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ABSTRACT 

Volume VI deals with the following topics: 

1) Optimum Passive Detection 

The problem of passive detection and target location by means of a linear array is 
analyzed from a rather general point of view for the case of stationary Gaussian signals 
and noises with known statistical properties.   Relationships are developed between 
detector performance indices and such parameters as array dimensions, observation 
time, signal bandwidth, hydrophone spacing, signal source location and noise model 
properties.   Isotropie and anisotropic near and far field noises are considered.   Array 
gain and directivity measures are treated in detail. 

2) Optimum Passive Bearing Estimation 

Lower bounds are set on the rms bearing error attainable with a linear array when 
signal and noise are stationary Gaussian processes with known spectra and the noise 
is statistically inebpendent from hydrophone to hydrophone.   The results are compared 
with the rms error of a split beam tracker, modified by insertion of an appropriate 
spectrum-shaping filter into each array half.   The split beam tracker reaches the 
lower bound for a two-element array and comes very close to the lower bound for 
arrays of arbitrary size.   Thus it is a very nearly optimal instrumentation under the 
given circumstances. 

3) Active Sonar Signal Design 

The signal design problem is considered for the case of an ideal transmission medium 
and reverberation modelled as reflations from a series of independent, Poisson dis- 
tributed scatterers.   Primary interest centers on the redesign of the pulse waveshape 
in accordance with information gained from an earlier return.   The results indicate 
the possibility of some improvements in principle, but the highly idealized nature of 
the assumption leaves the question of practically important gains open to consider- 
able doubt. 
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FOREWORD 

This is the sixth in a series of reports describing work performed by Yale University 
under a subcontract with Electric Boat division of General Dynamics, prime contractor 
of the SUBIC (SUBmarine Integral Control) Program, contract number NOnr 2512(00). 
The Office of Naval Research is sponsor of the SUBIC Program; LCDR E. W. Lull is 
Project Officer for ONR. Mr. J. W. Herring is Project Manager for Electric Boat 
division under the direction of Dr. A. J. van Woerkom, Chief Scientist of the Applied 
Sciences Department. 
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I    INTRODUCTION 

The following is a summary of work completed under contract 8050-31-55001 between 
Yale University and Electric Boat division during the period from 1 October 1967 to 
30 June 1968.   More detailed discussions of the results as well as their derivations 
are contained in a series of three progress reports which are appended.   Two of the 
topics, dealing with passive detection and bearing estimation, represent continuation 
of efforts reported in earlier volumes of this series.   The third item deals with initial 
results in a new area, optimum design of active sonar signals. 

II     OPTIMUM PASSIVE DETECTION 

Report No. 35 contains the most comprehensive and general treatment in this saries 
of the optimum passive detection and target location problem.   Signal and noise are 
assumed to be stationary Gaussian processes with known statistical properties.   The 
receiving array is assumed to be linear and uniform hydrophone spacing is postulated 
whenever specific computations are carried out.   The basic analytical procedure 
follows initially the familiar technique of representing the observed time function at 
each point in space by a Fourier series.   Then, following a basic suggestion by 
Vanderkulk, the spatial structure of the data is treated by projecting the Fourier co- 
efficients onto the spatial Eigenfunctions of the noise.   Thus, each Fourier coefficient 
is represented by an orthogonal expansion whose coefficients are statistically indepen- 
dent in the absence of signal.   This approach produces particularly simple versions of 
the primary performance Indices.   Thus, one finds that the single frequency on target 
array gain G  of the optimum detector for a plane wave signal is given by a sum of the 
form 

■$ 

|MJ 

where the X   are the normalized Eigenvalues of the noise and h. Is the projection of 

the signal on the k    Elgonfunction of the noise.   The corresponding expression for the 
conventional power detector assumes the form 

Gc=r~Fl2   xk 
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where L is the array length.   Straightforward comparisons of optimal and conven- 
tional detector performance are now possible. 

In the above formulation, the noise field is completely described by its Eigenvalues T 
X .   When the noise originates in a region remote from the array compared with the 

array dimensions, the spatial correlation function (which generates the X.) becomes 

stationary and is therefore specified completed by a spatial spectrum. Spatial spectra 
are derived for various forms of sea noise, self noise, and interfering targets. Their 
study sheds considerable light on the relative magnitudes of the Eigenvalues and on 
the nature of the detection process. One finds, as expected from Vanderkulk' s 
results, that the linear array has a much higher array gain in the endfire direction 
than in the broadside direction when the noise consists predominately of spherically 
Isotropie sea noise. The effect is much less pronounced when the noise is circularly 
Isotropie, a fact readily explained by the concentration of noise power at spatial fre- 
quencies associated with the endfire direction. The advantage of the endfire direction 
in either case is drastically diminished by the presence of even a small amount of _ 
self-noise (whose spatial spectrum is white, whereas the spectra of all far field noises 
cut off sharply at a spatial frequency of 2 n/X rad/ft, X being the acoustic wavelength). ** 
For noises of a generally Isotropie type, the advantage of the optimum detector over 
the conventional detector is largely due to decreases in hydrophone spacing below a 
half wavelength.   This may be interpreted loosely as oversampling the spatial spectrum, 
thus permitting recovery of signal energy shifted to frequencies outside of the basic 
noise band by passage through the finite spatial window of the array.   The presence of 
self-noise beyond the basic cutoff frequency of 2it/k clearly does much to offset that 
advantage.   On the other hand, spatially concentrated noise such as interference from 
a point source remote from the target yields a spatial spectrum largely disjoint from 
the signal spectrum, so that the optimal processor can eliminate most of the inter- 
ference.   As a result, one finds a high array gain in all directions except in the im- 
mediate vicinity of the interference bearing.   If the interference originates very close 
to the array, the array gain is high even in the interference direction, because one 
can now utilize the different attenuation rates of signal and interference across the 
array to achieve the necessary discrimination. 

Report No. 35 also discusses the directivity of the optimal and suboptimal detectors, 
using as a criterion the ratio of the array gain off target by a certain angle to the 
array gain on target.   As one would expect, the sensitivity curve is considerably 
broader for endfire than for broadside targets.   A less obvious conclusion is that the 
sensitivity curve of the conventional detector does not, in generrl, peak at the true 
target bearing, even if the noise is Isotropie.   The magnitude and even the sign of 
this bias varies with noise field geometry.   The directivity curve of the optimum 
detector, on the other hand, always exhibits a peak at the true target.   Finally, the 
report discusses the error in estimated target location resulting from the use of 
optimum or conventional detectors.   A convenient figure of merit is closely related 
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to the likelihood functioh of the target location.   Since the true likelihood function 
varies randomly with the observed data, an average version is employed.   For the 
optimal detector this figure of merit always peaks at the true target location, whereas 
the conventional detector exhibits the bias phenomenon mentioned earlier.   At low 
signal-to-noise ratios the bias effect can be quite appreciable.   The modified likeli- 
hood function is plotted as a function of bearing and range.   It permits not only com- 
parisons of different detector types, but also allows study of the effect of parameters 
such as observation time, frequency band and target bearing on the target-locating 
ability of a given receiver.   As one might anticipate, the range discriminating ability 
of the array is small except at very short ranges. 

m    OPTIMUM PASSIVE BEARING ESTIMATION 

Report No. 37 generalizes the results given in Report No. 32 (Volume V), with regard 
to array size and spectral properties of signal and noise.   The earlier report used the 
Cramer-Rao technique to set a lower band on the rms bearing error attainable with a 
two-element array when signal and noise were stationary Gaussian processes with 
spectra of the same shape and the noises received at the two hydrophones were statis- 
tically independent.   Report No. 37 allows an arbitrary number of hydrophones arbit- 
rarily spaced on a linear array (the final comparison with a split beam tracker is only 
carried out for equally spaced hydrophones).   It also allows arbitrary signal and noise 
spectra.   All other assumptions of the earlier analysis (notably that of noise indepen- 
dence from hydrophone to hydrophone) are retained. 

For an array of M equally spaced hydrophones, one finds a lower bound 

D(Ö) on rms error given by 

D(0)> 2/3T. 

h/F di/T cos 6 M 4^1 

U) 

/ 

max 
sffci 

2 2 
dux*) N   (u)) 

1   H   M^- 
N(w) 

1/2 

S(u) and N(u) are the signal and noise spectra respecMvely, d is the spacing between 
the hydrophones, T the observation time, 0 the bearing angle relative to broadside, 

the upper end of the processed frequency range, and c the velocity of sound. CJ 
max 

If M S(co) / N(u), the signal-to-noise raüo after beamforming,is large over the entire 
processed frequency range, the lower bound varies as (S/N]r'2.   For M S(w)/N(w) «l, 
the lower bound varies as (S/N)   .   The former is a type of behavior often associated 
with coherent systems, whereas the latter is generally identified with incoherent 
processors.   Qualitative physical Justification for these conclusions is furnished by 
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stationary and is therefore specified completed by a spatial spectrum.   Spatial spectra 
are derived for various forms of sea noise, self noise, and interfering targets.   Their 
study sheds considerable light on the relative magnitudes of the Eigenvalues and on 
the nature of the detection process.   One finds, as expected from Vanderkulk' s 
results, that the linear array has a much higher array gain in the endfire direction 
than in the broadside direction when the noise consists predominately of spherically 
Isotropie sea noise.   The effect is much less pronounced when the noise is circularly 
Isotropie, a fact readily explained by the concentration of noise power at spatial fre- 
quencies associatea with the endfire direction.   The advantage of the endfire direction 
in either case is drastict lly diminished by the presence of even a small amount of 
self-noise (whose spatial spectrum is white, whereas the spectra of all far field noises 
cut off sharply at a spatial frequency of 2ir/K rad/ft, X being the acoustic wavelength). 
For noises of a generally Isotropie type, the advantage of the optimum detector over 
the conventional detector is largely due to decreases in hydrophone spacing below a 
half wavelength.   This may be interpreted loosely as oversampling the spatial spectrum, 
thus permitting recovery of signal energy shifted to frequencies outside of the basic 
noise band by passage through the finite spatial window of the array.   The presence of 
self-noise beyond the basic cutoff frequency of 2n/K clearly does much to offset that 
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a point source remote from the target yields a spatial spectrum largely disjoint from 
the signal spectrum, so that tne optimal processor can eliminate most of the inter- 
ference.   As a result, one finds a high array gain in all directions except in the im- 
mediate vicinity of the interference bearing.   If the interference originates very close 
to the array, the array gain is high even in the interference direction, because one 
can now utilize the different attenuation rates of signal and interference across the 
array to achieve the necessary discrimination. 

Report No. 35 also discusses the directivity of the optimal and suboptimal detectors, 
using as a criterion the ratio of the array gain off target by a certain angle to the 
array gain on target.   As one would expect, the sensitivity curve is considerably 
broader for endfire than for broadside targets.   A less obvious conclusion is that the 
sensitivity curve of the conventional detector does not, in general, peak at the true 
target bearing, even if the noise is Isotropie.   The magnitude and even the sign of 
this bias varies with noise field geometry.   The direptivity curve of the optimum 
detector, on the other hand, always exhibits a peak at the true target.   Finally, the 
report discusses the error in estimated target location resulting from the use of 
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to the likelihood function of the target location.   Since the true likelihood function 
varies randomly with the observed data, an average version is employed.   For the 
optimal detector this figure of merit always peaks at the true target location, whereas 
the conventional detector exhibits the bias phenomenon mentioned earlier.   At low 
signal-to-noise ratios the bias effect can be quite appreciable.   The modified likeli- 
hood function is plotted as a function of bearing and range.   It permits not only com- 
parisons of different detector types, but also allows study of the effect of parameters 
such as observation time, frequency band and target bearing on the target-locating 
ability of a given receiver.   As one T tight anticipate, the range discriminating ability 
of the array is small except at very short ranges. 

m   OPTIMUM PASSIVE BEARING ESTIMATION 

Report No. 37 generalizes the results given in Report No. 32 (Volume V), with regard 
to array size and spectral properties of signal and noise.   The earlier report used the 
Cramer-Rao technique to set a lower band on the rms bearing error attainable with a 
two-element array when signal and noise were stationary Gaussian processes with 
spectra of the same shape and the noises received at the two hydrophones were statis- 
tically independent.   Report No, 37 allows an arbitrary number of hydrophones arbit- 
rarily spaced on a linear array (the final comparison with a split beam tracker is only 
carried out for equally spaced hydrophones).   It also allows arbitrary signal and noise 
spectra.   All other assumptions of the earlier analysis (notably that of noise indepen- 
dence from hydrophone to hydrophone) are retained. 

For an array of M equally spaced hydrophones, one finds a lower bound 

D(9) on rms error given by 

D(0) > 2737 i 

d/Fcos e MJM2-I _ 

10 

/ 

max 
2 2 duw  N ft»)) 

1 + M^-- N(w) 

1/2 

S(w) and N(w) are the signal and noise spectra respecfively, d is the spacing between 
the hydrophones, T the observation time, 9 the bearing angle relative to broadside, 
b>       the upper end of the processed frequency range, and c the velocity of sound. 

If M S(u) / N(a>), the signal-to-noise ratio after beamforming,is large over the entire 
processed frequency range, the lower bound varies as (S/N) '   .   For M S(w)/N(w) «I, 
the lower bound varies as (S/N)   .   The former is a type of behavior often associated 
with coherent systems, whereas the latter is generally identified with incoherent 
processors.   Qualitative physical justification for these conclusions is furnished by 



the observation that one can obtain a good estimate of the signal waveshape when the 
post-beamforming signal-to-noise ratio is high.   Hence, basically coherent techniques 
are available in this situation.   No such option exists when the post-beamforming 
signal-to-noise ratio is low. 

A second interesting feature of the lower bound is its dependence on the number of 
hydrophones (M).   If M » 1, one has a dependence on M~2 and M"1 for low and high 
post-beamforming signal-to-noise ratios respectively.   Since dM ■  L, the length of 
the array, a more significant observation is perhaps that the lower bound varies as 
(LM)"1 and L"1 M-l/2 and high post-beamforming signal-to-noise ratios respectively. 
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Finally, the lower bound exhibits an anomaly which deserves some comment.   The 
dependence on (cos ö)-1 leads to an infinite lower bound for the endfire direction.   In 
order to understand this phenomenon, we note first that the version of the Cramer-Rao .. 
inequality used in the derivation gives the  minimum variance unbiased estimate. 
Secondly, we observe that the basic data furnish information concerning relative signal 
delay from hydrophone to hydrophone.   Since delay is proportional to sin 6, it is 
perfectly possible for noise-perturbed estimates of sin Q to exceed unity, so that no 
natural interpretation in terms of 9 is available.   If one resolves this problem by 
assigning 6 ■ 90ö to all such cases, one clearly has a finite variance estimate, but 
one which is now biased. It is clear, therefore, that Mased estimates exist whose 
mean square error is smaller than that of any unbiased estimate for some specific 
value of 0.   This suggests that one should look for a "best** bias function b(0).   The 
Cramer-Rao inequality with bias is not significantly more complicated than the un- 
biased form, so that no serious obstacle exists on that score.   However, there is 
a certain arbitrariness in the use of bias, for one can in principle make the error for 
any given target bearing as small as one pleases, at the expense of larger errors 
for other bearings.   At best, therefore, one could search for a bias function optimum 
in an average sense, which in turn implies a priori knowledge concerning the prob- 
ability of various target bearings.     The question is perhaps worthy of some further 
study.   However, if one excludes bearings very close to endfire and if the observation 
time T is long enough to make the indicated bearing practically useful, any improve- 
ments due to bias should be quite small and would probably be outweighed by the 
practical advantage of working with an unbiased instrumentation.   It appears reason- 
able, therefore, to regard the unbiased figure as a lower bound for most practically 
interesting situations. 

A more significant question concerns the ability to realize the lower bound.   The 
Cramer-Rao inequality gives a value of rms error ivhich cannot be reduced, but 
which cannot always be reached.   In our case, the obvious instrumentation to check 
against the lower bound is the split beam tracker, which is unbiased for the postulated 
noise field.   If one obtains the required 90° phase shift with a differentiator and if 
one modifies the conventional instrumentation by inserting into the summed output of 
each array half a filter with transfer function H(jw), satisfying 
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In/-   A2       N2 (w) 

1   +  M^. 
N(w) 

then the rms bearing error D(ö) assumes a form similar to the lower bound.   In fact, 

D(0) 

'Jifb Lower bound 
M 

This function increases monotonically from 1 tcM/S as M increases from 2 to <». 
Thus the split beam tracker, with the minor modification described above, is an 
optimal unbiased bearing estimator for Ma2 and a very nearly optimal estimator for 
arbitrary M. 

Efforts to extend the above results to noise fields not necessarily independent from 
hydrophone to hydrophone are now in progress. 

IV  ACTIVE SONAR SIGNAL DESIGN 

Report No. 36 contains the results of the initial study in this series concerned with 
the design of active sonar signals.   Only the most idealized case is considered.   The 
reverberation model is based on independent Poisson distributed scatterers in indepen- 
dent motion.   Signals are assumed to remain undistorted in transmission and the tar- 
get is modeled as a perfect reflector, changing the signal waveshape only by a fixed 
doppler shift.   The target is assumed to be moving on a straight line course at a 
constant velocity and its bearing is regarded as known (presumably from passive 
sonar measurements).   Thus only range and range rate must be estimated from the 
active sonar return.   The question of ultimate interest is the target position some 
substantial time after the active sonar return has been received (e. g. at the time of 
possible intercept).   The study deals in particular with the possibility of using in- 
formation from a first sonar ping to improve the design of a second ping. 

In signal design, one is concerned with two distinct but interrelated problems: 
ambiguity and accuracy.   A return is ambiguous if two or more distinct regions in 
the range-doppler shift plane represent probable locations of the target.   The term 
••accuracy" refers to the dii. .ensions of a single such region of possible target 
location.   The analysis concentrates on the accuracy problem, the assumption being 
that the signal-to-noise ratio is sufficiently high so that the gross errors of ambiguity 
cannot occur with any significant probability.   However, one cannot ignore the 
ambiguity problem entirely, for one finds rather generally that signal designs cal- 
culated to improve accuracy tend to increase ambiguity.   Thus, bounds on attainable 
accuracy are often set by the maximum tolerable level of ambiguity. 
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As time elapses after a pulse has been received, the region of uncertainty describing 
the accuracy problem elongates in the range direction, but retains a fixed dimension 
in the velocity direction.   This is simply due to the fact that the target velocity is 
fixed by assumption, but that any error in the velocity estimate reflects as a constantly 
growing error in future range estimates.   If there is substantial "wait time" (time 
between transmission and the instant at which the target position is ultimately required), 
the error is largely due to this velocity component for any reasonable signal waveshape. 
One Is therefore led to the conclusion that the initial pulse of a two-pulse sequence 
should seek primarily to establish target velocity, i. e. it should be a narrow band 
pulse.   If the target happens to be moving rapidly enough, this will also improve the 
signal-to-noise ratio because the reverberation will be spectrally disjoint from the 
target return.   This, however, is merely a fortuitous circumstance, for in the absence 
of a priori information on target velocity one could not design a first pulse to discrimi- 
nate against reverberation. 

The function of the second pulse is primarily to measure target range.   It appears 
clear on intuitive grounds that this pulse should be sent as late as possible, but thei 3 
are two conflicting factors affecting the choice of waveform:   For a given signal-to- 
noise ratio, best range accuracy is achieved by a wideband signal, but a wideband 
signal does not permit spectral separation of signal from reverberation and therefore 
leads to lower signal-to-noise ratios when the target is moving.   If the first pulse 
return indicates a target moving above the same minimal velocity (depending on rms 
scatterer motion), some compromise in signal design is clearly indicated.   The 
matter is further complicated by the ambiguity problem mentioned above.   The re- 
sulting complexity is such that straightforward analytical optimization becomes im- 
practical and one has to resort to numerical procedures instead.   The results indicate 
that substantial improvements in final accuracy can often be made in principle by 
proper design of the second pulse.   However, the required waveshapes tend to be 
rather complicated and critically dependent on the velocity information gained from 
the first pulse.   Furthermore, if one hopes to extract most of the information coded 
into the complex waveshape of the second pulse, one cannot relax the postulate of 
distortion-free transmission appreciably.   Thus there is serious doubt whether impor- 
tant gains over the most obvious signal designs can in fact be made in many interesting 
situations.   To resolve this question, one must deal with more realistic transmisskm 
models.   Studies directed toward this end are now in progress. 
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APSTEACT 

"Optimum" weak signal passive detection Is studied for a linear 

array of hydrophones In a Gaussian noise field. Relationships are 

developed between the detector performance and the array length, obser- 

vation time, processing frequency band, hydrophone spacing, signal 

source location and characteristics, and noise model properties. The 

basis for the analysis is the elgenfunction expansion introduced by 

Vanderkulk [3]. The noise models considered are two types of Isotropie 

sea noise, a noise of local origin, interference frcm a previously 

detected source, and the self noise in the hydrophones. Particular 

attention is paid to self noise limitations on endfire detection. The 

measures used to describe the arrey performance are the output signal- 

to-noise ratio, the array gain, and directivity measures that indicate 

output changes as a function of either steering angle or of noise 

source location relative to a fixed steering angle. A nev measure of 

the ability to locate a given signal source Is also employed. Tht 

conventional power detector and one other suboptimum detector are 

analyzed for comparison with the 'optimum" detector. A measure of the 

weak signal bias in the conventional oetcctor is introduced. 

A-i 



TABLE OF CONTENTS 

ABSTRACT 

LIST OF FIGURES AND TABLES 

LIST OF SYMBOLS 

CHAPTER 1 INTRODUCTION 

1.1 General Background and Objectives 

1.2 Description of the Detection Problem 

a) The Received Signal 

b) An Eigenfunction Expansion for the 
Received Signal 

c) The Received Signal Through Discretely 

A-l 

A-iv 

A-li 

CHAPTER 2 

Located Hydrophones 
d) The Detection Problem 
SIGNAL AND NOISE MODELS 

14 
17 

2.0 Introduction 22 

2.1 Sea Noise 23 

2.2 Interfering Target Noise and Local Noise 33 

2.3 Self Noise 40 

2.4 The Signal Covariance Matrix 44 

CHAPTER 3 DETECTOR DEFINITIONS 

3.0 Introduction 53 

3.1 The b-Detector 54 

3.2 The c-Detector 62 

3.3 The £-Detector 67 

CHAPTER 4 OUTPUT SNR AND ARRAY GAIN 

4.0 Introduction 69 

4.1 The Output SNR and Array Gain 70 

4.2 The Array Gain for the b and c-Detcctors 

a) General Definition 
b) b-Detector Array Gain 
c) c-Detector Array Gain 

73 
74 
93 

: 

A-ii 

n 
D 

: 

a 
o 



4.3    The  i-Detector Array Gain 

CHAPTER 5    DIRECTIVITY MEASURES 

5.0 Introduction 

5.1 The Normalized SNR 

a) Definition 

b) The Normalized b-Detector SNF. 

c) The Noraalized c-Detector SNR 

d) The Normalized t-Detector SNR 

5.2 An Influence Measure (H) 

a) Definition 

b) (S)  for the b-Detector 

c) (H)  for the c-Detector 

d) (H)  for the £-Detector 

5.3 Uncertainty in Signal Source Location 

5.4 A Bias Measure for the c-Detector 

APPENDIX A THE "BOXCAR" FUNCTION 

APPENDIX B LERIVmON OF THE POV^R SPECTRUM 
OF 12 SEA NOISE 

APPENDIX C OUTPUI STATISTICS FOR THE GENERAL 
DETECTOR 

APPENDIX D  £-DETECTOR STATISTICS 

APPENDIX I.  APPROXIMATE EIGENFUNCTIONS FOR USE IN A 
PRACTICAL b-DETECTOR 

a) A Practical Requirement 

b) Breakup of the Observation Time into 
Subintervals 

c) Frequency dependent Time Intervals 

d) Time Intervals with Space Dependent Phase 

e) Breakup of the Array Dimension into 
Subintervals 

APPENDIX F THE SIGNAL COVARIANCE MATRIX G 

a) The General Form of G 

b) Elements of G When i«i' 

c) Upper Bounds on Elements of G When i^i' 

98 

101 

102 

102 

104 

105 

107 

108 

110 

110 

111 

120 

127 

129 

134 

137 

138 

138 

139 

141 

144 

144 

148 

154 

162 

REFERENCES 
A-iii 

169 



■■—I  — — ■,.—■  .. ,.——  

LIST OF FIGUPLS AND TABLES 

Figure 1-1 The Array with a Target Sipnal Present 6 

Figure 1-2 Hydrophone Array Dimensions 15 

Figure 2-1 A Power Spectral Density Function for 12 Sea 
Noise 27 

Figure 2-2 A Power Spectral Density Function for 13 Sea 
Noise 29 

Figure 2-3 Spatial Eigenfunctions 30 

Figure 2-4 Spatial Eieenvalues 32 

Figure 7.-5    Spatial Eigenfunctions for 13 ano Local Noise 37 

Figure 2-6 Eigenvalues for 13 and Local Noise 39 

Figure 2-7 Spatial Spectrum of 13 Sea Noise Plus Self Noise   42 

Figure 2-8 Relative Spatial Spectra of the Signal in 13 
Sea Noise 50 

Table 2-1 Relative Spatial Spectra of the Signal in 13 
and Local Noise 51 

Figure 3-1 An Implementation of the b-Detector 57 

Figure 3-2 An Alternative b-Detector Structure 58 

Figure 3-3 Implementation of the c-Detector for Plane Wave 
Detection 64 

Figure 3-4 The £-Detector 60 

Figure 4-1 The Effect of Self Noise on Channel Factors 77 

Figure 4-2 b-Detcctor Array Gain in 12 and 13 Sea Noise 80 

Figure 4-3 High Spatial Frequency Behavior of Signal and 
Noise Spectra 81 

Figure 4-4 b-Detector Array Gain with 2 and 4 Hydrophones 83 

Figure 4-5 b-Detector Array Gain with Increasing Numbers 
of Hydrophones 85 

A-iv 

0 

f] 

n 

D 

Ö 

0 
D 
0 
0 
ß 
0 
0 
0 
0 

Q 

0 

* 



a 
Q 

1 
I 
I 
I 
I 
I 
I 
1 
1 
I 
I 
I 
I 
I 
I 
1 
1 

Figure 4-6 Channel Fpctors with Local end Distant 
Intcrferencü 87 

Figure 4-7 h-Detector /rray Gain with Local and Distant 
Interference 88 

Figure 4-0 b-Detector Array Gain with Interference and 
Self Noise 91 

Figure 4-9 Characteristics of b and c-Dctectors at 75.9 
Incidence 95 

Figure 4-10 Array Gain Comparison 97 

Figure 4-11 1-Det^ctcr Array Gain 100 

Figure 5-1 Normalized Output SIIR for the b-Detector 103 

Figure 5-2 Normalized Output SNR for b and c-Detectors 
in 12 and 13 Sea Noise 106 

