-variable Fibonacci method which 
locates the minimum of an unimodel function within a specified interval. The 
fourth technique is the two-variable Fibonacci method which locates the minimum 
ithin a specified region by obtaining the minimum of a series of one-variable 

solutions. These four search techniques will be discussed in more detail in the 
following sections. 

2.3.1 Davidon Method 

The Variable Metric Method for Minimization Is a multivariable technique which 
uses special gradient methods to locate unconstrained minimums or zeros of a 
function. The report written by William C. Davidon which describes this method 
(Ref. 1II-3) is reproduced as Appendix III-l to this volume since the report is 
not now readily available (Ref. III-4, p. 20) and since the material contained 
in it is essential to the understanding of the method. Additional summary 
comments and notes regarding modifications are presented in the following para¬ 
graphs. A simplified flow chart of the Davidon Method is shown in Figure III-8, 
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Figure III-8 SIMPLIFIED D*VIDON FLOW CHART 
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This method is a modified gradient technique having more sophistication than the 
first-order steepest-descent methods and far less computational requirements per 
step than the second-order gradient methods. The program requires an initial 
starting coordinate (initial design point), X , an estimate of the inverse of 
the matrix of second partial derivatives of the function with respect to the 
design variables, H , and a procedure for evaluating the function, !■ , and its 
gradient, G. The Davidon method selects a step size, A , and a search direction 
based on the modified gradient, HG. The next decoy design to be evaluated, X , 

is determined from the matrix equation: 

X X|5 - A HG 

The step size is estimated by the program (based on the value of the function, 
the gradient, and the estimate of H to overstep or bracket the minimum along the 
search direction. If the minimum has been bracketed, an interpolation is made 
ftr the approximate minimum. Based on the behavior of the function during the 
overstep and the interpolation, the metric H is modified and the process is re¬ 
peated from the best point available. The identity matrix is typically used for 
the initial estimate of H unless other information is available. 

It Is the use of first-order calculations (gradient) to improve the estimate of 
the second-order parameter H which gives the Davidon technique Its power and 
efficiency. If the penalty function becomes zero, an acceptable decoy design 
has been obtained and the problem is complete. If the transformer-gradient 
becomes less than a tolerance, - , a nonzero minimum has been located. This im¬ 
plies that it Is not possible to reduce the function further. 

If the estimated step size does not bracket the minimum, the Davidon program 
modifies the H matrix and selects a new search direction. An alternate approach 
which is more consistent with the basic theory is to change the estimated step 
size until the new point does bracket the minimum. Although this approach is 
theoretically sound, actual experience in running both approaches has indicated 
that the original approach is faster for most problems. 

Another variation away from the basic theory is included In the program at the 
point where the minimum in the search direction has been bracketed. Calculations 
are made to estimate whether the function is behaving in such a way that a 
"perpendicular" step would be more advantageous than back-tracking to inter¬ 
polate for the minimum in the search direction. This possibility is attractive 
because of the characteristics of certain functions. Safeguards are included in 
the program so that the process is stable. For example, if the perpendicular 
step is worse than expected, the program returns to the normal logic and inter¬ 
polates for the minimum in the search direction. 

The program, as mechanized, differs from the description in the appendix with 
regard to the limits on the maximum size of the step length, A. In the program 

the step length is: 

(2° 
A smaller of / 

\ - M (f/gs) 

where M is an input which may be adjusted by the use*-. 
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me rendo» step operations described tor subroutine STUFF have not been »echanlted 
since they would tend to Interfere with the sequential constrained optimUatl 

process. 

2.3.2 Rosenbrock Method 

The Rosenbrock Rotating Coordinate Minimization Technique (Reierencelll-S) is an 
algorithm for selecting trial values for the input parameters of a given syste 
model in such a way that a function of the performance of the system optimized. 

The technique is referred to as "rotating coordinates" because of tl« E“hlon In 
which the variables are perturbed. Rather than varying the input parameters 
the system model one-at-a-tlme, this method rotates the coordinate system in 
parameter space so that one asís points In the "best" direction of search The 

remaining axes for exploration, which are mutually orthogonal, 
a Cram-Schmldt ortnogonalizatIon procedore. A . . 
these directions one at a time using the logic which Is i™rlbed below and 
then a new set of axes are developed. A geometric interpretation of the ax 
syTtel Ts shown in Figure 1II-9 and flow charts for the technique are shown in 

Figures III-10 and III-ll. 

The search technique involved consists of taking trial steps along each of the 
coordinate Ixes. \he trial Is a "success" if the funttlonüvalue 1^ b-rhan 
the value on the previous trial! otherwise it is a failur . P 
ire determined in the following manner. An initial step size (AX) is an input 
uantity After a successful ?rial, the length of the previous step « mu t P ed 

ly a constant a, (a > 1) and this is added to the previous value used to locate 

the next trial. After a "failure," the previous ^ep scze * 
(0 < 0 < l) and this is added to the previous value If this P^f the 
produces a functional value within a specified tolerance level (T0L) 0f the 
previous functional value the step is called a success The trials in a gi „ 
direction are complete when there has been a "success followed by a failure. 
The initial step in the new search (i.e., after the rotation of the coordinate 
axes) is dependent upon the total of the successful steps from the previous 
•ïeirch In particular, if dn is the algebraic sum of all successful tri£»l8 in 
the n'h direction, then the initial trial of the next search in the n direction 

,n h ,, J (v > 0 ) where y is a preset constant. Although all of the above 
constants, a’ ft, y, TÖL, are preset, they may be input as different values to 

suit the need of a particular problem. 

After a set of trials has been completed in one direction, the program searches 
aion,K the next orthogonal direction until all N directions have been treated, 
new set of directions if then calculated. All of the trials along the r^" „ 
tions and the subsequent: calculation of a new set of directions is called stag . 

The rotating coordinate axes are related to the parameter axes by the direction 
cosine matrix lQn I , with which steps in a given direction can be resolved Into 
cosine matrix -(n , ^ is a unit matrix so that each step, 
parameter changes. lor the tirst stage, v P r _aru 
c corresponds to a change in only one of the system parameters X». For each 
subsequent stage, a new direction cosine matrix is computed using the Gram- 

Schmidt procedure as follows: 
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NTRIA = O 
NSTAG = O 
INDEX = O 

CALL FEV (NMAX, P, u) 

IS ITERM = 0 
YES NO 

IS INTRIA LIMIT 
NO 

I 
YES 

RETURN 

INDEX = INDEX + 1 

IS INTRIA >0 
NO 

Jl 
YES 

ULAST = u 

USTAG = u 

UPREV = u 

NSUCC = 0 

NTRIA = 1 

E¡ = Eol (i = 

c = 1¡ = 
U 0. = 

N = 1 

D1 =0 

WRITE: 

"NTRIAL GREATER THAN 
LIMIT IN ROSENBROCK" 

ROSENBROCK SEARCH IS COMPLETE 

NTRIA = NTRIA + 1 

T 
= 1, NMAX) 

j 1 = 1, NMAX 
j 1 = 1, NMAX 

ISU< ULAST (1 +T0L) 
-YES- 

SUCCESS 
-NO¬ 

FAILURE 
L, 

ULAST = u 
NSVCC = NSUCC+ 1 
D (N) = D(N) + E(N) 

P. = Pj -DP. (I = 1, NMAX) 
u = ULAST _ 

IS NSUCC <20 
YES NO 

n 

IS NSUCC > 0 
YES NO 

E(N) = dE(N) WARNING PRINTOUT 

E(N) = -/3E(N)I 

E(N) = yE(N) 

IS N = NMAX 
NO YES 

N = N + 1 
DIN) = 0 
NSUCC = 0 

~x~ Ô 
DP(I> = Cd, N) EIN) 

I = 1, NMAX 

P(i) = DP(I) + P(l) 
_1 = 1, NMAX 

J 
89-2578 

Figure 111-10 ROSENBROCK FLOW CHART, PART 1 
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IS NSTAG > 0 
YES 

I 
NO 

ULIM UPREV- DEL (UPREV) r 
IS USTAG ■= UPREV 

NO YES 

HRAT 
USTAG - ULAST 
UPREV - USTAG 

I 
IS ULAST > ULIM 

YES NO 

IS USTAG > ULIM 
YES NO 

IS URAT< RATU 
YES NO 

x 

UPREV =- USTAG 

USTAG = ULAST 
NSTAG = NSTAG + 1 

ROSENBROCK SEARCH 
IS COMPLETE 

ï 
RETURN 

V 

tVn?iCAia" (¿=|.NMAX> 

a'i r T 

Biysbi;/Bi t^*1. nmax) 

[c^n s b¡/]' 

m 
WRITE: 

-/=(1, NMAX) 
j =(1, NMAX) 

I 

89-2579 

DP(I) = C(I,N) E(N) 
= 1, NMAX 

P(i! = DP(i) + P(i) 
i = 1, NMAX 

Figure 111-11 ROSENBROCK FLOW CHART, PART 2 
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Lot Ã° , ¿2°.he the set of orthogonal unit vectors defining the direc¬ 
tions in the original stageSuppose that d¡ is the algebraic sum of all success 
ful steps in the direction <fi°, etc. Then define the set of vectors: 

A1 di í"i° + d2 ^2° + ■ • ■ • f dN ¿N° 

A-) d2 ^2° + ■ • • • + 

An dN £n° 

The orthogonal unit vectors t ^2 ' •••»ÍNfor the next staRe are now obtairied 
using the following vector equations: 

»1 A1 

Í,1 it/li,! 

i2 a2 - (Ä2 • ^11 )^11 

^21 : B2/IB2I 

N - 1 

% = AN ~ ^ aN ' 

i = 1 

i?N Rn ^ * BN I 

The new direction cosine matrixes obtained by taking the transpose of the matrix 
comprised of the components of V along the parameter axes. With the new coordi¬ 
nate system defined, the search is repeated in each of the new directions in turn, 
The result of applying these equations several times is to ensure that q lies 
along the direction of fastest advance, <f2 along the best direction which can be 

found normal to and so on. 

The stopping logic is based on the value of the function. For a value of the 
function that is undefined, an error message is printed out and the search is 
stopped. The same thing happens if the total number of function evaluations for 
a given set of constraints equals an input limit. If the value of the function 
is zero or if three succeeding functional values are within a defined interval of 
each other, a solution is considered to have been found. Considering the diagram 
below, the intervals for successive functional values which define a solution are 

— Fs f 2 
(Fs - Fs+2) < DEL* Fs and V" , -S— < RATU 

rs - rs + 1 

where DEL and RATU are input limits. 
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The functional values, Fs , Fs + [ , Fs + 2* are those obtained when the trial steps 
have been completed for all the system orientations. 

2.3.3 One-Variable Fibonacci Method 

The Fibonacci search technique is a search scheme for finding the maximum or 

minimum of a one-variable function within defined limits. The function has to 

be at least piecewise continuous, single valued, and also have only one optimum 

(i.e., maximum or minimum) within the interval. These restrictions define a 

unimodal function (pp. 10-13 of Reference III-6). The initial interval, L1 , is 

defined by an upper bound, B , and a lower bound, A , where 

L, = B - A 

Either the number of function evaluations, F , to be made during the search or 

an end-of-search accuracy limit, Ac , defined in terms of a number of independent 

variable units away from the actual maximum or minimum within the interval also 

has to be given. 

The technique is based on direct comparison of values of the function, which are 

used to exclude parts of the search interval (Figure III-12). The placement and 

comparison of the points is continued until the interval is sufficiently small 

or until the function is zero. The points are located so as to maximize the 

interval to be excluded at each step. The three cases shown in Figure III-12 

illustrate the comparison and exclusion steps. The left end of the first case 

can be excluded since the minimum must be either in the center or right sections. 

The right end of the second case is excluded. The third case shows that both 

ends can be excluded if both values of the function are exactly the same. Flow 

charts of this technique are presented in Figures 111-13 and III-14. 
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Figure 111-13 FIBONACCI FLOW CHART, PART 1 
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Figure 111-14 FIBONACCI FLOW CHART, PART 2 
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The location of the first two points in the initial search interval is dependent 
upon the total number of function evaluations to be made during the search. If 
the accuracy is given, a trial Fibonacci number, I'N-r , is defined 

The actual Fibonacci number is obtained through an iteration process where 

7 2 

Fn Fn _ i + Fn _ 2 " « 3. 4. 5, - - - 

The iteration process is continued until the first value of n at which Fp ^ Fnj 
is found. The number of function evaluations to be used within a given accuracy 
limit is then: 

Nf n - 2 

Likewise, if the number of function evaluations is given the associated Fibonacci 
number is found by applying the above process in reverse order. 

The two evaluation points in the first interval are located as follows: 

and the corresponding functional values, Yj and Y2 are computed. Comparing the 
two functional values and choosing one of the associated evaluation points to be 
a new end point yields a new interval for computing the next evaluation point. 
For instance, in the search for a maximum the evaluation point associated with 
the smallest functional value becomes an end point for the new interval containing 
the other evaluation point and the remaining end point. Then a new evaluation 
point is placed in the new interval a distance of Ax units from the end point 
retained from the previous interval. 

i » 3, 4, - , Nk 

where the subscript i is the number of the particular evaluation point being 
found for that interval. The new functional value for the interval is computed 
and compared with the functional value retained from the previous interval so 
that a new interval can be determined. This process is repeated until the 
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■inorooriate number of function evaluations have been made. The maximum or mini¬ 

mum of the function is obtained by directly comparing the ^f^terval) 
the final evaluation point, the evaluation point retained from the last 

and the new end point for the last interval. 

2.3.4 Two-Variable Fibonacci Method 

The Fibonacci search technique for a two-variable function in a funded region 
is the application of the one-variable Fibonacci search o each friable. Tak g 
one of the variables to be the secondary independent variable and the ot 
be the primary independent variable, the method employed in this technique is 
the optimization of the primary independent variable during ea<* 8tep of th 

nf the secondary independent variable. That is, for each évalua 
To »"n ducted d'rCü optLuatlon of the sec.odary Independent ver able, 

L primary independent variable 1. optimizad. Then, the secondary value and 
oltírnSl primary value are stored in a table. This process is repeated until 

the desired number of evaluations have been made on the secondary independen 
variable. The table is then searched for the optimum secondary value, producing 

also the associated optimum primary value. 

The restriction of unimodality (see description of one variableMF;b°nfCJ^pP“eS I a stricter sense for the two variable Fibonacci technique. Not only does the 

two variable function have to be unimodal but the af0C^te^ 
lions for the one-variable Fibonacci searches must also be 
unimodal two-variable function, whether or not the two one-variable 

„„ unimodal aomciUas depends eM’lfr.eeond.iy 

“ lhe case o, a u„lrd.l -mailable iu„c- 

, ion »here both choices for the secondary i"d*pandent variable Uad to . 
modal one-variable functions, the tuo-varlable Fibonacci search technlqu y 

not be reliable. 
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3.0 BASIC ANALYSIS CALCULATIONS 

The analysis calculations involve the basic calculations required for a single 
vehicle and the comparison and effectiveness calculations which are required to 
evaluate the degree of simulation of two vehicles. The basic calculations are 
discussed in Section 3.0 and include the trajectory, wake, and miscellaneous cal¬ 
culations. The comparisons are discussed in Section 4.0 and the effectiveness 
model operations are discussed in Section 5.0. The analysis calculations are 
performed in order to define the quantities, y¡, in the penalty function equation 
of Section 2.1. 