Figure 5-3 The Influence Measure (H) for the b and 
c-Detectors 109 

Figure 5-4 Location Uncertainty Using the b-Detector 117 

Figure 5-5 b-Detector Bearing Resolution 119 

Figure 5-6 Bias in the c-Detector 124 

Figure A-l The "Boxcar" Function 127 

Figure L-l Frequency-Time Plots for Sinusoidal Time 
Eigenfunctions 140 

Figure £-2 The Spacing Parameter p 143 

Figure E-3 The Normalized Spacing 143 

Figure E-4 Variable Duration Sinusoids in the 
Frequency-Time Plane 145 

Figure E-5 Subinttrval Grid in the Time-Space Domain 147 

Figure F-l The "Triangle" Function Defined by Eq. F-10 151 

Figure F-2 The Domain of Integration in the x,y Plane 
when £ >. L 156 

Figure F~3 Relative Spatial Spectra of the Signal 159 

Figure F-4 The Domain of Integration in the C,n Plane 
when 1 << L 161 

A-v 



1 
• 

• 

1 

1 
Figure F-5 Elements of G when £ « L 163 

a 
Figure P-6 A Bound on Eleii.ei.ts of G when I .> L 167 D 
Figure F-7 A Bound on Elements of G when t « L 167 

• * 

0 
0 

0 

B 

A-vi 0 



LIST OF SYMBOLS 

.1 
3 
1 

1 

1 

1 
3 

* complex conjugate P8- 8 

<) eneemble average PS- 7 

(f,8) the Inner product of functions f and g PR- 10 

Cllcll2 quadratic form £* Cc PS- 17 

Nell length" of c PS- 48 

* transpose PR- 9 

a signal attenuation function Eq. 2-65 

ß angle of Incidence of the signal FlS . 1-1 

A subset of consecutive Indices PS- 112 

Y time advance Eq. 2-59 

'« 
1 when l"j and 0 when lj*j PS- 10 

n dummy variable Eq. F-25 

® boxcar function App . A 

® an Influence measure Eq. 5-5 

X eigenvalue of Q Eq. 1-15 

A noise covarlance matrix of u Eq. 1-17 

V the spacr frequency Pg- 23 

c dummy variable Eq. P-25 

5 self noise spectral level PS- 40 

5 complex amplitude PS- 129 

P attenuation factor Eq. 2-60 

0 relative self noise level Eq. 2-49 

T time delay Eq. 2-2 

♦ time elgenfunction Eq. 1-24 

♦ output signal to noise ratio Eq. 4-1 

A-vil 



I  

basis function associated with an element 
of u Eq. 1-8 

spatial separation Eq. 2-3 

exponent function Eq. 1-55 

space elgenfunctlon Eq. 1-29 

complex sine function Eq. A-2 

the time frequency Pg- 11 

Q set of tine frequency Indices P8- 11 

Of positive Indices In fl P«. 60 

A-U^) covarlance matrix of ^ Pg- 9 

A an Index set Eq. B-l 

b b-detector output Eq. 1-54 

B a bias measure Pg* 120 

c c-detector output Eq. 3-27 

c velocity of propagation Pg. 26 

;•» 
channel factor Eq. 4-31 

c bias term In general detector Eq. 4-5 

^ Dlrac delta function PS- 14 

> 
normalized Sh'It Eq. 5-1 

D an Index set Pg- 8 

E transformation from v to u Eq. 1-9 

^ shading filter Pg- 56; Fig. 3-2 

f spectral density function Eq. B-6 

f probability density function Eq. 5-10 

fo 
density function when Yi (j\ Pg- 17 

fl 
density function when Yc(K Pg. 17 

.?' filter Pg- 56; Fig 3-2 

A-viii 

D 

Ö 

o 
0 

0 

0 

fl 

: 

r 

i 



F signal covariance factor 

& array gain 

g element of G 

G signal ccvarlance matrix of u 

(land CL array gain limits 

h hydrophone position Index 

h relative signal spectrum 

^ locatloi: uncertainty 

H(A) nunber of elements In index set A 

2 or 13 Isotropie in two or «-.hree dimensions 

index in D 

time elgenfunctlon index 

index in D 

0 zero order Bessel function 

k space elgenfunctlon Index 

K normalization factor 

i wave obnervatien constant 

t a-detector output 

£ the likelihood ratio 

L array length 

m number of hydrophones 

M attenuation function 

M moment generating function 

n time Interval index 

n(u),v) p'- /er spectral density function 
on ui and v 

Eq. 2-72 

Eq. 4-9 

Eq. 1-19 

Eq. 1-19 

Pg8 . 89 and 90 

P«. 14 

Pg« 48 

Eq. 5-24 

Pg- 98 

rg. 26 

pg- 8 

pg« . 11 and 12 

Eq. 1-23 

Eq. 1-13 

Eq. 2-22 

Pg- 12 

Eq. 1-56 

P«. 47 

Eq. 1-57 

Eq. 1-50 

Pg- 5 

Pg- 14 

Eq; 2-f.8 

Eq. C-8 

Pg- 141 

Eq. 2-4 

A-ix 



N 

II 

aw 
p 

p 

pi 

Pr(a|b) 

? 

P 

^1 

^2 

Q 

X 

R 

R 

• 

• 

S 

S 

t 

t 

T 

one dlntnsional tin« power spectral density 

one dimensional tine spectral density 

total average noise power 

number of oscillation periods 

of the order of "s" 

subset Index 

sv.Hclng paraiLotcr 

probability that signal la present 
within (R. 

prcbabl.ity thnt signal Is absent from(£ 

probability ot 'V civen "b" 

e- gnal process covrrlance function 

set of subset indices p 

intermediate form 

interir.e late form 

noise process covarlance function 

that pc.tlon of ehe real space within 
which f. signal may be detected 

procesr jovar'ance function 

filter output, ratio 

tine 

signal power npectral density 

total r-'erag? signal power 

bias term 

time 

term in c-detcctor output 

the triangle function 

total t^.me observation interval 

A-x 

Eq. 1-36 

Pig. 2-1 

Eq. 1-35 

Pg. 141 

PR- 11J 

V?,- 112 

Eq. 

HJS« 

-b 

Eq. 1-2 

Eq. 1-3 

PS- 5 

Eq. 1-7 

P8. 112 

Eq. 1-20 

Pg. 24 

Eq. 1-6 

P3. 5 

Eq. 1-4 

Eq. 2-51 

Pß. 7 

Eq. 2-57 

Fq. 2-67 

pr.- 56; Fig.  3-2 

P5. 5 

Eq. 5-27 

Eq. F-10r  Fig.  F-l 

: 

: 

: 

D 

■ 

: 



I 
I 

yrfaj) an equivalent form for v PS- 8 

V observed random process Pg- 5 

V(c) variance of c Pg- 70 

w scalar product In general detector Eq. C-3 

w frequenry Interval o?. 11 

U term In r.cneral detector output Eq. 4-5 

^ output of a general detector PC« 70 

array axis PR- 5; Fig. 1-1 

detector steering location vector Pg« . 17-19 

array axis Pg. 7 

random point function Pg- 34 

target signal location vector Pg. 5 

* functional In the general detector Eq. A-13 

z functional In the b-detector Eq. 3-6 

z representative vector In Pgs . 63 and 65 

z random point function P«. 44 

a 

i 

A-xi 



CHAPTER 1 

INTRODUCTION 

1.1 General Baclutround and Oblcctlvei 

Much recent progrees has been Bade In the analysis of passive sonar 

detection using sn srrsy of hydrophones. In 1962 Bryo [l] shoved how to 

calculate the array gain and directivity of an array whose element» are 

so closely spaced that significant noise dependence exists between neigh- 

boring elements. He went on to indicate how op' la« (likelihood ratio ) 

processing night be implemented using s combination steering end shading 

filter following each element of the array. This analysis and design are 

valid for the detection of low level Gaussian plane wave signals in a 

wideband Gaussian noise field with arbitrary continuous power spectre. 

Specifically, Bryn discussee the processing characteristics of s cubic 

array operating in an Isotropie noise field. He concludes thst "at low 

frequencies the optimum detector offers marked Improvements over the 

standard delay-square-integrate detector...", and that "the degree to 

which the improvements cen be realised in practice dtpends largely on the 

extent to which self noise can be eliminated in the input circuits of the 

detector." 

In 1963 Vanderkulk [3] made a more complete study of the effects on 

The relstionships between this and certain other processing objectives 
such ss the maximization of output aignal to noise ratio are the subject of 
s mathematical comparison by Edelblute, Flak, and Kinnison [2]. It is shown 
that Bryn's optimum detector maximizes the output signal to noise ratio. 
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array performance of self noise and the number of elements composing the 

array.    The low frequency advantage was restated but with the warning 

that it could be offset by measurement errors in parameters required by 

the optimum detector.    The analysis was carried out for spherical, linear, 

and ring shaped arrays operating in Isotropie noise.    It was mentioned 

that optimum processing might be most useful when the noise process is 

nonisotropic. 

Supporting this study, Vanderkulk introduced the use of an eigen- ^ 

function expansion for the single frequency covariance matrix of the 

noise.    The mathematical structure of the detector which results from 

the use of this expansion provides significant additional insight into 

array behavior.    It is the object of the present study to exploit this 

expansion in a more extensive and somewhat less restrictive analysis of 

optimum linear array processing. 

Bryn's assumptions regarding the noise field are used here,  that is, 

the noise field is assumed to be Gaussian and ergodic with an arbitrary 

continuous power spectrum.    Model fields of nonisotropic as well as 

Isotropie noise are considered.    In particular, the nonisotropic effects 

of interfering targets and of local noise arising from sources on or near 

the array are discussed and simple examples presented.    The medium    ■ 

surrounding the array is assumed to be homogeneous and nondispersIVü (SO 

that the velocity of propagation will be constant).    Spherical, attenuating 

signals from the target are included so that the effects of the target 

range may be studied. 

In making these assumptions and particularly in selecting the noise 

models,  no attempt ia mede to set up special situations in which the 
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Optimum processor could significantly outperform the conventional detector. 

Such situations do exist, but our aim is to give a somewhat more detailed 

account of optimum processing under familiar and easily analysed conditions. 

Even though optimum processing under these conditions may yield small 

perforaance gains over conventional processing, the analysis itself is 

valuable because it provides an easily calculated and understood upper 

limit to the performance of any detector. Thus we shall use performance 

measures defined for the optimum detector to deal with the basic ''detect- 

ablllty" (for a fixed array) of the target signals themselves. For example, 

a new measure is proposed to indicate how well a signal source may be 

located, given the observation time, the array length, the signal to noise 

ratio, etc. 

In the analysis made here it become convenient to define a detector 

whose processing includes the eigenfunction expansion used by Vandericulk. 

Although not a practical detector from an operational standpoint, it 

processes optimally as defined by Bryn and provides far more insight into 

the behavior of an optimum processor under a variety of signal and noise 

conditions. 

The analysis using this detector proceeds through the usual perfor- 

mance measures, the output signal to noise ratio and the array gain. The 

effects of the significant properties of the noise models are discussed. 

A rough criterion is given for equivalence between the optimum and conven- 

tional detectors (see also [A]). Comparisons are made with a detector 

that is similar to the conventional detector in [l] and [3] cad also with 

another simple suboptinum detector introduced here. 

Since the output of array detectors is commonly shown plotted against 

steering direction, an account of the directivity properties is also 
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Incluoed. Terns f.re identified In the optlnmn detector output which are 

unimportant when analyzing detection in a single fixed direction but which 

can be prime factors In a directivity plot. An explanation is offered for 

bias that develops in the conventional detector display as the observation 

time is Increased. 

The representation of the detector in terms of the cigenfunction 

expansion permits a simple and direct analysis of the behavior mentioned 

above. The question then arises whether this representation can also lead 

to a simple and direct processing algorithm for practical detectors. Much 

further study is required to provide a conclusive answer; some Initial 

thoughts are presented in appendices E and F. 
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1,2    Description of the Detection ProMer 

a) The Received Signal 

An origin Is placed at the center of a straight line array of hydrophones 

(acoustic transducers) and an x coordinate axis is aligned with this array 

and centered at the origin (Fig. 1-1). A member of the random process 

observed at the hydrophone outputs at time t  (In seconds) and position 

x (In meters) Is denoted by v(t,x) .  The time interval used for detection 

is denoted by T and the length of the array by L . Though In practice 

hydrophones cannot be placed at every x within the Interval (- jf » T) » 

every x is available to the array: for now, x is allowed to assjme all 

values within C" 7 » j) • Detection thus begins with an observed 

0 < t < T 
v(t.x) L     L 1-1 

The array is surrounded by a homogeneous, nondlspersive medium occupyinp 

the real space |^ .  (This may be fa    or 0$. depending upon whether the 

problem is to detect in a pi e or in a volume). Various stationary 

Gaussian noise processes arc assumed to propagate within this medium, and 

the statistics of the resulting disturbance along the array are assumed 

known. Now in addition to these noise processes, it is assumed that a low 

level Gaussian signal process may or may not be emanating from a single 

point source somewhere within <f{  . Presence of this signal is expressed 

by the statement Y e 0f where the tip of the vector Y is the location 

of the point source, and the absence of signal is expressed by Y ^(^ . 

The o priori probabilities 

P1 = Pr (Y e^) 1-2 

Po = Pr (Y ^) 1-3 
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are assumed known. The  spectrum of thu signal process (when Y ef^) as 

observed at the center of the array Is absu cd known. The detection 

problem treated here Is to decide on the basis of the received tlgnal v 

whether Y e ^ •  Some of the assumptions made above may be somewhat 

unrecliotlc, but at this point they provide the basis for a straightforward 

analysis.  STit of them ir.ay later be dropped (complete knowledge of p. and 

p ) and others nay be satisfied approximately by adaptive techniques 

(knowledge of signal and noise statistics).  For a more inclusive hypothesis 

see [i]. 

According to the above hypothesis, then, v(t,x) Is a member of e 

Gaussian process; that is, all sets of the random variables 

v(t1, x1), v(t.t x2), ... 

... , v(t2, x1), v(t2, x2), ... 

for 

t^ t2 , ...  c (0, T) 

are normally distributed.    Th>? mean of this process is assumed to be zero. 

The covarlance function    R    is defined by 

lUt,  x,  s,  y)  - ^vCt,   x)  v(s, y^)  , 1 - A 

In which the brackets <f \    denote the ensemble average. Because 

statlonarlty is assumed, 

R(t, x, s. y) - P(t - s; x, y) . 1-5 

When no signal source is present, 

R(t-s; x,  y)   = Q(t-s;  x,  y)   . 1-6 
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noise background so chat when a signal source Is present, 

R(t-s; x, y) - Q(t-s; x, y) + P(t-s; x» y) . 1-7 

When the slgual source alone Is present the covariance function R Is 

equal to P . 

basis vectors {♦.}, i e D where D is a finite index set. That is 

u = (u )  i e D 

k 1-8 
2 

in which * denotes the complex conjugate. The resulting transformation 

is denoted by 

u - E v . 1-9 

Since the rows of E (the basis vectors ♦ ) are orthogonal, a 
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■ i 

1 

: 

n 
b)    An Eiaenfunction Expansion for the Received Signal 

Since   vCt.x)   is defined for all    t e (O.T)    and   x e (- ~, y)  . 

the member   v   represents the joint occurence of events at all points 

t,x   in this interval.    To avoid having to consider this infinite 

'.menslonal representation,    v   is replaced by s finite dimensional 

vector   u .    The vector   u   will not contain all the detection information 

in   v , but by giving   u   a sufficiently large number of properly chosen 

components, the practically retrievable detection information in   v    that 

i    left out of   u   may be made arbitrarily small.    These compommts, in 

fact, are obtained by the projection of   v   onto s set of orthonormal D 
o 
D 

ui' /     f   ♦i*(t,x) v(t»x) ^ dt n 

0 
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pieudoinverse of    E    Is    E*'   where    '    denotes transposition.    Operation 

on   u   with   E*'    produces 

v ■ £*' u 1-10 

and It will be presumed that the set of basis vectors is chosen such that 

the relation 

v s C 1-11 

may be accepted for the purposes of detection. Then 

v JL E*' u . 1-12 

The covariancc matrix of u is 

A - (c^) l.j  c D 1-13 

where 

"13 " (ul "i") 

1    I *    \ * r     r 2 

' / f   V (t'x) ^   dt / /   R(t"8; x,y) •j^»^ <»y d» •     i-i* 
0    -| 0    -£ 

A particularly simple form for    A   results when the   ♦.    are 

chosen to be a set of orthonormal elgenfunctions of the  'noise only' 

covariance function    Q .    In fact,  let the    t      solve the equations 

T     ^ 

\     j      Q(t-s: x.y)   ^(s.y) ds dy - X1 ♦1(t,x) 1 - 15 

o      -* 
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and 

(v V ■ 6ij 1 ■161 

|l i - J 

A - A i (X1 6^) , 1, j e D . 1-17 

When a signal source as «ell as the background noise is present, 

A-A + C 1-18 

vhisre 

G ■ (g^) 

\ T   i f     f 2 
{ij ^ j  j L «^(t.x) dx dt |  |  P(t-s; x,y) ♦.(o.y) dy ds . 

2 

For th»; taalysia that will be presented here, it is required that 

the eigenfunctions * defined on t and x be separable into two 

2 
factors , one dependent only on t and the other only on x . For the 

separation tbat w.'.l be n.-idc here, the following two conditiono are 

assuned - 1) that ':he noise process is stationary, and 2) that the 

observation time Is at least an order of magnitude greater than the 

coherence tine of the noise process. 

(*.. ♦.) stands for the inner product of ♦. and * . 

2 
See Cour&nt and Kilhert [6]. p.56. 
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Under assumption 1) the covarlancc function Q any be written 

OB 

Q(t-8: x.y) - ^ f   q^u.x.y) M1'**** 1-20 

in which 

q1(-w, x, y) « qjMw, x, y) , 1-21 

q1(u. y. x) - q1*(ü), x, y) , 1-22 

and 

1-23 

The Intermediate form q. may be regarded as either a cross power 

spectral density in the time frequency u or a single frequency spatl-'.l 

covcriance function. Then assumption 2) means that at all pairs of x 

and y in (- r, r) the cross power spectral density q. is relatively 

constant (smooth) over u intervals (w - W, w + W) , for W significantly 

greater than -r . Consequently 

J 

/ 
Q(t-s; x,y) ^(s) ds « q1(w, x, y) ^(t) , 0 < t < T 1-24 

in which <t>      belongs to a set of sinusoids. These sinusoids are 

MO -~—   (H)(t; 0. T) , 1 c fl 
i     /f 

1 - 25 

where    (Hi     is the    boxcar" function defined by Eq. A-l  (in Appendix A) 

end pictured in Fig. A-l.    The index set    ft    contains integers such that 

the frequencies    u.    (positive and negative)  given by 

b) ill 
1        T 

A-ll 
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.   o 
are within the frequency band of Interest. Kote that 

and that the $     form an orthonormal set, i.e. 

T 

J ♦jMt) ^.(t) dt - 611. • 1-26 n 

Now for each i e n t a set of eigenfunctions ^,,   , k e D  is 

detbmined by 

i n 
\     W X, ,) »^(y) - Xlk »^W . - | < x < t 1-25 

-- D 2 

end the orthononnallty condition 

L 

2 

Also, according to Eq. 1 - 21, 

D 
/^ »u*(it) ♦«- (-> ^ - äkv' • ! -3Ü n 

0 
*••-.*. 1-31 
*-ik  ^ik  * 

♦lk(t,x) s ^(t) i|»lkrx) 1 - 32 

ik e D - U D. . 1-33 
ieQ 1 

A-12 

Though D. could be infinite in general, it will develop later that 

only a finite number of ty..    can serve useful detection purposes. 

Consider D.  to be composed of the double indices ik of this finite 

0 
Replacing the indices in D with double indices, the separation 

of the ♦ ,  is achieved by writing 
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The function Mt) will be called c time  elgenfunctlon and ^-(x) 

will be called a space elgenfunctlon. The eigenvalue associated with 

*..  in Eq. 1-15 is now A  . Projection of the received signal v 

onto this set of tine and space eigenfunctions to obtain u will be the 

first major operation in the detection analysis. The result u of this 

projection (Eq. 1 - 8) of the real process v is constrained by 

u-i" V 1-34 

Since further analysis will begin with u it is useful to relate the 

total average noise power in v  o quantities directly associated with 

u . In particular the relations below are useful in normnlizing detector 

performance measures and in calculating absolute noise levels using 

measurements at a single hydrophone. According to Eq. 1-20, the total 

average noise power N in v is 

2 
N - j  Q(0; x. x) dx ■ 2t / ^(u.) du, 1-35 

- j — 

where n.  is defined by 

a. 
i r2 

nl^ " L J  ''l^' X* X^ dX  * 1-36 

The form q. is Hennitian (Lq. 1 - 22) nnd can therefore be expressed 

^Jslnos [7], p. 38. 
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by 

^V ^ y) 
r ♦.i» Kv *^*(y) 

Consequently, 

UccO. 

11<U,1) mL  L     Xik • 
IkeD. 

1-37 

1-38 

c) ?ht! Received Cignol through Discretely Located Hydrophonfc» 

The use of hydrophones along the array Imposes a sampling function 

on tht space dimension x . For simplicity in approximating the integral 

form along the array length or "aperture" (- -r, j) , the m discrete 

hydrophones will be assumed to be equally spaced at a separation of • . 

They will be centered within (- -r, r) , so that there is an interval -z 

before the first hydrophone and beyond the last one (see Fig. 1-2). 

Strictly speaking, then, the length of the hydrophone array is L(l - -) 

or very nearly L for large c . 

With the above convention, spatial sampling nay ha  introduced at 

the positions x , h ■ 1 ,..., m by replacing the measure dx with 

m 

i I>* - v <* 1 - 39 

h-1 

in which the function «6 (the Dirac delta function) is such that 

^(x) -0,x^0 1-40 

and 

e 

I ^Lix)  dx - 1 , E ^ 0 . 1 - Al 

- e 
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Figure 1-2        Hydrophone Array Dimensions 
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For Instance, with hydrophone «ompllng Eq. 1-29 becomes 

/ ^i^i* xh» ^ *ik(y)» L ^(y - yhJ dy 

- i h'-l 
2 

■ 

■ n L   ql(wl* Xh' V* ♦ik^h^ " Xlk ♦lk^> »    1 - 
h'-l 

n ■ 1 , ••• , n . 

The orthonomsllty condition given In Eq. 1 - 3C becones 

42 

m 

i L v^ ♦ik-^h) ■ w. 1 - 43 
h-1 

As the hydrophones spproach a spacing that Is small relative to the 

variation In a particular space elgenfunctlon defined on the unsampled 

array dimension» the corresponding space elgenfunctlon on the sampled 

dimension becomes proportional at the sample points (hydrophone locations) 

to this particular elgenfunctlon. The detection characteristics using the 

sampled dimension then become the same as those obtained without saopllng. 

On the othur hand, If the hydrophone spacing is Increased, the array 

performance will worsen from that obtained without space sampling. 

Depending upon the noise raodul and the time frequency, the received 

noise from separate hydrophones may become independent as their distance 

apart increases. With independent hydrophones the simple set 

{♦k}    k - 1, .... m 1-44 

defined by 

VA' " ^ 4kh   !••••. *n M*) " Cr) *i,».  x " «i» ••• • x- 1-45 
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Is a valid set of apace bigenfunctlona. In the analysis to follow, tha 

unsampled Integral forma will bo preferred for their simplicity. The 

space dimension will be samplad only when 1) the specific effects of 

hydrophone spacing are being considered and 2) actual arrays are analysed 

for Illustration. 

d) The Detection Problem 

After the transformation from the received signal v to the 

equivalent finite dimenalonel vector u , the detection problem Is to 

determine from u whether Y c (R. . The best that can be done toward 

this is to form 

Fra«^lM)-pi^Vpofo(M) 1-46 

where   f (u)    is the probability density function of   u   when background 

noise alone la present, and   f.Cu)    is the probability density of    u 

when a signal is also present somewhere within   (R.   .    By hypothesis y 

f     and    f.    are (complex) Gaussian probability density functions.      Using 

the notation    C(|c||      to denote the quadratic form    c^'Cc , 

ft  —^ rfftwA detnA 

and 

:.(u) -   /   MulX)  MX)  dX 
di 1 

1-47 

1-48 

] 

] 

See Arens  [8],  p.  205. 

A-17 



MMMHMi -U 

wh«rtit 

£ (u|x) . i e" (A + C(^rl| lüH2 1-49 
U^1^      dctir(A •»■ G(X)) e l      ™ 

and f^(2) It the o priori probability density function of X knowing 

X 1« eooewhere within (R. 

With the likelihood ratio X defined by 

J(X) 

o o —'  ro dt   0 

the detection probability In Eq. 1-46 may be written 

P'd e (^ |u) •        W . 1-51 
1 + /(leÄ |u> 

Since X is c monotonlc function of Pr(Y e (^ |u) , J^, may replace 

Pr(Y c (^ |u) as the detection statistic. According to Eq. 1 - 50, this 

likelihood X factors into 

The second factor provides a measure on all possible u that allows them 

to be arranged in order of increasing likelihood that they arose in the 

Pi 
preseucc of a signal source. The factor — is used in setting a detection 

Po Pj 
threshold within this continuum of ordered u . Since — is almost always 

Po 
only vaguely known, this threshold will usually be approximate. Further- 

more, in practice, not all the steps in processing u prescribed by 

f  fiCüliDMx) 
/  f- V.U dX may be implemented, and the ordering Itself may be cnly 
<   '<.«> 
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approximately realized. In fact, an approximate likelihood ordering of u 

may be performed subjectively by observing the shape of the integrand 

—- / x  displayed on a screen as a function cf X for each u 
o —^ 

that is observed. 
MH|X) f,^) 

For example, for each u , the Integrand  ft}' mAy  *,£ 
o 

ulsplayec at X of fixed length (range) and angle of Incidence (bearing 

6 in Fig. 1-1) between 0  and ICO . The observer may feel that n 

shape 

Is more indicative of signal presence than 

B 
•'WN-J 

180° 0° 

Thus %.  (u.) would be judged larger than *> (u_) . Next, the threshold 

for deciding that a signal is in fact present Is determined from a sub- 

Pi jectlve estiuate of — , and the cost of errors. In summary, the 
"o 

M -thcniaticcl processing cf the received signal may end in practice with 

a display of the st- ipe of f^-* fl(-^ versus X . An experienced 

o 

L-bserver may then complete the detection process subjectively. 

Under the assumptions made in this study, further mathematical 

f (u |X) f (X) 
processing of —* e '( \   could lead to a decision without an observer: 

however, this possibility will not be considered here. Instead, only th«. 

Mu|X)   f  (X) 
term    ft)     in   *•   ^E<^•  ^ " 50^  w111 be anaiyZftJ'    Explicitly, 

, o ^ 

this term is 
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1 e r .   1  • e^U 1-53 

where 

b(il,X) - x(u.X) - In det (A + G(X)) + In det A + In f^X) 1-54 

and 

1 
i 

11 
n 

X(u.X) - -  [ (A + G(X))"1 - A"1 J   ||u||2    . 1-55 [] 

A detector labeled the b-detector will form   b(u,X)    from   u . ri 
f^lX) ^(X) 

Since the shape of  *  ; v  (considered as 6 function of X) 
t tuj 
o 

Is the key to detection by an observer, It is significant to note that 

the signal source location probability density function f.CXJg) has 

the same shape. In fact, 

Mülx) MX)   b(u.x) n 
MXJu).-!—* ^j- 1-56 ß 

:: 

0 

where K(u) Is Independent of X . Thus In addition to being a detection 

statistic, the shape of e ^»—' will also determine the location of 

the signal source as accurately as possible. 

Conditions for deciding that a signal source is present are that 

pofo(u) in Eq. 1 - 50 be small and that Pj^ I  f^ulX) f^pdX be 

large. The first of these conditions alone may in some cases serve as 

an indication of signal presence. If this approach is used, errors 

that will be made when both p f (u) and p. / f.(u|X) f.CjQdX are 
0 O X J JO  XX 

small must be accepted.    But,  these errors may be infrequent enough for 

a detector forming   p f (u)    to perform usefully.    Since    f (u)    J-8 

very simple to form and is affected by signal presence over a large 

region of seen, the following suboptinuo detector is proposed.    This 
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detector, labeled the i-detectox, will forta 

ff (uh        . 9 
t(Ä.X) - - In Ajr • A'1  I |u| T + In det ir A + In f^  • 

The a priori probability of signal absence   p     Is assumed close 

enough to unity to be onitted.    To nake this detector crudely 

steerable, the set   D    of indices of the conponents of   u   will be 

made a function of the steering vector    X  .    That is, 

D - DQp 

1-57 

1-58 

A method for choosing the indices to accomtOIr* he desired steering 

will be discussed after perforoance measures hsve been defined. 

This chapter has given a general description of the detection problem 

and outlined the signal processing procedure. The aims In the remainder 

of this study are to 

1) Determine the spatial set Ulk, Xlk}, Ik e D (Eq. 1 - 29) 

and the resulting signal covarlance matrix G (Eq. 1 - 19) for 

specific noise Holds. 

2) ' Define perfennance measures for detectors foiming b and 

i    (Eqs. 1-54 and 1 - 37) and use these to analyze detection 

in the specific noise fields of 1) . 
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CHAPTER 2 

SIGNAL AND NOISE MODELS 

2,0 Introduction 

This chapter begins vlth • description of various noise fields and the 

sets of elgenfunctions and eigenvalues they determine. Then, with the 

elgenfunctions In mind, characteristics of the signal covarlance matrix G 

.re given. The Intent Is to supplement some of the definitions In the last 

chapter with examples. The quantities discussed are important in under- 

standing and constructing the detecti#n statistics b and I  (Eqs. 1 - 54 

and 1 - 57). 

The noise fields considered here are the superposition of four possible 

independent components. These components are 

1) Sea noise (acoustic background noise) - noise from surface 

waves, and other noise that is not highly directional. 

2) Interfering target noise - noise from signal sources that 

have already been detected and located. 

3) Local noise - noise generated in the inmediate vicinity of 

the array. The primary source of this noise is the ship or 

other platform supporting the array. 

4) Self noise - noise that is generated in the hydrophones 

composing the array. 

Since all the components are assumed Gaussian (with zero mean), they are 

completely described by their covarlance function. This function is given 

in the following for forms of the noise components that are both typical 

end easily represented mathematically. Examples of the elgenf unctions end 

eigenvalues determined by the covarlance function are also Included. 
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2.1 Sea Nolst. 

The sea noise observed In time t and In the space dimension x 

Is assumed to be homogeneous.  Consequently, the covarlance function Q 

may be written 

Q(t-8, x, y) - Q(t-8, x-y) - Q(T, X) , 

where 

ana 

T - t-S 

X ■ x-y 

2-1 

2-2 

2-3 

The Fourier transform of Q yields the power spectrum n(w( v) in 

which u) (in radians/second) is called the time frequency and v 

(in radians/meter) is called the space frequency. That is, 

00    00 

n(Wf v) - J J a" J(WT + VX)Q(T| x) dT dx 
—oo  —as 

and inversely, 

«0    * 

Q(T. X)--S  [ f  eJ(wT + vx)n(u,. vMu, dv . 

2-4 

2-5 

Since the noise process is real. 

n(-w, -v) ■ n(w, v) . 2-6 

The transformation from Q(T, \)    to n(u), v) may be considered either 

"See Yaglom [9], pp. 81-84. 
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« tran« format Ion fron   Q(T, X)    to an Intermediate form   q.(u, x)    and 

then Co   n(u), v)   , or « transformation first from   Q(T, X)    to an inter- 

mediate form   q2(Tt v)    had then to   n(u, v)  .    The transform pairs 

describing the   Q ♦-KI,*-»^ n transformation are 

• 

qjU. X) "   /   Q(T. X) •' JwTdT 2-7 

Q(T, x) - ^ J   QjC«. x) eJWTdo) 2-8 

n(w,  v) I  q1(w. x) e- jvx dx 2-9 

2-10 

The transform pairs describing the   Q+* q»4"* n    transformations are 

CO 

q2(T,  v) -   J   Q(T, x) e" JVXdX 

oe 

Q(T. x) - ~   J  q2(T. v) e^dv 

2-11 

2-12 

i(a),  v)  -    /    q2(T, v)  e" J'0TdT 2-13 

OS 

qz(T,  v)  - 2^-    1   n(a),  v)  e-UTd<D    . 2-14 
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Eq. 2 - 8 Is recognized as Eq.  1-20 In the last section.    Since 

q^«, x-x) ■ q.(w, 0)   , Eq.  1 - 36 for   n.    becones 

^(u) - q1(a), 0)   . 2-15 

For sea noise, th^n, n (w) Is the power spectrum of the tine process 

observed at any point along the array. By Eqs. 2-7 and 2-10 n, 

Is rulited to Q and n through the equations 

I 
I 
I 
I 
I 

nj^u) 

0» 

~ I n(u, v) dv 2-16 

and 

OB 

n^w) - J Q(T, 0) e" JuTdT . 

The relation 

n-(- ü>) - ^(w) 

2-17 

2-18 

follows fron Eqs. 1 - 21 and 1-22 for this two-sided spectrum. The 

spectral normalization Implied by Eqs. 1-20 and 2 - 15 Is such that 

the noise power In bands of width Au centered at u>  end - u  Is c c 

2 n.((ü ) W2ir   when   n.     Is flat over these bands.     (This normaliza- 

tion is also employed by Helsnom ). 

A homogeneous Gaussian sea noise field may be constructed by 

superimposing an infinite number of Independent, inflnlteslmally small 

single frequency plane waves propagating within a homogeneous 

[10], pp.  2, 35. 
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- Ä < v < Ä    # 2-20 
c c 

2 n.Cu) 
n(u.. v) - *       CD <Vi - f . ?) 2 - 21 

where (g)  is the "boxcar" function definorl h/ S-j. A - 1.    This spectrum 

Is sketched in Fig. 2-1 for the case in which the time pever spectrum 
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nondispsrsive medium. The spac« frequency v at which power is received 

froa any one of these plane waves is 

v - - cos ß 2-19 
c 

where 0 is the angle of incidence of the wave (Pig. 1 - 1) end c is 

the velocity of propagation within the medium. (The quantity - is 

n recognised as the wavenuaber.)    How for any   S . 

0 
This band limiting in space frequency Is an Important characteristic of 

sea noise. 

Two simple examples of aea noise are the following Isotropie models. 

1) When the direction vectors of the infinitesimal wave 

components era uniformly distributed and confined to a 

horizontal plane, the total field is Isotropie in two 

dimensions and is labeled 12 sea noise. Physically, this 

field might approximate noise conditions in an expanse of 

shallow watsr. 

2) When the direction vectors are uniformly distributed in 

three dimensions, the noise is labeled 13 sea noise. This 

noise might approximate the noise background in deep water. 

The power spectrun of 12 sea noise is (Appendix B) 

Ö 

D 
D 
D 

D 
D 
D 
Ö 
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c » - ) 
T\= ConstAnt 

beetions shovr at 

■• 

Vc w0    u0 
—c a-v ! at v » 0 

V  ■« 

r^.-T»   Sc«fftrt1   C^rÄltv  V"-^f"-.n   'or  12   3*1   *'c'3: 
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n-(w) It a "boxcar" function (note the ipatlal frequency bandllaltlng). 

The spatial covarlance function q. f obtained from n through Eq. 2 - 10, 

la 

q^»» x) 

where 

i o c 

x - y 

2-22 

2-23 

The 13 sea noise power spectrum Is 

n(w. v) - ^- n^u)) (g) (vi - J, p 

and la sketched In Fig. 2 - 2 for the case In which n.Cu) Is a 

"boxcar" function. The spatial covarlance function q. Is 

q^w. X) " ^(ü)) sine (^) . 2 - 2A 

According to Eq. 1.-29, the spatial elgenfunctions and eigenvalues 

associated with the 13 sea noise field solve the equation 

L 
I** 

2-25 n1(«i) j     sine —(x-y) ♦tk<y) d, - »lk *lkM 

The elgenfunctions obtained are in fact prolate spheroidal wave- 

functions [ll]. 

Examples of these eigeafunctions are given in Fig. 2-3 for a 

time frequency of 40 hz and an array length of 50 meters. Since these 

elgenfunctions are not periodic, they do not have a frequency in the 

strict sense. However, some rough space 'frequency' is usually 

assignable, based on zero crossings or soaeflmes on sinusoidal appearance. 

Thu spectrum ^..f} is plotted in Fig. 2-4 versus such a 'frequency' 
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n^^uj) = 'A© (ü;-U)O,U)Q) 

r\ • Constant 
GecLicns fhcvn at 

W   =   U<0,   -T-   I   -   •—   ,   -U0 

Flgvre 2-2    A Pcver Sr.sctval Density Fun:ti.:n for 13 Sea lloite 
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neasure.    The spatial spectral density function 

2-26 n(w. v) - J^HJC«) CD(V; -^ J 

given In Eq. 2-23 and Fig. 2 - 2 Is shown In Fig. 2-4 for comparison 

In normalized form, Eq. 2 - 25 Is 

n1(i 
/Lu. . 2X 

sine ^J (x'-y-)  ^k(| y') dy' —f *lk(^') 

-1 

2-27 

It Is of Interest to note that since u and L appear only In product 

form In the argument of the sine function on the left-hand side of 

this equation, the solutions ♦--  obtained at 'jZ m **0  hz and ^ - 50 

meters are valid at all pairs of u  and L whose product Is 

u) L - 251 x 50 . 

U) 
For example. If — - 200 hz and L ■ i.0 meters, then 

VkOO-^V^^ii     5 
Ik 2-28 

will solve 

»i<V /L 
sine 

Wl 
^(y) dy - A^ ^(x) . 2-29 

<*>.. 
where ^ .  and A   nre obtained at r— ■ 40 hz and L ■ 50 meters 

(Figs. 2-3 and 2-4). This Is only characteristic of certain 'special' 

noise models such as the 12 and 13 sea noise models; less regular 

dependence on frequency end length may be expected in general. 
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2.2 Interfering Target Noise and Local Noise 

Interference noise and local noise as modeled here are Gaussian 

processes that are stationary but not homogeneous.  Interference 

originates at some presumably known location or locations, and local 

noise originates in the vicinity of the receiving array.  Interference 

could be generated by a vessel that has already been detected and located, 

and local noise could be generated by the vessel or other platform that is 

supporting the array. 

Since these noise processes are not homogeneous, there is no point 

in defining the process on x beyond the interval (- x, y) . The 

spectral equations of Sect. 2.1 apply directly, describing the transforma- 

tions Q ♦♦ q. . Repeating Eqs. 2-7 and 2 - 8 , 

so 

q^u), x. y) - J Q(T; X, y) e" ju,T dT 2-30 

00 

Q(T; x, y) - ^ f q^a., x. y) e^1 du) .      2-31 

The two dimensional spectrum n describing sea noise is not defined for 

this inhomogeneous noise, and instead, the discrete set U (w)} contains 

the spectral information.  In fact, composing Eqs. 1-29, 1-30 and 

1 - 37 , the transformation q. ♦■* A may be written 

\ 
r 2 f 

(u) - I   kMw, x)  I   qj^u, x, y) ij>k(w, y) dy dx 2-32 

q1(<*'. x, y) -  2_,  V**' X> V"0 V(W' y)  * 2 " 33 
keD(oj) 
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A simple example of an Inhcoogeneoua process is Che noise generated 

at a point source, and such a process is now described. Locating the 

point source one meter beyond the negative end of the array (at « • ~ T ~ ^' 

a member of this process is 

% 
v(t. x) -   » z t— «(«) 2-3« 

>(t - -h r ,J"" - — 

where   Y    is a complex random point function with normally distributed 

orthogonal increments.      In this equation   Y    is normalised so that 

^dY(ü)) dY*(«j)   • ^ q1(«.  - J. ' j) do» 2-35 

where qAu,  - T»"^ is recognised as the power spectrum of the time 

process measured at the end of the array x ■ - r- . Furthermore, aince 

v is real 

Y(- «) - - Y*(«) . 2-36 l- 

Now according to Eqs.  1 - *, 2 - 34 and 2-35 

Q(t - a, x, y) -  ^v(t, x) v*(s, y)) 

 1    f     , L        L.  jL(t-s) - 7(x-y)     . 
 7 T    /  V"» " j» " 9 •  L c J  dw  . 

2ir(x + f + 1)   (y + I + 1)   J^ 1 Z        Z 2 . 37 

Comparing this with Eq. 2 - 31 in which T ■ t-s, 

l^w, x, y) - -* r r  . 
1 (x + f + 1) (y + f + 1) 

2-38 

^aglom 19], p. 38. 
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I If this noise were present by Itself, the set ii'i^*  ^JI.) of 

spatial eigenfunctions and eigenvalues would follow fron Eqs. 1-29 

and 1-30. In fact for each time frequency index i there would be 

one nonzero eigenvalue 

xio" rrr qi(w- - r - ^ 2 -39 

with associated eigenfunction 

U).X 

*io(x) -^ shi e      J  c 

..   .   L  .   , 
2-40 

In addition, Eqs.   1-29 and 1-30 indicate an arbitrarily large number 

of spatial eigenfunctions with zero eigenvalues.    In practice, however, 

the continuous model discussed here is replaced by a discrete model 

defined only at the hydrophone locations,  so that  the total number of 

spatial eigenf unctions may not exceed   m  ,   the number of hydrophones in 

the array.    The total single frequency noise power    n.    defined by 

Eq.  1 - 38 is 

nl(^ " 1~+T ^^  ~ 2*  ' 1*   ' 2-41 

In an actual detection problem there will always be some sea noise 

(Sect. 2.3) present along with the interference or local noise. The 

eigenvalues determined by the composite noise covariance function will 

be nonzero in general. If the interference (or local noise) is strong, 

the eigenfunction or eigenfunctions upon which this interference is 

principally received will be close to those associated with the major 

nonzero eigenvalues of the interference covariance function by itself. 

As an example, consider a process made up of the noise from a 

point source one meter beyond the negative end of the array (Eqs. 2-34 
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2 - 41) in the presence of -10 db of 13 see noise. (By -10 db It Is 

meent thet n  for the see noise (Eq. 2 - 15) is 1C db below n^ for 

the locel noise (Eq. 2 - 41). The elgenfunctions are as shown in Fig. 

2-5 for en errey of length L«50 meters et e time frequency ^ ■ 40 hz . 

Beceuse of the nonisotropic component in the noise, some of the 

eigenfunctions ere necessarily complex. Any eigenfunction may be multi- 

plied by e complex sceler of ebsolute velue unity without chenging its 

normalization. The separation into reel end imaginary parts» then, is 

not unique. A seperetion is chosen here such thet the reel end imaginary 

parts are orthogonal and such that the reel pert has the larger norm. 

The spectrum U. } of the noise power is plotted in Fig. 2-6 

versus the index k . The sea noise level end locel noise power ere 

plotted for reference. According to this spectrum almost all of the 

local noise eppeers on the first eigenf unction. The shape of this eigen- 

function evidences the attenuation of the local noise due to spreading, 

and the phese relation between the reel end imaginary parts indicetcs 

thet the noise energy is propagating from the negative end of the array 

(see Eq. 2 - 40). 
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2.3 S«lf Nolae 

In addition to the acoustic noise Just considered, there Is always 

some self noise generated In the transducing elements (hydrophones) of 

the array [12 J. This self noise In any hydrophone Is assumed to be 

stationary and Gaussian with uniform power spectral density 7^ over all 

frequencies u of practical Interest. Furthermore, the noise at each 

hydrophone is independent of that at all others, so that 

qi(w» xh - V* "^ w 2-42 

in which h is the hydrophone position index. 

A direct spectral comparison may be made with the sea noise processes 

defined on the whole array dimension (Sect. 2.1) under the following 

conditions. 1) The hydrophones are spaced ~ apart over the entire space 

dimension (h - -», ...,«). 2) The space frequency v is significantly 

less than the Nyquist cutoff frequency 

~ m   vm v ■ 2ir rr- ■ -7- . 
o     2L   L 

2-43 

Under these conditions a power spectrum is adequately defined by a 

sampled version n(ui, v) of n(b), v) . From Eq. 2-9 

n(u), v) ■ ~ ^ q1(a), xh) e 
Jvx. 

2-44 

h— 

For self noise, since q.  is 7^ 6.. , , 

where 

n(w, v) - C , 

t-iV 
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Flg. 2-7 shows the shape of the spatial spectrum at fixed time 

frequency u of a noise process consisting of 13 sea noise plus self 

noise (n ■ n (13 sea noise) + n (self noise)) . Note that the spectrum 

Is not bandllmited to - as it was with sea.  noise alone (Fig. 2-2). 
c 

Although this spectrum is not defined in the vicinity of v and beyond, 

this Is a small restriction because m eqially spaced hydrophones do not 

permit effective processing above v . By increasing «n , one decreases 

the self noise level £ (Eq. 2 - 46), and extends the effective process- 

ing range (- vo, vo)  (Eq. 2-43). 

An important property of the intermediate form q.  for self noise 

is thr-t 

U( 

i L *&> xh - ^h^ f<v> -V «v • *-f^ 2-47 

h'-l 

for any f defined at the hydrophone positions x., ..., x  . Now 

consider another noise process observed at x., ..., x  whose Inter- 1      m 

mediate form Is q' and whose spatial set at w. Is 

^l^V' ^Ik' h " 1' •••• m>» ik e Di       2-48 

determined by Eq. 1-42. According to Eq. 2-47 the addition of 

self noise to this process (q.  in Eq. 2-42 is added to q^) will 

not change the spatial tIgenfunctions. The only change. In fact. Is 

the addition of the constant level C to each eigenvalue ^i. •  *n 

any noise model that includes self noist, then, none of the eigenvalues 

can be less than £ . Since the self noise is added to the ccoust'.: 

noise, the effect it will have deptnds on the ratio of ^ to the eigen- 

values X   of the acoustic noise process. The relative self noise 
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level, defined by 

o((J • -FT »  . -T 2-49 

im)(u)) K 

expresses this ratio. According to Eqs. 1-38 and 2-46 this is 

also 

0^) ' « ^W 2 " 50 

where 7^  is the time spectral level of the self noise at a single 

hydrophone and n'(u)) is n (w)  for the acoustic noise process alone. 

When the acoustic noise is sea (homogeneous) noise, the ratio  ^y v 
n. vw; 

may be directly measured at a hydrophone output, using a narrow band 

filter of center frequency u .  If 

Filter power output with acoustic 

R _ noise absent (self noise)  «  51 
Filter power output with acoustic 
noise present (self noise also present) 

then 

n^oj)    1 - R 
2-52 

When 77 < < a 
1 * 

2L 
n1(u)) 

s  R . 2-53 
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2.A Tha Signal Ccvarlanct! Matrix 

The "signal only" covarlancc mr.crlx G defined by Eq. 1 - 19 

depends upon the elgcnfunctlons of Q and hence on the prevailing noise 

conditions. Significant characteristics of the matrix G ere presented 

In the following for the noise fields discussed In the first part of 

this chapter. To display these characteristics, a relative signal 

spectrum on the clgenfunctlons used will be constructed from principal 

elements of G . 

To derive an explicit form for G according to Eq. 1-19, the 

"signal only" covarlancc function P Is needed. Repeating Eq. 1 - 4, • 

P(t. x. s, y | Y) - /v(t, x | Y) v*(s, y | Y) \   2-54 
x ^signal 

only 

which depends, as Indicated, on the signal source location vector 

Y e (^ . Since the signal Is assumed to 1) be emanating from a point 

source at Y , 2) be propagating through a homogeneous nondlspersive 

medium and, 3) be a member of a Gaussian process, the signal v received 

from Y In the absence of background noise may be written 

v(t. x | Y) - Jp(x | Y) ej(t + Y(X I ^) dZ(u.) 2 - 55 

mm 

in which    ZCu)    is a complex Gaussian random point function with 

orthogonal Increments.    Furthermore, 

Z(- w) - - ZMaO   , 2-56 

dZU)  dZMuA   - 1£ji- dw 2-57 
<• 

ano 

■ (-«)-• (w) 2 - 58 
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where S((D) is tht two-sided signal power spectral density function 

observed at the center of thf: rrray.  (For simplicity, the dependence 

of o(u) on Y caused by possible range dependent high frequency 

transmission loss will be omitted from the notation, i.e., 

s(u)) =  s(u)|Y) ). 

The time advance Y(
X
|X) along each separate wavefront relative to 

the center of the array (Y(0|Y) • 0)  is 

(xll) -± (llxM -V"lll2 + ^ +2^llll cos ß )  . 2-59 

The signal attenuation p(x|Y) , also relative to the array center 

(p(0|Y) - 1) , is 

1 2-60 
.(x|Y) 

x 2 

Mill2     nin 

where ß is the angle of incidence of Y (Fig. 1-1) and c is the 

velocity of propagation in the medium. When ||Y|| > > L , 

l x2    2 
Y(x|Y) ? ~ (x cos ß - y-TTjT sin^ 0) 2-61 

and in the limit when the signal may be considered a plane wrve, 

Y(x|Y) - - x cos ß 2-62 

and 

p(x|D • 1 . 2-63 

Now the covarianct function    P    (Eq.   2 - 54)  is 

P(t.x,8,y|Y)  -^p(x|Y) p(y|Y)   j   e^(t-s^(x|Y)   - Y(y|D)i(w)  du) 

-  1      /       l«\     f   ju(t-s-T (x,y|Y))   /  v i      *./ =  2ra(x,y|Y)     I eJ ••M- /s(w)  dw 2 - 64 
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«here 

and 

o(x,y|Y) • D(x|Y) p(y|Y) 

T(x,y|Y) • Y(y|Y) - Y(x!y)  • 

This coverlance function P leads to an explicit form for G 

through Eq. 1 - 19. However, before leaving the discussion of P 

Itself, it will be useful to obtain the total average signal power 

S in v . This is 

2-65 

2-66 

L 
2 

I     P(0; x, x) dx - M(Y) Ifc j    sM du 2-67 

where 

k 
2 

M(I) = I   j     P2(X|Y) dx 2 - 6b 

For plane wave signals. 

M(Y> - 1  . 2-69 

Now writing    G    according to Eq.  1-19 and recalling Eq.  2 - 64, 

G® " ««Ik , ik  <*>  > 2  -   70 

L      T 
{lk x ik^  "   j ^ik(x)   j 2 J ♦JCO     f P(t,x,8,y|Y)^(s)  ds dt ^(y)dy dx 

.- 

j      ^(x)  p(x!Y)   j      Fix£CT(x,y|Y))i|»£^(y)   p(y|Y) dy dx 2 -  71 
' 
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• 

where 

Flx£(T)  i  / ♦l(t)    (   k    I   •Jw(t',"T)  8(u)  dw ^(B)  ds dt  . 2-72 
O o -» 

When 

♦.(t)  - -^eJu,t ®   (t;  0. T) 2 - 73 
1 /T 

F    assumes the simple form 

Fix£ (T) ? 

3ie i - £ 

2-74 

if» £ 

(8i = s^)  ) 2-75 

under the following conditions. 

1. The signal power spectral density s(a))  is smooth over 

in 
intervals Au ■ —— in w . 

T 
cT 

2. The constant I    defined by t -  r is very much greater 

than the array length L . 

In this analysis it is supposed that these conditions lold well 

enough so that 

(V)    / 8^(I> imi 

«ikx-k -   ( 2-76 

0     w  i 

it k 
2  A r2 -JoyU.ylY) 

8kxk(X) ' J ^ik^ p(x|^) Si J  e ,,'ik(y) p<y,I) dydx 

"jf "2 2-77 

with negligible error. 
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Continuing with the nonzero elements of G , Eq. 2 - 66 Indicates 

that 

tjrfd) - s hlk(Y) hlfc(D 2-78 

the single frequency (u ) submatrlx G. of G defined by 

Gl S (^k> 2 " Ö1 

I 1^(1)1 I2 - LM (Y)  . 2 - 84 

In particular,  for plane waves, 

llh^DH2 • L  . 2 - 05 

In describing the nature of G  for different noise backgrounds, 

It Is sufficient to consider h, . For Instance, the relative spatlcl 

A-48 

In which 

L 
ft Jw^CxlY) 

hik(Y) i  I *£&)  c 1    P(x|Y) dx . 2 - 7S 
"' L 
" 2 

Consequently with I 
1^(2) = (hlkC2)).  i^ , 2-80 J 

I 
: Day be written 

G^D - e^a) h^'cD . 2-82       n 

This result will be of primary Importance to the detection analysis 

In the next chapter. 