3.1 TRAJECTORY CALCULATIONS 

The trajectory calculations* are incorporated into the ADTECH Decoy Design program 
to provide the flight characteristics of the candidate decoy designs. Three 
methods of computing the trajectory are available (a) particle trajectory, (b) 
rotational three degree of freedom method, and (c) simplified a gle of attack 
solution. The effects of ablation, thrust, and angle of attack oscillation can 
be included in the trajectory calculations. The program operates within the 
following geometric and flow constraints: 

• Cone half-angle 

• Body length 

• Surface temperature 

• Bluntness ratio 

• Altitude 

• Free-stream Mach number 

• Angle of attack at 300 kft 

• Angle of attack below 150 kft 

4° < 0 < 40° c ~ 

0.25' < La <14’ 

1000° R < Tw < 6000° R 

0.0 < A 1 0.6 

0.0' < Z i 400,000’ 

5.0 < M <30.0 

0° < « ± 20° 

o° < a ±ec 

The mathematical description of the trajectory program is presented in this part 
of the report. The description is broken up into sections, each containing an 
individual area of analysis involved in the program. Since there is no direct 
correspondence between the sections in the mathematical description and the sub¬ 
routines in the numerical description, the brief description of each section given 
below lists the subroutines that contain the area of analysis being described. 

The preliminary calculations section (3.1.1) contains the flow field, geometry, 
and thrusting calculations. This includes the free-stream, edge, and wall flow 
field properties, geometry before and after shape change, and all of the thrusting 
parameters. The subroutine involved is PRELIM. 

The heating section (3.1.2) contains the calculation of the aerodynamic heating 
rates at various stations along the body. The subroutine involved is AER0DY. 

•Developed for the U. S. Army Material Command, Redstone Arsenal, Alabama, under Contract DA*01*021*AMC-900M(Y). 
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The ablation effects (3.1.3) section contains the calculation of the sidewall and 
nose recession rates, mass loss rates at various stations along the body, and the 
total vehicle mass loss rate. The subroutines involved are MASSLO, EVIL, NOSEBL, 

and T0MAL0. 

The angle of attack section (3.1.4) contains the calculation of the oscillatory 
angle of attack of the vehicle. The subroutine involved is a portion of ROTATE. 

The drag section (3.1.5) contains the calculation of the flight drag coefficient. 
The effects of ablation and angle of attack are included in the calculations. 

The subroutine involved is DRAGCO. 

The equations of motion section (3.1.6) contains the calculation of the derivatives 
of the flight trajectory parameters and the integration of the equations of motion 
to determine the flight trajectory. The subroutines involved are DEREQ, TEQUAT, 

ADM4RK, and a portion of ROTATE. 

The values of the curve-fit coefficients called A¡ and B¡ in the equations of 
Section 3.0 are defined in the source listing of subroutine ZPRS in Appendix I. 

3.1.1 Preliminary Calculations 

The preliminary calculation of the geometric, flow field, and thrusting parameters 
is done in the subroutine PRELIM. The operations involved can be broken up into 
seven major areas of calculation: (a) body geometry definition, (b) aerodynamic 
coefficients, (c) atmospheric free-stream properties, (d) wind tunnel free-stream 
properties, (e) flow field properties, (f) thrusting quantities, and (g) weight 
increments. In the following analysis each of the seven areas will be presented 
separately, along with a listing of the inputs necessary to perform the calculations. 

To define the geometric properties of the body, the following inputs are necessary: 
,cone half-angle, 0C (degrees), nose radius, RN(feet), and base radius, Rp (feet). 

The sharp cone slant length is given by: 

the axial length from the stagnation point by: 

and the surface distance from the nose of a blunt cone by: 

(ft) 

where 0 has the units of radians. The bluntness ratio is defined as. 

RB 

The base diameter is D - 2Rg (ft) 

and the reference area is: 

Afef = * RB2 (ft.2) 
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The Inputs necessary to compute the aerodynamic coefficients are the cone half- 
angle, 0C (degrees), nose radius, (feet), base radius, Rn (feet), bluntness 
ratio, A , and the nondimensional center of gravity location from the nose, Xc.e/D- 
The center of gravity location is input in tabular form, as a function of altitude, 
with the appropriate value being used for the altitude point under consideration. 
The partial derivative of the normal force coefficient with respect to angle of 

attack is given by: 

(\j = 1.92 cos2 f>c 
'Vi 

1 - — ( A cos ) ' 
2 c 

The center of gravity location is determined by multiplying the base diameter by 
the appropriate value of the nondimensional center of gravity location from the 

input table: 

The partial derivative of the pitching moment coefficient with respect to angle 

of attack is given by: 

i 2 [ 1 - ( A cos 0. )3 1 - 3 A cos3 0 Í 1 - ( A cos 0C ) 2 ] 

,,o. -o.« ;- - 

( RN * Xc.g. ) cos2 °c 

t 

- A sin 0t cos2 0C [ 1 - (A cos 0C )2 1 . 

Using the above results, the nondimensional center of pressure distance from the 

nose of the body becomes: 

1 , „7 
— ( A cos 0r ) *■ 

2 c 

XCP 

D 

eg- 

where the appropriate value for 
X c.g. 

D 
is taken from the input table. 

The partial derivative of the pitching moment coefficient with respect to the 
pitching rate can either be input or calculated as follows: 
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2 

- 0.96 
K cos' Oç \ 

sin 0C j 
4 A cos' (Iç 

[ 1 - ( A cos 0_ ) 'M --I 1 - ( A cos 0 ) ' I 

3 sin^ ec 

1 - (A cos 0C)4 

2 sin" 0Ç 
A cos 0C 

2 

! 2[ 1 - (A cos 0c)'l - 3 A cos'Öcl 1 - (A cos 0e)^ I 

_ - I 
[1-(ACos0c)21 [Xc g -RN(l-sin0c)] 2 . 

To conduct a flight analysis on a body, the atmospheric free-stream properties 
must be computed. The necessary inputs are the altitude, Z (feet) and the free- 
stream velocity, U^ift/sec). For a nonstandard atmosphere, a table of free- 
stream density, (slug/ft3) and speed of sound, (ft/sec) as functions of 
altitude must be input to provide these two values at the altitude point being 
considered. For a standard atmosphere, the appropriate values of the free-stream 
density and the speed of sound are obtained from the 1962 standard atmosphere 
(subroutine ARFDT2). Changing units on the f ee-stream density to lbm/ft3 gives: 

2Uc.g.-RN(I-sin 0C)} 

' «B tan °c 

P.j » 32.174^ 

Free-Stream Temperature (° R): 

Tw - 4.16 X 10*4 a^2 

2 Free-Stream Viscosity (lb-sec/ft ): 

(32.2)(2.27 X 10~8) (T^)l*5 
^ » ________ 

Free-Stream Reynolds Number based on the Axial Length of the Body: 

P**, k'» La 

Re. 

Free-Stream Pressure (lb/ft2) 24. 

Px “ P-j RTx 

Free-Stream Mach Number: 

M <!» 
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To perform the drag calculations for wind tunnel conditions, the free-stream Mach 
number, , free-stream Reynolds number per inch, ReK(l/in), and the free-stream 
total pressure, P0 (lb/ft2), are necessary inputs. Changing the units on the 
free-stream Reynolds number to (1/ft), one has: 

Re^f = 12.0 Re„ 

The Free-Stream Pressure (lb/ft2): 

i + 

y/y- 1 

The Free-Stream Temperature ( R): 

2-° Re»f \ 1.490B25 X 10-8 R 

4( 198.6) Re 
P» 

P» M* 

1.490825 X 10*8 R 

f \ 1.490825 X 10-8 R 

The Free-Stream Density (Ibm/ft-*): 

1/2 

~1 R T*, 

or changing Units on the Free-Stream Density to slug/ft 

P 

Pm 

3. 

"1 

32.174 

The Free-Stream Speed of Sound (ft/sec): 

0.020)96 

The Free-Stream Viscosity (lb-sec/ft2): 

(32.2)(2.27 X 10-8)^)1,5 

T„ + 198.6 

and the Free-Stream Velocity: 
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The flow field properties at the edge of the boundary layer are determined with 
the aid of the free-stream and geometric properties calculated above. The cal¬ 

culations are as follows: 

The Stagnation Enthalpy (Btu/lbm): 

Hs = 0.24 + (2.0 X 10-5 ) vj 

Stagnation Pressure (lb/ft4): 

21 y ~ i 
(1 - y) + 2 y 

y + 1 ps = P» (y + D 

y 

y- i 

2 
Free-Stream Dynamic Pressure (lb/ft^): 

1 2 
Sr»! = "J Ptx 

Free-Stream Reynolds Number based on the Sharp-Cone Slant Length: 

Poo, U«c L 

Rc'l ■ Í2 

Edge Velocity (ft/sec): 

ue - iL 
i.4 

( M sin0J1<9 1 _ - \‘.‘no “c ' 
u ¿ 

1/2 

Edge Pressure (Ib/ft ): 

p = P • 1 + 2.8 (M sin 6 )' 
90 j '90 t 

Edge Temperature (° R): 

2.5 + S.M^ sin 0C 

1. + sin 0C 

1 + 0.0966 M sinö + 0.2267 (M^, sin dc)' 

for sin 0C < 5.7 

T = T X 1 e ^ 
42 r p nk 
EZ A(90+ i + sin 6C]‘ 

i = o k = o 

2116. 

for sin 0C > 5.7 
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Edge Density (lbtn/ft^): 

R T„ 

Edge Mach Number : 

e 

Edge Viscosity (lb-sec/ft^) 2^. 

Me = 

(32.2)(2.27 X 10~® ) ( Te ) 

Te + 198.6 

1.5 

and Edge Reynolds Number based on the Surface Distance from the Nose of a 
Blunt Cone: 

Re. 
Pe Ue S 

If the transition altitude, ZTR , is not input, it is calculated in the following 
manner : 

EEL A(300 + j + 3¡ + 6k) (Öc)‘ (L)i (A)k 

i = o j = o k= o 

f°r Ö <_ 15° and A < 0.3 

-TR 

1 2 E E E A(300 + j + 3i + 6k) (15.)' (L)i (0.3)k 

i=o j=o k=o 

for 0. > 15° and A > 0.3 
\ 

In the following calculations the appropriate value of wall temperature is used: 

Tw(2, 8) for Z ¿ Z TR 

Tw(3, 8) for Z < ZjR 
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For the above wall temperatures, the notation is as follows: 

Tw(2, 8) = wall temperature at the maximum diameter point of a sharp cone in 
laminar flow. 

Tw(3,8) = wall temperature at the maximum diameter point of a sharp cone in 
turbulent flow. 

These two values are calculated in the ablation effects portion of this write up. 

Constant Pressure Specific Heat at the Edge of the Boundary Layer (Btu/lbm0 R) 

0.2398 for Te < 700° R 

£ A( 105 + 1)(1.)1 for 700° R < T < 5000° R 

A(lll) + A (112) T for T. > 5000° R 

Constant Pressure Specific Heat at the Wall (Btu/lbm R): 

0.2398 for Tw(j, 8) < 700° R 

5 

y A( 105 + i)[Tw( j, 8)] 1 for 700° R < Tw(j,8) < 5000° R 

i = 0 

A (111) + A (112) Tw ( j , 8 ) for Tw(j,8) > 5000° R 

Dimensionless Wall Enthalpy: 

CPW Tw(j, 8) 

Hw 3L86 

Wall Viscosity (lbf-sec/ft^): 

(32.2)(2.27 X 10_8)[Tw(j, 8)] K5 

= Tw(i, 8)+ 198.6 

Chapman-Rubensin Constant for Edge Conditions: 

Fw Te 

Pe Tw(j,8) 
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Viscous Interaction Parameter: 

Free-Stream Chapman-Rubensin Constant: 

Pw T~ 

Poo Tw(j, 8) 

Hypersonic Rarefaction Parameter: 

X'l = M, 

Tlie calculation of the thrusting parameters is initiated by the input of a thrust 
history table. This table may take one of two forms: (a) thrust as a function of 
altitude, or (b) thrust as a function of time. For the convenience of running a 
number of cases with the same profile but at different thrust levels, the table 
is in terms of a nondimensional thrust, The dimensional thrust along the 

trajectory is then obtained by multiplying the nondimensional thrust table values 
by an input reference thrust level, Tj^ . Also required as input are the thrust 

offset angles and distances. These are the angular misalignment of the thrust 
vector in the yaw direction (^) and in the pitch direction (0 ), measured in 
that order in the body-fixed coordinate system, and the distance the thrust vector 
is offset from the two coordinate axes that are normal to the body centerline 
( \Z and Ay). The thrust at specified altitudes or times in the trajectory is 
given by: 

TABLE 

(LBF) 

where linear interpolation is used to determine the proper value for altitudes or 
times that are between the tabulated nondimensional thrust values. The effective 
thrust acting on the vehicle is then: 

Tn 1h™ - Ae Px (LBF) 

The components of the effective thrust in the body coordinate system are: 

Tt,x = tH cos cos ^ 

Tu tH cos sin ^ 

THz = TH sin °a 
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The moments generared by thrust offset are given by: 

My 

The instantaneous total weight of the vehicle is determined by subtracting the 
weight loss increments due to the altitude or time step along the trajectory from 
the total weight of the vehicle determined in the previous step. For the case of 
the first step along the trajectory, the total weight used is the initial weight 
of the vehicle. The necessary inputs are the total vehicle weight from the pre¬ 
vious step ( T0 ), the weight loss due to thrusting for the present step (AWTH), 
and the weight loss due to ablation for the present step (AW). The instantaneous 
vehicle weight at the end of any trajectory step is given by: 

W = W0 - AWth - AW (lb ) 

and the associated vehicle mass is: 

(slugs) M 
32.174 

3.1.2 Heating 

The subroutine AERODY calculates the heating rates at different stations along the 
body surface in continuum flow. (See para. 3.1.5.) For a sharp cone the body 
stations are the stagnation point and the maximum diameter point. For a blunt 
cone the body stations are the stagnation point, tangent point, 20 percent station, 
40 percent station, 60 percent station, 75 percent station, 90 percent station, 
the maximum diameter point for laminar and turbulent flow, and the sonic point for 
turbulent flow only. The percentage stations are located according to the initial 
axial length of the cone. The notation used to identify the different heating 
values is: 

Q(l, 1) = Stagnation point heating 

Q(2,j) = Laminar heating 

Q(3,i) = Turbulent heating 

Q(4, 1) = Sonic point heating in turbulent flow 

where 

j = 1 Implies tangent point on a blunt cone 
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j = 2-7 Implies the 20 percent, 40 percent, 60 percent, 75 percent, 
90 percent stations and maximum diameter point on a blunt cone 

] = 8 Implies the maximum diameter point of a sharp cone 

All of the heating rates calculated in the section have the units Btu/ft^-sec. 
The quantities needed to calculate the heating rates are the free-stream density, 
/Vj (lbm/ft3), f ree-stream Mach number, M^, free-stream velocity, U™ (ft/sec), 
cone angle, 0C (degrees), bluntness ratio, A, nose radius, 1¾ (feet), cone axial 
length, La (feet), free-stream/stagnation pressure ratio, P^/Ps , dimensionless 
stagnation enthalpy, HS/RT0 , stagnation pressure, Ps (lb/ft2), sharp-cone slant 
length, L (feet), and transition altitude, Zxg(feet). All the above quantities 
are calculated in the subroutine PRELIM. 

The stagnation point heating for sharp and blunt cones is: 

1.76 X io4 
' S \ / 
^0.002375 / \2.6 . 104 

3.15 1/2 

Qd, D 

for A = 0.0 

1.76 X 104 

3 15 

(0.002375 Rn/ \ 2.6 x 104, 

1/2 

for A > 0.0 

For a sharp cone, the edge-stagnation pressure ratio at the maximum diameter is 
given by: 

0.0331 exp [0.0064 6C - 0.33 (M^ - 5.0)°-85 ] 

+ 4.68 x 10-4 (flc)l-88°32 

If Z > Zjr, the laminar flow heating rate for a sharp cone at the maximum diameter 
point is calculated as: 

Q(2, 8) 

r , ,0.9736 
0.5142 [Loge(Hs/RT0)l 

[ 10 I 

0.9664 + 0C[ 5.28 x 10-3 + 2.88 x 10~4 
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For Z < ZTR, the turbulent flow heating rate for a sharp cone at the maximum 

diameter point is calculated as: 

K, = 0.9 + 0.02 0 
*1 

K, 0.69 + La [ 3.18 X 10-2 - 6.9 x 10"4 LA1 

0.745 [ Loge (HS/RT0)1 
,0.8122 

Q(3, 8) 
10 

0.6(Kit)(KÎt) 

0.8 
r s 

! ÏÏÏ6. 

For calculating the appropriate heating rates on a blunt cone the J^entThe 
surface stations must be located with respect to the initial axial leng . 
location of the blunt cone tangent point - axial location of the tangent poi 

between the spherical nose and the conical body - is given y. 

RN(1 - sin 0C) 

If the body is to have a disooatlauoos shape change at ^ ^ 
(determined by the shape change altitude, ZytjRN^ the f 11 s 

z > ZtuRN : 

Lai 
ALa = —- 

For Z < ZTURN 

L 

ALa = - 
2 

where LAl is the axial length before shape change and is the axial length 

after shape change. The body stations are located as follows: 

20 percent station 

X \ 
= 1-0.8AL, 

40 percent station 

X 

L, 
= 1-0.6 ALa 

3 

60 percent station 

X 1 - 0.4 ALa 
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75 percent station 

L, 
1 - 0.25 Al 

90 percent station 

X 
1-0.1 Ala 

Maximum diameter station 

X 

L, 
1.0 

The pressure distribution over a blunt cone is determined as follows: 

L13 Rn 

La tan2 0c 

then the sharp cone maximum diameter pressure is used: 

Or if 

1.13 R N 

La tan2 0C 

then the pressure distribution is: 

- + tan 6 
Pr c ZEE 

n = 0 ¡ = 0 k = 0 

(0.171 dr)n 
io. V 

0.2 Log 

A (135 + n + 3i + 9k) 

1.13 

A / j LA tan °c 

for ec < 20° 
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P. P. 

P, ZEE 
n = O i - O k O 

A (41 + n + 2 i + 6k) 

(0.174 (lc)r 
10. ¡ \ 0.2 Log 

1.13 R N 

La tan2 Oc 

fot 0C > 20° 

If Z > ZTR, the laminar heating rate is calculated for the blunt cone. At the 
tangent point, the blunt cone laminar heating rate is: 

'l (r'\ 
Q(2, 1) = 1.732 Q(1, 1) 0.007789 + 1.849 I I V s/i 

- 1.6832 

IJ 

+ 0.841 
'1 

The heating rates at the various stations along the conical frustum of a blunt 
cone in laminar flow are: 

0.5142 [Loge( HS/RT0)1 
,0.9736 

Q(2, i) 
[iol 

¡ 0.9664 + 5.28 x 10-3 6, + 2.88 x 10-4 0 2] 1+ 1.782 2.008 
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For Z < ZjH the turbulent heating rate is calculated for the blunt cone. The 
turbulent flow heating rate at the sonic point on a blunt cone is: ! 3760. (p^, ^-8 (1^) 3,45 

(0.00237¾)°18 (10)1318 (RN)°l2 

for Z < 115,000 ft. 

3760(p )0,8 [U |(21254 + 2l246 x 10-5 Z~ ll469 x 10~10 7j2 + 3-671 x 10-15 Z3 ) 

(0.002375)0l8 (RN)°l2 [lOl4^-254 f 2l246 x 10-5 Z“ Il469x 10-10 Z2 + 3-671 x 10-15 Z3) 

' for Z > 115,000 ft. 

The tangent point heating rate for a blunt cone in turbulent flow is given by: 

0.8 

13460 

rnu 
57.3 

0l2 \ 2.375 x 10-3 / 

4.1 

6.0 
I')0'4 
6 / 

f 0.0001 ul3,45 

for Z < 115,000 ft. 

Q(3, 1) 

0.8 

13460 

rn 1- 
57.3 

0l2 \2.375 x 10-3 

4.1 

6.0 

1 x 0.4 

7) 

[ 0.0001 U, )(2.254 + 2.246 x 10-5 Z- 1.469 x 10-10 Z2 + 3.671 x 10-15 Z3) 

for Z > 115,000 ft. 
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The heating rates af the various stations along the conical frustum of a blunt 
cone in turbulent flow are: 

K1T = 0.9 + 0.02 0C 

rN 
1.0 for - > 0.2 

RB 

V2T 

0.6 + 2.0 for < 0.2 

K3T = 0.69 + 0.0318L - 0.00069L-: 

k4T = 1.0 

K5T = 0.69 + 0.0318 La - 0.00069 LA2 

Kót ” 0.6 

Kyy — 1,0 

K8T = 0.69 + 0.0318 
sin 0C 

- 0.00069 lA " RN + sin 0C 

K9T = 0.901 - 0.867 
RN 

3La tan2 0C 

1.13 Rn 

3La tan2 0C 
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«3, j)= -< 

°-8 ti 0.745 [Loge(Hs/RTo)|°-8122 

(Kn-) (k2t) (k3t) (k4T) 

X 1.13 R N for i — I 

' j 3L^tan^fl„ 

s 

2ÏÏ6 

0.8 

!0i 
0.745] Loge(Hs/RTo)] 

0.8122 

(Kit) (k2t) (k5t) (k9T) 

for 
1.13 R 

< 
N 

Í LAtan2tfc 

0.8 

[10 
0.745 [Loge(Hs/RT0) 

,0.8122 

(Kir) (k6t) (K7t) K8t) 

for 

3.1.3 Ablation Effects 

1.13 R ■N 

la tan2 oc 

lhe ablation effects on body geometry and vehicle weight are accounted for in t-h* 

ãb“ L0’ EVIL' ,:0SEBL' and T0MAL0- U ls [bat ;hé 
p“ £ ec“ are “"ipited only In the laminar and turbulent continuum re[lme8 

™ Id a"«e [[[ f, Ta"1315' the "aSS 18 determined™ "[[; 

heating ^1^1^'t ^ ^ 

ríe" Síííní 

cession raL ïÎ if118 ^1°118 for the surfa^ temperature and the wall re- 

ene?gy consi^erlîions ra Ve tran8fer rate S°lutlon includes th* following 
loise« !' Convectlve eilergy. conduction flux, surface radiation 
osses, and sublimation energy. Nose blunting is also included in the category 

III-49 



of ablation effects. The equations involved in the mass loss rate calculations 
provide reasonable answers only for normal reentry conditions. The purpose of 
these mass transfer rate equations is to obtain a reasonable approximation to the 
effects of ablation on drag. Consequently, the results of the ablation effects 
equations should not be used in heat shield design. 

The subroutine EVIL, in conjunction with the subroutine MASSLO, is used to cal¬ 
culate the mass loss rate, m(i, j) (Ibm/ft -sec), surface recession rate s(i, j) 
(ft/sec), and the wall temperature Tw(i, j) (° R) at the appropriate body stations. 
The definitions of the different subscript combinations for the above quantities 
are given in the drag calculations section (3.1.5). As was mentioned above, the 
method employed to determine the mass transfer rate is heat shield-material de¬ 
pendent. For OTWR in turbulent flow, and LTa , Teflon, or any other input materia 
in laminar or turbulent flow the steady state ablation method is used. For OTWR 
in laminar flow, and Carbon Phenolic, or Phenolic Nylon in laminar or turbulent 
flow, curve fits for m(i, j) and s(i, j) as functions of the cold wall heating and 

Tw (i, j ) as a function of s(i, j) are utilized. 

To perform the mass loss rate, wall recession rate, and wall temperature calcula¬ 

tions the following material property constants are needed: 

ßv ß2 > ßy ßi' Href, <, p2, F, Nsl, Ngl, Nst, Ngt, Cp2, Cp^ and AHc- 

For the heat shield materials mentioned abov< the material property constants are 
given in subroutine CHNTBL. Also needed is the stagnation pressure, Ps (Ib/ft ), 
an initial guess at the wall temperature, TWo (° R), and the appropriate heating 

rates, Q(Lj) (Btu/ft^ sec). 

The iterative steady state ablation method proceeds as follows. For the first 
pass through the equations, the wall temperature is set equal to the initial guess 
at the wall temperature: Tw(i, j) = TWo . Then, for each subsequent iteration, the 
wall temperature calculated at the end of the previous iteration is used 

25000. 
AT = 0.005 1^)+ 

w(>, 

S(i, j) = ß\ Tw(i, j) + e 

K 
Loge(l.11057 X 107) - 1.1112 X 105/Tw(i, j) 

201.8340(Kj)2 + 756.2732 Kj - 12.7657 K! 

K 
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yj 13.654 + 469.585 K2 

y2 0.256012 t 0.005558 K2 

y5 5.345 X 10-6 - 4.27 x 10-7 K2 

The nondimensional wall enthalpy is given by: 

yj + y2Tw(i, j) }'3l Tw(‘> i)l 2 

Hw = 33.86 

35.89 

0M9(k) f ^ (ÍÍW) 

0.349 
RT„ 

+ 17.945 

E3 = 0.95 - 
Hw - Href 

Hs 

RT o 

-0.037 for laminar and turbulent flow at stagnation point 

0.0 for laminar flow at all other body station 

0.0 for turbulent flow at all other body stations or 
turbulent sonic point flow 

0.0 for laminar and turbulent flow at stagnation point 

-0.185 for laminar flow at all other body stations 

-0.502 for turbulent flow at all other body stations or 
turbulent sonic point flow 

Qof= Q(i, i)(E1)ei (Ë2) 2 
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for the case 
and 

where Q0F < 0.0 in any iteration, the iterative process is stopped 

for Z > Z 

for Z < Z 

s(i, i) = 0.0 

m(i, j) = 0.0 

s(¡, i) Hslp2 nSL + APNGL ^ 

s(i, j)Hs[p2NST + ApNGTl 

F 

n -(7 + 0.618 f 2) 
Qß = e 

qt = 4.7853 X 10-13 <lTw(i, j)l4 

Qc = <¿B F 

L = s(i, j)l tTw(i, i) - 500. ](p2 rp2 + CpG Ap) + Ap AHc 

R = Qc • • (Qt + Qs) 

TR 

TR 

The new wall temperature to be used in the next iteration is then. 

At for L - R < o and AT > 0 

or L - R > 0 and AT < 0 

Tw(i, j) = Tw(i, I) + \ _0i5ÄT for I_r < 0 and AT < 0 

or ï, - R > 0 and AT > 0 

The iterative calculations end and a solution has been found once 

1.0 

L - R I < < nt 

j 0.01 L 

or if 100 iterations have been made. Then, appropriate wall temperature is 
the Tw(i, j) used in the last iteration and: 

>(*, i) = s(‘. i) (P2 + 
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The curve fit solution for phenolic nylon heat shield material in laminar or 
turbulent flow is as follows: 

I i 10 ¡1-2.5228 + 7.3759 x 10-3 Q(i, j) ] 

for Q(i, j) < 100. 

- 1.62367642 x 10"3 + 1.78922793 x 10"4 Q(i, j) 

+ 1.32113696 x 10-8[Q(i, j)] 2 - 5.087475 x 10-12 [Q(i, j) 13 

m(i, j) = \ 
\ for 100. < Q(i, j) < 3000. 

Q(i, i) 

1.0 
1700 

1845. + 11.1 

for Q(i, j) > 3000. 

The wall recession rate for phenolic nylon is ratioed from the wall recession rate 
of OTWR in laminar flow. 

s(i, i) 
s (i, i) OTWR ^ ^ 

m(i, j) OTWR 

6944.74035 + 645.367146 [ Log10 s(i, j) 1 

•148.589173 [ Log10 ¿(i, i) 

Tw(i.i) • for s(i, j) > 10 -4 

9030. + 1756 [ Logjo s(i, j) 

for â(i, j) < 10“4 
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The curve fit solution for OTWR heat shield material in laminar flow only is 

m(i, j) = ^ 

0.0 for Q(i, j) < 13.0 

•0.01929 + 0.00015 Q(¡, |) 

for 13.0 < Q(¡, i) < 15.6 

- 1.27424339 x 10-^ + 1.3607167 x 10“‘,Q(i, i) 

-1.09091516 x IO’6 [Q(i, j)]2 + 7.98275747 x 10~9 tQ(i, j)l3 

-1.65210579 x 10-11 [QO. i) I4 

for 15.6 < Q(i, j) < 250. 

-1.05650025 x 10-3 + 7.61118699 x 10-3 Q(i. )) 

+ 3.342517 x 10-8 [Q(i, j) 1 2 - 6.91682422 x 10-12 [Q(¡, j) 1 3 

for 250 < Q(i, j) < 3000. 

Q(i. i) 

1.0 - 

1500 

3640 + 8.1 
RT„ 

for <J(‘. )) 2. 3000. 
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The wall recession rate is: 

5.23741 X 10-4 + 1.6115 * IO-6 Q(i, i) 

for Q(i, j) < 1000. 

- 1.1119676 X 10-4 f 4.03376719 x 10~7 Q(i, j) 

s(i. i) 
9.70131261 < 10_10l 0(i- i) I2 - 2.45527504 x 10-13 tQ(i, j) ]3 

for 1000 1 ¢(1, j) < 30 00. 

m (i, j) 

p2 + Ap 

for Q(i, i) > 3000. 

and the wall temperature is given by: 

Tw(i, j) = 6346.34912 + 550.628796 [ Log10 S(i, j) ] 

+ 19.6585366 [Log10 S(i, j) ] 2 

For carbon phenolic heat shield material in laminar flow, the ablation character¬ 
istics are given by: 

0.0 for Q(i, j) < 8.0 

6.5788 x 10-4 - 1.59773 x 10-4 Q(i, j) + 9.8485 x 10*6 [ ¢(1, j) ]2 

for 8.0 < ¢(1, j) < 11.3 

- 9.9516436 x 10-4 + 9.78022 x 10~5 ¢(1, j) 

for 11.3 < ¢(1, j) < 23.1 
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m(i, i) 

1,73043255 x 10 * + 1.25965766 x 10-4 Q(¡, ¡) 

8.56939032 x 10-8[<J(i, i)]2 + 4.65548312 x 10"12 [ 0(i, ¡) 1 3 

for 23.1 < 0(>, i) < 1000. 

1.23284002 x 10-2 + 3.30858813 x 10 5 Q(i, j) 

4.60267808 x 10~9 [ 0(». )) 12 

for Q(i, j) > 1000. 

1.0 x 10 18 for Q(i, j) < 24.7 

- 2.12296558 x 10-6 + 1.18955951 x 10 7 Q(i, j) 

1.40098706 x 10_1° [ Q(i, )) 1 2 

s(i, i) 

for 24.7 < Q(i, j) < 275. 

7.66757321 x 10-5 - 4.95033115 x 10-7 Q(i, j) 

1.55581653 x 10-9 [Q(¡, j) 12 - 8.4923939 x 10 13 tQ(i, j)l3 

for 275 < Q(i, j) < 1000. 

- 3.186484 x 10“4 + 3.869 x HT7 Q(i, j) + 2.171792 x HT10 [ 00, i) 12 

for Q(i, j) > 1000. 

Tw(i, )) = 6687.41134 + 446.431845 [Log10 S(i, j) ] 

+ 12.0991623 [Log10S(i, j)]2 
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For carbon phenolic heat shield material in turbulent flow, the curve fit solution 
for the ablation characteristics incorporates a portion of the first iteration from 
the steady state ablation method. As in the iterative solution, an initial trial 
value is chosen for the wall temperature: Tw(¡, j) = Tw then, the solution pro¬ 
ceeds as follows: ° 

At = 0.005 
wo 

25000. 