For the present note that 

-h-.i " hj* 2-83 

and, for normalization purposes, that 

: 

: 

i 
i 



2 
•pectrum of the signal (Ih.. | }, Ik e D  shows how signal power is 

distributed within G , or equivalently, how It is distributed on the 

spatial eigen functions Ulk)f Ik e D. . This spectrum is now plotted in 

two samples using the eigcnfunctions shown in Figs. 2-3 and 2-5. 

As a first example, the relative spatial spectrum of the signal 

{|h.(u)| ), k e D(w) is given in Fig. 2 - 8 for plane wave signals incident 

between 0  and 90 . The spatial eigenfunctions used are those obtained 

for 13 sea noise at y- - 40 hs with an array length of 30 meters 

(see Fig. 2-3). 

At 90° (broadside) incidence most of the average signal energy is 

received on  41 . At 55  Incidence most of the average signal energy 

is received on t|>. , and at 0  (endfire) incidence, on ^ * Wh6n k 2. ^ 

the spectral component is a maximum for endfire signals. It is of interest 

to note that the angular interval in the endfire region over which the 

spectral component is large decreases as k increases. That is, the space 

eigenfunctions become more selective over incidence angle as k is increaseo. 

2 
As a second example, the spectrum {|h. (u)| }. k c D((D) is obtained 

using the eigenfunctions for 13 sea noise plus 10 db of local noise (see 

Fig. 2-5). In table 2-1, which contains the results .the k - 0 

element in the spectra of 0° incident and 180° incident signals shows 

that endfire signals from the negative end of the texv. have a large average 

power component on ^  in Fig. 2-5, whereas endfire signals from the 

positive end of the array do not. This situation is reversed for ii»2 and 

♦3- 

In this chapter, noise creels for sea noise, local noise, luterferenee 

and self noise were introduced. Examples vert then given of spatial 
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I 
I 
I 
I 
I 
I 
I 

V" . ß) 
2 

^ 
0.0° 90.0° 180.0° 

1 

0 
1 

2.61 5.28 21.8 

1 .624 39.5 .611   ' 

r 

2 13.1 .592 7.37 

! 3 27.Ö 4.54 14.3 

i 

5.40 .0902 5.32 

5 

| 

.396 .0409 .514 

6 .0186 .0000141 .0192 

f 
7 .000491 .0000453 .000472 

L • 50 Meters 
u) • 2if * 40 

- 251 Rads/Scc 
c • 1500 Meters/Sec 
Background Noise Is 
13 Sea Noise 
+ 10 db of Local Noise 
fron Source 
at x - -26 Meters 

m » 12 Hydrophones 

Relative Spatial Spectra of the Signal in 13 and Local Noise 

Table 2-1 
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•Igenfuacclon« fitting these uodtlt «ceordlng to the definitions in the 

first chspter.    Finally,    G   was expressed by its nonsero submstrices 

{G. ■ s-h-h*  }    end its charactsrlstics w^re Illustrated by two evamples. 

Overell, it was the objective of this chapter to provide a familiarization 

vith the eleaents    X, I|I,    and   h   which will be used in later descriptions 

of detector behavior. 

A-52 
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CHAPTER 3 

DETECTOR DEFINITIONS 

3.0 Introduction 

The three detectors whose behavior is analyzed in chapter 4 are the 

following: 

1. The b-detector defined on page 20 - essentially the "optimum" 

detector of [1] and [3]. 

2. The c-detector - essentially the "conventional" or "power" 

detector. This detector will be derived by abbreviating the 

realization of the b-detector. 

3. The Ä-detector - the suboptimum detector introduced on page 21« 

It a'nouM be remembered that analysis alone is the object here and that the 

equations and structures describing these detectors are not necessarily 

directly realizable in a practical detection system. The adaptation of 

the b-detector equations to practical realization is discussed in Appendix E. 

Throughout the analysis to follow, Condition 1 on the smoothness of 

8(a)) and Condition 2 that I >> L    on page 47 are presumed. 
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2. The c-detector - essentially the "conventional" or "power" 

detector. This detector will be derived Ly abbreviating the 

realization of the b-detector. 

3. The H-detector - the suboptimum detector introduced on page 21. 

Ita'r>oul<1 be remembered that analysis alone is the object here and that the 

equations and structures describing these detectors are not necessarily 

directly realizable in a practical detection system. The adaptation of 

the b-detector equations to practical realization is discussed in Appendix E. 

Throughout the analypis to follow, Condition 1 on the smoothness of 

8(u) and Condition 2 that I » L    on page 47 are presumed. 



D 
n 

3.1   The b-Detcctor ** 

The b-detector output, recalled from Its definition on page 20    la 

b(u. X) " X(u. X)  - li' <iyt(A + G(X)) + In det A + In ^(X)   . 3-1 

Now according to Eq. 2 - 76 and 2 - 82, the function x (Eq. 1 - 55) II 

may be expanded as follows. 

X(u. X) - - [(A + G(p)"1 - A"1] I |u||2 

IcQ 

i€ß 

Similarly, 

In det (A •♦■ G(X)) - In det A 

3-2 

^   det(A1 + s1 h^X) h^    (X)) 
L ln d^TT  3 " 3 

len 1 

- ^ In det(I + s1 A1"
1 j^QC) h1* (X)) . 

left 

-1    *' is 
Since the non-sero eigenvalue of the rank one matrix A.  ]L iL 

  I 
1 2 * I 
The notation c||cj|  denotes the quadratic form ,£ C £ . I 
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—1  <    2 Al  I IILII * the above determinant may be expressed In the following 

polynomial form. 

det(I + si A^
1 t^CX) h^* (X)) - 1 + s1 A^

1 | ^(X) 112 .      3-4 

These relations (Eqs.  2-2, 3-3 and 3-4) allow the output of the 

b-detector as given by Eq.  3 - 1 to be written 

b(u. X)  -  ^   [l^* (X)  v^l2 - ln(l + si A^1!! ^(X)!!2)] + In f^X) 
itü 

with the functional z  defined by 

3-5 

Si -1 ^(X) - 1 / ^f -j ^     ^(X) . 3-6 
1 + si Ai ^ Hh.CX) 

But u  ■ u.  (Eq. 1 - 34) £ id 
~-l ~1 

l-imh 3 ■ 7 

* 
because h  ■ h.  (Eq. 2 - 83) so that 

--i  -i 

* u .1 - Iz.  u*l " I t * u I .       3-8 
'--i ^-i'  '-1  ^i'  l-l I 

Consequently, if    fH- is the set of all positive indices in ß , ] 
I b(u. X) - 2^ Uzf  (X) uj2 - ln(l + s^^1 ||h1(X)| I2)] + In f^X) . 

^ icfH- 3-9 

I 
1   
I 
I 
1 

1See Middleton (13], pp. 724, 725. 
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Th« processing of the received signal v to obtain u and then 

b(u, X) Is shown schematically In Fig. 3-1. The conversion from v _ 

to o. and subsequent noise weighting by A   IS Independent of the ii 

steering vector X «kod takes place before steering Is effected. Thus pi 

processing logically separates Into the production of the weighted " 
ulk 

conponents 7-—* and the steering of the array according to X . Alk " 11 
Alternatively, the same result may be obtained starting with   v    and 

processing as shown In Fig. 3-2 (see (!]).    The exact definitions of £   , 

&   end   S    are left until after the following general explanation. 

First, the received signal Is delayed and attenuated along the 

array to match the delay   - Y(X|X)    and the attenuation   p(x|x)    along 

a wavefront arriving from the location at which the array Is steered. 

Consider the received signal to be represented by(Eqs. I - 12 and 1 - 32) 
-^ n 

V(t.  X)   2   Y^     Ulk V^   <'lk
(x)     ' 3   "  10 " 

IkeD 

Then since ^(t) Is sinusoidal, the form 

IkeD. 
* • - 

Is the time frequency domain representation of v(t, x) , and the 

delayed and attenuated version In the frequency domain Is 

P(X|X) L  uikWx) • 3-12 

lkcD1 

Next, filters ^(u, x|x) accomplish shading along the array. In 

general, this shading Is dependent on the time frequency u and the 

steering vector X . After shading the results sre summed along 
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2 

v(t,x) 

Array Dir.jn^icn x 
Hydrorhones ") 

•> v^ 
!-.<' 

Projectl-n on ^lk(x) 

In i^U) 

Figure 3-i    An Ir_pl'i.Z(Fr.v.aticn cT tha c-Dscectcr 
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r-J      Mxiv) 
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s(x) 

In ^(X) 

Squaring 

xnte^raticr. 
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X el 2 ' 2/ and then the result is filtered according to «> (w|X) . 

These operations yield 

^(«JX) L Ulk J  e        PCXIX)^^. X|X) ^(x) dx    3-13 
lkeDi   - | 

In the time frequency donaln. 

Returning to the time domain through multiplication by    $.(0 

followed by summation over the time frequency index set    ft  ,  the 

expression 

L 
2 

^♦^t) ^(uJX)^ uikJ  e  1    p(x|X)^(Wi, x|X)*lk(x)dx    3-14 

icfi iktl>i      - j 

is obtained. This is now squared and unbiased by subtracting a term 

S(X) . And finally, the results are integrated over the observation 

interval (0, T) and then weighted by adding in f.CX) . The overall 

result is 

r-   ^    r^    f -:KY(X|X) 2 
(l2_J*i(t)5(a)1|X)  2^    Uik   J   e pUlStyCv x!xHik(x)dx|   -S(X))Ut 

itl ikEDi        - y 

+ In fj^CX)   . 3-15 

When the square in the  integrand is written explicitly,  the integral.ion 

over time may be performed over the product pairs    (>.(t)  ♦.„(t)   .    The 

orthogonality of the     {$  }    then reduces  the above to 

L 
.2 r-     . r^ f   -JW.Y(X|X) 2 

L^(Wl^L   Ulkj   e pCxIx)^, x|x)ii'ik(x)dxr-TS(X)+ln f^X) 
iefi IkeD,      - 7 

1 ^ 3-16 
A-59 
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This detector output is seen to be In a form similar to that in 

■q. 3-9. Hence if the above is equated with the right-hand side of 

thia equation, it is apparent that the total index set ft may be replaced 

with 04- , the set of all positive indices in ft , and that 

It 

.^   .  . r2 -JwiY(xl^    . 
I^JX)! /  e       P(x|X)f(Wl. x|x) ^(x) dx 

L 
2 

2 s r -Jtt^UlX)   , 

2 

and 

S(X) '^Y ln(l + s^"1! IhjCX) ||2) 

icftf 

• 

^J ln(l+8(ü)) A-1^) | |]i(a., X)||2) do, . 3-18 

The phase of J^(u)|X) is arbitrary. For each ikeD  the two sides of 

Eq. 3-17 may be regarded as elements of a vector relative to the 

basis {^lk} • Returning to the space domain one obtains the following 

expression for ffiuAWf ("• yl*) . 
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: 

o 

lkcD1        2 

-  \SiUi X)|    p(y|x)  e f (V  y|X) 
3-19 

L 
2 

.1   J    ♦ifcOO   e      1 p(x|X)dx 

2,1 r L  '^ r: ♦> 
IkcD. ik 

so that 

r -j" Y(X|X) 

J T V (x)  e      * p(x|X)dx 

* 1 *-i r : 2       * (v) 
2      p(y|X)       L^ Xik 

viltky; 

ikeD. ^j yi+s^ii^cx) 

" ^ö M) I i2 "^f^" ^ ^  'ik(y)' 3-20 
Ik 

1 

The magnitude of the space independent factor ^     may be separated from 

this. The phase of ^  may be assigned as Is most convenient In the 

design of the actual filters «^  and £    . 
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3.2 Th% c-D«tector 

For signals from within a given region (K   , h ,  is appreciable 

only for the set 0. of indices ik . If X..  is constant over this 
i ik 

set, the b-detoctor implementation may be simplified considerably. The 

resulting detector, labeled the c-detector, is similar to the "standard" 

or "conventional" detector. Without changing its structure, the defini- 

tion of the c-detector is extended to cover conditions under which the 

\.,    are unequal. The c-detector is then considered a separate detector 

and its characteristics compared with the unsimplified b-detector. In the 

next chapter quantitative measures will establish typical physical condi- 

tions for the c-detector to be equivalent to the b-detector. khen it is 

not equivalent, the c-detector will not perform as well as the b-detcctor. 

The specific differences will also be discussed in the next chapter. 

The mathematical definition of the c-detector follows from two rela- 

tions derived from the condition that the significant ^«.CDJ 
a11 be the 

same. These relations are 

L 
\"      hiit     * i     C f* -.KY(X|X) ä h irw-tL   I Wx>e        p(x|x)dx,lk(y) 
ikeD1 

1K        1 ik£D1 - | 

1 

and 

1 -Jw.YCylx) 
J" e  ^     p(y|X; 3 - 21 

S 8 
3-22 

in which X    ■ X..  for all ikcD . If the first relation is placed 

in £q. 3-20, it is observed that the shading^ (u, x|X)  for the 
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c-detector is uniform in x along the array. In virtue of the two 

relation«, in fact, the assignments 

^(u). x|X) - 1 

and 

l^lx)!2--!^ 
X2(u))    l+«(»)A"1(w)||h(«, Jpl]2 

3-23 

m*M. 
^>   l<ti$™<*> 

3-24 

may be made.    Also 

OD 

S(X)  -if Ind+fH **&» *-  • 3 - 25 

If the signals to be detected are plane waves, then M(X) » 1 and the 

-1       2 
second relation shows that the term aJU  MLCX)!!" does not vary 

with the steering direction X . Hence, for plane wave signals, JT 

and S are independent of the steering direction X , and the particu- 

larly simple schematic shown in Fig. 3-3 results. 

In these assignments, when the significant X. (u)c D(ui) are 

unequal, X(UJ) is undefined. A definition for X(u))  that 

is consistent when the significant A.(w) are equal and which also 

defines X((D) in a reasonable way when the X. (UJ) are unequal is as 

follows. 

X(üj) = X(aj, Z) 

/ 

L 
2 p(x|z)2 dx 

I 
keD(u)) 

Xk(W) / K(.,*)  e-^Y(x|Dp(x|D dx 
L 
2 

" WZ)  A(w)' I]I(W' ^ 26 
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The vector Z^ Is some representative vector In U\   .    This definition 

leaves the structure of the c-dctector unchanged for all detection 

situations within "(.   ,  and it can always be compared with the b-detector. 

To facilitate this comparison, the output of the c-detector c(u, X) Is 

expressed in the form of Eq. 3 - 9 as follows. According to Eqs. 3-16 

and 3 - 23, 

c(u, X) 

IkeD 
■../. 

L 

- j un Y(x |X) 
^ (x)e  x     p(x|X)dx 

2 

-In l4^LM(X)]>+lnf1(X) 

^(^IX) ^'(X) u^ 
8, 

2 - In I +^IM(X)P + In f,ä(I) . 3-27 

As demonstrated above, this c-detector is equivalent to the b-detector 

whenever the X   are the same over the significant Indices IkeD. .  In 

the first example on page 49, h        (Fig. 2-8) for broadside signals 

(ß - 90°)  is relatively insignificant when k * 0 .    In this example, 

then, the b and c-de tec tors may be expected to be approximately 

equivalent when detecting broadside signals. According to Figs. 2-4 

aud 2-2 and Eq. 3 - 24, the filter &     would be described by 

I^U, x) 
nl(u)< A2 

TTC     *" nj^Cu) 
3-28 

for detection in an 13 sea noise background. And according to Fig. 2 

&  would be described by 

- 1, 

l.ru|x)r 
X in a near 
broadside 
direction 

S(iii)  w_ 

V"'2 ^ ! + Ä ^ «® 3-29 
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for dtttction In an 12 sea nolsa background. 

A quantitative comparison of the b and c-detectors Is made once 

performance measures are defined. It will be shown that broadside signal 

incidence and high time frequency generally favor equivalence. 
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3.3   The i-Detector 

The output of the {.-detector defined on page 21 is written 

Uu, X)  - A'^lull2 + In det it A + In f^X) 

" 2Z \ V1"^"2 + ln det ^ Ai/ + ln fl(^ 

\2_ 

ik icß+    ikeD1(X)| 

(The index set D. in this expression is allowed to vary with X 

to provide a crude form of steering.) In the processing indicated 

above, the quantities u..  may be generated as in the first stages 

of the processing shown in Fig. 3-1.  From thic point on, however, 

the processing is simple compared with the b-detector.  Following 

Kkl 
Fig. 3-4, the elements —  + In IT X..  formed without regard to 

Aik lk 

the steering vector X are included or not included in a summatioa, 

depending upon whether the index ik is contained in D (X) .  Summation 

over time frequency and weighting by the j» priori probability density 

function f.CX) then complete the l-detector processing. 

A-67 



- 

<•—   Varying i   —*- u 

-*-  Vr.rytn,- i -* 

*(£.*) 

Figure 3-1«   1h« t-.Ditector 

A-68 



: 

: 

: 

: 

.: 

; 

i 

CHAPTER 4 

OUTPUT SNR AND ARRAY GAIN 

4.0 Introduction 

Now that the b, c, and i-detectors have been explicitly defined, 

performance measures may be employed to describe their behavior and 

relate it to the specifications of the array and the characteristics of 

the noise field. The performance measures used are 1. the output signal 

to noise ratio [14], 2. the array gain [1, 3], which ia related to the 

output signal to noise ratio, and 3. directivity measures (to include 

measures of the ability of the detector to locate the signal source). 

Measures 1 and 2 are treated in this chapter and 3 is the subject of 

chapter 5. Each of these performance measures is first defined in general 

and then in particular for the b, c, and i-de tec tors (where applicable). 
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4.1 Th« Output SNR and Array Gala 

The output signal to noise ratio * for a detector steered toward 

X In the presence of a signal source at Y Is defined by 

♦ (X|T) 

Increase In average detector output 
due to the presence of signal 
standard deviation of the detector 
output when signal and noise are present 

4-1 

If V (u, 29 Is the output of a detector focused on X , and the 

subscript S(Y) denotes the presence of a signal source at Y , and 

N denotes the presence of a noise background, then the above may be 

written 

At the low input signal to noise ratios assumed here 

4 - 2 

v(?Ku. x))s+N S V(%(u, X)), 4-3 

so that the equation 

. . 0<^>s(mH-0^i>>,, 
/»(>(».»)« 

4-4 

nay replace Eq. 4-2 with negligible error. For simplicity, this 

replacement is made throughout the following text. 

The output f" of all three detectors considered here may be 

written in the form 

^(u. X) - 2^ W^, X) + C(X) 4 - 5 

IcfH- 

in which C is a bias tenu and in which it is reasonable to regard 

u. independent of u.' for 1 and I'tfl* whenever 1^1' (see 

.. 

.. 

:: 

— 
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Eqi. 1-17 and 2-76). Consequently the output signal to noise ratio 

for a datector of the form of kq. 4 - 5 Is expressed by 

♦(X|Y) . i£S±—  ■  4-6 

Since a long observation time is assumed, the above summations may be 

replaced by integrals, the argument u now corresponding to the time 

frequency index i . In fact, with negligible error 

. 1 »«i» ■ m T  o 4-7 

lj  V^(u(U), a), X)JN 

In a sufficiently narrow time frequency band of width    Au    about 

a frequency    u , the output signal to noise ratio is 

N 4-8 

The array gain «7  is obtained from this narrowband output signal 

to noise ratio by dividing out the dependence on the input signal to 

noise ratio, the observation time and the bandwidth. In feet, 

S ,/TAU) 

'1 N V^T 

where S is the average signal power in u, and N the total average 

noise power in u . The self noise is thus included in N . Toward a 
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■ore explicit form for the above, it is noted that (see Eqs. 1 - 35 and 

2 - 67) 

i . Mm   SiaH A - 10 s. M/Y) jtam 

over a band that is narrow relative to variations in   s(u)    and 

n.(u>)  .    Thus 

4                            ♦(". ill) 
iff (w, X| Y) -  —- 4-11 

n^w) ^   lf2iT . 

If this definition of the array gain (Eq. 4 - 11) is inverted, 

the relation 

•C«. ill) - ^7 M(Y) l/^Aw «J(W, X|Y) 4-12 " 

is obtained. It is apparent fron this that the array gain is as signi- 

ficant as the output signal to noise ratio in evaluating the narrow 

band performance of detectors of the type described by Eq. 4 - 5. Since 

the array gain does not depend upon the observation time, the bandwidth, 

or the input signal to noise ratio, it is a much simpler performance 

measure to use in comparing detectors. In addition, if the detector Is 

known to detect as well as possible, the array gain may be used as a 

direct measure of the detectability of given signals. 
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4.2 The Array Gain for the b and c-Detectors 

a) General Definition 

For both the b and c-detectors the single frequency output W 

In Eq. 4-5 may be written 

W[u(u.), u, XJ- |0((i), X)      u(u))| 4-13 

where 

2(w) -[|k(w)j, k e DCu.) 4-14 

Is a linear  functional.    The signal and noise being additive and 

independent,   the average   ^Wyo+w    *>n t^c numerator of Eq. 4-8 may 

be written 

<H>S+N-<M>S + <U>N- 4-15 

Furthermore,  the variance in the denominator may be written (Eq.  C-18) 

V(W)  -   ^w}^ 4-16 

so that finally 

</w(u(u)), «. XJ)S(Y) 

V ^  <^w(u(w), w. XpN 

The array gain for the b and c-detectors may now be written 

(Eq. 4 - 11) 

<W|U(W). .. X)>      / 

- 4 T—^- / -44 M( 
<w(u(a.). ». xpN  / 

nlW 

In words,  this expression is 

average detector output when 
array gain for input is a signal from    Y 
narrow band    b    or    c- (no self or background noise) 
detector operating about      average detector output when 4-19 
ui   and steered at    X    m       input is "noise only"  

input signal to noise ratio 
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An «Xflicit form for the «Ingle frequency array gain Is obtained 

froo Eqs. C - 17. 1 - 17, 1 - 18, and 2 - 82. 

<W(U(ü)), a), X)^ S(I) - G(u., I)||^(«, X)||2 

- s(w) Kw. I) h*'(w. Pllj(w. X)||2 - S((ü)|^*'(W, X) h(u., y)|2 4-20 

and 

<(w(u(u,), ... X>)>N - A(W)((a(a,. X)||
2 . 4-21 

Thus 

-        n (w)^ (w. X> h(w, y)|
2 

^(a,, X|Y) - -^ ^ = =  
M(Y) A<w)||a(M, X)|r 

b) b-Detertor Array Gain 

In single frequency notation, the functional 3- In Eq. 4 - 13 Is 

4 - 22 

Urn,  X) - »(a,. X) 
-1. 
JLM. -1 

l+s(u)A (u)||h(w, X)|| 

The array gain & ^ ' %  then, for this detector Is 

„/vx n-Go)   |h*'(w, X) A"1^)  hU, 1> 
^(b)(u., X|Y)  - -* r 5  

M(Y) A  A(«)||i(w, X)|r 

y    A    (cj)h.(a), X) 4-23 

4-24 

Since the form 

|h*(w, X) A^Cu») h(a), Y) | 2 

A'1^) | IhU, X)||2 A*1^)   ||h(W, Y)||2 

4-25 

has a maximuip over X ed? at X ■ Y , it follows that * * '(u, X|Y) 

is also e maximum at X B Y . That is, 

^(b)(w, Y|Y) >^
(b)(w. Xji; . 
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It will be said that the b-dttcctor 1« "focused" on Y when X " X • 

In that case the array gain simplifies to 

*(b)(u.. Ill) -^-A-^^lihCu,. DM2  . 4-27 

In explicit form this Is 

il^U    YlY) -  ^    'V"' I)|2  V^. 4-28 

It Is apparent from Eqs. 1-38 and 2-84 that 

<^(b) > 1 . 4-29 

For if «7    were less than one, then all the terms In the suamatlon 

would have to be less than one because all the terms are positive. But 

this would imply that 

iuirr   ^   IV"» i>l2 <    r1 i t \    ^    xv^> 4 " 30 
M(X)L

kcD(u)) 
k £  Ak(ü,) kcDU) k 

keDU) 

which Is not true. 

Equation 4-28 also indicntes that W^ ' is the sum of individual 

'channel factors' defined by 

n.U)  |h.((ü, Y)|2 

Since 

^(b)(u), X|Y) -  C  ö (w, Y)  , 4-32 
keD((Jj) 

the relative size of ^. (u, Y) may ^  use^ a8 a measure of the relative 

significance to detection at time frequency u ot  the projection of v 
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on the elgenfunction t(wH.(ui) . When designing an actual detector, 

this Information la used to determine the elements that the Index ret 

D(u)) will contain. 

If the overall noise process Is sufficiently Isotropie, the observed 

processes at distinct hydrophones will become Independent as the 

hydrophone separation Is Increased (see page 16 .). Supposing that the 

noise observations at the hydrophones are Independent and In addition 

that the overall external noise process Is homogeneous, the eigenvalues i 

(corresponding to the elgenf unctions given In Eqs. 1-44 and 1 - 45) In 

the expression (Eq. 4 - 28) for ths array gain will all be equal. Sine 

(Eq. 1-38), their value must be 

n.U) L 
X. (w) - -*-  A - 3A 
K      m 

where   m   Is the number of hydrophones.    Finally, placing this In the 

right-hand side of Eq.  4-28 and referring to Eq.   2-84,  the b-detector 

array gain equation 

J*(b)(u), Y|Y) -m 4-35 

: 

: 

i 

: 

:: 

is obtained for Independent hydrophones In a homogeneous noise field. 

(Plotting this on polar coordinates, a circular pattern results.) 

When there is only one hydrophone in the array, the array gain attains 

its lower limit of unity (Eq. 4 - 29) regardless of the noise field. 