Pi 

SpD = ß1 TWo + e 
L°ge [P2 (Tw ) ? I - /VT 

Log (1.11057 X 107) - 1.1112 X 10Vt„ 

K! = e 

■J 201.8340(K. )2 + 756.2732 —- K, - 12.7657 K, 
’ 1 2117 1 1 

2 K, + 4 — 1 2117 

>'! = 13.654 + 469.585 K2 

y2 = 0.256012 + 0.005558 K2 

y3 = 5.345 X 10-6 - 4.27 x 10-7 K2 

The nondimensional wall enthalpy is given by: 

Hw = 

yl + y2 Tw + F3 (1w )' 

33.86 

35.89 

H, 
0.349 l¿)+ I (Hw) 

0,349 ufj+17,945 

=3 = 0.95 - 
HW - Href 

RT_ 
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-0.037 for stagnation point in turbulent flow 

0.0 for sonic point and all other body stations in turbulent 
flow 

e2 = 

0.0 for turbulent flow at the stagnation point 

-0.502 for sonic point and all other body stations in turbulent 
flow 

Qof = Q(i’ i)(Fi)ei (E2>e2 

SpD Hs NST + Ngt 1 

^OF 

iiB = e' ■(? + 0.618 f 2) 

QT = 4.7853 X 10“13 í ( Tw T 

Qc = d>B E3 Qof 

^NET = Qc “ 

Q* = Cp (6160 - T_, ) + F + N, ST 

m(i, j) 
Qnet 

s (i, j) = 
0.8 m(i, j) 

P2 

Tw(i,j) = 6687.41134 + 446.431845 [Log10 S (i, j)] 

+ 12.0991623 [Log10S(i., j)]2 
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The subroutine NOSEBL is used to calculate the derivatives with respect to time 
of the nose radius, base radius, and side walls in order to determine the shape 
change for a body in continuum flow with a constant cone half-angle. For cases 
where the bluntness ratio is 1;ss than or equal to 10-^ the body is considered 
to be sharp. In the following calculations the appropriate wall recession rate, 
based upon the heat shield material being considered, must be employed. The only 
input necessary for these calculations is the wall recession rate, S(i, j) which 
was computed previously. For laminar or turbulent flow and sharp or blunt cones, 
the rate of change of the nose radius is given by: 

SO, 1) sin 0C 
Rm = -- 

For a sharp cone, the maximum diameter sidewall recession rate is: 

^ 0.7071 S(2, 8) for Z > ZTR 

'"'w 

f 0.8706 S(3, 8) for Z < ZTR 

For a blunt cone, the maximum diameter sidewall recession rate is: 

\ S(2, 7) 

j S(3, 7) 
Sw 

for Z >, ZyR 

for Z < Z TR 

Then, for both flow conditions and both body configurations, the base radius 
recession rate is given by: 

S_. 
R B cos 0_ 

The subroutine TOMALO is used to determine the rate of change in weight due to 
ablation. This is accomplished by integrating the mass loss rates for the 
different body stations over the surface of the body. The necessary inputs are 
the mass loss rates, m(i, j) at the various body stations, the axial locations of 

the body stations, , and the axial length of the body, LA . For a sharp 

cone, the total mass loss rate is: 

tan 
-2.9618 V 2 (La)‘ 

cos 
m(2, 8) 

for Z > Z 

3.04 (2.0) °-2 

TR 

tan dc 

cos 0,, 
(La ) 2 m(2, 8) 

for Z < Z TR 
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For a blunt cone, the total weight loss rate is composed of the mass loss rate 

from the spherical nose cap and the mass loss rate from the conical frustum. The 

total mass loss rate on the spherical nose is: 

n ( 1 - sin 0.) [iti(l, 1) t rii(2, 1) ! 

for Z > Z TR 

0.7351 Rn2 I m(l, 1) + m(4, 1) 

0.766 - sin 0C 

, 0.234 
[m(4, 1) + m(3, 1) 

for Z ^ Zyj^ 

The conical frustum contribution to the total mass loss rate is: 
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3.1.4 Angle of Attack 

The angle of attack, which is incorporated into the drag calculations, is deter¬ 
mined by the subroutine ROTATE. Two methods are available for calculating the 
angle of attack a. uncoupled rotational three-degree-of-freedom method and 
b. simplified angle of attack method. In both methods, the objective is to 
define an angle of attack value (a) from the oscillatory variations in angle of 
attack that occur from perturbing forces and moments. For the three-degree-of- 
freedom method the necessary inputs ire the pitch and yaw Euler angles, and 

df, the rolling component of rotation, P, the maximum, and minimum,ô" , 
perturbed angle of attack values from the previous oscillation, the minimum, tL , 
and maximum, tH , time limits on the period of oscillation, the time of the first 
maximum in angle of attack, r¡ , the time of the second maximum in angle of attack, 
r2> t^ie period of oscillation, t' , the viscous interaction parameter, ÿ, cone 
half-angle, 0C , and the bluntness ratio. The total angle of attack is given by: 

a ' = cos-* [ cos 6a cos iA ] 

The angle of attack, a , forwarded to the drag calculations is dependent upon the 
flow regime, cycle time, rolling rotation rate. For the strong interaction 
regime (* > Xup): 

a = a' 

For laminar and turbulent continuum flow ( \ < Yup): 

Ia for t ' = 0 

Ia f°r r 2 lH 

— for t ' < t, and P = 0 
17 ^ 

~~ / ^0, 
a + a 
—-— for t ' < tL and P / 0 

For the case where the period of oscillation, t', is between the two limiting 
cycle times, an integrated angle of attack is calculated. As noted in the drag 
section, this angle of attack is used only to modify the forebody pressure drag. 
Thus, for tL < t' < tH , the angle of attack is calculated as follows: 

A2 = [Aj2 + A|50c + Ajg 0C2] + [ a21 + a24 dc + a27 ec2 IA 

+ [a30 + A33 ec + a36 dc2 ] a2 

A3 = [ a13 + Ai60c + a19 ec2] + [a22 + a25 ec + a28 öc2] a 

+ [^33 + A34 0C + A37 0c2JA2 
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then, 

/ 
rl 

(Aja + Ain) 
dr 

The simplified angle of attack method is a straightforward approach requiring no 

Intégrât on The angle of attack supplied to the drag calculations is dependent 

Ipon the period of oscillation, t", of the vehicle. For this method the period 

is calculated below. The necessary inputs are the derivatives of the pitching 

coefficient with , end » , CMq and derivative of nonnal force coeffi- 

cient with a, CN , the minimum time limit on the period of oscillation, tL , 

initial flieht path angle, yf0 , initial Euler angle in the pitch direction, 0a , 

drag coefficient, CD , altitude variation of the axial moment of inertia, , 

vehicle instantaneous weight, W, and the geometric and flow field properties. 

The calculations are as follows: 

/ P« ß, » - Log. “l -'i 
1.076474/ 

re fcu iniMai altitude (Zm Z ) is being considered then the drag coefficient 
”, w“Ucin«ï«tlf 0.8. Otherwise the drag coefficient obtained 

from the drag calculation section is used. 

32.174 n Kb¿ Z 

^K1 “ 4 ßz W I sin y{ \ 
2CD “ cNa + 

4 cMqw 

32.174 I 

'K2 

32.174 it Rb2 Z2 

2 W (ßz sin yfy 

(CNq - CD) ßz I sin yto I 2RBWCMo 

32.174 I 

The period of oscillation is given by: 

-2rrZ 

ßz Uoo sin yf0 VaK2 P- 
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The total angle of attack equations necessitate the calculation of Bessel func¬ 
tions of the first and second kind of the zeroth and first orders. These Bessel 

functions ate to be functions of S where: 

S == 2 ( AK1 + Ak2) 

The Bessel functions calculated are: 

Y0(S), YjiS), J0(S), MS) 

For the Initial altitude (Z = Z0) only, the following calculations are made: 

I 

( 

For all other altitudes the angle of attack ratio is: 

/«= AK1 

”V aK2 

The total angle of attack is then given by: 

'C2 

i Sß2 

I 

2 Z„ 

2.3769 X 10-^ ftz0ao\Kl J0(S) 

ßz + Zo exP Poo'> 

t Yj (S) J0 (S) - Jj (S) Y0 (S)] ^ 

Poc AK1 

0a J! (s') exp(-AK1 p^,) 

2 Z„ 

Ö“oe 
AC2 Y0 (S) 

'Cl 
Vs) 

The angle of attack ratio at the initial altitude is: 

PooAK1 

\/ 77 \/~K K2 P» 

[Acl J0(S) + AC2Y0(S)leP°°AK1 

0.63661 dn 

0.63661 O 
(a/a0) 

ao (a/aj ) 

for t > tL 

for t < t¡ and Z = Z0 

for t < tj^ and Z < Z0 
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and 

ri = a ' 

3.1.5 Drag 

The analytical expressions for the drag coefficients are ordered according to 
the flight regimes encountered during the reentry process: free molecular 
transition flow, strong interaction flow, laminar continuum flow, and turbulent 
continuum flow respectively. Since the theoretical developments in each regime 
are based on different analytical models, discontinuities exist at the regime 
interfaces. To provide a continuous drag history, fairing techniques are used 
between the flight regimes. The viscous interaction parameter,y , the rarefaction 
parameter, ÿj, and the transition altitude, Zq-g , dictate which flow or fairing 
regime is to be used in the drag analysis. The range of applicability of the 
given body parameters and flight conditions for this drag model are: 

• Cone Half-Angle 4° ¿ 0C < 27° 

• Body Length 1' < LA < 14' 

• Surface Temperature 1000° R < Tw < 6000° R 

• Bluntness Ratio 0.0 < A < 0.6 

• Altitude 0.0 ' < Z < 400,000' 

• Free-Stream Mach Number 5.0 < < 30.0 

• Angle of Attack at 300 kft0° < a < 20° 

• Angle of Attack < 150 kft 0° < a < 0C 

Several body and flow parameters are needed to initiate the drag calculations. 
They are cone half-angle, öc (degrees), angle of attack, a (degrees), free-stream 
velocity, UTC (ft/sec), altitude Z(ft.), and any two of the following: bluntness 
ratio A , base radius Rgtft.), or nose radius R^(ft.). Also needed are the wall 
temperature, Tw (i,j) (°R), mass loss rate,m (i,j) (Ibm/ft^sec), the wall en¬ 
thalpy, Hw, and the total mass loss rate, W(lbm/sec). The wall temperature, 
wall enthalpy, and mass loss rate are calculated in the subroutine EVIL. 

The subscripts i and j refer to specific flow regimes and body stations. The 
subscript combinations used in the drag calculations are as follows: 

1.1 > stagnation point 

2.1 * tangent point on a blunt cone in laminar flow 

2.2 » 20 percent station of the Initial length of the cone in laminar flow 

2.3 ■ 40 percent station of the initial length of the cone in laminar flow 

2.4 * 60 percent station of the initial length of the cone in laminar flow 
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2.5 = 75 percent station of the initial length of the cone in laminar flow 

2.6 = 90 percent station of the initial length of the cone in laminar flow 

2.7 = Maximum diameter point on a blunt cone in laminar flow 

2.8 = Maximum diameter point of a sharp cone for the given cone half-angle 
in laminar flow 

3,j where J = 1,2,...,8 = Turbulent flow for the same body stations 
used in laminar flow 

4,1 = sonic point in turbulent flow 

The total mass loss rate, W, is calculated in the subroutine T0MAL0 and is the 
integrated value of m(i,j) over the surface of the body. 

In the laminar and turbulent flow regimes, the following notation will be used 
to identify the various skin friction drag terms. The skin friction drag coef¬ 
ficient will be denoted by CDf(i,j,k) where: 

i =■ 1: sharp cone 

i = 2: blunt cone 

j «*1: turbulent flow 

i =»2: laminar flow 

k - 1: ablation 

k b 2: no ablation 

Sharp cone inviscid pressure drag coefficient for the given cone angle: 

c _ P* 

DpLEO l/2PaouJ 

The forebody pressure drag coefficient, as calculated below, is used in the strong 
interaction flow regime, laminar continuum regime, and turbulent continuum regime. 
For sharp and blunt cone configurations, the zero angle of attack forebody pressure 

drag coefficient is: 
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Oc has the units of degrees in the above sunmations. 

The corrections for angle of attack effects on forebody pressure drag are 
presented below. 

[Loglo(0c)V[Loglo(\a\)Y (A 

If K' < 0.0 , then set K' - 0.0 . 
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EEE A (421 + i + 4 j f 12k) (flc) ‘ ( I a I ) ’ ( A J*5 

i = 0 j = 0 k = 0 

10 K' 

for 

for 4° < I a S < 40° 

If Cp /cdo < 10 , then set CD /cdo = 10 • 

Thus, the forebody pressure drag coefficient for zero angle of attack is: 

cDp = cDp 
O 

and for angle of attack cases: 

ci)P = CDP 1 Ciy/CD01 

NOTE: If a rotational three-degree-of-freedom trajectory is being 
calculated and if the period of oscillation of the vehicle, t' , 
is between the upper and lower cycle time limits that are input, 
the only angle of attack correction made is on the forebody 
pressure drag. The correction is: 

C 
Dr 

CD (l+5) 

where a is the integrated angle of attack calculated in the angle of attack 
section (SUBROUTINE ROTATE). 

Necessary for the induced drag calculations in laminar and turbulent continuum 
flow are the induced pressure gradient parameter: 

F j (K) » 0.9-0.119 sin 0C + 0.0108 (M^ sin 0C)2 

and the wall temperature parameter: 

0.968 Tw (2’8> 
. -- ——- 

M„2 T» 
+ 0.058 

To determine in which flow or fairingjregime the drag calculations are made, a 
check is made on the values of \ and xj. The endpoints of the fairing regime 
between free molecular transition flow and strong interaction flow are defined 
by x'i and v. . The values generally used are yi - 0.4 and Yi, -0.2 but 

‘up ~‘low ° ^ ''‘up Mow 
other values may be used in special cases to provide a smooth drag history. 
Likewise, the endpoints of the fairing regime between strong Interaction drag 
and continuum drag are defined by xUp and XTow The values generally used are 
Xup“ 6.0 and xiow * 4.0 but, again, other values may be used. 
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1. If 5Õ 2 Xl » only the free-molecular drag is calculated. 

2 if y, < x'l and Vl 1 Xl,ow. the free-molecular drag and the strong 

interaction^drag are both calculatad and tha fairing technique for 
values between those two regimes is utilized. 

3. if - < x,low and y > Xup. °nly stronR Interaction drag is calculated. 

i ic ~ s inH C > V, the strong interaction drag and the laminar 
continuum*1 drag ïr'e b«h calculated and the fairing technique for value, 

between those two regimes is utilized. 

5. If X < X low and Z > ZTR, the laminar continuum drag is calculated. 

t if 7 < 7 and Z > (ZTp - 20,547.8 ) both continuum laminar drag and 
6- "ntlnuuíCbulent d?,* are calculated and the fairing technique 

for values between those two regimes is utilized. 

7. If Z < (ZTR - 20,547.8 ) the continuum turbulent drag is calculated. 

The free-molecular transition drag regime is described by the following 

system: 

(Ttu.ition Syatem) - P(c)(Ft« Mof.cul. Flo. Sy.tert .(1- PiOHOad™.» Sy.t.m, 

»her. P(c) 1, the probability that a molecule will collide with the eurface 

before colliding with another molecule. 

A curve fit of P (O as a function of Knudsen number yields the following 

relationship: 

2.11053 X 10~ 

12.25 pÄ1 M,; 

1305 s 

y Toe 

2RN 

20 

£ B(i) LoglO 

P(c). 

for — > 0.04 
D " 

0.506 - 0.147 Log10 
/0.04 D\ 

Uw / 

for — < 0.04 
D 
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For a sharp cone the above system reduces to: 

JC P (C)CDnw + - P<C>C FM 

The free-molecule drag coefficient is: 

FM 

1/2 

sin ec v'T 2 Ma 

■K2 s'"2 

1 + 
sin 0C y' /t / T, 1/2 

2M_ 2 M 
1 + erf (M^ sin 0 )] 

where f, is an axial accommodation coefficient taken to be 0.9. The continuum 
drag will be taken as the Newtonian value CD = 2 sin2 0 . 

‘N L 

For the blunt cone, we perform the analysis similar to a free-molecule or a 
Newtonian analysis. The drag on a blunt cone 

2 

'D B 

. /_rnV 
°S \/ 

cos2 0C + Cn 1 
RN \ 2 

VB 

liere CDc is the value of the drag obtained for a sharp cone as shown in the above 

equation. Ine quantity CDs is the free molecule drag coefficient on a spherical 

nose and a curve fit of experimental data yields 

A (174 + n) L°8l0 

1 

where the free-molecular drag for a sphere is 

«f(MJ + 
v^T 

2 \/~n 

Since the sphere drag is rather a small portion of the total blunt cone drag we 
will approximate the above result for hypersonic speeds 
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Thus, for a sharp cone in free-molecular transition flow 

CD CD FM 
C D, 

and for a blunt cone in free-molecular transition flow 

CD = CD FM 

'Hie drag in the strong interaction regime is composed of interaction effects and 
pressure drag. The Interaction drag is defined as follows: 

/ 

exp 
IEEE 
f ¡ = 0 j = 0 k 0 

A (200 + i + 2j + 4 k) 

JST 

Lo8e 
sin^ ¢. 

(0C)’ 

l 1 1 1 

.JTTT 
1 JLmJ ÁêêêêJ 

f ¡ - 0 j » 0 k - 0 

580.0 

T„ 1,. tZ_l M ^ 

for 0C < 15° 

A (384 + i + 2 j + 8k) 

Loge 
XI 

iir|2 $ 
(0C)' 

580.0 

for Öc > 15' 

The total drag in the strong interaction regime for sharp and blunt cones, 
including angle of attack effects, is: 

2* 

'D * CD* “ (CDST-CDp^ ) 
LEO 

1 -I 
B, 

cos (a ') + Cp 

The fairing between the free molecular and strong interaction regimes is a 
linear weighting based on the rarefaction parameter value between the drag 
coefficients of both regimes evaluated at the point of interest. 

TM 

*1 - X, low 

Xlup " Xllow_ 

+ Cr 

Xl - XI low 

Xl “ Xl, *up low 
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For laminar continuum flow, the drag is composed of forebody pressure drag, base 
pressure drag, skin friction drag, induced pressure drag, pressure gradient in¬ 
duced skin friction drag, and transverse-curvature induced skin friction drag. 
The forebody pressure drag is given in the preliminary calculations section. For 
the base pressure drag, a curve fit of test data gives 

for > 7.0 

Dr 

1 

0.7 Mj 

The sharp cone laminar skin friction drag for the no mass addition case was 
derived from the Blasius flat plate incompressible solution modified for conical 
flow and compressibility. The solution is 

« 0.5 + 0.5 

Cp Tw (2,8) 

—--+ 0.0935 (y- l)Me2 

CPe Te 

CDf(1.2,2) 

The mass addition correction to skin friction drag and the boundary layer 
displacement effects in the induced drag components are dependent upon the 
laminar no blowing skin friction coefficient, which is: 
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c, 
1.15 
- tan Or 
1.53 c 

Px, 

P, ue 

CD/(1,2,2) 

The blowing skin friction drag is then: 
CDf(l,2,2) 

CD (1,2,1) 
J( 

1 + 
2 m (2,8) 

PeUe Cf. 
°L 

The effect of bluntness on the skin friction drag, for both blowing and no 
blowing cases, is as follows: 

CDf(2, 2, k) CDf(l, 2, k) 

2 

A(457 + i + 5j) (LogjoiRe^)]* 

i = 0 

fot < 0.2 

4 2 

A (472 + ¡ + SjHLog^Re^)]1 

for > 0.2 

where the k in the skin friction drag coefficient subscript can be set for 
either mass transfer or no mass transfer. 

If mass transfer and aerodynamic heating effects are being considered in the 
calculation of the Induced drag components, the wall enthalpy is set equal to 
the wall enthalpy calculated in subroutine EVIL: 

H B ÍT "w V 

If a nonablating case is being considered, the wall enthalpy is: 

Hw - 0.24 Tw (2,8) 

The recovery enthalpy is: 

Hr » 0.9 Hs 
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Por all three components of induced drag in laminar flow, the change in effective 
cone angle due to displacement effects is: 

2vT \ 

2m (2,8) 

°L 1 + 
1.25 m (2,8) 

Pe Ue Cf 
°L 

1 3 
y ^ ^ ^ A (283 + i -i- 2 j) (Mg2)1 

i = 0 i = 0 

i ^v( 

H»/ ^ 

m(2,8) 

3Pe Ue 

The induced pressure drag coefficient j.s therefore: 

2 

CD = 1.33 ^T 

R 
1 - 

N 

lB 
cos 0. 'Dr 

LEO 

(0eff - öc) Fj (K) Me 

The pressure induced skin friction drag is: 

Rw 1.5 

‘f Me vT 
cos 6. CDf (1,2,2) ?! (K) 

(oefi - ec) 
Tw(2.8) 2 

- 0.823 + 0.524 - + 0.483 M/ 

The transverse curvature induced drag is: 

1.5 

*tc M 2 dj,, tan 0C 
1 - 

(0eff - ec) 0.517 + 0.913 
Tw (2,8) 

cos 0,. 

0.0484 

CD (1, 2, 2) 

The total induced drag for laminar flow is cDilam = cDIp + CDif + CDj 

Thus, the total drag coefficient for laminar continuum flow is: 
tc 

CD = CDlam = CDp + CDb + CDf 2' k> + CDI 
LAM 

where the appropriate skin friction drag is used depending upon the nose blunt¬ 

ness and ablation rate. 
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The fairing between the strong interaction regime and the laminar continuum 
regime is a linear weighting, based on the viscous interaction parameter value, 
of the drag coefficients of the two regimes evaluated at the point of interest. 

For turbulent continuum flow, the drag coefficient is composed of the forebody 
pressure drag, base pressure drag, skin friction drag, and induced pressure drag. 
The forebody pressure drag, along with angle of attack corrections, is given in 
the preliminary calculations section. The base drag equation for turbulent flow 
is the same as the equation for laminar flow and the appropriate equations can 
be found in the laminar flow section. The sharp cone turbulent flow skin friction 
drag for the no mass addition case was derived from the Shultz-Grunow flat plate 
incompressible solution, modified for compressibility and conical flow. The 
solution is as follows : 

Cp Tw (3,8) 
w 

+ 0.099 (y - 1) Me2 Cpe Te h 0.5 + 0.5 

T 

3.5964 h* 

3 2 

for h* < 1110 Btu/Ibm 

for h* > 1110 Btu/lbm 

ZZ = 2.5 + 0.1 can h 
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. (2.27 X IO"8) (32.2) [T* 1M 

T* + 198.6 

fori. > 2.0 feet 

The mass addition correction to the skin friction drag and the boundary layer 
displacement effects in the induced pressure drag is dependent upon the 
turbulent no blowing skin friction coefficient, which is: 
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The turbulent flow, blowing skin friction drag is then: 

CDf (1,1,1) = 
In 1.2 m (3.8) 
1.0 + -- 

Pc 

The effect of bluntness on skin friction drag, for both the blowing and no 
blowing cases, is: 

CDf(2, 1, k) « cDf(l, l,k) 

0.744 - 0.01664 M oo 

rn 
for — > 0.32 

rb - 

In calculating the induced pressure drag if mass transfer and aerodynamic heating 
effects are being accounted for, the wall enthalpy is set equal to the wall en¬ 
thalpy calculated in the subroutine EVIL: 

Hw “ Hw 

If a nonablating case is being considered, then the wall enthalpy is: 

Hw - 0.24 Tw (3,8) 

The recovery enthalpy is: 

Hr ■ 0.9 Hs 

The change in effective cone angle due to displacement effects is: 
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"eff - "c 

0*p 

i.8 

2 m (3,8) 

P' Ue Cf 

Hw 
O.W - + 

Hr 
0.33 f 0.68 

+ 0.10(» - M,x 
Ho / c 

°T 1 , 
1.2 m (3,8) 

Pc Ue Cf, 

1.6 m (3,8) 

3 6 i>(. Up 

°T 

Mp + 1 0.083 

The Induced pressure drag then becomes: 

CD - I 11 vT 
‘P 

/Rn_ 

\rh 
cos (L CDp (0eff -Öc) Fl (K)Me 

PLEO 

and the total induced drag for turbulent flow is cDlTl)RB" t:Djp • the total 

drag coefficient for turbulent continuum flow is: 

dTURB 
:DP + CDb + CDf(U.k) > CD¡ 

TURB 

where the appropriate skin friction drag is used, depending upon the bluntness 
ratio and ablation rate. 

For the fairing region between the laminar and turbulent regimes, only the skin 
friction drag and total induced drag are modified because the forebody pressure 
drag and base drag equations are the same for laminar and turbulent flow. The 
fairing process is as follows: 

The faired Induced drag is: 

P Ci D, (1 
‘LAM 

P)cDl 
'TURB 
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and the faired skin friction drag is: 

CD( - PCDí(¡. 2, k) ♦ Ü - P)CDf0. l.k) 

Thus, the total drag coefficient in the boundary layer transition regime is 

cDp + CDf ♦ cDf + cD[ 

3.1.6 Equations of Motion 

Flight trajectory points and the associated flight parameters are computed by 
an iterative process in subroutines DEREQ, TEQUAT, ADM4RK, and part of ROTATE. 
This involves the computation of the altitude derivatives of the thrusting and 
trajectory parameters at a given trajectory point and the integration of the 
derivatives over an altitude increment to determine the parameter values at the 
next trajectory point. The altitude increment over which the integration is 
SSoÍLd 1. dependent upon th. »pnltud. of the p«r«»otor derlvatt.ee and la 
controlled by the predictor-corrector in subroutine ADM4RK. 

Tko frannnmrinn nf the altitude derivatives of the thrusting and trajectory 

.^térâ ïe don. In eubroutlne, DEREQ, TEQUAT. and . ""“uítud', 
is a. compute the time derivatives of the parameters and b. change to altitude 
dêpeiident^derl vat Ives b, e*ans of an appropriate .ultlpllc.ton .ctor The 
necessary input quantities are the drag coefficient, CD, total angle of attack, 
«' instantaneous mass of the vehicle, m, normal force coefficient, CN , Pitching 
moment8coefficients, Cy . , the Euler .n8le..,«„ in 
the rotation rate (p , T , O . the no^nt of Inertia .bout the bo^ «le. I (1 
tabular form as a function of altitude), the moment of inertia along the body 
axis, 1„ (also in tabular form as a function of altitude), and the fl°“ • 
thrusting, and geometry parameters. The drag coefficient and angle of attack 
histories may either be calculated through the appropriate subroutines or be 
inout as a function of altitude in tabular form. Any appendage on the vehicle 
may be accounted for by inputing an appendage drag, C,^, table as a function o 

altitude. This will be added to the vehicle drag to give the total vehicie drag 
history which is used in the trajectory calculations. In order to permit the 
input added drag tables to be used repeatedly for different sieed vehicles, the 
input added drag is based on a constant input reference area, Aw,,ef , flnd^h®" 
isPscaled to the proper vehicle reference area. The total vehicle drag is then. 

cdt ■ ld - 

Changing the thrust vector from body coordinates to trajectory coordinates 

gives (Ibf): 

Tj| » Th (co*0a cos<M + T||y lcos0 sin 0O «in 

- sin cos ¿ ) ♦ THz I cos sin 0a cos ¢, 

♦ sin ^ tin ÿ I 
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T,1 ( - Th (cos ()a sin iji ) + Tu l sin 0 sin 0a sin <t> - cos </; cos ¢1 
Yy X ^ 

+ l sm ^ s>n cos ^ ” C0S ^ S*n ^ ^ 

tHz » - T„x sin 0a ♦ THy cos ön sin à * Thz «s «s 

The velocity vector in trajectory coordinates is given by (ft/sec) 

X[, - Vm cos 6a cos ó 

Ÿj) « Uw I cost// sin 0a sin ö - sin t/i cos | 

Zp » Uw I cos t/t sin 0a cos </> + sin i/» sin t¿ I 

The normal and axial force coefficients are: 

Fn » CN 
Pm, 

(n Rh2) 

CX ” " CDt 4 CN un (a ') 

The body forces in the trajectory coordinate system are (Ibf) 

U 2 Pm 
yx . — ARef CX *co® cos ^ ^ 

Fm Y N 'B 

/^B2 4 ¿I 

( cos 0 sin 0 sin ö - sin d» cos d | 

FN /'B 

</V * ¿b! 

I cos d sin 0 cos ♦ sin d sin ó I 

Pm 
Fy ■ ARef ^ct,s **n 

Fn V 

Ab2 4 V 
_Fn ¿B 
____ 

VyB + ''B 

I sin t,'/ sin «n sin ó - cos t/r cos«¿ I 

I sin (// sin 0 cos • cos i/i sin I 
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2 
P«, l) 

ARef CX sin 

•■'N 

Fnyb 
cos 0a sin <t> 

2*72 
+ ZB 

COS 0a COS <f) 

The altitude derivatives of the thrusting and trajectory parameters are calcula¬ 
ted by multiplying the thrusting and trajectory time derivatives by the derivative 
of time with respect to altitude (dt/dï). The derivatives calculated in TEQUAT 
are: 

Velocity Derivative: 

dz 

1 

U tin Yi 

th. 
CDARef 

32.21852 sin 
Re + Z 

where R« is the radius of the earth. 

Flight Path Angle Derivative: 

dyf t \ cosy, 

yf 

«fe ' in y, I um R« + z 
32.21852 

(i^) 

Fz + th. 
\ 

—J1 

Range Derivative: 

d Xu 

dz 
cos ) cos » (j~t) u- 

1 

sin Yi 

Cross Aange Derivative: 

dYR 1 
sin (0a} cos 

" (rh) •■] 
dz 11,, sin y, 

Thrust Misalignment Angle Derivative In The Yaw Direction: 

dz 

1 

IJ sin Yi 

Fy + Tu 

mU.cosy, 
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Thrusting Weight Derivative: 

dwTH 1 
dz Vm sin y( 

The derivatives calculated in ROTATE are: 

Euler Angle Derivative In The Yaw Direction: 

dl/j 

dz yt 

R cos di + Q sin <A 

cosí) 

Euler Angle Derivative In The Pitch Direction: 

di) 7l 

dz 

1 

IL, sin 
(Q cos (6 - R sin <!> ) 

Euler Angle Derivative In The Roll Direction: 

d<i J_ 
dz sin Yf 

d<¡> 
P + l! sin y» - sin 6„ « >1 dE a 

Pitching Component 

dQ 1_ 
dz sin 

of Rotation Derivative: 

\ Pm vm2 rB ARef f 
- Cy (sjn 0" cos 0 eos é sin 0 sin 0 ) 

Ablation Weight Derivative: 

dt _f 

dz sin Yi 

Yawing Component 

dR _l_ 
dz U. sin yf 

of Rotation Derivative: 

\ Pm U -2 H ARef 

I 
CM (sin 0 cos 0 - sin 0a cos 0 sin 0 ) 
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Rolling Component of Rotation Derivative. 

dP _1_ 
dz »in Vf 

n.e „ext trajectory po.ot te ^'o^r 
by means of the predictor-corrector method «hlch al^^^ levels arc „ointalned. 

ehlch the 1. « numerical technique, It »111 not be 
Since the predictor-corrector mecnoo lcal description of the program 
explained here, but can be foun h velocity at the next trajectory 
under the ADM4RK subroutine. Then, simply, the veiocr y 

point la: 

i , aoriuatives are integrated in the same manner to obtain the 
rhe remaining derivatives are i b traiectory point. Note that the integra- 
,alues of the parameters «J the next trajee y P froœ thru8tlng and 
cion of the weight derivatives provides the wexg 
ablation over the integration altitude interval. 

That is! 