The channel factors are plotted in Fig. 4-1 for the 13 sec 

noise example given on pages 26 and 49 . The time frequency is 40 hu, 

the array length is 50 meters and the incident signals are plane waves 
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Figure ^-3    The Effect of Self !<ci5e en Channel Factors 
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(M(Y) - 1) . The channel factors are plotted at three levels of self 

noise:  50 db, 30 db, and 2U db below the sea noise. 

Ij 
Recalling Sect. 2.3, self noise does not change the elgenfunctions, 

but adds a scalar constant £ to all the eigenvalues. For instance, 

iJ 
if {^(w)), keD(w) is the set of eigenvalues for sea noise alone, then 

the set Uk(ai)>, keD(u) with self noise included is 

{Xk(u))} - {Xk(w) + C), keD(u) . 4-36 

When the relative self noise level a   is -50 db, for instance, then 

(Eqs. 2 - 49 and 2 - 50) 

keD(b)) 

where /t    is the time spectral level of the self noise at a single 

hydrophone and n'(u) is n.(u) for the sea noise process clone. In 

this example the number of hydrophones m is 12 so that 

4-38 
nj (u) 

- 1.2 x 10"4 
o - 50 db 

m - 12 

•. 

: 

:. 

. 

This may be related to a physical measurement through Eqs. 2-51 and 

2 - 52. 

Figs. 4-1 (aa), (ab) and (ac) show that in this example, the 

highest channel factors for detection of broadside signals tend to 

concentrate closer to the left-hand end of the sequence of factors 

than for the endfire condition. In these figures, the eigenvalues 

decrease from left to right. Therefore, the addition of self noise 

affects the sequence of channel factors from the right, meaning that the 

endfire channels are most sensitive to self noise. 

In Eq. 4-31, as the self noise increases, X. (w) and nAu) 
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Increase (see page 41 and Eq. 1 - 38). The increase in X. (w) decreases 

the channel factors at the right, while the increase in n (w) increases 

those at the left. The increase due to the increase in n.Cu) is usually 

small. Physically, these changes are due to a change in the proportions 

of sea noise and self noise in the total received noise energy, the latter 

being a fixed quantity. 

The array gain J£ (  , which is the sum of the channel factors, is 

plotted in Fig. 4-2 versus the angle of incidence of the signal. An 

array of 12 equally spaced hydrophones is assumed. For comparison, the 

array gain obtained with 12 instead of 13 sea noise is also shown. 

The larger amount of 12 sea noise in the endfire region (Fig. 2-1) 

results in poorer endfire detection. Since less noise power is present 

in the broadside region, broadside detection is better when 12 sea 

noise is present. 

In both cases, the endfire detection is markedly affected ly  the 

level of self noise. In fact, if k is increased indefinitely, the endfire 

detection is limited only by the amount of self noise.  To show this, the 

2 
numerator  |h. (a),Y)|  (the factor M(Y) is omitted since it is unity in this 

example) and denominator X. (u)/n1(u) of the channel factors C (u),Y) 

(Eq. 4 - 31) are plotted in Fig. 4-3 versus k . In both the 12 and 13 

sea noise cases, the ratio of the numerator to the denominator approaches a 

nonzero constant as k is increased. In the 12 sea noise case, this constant 

is 2.2, and in the 13 noise case, it is 14. Therefore, without self noise. 

But note that k > • implies that an infinite number of hydrophones 
is available. 
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th« array e In (Eq. 4 - 32) will diverge «■   k   is Increeeed.    Self nolle, 

however, adds a constant to the denominator so that as the numerator |h.(u),Y)| l 
becomes smell (Fig. 4-3), the channel factors approach zero, and the 

array gain converges. To achieve a large endfire array gain, the self 

noise level must be small. The number of hydrophones m affects the level 

of relative self noise according to Eq. 2 - 50. The relative self noise 

may be made arbitrarily small by increasing the number of hydrophones. 

specifically, if the number of hydrophones is increased by a factor of ten, 

the relative self noise level o is reduced by 10 db . The cost in hydro- 
- - 

phones of reducing relative self noise quickly limits the practical reduction 

that can be obtained. 

The number of hydrophones also limits the number of available space 

eigenfunctions or channels.    If  m   eigenfunctions are desired,  at least    m 

hydrophones are required.    In qualitative terms, if   m   hydrophones are 

used,  the noise power on eigenfunctions (channels) of index    k   greater 

than   ra-1    is received on the existing eigenf unctions.    This can seriously 

impair detection at all incidences.    If in this example    m    were to equal 

2,  for instance,   then the noise power   * ) A. (u)    would be rectlved 
L Ec1>(u) K 

k>2 

on    \i>  (ID)    and    iK (w)   •    From Fig.   2-4 the added noise is roughly    k    of 
0 1 

i.e. with and without i*-    and iK . 

:: 

the total noise. A noise increase of roughly 25%    on ij; (u) and ^(w) 
o 1 

would decrease the broadside detection by roughly the seme amount. 

Evtn worse, the endfire detection would be practically eliminated because 

the eigenfunctions iK, ip., ... which are the principal endfire channels 

would not \'fi  defined. Fig. 4-4 shows the array gain for m ■ 4 and 2, '■ 

• 
In the example discussed above, the noise processes received at 

separate hydrophones are dependent. However, if the time frequency is 
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ralttd fro» 40 to 60 hi, the hydrophonat become agttntlally Independent 

for n <, 4 . The result 1« the circular array gain patterns pictured in 

Fig. 4-5 for a <. 4 . The principal endfire channels in thia example 

are ip. and i|», . Therefore when m is increased beyond 4( the array 

gain pattern goes almost lamediately from circular to lobed toward endfire 

and never does exhibit the endfire deficiency shown in Pig. 4-4. 

When m > 4 , eigenfunctions are defined to receive most of the noise 

nt its normal Incidence. Beyond this, more hydrophones have little effect 

on broadside detection. Endfire detection, however, is significcntly 

improved as more hydrophones are added. At first the added hydrophones 

define new endfire channels that are not self noise limited. After this, 

further hydrophones define self noise limited channels, one or two of 

which may provide significant detection. Beyond this point, adding 

hydrophones will improve the detection on the self noise limited channels 

by decreasing the relative self noise level. As mentioned before, however, 

it takes a large number of extra hydrophones to reduce the relative self 

noise level significantly. The patterns in Fig. 4-5 illustrate this 

development of the array gain as m is increased. 

In the remainder of this section some examples are given to illustrate 

the behavior of the array in the presence of local noise and interfering 

target noise. The first example is of detection in the presence of local 

noise from a point source located one meter beyond the negative end of the 

array (pages 34 and 49), and the second is of detection in the presence of 

an interfering target located 75 meters off the negative end of the 

array (x • -100 meters). Both the local and the Interfering target noises 

are 10 db above a background of 13 sea noise. The self noise is  50 db 

below the total external noise. The array length is 50 meters, and the 
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rtlMd from 40 to 60 hi, the hydrophonec becoo« «•■•ntlally ladtptndent 

for « 5 A . The result is the circular array gain patterns pictured in 

Pig. 4 • J for m <. 4 . The principal endfire channels in this exaaple 

are ip. and }.   .    Therefore when • is increased beyond 4, the array 

gain pattern goes almost tamediately fron circular to lobed toward endfire 

and never does exhibit the endfire deficiency shown in Fig. 4-4. 

When a > 4 , eigenfunctions are defined to receive most of the noise 

nt its normal incidence. Beyond this, more hydrophones hsve little effect 

on broadside detection. Endfire detection, however, is significcntly 

improved as more hydrophones are added. At first the added hydrophones 

define new endfire channels that are not self noise limited. After this, 

further hydrophones define self noiss limited channels, one or two of 

which may provide significant detection. Beyond this point, adding 

hydrophones will improve the detection on the self noise limited channels 

by decreasing the relative self noise level. As mentioned before, however, 

it takes a large number of extra hydrophones to reduce the relat4-'<> self 

noise level significantly. The patterns in Fig. 4-5 illustrate this 

development of the array gain as m is increased. 

In the remainder of this section some examples are given to illustrate 

the behavior of the array in the presence of local noise and interfering 

target noise. The first example is of detection in the presence of local 

noise from a point source located one meter beyond the negative end of the 

array (pages 34 and 49), and the second is of detection in the presence of 

an interfering target located 75 meters off the negative end of the 

array (x • -100 meters). Both the local and the interfering target noises 

are 10 db above a background of 13 sea noise. The self noise is  50 db 

below the total external noise. The array length is 50 meters, and the 
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0 

-  n 
tine frequency la 40 hs. 

The channel factors In these two exanples are plotted In Fig. 4-6. 

In the local noise case, (3  is practically zero, because most of the 

local noise Is received on ^  (see Figs. 2-5, 2-6 and 4-6). Since 

the local noise is attenuating significantly over the array, it is easily 

distinguishable from 180° signals arriving from .- distance so great that 

they do not attenuate significantly over the array. These 180  signals 

.o 

on ij) , making this channel useless for the detection of signals. But, 

the interfering noise does not attenuate significantly in this case and 

herefore is difficult to distinguish from distant signals also incident 

at ISO . Since the remaining channels do not match the interfering noise, 

t^ey do not match 180° signals either. This is evident in Fig. 4-6 

(ba). Tht irray gain for this cace is plotted in Fig. 4-7, and the 

detector at 180  is seen to be severely impaired by the presence of the 

intertering noise. 

As a final example, it is assumed that the noise process consists of 
A 

a single interfering target signal with a source vector Y plus self 

noise as described In Sect. 2.3. At a frequency u , the zero order 

spatial eigenvalue for the total noise process is 

arc principally detected on ^- and $,  .    As shown In Fig. 4-6, 

detection in the presence of this local noise is almost as good at 180* 

as it is at 0° . 

For interfering noise at x • -100 meters, however, the situation 

is different. As before, the bulk of the interfering noise is received 

■ 

o 

.. 

- 

X (w) - XT(ü)) + f 4-39 
o     i 

where X_ is the spatial eigenvalue of the interference clone, and 
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C la the self noise level (Eq. 2 - 45). As for the remaining eigenvalues, 

Xk • C k - 1, . . . , o-l 4-40 

in which m is the number of hydrophonce in the array. The ratio of the 

self noise to the interference given by Eq. 2-49 is 

Now Eq. 4-26 for the b-detector array gain fS and Eq. 1-38 

for the total noise n  indicate (following a certain amount of algebra) 

that 

m-l 

£ |\KX)|2 > 
/(b)(u.I|y.i^(1 + ivü__  J. 

The lowest b-detector array gain, labeled G^   is attained when 

Y - X . Then 

m^l 

^Ih^.I)!2 - 0 4-43 

k-1 

so that 

C«1" - ^(b) (U. ill) - ^ff    . 4 - «A 

Correspondingly if Y is such that 

m-l 

y iV"» ^i2" "^ 4 - 451 

k-1 

^ote from Eq. 2-84 that I |h(ü),T) | |2- LM(Y) 
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then the array g«*n Is 

Suppose  that the ratio of self noise to Interference is 

U  * 4-46 

1/10, that Is, 

^ - mo - "— 4-47 n^ '^      10 

A-90 

.. 

11 
in Eq. 2 - 50. suppose further that the array has eight hydrophones. 

Then the minimum b-detector array gain is 

G.00 -|f 3 1.086 . 4 - 46 

: 

L    81 

Since the interference power is assumed known, a signal from Y 

is still slightly detectable by the Increase it will make in the power 

received from Y . This is reflected in G     being slightly above 

unity, the general minimum for the b-detector array gain (Eq. 4 - 29). 

The upper limit G    , which is never completely attained, is 

Gu
(b) - 88 . 4-49 

These levels are marked in Fig. 4-8 which shows the array gain of a 

50 meter array at 60 hz in the presence of an interfering target from 

a range of two kilometers at an incidence of 49.1 

In the plot in Fig. 4-8 only the shape, and not the scale, may 

be used in making direct comparisons with other examples in which the 

Interference power is different. If the background or self noise is 

fixed and the interference is to vary, the array gain may be replaced 

by an  apparent array gain" defined as follows. Whereas the array 

gain 4P is obtained by normalizing the single frequency output SNR 

with respect to the total .loise n. , the "apparent array gain" v Ü 

& 

.. 

:. 

: 



CO 

2>\.-''' 

CO 
O«! CO   u 

0 r-*    <D 
w <-* w 

1  •"   • a -^ 
OS £ 

'     U -3 ^ 
0 0 0 

■P   » K    C 
U t lA 
O   «>- I "J <-• 
> <u 

!'     (1 
c 

\   0 3   U 
1    v* 

♦i U 
^ ^H OT    1 
'-' J3 0: U    | \s TJ c c  1 

O •^1 ^^      1 

0 r^ w 0« 
0 S 1 0 c 2 V •- 
0)  CM t > ■0 
'- a X s 1 
0 tl 35 

0 "" i  ^ — i> .^CO 
1   •"—■. 11 ^«H § «  u   1 

t3 ^ 
M  g. -• -3   6 

«n 

ü 

C 
C3 

c 
a) 
v 
c» 
c 
1; 
». 
1> 

c 

si 

t4 

< 
u 
o 
*» 
o 

Q 
i 

00 
1 

-3- 

A-91 



•elf noise without the interference. That is, 

£{*.  i|D ♦<"■ X|Y>  - ^ <Ä(W. X|D . 4 - 50 

b 

In this example. 

ni(w)    ^Xj)    141B0 

so that  the new minimum   G becomes 

GT
(b) - ifi-t^ -rjS 4-52 L l-hno    L l+o 

and the new upper limit G    becomes 

(At low frequencies there may not be any Y e <(  for which the above 

holds). 
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r 
will b« obtained by normalizing with respect to   n.   , the background or 

fj 

M., -/¥ ^ 0 
" 

5^.      Jll.J*. 4.5! 0 

D 
G (b) . -nfiUG   . m . 4 . 53 
^ü l-hno    Ü 

A comparison can now be made with the array gain obtained with no 

interference at all (with independent noise from hydrophone to hydrophone, «. 

such as self noise). According to Eq. 4-35 this array gain is m so 

that it may be concluded from Eq. 4 - 53 that an interference from Y 

does not diminish the "apparent array gain" if the signal source location 

Y is far enough from Y that 



• 

c)    c-Detector Array Gain 

For the c-detector,  the functional    <JL.    In Eq.  4 - 13 IS 

0,(0., X)  - -~t -\ \ fia) h(u)    x)   . 4-55 

According to Eq. 4-22, then, the c-detector array gain Is 

,2 ^(^(u», X|Y) - -^ 5  4 - 56 
M(DA(«)||h(w, X) 

This Is not necessarily a maximum when X - Y , so that steering the 

c-detector toward Y does not necessarily focus It exactly on Y . 

When the c-detector Is steered toward Y , 

4 n,(u)) M(Y)  L2 

»^K Y|Y) i = r - -4 
M(Y)A(u))||h(u»,  Y)|!2      A(w)||h(w, Y)||2       . 

|h(a., Y)||A 

A,2(u)) + X2  (u) ZA r—> , 9   A. vw/   T A. ^v«*i 

|hk(..Y)iA +   )_    |hkKi)l2lv(^r x (ü)) x. :<.) 
keD(uj) k,k'eD(u) 
  k<k"  

^   IVU,»^IA + 2Z       IV«»!)!2 IV^»^1 2 

4-57 

For comparison,  the b-detector array gain Is 

^^(w, Y|Y) -^YT^1^ IIW«' DM2    • A " 58 

The ratio of the array gains for the two detectors Is 

^(b)K Y|Y) m  A"
1^) ||h(u), Y)||2 A(a.) ||h(a), Y)||2 

5^(c)(a), Y|Y) M(Y)2 L2 

A"1^) ||h(a), Y)||2 A(a,) | | h(u, Y)||2 

keD(a») k,k'€D(u») 
k<k' 4-59 
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•*(b)(u.. HD   >   ^(C>(».I|D   • 4-61 

n 

All th« ttnu In this last expression art positive and 

2     2 

X. (u) X. ..(w) 

Therefore, 

4-60 

■ 

The equality holds when X. (u) ■ X, ^(ut) for all k and k' e D(h>) . 

Indeed, it was shown in Sect. 3.2 that when Xk(u) ■ X.^Cw) for all 

significant indices k and k",     the b and c-detectors are 

completely equivalent. Practically, when the average noise energy 

X. (u) is approximately equal on all b-detector channels for which 

either xk(ü)) \\(u,  1)|2 or l^^' -EjJ  is relatively significant, 

Xk(a.) 

then the c-detector may be expected to have almost the same array gain 

as the b-detector. This is illustrated in the following example. 

Consider a 12 hydrophone, SO meter array at 100 hz in a background 

of 13 sea noise. The space spectrum for this array as shown in 

Fig. 4-9 (a) is alreaay approaching the limiting form shown in 

Fig. 2-2. That is, it is practically flat for k < 5 . Now for a 

plane wave M(Y) ■ l] incident at ß-75.90and a self noise level 50 db 
X                '                         1                                                       n1(a))|hk(u),Y) 

below the sea noise, the b-detector channel factors (>. (w,Y) » ; rr  

Xk(w) .      -2 
are plotted in Fig. 4-9 (b), and the terms   > i l^r-C"»!) I  in the 

c-aetector array gain (Lq. 4 - 57) are plotted in Fig. 4-9 (c). 

Almost ehe entire b-detector array gain is on channels whose indices 
Xk(w)        2 

k are less than five, and all of the significant terms —r-r |h. (u),Y)p 

the c-detector array gain have indices k < 5 . Therefore it is 
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•xpccted thtt the c-dfttector array gain will be almost equal to the 

b-detector array gain at the 75.9° signal Incidence. This is in fact 

observed iz  Fig. 4 - 10. It is also reasonable to expect even greater 

similarity at incidences nearer broadside. This is also observed in 

Fig. 4 - 10. 

In general, the c-detector array gain will not be very close to 

the b-detector array gain at endfire or near endfire incidence. At 

these incidences the spectrum is changing significantly over the channel 

factors of interest. At broadside and near broadside incidence, the 

b and c-dctectors will have almost the same array gain when the noise 

model has a smooth spectrum in this incidence region and when the time 

frequency is high enough so that the significant channel factors and 

terms in the c-cetector array gain occur in this region. Self noise 

tends to equalize the b and c-detcctor array gains because it reduces « 

the span in k over which the channel factors ore significant. 

When the overall noise model is homogeneous and the noise processes 

received on different hydrophones are independent, the spatial spectrum 

is constant over all channels at a given time frequency. In this case, 

then, the c-detector is exactly equivalent to the b-detcctor. (Accord- 
n1(u))L 

ing to Eq. 4 - 34, A. (w) - -■  for all k so that the filter & 
K m 

(Eq.  3 - 24) in the    c-detcctor is described by 

l4r(.|X)|2--p-   »   —-A-       . 4-62 . 

This is approximately the Eckart filter [15]). 

• 
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A.3   The    t-Detector Array Cain 

According to Bq. 4-8, the narrowband output signal-to-noise 

ratio for the    I.-detector Is 

V /v[il(3»(W)t«tx))N 

4-63 

Obtaining the above mean and variance fron appendix D, 

♦ (0('-.X|X) 
k€D(W.J) '  ^ dw 

X.(W) 
4-64 

In the numerator of the above 

(iV-H1),«,     g^u.!) 
»ku> xk(») 

«(■a) II^U.V) I 
xk(«) 5{Är «CD ek<-i> 

4 - fr. 

according to Eq. 4 - 31. And in the denominator, 

r   <IV")I>K 

keD(w,X) Ak
2(W) 

kj^} 

keSu.X) \M        K i 
4-66 

where the function 11(0) is the number of elements in the Index set 

D . Thus 
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■i1"'        r *•    \/H(D(W. 

Referring now to the definition of the array gain given in Eq. 4 - 11» 

the t-detector array gain nf^ '    is 

^U,(«.X|D ; r     ,  4 - e8 
V H(D(ü),X)) 

Fig. 4-11 shows the array gain for i-detectors with various 

index sets. This gain is compared with that for the b and 

c-dcttctors. The time frequency is 40 hz, the array length is 50 

meters and the noise background is 13 sea noise. The data are 

derived from Fig. 4-1 (ba), (bb), and (be). 
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CHAPT£R 5 

DIRECTIVITY MEASURES 

5.0 Introduction 

In detecting a target of fixed but unknown location, the b, c, or 

l-detector Is steered In particular directions. Directivity measures 

«re presented below which will describe specific average relationships 

between these steering directions, the target location and the detector 

performance. These measures serve to 

1. provide a basis for selecting the steering directions, 

2. determine the Influence of a signal or noise on a detector steered 

In some direction, and 

3. Indicate how well the b-detector may locate a fixed target.  (A 

complete measure of the target locating ability of the c-detector Is 

not given; however, a note on Its bias Is Included.) 

As mentioned before, It Is assumed that the input signal-to-noisc 

ratio Is low and that the observation time Is long. The measures derived 

here under these assumptions are thus strictly asymptotic measures, never 

exactly representative at finite signal levels and finite times. However, 

the error will be presumed to be small and the measures treated as though 

they were exact. 
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5.1   The NornallKed SNR 

a)    Definition 

The first of the directivity measures discussed,  the normalized 

single frequency output slgnal-to-nolse ratio    K/  , will be useful 

primarily In making a practical assignment of detector steering 

directions.    It Is defined by (see Eq. 4 - 12) 

^ ♦(«•». X|Y)     £ (u, x|Y) 
^••Ito  ■♦(.. l|Y)-^(a.. l|Y) 5-1 

This function of X Is a measure of the change In output slgnal-to- 

nolsc ratio that results from steering the detector toward X not 

coincident with the target signal location Y . When £/ Is close to 

unity, there Is little change. 

b) The Normalised b-Detector SNR 

The normalised SNR fox the b-detector Is (Eqs. 5 - 1, 4 - 24 and 

4 - 27) 

^^      ^<b)(w. x|D 

i£r(b)(a.. Y|Y) 

|]l*'(W, X) A*
1^) h(w, 1)|2 

A'^w) ||h(u), X)||2 A'^w) ||h(u). DM2   . 5-2 

This measure Is never greater than when the steering vector X 

coincides with the signal location Y . 

As an example, ^ }(W( X|T) Is plotted In Fig. 5-1 for a case 

in which the time frequency Is 40 hz, the array length Is 50 meters, 

and the background noise Is 13 sea noise with -20 db of self noise. 

The postulated array has 12 hydrophones. In Fig. 5 - 1 (a) *) is 
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plotted for algnals incldeat at 0°, 35°, 50.5°, 67.5°, and 82°. The 

range | |Y| |  to the source of these signals la 10  setera. How If 

the detector la ateered at angles 26.0°, 42.5°, 59.5°, 74.5°, and 

90.0° at a range of 10  meters, It la observed In this figure that 

the aignal-to-nolae ratios for signals at the chosen Incidences will 

still ba at leaat 80Z of their maximum values. The signal-to-noise 

ratios for signals at all other incidences should be an even higher 

percentage of their maximum values. 

The outputs of the b-detector ateered toward a particular location 

may be regarded as a sample of Its output over the region of poaalble 

signal locations. Concerning signals at a range of 10  meters, 

Fig. 3 - 1 (a) Indicates that steering the 12 element array toward 

sampling incidences of 26.0°, 42.5°, ...» 90° will insure that no signal 

of incidence between these sampling incidences will go undetected. 

According to Fig. 5-1 (b), the b-detector output signal-to-noise 

ratio la not appreciably affected by ateerlng range until ||x||  is 

less than 100 meters. 

c) The Normalized c-Detector SNR 

Referring to Eqs. 5-1, 4-56 and 4-57, the normalized output 

SNR for the c-detector la 

*WM        ^(C)(<-.X|D  |h*'(W,it)h(a),D|
2 ^(C)(W.X|X) 

^'(«tXlD --^ =     5-3 
<y<C)(«.l|Y)     M(X)M(Y)L2 ^(C)(ü),Y|D 

This meaaure © for the c-detector la not necessarily everywhere 

leas than unity. That is, the output signal-to-noise ratio for the 

c-detector may be improved in some instances by steering it toward a 

location X other than Y , the location of the signal source. 
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In Fig. 5 - 2, JD (c) la conpared with ^(b) in both an 12 

and an 13 sea noise background. The c-detector is seen to be 

unbiased for both endfire and broadside target signals. However, at 

intermediate incidences the c-detector may be strongly biased. In 

fact, when a target signal is incident at 50.0° and the background is 

12 sea noise, the c-detector exhibits its highest output when steered 

in a 55° direction. When the background is 13 sea noise the bias 

is reversed, and the strongest c-detector output occurs at a steering 

direction of 44° . The Measure $D for the b-detector with this 

signal incidence is unbiased and practically the same in both 12 and 

13 sea noise backgrounds. 

d) The Hormalised t-Detector SNR 

The normalised output SNR for the t-detector is (Eqs. 5 - 1 and 

4-68). 

^m      ^(l)K.x!l) 
^U)(u.x|v) 

L~ 
4r(l)(w,Y|Y) 

keDdj.Y) . 5-4 
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5.2 An Influence Measure fit 

a) Definition 

The measure fd    In the previous section provides an lniilc«*-lon of 

the range of steering vectors X over which a signal emanating from T 

has essentially undiminlehed effect. Turning this around, the question 

considered below Is the change in response of a detector having a fixed 

steering vector X as the signal origin Y ranges away from X . At 

a frequency u , this response change may be viewed through the output 

signal-to-nolse ratio #((i>,X|T) ; in fact, a general Influence measure 

(H) (ü),Y|X) on Y e ft  is obtained from this by dividing out the 

implicit dependence on received input signal power s(a)|Y) and by 

normalising with respect to *(ai,X|X) . The result is (see Eq. 4 - 12) 

(3)(«.X|X) - 
•(*.x|Y)  /«(«ID 

♦ (u).X|X) 

M(Y) /fUtX\Y) 

K(X) ^(W.X|X) 

s(w|X) 

5-5 

Since the noise power in the output of the detector is practically 

independent of the low level signals being considered, this noise power 

is constant with Y for fixed steering vector X . For a given X , 

then, (H) is the ratio of the average detector output deflection caused 

by a received signal arriving from Y to that caused by a received 

signal of the sane strength arriving from X itself. Thus when Y - X t 

this measure is unity. If the signal from Y is not badly out of focus 

rod if the noise field interferes less with the signal from Y than with 

the one from X , then the measure ® may be greater than uuity. 