These, 
stated 

then, .r. ummd t. clcuUt. th. l..t.nt.n.o»s ».Ight of th. vehicle, .. 
in the preliminary calculation section 

f - f 0 AW - NWjh 
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3.2 WAKE CALCULATIONS 

The decoy design program requires calculation of the radar cross-section (RCS) 
and the wake length as a function of the decoy configuration. This involves 
wake configuration calculations to define the wake flow field properties, and 
the RCS and wake length calculations. The input quantities necessary for the 
wake configuration calculations are the flow field and body geometry properties, 
transition altitude, ZTR, drag coefficient, CD, and the flight path angle ye . 
Also needed, and available through input tables, are the heat shield conductivity, 
Kw (Btu/ft°-R-Hr), heat shield specific heat, Cpw (Btu/ft°-R-Hr), chemical enthalpy 

of the heat shield AhCHf.;Nj[f t2/sec2), heat shield density, (lb/ft3), heat shield 

thickness, ß k(in)« ablation temperature of the heat shield,TAB[ (°K), sea level 
density, TLb/ft3), scale height,/¾ (kft), and scaling constants,b], , b2i , b22, 

h23* b25• 

3.2.1 Preliminary Wake Calculations 

The calculations are as follows: 

Altitudes are used in terms of thousands of feet. 

ZTR 

1000. 

The total drag area is given by: 

cdt A » Cd <»rb2) 

The viscous drag area by: 

CDV A - 1CD - <CDp - % * V 1 *RB2 

The velocities have units of thousands of feet per second. 

U. 
U . - 
" 1000. 

Ue 

U* " 1000. 

The mass ablation rate is: 

m*ABL “ _ * 
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The mass swallowed by the boundary layer is: 

mBLS 

vO.25 0.5 10.5 

2010 y? 

for 1.98 Rb > 2 Rn 

, / 2000 Px Rb 

C76 P-» u» ^ rb ' M. 

(Rr) 
1.5 

\ Pi sin °c 

C 77 

for 2 R^i > 1.98 RB 

The length of the conical frustum along the cone is: 

0.0 

for 2 Rjj 2 RB 

Rb - Rn tan 0C 

for 1.98 Rj3 > 2 Rfl 

Base diameter is: 

db = 2 rB 

3.2.2 Flow Field Calculations 

The wake flow field calculations are: 

Free-Stream Reynolds Number Based on the Body Diameter 

103 P„ db 

Kw U» s*" Ve 

Pw CPw 82wH 
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Conical Wall Temperature 

278. f 
-60 (K„ Z) '59 

‘WC 

s z/ljz 
Sc e 

sin^ 

1/2 
; Z > ZBLT 

SwH 

160 Kv (ZBLT “ Z)1 
'159 

WC 
z < z 

z - z BLT 
Sc e z/Pz 

0.8 
BLT 

Spherical Wall Temperature 

sin 

"59 

2 SwH 

WSP 
278. + C60(KvZ) 

^ Kw Db1/2 exp a/tPz>l 

W ».H \ 

Total Mass Rate in the Boundary Layer 

ABL m BL = m BLS 

Wall Temperature 

( TABL : <TABL i Twc and 2RN ^ °-99 °B) or(TABL - TWSP and 2RN > 0.99 D0) 

Tw = Twc 1 2RN < °-99 db and Twc < TABL 

f Twsp ; 2RN > 0.99 Db and Twsp < TABL 

Wall Enthalpy 

= 1.087 (104) Tw 

Drag Area of the Second Entropy Layer 

A CDv Ü.S2 
CdtA ~ CDV A 

Mr 
ABL 

"RAT 

Universal Shock Angle 
m*BL 

57.3 sin ., U 

57.3 sin-1 

M OO 

T 

_6_ / 

7 1 P_. 

J_3_ 

7 

re 19 

P„ > 6 

19_ 

- 6 
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flç. » max ( ) 
Soo ^ 

Öc = min (0Ç . 90.) 
Soc ö~ 

Mass Flow Rate in Second Entropy Layer 

mvj.2 = 2000.0 p„ RN2 cot2 0^ 

Velocity Along the Cone in the Second Entropy Layer 

500 Poo Vj CDSS2 A 
U2c = ^ 

-- 

mSS2 

U2c = max (U2C , 1-0) 

Aj = 0.286 + 1.029 mJ 1 - 
'U2c 

U„ 

Maximum Shock Angle 

0, S 2 
57.3 sin" 

i 1 
■ Aj + (2.86 + A!)1/2 

j 2 

-.1/2 
I 

eS2 = max ( 0S2 . 0C ) 

Average Shock Angle 

0g2 « 0.5 (0S2 + 

c120 
D35 c119 U~ 

Mass Flow Rate at the Nose 

m*N " 1000.0 Rf,j Cjig pM L,, 

1 i mBLS - mN* 

SRAT 
m BLS ., _ • , 

—r~7~ : mBLS < mN 
mN 

Electron Density at the Nose (Table I1I-2) 

"ern * fl (p» ’ U») 
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Number of Electrons Produced by the Nose Cap 

00.48)* mN* SRAT 

ern 

Cone Pressure with Respect to Second Entropy Layer 

(7mJ sin2 0$2 -l)Pm 

Cone Enthalpy with Respect to Second Entropy Layer 

h~ p2c <P2c + 6 P») 

'2C p- (6 p2c ^ p.) 

Cone Density with Respect to Entropy Layer 

P2c 
P2c * 6 P- 
___ 

Definition of the Flow Properties at the Cone 

If nBLS * 

Pc • Pc 

\ • K 

PC * P- 

ïf ^ BUS ^ ÏS2 

Pc m P2e 

hc - h2c 
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Chemical Length 

^ Ci » *t . • 

P2c Sc mÏS2 

SCHEM “ 
U2c m*BLS 

pe 117 Sc (m‘BLS - m 

Ue m B LS 
: m BLS > l1,ÏS2 

P2c 117 Sc m BLS 
m BLS < mlS2 

U2c m ÏS2 

Number of Electrons at Shoulder of None Cap 

Cj|2 NRN «"‘n 1 1 - c12l ^ (1 4 NRN sCHEM) cI21 «P(“bî5 SCHEM>1 
SRN 

ViH 

in*N + Cj2j SCHEM NRN Tt 
'124 

» Pc 
h ’- ■ 

™c i 
i2 - , - , Mrat V (TABLES HW THRU-7) 

I <>%. KTo I 

neBL " ntd»H 
'118 

I - e«p ( - b22 %IHEM * b2l * b2! 1 -JJ 

Number of Electrons Leaving Boundary Layer 

(30.48)' neBL **BL 

nBL * -5- 
c 

Number of Electrons Entering Wake Neck 

NS * nBL 4 nSRN 

Cone Mach Number with Respect to Second Entropy Layer 

M2c ■ mas ( Mjc . 1 ) 

Second Entropy Layer Mach Number 

Mj * <j («2c * #c J 

Wake Mach Number 

Mew * '3 iMe- °c ) <T*bl* in-8> 
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TABLE III-4 

ELECTRON DENSITY AS A FUNCTION OF 

NORMALIZED ENTHALPY AND AIR DENSITY 

FOR 1000 ppm SODIUM SEED, mrat - o.o 

ne ■ "e j*¡Pf ’ P/PoJ 
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TABLE 111-5 

ELECTRON DENSITY AS A FUNCTION OF 

NORMALIZED ENTHALPY AND AIR DENSITY 

FOR 1000 ppm SODIUM SEED, mrat . qji 

ne - . P/Pol 
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TABLE III-6 

ELECTRON DENSITY AS A FUNCTION OF 

NORMALIZED ENTHALPY AND AIR DENSITY 

FOR 1000 ppm SODIUM SEED, MrAt ' 01 
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TABLE 111-7 

ELECTRON DENSITY AS A FUNCTION OF 

normalized enthalpy and air density 

FOR 1000 ppm SODIUM SEED, Mrat ” 1-0 

RT„ 
P'P0 [clcc(rons/ccl 
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TABLE III-8 

TABLE OF M VERSUS Mc AND 0Q 
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Wake Density 

2.5 

%, * 'e 

1.0 + 0.2 

1.0 + 0.2 
eW 

Wake Enthalpy 

CW 
= h 

/ 1.0 + 0 2 Mez 

* 1.0 + 0.2 M2 
eW 

Wake Velocity 

U. M 

U. 
eW EW \ 

1/2 

EW M. 

Second Entropy Layer Density 

2 , 2-5 1.0 + 0.2 M '2c 
P2 = P2c 

1.0 + 0.2 M22 

Second Entropy Layer Enthalpy 

n2c 

1.0 + 0.2 M2c'! 

1.0 + 0.2 M22 

Second Entropy Layer Velocity 

1/2 
u2c ™2 / "2 1 

U, 
U2c M2 /h_Y 

M2c \ h2c / 

Definition of Shoulder Flow Properties 

If ™*BLS > »’ÏS2 

M = M, s ev 

KeW Ps 

h_ = h 
* «W 

u - u.„ s ew 

if ¿*BLS < ¿‘SS2 

Ms - M2 

Ps “ P2 
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n - u 7 

Shoulder Reynolds Number 

Ps Ms ReUD C169 
Re.. 

■67 

r r ± r ein 0 Rn -3/8 w -1/2 
~ ^164 + ^165 sin {r Res m,5 

Neck Enthalpy 

hN Hm = h.. + Cs [ hs - + 0.5 (106) Us2 - Ah, 'CHEM 

2 h N 
Hn/Hs = -g-^ 

2 hs + 106 Us¿ 

Electron Density at the Neck 

Ps Ns hs 

eN 

'BLS 

(30.46)3 m*BL hN 

lr A n \ (-Dt * Px \ U. 

2n ps U„ 

Shoulder Wake Momentum Thickness 

0BLS ! m*BLS ^ m2S2 

2nps cDvA + 

">’152 CDSS2A' 

BLS 

1/2 

“[T“ ! m*BLS < m*SS2 
us 

Shoulder Reynolds Number Base on Wake Momentum Thickness 

Re 
6% Res 

Os 

Gy 

hN I 1 - 

1 - 
2(106) C90 Ps 0*s Us2 Re(,s (1 + Hn/Hs)_ 

; Z > Z BLS 

0.0 ; Z < ZBLT 
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Transition Electron Density Scaling Factor 

b5 = c83 1 + C84 MRAT 85 + C86 MRATC87 

bll = C91 + c92 mRAT 
-93 

Electron Decay Rate 

c69 C115 + bll 
PS ' 

PSL. 

'125 

106 U,2 »BLS 

n28' 

Ke = (0S*)-2 
7.5 (10^) pg C 100 

neN 

’CON 
-CON 

1.0 + 
nN 

4.0 C90 hs Ke ps f)*s Reôs 

‘CHEM 

; Z > Z B LT 

1.0 ; Z < Z BLT 

Transition Electron Density 
Ci c 

\ /10“3 124 c69 b5 Ps 
133 

‘ ( \ U. ^34 
S s 

Cl,6 11*1 Cl5° ♦ C,,, |hN|C‘«)i 

1.0 - exp hN I (C13î 4 

1.11 (1027) ps C100 + neN Gt 
CHEM 

AC0N 

) 
3’2*3 Radar Cross Section and Length Calculations 

Mnna^r!8^y ÍnPut8.for th® rad“ cross section (RCS) and wake length calcula- 

frequency S (VS)' rlJTnSJ ^ Mec), sea leve! collision 
a!? fm2? y tlfJ S t0 MhiCh thC Wake len*th ls ^asured, 

NL )» altitude, Z (kft), free-streaa Mach number, , scale height, ß, (kft) 
look angle as a function of altitude, ¢5, (degrees), electron decay rate bf 

de”Uy’ "« <*/ce)' Th* -k* “ taken 

Dw at D 

K •= 2ir f2 X 10^ 
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Surface Scattering Correction for Base Diameter 

(K b:4 D,,)5 
IV - -r 

2*,n2 ó * <K b24 D»)* 

Atmospheric Density as a Function of Altitude 

Pm t 

z 
Pz 

Electron Density at which the Plasma Becomes Overdenae 

Transition Point Onset of Overdense Region 

Onset of Constant Multiple Scattering Region 
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Point of Ûn*et of Singlo Multiple Scattering Region 

'SS 
n. »in ^ d •cm 

Ä'1SP 

%s • *S8 *2 0| 

0.0 Í % < 0. 

US8 ■ 10141101 el />■ > w \ 
( J -—• »SSP j 

Point of Onaet of Variable Multiple Scattering Region 

\ XllS Í % ¿ Xoop 
* "{ I XOOP- Xl» K XOOP 
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Peak Radar Cross Section 

(/ 
fc| b20 bi •'.'o l*ss 

•USD 

) 

If » <1.0 

•V " Al * lmsd d** *l»20 * — 
D_* .»#• 6 

4 b, 

* D_ 
&) 

1.0 * b2 ax 

a 

■t) 

4 b, l-OI) 

(½ — 1*115 [)) iiii ö 

-m bj * 

Cl»« Ó 
- c 

The wake length la baaed on a uninodal function of the axial distance in the wake, 
'»<«> , and an Input radar nolae level, «hl,, the wake length Is the distance from 
the naximun value of «(*> to the point where the function Is equal to the noise 
level. The procedure employed Is based on a course oarchlng procedure to define 
the limits for the maximum of the function, followed by a fine resolution search 
for Xm(l,, using a Fibonacci search technique. If the maximum of the » unction is 
above the noise level, the course marching procedure it again initiated from the 
peak and the limits for the point Xf0l)j , where the function is equal to the noise 
level, are established. The square of the difference between the function and 
the noise level is then minimised using the Fibonacci technique to define the 
root more accurately. The wake length is then calculated by; 

Nf * Tow “ *max 

The function, "<«>, la defined by the following equations: 

HI-101 



.1 

•’p i Kqpp > 0,0 

«»T ^ 0.0 »nJ 

Xjjjj) > 0.0 

D- ; \ wvii _ 0.0 *nj 'OOP 

%SP <: 

•nall««t <*( 
no r 
co* ó 

. X OOP X - X, , X, * XODp 
nof 

co»d 

^ 0.0 ; X - X, i 0.0 Of «f X - X, > 

i Yi D_* tin * ô. o«h»r«it« 

nor 

coa é 
* X, ODP 

Yj * «malIt %i ol 
(no f 

co«d 
no r 

2 LMS * X ■ Xi * xODP - \ * XMSP + “ x 

0.0 ; X - X, < Xodp o,i/ X-X, >-— * X, 
cot ö 

0-1 » 
( 
i 1 2 f— Yj Dw# »in * ó ; otherwise 

no# 
VMSD 

Y„. 

^ Xmsp 2 (X’X* “ x«sp> 

jx-i^l 
' cot Ó 

X, ; otherwite 

Y)2 " 

^ x-xt ; x < x, » Xssp 

/ XSSP 1 X > x, ♦ XSSP 

nor 
If X-X, < Xnup J»if x-x, * XSSP 
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0,0 "J 

IM r 
If X - X, ¿ Xjujp •nd X - X, i .- * Xjgjp and b:o í 0.0 

? »in 4 
1 I 'i 

__ I- 

cCR 

b, V„ -b, Y I2\ J_ 

n. \ b-10 

21 -Tr* 
\ ' ■' 

bl b20 

*CR 

b, b;0 
Y,,-Y 

2 11 2 
« - e 

12 

Æ)2 ^ 
1.0 + b- 

( D*‘ 
Vio» / 

*¡n* «5 

(2-b2|))' 

O.-/ 
bi b I D20 

I50r 
[ f X - Xj > X||5p and X - X, < . + Xgjjp and bjo » 0.0 

coa ó 

», - ain^ ó 
bl YJ1 

4bl YS2 

"bl Y«\ 

' ) 

♦ ÍY,2 - Yjj ) UinU) 

D.» 
Vio«/ 

1.0 4 b- (6) d- 
Vssp ¡ 

V41 * 

130 f 

coaé 
> ( X - X, 

I „ 130r 
f X - . - Xt i oihenriae 

coa 4 

y42 - X - X, 

íf X-Xt < Xssp 

o4 - 0.0 
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If X-X, > X^p : 

3.3 MISCELLANEOUS CALCULATIONS 

Four miscellaneous operations are performed near the end of the nalyois calcula¬ 
tions. These aret a. the evaluation of a polynomial, b. the calculation of 
a vector of generalized differences, c. the calculation of the average densities 
of the decoys, and d. the calculation of a series of terms comparing the 
characteristics of the decoys immediately before and after the discontinuous shape 
change. 