The quantity (g> may be considered a measure of thi influence of 

either signals or noise components. Should the object be to assess the 
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lnflu«ncc of a noise wave ^ that it not expratilbl« aa a signal eaan&tlng 

from SOM point Y , then (RHlll) »ay be generalized to (H)(Y|0 by 

replacing h(w, Y) 'see Bq. 2 - 79) with 

/ I'* a \ 
h(w. ♦> "  J  ♦k (w» «> ♦<«) d»  • 5 " 6 

b) (5) for the b-Dctector 

Referring to Eqs. 5 - 5, 4 - 2% and 4-27, the influence measure 

for the b-dctector is 

®(b)(^l|x) - 
M(D i»(b)(M,X|Y) 

M(X) ^<b)(w.X!X) 

h*'(w.X) A"1^) JI^.X) 

A'1^) ||h(«,X)||2 
5 - 7 

As an illustration, (?) is plotted In Fig. 5-3 for the 

b-detector (solid line) steered at a range ||x|| of 5 kilometers and 

an angle 6» of 40   Under the circumstances chosen here 

(ui • 2ir * 40 , 13 see noise background, etc.) Fig. 5-3 (a) indicates 

that the b-dctector so steered is significantly Influenced by signals 

of Incidence ßY from zero to about seventy degrees (||Yj| "5 km). 

And signcls at 35  incidence cause an even larger output deflection in 

a detector steered at 40° than do signals at the 40  incidence itself. 

This is of course no paradox since an appropriately steered b-detector 

in general exhibits appreciably larger sensitivity as the signal incidence 

approaches endfire. The 35  signal deflection observed at 40 

steering is in fact the tall of the entire 35  signal response versus 

steering angle. 

All signals having an incidence of 40° and a range greater than 

the length of the array show approximately the same Influence (Fig.5 - 3(b)). 
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At ihorttr ranges, Che Influence of 40  algnalt Is appreciably diminished. 

By Itself the Influence curve In Fig. 5 - 3 (b) describes the variation 

In the output SNR for signals which produce the ssae Input level at the 

array. Now since the range varies, this curve does not directly describe 

the overall variation In the output SNR for signals with the sane source 

strength. To express this new clrcuastance, the varying Input level 

S(HD ««y bs attached as a simple multiplicative factor on (g)  (see 

Eq. 5 - 3). 

c) (S)for the c-Detector 

Placing the left-hand sides of Eqs. 4 - 56 and 4 - 57 In ths definition 

of (E)  (Eq. 5-5), the c-detector Influence measure becomes 

(S)(c)<». lli) - 
MO) /r(c>(u.. X|D 

M(X) J(c)(a., X|X) 

h (w, i) h(ü), Y> 

M(X)L 

5 - ? 

This measure Is plotted In Fig. 5-3 (dashed line) along with the 

(b) plot of QP %m'    discussed In part b . The comparatively uniform 

response of the c-detector to signals at diverse Incidences Is reflected 

In the more regular decay of (B)  (Y) away from the steering location 

X - 

d) C5) for the t-Detector 

The measure (R) for the t-detector Is (Eqs. 5-5 and 4 - 68) 

(t) 

(E)U,(W. X|X) TTx  
M(X) ^(t)(W. X|X) 

MOD   >       <ik(W.D       )      J-*  

M(X)  ^    ^(w,^    ^ 

keD(ta),X) keD(ai,X) 
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5.3 Dnccrtainty In Signal Source Location 

A new measure is proposed below thet will indicate how wall a 

datactor can determine the location of a target aigoal source. This 

measure will quantitatively Illustrate how th« uncertainty in the 

signal source location depends upon the observation time, the signal- 

to-noiaa ratio, the noise model, the location of the signal, and the 

geometry of the array. 

The basis for this measure is the location equation (Eq. 1 - 56) 

f (X|u. 1 e ^ ) - Ä__ 5-10 

The term   b(u, X)    is the output of the    b-detector and   K(u)    is a 

constant independent of the scanning vector   X .    The propoaad 

statistic is to be a meaaura of the ahapa of    f (X|u, Ye(f()    considered 

as a function of   X ; therefore it need not contain   K(u)  .    In fact, 

the ratio 

J>(u, X) 
h; UT 5-11 
eb(Sb D 

will serve aa wall aa f(X|u, Ye^) itself, where T is the location 

of a teat signal. If thia teat signal ia sent to the detector, thia 

ratio ahould be a meaaura of the ability of the b-detector to deter- 

mine the location of the test aource. That ia, when thia teat signal 

ia preaant, the above ratio will contain all the algnifleant ahapa 

information in f(x|u, Yc^) . Thia ratio, however, ia atill somewhat 

random because of the randomness of £ . Since thia randomness tanda 

to mask the variations due to changes in ths physical circumstances 

(observation time, etc.) the meaaura propoaad below ia not this ratio, 

but a nonrandom daacription of it. The measure is in fact obtained by 
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*'   -1 
••tclng tha —ml« varlanc« of h.  (JpA. u. tqual Co it« varlanc«. For 

long oboervatlon times, b(ut X) Is the sum of « Urge set of Independent 

components, many of which have approximately the seme variance. The sample 

variances obtained in forming b(u, X) are therefore expected to be quite 

dose to actual variances at long observation times. 

Specifically, the index set o+ of the positive time frequency Indices 

may b« partitioned into subsets A  of consecutive indices such that 
P 

and 

Q - UJ 5-12 
P 

A O A , - 0 5-13 
P   P 

when p «• p' . Aa the observation time T is extended, the indices in 

any A  denote frequencies thst became closer together. If the observed 

process is smooth relative to the frequency spacing (the reciprocal of 

the observation time), the signal and noise variances will be approxi- 

mately the same over many consecutive discrete time frequencies. Rach 

A  will be taken small enough that the same variance may be assigned 

to all componentr whose indices are within it. The set of all p's 

will be labeled P . 

With this notation, the output of the b-detector may be written 

b(ji,X) - 2^ [^(JDMJ2 - ln(l ♦ s^Hh^X)!!2)] + In f^X) 
ieQ+ - 

'- 2L,   E I^ODaJ2 - 2^ inji + •1Al"
1||h1(x)(|

2J^ m f^x)  5 - u 
pcP ieA _ lcO+ 

P 
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In vhlch 

I 

^•l/TT^te^"1^ 5-15 

Over the set of consecutive Indices    1   In   A    , the Inner product tern 

In Eq. 5 - 14 may then be written 

ieÄ    " 

] 
] 

] 

i 

Jr^r^'^vW 
P 

ai(P) 
1   +   8 

^^'"iL'^iCp)^112   icA 
^  h^'ix) A^1^! 5-16 

where i(p) is any index i belonging to A    Now if the frequency 
P 

band covered by   A      is denoted by    Aw    , the number of elements    H 7      P P 

in   A      mr.y be written 
P 

H(Ap) 
Au    T 

P 
2K 

Consequently Eq.  S - 16 may be written 

ieA 

Ah) 
Ts. 

, A-l     11». /v\ll2    2»    "i(p) HU 
l + ■i(p)Aitp),^i(p)(^l, P    ieA 

5-17 

h   ^ \^\^\\\2    .   5 .- 18 
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For a flXMd otgret of locotlon uncertainty, tha longer the obaervatloa 

tiaa T , the aaaller will be the signal power •£# \ • thiM coapenaatlon 

auppreatoi the abaolute tlse of the random variations in 

Hit 
9   ItA. 

P 

with Che actual variance 

as T Is extended (i.e. as the sample else is increased). For long 

T , then, it appears reasonable in constructing a non-random measure, 

to replace the sample variance 

tjZ    ll/'OD A"1 %|2 5-20 0 

: 

0 
(The actual variances of all components with indices i within A 

are being assumed to be the same.) Making this substitution in 

Eq. 5-18 and placing the quantity obtained back into the right-hand 

aide of Eq. S - 14, the resulting output statistic b ia defined by 

La* 2. 1 + .^11^(1,11' 

-2^ mil + s^1!!]^^!!2 + in ^(x) . 5-22 

ien+ 

These summations are approximated by integrals as follows, 
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6(x|D « 5 / 
•UOA^OdHtU.Dll2 + a(u>)2|h*'(ü).X)A"l(w)h(a).y>r 

1 + 8(ul)A*1(u>)||h(w,X)||2 

- ln(l + «(^A^C^UhCw.X)!!2) du + In fjQp    .       5-23 

Replacing b in Eq. 5 - 11 with b , tUe definition of the location 

uncertainty measure Vt becomes 

b(X|Y) 

eb(Y|D  . 

Since this measure jf     describes the shape of the a posteriori 

probability density function of the target signal source location, it 

indicates the best location definition that can be obtained with any 

detector of the given geometry. Thus it is a fundamental measure of 

the locatability of a given signal source using a given passive array. 

In addition to its use in forming ^j  , the output statistic b 

is useful in examining the structure of b . For example, it is 

apparent from b that the term s(u)A~ (u) | |h(u),X) 11  , though small 

-1 2 
compared with unity in the expression 1 + 8(u)A (co) | |h(uj,X) | 1  , can 

yet be very significant.  Consequently the expression 

5-24 

Hhriting the Integrand in Eq. 5-23 as 

1 " 1+a " :Ln(1+a) b « a « 1 

the approximation 1+a a i leads to I = a+b . However, this does not 
agree with the expansion 

I - b - | + O(ab) + ^(a3) 

so thct unity cannot replace 1+a . 
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1 + •(w)A (w) | |h(u!,X) ||  !■ an important pert of th« structura of a 

detector fornlng b(u,X) . (It oppaara In two placaa In Eqa. 3-6 and 

3 - 9 for b(Ä.X) ). 

Two examples arc now presented to show how the mecsurt /r  may be 

applied. In the first, a test signal source la placed «t an angle of 

60  with the axia of the array and at a range of 2 kilometers from 

the center of the array. The array is 50 meters long end consists of 

12 equally spaced hydrophones. The background noise is 13 sea noise 

plus -30 db of self noise in the hydrophones. The target signal source 

generatee Gaussian noise of constant spectral density 10 db below the 

background noise at the center of the array in a band from 30 he to 

130 ht . The power outside this band is assumed to be negligible. With 

i uniform a priori location denalty function f,(X) and a 50 sccona 

observation time, the location uncertainty according to Bq. 5-24 is is 

shown in Fig. 5 - 4 va). If an actual random waveform v(t,X) were received, 

an exact but random location uncertainty function could be generated. The 

measure 7f  , which is itself not random, ahould be a reasonable 

description of the significant shape aspects of this acact, random location 

uncertainty function. 

Fig. 5 - 4 (b) shows how a  section through the measure plotted in 

Fig. 5 - 4 (a) changes with observation time. The measure 7r  is plotted 

at the test signal range of 2 kilometers over a range of angles .-.round 

the test signal angle of 60 degrees. The observation times are 10, 20, 

50, and 150 seconds. 

Fig. 5-4 (c) shows how the same section through the measure varies 

is the low frequency cutoff is raised. Raising this lower cutoff until 

the original bandwidth is reduced by 602 decreases the bearing resolution 
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by only 20X . In fact the detector «till hat ovar half Ita original bearing 

ratolutlon after tha lower 80X of Ita frequency br.nd ia removed. In thia 

axaapla In which there Is strong correlation between tha nolae received at 

aaparata bydrophonea, it la apparent that the highest frequencies preaant 

carry alnoat all of the location infomatlon. 

Aa a aecood example, the angle resolution Is determined for the same 

array In a background of both 12 sea nolaa and 13 aea nolae. The same 

signal source la moved to a range of 10 kilometers from Its two kilometer 

range In the first example. Assuming spherical spreading, this lowers the 

signal-to-noise ratio to -24 from -10 db in the first example. Now at 

thia range, the source is moved in ID3 increments around the array. And 

at each position, the constant range cross-section of the location uncertainty 

/X ia plotted in Fig. 5-5. (Constant bearing cross-sections are virtually 

flat in the region of 10 km.) With the 12 set noise background, the 

bearing reaolution in the endfire region ia worse chan with the 13 sea 

nolae background. In the broadaida region, the situation is reveraed. This 

is to be expected from a comparison of ths two dimensional spectra for the 

two nolae fialda p tured in Fig. 2 - 1 and Fig. 2-2. In fact Fig. 4-2 

ahowa that the b-detector array gain in an 12 ssa noise background la 

higher near broadside but lower near endfire than in an 13 aea noise 

background. 

: 

: 

: 

: 

: 

: 

o 

i 

• 



1 
] 

] 
] 
.1 

i 

•**   1 
**   1 J3   1 

t» 
v o 1 u r-> 1 

e H  1 1      c o 
1      ^ 

tr. • 1 0   1 i     * ■ (*>  1 
1    V    • •s^n*    1 

1   "   * H 
1  k   • ■   1 

go*   § ^ t»  1 1 n o -ö ö 1 
1      r-*   0 "   1 

•3 . H C'   1 
1%  ¥ 1 >> 1 t)  1 

i **    — ■ c 1 1   (0  ■    —. ^ 1 
i         .>-l *    r» 1 

*>     >HI—'- i 3    o- 1 
I   « oa   — 2h*     VI 
1   *>             "» - ' H   ^   1 

£           i »I »    tu   1 

•o J S 
§So 

1    O   O f-* ^> 
u  i.       -> 

|   ta ^ H 
1   >J J«       o 
|    o   o <^» 
|   rf  n —•, i o      1 | ä  T K! S       1: 
1         — ■ w       i 

O    Ü  *• * 
1     -J   t>          Q 
i -.-4 ft o a 

M         :l 
ki         f 

t   o o ;; la V          1 
I  t: :.-.  :: n u ••J          ll 1             rt <u ** 1 eg r» re  **» ♦' 
1    M M          '.J !> 
1            <r — S o     i 
1    1 C   0 o 

-H  « O i^ 

1    ' It IT* ^•,            ll 

I    1 
I    . 

:» -4 P • 
j       1      '    O   sO J «     1 

o 

m 

XI «a 

to 

o 
c 

••■4 

h 
V 
4) 
«i 
to 

in 

>n 

—    ^ 

o 

«^       Ü 
n 

a 
•a     ■* 

k 
o 
u i 
4' 

i 

.1 
(I 
hi 

s, 

A-119 

i 



5.4 A Blca M>caure for thtt c-D»t<.ctor 

When a target signal Is present at Y , the output of the c-detector 

will be e maximun vhen stecrcJ at sone location other than Y . A nou- 

random Indication Bx ' of the difference between this location and 

Y is o measure of the bins in the c-detector. As in Eq. 5 - 14 for 

the b-detector, the c-detcctor output nay be written 

c(u,lt) - 2^ < -*j ^ s ^ In 1 + ^UKX) ) + In f^X) .     5-25 

UO* [ Xi 1 + -kM(X) J 

(c) 
The bias measure B   will be derived from this random output using the 

notation, assumptions And methods of Sect. 5.3. 

It has been cssuned thus far that the signal power s end the nois. 

power n. are known. In interpreting the results of this section it 

will be of interest to note the significance of : his assumption. To 

allow this« a notational distinction is made between the values of the 

signal end noi.ie power that arc used in implementing the detector And 

those that prevail in the received signal u . The valuer of the signal 

*    i 
and noise power used in the implementation will be denoted by s and n. 

respectively. 

The quantity *  called for by the implemtntation according to 

Eq. 5 - 25 is given by Eq, 3 - 26. 

i^i<z->-Ii%AillV^II'-JT^ X. i X.(Z) ■ rT~rA.llh.(Z)ll^ ■     * i  5-26 

ID 

where Z is some representative vector in the region of scan (K 

(For most analyses, Z nay be set equal to the signal source location 

vector Y ). 
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Furthermore, two simplifying assumptions arc made: 

1. only plane wave signals are considered, i.e., M(X) • M(Y) ■ 1 ; 

2. the a priori location probability density    f.CX)    is assumed 

uniform over the incidences of Interest. 

Under assumption 1, the bias is expressed as an angular difference 

between the incidence    ß      of the signal and the steering angle    (L, 

at which the    c-detector output    c(u,X|Y)    Is a maximum.    And under 

both assumptions this bias is determined by the first term in the 

right-hand side of Eq. 5 - 25.    This term is 

r-       8(U.)>*<c)(w.,Z|Z)2|h*'(X) u.|2 

t(u,X) - 2^    —i— -i—-7^ a      . 

L2 Ä^)2 fl +T-^-i|(c)(Wi.Z|Z)] 
\       n.(u.) 

IcJH 

5-27 

Now a non-random description of this term is obtained by the 

methods of Sect. 5.3. First, t is written 

t( u.X) - 2^ 
^(C)(u.i(pl.i|Z) 

2 

p,?i2i
1s<p),(l+r?MT*<c>S(p)J 

\     ni(wi(p)) / 

nl(ü,l(p))   P UA 

5-28 

Then the ismple variance 

H^h Z i^*'® ^1 
ieA 

is replaced by the actual variance 

5-29 
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\      ni(wi(p)) / 

-  fm  IU)#(c)U.ilD2 (A(u))||h(u.X)||2 + 8(W)|h*'(ü),X)h(W.Y)|
2 

» -r- /  ■ : dw 

to yield the non-randon quantity 

f.l '^M' i1 + ^<eWlD 

(c)/.. ,i,.2 | *' 

^ o   Äl(ü,)2    1*N-^(C)(U, Z|Z) 

5-31 

n1(w) 

It Is noted (Eq. 5 - 28) that this description t Improves as the 

observation time T Is increased while the product of T and the 

estimated slgnal-to-noise ratio T^-  IS held constant. 
n(b>) 

The term t provides the basis for the c-detector plane wave bias 

measure B    as follows. With (f(    limited to sources which would 

produce essentially plsne wave signals at the array, the bias In receiving 

a signal from Yc Hi     is given by 

B(c)(Y) - ßj - ßY 5-32 
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In which X c ^  Is such chat 

t (X|Y) > t (X|Y) 5-33 

for all X c ^ . 

The expression for t(X|Y) evidences four factors that determine 

B(c'(y) . The first, O (c>(u),X|Y) , may he considered the source of 

the bias. The less the bias in the directivity  £>    the less will 

be the biss indicsted by Bv  . Fig. 5 - 2 shows, for exsmpls, that 

with a signal incidence of 50.0° at 40 hs in 13  sea noise, the 

directivity measure ^    has a 5° bias toward endfire. Since this 

appears in the denominator of 

I 
* 

I 
I 
1 
1 
1 
0 
a 

 i  

H »|f^*(c){...llD®(c)<".x|D . 

II 

] 
] 
] 

i 

(c) a c-detector bias toward broadside would be indicated by  B   . 

The second factor determining the bias is the c-detector array 

gain ^  (u,Y|Y) at the signal incidence Y . The smaller this is, 

the greater will be the bias. Though this separation into the factors 

& and &(c'  serves well in an analysis of the bias, it Is of 

limited interest to the designer because these factors cannot be 

controlled independently. For a fixed noiae field, in fact, a rise in 

Jiic) 
MJ is always accompanied by a decrease in the bias evidenced by 

The third and perhaps most interesting factor in the bias is the 

received signal-to-noise ratio '^v » . The weaker the signal, the 

greater will be the bias in the c-detector. This characteristic is 

apparent in Fig. 5 - 6 (a) in which B ' is plotted versus signal-to- 

nolse ratio for plane waves incident at 60 , 75 , and 85 . The 
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A-124 



] 
] 
] 

;: 

] 
] 

: 

; 

] 
i 

i 

frequency rang« Is 30 to 130 hr and tb« background noise Is 13 sea 

noise« The received signal power sCui) and noist power n.(w) are 

constant over this frequency range and the iapleaenlation values s and 

n. arc set equal to s and n. respectively. The tern X in 

Eq. 5 - 25 is determined by setting Z    in Eq. 5 - 26 equal to the 

signal incidence vector Y . Fig. 5 - 6 (b) shows the variation in the 

bias with signal incidence. In this example the bias is less than a 

tenth of a degree in the broadside region (70  to 11C ) . 

The fourth factor is the frequency dependent multiplier 

JM i  
Äl(u) 1 ♦ Itoi- ^(C)(W.Z|Z)  . 5-3 

This factor embodies all of the dependence in t on the implementation 

values s and n . 

Throughout the preceding analysis and in particular in the 

preparation of Fig. 5-6 the received signal power s and noise power 

n. were assumed known. This then permitted their use in the c-detector 

implementation, i.e., 

s-s 5-36 

and 

n - nj^ 5-37 

in Eq. 5 - 25. The influence of s and n.  in determining the bias 

may be assessed from the factor presented above (Eq. 5 - 35). Most 

significantly, it is apparent (Eqs. 5 - 35, 5 - 36 and 5 - 37) that 

the influence is negligible whenever 
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frequency rang« is 30 to 130 hi and the background noise Is 13 sea 

nolee. The received signal power sU) and noise power n.Cu) are 

constant over this frequency range and the Implementation values s and 

n. arc set equal to s and n. respectively. The term X in 

Eq. 5 - 25 Is determined by setting Z in Eq. S - 26 equal to the 

aignal Incidence vector Y . Fig. 5 - 6 (b) shows the variation in the 

bias with signal incidence. In this example the bias is less than a 

tenth of a degree In the broadside region (70  to 110 } . 

The fourth factor is the frequency dependent multiplier 

sU) 1  
AM 

^(u) x + LuL. if(c>(w,z|Z)  . 5-35 
n1(üj) 

This factor embodies all of the dependence in t on the implementation 

values s and A. . 

Throughout the preceding analysis and in particular in the 

preparation of Flg. S - 6 the received signal power s and noise power 

n  were assumed known. This then permitted their use In the c-detector 

implementation, i.e., 

s ■ s 5-36 

and 

n - n1 5-37 

In Eq.  5-25.    The influence of    s    and    n.    in determining the bias 
1 

may be assessed from the factor presented above (Eq.  5 - 35).    Most 

significantly,  it Is apparent  (Eqs.  5 - 35, 5 - 36    and    5 - 37)  that 

the influence is negligible whenever 
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1. tht received signal power •(<!)) and noise power 0.(01) are 

essentially constant over the frequency band of Interest, and 

2. the received signal-to-nolse ratio a((it)/n.((a) Is so saall that 

the quantity j^jj /(c)(w,2|z) la negligible with respect to 

unity. 

Suppose now that conditions 1 and 2 are known to be satisfied 

but that the exact algnal and noise levels s and n. ars unknown. 

(c) 
The measure BN ' will remain repreaentatlve of the true bias if the 

implementation valuea s and n  reflect the known conditions, that 

Is, if s((it) and n.(u) are constant with frequency and 

l^-^Wli) «1 . 

When the Input algnal power a and noise power n. are not exactly 

known, two deaign strategies are suggested by the above discuaslon. One 

is to provide additional processing for estimating a, I»,, and the noise 

covariance matrix, and then correcting for the biaa using curvea similar 

to those in Fig. S.6. The other strategy also uses curves such as these. 

It is apparent in Fig. 5.6 (a) that if there ie a fixed limit on the 

tolerable biaa then there is alao a minimum signal strength at each incidenr« 

that the c-detector should be allowed to detect. By limiting the observa- 

tion time one could effectively limit detection to signals whose strength 

exceeds this minimum. 
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Appendix A The "Boxcar1* Function 

The "boxcar" function ® Is defined by 

1 a < s < b 

(s;atb) ■ / 1/2 s ■ a or s » b 

0 s < a or a > b 

(see Flg. A-l). 

Its Fourier transform V Is 

A-l 

I 
] 

] 
] 
] 

] 

Inversely, 

(g){a;a,b) ♦ 

• 

no;a,b) -5i.J®(sjalb)e
Jo8d8 

^/•^■^ 
1 e^ab - e^oa 

®(8;a,b) - Llm / v(a;a,b)e"Ja8do , 

1.0 

.5 

.0 

8 ■» 

Figure A-l   The "Boxcar" Function 

lagloo, p. Uo. 
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Appendix B Derivation of the Power Spectrum of 12 Sea Molte 

An Isotropie, Gaussian sea noise field In two dimensions (designated 

12 sea noise) may be constructed by superimposing an infinite number of 

independent, infinitesimally snail, single frequency plane waves, whose 

direction vectors are uniformly distributed within a horizontal plane. Each 

plane wave is a member of the set {u..}, 1J e A where 

A - (ij) B - 1 

such that 

0 < 1 ^ I 

-J<J^J. B-2 

As observed by a horizontal array in time t and in the array dimensicn x, 

each plane wave is 

^«(M) " 2Reft   ]cosui(t ♦ fcosBj) - 2^^ jsin<l)i(t ♦ f «o»6,) 

DJu^Ct ♦ i cose )        # -^(t ♦ £ co»e«) 

'1J~ ■ Hf B ' 3 

The complex amplitude <;., ^ is a normally distributed random variable with U 
zero mean. The constant c is the velocity of propagation in the medium, 

and the angle B is the angle of incidence of the plane wave, in the coordinate 

system pictured in Fig. 1-1. 

A member v of the sea noise process is defined by a 
„r     >,(t+ico.e;   „ .><t ♦ f ci )] 

v *> • 
.! 

MAX lu. -w. J-»-0    0«u) <tt, <•••<«». «V 
i   i-1 o   1        I 
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where Y la a conplex random point function with zero cean and normally 

distributed orthogonal increments. This function is constrained by 

y(-w,e) ■ -y*(w,0)    . B . 5 n 

The power spectral density function f on u and g Is defined by ** 

fU,B) - (2ir)2 Lim ^(tfig) - y(tf^Mi6-Afi))(Y#(tf,g)-Y#(M-AMiS^fl??^ |] 

0 
2A ÄY(w,ß)di ay

#(w,6)) n 

dwdß • 

The constraint given by Eq. B-5 implies that 

f(-w,ß) • f(w,0) . B - 7 

Since -ir < 0 < ir Includes all possible incidence angles, 

ß > ir 
f(a),ß)  - 0 B - 8 

or     ß <, w    . 

This truncation i; expressed by the "boxcar" function (g)(ß;-ff»*) defined 

by (App, A) 

1     -ir < ß < tr 

®{$l~n,v)  ■    (l/2   ß - n or ß » -ir 

0    ß<-Trorß>ff   •     B-9 

Finally since the noise is Isotropie, f may be written 

f(w,ß) ■ f(w)®(ß;-tr,Tr)  . B - 10 

Imperfect agreement at ß« -ir and ir is Ignored. 