The polynomial evaluation was originally intended for comparison of the nominal 
free apace radar cross section of a reentry vehicle, Xç, , with a curve-fit of 
the nominal radar cross section of various decoys. The user supplies curve fit 
coefficients for the cross-section date applicable to the class of electromagnetic 
device« being used. The difference between the reentry vehicle and decoy could 
be calculated for use in the penalty function equation as: 

aRCS 

*3 

£ ££ 
i j-1 i-i 

I-l l-i K- 

•COE ((K-1)N,N2 +(J-I)N, *1) B1 Nl 

This calculation was generalized to allow the polynomial to be a function of 
any three quantities in the 0CCUR vector, Q. , and is now coded in the following 
form: 
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M, N, N. 

VW I - I J - I K -1 

'RC5 " XC , - VH 
K - I J - I I - I 

This equation allows the radar calculation described above to be performed 
(X( * 1.0) and also allcis direct use of the polynomial as a constraint If 
X( Is 0.0 and X, ^ Is -1.0. 

A* many as twenty differences between pairs of quantities In the 0CCTR vector 
can be calculated: 

Gj - QH| - Ql j j - 1, 20 maa 

whereHj and L) ere subscripts Identifying the desired quantities in the OCCUR 
vector. 

The average density of the initial decoy Is calculated from: 

r * R¡y| w* dj 

h » ( 1 - >in d, ) 

V, . irh2(RN) - h/3) *(s/J)(LAi - h)(RBi2 + RBir ♦ r2) 

D, - V,/t 

If the vehicle undergoes a discontinuous shape change, then the average density 
of the decoy iirmedlately after the shape change is: 

t ■ R^ cos #2 

h » R|^ ( 1 - sin #2 ) 
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Vj . »h‘<RNi - h/î) *(t/j)<LAj - h) (RBï2 ♦ *Bj 1 * *2> 

Dj * Vj/*, 

The comparison» of the vehicles before and after discontinuous shape change are 
calculated: 

'I ■ * i 
FINAL 

D? » ft 
FINAL 

01 * RN, “ RN, 
’final 1 

°4 " RB, 
'FINAL 

D, - A, 
FINAL 

D6 - LA, 
1 FINAL 

R, - t2/f, 

- Li 

FINAL 

FINAL 

rn,/ rn 
\ 2 

R* 'Iooí'Xn, 

FINAL 

FINAL 

- 0.0 

R4 

Rî 

Rf> 

rB, 7 RB 
FINAL 

i Ai / A i 
' 2 1 FINAL 

0.0 if Aj 
FINAL 

LA,/ ‘-A, 
FINAL 

0.0 

These quantities are available for use as constraints (see Table 4 of Appendix II. 
the User's Manual). 
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4.0 COMPARISON OF DECOY WITH REENTRY VEHICLE 

The basic analysis calculations described in Section 3.0 primarily involve 
the determination of data for a single vehicle. In this section the techniques 
used to compare a reentry vehicle and decoy will be discussed along with the 
definition of the corridor and effectiveness integrals. These integrals are 
calculated for use in the penalty function equation and in the effectiveness 
operations, respectively. 

4.1 DIFFERENCE EVALUATIONS 

As many as nine performance functions are stored for the reentry vehicle and the 
decoy. The differences between the reentry vehicle (R/V) performances and decoy 
(D) performance at the M altitudes are: 

\I>. *R 'V: V *t>, 

*01 ’ 0R/V¡ _ fiDl 

"L 

*L, 
%/V¡ 

«R, 
i 

These nine vectors of differences will be referred to as \P¡ in the following 
discussions. 

In the influence calculations associated with M0DE - 2 in the program, the 
partial derivatives of the differences listed above with respect to the design 
variables, X, can be evaluated using finite differences. The first derivative 
is based on a basic decoy (1) and a comparison decoy (2): 
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i = 1, M 

i 1,9 

The second derivative is based on three decoys which are used to define two first 
derivatives. The second derivative is: 

i = 1, M 

i = 1,9 

4.2 INTEGRALS OF SPECIAL FUNCTIONS 

The corridor integrals are defined in terms of the performance differences, AP ; 
the corridors, T and Bj and an arbitrary multiplier which can be a function of 
altitude, Z, if desired. The quantities AP, T, and B are all functions of 
altitude. For each of the nine performance functions there is a corridor integral 
of the form: 

Z, 

I < B - AP¡ >2 + < A P: - T >2 I dZ i » 1, 9 ■ (AAjZ* ♦ AAj f j Z + AAj+2) 

where the square brackets mean that negative numbers are set to zero. 

The effectiveness integrals are calculated using the performance differences, AP ; 
and the standard deviation of the perceived error (uncertainty) in the defense 
measurement, o, . Both of these quantities are functions of altitude. For each 
of the nine performance functions there is an effectiveness integral of the form: 
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5.0 EFFECTIVENESS MODEL OPERATIONS 

A discussion of the effectiveness model operations is included in the main portion 
of the ADTECH IV Final Report. The effectiveness integrals, Ej , are discussed 
in Section 4.2 of this volume. For example: 

The difference in the means of the logarithm of the likelihood ratio, n , is cal¬ 
culated using only the terms which have been specified by the user: 

Zo - (Sv Kv + SD ED + SßEß + SR1 fcRj + sR2 + Sd E r2 + Sd E r3 + Sw.En/ + S' 
'1 W1 

,1/2 %3)j 
With the input probability of false dismissal, PpD, the upper limit of integra¬ 
tion, to , is calculated from the equation: 

— 00 

Then with t0 and n calculated the probability of discrimination of the decoy is: 

— 00 
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6.0 CLASSIC FUNCTIONS FOR TESTING THE OPTIMIZATION TECHNIQUES 

Five functions or set of functions are provided for use in checking the search 
and optimization techniques. The substitution of analytic functions in place of 
the complete trajectory calculations significantly conserves machine time and 
also provides positive control for the checkout since the characteristics of the 
functions are explicitly defined. 

The subscripts of the quantity X in the following equations refer to the locations 
in the vector called 0CCUR in the program. The vector of coefficients called A 
in the equations is the same as the vector of coefficients called A in the drag 
calculations, thus it is recommended that these calssic check cases and actual 
trajectory calculations not be utilized in the same job unless careful attention 
is given to the A coefficient vector and the 0CCUR vector for each case. 

The first function is based on the one used by Rosenbrock (Refs. III-5 and III-6). 

X]oq = 100 [1^2 ~ 1 +(1- Xj) + aj 

The second set of functions provides two additional equations which can be used 
to generate nonlinear constraints for use with the Rosenbrock function: 

7 2 7 
X100 = 100 (x2 - X^) +(1- XjT + a, 

Xiqi = a2 ”1 X2 ~ (afj (X] - ay)^ + aç (Xj - a2)2 + ajg (\j - a2) + a^j) 

The third set of functions is based on the four-variable function with constraint 
functions which was developed by Rosen (Reference III-7). 

X200 = X!2 + X22 + 2X32 + X42 - 5Xj - 5X2 - 21 X3 + 7X4 + a17 

X201 = -X!2 ~ X22 - X32 - X42 - Xl + X2 - X3 + X4 + 8 

X202 = - X!2 - 2X22 - X32 - 2X42 + Xj + X4 + 10 

X203 = - 2Xj2 - X22 -X32 - 2X! + X2 + X4 + 5 

The fourth function is based on a two variable function which was Fiacco and 
McCormick (Reference III-8). 
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The fifth function is a general quadratic function: 

NlOO “ a| xl2 + a2 xi X2 + a3 x2? ♦ a4 Xj + X2 * 1¾ 

Ihis function was used to generate the optimizer check cases which were presented 
in Section 6.3 of the Users Manual (App. II). 
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VARIABLE METRIC METHOD FOR MINIMIZATION 

William C. Davidon 

This is a method for deti'miriii;] numerically local miuinia of dif¬ 
ferentiable functions of several variables. In the process of location eacn 
minimum, a matrix which characterizes the behavior of the function about 
the minimum is determined For a region in which the function depends 
quadratically on the variables, no more than N iterations are required, 
where N is the number of variables. By suitable choice of starting values 
and without modification of the procedure, linear constraints can be imposed 
upon the variables. 

ÏNOT. REPRODUCE ^ 
1. INTRODUCTION 

The solution to many different types of physical and mathematical 
problems can be obtained by minimizing a function of a finite number of 
variables. Among these problems are least-squares fitting of experimenta* 
data, determination of scattering amplitudes and energy eigenvalues by 
variational methods, the solution of differential equations, etc. With the 
use of high-speed digital computers, numerical methods for finding the 
minima of functions have received increased attention. Some of the pro¬ 
cedures w'hich have been used are those of optimum gracient,(W conjugate 
gradients,(^) the Newton-Raphson iteration,(3) and one by Garwin and 
Reich.(4) In many instances, however, all of these methods require a large 
number of iterations to achieve a given accuracy in locating the minimum 
Also, for some behaviors of the function being minimized, the procedures 
do not converge. 

The method presented in this paper has been developed to improve 
the speed and accuracy with which the minima of functions ran be evaluated 
numerically. In addition, a matrix characterizing the behavior of the func¬ 
tion in the neighborhood of the minimum is determined in the process. 
Linear constraints can be imposed upon the variables by suitable choice of 
initial conditions, without alteration of the procedure. 

2. NOTATION 

We will employ the summation convention: 

N 
bß~ Y, aM bß 

M = 1 
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In describing the iterative procedure, we will use symbols for memory 
Ircaticrs rather than successive values of anmnber; e.g , we wool«-) write 
* + 3 —». x instead ol + 3 = x¿ + j In this notation, the sequence of oper 
atitr.s is generally relevant The following symbols will be used. 

xM; p - ! . .., X' the set of N independent variables 

f (x). the value of the function to be minimized evaluated at the 
point _x. 

ga (x): the di rivat'iVes of f tx) -^.ith respect to x' evaluated.at x: 

a non-negaii'. c symmetric matrix which will be used as a 
metric in the space of the variables 

A. The determinant of h,<7' 

A Z times fractional accuracy to which the function f (&) is 
to be minimized 

d: a limiting value for wi.r.t is to be considered as a "reason-, 
able" minimum value of the function. For least squares 
problems d can be set equal to zero. 

K an integer which specifies the number of times the variables 
arc to be changed in a random manner to test the reliability 
of the determination of the minimum. 

3. GEOMETRICAL INTERPRETATION 

It is convenient to use geometrical concepts to describe the mini¬ 
mization procedure. We do so by considering the variables xM to be the 
cjirdir.ates of a point in an X-dimensional linear space. As shown in 
Fig. la, the set of x for which f (x) is constant forms an N-l dimensional 
~ rface in this space. One of this family of surfaces passes through each x, 
and the surface about a point is characterized by the gradient of the function 
at that point: 

gp is) = 

These N components of the gradient can in turn be considered as the coor- 
¿¿=ates of a point in a different space, as shown in Fig. lb. As long as £(¾) 
is differentiable at all points, there is a unique point g in the gradient space 
associated with each point x in the position space, though there may be 
more than one x with the same g. 

r [not reproducid 
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reproducible 

Fig. 1 . G cometrical interpretation of and gu(x) 

In the neighborhood of any one point A the second derivatives of 
f(x) specify a linear mapping of changes in position, dx, onto changes in 
gradient dg, in accordance with the equation 

d g , _i?_L 
dx£ òx 

dx1 (3.1) 

The vectors dx and dg will be in the same direction only if dx is an 

eigenvector of theTiessian matrix: 

I 
dx^cx''1 ! 

If the ratios among the corresponding eigenvalues are large, then for most 
dx there will be considerable difference in the directions of these two 

vectors. 

All iterative gradient methods, of which this is one, for locating 
the minima of functions consist of calculating g_for various x in an effort 
to locate those values of x for which g = 0, and for which the Hessjan 
matrix is positive definite. If this matrix were constant and explicitly 
known, then the value of the gradient at one point would suffice to determine 
the minimum. In that case the change desired in g would be -j, so we 

would have 

d*f Axv (3.2) 

from which we could obtain Axv by multiplying Eq. (3.2) by the inverse of 
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the matrix òli 
¿xM dxV However, in most situations of interest, 

! I C* * * r l J 

is not constant, nor would explicit evaluation at points that might be far from 
a minimum represent the best expenditure o£ time. 

Instead, an initial trial value is assumed for the matrix 
-i 

_ . I òx^ 
This matrix, denoted by h^v, specifics a linear mapping of all changes in 

the gradient onto changes ir position. It is to be symmetric and non-negative 
(positive definite if there are no constraints on the variables! After 
making a change in the variable x, this trial value is improved on the basis 

of the actual relation between the changes in g and x If .—íí-L___ ■ o ÜL ~ L con- 

s tant, then, after N iterations, not only will the minimum of the function be 

determined, but also the final value of hMV will equal ——— ’ w . 
ó xHòxv c 

sliall subsequently discuss the significance of this matrix in specifying the 
accuracy to which the variables have been determined 

The matrix h^can be used to associate a squared length to any 
gradient, defined by h^1' g^gv If the Hessian matrix were constant and h^v 

were its inverse, then £h^17 g^g^ would be the amount by which f(x) would 

exceed its minimum value We therefore consider hHv as specifying a 
metric, and when we refer to the lengths of vectors, we will imply their 
lengths using hr as the metric We have called the method a "variable 
metric" method to reflect the fact that is changed after each iteration 

We have divided the procedure into five parts which fo a large ex 

not only' facilitâtes the presentation and tent are logically distinct. This uui umy lacimaies me presentation and 
analysis of the method, but it is convenient in programming the method for 
machine computation. . . 

i in programming the method for 

rNOT‘REPFODUCÎ 
4 READY. CHART 1 

b 
- rr 
.jb 

The function of this section is to establish a direction along which 
to search for a relative minimum, and to box off an interval in this direc¬ 
tion within which a relative minimum is located. In addition, the criterion 
for terminating the iterative procedure is evaluated. 

Those operations which are only performed at the beginning of the 
calculation and not repeated on successive iterations have been included in 
Chart 1 (page 7). These include the loading of input data, initial print-outs, 
and the initial calculation of the function and its gradient. This latter cal¬ 
culation is treated as an independent subroutine, which may on.its initial and 
final calculations include some operations not part of the usual iteration, 
such as loading operations, calculation of quantities for repeated use, special 
prmt-outs, etc. A counter recording the number of iterations has been found 
tò be a convenience, and is labeled I. 
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The iterative part of the computation oegins with ‘‘READY l.'1 The 

direction of the first step is chosen by using the metric h in the relation 

The component ol the gradient in this direction is evaluated through the 

relation 

^ g. gs 
(4.Z) 

From Eqs. (4.0 and (4.2) we see that -gs is the squared length oí and 
hence the improvement to be expected in the function is -jgs. The positive 
definiteness of h^v insures that g - is negative, so that the step is in a direc¬ 
tion which (at least initially) decreases the function.* If its decrease is 
v/ilhin the accuracy dcoired, i e , if £ > 0, then the minimum has beet 

determined. If not,'we continue with the procedure. 

Ina first effort to box in the minimum, we take a step which is 

twice the size that would locate the minimum if the trial hM^were| 

However, in order to prevent this step from being unreasonably large when 
the trial h^v is a poor estimate, we restrict the step to a length tue t. at 
(XsiMg,,. the decrease in the function if it continued to decrease linearly, is 
not greater than some preassigned maximum, ?(f-4)- We then change x by 

xM+XsM—x+^ , (4-3) 

and calculate the new value of the function and its gradient at x . If the 
projection g+. = of the new gradient in the direction of the step is 
positive, or if the new value of the function f+ is greater than the origina . 
then there is a relative minimum along the direction s between x and x , 
and we proceed to ”Aim" w-here we will interpolate its position However, 
if neither of these conditions is fulfilled, the function has decreased and is 
decreasing at the pointV, and we infer that the step :akcn was too small 
If the step had been limited by the preassigned change in the ninction ^we 
double d. If the step had been taken on the basi«-- of W , we modify n „o 
as to double the squared length of s^, leaving the length of an perpendicular 

vectors unchanged This is accomplished by 

hPV + l sp 8v-^v , (4.4 

where £ is the squared length of sK This doubles the determinant of h^v. 