Hie member v is now written in a form that leads to a spectral represen 
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1 
1 
1 
II 

2 
1 
I 

the domain of Integration in the right-hand side of Eq. B-U, 

• 0 

r(t,x) m  j   f 
Jw(t ♦ — CO80) 

-• •Jit 

u 6 

Jw(t ♦ - cosB) 

-• 0 

dW(0T(w.6) 

-»   0 
u  B 

u  B 

Jwd ♦ T-COSB) 
d, fty(u).-s) ♦ 

«>  IT u 
(n   B 

Ju(t ♦ i cosB) 
d^pYCw.B) 

Jw(t ♦ — cosB) 
d
W.B[-

Y(^0) 4Y(w»ß)] B - 11 

Changing the variable according to 

at -v ■ — cosB 
G 

B - 12 

the above becomes 

v( t.x) -    f      f ej(wt * vx)d      ^(«.-cos-1 ^ ) . y(w.cos-1 SL )] 

u/c 

-•  -<ü/c 

B - 13 

U        V 

vhere 

Z(u,v) ■ Ydj.-cos"   — ) - Y(u,co8"   — )     . 
10 H 

B - lU 

Since Y is a random point function with normally distributed orthogonal 

increments, so is Z.    The constraint on Z corresponding to the constraint on 

Y in Eq.  B-5 is as follows. 

Z(-<ü,-V) ■ Y(-w,-cos"    — ) - Y(-w,cos"    — ) 

■ -Y^u.-cos'1 ~ ) ♦ y*(w> coo'1 — ) ■ -Z#(w,v)  .B - 15 
u w 
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Ik* muMvr* B(ti,v) of •paetril povtr on u uA v !• 

«(»,«) . (2»)2(dl|ltVZ(u,«)du>vZ*(«,v)) 

" (^„.^K-co.-1 SI ) . Y(U.06.-
1 Ö )] 

• dMtV[»#(U.-=o.-1 SJ ) - »'(».cc.-1 Ä )] 

♦ («„.«»(Sec.-1 «J )dU(/(U.co.-
1 SJ )) 

Evaluating the first term in this expression» 

<2*>2<d
W.v

y(w'-COi"1 ^ )dtt>/(ttt-cos-
1 SI )> 

f(u)®(v4-f,f)dW 
8 -cos"1 ^ M 

IV 
dv 

T^7 V^ "2- V 

B - 16 

B - 17 

The second tern in the right-hand side of Eq. B-l6 Is also equal to 

-   ^gj     ®(v{-^)dudv  . B~18 

V? 4-v2 
c 

C'C 

and therefore. 

»(-,v). /jM=;®(vi-ftf Mudv   . B - 19 f ^ 
A more useful form of this result is obtained by expressing fiu) in 

terms of the one-dimensional power spectral density function n. (u) defined 

by Eq.  1-36.    Restating Eq. 2-l6, 
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m 

1    f       2f(u))   /c\ /        w w x. 27^ /===; ®(vi.-,-)dv 
TL 2 
V7-v 

f(w)   . B - 20 

so that Eq. B-19 becomes 

n(w,v)      f 

v? 
2n,(i«) 1        ®(v;-^) 

ii 

-I 

J        2 
B - 21 

] 
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Appmdlx C   Output Statiitlct for th« (kneral D>t«etor 

Some output statistics are derived here for a general detector whose 

output V Is 

V -2 Z lsi"ail2 ♦ ci C - 1 

icn+ 

where 

|l " ^Jlk'        lk e Dl C - 2 

Is some linear functional cad C. Is a bias tern.    With the definitions 

and 

this output soy he written 

'i'Ji Hi 

»! - l^l2 , 

C - 3 

C - 1* 

v ■ 2E (wi *ci) • C - 5 

ien> 

Both the b and c detectors are of this type. The aean (V> end the variance 

V(i/)  are derivei. for use in perforrance neaaures for these detectors. 

Assuming u. independent of uT for 1,1' e 0+,, each output component W 

will be Independent of W ' for 1^1' and 1,1' e Q. Then 

<V> • fe <v4- 2E '^i' • c - 6 

and 

C - 7 

iefl-f ' lefl-f ieß* 

For use in the above expressions, the nean \W / and the variance V(W ) 
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are determined fron the mammt generating function for the distribution of 

w1, Bgr definition, n 

D 
D 

■o that the mean 

W.t. 
C - 8 

dM,(t) , 

and the variance 

H d2Mi(t)  / \2 [J v^>--^r--<wi>   . 
r^ The monent generating function la obtained fron the distribution of W , 

which in turn follow« fron the distribution of w.. 

The distribution of w. is now derived. Since w. Is obtained from u. 

by a linesr operation, and u. is assumed normally distributed, w. is also 

normally distributed. The mean of w. Is 

ri Q-Q'^-iiW)-0 C - 11 

and the variance is 

0 T<V-('v^O-^J 
2 

» 

C - 12 

where the matrix A. is the covariance matrix of u^ (Eq. 1-13). The probability 

density function of w. Is therefore 

M 2 a   
1     a^llgjl 

C - 13 
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UM dlitrlbutlon of V. is obtained fro« this through the chanfe of 

Twlable W1 - |vi|
2 in f(v1). The tern Vi Is reel end nonnegative. The 

probeblllty that V1 lies within a dV^ is equal to the probability that v. 

lies within an origin-centered annular ring in the cosqplex plane. The area 

of this ring is 

2» -w; d( Vw;) ■ 2t Vw? -i ■ wdw.        c - U 

The probability density function of V. is therefore 

The aooent generating function HAt)  is now written for the distribution 

OfWj. 

w.t-   -  1 

, ,   /"A       i       f '   *illaill i 

C - 16 

In virtue of Eqs. C-9 and C-10, then, the statistics of the ccnponent W. are 

and 

ieO* 

and 

v(V)-^AilbillU  • c-20 

i»n-:- 
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1 A4lift 

f(W ) . £  e     *   ß1 ^  >. 0    . C - 15 

*   Viai"2 l fl 

: 

: 

: 

o 
v^i> - ^il^ill1* - All8illu - ^llaiM1* ■<wi/? •c ■ia n 

Substituting these results into Eqs. C-6 and C-7« 

<V>-»I]<*illjill8*V C.X9 0 
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Apptndlx D t-D«f ctor Stattitlct 

In this appendix Che mean and variance of the t-decector outout are 

obtained. The usual aeauaptlon le made that u. Is Independent of u.> for 1 and 

Tc n+ whenever 1^1'. Referring to the l-detector definition (Eq. 3-30), 

tnirX 

and 

lcn+ IkeD, 

V(t(u)) - 

len+  ' IkcD, 

'Ik Ik + *n f^ D-l 

D-2 

ir~+ to,xik 'Ik k + l» 'l 

leftf 

IcJH- 

- 4 

\_lkeDj  xlk    /   L11^0!   Xik 

Y     l    <l"tkl2 I"IK-I
2
>   rV  <lvlr> -i2" 

ifeüj    lk'cDl 
Xik    Xlk' LikeDj      Xlk J 

UM-    ikcD,        x.. * IkcD.    Ik'eD,      *lk xlk' 

- 4 E III i^!>!.i;<!viV] 
Itftf  L ikcD1        xlk' Ik        xlk

Z 

r <i"iki2>i 
LikcD1    Alk 

1 Ik 
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Appendix B ApproxiJMte Elgtnfunctioni for üf In t Practical b-D«tector 

SOB« of the perfonunc« characteristic« of the b-detector are discussed In 

the text» but no mention Is aede of the realisation of this detector. In fact, 

the exact equations need to describe the b-detector, though veil suited for 

analyals, are not In a for« that is practical for actual detection. Such e 

functional for« can be obtained in two w-ys: 

1. by returning to the power detector with shsding shown in Fig. 3-2, or 

2. by an approximation to the form need in the analyals (Fig. 3-1). The first 

spproach waa covered in [1] end the second will be considered in the following. 

This second form has been very successful in the analyals of the b-detector, 

and it seems reasonable to guess that It may also have advantages In the 

synthesis. Already it Is apparent that delay lines are not required, 

'nd that there is a locical separutlon of internal functions, vhich 

makes the configuration flexible. A limitation on this application is the 

capacity of the processing computer in storsge and speed. This may be a major 

obatacle when a large scale detector is planned. 

The approximation to the analytical form of the b-detector that makes It 

practically realiseable is a further approximation in defining the set of 

eigenfunctions of Q (Eq. 1-15). This is the subject of appendix E. Appendix 

F concerns the description of the "signal only" covsriance matrix 0 that re- 

sults from the use of particular approximate eigenf unction aets. The nature 

of G will largely determine the amount of computer processing required In the 

system. 

a) A Practical Requirement 

Specifically, the main objection to using the eigenfunctions aa they are 

defined so far la that their duration is the whole observation time T. 

Consequently, no elements u.. of u can be available for further processing 
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until this total obtervatieo tiat has elapted. In practica, proeatttd 

detection information is required more or leas continuoualy froo t»0 until a 

final decision is made. 

b) Breakup of the Observation Time into Subintervals 

An approximate set of elgenfunetions consisting of consecutive functions 

of short duration is proposed here to meet th« above requirement. The 

sinusoidal form for the time el gen functions (Eq. 1-25) will be retained. Now 

to construct the approximate set, sinusoids vill be defined over a system of 

subintervals vithin (0,T). The most easily analysed system is obtained by 

breaking up (0(T) into consecutive subintervals of duration T*. In fact, the 

orthonormal set of time eigenfunctioas {+.  (t)} considered first vill be 

defined by 

Jw.t 
♦/»We i ®(t;t(n).t(n)*n.Wi2^ E . 1 

where t   is t  beginning of the n' time interval. This set is represented 

by a set of horizontal lines in Fig. E-l(a). The frequency of 4.   is 

represented by the vertical intercept w.» and the time duration is represented 

by the length of a horizontal line having this intercept. The line for ^. 

begins at t(n' and ends at t(n* '. When T*T', the set is the original one 

defined by Eq. 1-25 and is represented, for comparison, by the time-frequency 

plot in Fig. E-l(b). 

The quality of the above approximation depends upon the "smoothness" of 

the intermediate form q1(ta),x,y) in Eq. 1-2U. Indeed, if q.U.x.y) is 

relatively constant over all u intervals U.-W^.+W) such that left and W is some- 

2ir 
vhat greater than =x then the approximation vill be good. The error intro- 

duced by using the new set of time eigenfunctions thus increases as T' 

decreases; the variation in the form q. is an important factor in determining how 

small to set T'. (Other factors, which will be considered in a later part 

A-139 



♦ Vi 

•« 

- 

cl.  1  , 
M'-i 

 X. 

t*l 

(a) 

ui*X f- - 

2« r 
i». 

(b) 

Figure £-1    Freiuency-Cia'.s Plcts  Tor Sinusoidal Tire Eigenfunctiora 

A-140 

o 
D 

: 

: 

: 

D 

D 

:: 



of this appendix and in Appendix F, are th« procMtlng frequencle« and the 

natura of the reaultlng signal natrlx G). 

Aa developed below» the set of approximate tine elgcnfunctions defined In 

Eq. E-l suggests another set which may be even more practical. 

c) Frequency Dependent Time Intervals 

In going from sinusoids of duration T to those of duration T ', the spacing 

between frequencies (u.) Increased. If the design of the detector requires 

separate time filters at each frequency w , It Is desirable that this spacing 

be set as wide as possible. Another set of sinusoids Is now proposed In an 

attempt to cover a given frequency band with sinusoidal time clgenfunctlons 

at as few frequencies aa possible. It Is noted that the "smoothness" Is a 

local condition on q,, and this suggests determining the duration T. of a 

sinusoid at frequency u by the smoothness of the specfra In the neighborhood 

of u.. 

With T varying with frequency, however, 1L la not generally possible 

to choose a spacing between frequencies such that the resulting set of 

sinusoids Is orthogonal. To obtain approximate orthogonality, the spacing 

between adjacen". frequencies may be determined by 

Ait 
(i)       —  M   • ————— 

1+1       1     ^l^i    • 
E-2 

(n) 
With this spacing, the approximately orthogonal set {$.  ) Is defined by 

♦l 
(n) 

(t) - 
e (n) . (n) ®rt; t^'. t™      Tj) E-3 

where t    Is the beginning of the n  time Interval at frequency w.. 

For example. If the smoothness ol the noise process spectra is directly 

proportional to the frequency u, an appropriate set of time durations T Is 

N periods of the oscillation at u). with N a positive Integer, I.e., 
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The lovMt parmlsalbl« T It determined by two factors: 

1. the wmcothAess of q- at deacrlbed In the previous aection, and 2. the 

orthogonality of the aet. Error aaaociatad with each of these factora de- 

creases aa H is incraaaed. 

Eq. E-2 aata the local apacing of tha frequencies at the inverse of the 

average local time duration. Solving this equation and Eq. E*4 simultaneously, 

"i+l " Pwi E"5 

where 
/   , l—,  

E-6 5Y1+l/l + |^T7 

The multiplier p versus N is plotted in Fig. E-2. The resulting local apacing 

la most aimply expreaaed in terms of the average local frequency 

w . -ili- i E-7 

Using Eq. E-5, 

and 

Dividing, 

w     2        2 

M- . Ü£IÜ E-8 
«    P+l    . 

Using this result and Fig. E-2, the ratio ■^L- la plotted versus N in Fig. 

E-3. 

A typical sequence la now given for N - 3 and a lowest frequency of 

10 ha.  Using Fig. E-2, 

wi+l " P"! " i-38 \ 
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The sequence of frequencies is therefore 

10 1-z, 13.8, 19.0, 26.2, 36.1, 49.9, 68.9, •••. 

According to Eq. E-4, the corresponding time durations arc 
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n 
.3 sec, .22, .16» .11, .083, .0605, .044, '•*. p 

Th«»« durations are plotted in Fig. E~4 at their reepectlve frequencies. • * 

d) Tl»e Intervals vlth Space Dependent Phase 

In the example Juat considered, the tine Intervals decreese with tine 

frequency. At sufficiently high frequency, the coherent wavefronts of signals 

neer endflre will extend over a nunber of tine Intervals. As Is showni.. Fig. 

F-5(b)  this will cause signal power received In one time eublnterval to be 

dependent on that received In adjacent time sublntervals. To eliminate this 

dependence, the time sublntervals may be phased to match the signal wavefront- 

If the time delay relative to the center of the array along a signal wavefro; 

is - Y(X|T) then the eet of sinusoidal time eigenfunctions may be written 

U^10} where 

G 

0 
0 
D A disadvantage of this set is that it changes with signal incidence, 

e)    Breakup of the Arrey Dimension into Sublntervals 

jc^t 

♦l(n)(t»x) ' -^r-®<f.  t/^  " Y(x|Y),  t™ - Y(x|l) + T^   .      E-9 

The above discussion of sinusoidal eigenfunctione end their definition 

over sublntervals may sometimes be appliec to the space eigenfunctions as wel- 

as the time eigenfunctions.    Since preliminary design calculations of G are 

simplified when the space eigenfunctlon may be approximated by einusoids and 

since a breakup of the array into sublntervals may simplify the processing, th 

relevant conditions and observations from the pre^elinc   are restated below 

for the space eigenfunctions. 

Conditions for a sinuosidal function 

of duration 1*^1 solving the space eigenfunctlon equation (Eq.  1-29) arc 
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1. that the time eigenfunction +. is approximately sinusoidal, 

2. that the noise process is homogeneous, 

and 3. that the spectrum nCw ,v) is relatively constant over the v interval 

(v.-W, vk+W) in which W is somewhat less than rj . 

In Appendix E calculations of G will be carried out using sinusoidal space 

eigenf unctions for which 1/ ■ L. 

When a breakup of the time duration Into subintervals is combined with 

a breakup along the array dimension, the result is a rectangular grid on the 

t,x domain. This domain and grid are pictured in Fig. E-5 for the following 

example: the time frequency is 1000 hi, the array length is 50 meters, and the 

background noise in 13 sea noise. The time subinterval T*  and the space 

subinterval i/are twice the period of their respective oscillations. The 

smoothness condition 3 on the noise spectrum Is satisfied for v. somewhat les- 

than 1.3«. The space frequency chosen for this example is w, corresponding to 

a plane wave incident at 41.4°. Wavef rents at this Incidence sre shown In the 

t,x domain in Fig. E-5. 

An advantage of this grid pattern is that blocks containing the same 

wavefront may be grouped and processed together. The processed output from 

distinct groups of such blocks are then almost Independent. The sane 

result is obtained using the phased time subintervals discussed In part d. 

However, this grid configuration has the advantage that is does not change 

with signal incidence. 

The grid concept Is also useful in the design of an array when portions 

of (- -r, -r) sre unavailable. This occurs when It Is not possible to place 

hydrophones within some subinterval of (- -r, -?). 
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jPPWKil» F   The Signal Covarlance Matrix G 

a)    Tha Canaral Form of G 

The consequences of the sublnterval breakups discussed In appendix E are 

expressed In the following In terns of the resulting signal covarlance matrix 

G.    It Is the nature of G that determines the ease with which the forms 

(A + G)'    and det(A + G) may be realized for use In the b-deteetor (Eqs.  1-54" 

and 1-55).    At Its simplest perhaps, 

ci" 8i Mi 
In the analysis of the preceCir.w chapters; however, the coalitions (p^. 47) 

under which this form Is valid are not satisfied for all sublnterval choices. 

Properties of G under other conditions are presented In the following. 

In the development below, the set of approximate elgenfunctions defined 

over the system of time sub intervals of duration T' Is used (part b of App. E^ 

Use of this set most simply demonstrates the effect of time sublnterval 

duration on G. The set of elgenfunctlons defined over the system of frequency 

dependent sublntervals could be used, but the notation Is more complicated 

while the results are virtually the same. With sublntervals, the generali- 

sation of Eqs. 2-70 and 2-71 for G Is 

••«■ 

L/2 L/2 
Innn').    . 

_ Tin .rvo 
F.3 

In which 

T 

0 
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But after rtplacing ^ by tht right-hand tide of Eq. E-l, changing tht order of 

the integration, end using Eq* A-2, 

F - 5 

The signal power spectral density function sfu) must be specified before 

the above integral can be evaluated. Functions sU) that are relatively 

constant at 

»i  s s(Wl) F- 6 

over an Interval surrounding w. and ui«» end that do not become extremely 

large in the vicinity of this interval allow a simple approximation to 

f nxn') Fixi' ^^ Specifically, choosing u^w.«, when siu)  is such that 

/ siu;e   Viw-Uf»t  ,t  +TVf Vw-w. ^ft  »t   ♦T';^ 

2s4 ^f e-^f («. it^W^T')»•(„.,it
(n').t(n' W)dtt 1 U{i-w 

F - 7 

,(n»cn'). 
for W somewhat larger than u.^*)^» then ?.   ._ (T ) is approximately the 

complex convolution of the Fourier transform of Y with itself. The same 

result is obtained if w1^>ui* This result is 

2irS.  -JUJ^T 

ff(Wi^i;t
(n).t(n'W4T) 

t^-w^t^'^.t^W) 

t<nLt(n')-T'<T<t
(n)-t(n') 

t<0).t<^<T<t(,l).t<B'W 

elsewhere 
F - 8 

1 
1 
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AM  |i-li inermtei, the intmrral (^.Wj J lengthens until at |i-i'| 

equal to eoae Integer r it maj no longer be stated that S(M) IS relatively 

constant over this interval and its vicinity. When |i-i'|>r, the approximation 

in lq. P-7 is invalid end Eq. F-B for FJ^"^ does not hold. Fortunately, 

however, the V term in Eq. F-7 (see Eq. A-5) indicates that unless there is 

considerable variation in n(u), r will be large enough that F**"* ' will 

have become negligibly small before |i-t'| reaches r. 

The above approximate expression for Fi .„  simplifies considerably 

when i"i'. According to Eq. A-U in fact 

F - 9 

F - 10 

F - 11 

0 elsewhere  • 

With the definition of the triangle function 

Jlwr*(«) ■ (1 - |x-r*r'|)®(x;r-r'-l,r-r'-H) 

(see Fig. F-l), the above msy be written 

r(,lwl',(»)-i e'Jv7  111 

Returning to Eq. F-3, then, 

L/2      L/2 

«i^u- •  /*u(x) /«(«.ylx)IPl^n')(T(x*yl^)**ik-(3r)dydx 

-172    -C/2 

L/r.   L/r       -J^TCx.ylX)    /T(x,y|X)\ 
f si j*lk(x)  /a(x,y|Y)e ^J F-^lkJy)dydx 

-L/2     -W2 .  no 

In interpreting this result it is recognized that the term 

«(x,y|Y)F^')(T(x.y|X)) 

F - 12 

F - 13 
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Figure P-l   The "Triar-jU** Function Defined by ER. F-10 

A-151 



■nMHNMHnM 

i 

D 
n 

it th« «patlad covwiance function of the signal process« Thus when 1=1' 

this signal eoTsrisnce is 

0 

D 
0 
: 

D 

D 
D 
D 

D 
D 
D 

whose basic form depends upon D     relative to the array length. If, for 

instance, 0      la approximately unity over the domain x and y within (- J.J) 

the coverlance function is 

In this caae the algnal process of index 1 Is a iiwila atti jatinc sinusoid. 

If on the other hand Ü    decays rapidly with reapect to th> alse ef the 

Interval (« r-, -r) in x and yt  then the spatial signal process of index 1 is 

a wldaband random process. Independent spatial components of the orocess nr 

widely spread In the space frequency domain. These two cases are considered 

in greater detail in pert b. In general, the first applies in most analyses 

of optimum detection and in the design of broadside detectors. The second 

applies In the design of hieb frequency off-broadside detectors. 

The expression for g in general (Eqs. F-3 and F-«) and when I ■ i* 

(Eq. F-12) at? now used to determine or at least bound terms g In 1. Slmole 

results are obtained in certain apecial situations. An exhaustive account 

of the possible situations is not attempted; only a few of the more easily 

analysed situations are discussed. 

In describing these sitjationa, the parameter 1 introi ced on page 47 

will be extenalvely used. Physically 

I - -^-r F-16 
cos S 

is the distance that a plane wave algnal wavefront travels alone the array 
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in time !*• For a signal vlth a curved vavefront and source vector Y, the 

number i Is defined to be the seme as that for a plane vave vhos* source 

vector Is parallel to Y. Thus an I Is associated with every signal as soon 

as the time subinterval duration T' is set. 

Elements of G are determined in the following cases. 

1. i - 1', l » L. 

This condition on t holds when detecting broadside signals (l is then in- 

finite) or at any incidence angle if T" is large enough. This was the case 

in the analysis of Sect. 2.4. 

2. Plane vave signals, sinusoidal ^* i ■ i', k - k", a - n', i>_ L. 

Though this and the following case require plane wave signals, unless the 

analysis or design specifically concerns the effects of curvature of the 

signal wavefront, the results are quite generally applicable. 

3. Plane wave signals, sinusoidal ([, i - f, t  « L. 

This condition on x, holds off broadside at hit . time frequencies if T' is 

being kept small as it might be in a detector design.  It is recalled that 

use of sinusoidal space eigenfunctions requires that n(u).,v) meet a smooth» 

ness condition in the neighborhood of the space frequency v.. In general, 

higher u favors this condition and since u must be fairly high anyhow when 

i << L, the sinusoidal approximation may be expected to be valid.  In case 

2. above, this approximation may or may not bo valid depending upon CD.and L. 

Approximate upper bounds on elements of G are obtained in the following 

cases. 

1. Plane wave signals, n ■ n', I ^ L. 

2. Plane wave signals, £ >> L. 

3. Plane wave signals, t 4.4 L. 

Subsections below for each case contain the derivations, results and some 
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••■pie calculations. The above list provides the order and headings for the 

subsections• 

b) Elements of G When 1*1^ 

When 1*1' , the elements g may be obtained using Eq* F-12, which is repeated 

here for convenience. 

(nxn') .   ^ • , x 
Lf .  ... --M^H)     M*»y|l) 

MAX 

x and y 

(nxn-) . 
6lkxlk' 

n j n'  , 

F - 19 

But this is the same form as Eq. 2-77 and may be written (recalling Eqs. 2-65« 

2-66, and 2-79) 

(nxn') s    < 

^öT^lLi (I) n « n' 1^1 X-/:H 

0 n ?« n'  . F - 20 

The calculation of g using this form has already been discussed and illustrated 
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o 
ln**'\ f   • f -Ju4TVxfy|u /Tlx»3r|JLM 

-L/2     -L/2 F _ ^ M 

T(x.y|I) v.x n 
In this the argument '■-;,■  of D   is approximately equal to Ä-— (exactly 

equal for plane wave signals). It follows that 

o 
Now according to Fig. F-l, if MAX rmT« 1» than Jn n is almost unity, and 

Q  ,, |n-n'| > 0, is small within the domain of integration. Therefore, 

when 1 » 1, Eq. F-17 may be written 

(       L/2 L/2 1      Uv\Y) -JWT(x.y|y)      {y)dydx 

D 

-fr/2 -C/2 

Ö 

D 
0 

o 
D 



1 

on pages 4P - SI. 

Element» of Q for Plane Wave Bimftls. 81nmoid>l ». i"!". k"k*. nm* * and l^L. 

If plane vavet alone .re considered, 

coa 
(x,y|y) (y.x) - ^ (y-x) - f   (y-x) F - 21 

and 

a(x,y|Y) - 1  . P - 22 

If, In addition, the set of space eigenfunctions may be approximated by the aet 

{♦ik) in which 

-2«2)      vk " L 

then the expression for g in Eq. F-l? becomes 

F - 23 

g 
(nxn 
ikx 

-L/2 -C/2 

^.n-n'-l.n-n'+l dydx .      F - 2l* 

The domain of integration in the right-hand side of this equation is the 

square shown in Fig. F-2. With B«h', the condition t>L insures that @ 

in the integrand is unity on the entire domain. Rotating and expanding this 

square domain vith the change of variable 

C ■ y-x 

n ■ y+x  , F - 25 

Eq. F-2U becomes 

dnd^ .  F - 26 

-L-(UU|) 

A-155 

': 



Figure 7-2    'ihe Dc-rvlc of Integration In the xty Plan* When t>L 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 

This integral, with k let «qual to k', it now evaluattd* 

-l-(Li|{|)     l   ' 

tL(v-vk)' 
(co8[L(v-vk)J- 8inc[L(v-vk)J f 

s^ <\1- .2 . 6 ,1», 
71 (v-Vjj) "*" 71 ^ ^"^k -4 

F -^T 

The above expression shows the signal selectivity of G.    For instance, if 

the signal incidence g is such that 

F - 28 

.(nxn) 

L       vk 

for some k, then g^Vk PerfonB8 the greatest interception of this signal, and 

F - 29 
(nxn) „      /,      Jjx 

«ikxik ' V1 " aT ) 

As the angle of incidence of the signal changes, the decrease in interception 

(nun) 
by gj^j/ is given by the above.    In particular, when the change is such that 

v^v.* for some k*^k so that 

'-vk * V-Vk " "L" (k'-k)   • F - 30 

then 

(nxn) B „ . U 
gikxik ' 8iL s.L JiZL 

vrvk' 
k'flk 

lL(v-\»k)4 

(nxn) 

1  ,2(x-k-)
2 

F - 31 

Thus the signal interception by gj^ij^    i» decreased by the factor 

(nxn) 
6ikxik 

(nxn) 

v"wk^,k'|<k L/i 

g ikxik v«v. .2(l4^)(k-k' )2        . 
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Whm the procettlng intenral T* is large or vhen the signal incidence is 

near 90°, ft is large. Por ft sufficiently lares. 