The process is then repeated, starting from the new position. 

INOT REPRODUCIBLE 
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5. AIM: CHART L 

The function of this section is to estimate the location of the rela¬ 
tive minimum within the interval selected by "Heady " Also a eompanson 
is made of the improvement expected by going to this minimum .vilh that 

from a step perpendicular to this direction. 

DRESS 2 

> 

Inasmuch as the interpolation is along a one-dimensional interval, 

it is convenient to plot the function along this direction as a simple graph 

(see Fig. ¿)- 

The values oí £ and f+ of the function at points x and x+ are known; 

and so are its slopes, g, and g + , at these two points^ We interpolate for 
the location of the minimum by choosing the "smoothest curve satisfying 

, 1 .4*   ~ 1 . » f V» CM 1 V \ ' Í» 

the boundary conditions at x 

which minimizes 

and X+, namely, the curve defined as the one 
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Fig. 2 

Plot of f (x) along a 
one-dimensional interval. 

over the curve. This is the curve formed by a flat spring fitted to the 
known ordinates and slopes at the end points, provided the slope is small. 
The resulting curve is a cubic, and its slope at any a (0 ) is given by 

gs(,:t) = gs 
¿a 

tes * z) +^r (ßs + 8s + 2z)' (5.1) 

where 

7 
3(f - fT) 

X + 8s 

The root of Eq . (5.1 ) that corresponds to a minimum lies between 
0 and 1 in virtue of the fact that gs < 0 and either gs > 0 or z < gs + g+. It 
can be expressed as 

a min = Ml - a) 

whe re 

8s > Q - z 

g¿ - 8S +¿Q 

and 

Q Mz* - g5gs+)l/z 

(o.2) 

The particular form of Eq. (5.2) is chosen to obtain maximum accuracy, 
which might otherwise be lost in taking the difference of nearly equal 
quantities. The amount by which the minimum in f is expected to fall be¬ 
low f+ is given by 

P J(X-aX) 
dag8(u) = (g£ + z + 2Q)a2 X (5.3) 
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I& WOT reproducible 
The anticipated change is new compared with what would be expected from 
a perpendicular step. On the basis of the metric hMv, the step to the opti¬ 
mum point in the (N-! J-dimensional surface perpendicular to through 
X*** is given by 

--t» (5.4) 

The change in f to be expected from this »tep is ji-u g^. Hence, the 
decision whether to interpolate for the minimum along s or to charge x oy 
use of Eq. (5.4) is made by comparing = t^ gj with expression (5.3). 

The purpose of allowing for this option is to improve the speed of 
convergence when the function is not quadratic. Consider the situation of 
Fig. 3. The optimum point between x and x* is point A. However, by going 
to point B, a gr-cater improvement can be made in the function. When the 
behavior of the function is described by a curving valley, this option is oi 
particular value, for it ertables successive iterations to proceed around 
the curve without backtracking to the local minimum along each step. How¬ 
ever, if evaluation of the function at this new position does not give a better 
value than that expected from the interpolation, then the interpolated position 
is used. Should the new position be better as expected, it is then desired to 
modify h^v to incorporate the new information obtained about the function. 
The full step taken is stored at s^1, and its squared length is the sum of the 

squares of the step along s and the perpendicular step, i.e., s^=-gt+ + £ . 
The change in the gradient resulting from this step is stored at guS and 
♦hese quantities are used in the section "Dress" in a manner to be described. 

ax*2 + (1 - a) x+fi “•’t^ (5-5) 
*. 

By direct use of the xM instead of the sM greater accuracy is obtained in 
the event that a is small. After making this interpolation, we proceed to 

"Fire." 
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6. FIRE: CHART 3 

The purposes of this section are to evaluate the function and its 
gradient at the interpolated point and to determine if the loçal miniRiúm 
has been sufficiently well located. If so, then the rate of change of gra¬ 
dient is evaluated (or, more accurately, X times the rate of change) by 
interpolating from its values at x, x^, and at the interpolated point. 

If the function were cubic, then f at the interpolated point would 
be a minimum, the component of the gradient at this point along would 
be zero, and the second derivative of the function at the minimum along 
the line would be 2Q/X. However, as the function will generally be more 
complicated, none of these properties of f and its derivatives at the inter¬ 
pela ted point will be exactly satisfied. We designate the actual value of f 
and its gradient at the interpolated point by F and g,¿. The component of 
g^ ?.lcng s is = g8. Should f be greater than f or 14- by a significant 
amount (> e), the interpolation is not considered satisfactory and a new one 
is made within that part of the original interval for which f at the end 
point is smaller. 

From the values of the gradient gp, and gjt, at three points along 
a line, we can interpolate to obtain its rate oí changa at the interpolated 
point. With a quadratic interpolation for the gradient, we ah(tl>in 

(gp ) * <gp “ Ip) 8Ma <6;1 ) 

where 7 g^s is the rate of change of the gradient at the interpolated point 
The component of gus in the direction of s, namely, si' g^g = gss, can be 
expressed as 

If the interpolated point were a minimum, then gs = 0 and g8S = 2Q. 

An additional criterion imposed upon the interpolation is that the 
first term on the left of Eq. (6.2) be smaller in magnitude than Q. Among 
other things, this insures that the interpolated value for the second deriva¬ 
tive is positive. If this criterion is not fulfilled, no interpolation is made, 
and the matrix h^V is changed in a less sophisticated manner * 

l NOT REPRODUCIBLE 
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7. DRESS. CHART 4 

The purpose of this section is to modify the metric h^v on the basis 
of information obtained about the function along the direction ±. The new 
hr11' is to have the property that (hJiV)' g^g = X s^, and must retain the infor¬ 
mation which the preceding iterations had given about the function. 

If the vector h^v gvs = t^ were in the direction of sK then it would 
be sufficient to add to h^*-' a .matrix proportional to ¡¿*sv. If tM is not in the 
direction of s^, the smallest squared lengthier the difference between sd 

X 1 
and (hdv + asdsv)g is obtained when 0 = 

Ess l ’ 
For this value of a, 

the squared length of the difference is t^ - JÍM. where to is the square 

length of ji, namely, hd^ d,i dy. When this quantity is sufficiently small 
(< c), the matrix hdv undergoes the change: 

hd1' + --A s¿V'-^h/^ 

\8ss V 

The corresponding change in the determinant of hdvig 

(7.1) 

•ss 
A —A (7.2) 

When the vectors td and sd are not sufficiently colinear, it is necessary to 
modify Ykü' by a matrix of rank two instead of one, i.e., 

td^ X 

lo 8s s 
hdd . + sd sv. hdd (7.3) 

Then the change in the determinant of hPv is 

^68 h —A (7.4) 
f« 

After the matrix is changed, the iteration is complete; after printing out 
whatever infoimation is desired about this part of the calculation, a new 
iteration is begun. This is repeated until the function is minimized to with¬ 
in the accuracy required 

8. STUFF: CHART 5 

The purposes of this section are to test how 

been minimized and to test how well the matrix hMv 

at the minimum. This is done by displacing point x 
minimum in a random direction. 

well the function has 

approximates || g 

from the location of the 
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ihe displacement of point x is chosen to^be a nnit length in terms 

,/ 1,“V ,» ihr mi'lric. Whrn b-v - II 'roll'll 1' such a step will increase 

by half the square of the length of the step. 

if the direct;»'»*- were to be randomly distributed, then it would not 
„ .„¡.fcclu.y to choose the rango of each component ol tg independently; 

rather, the ranpc for the !.. should be such that h-1 tg to is bounded by 
areas signed values. However, this refinement has not been incorporated 
into the charts nor the computer program. The length of the step has been 
:hoscn equal to one so that the function should increase by * when each 

random step is taken. 

Significance of hu . 

We examine a least-squares analysis to illustrate how the initial 

trial value for hw;' is chosen, and what its final value signifies. In this 
.ase, the function to be minimized will be chosen to beX /2. whej-e X is 
the statistical measure of goodness of fit. The function \ 2 is the natura 
logarithm of the relative probability for having obtained the observed set 

of data as a function of the variables XM being determined. 

,, I! Ò2 Í " “l 
The matrix h^ - \\~f. c X 

correlations among the variables by 

then specifies the spreads and 

X*/2 ,. fdNxixM.<xM»(xv-<x1/»e 
<AxMAxv> = -2--1-7-Ñ- 

J d* X e a. 

(8.1) 
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í NOT'REPRODU 
1 7 

The diagona1 elements of W11' give the mean-square uncertainty for each of 
the variables, while the off-diagonal elements determine the correlations 
among them. The full significance of this matrix (the error matrix) is to 
be found in various works on statistics.(^) It enables us to determine the 
uncertainty in any linear function ol the variables, -or, if u - a^ x^ , then 

<u> a^< x^ > 

,-1 1 1 
Í w ‘ 

< (Au f > - a.; av (<xM xy> - <x^><xv >) 

■ ' • ■. L _ - . 
k. • - Aß av h 

(S.2a) 

If u is a more general function of x_, then if in a iaylor expansion about .ht 
value of x derivatives higher than first can be ignored, we ha\e 

<u (jt ) > = U «X» 

<Au ( <x> \ ^V1 
I ox 

«2L»h^ 

If it is possible to estimate the accuracy with which the variable» 
are determined, the use of such estimates in the initial trial value of hu • 
will speed the co.ivergence of the minimization procedure. Suppose, for 
example, that to fit some set of experimental data, it is estimated that the 

variables xP have the values: 

j:1 - 3.0+0! 

x* = 28.0 Í 2 

x3 = 104±102 (8’3} 

Then, the initial values for xM and h^v would be 

= (3.0 28.0 104) 

If this estimate is even correct to within a couple of orders of magnitude, 
the number of iterations required to locate the minimum may be substan¬ 
tially less than that for some more arbitrary choice, such as the unit 

matrix. 

If it is desired to impose linear constraints on the variables, this 
can be readily done by starting with a matrix h^v which is no longer posi¬ 
tive definite, but which has rero eigenvalues. For the constraints 
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by = ß, etc., 

the matrix h^v must be chosen so that 

hMi' av = 0 

by * 0 (*.6) 

amd the starting value for x/' .r,ust satisfy Eq. (8 5). For example, if x3 is 
to be held constant, all elements of in the third row and third column 
are set equal to zero and x’ is set equal to the constant value. 

When constraints arc imposed, instead of setting A equal 1' '-he de¬ 
terminant of h^v ('0). it is set equal to the product of the non-zero eigen¬ 
value of bu'. Then, except for round-off errors, not only will the > onditions 
(8.6) be preserved in subsequent iterations, but also A will continue to equal 
the product of non-zero eigenvalues 

Though Ais not used in the calculations, its value may be of interest 
in estimating how well the variables have beei determineu, sin'tec-h^1 gives 

the sum of the eigenvalues of hu;', while A gives their product. Tie square 
root of each of these eigenvalues is equal to one of the principal setniaxes 
of the ellipse formed by all £ for which f (x) exceeds its minimum value by 

9 CONCLUSION 

The minimization method described has been coded for the ÍBM-704 
using Fortran. Experience is now being gathered on the operation of the 
method with diverse types of functions. Parts of the procedure, not incor¬ 
porating all of the provisions described here, have been in use for some 
time in least-squares calculations for such computations as the ahalysi*3 
of 7T-P scattering experiments,for the analysis of delayed neutron ex¬ 
periments ,(7) and similar computations. Though full mathematical analysis 
of its stability and convergence has not been made, general considerations 
and numerical experience with it indicate that minima of functions car be 
generally more quickly located than in alternate procedures, The ability of 
the metric, h^, to accumulate information about the function and to rompen 
sate for ill-conditioned is the primary reason for this advantage- 

The author wishes to thank Dr. G Perlow and Dr. M. Peahkin for 
valued discussions and suggestions, and Mr. K. Hillstrom for carrying out 
the computer programming and operation. 
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APPENDIX * 

If we have the gradient of the function at a point in the neighborhood 

of a minimum together with GT1, where _G = II òx^dx1' II ' then’ ne«lectin8 
terms of higher order, the location of the minimum would be given in 
matrix notation by 

Ç = X - G'1 V (1 ) 

In the method to be described, a trial matrix is used for^*1 and a step 
determined by Eq. (1 } is taken. From the change in the gradient resulting 
from this step, the trial value is improved and this procedure is repeated. 
The changes made in the trial value for Gf1 are restricted to keep the hunt¬ 
ing procedure "reasonable^ regardless of the nature of the function. Let 
H be the trial value for G~*. Then the step taken will be to the point 

x+ = X - H V (¿) 

The gradient at x+, 7+, is then evaluated. Let D = V+ - V be the change in 
the gradient as a result of the step S = x+ - x = -H V. We form the new 
trial matrix by 

The constant a is determined by the following two conditions: 

(3) 

1. The ratio of the determinant of H+ to that of JH should be between 
R~* and R, where R is a preassigned constant greater than 1. 
This is to prevent undue changes in the trial matrix and, in 
particular, if H is positive definite, i£+ will be positive definite 
also. 

2. The non-negative quantity 

A = D H+ D + S (H + )"1 S - 2 S • D (4) 

is to be minimized. This quantity vanishes when S = Ü + Tlïe a which 
satisfies these requirements, together with the corresponding A, as functions 
of N r V+ H v+ and M = V+ HV , are as follows: (8) 

.. \- 

♦ The following method is a description of a simplified method embody¬ 
ing some of the ideas of the procedure presented in this report. 
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Range of M a 

M < -N/(R - 1 ) 
-N/(R - 1 ) < M < N/(R + 1 ) 
N/(R + 1) <M <NR/(R + 1) 
NR/(R + 1 ) < M < NR/(R - 1 ) 
NR/(R - 1 ) < m 

1 /(M - N) 
(l/RN) - (l/N) 
(N - 2M)/N(M - N) 
(R/N) - (l/N) 
1 /(M - N) 

A_ 

/. o 
(N - M + MR)*/RN 
4M (N - M)/N 
(M + NR - MR)*/RN 

0 ' (5) 

The dependence of Aon M is bell-shaped, symmetric about a maximum at 
M = N/2, for which a = 0 and Û = N 

After forming the new trial matrix H+, the next step is taken in 
accordance with Eq. and the process repeated, provided thatN -7 + HVf 
is greater than some preassigned <7. When the gradient is constant, it car 

be written as 

V = G. (x - C). 

If u is an eigenvector of HG with eigenvalue one, then it will be an eigen¬ 
vector of H+G with eigenvalue one as well, since 

H+Gu = HG u r a H7 4 (7+ HGu) 

= u t aH V4 [ V HG (1 - HG) u] 

= u (7) 

Furthermore, when Ù. - 0S 

H+G 5 = H.+ D = S (8) 

so that S becomes another such eigenvector. After no more than N steps 
(for which A = 0), H will equal G"1 and the following step will be to the exact 

minimum. 

The entire procedure is covariant under an arbitrary linear coordi¬ 
nate transformation. Under these transformations of x,V transforms as a 
covariant vector, G transforms as a covariant tensor of 2nd rank, andH. 
transforms as a contravariant tensor of 2nd rank. The intrinsic character¬ 
istics of a particular hunting calculation are determined by the eigenvalues 
of the mixed tensor HG, and the components of the initial value of (x - £) 
aldng the direction ol the corresponding eigenvectors. Since successive 
steps will bring HG closer to unity, convergence will be rapidly accelerating 
even when G itself is irregular. Constraints of the form b • x == c can be 
improved by using an initial H which annuls b, i.e., 

H • b * 0 

and choosing the initial vector x such that it satisfies b • x = c. Then all 
steps taken will be perpendicular to b and this inner product will be con¬ 
served. For example, if it is desired to hold one component of x constant, 
all the elements of H corresponding to that component arc initially set equal 

to zero. 
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