_(n*n) -  - F - ^ 
8ikKik  ■iL F  33 

k 

gikKik  ü 

k'^k       . F - 3U 

An exaaple is now considered. Let the array length L be 50 meters and the 

tine frequency be 200 ht, and let the time interval T' be determined by 

Eq. E-U with N«3. Using Eq. F-l6, the inequality condition ft>L is then 

satisfied for 0>63.2O. 

Continuing, let the noise background be 13 sea noise. Since the spectn 

wl 
n(ü)it

v)(Pig, 2-2) is flat for v<-— , sinusoidal space eigenfunctions of 

frequency 

" ¥ F - 35 B 
Lu 

w ^ 
L 

When ft is very much smaller than the length L of the array, the expression 

for slvxik' in E<1, F"1^ i8 an inte8ral over a narrow, diagonally located 

strip in the x,y plane. This integral is evaluated after aligning new co- 

ordinate axes i  and n with this strip, and neglecting a slight error at the 
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I may be used as long as k is somewhat less than r—- ■ 6.6. 

In Fig. F-3 the term gilL?/ is plotted versus signal Incidence for 

63.2o<0<9Oe and k*0,..., 3. The selectivity of the array in this example 

may be cenpared with that of the array in the first example considered on 

page 49 (Fig. 2-8) in which the time frequency is ho  hz and £»L. 

Elements of 0 For Plane Wave Signals. Sinusoidal ^. !■! ". and l«L, 

i: 

o 
D 
D 
D 

——— 
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T* j Cee Kolae 
c ■ 1500 Meters/Sec 
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ek^    (w) 

• 20        3 
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CT 

Figure F-3    Pala-lv« Spatinl Cjfjctra of the Signal 
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ends of the strip. Let 

end 

(Pi«. F-M. Then 

C ■ y-x-(n-n')t 

n ■ y+x 

F- 36 

F - 37 

glk««lk'  2L J        J e 

4L-|n-n'|l) -I 

)(nH*(n-n')l)) 

•[l-M|dWn®(n-n^ 

■v^M^'' 
k k' «v 

'sine [^(^^1 •<"')] 
sine i / vv -v 

2 I  2 

The function c7 ves defined by Eq. F-10 end pictured in Fig. F-l.    In 

particular, when n«n' 

F - 38 

_(n>«n) a 
Bik>cik' 

s^ sine2   £ (vk-v) k«k' 

0 fci'k'    . F - 39 

The spatial signal process observed after the n     time subinterval is there- 

fore eoerposed of essentially independent components over a band of discrete 

space frequencies v . 

As previously mrntioned, these results apply when the time subinterval 

T'c duration T' end the signal incidence angle are small enough that l- 
008$ 

is much emaller than the length L of the array. If the design described in 

part c of App. E is used, in which the time subinterval duration T' is a fixed 
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rnabtr N of periods of time Oiclllatlon at Ul(Eq. E-4), this condition that 

I « L taay be written 

»•^^i«1- 

signal that Is maximally Intercepted by the elgenfunction whose Index k Is 25, 

Its Incidence B Is 41.4°.    The diagonal elements g^^k » 20 < k < 30 of the 

dlsgonsl submatrlx   ^   s(i^lk.) "« pictured In Fig. F-5(a).    A larj?e 

signal spread In space frequency Is apparent.    Elements g..   ..    for k - 25 
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i 
As an example, Eq. P-38 Is now used to obtain G at 1000 hx for a plane 

wave signal In 13 noise. The array length Is 50 meters and the processing 

sublnterval T' IS determined by Eq. E-4 In which N ■ 2. As shown In Fig. 2-2 

the noise spectrum n(w,v) Is flat for v < ^. Consequently sinusoidal space 

elgenfunctlons of frequency vk - •— may be used as long as vk Is somewhat 

less than J. Using the above parameters, k must be somwhat less than 33. The 

signal Incidence g Is chosen such that t  «L. According to Eq. F-40, £ < TQ 

«or g < 53°. 

Some representative elements of G are given below for the plane wave 

E 
0 

D 
E 
0 

are pictured In Fig. F-5(b) to show the signal dependence from one time 

sublnterval to another. Both the signal spread In the space frequency domain 

(Fig. F-5(a)) and the signal dependence between time sublntervals (Flg.F-5(b)) 

are reduced by Increasing *. In a design, 1 may be made large by Increasing 

T', by using phased time sublntervals (part d of App. E), or by processing 

along separate sublntervals of the array (part e of App. E). 

c) Upper Bounds on Elements of G When 1^1^ 

In the preceedlng subsections some of the elements of G were derived 

under the condition that 1 « 1'. Upper bounds on elements of G are obtained 

below without this condition. 

0 

i 

D 
D 
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Figure r-5    Eleceats of G When l«L 
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ApplarlDf the Schvari inequality to Eq. F-3 

i/2 i/2 -1/2 -L/2 
dyd< 

L/2 L/2      . 
t(x.yll)l|2 
f dydx . P - Ul ,(nKn') 

-L/2 -L/2 

The i»gnitude of F it detenalned fron Eq. P-6 using the magnitude of y given 

in Eq. A-5 

l,(n'«pO/_,i2_
U,r *i . \fimi0   CT)| ■  | < 

|f(«1.-«1;t
(n),t(n')4T^T)|2  t^U^'U^Kt^U^^ 

IfU^^t^'^.t^V)!2  t(ll,-t(ll*,<T<t<ls)-t(n')*T- 

elsewhere 

us.2 iUl(jk»1^i1)(r.|t.(tU)-t(,l'))|)lÄ     /B) ,n0     /n)  /nM 
-^ —te-^—i r J®(Tit(n)-t(n )-r,t(n)-t(n KT-), 

(Wj*^)* F - U2 

t.-t4. 
Since (wirf-iD.)T

,'"2ir(i'-i) and *-> ■ n-n", the ahove may he written 

i^)(-)|2s,i'lnt:w'^'n®'^n-n--1-—' 

•2(1-1')2 

when 3  Is defined by Eq. F-10, When iH',  this simplifies to 

M^Ct)!8 S s,
2 ,inft(i"i0^ ®(1 ;n-n'-l.n.n'*l| . 

JJJ. *   w2(i.i-)2     ,T ' 

As a result, Eq. F-Ul becomes 

F - I43 

F - UU 
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■i 

in**') 2 8i 

w (i-i )' 

!Y)28ln2 
nrT(x,y|Y)(i-l')"] 

(gM< jfT—    i  n-nVL.n-nN-ljdydx T' F - U5 

where the lymbol s means "less than or approximately equal to". Bounds 

calculated using this expression may be compared vith those terms g!. .., 

calculated using Eq. F-1T in the preceding subsection. 

When T'»|T(x,y|Y)| then 

riru^n 
MAX    | ;—-  1 S 0 F - U6 

^ x and y 

Consequently the integrand in the bound on fiu-j-w*» -^i'^Eq. F-kh)  and 

hence the bound itself are approximately zero. Terms ß!k
X?^ under the same 

condition are determined by Eq. F-27. 

Now with plane wave signals. 

U,y|y) (y-x) ■ - (y-x) F - 1*7 

and 

so that Eq* F-l*5 becomes 

a(x.yil) - 1 . 

| (nxn') .2 
'8ikxi'k'« 

w2( 

a 2    L/2 L/2   - -, 

11 ' -1/2 .L/2 

F - U8 

F - 1*9 • ® (y-x;4(n-n'-l),£(n-n'"»-l))dydx 

This integral is easily evaluated in the three cases listed on page 15.3 . 

A Bound on Elements of G for Plane Wave Signals with n^n^ and i>L. 

This bound is determined from Eq. F-l*9 using the domain of integration 
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pictured In Fig. F-2. With n»n' , the condition that 1>L insures that (g) 

in the integrand is unity on the entire donain. Rotating and expanding this 

square domain with the change of variable 

K  ■ y-x 

n « y*x F - 50 

Eq. F-l»9 becomes 

1#1,      2ir (i-i ) ^.^IJD 

2ir2(i-i')2 
l-sinc2[^ (i-i')] F - 51 

When i is very much larger than L, this upper bound is close to zero. 

Consider again the example given on page 138. In this example, the time 

frequency is 200 hz, the array length L is 50 meters, the processing interval 

T' is determined by Eq. E-U in vhich Nc3t and the noise background is 13 

sea noise« Bounds on the elements 8i^X?L« tfi' of 0 are plotted in Fig. 

6ikici'k'* l^-'l*1» mKy te necessary in the specification of an optimum 

detector. At the 10%  level, it is unnecessary to calculate such terms when 

|i-i'|>2. 

A Bound on Elements of G for Plane Wave Signals and t>>L. 

According to Eq. F-U7 

MAX 

x and y x and y 

e^-2*2^ e^-2*2^ 
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F-6 for plane wave signals with incidence such that 63.20<ß<900. In Fig. 

F-3, the most prominent terms in G are on the order of 50 s.. Since the 

bounds calculated here are 20%  of this vhen li-i'l«!, exact calculation of 

P^-J-H«   [jti]  > P. 52 
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so that when t»Lt the integrand in Eq. F-U^ is approximately zero. 

Therefore the upper bound on l8ikxiik*l i* practically zero, 

A Bound on Elements of G for Plane Wave Signals and l«L» 

A bound in this instance is determined by the right-hand side of Eq. 

F-J*9 in which the domain of integration is the diagonally located strip 

shown in Fig. F-U. Changing the variables of integration to 

C ■ y-x-(n-n')i F - 53 

snd 

n ■ y^x  , F - 51» 

and neglecting a small error at the ends of the strip, Eq. F-hg becomes 

L-|n-n'|t I 
(nxnl 

8ikxi 
H  U-i , -TL-|n-n'|l) -t F- 5! 

f(n*n1     12,  V*    g   (n-n-H F _ ^ 
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Carrying out the integration, 

--.  .    8iLt    ,  .-- 
gikxi'k'l i    *timi*\*       n*n\     L 

The function 3 was defined by Eq. F-10. 

This bound in plotted in Fig. F-7 for the example on page lt>2 in which 

the time frequency is 1000 hz, the array length is 50 meters, the processing 

interval T' is determined by Eq. E-U with N«2, and the noise background is 

13 sea noise. 
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ABSTRACT 

The problem of designing sonar signal waveforms, or 'pings', 

to locate a submarine target is considered,  it Is assumed that a single 

target is present, and that the observer has measured its angular bearing 

and bearing rate by means of passive sonar equipment. The active sonar Is 

used to measure the target's range and range rate.  The target is ass-uned 

to be moving on a fixed course with constant speed. 

In Chapter 2 the optimal single ping estimation of target parameters 

In colored gausslan noise is considered using a maximum Inverse probability 

philosophy. The ambiguity problem is analyzed, and for the case of large 
signal-to-noise ratio, the optimal estimator is evaluated in terms of the 

signal and noise spectra. The pronounced effect of target range rate on 

the estimation accuracies in the colored noise case is discussed. 

In Chapter 3 the results are extended to multiple ping situations, 

and the effect of interplng times is evaluated.  It is assumed that the 

observer must wait a fixed amount of time following the final ping before 

using the estimates obtained, and the performance measure adopted is the 

range estimate variance at the end of the wait time. The Important rise 

of two pings is considered in detail. The severe degradation due to a 

long wait time is analyzed, and shown to be ameliorated by using a long 
interplng time. Optimum signals are designed for the white noise case, 

and a design philosophy is developed for the colored noise case. It is 

shown that, when a long Interplng time is used, the roles of the two pings 

become separated. Then the first ping should measure target range rate, 
and the second pir ■, should estimate range. 

In Chapter 4 signal design is examined for the specific problem of 

a strong reverberation (clutter) environment.  The reverberation spectrum 
is derived, and the implications of its dependence on the transmitted 

signal are examined.  It is shown that the first ping should be made very 
narrowband to obtain an accurate range rate estimate, and that this range 

rate knowledge can then be used to redesign the second ping. Greatly 
Increased range estimate accuracy is achievable by this procedure for, over 

a wide range of target speeds and reverberation parameters, proper signal 
design can completely eliminate the effect of reverberation once the target 

range rate has been measured. 

Chapter 5 summarizes the main results of the research and recommends 

further areas for study. 
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CHAPTER I 

Statement of the Problem 

1.1    Introduction 

The research described in this report deals with the 

estimation of a target's position relative to an observer, 

and with the design of efficient systems and sonar waveforms 

for this use.    The problem of first detecting the target's 

presence is not considered in detail,  for it is assumed 

that the observer has been monitoring his passive sonar 

equipment  for some time,  has picked up the emissions of 

the target and consequently knows that it is present.    It 

is also assumed that the observer has a reliable estimate 

of the target's bearing and bearing rate (it is well known 

that passive sonar systems have direction-measuring capa- 

bility).     ^    The observer has the advantage of time in 

these measurements, for he can monitor the passive signals 

for a long period before making a decision.    Thus these 
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estimates can be quite accurate.   ten the observer has 

decided that a target is present, a»d has estimated the 

bearing and bearing rate, he uses the active sonar equip- > 

ment to measure the target's range and range rate. 

The measurement requirements are thus divided 

between the active and passive sonar systems. This report 

will consider only the role of the active sonar measure- 

ments, so that the problem reduces to the estimation of 

range and range rate of a target with known bearing and 

bearing rate. Such an assumption also allows the observer 

to send the active bursts (or "pings") in a single direc- 

tion, rather than requiring a scanning procedure. 

The problem is extended in two directions over this 

simple formulation. First, it is assumed that the observer 

may send two separate pings (each ping may be a complicated 

waveform), and may redesign the second ping according to 

information received from the first. The pings may be 

separated by a substantial time interval, at the discretion 

of the observer. This permits a certain amount of adapta- 

bility. Secondly, it is assumed that the observer is inter- 

ested in a precise estimate of the target's position it  a 

:: 



certain time after the second ping Is sent. This time may 

be as much as a few minutes, and could be the time re- 

quired for preparing and sending some type of interceptor. 

Thus the sonar system is being used for tracking the target 

over a period of time. The observer will estimate the 

target's present range and range rate on each ping, and 

use this information to calculate the target's range at 

the later time. This range estimate, along with the bear- 

ing estimates (which may be updated passively between 

pings) will serve to locate the target. 

The accuracy of these estimates is diminished by 

the presence of interfering noise. One conmon source is 

circuit noise generated in the receiving apparatus, com- 

monly caller "white noise" for its broadband nature. 

Another source is ambient noise generated by surface wave 

[21 
motion, as well as fish or crustacean sounds.    These 

sources are uncontrollable by the observer, although he 

can attempt to reduce their effect by signal processing. 

A third type is reverberation, (called "clutter" in the 

radar case) due to sonar echoes from scattering objects 

in the ocean, such as fish, flora, and the ocean boundaries. 

I 
1 
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This type of interference depends on the transmitted signal 

waveshape, and thus requires special attention when one 

is designing sonar signals, in order to reduce its effect. 

There are two main types of reverberation: boundary 

reverberation, caused by reflections from the ocean sur- 

face and bottom; and volume reverberation, caused by scat- 

terers located throughout the bulk of the environment. 

This report will consider in detail only white noise and i 

volume reverberation, although many of the derivations 

are applicable to other kinds of noise. 

1.2 Statement of the Problem and Assumptions 

1. It is assumed that a single target is present in the 

surveillance region, and is maintaining a constant 

course and speed. 

2. The observer is stationary, has acquired the targec, 

and has estimated its bearing and bearing rate. 

3. The observer can send two pings, but after these are 

sent there is a fixed and known wait time required 

before the "action" time. 

The observer may choose the "interping" time, although 

: 

: 

: 

: 
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it will have a minimum value due to signal processing 

time limitations. 

4. The observer*s goal is to estimate the range of the 

target at the action time. The criterion of accuracy 

is the statistical variance of the range estimate. 

The sequence is illustrated in Figure 1-1. 

ping. #1 ning ^2 action time 

e1«-t1-*t2 , tw kt. 

time 

t. - interping time; t - wait time 

Figure 1-1 Sequence of events 

5. The target range as a function of time is described by 

^ * 'o + vo(t'tl) (1"1) 

so that r is the true range at the time of ping #1, 

and v is the true (receding) radial speed for all 

time. In Appendix A this relationship is examined 

and shown to apply to remote targets proceeding in 

any direction. 
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6. Propagation in the ocean medium is assumed to be recti- 

linear, and all scatterers including the target are 

point reflectors, so that the signal received from 

each is a version of the transmitted signal, delayed 

and Doppler shifted. 

7. The reverberation model (considered in detail in 

Chapter 4) assumes that the scatterers have random 

locations and motions, that all scatterers have iden- 

tical statistical properties, and that they are mutu- 

ally independent in all respects. 

8. The interfering noise is a stationary guassian process 

with spectral density N(u)). in Chapter 4 for purposes 

of signal design this spectrum is specialized to that 

of voluac reverberation plus white noise. 

9. The waveforms allowed are narrowband in the sense that 

only Doppler shifts in the carrier frequency need be 

considered in the reflected signal. The sonar system 

is assumed to have a bandwidth limitation of 2W radians 

per second, and signal durations are limited to d sec- 

onds. The equipment is also assumed to impose a peak 

power limitation on the waveforms, such that the signal 

envelope is limited to m volts. r o 
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10. The sonar system operates through an array of hydro- 

phones, but due to the narrowband nature of the sig- 

nals, this array is considered as a point source with 

directional properties. 

1.3 Previous Work 

The problem stated is one in the theory of esti- 

mation of signal parameters, and certain aspects of it 

have been studied extensively before. Most of the work 

has been done for the case of gaussian white noise inter- 

ference only. The most notable case in point is the funda- 

mental work of Woodward and Davies,  J which in 1950 applied 

the concepts of inverse probability to the radar problem. 

They derived the form of the optimum estimator for deter- 

mination of target range only, and dmonstrcted that the 

accuracy of the range estimate was proportional to the 

signal bandwidth. Thus all signals having the same band- 

width were equally good. Woodward1 *  collected these re- 

sults in an elegant book in 1953, and further introduced 

the concept of ambiguity, which has become a cornerstone 

in radar theory. The idea of ambiguity is as follows: 

due to certain characteristics of the signal, the optimum 
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processor will Indicate that certain distinct values, or a 

range of values, of the range parameter all have high 

probability of being the correct one. In the noise-free 

case the correct one will always be indicated as the most 

probable, but when noise enters the system it can alter 

the indicated probabilities, and make a false value appear 

most probable. Proper signal design can reduce this pos- 

sibility, however, and consequently researchers have sought 

: 

: 

: 

\. 

ways of designing signals to fit prescribed ambiguity re- 

quirements. Cook and Bernfeld1 J have collected many of \1 

these results in a recent book. 

In 1957 Kelly, Reed & Root^61 (hereafter KR&R) 

reported a rigorous analysis of the maximum likelihood 

estimation problem for several parameters in general 

stationary noise. They obtained the statistics for the 

accuracy of the estimates in the case of large signal to 

noise ratio. Their results are unfortunately rather dif- 

ficult to apply to the signal design problem, as they re- 

quire the solution of an integral equation. However, 

they did obtain simple results for the white noise case, 

which showed that the target range rate estimate accuracy 

: 

: 

: 



Inproved At the signal duration Increased. Correlation 

between the range and range rate estimates degraded all 

of the estlnates, and the degradation was severe If the 

correlation was significant. No readily usable results 

were given for the "colored" noise case. Hence one of 

the goals of Chapter 2 here will be to adapt their answers 

for signal design In the more general noise case. 

Helstrom1 J collected previous work Into a useful 

volume In I960, In which he outlined and compared the many 

estimation philosophies which one might apply to the sonar 

situation. He else considered in more detail the KR&R 

white noise example, relating it to some Important wave- 

forms. 

On the subjact of the effect of elapsed time be- 
roi 

tween data taking and data usage, Geh1 ander1  considered 

the sonar signals of bats, and noted that bat signals were 

designed to yield the best position information at the 

time of interception with the prey. Cook and Bemfeld^ 

and Rihaczek^  ^ have also mentioned the evolution of the 

ambiguity function with time, but an extensive analysis 
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The combination of data obtained from a sequence 

of pings was touched upon by Woodward1   J  in a brief expos- 

itory way, but not developed in any detail.    The problem 

of signal redesign based on previous signal information 

has not been examined previously to the knowledge of the 

writer. 
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CHAPTER 2 

THE ESTIMATION OF RANGE AND RANGE RATE 

FROM A SINGLE PING 

The method of KR&R is presented in this chapter 

in summary form, adapted to the more interpretable Fourier 

coefficients. The inverse probability philosophy is first 

discussed, then applied to the particular problem following 

the lines of KR&R, and the form of the optimum estimator 

is derived.  The performance of the estimator is then 

evaluated, and the results given in terms of Fourier trans- 

forms of the signal, instead of the KR&R Karhunen-Loeve coef- 

ficients. 

2.1 The Estimation Problem 

A signal is transmitted into the medium, and the 

target echo plus noise is received.  It is desired to obtain 

a measurement of the target's range and range rate. The 

range manifests itself in the signal delay, while the range 

rate causes a Doppler compression in the time structure of 

the signal. For narrowband signals this Doppler compression 

may be approximated by a Doppler shift in the carrier frequency. 

B-U 

MM 



Consider transmitted signal  s  (t): 

•t(t) « in(t) cosCQt+qpCt))  - Re    s(t)eJOt: (2-1)+ 

with complex envelope s(t) 

s(t)  - m(t)eJo(t) (2-2) 

m(t) Is the amplitude modulation, cr(t) the phase modulation, 

and Q Is the carrier frequency.  (The approximation In using 

the complex exponential form Instead of the precise but 

awkward "analytic" form Is discussed In Cook & Bernfeld  , 

p. 61. The representation Is perfect if the spectrum of 

10t 
fl(t)eJ  vanishes for negative frequencies. For time-limited 

signals this Is impossible, but if the signal is suf- 

ficiently narrowband, the approximation is a good one.) 

The signal received from the target is 

*ree(t) '  V(t:"To)cos [<Q-W0> ^"V^'V] 

- Re    a8(t,ejejQt (2-3) 
"v o 

where 
JW0(t-T0) 

s(t.Öo) - «(t-T0)e    0 

Re ■ real part 
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In these relations T IS the true target delay and w is 
o o 

the target Doppler shift.* The target "state" is conven- 

iently denoted by 9 -(T ,w ).  a is the target reflection 

coefficient (including propagation loss, etc.) and is 

conveniently extended to the complex version 0 above which 
-JQT0 

includes the rapidly fluctuating phase term: a "a e 

The total complex envelope of the received signal 

may be written, 

?/ y(t) - v^.V + n(t) (2'4) 
... where n(t) is the complex envelope of the noise received. 

The estimation problem then takes the form: Given y(t), 

estimate 0 . 
o 

2.2 The Inverse Probability Approach 

The ten^t that supports all of the work to follow 

is this:  If a quantity x is converted in some random way 

into a quantity y, then the most one can ever know about the 

value of x from observing the value of y is the function 

Pr(x-X/y-Y).  This function is read "the probability that 

x-X when one knows that y"Y."  It is taken as a function of 

T ■2r /c, w •-2Qv /c, for propagation speed c, true target 
range r , and true target range rate v (receding). 
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X for a fixed (observed) value Y.  If the observer calculates 

Pr(x-X/y-Y) for all possible values of X, th^n it represents 

(A) 
his total "state of mind" regarding the value of x.  (Woodward  , 

p. 62). 

By Bayes law, one can rewrite this function 

(ibid p.   63), 

Pr(x-X/y-Y)  - Pr(x-X)Pr(y-Y/x-X)/Pr(y-Y) (2-5) 

where Pr(x"X) is the a priori probability function for 

x, representing the totality of the observer's knowledge 

concerning x before y was observed. Pr(y"Y) is just a 

constant after y has been observed, and thus can be ignored. 

Pr(y-Y/x-X) is called the likelihood function. It is taken 

as a function of X, and may be thought of as the likelihood 

of observing the value Y when x"X. 

In the present sonar context the quantity x 

corresponds to the parameter set 0«(T,W) while the observable 

y is the received waveform y(t).  The inverse probability 

philosophy then directs the observer to form p(ö/y(t)) for 

each possible 9, and to display this function in some fashion. 

A possible result is shown in Figure 2-1. 

B-14 I 



* 

: 

<J 
Z 
3 
U. 

>- 

GD 
<I 
GD 
O 
OC 
CL 

UJ 

oc 
UJ 
> 

I 
(M 

UJ 

o 
Ü. 

j 
B-15 

I 
I 



Hopefully this function will reach Its maximum at a 

value 9 near the true value 9 . The observer, who must eventual* o * 

ly make a decision as to the value of 9, will clearly choose 

the 9"9    at which the function peaks,  since this Is the 

most probable value of 9 given all available  Information. 

Making decisions destroys some Information  (Woodward      , 

p.  60), but this Is unavoidable If action Is required. 

2.3    Maximum Inverse Probability vs. Maximum Likelihood 

Many writers prefer to use a similar decision 

method called the maximum likelihood estimator  (hereafter 

MLE).    This process differs from the Inverse probability 

function  (hereafter InvPF)  method In only one way:  the 

elimination of the a priori probability function.    Referring 

to   (2-5)  one sees that Pr(x-X)  Is one of the factors In the 

InvPF.    Many Investigators criticize the concept of a priori 

distributions,  saying that  the observer rarely would know 

(4) them.  If Indeed they existed at all.    Woodwardv  '   (p.  74) 

(9) and Seibertv ' (p. 206) answered these criticisms by saying 

the MLE scheme just begs the issue. If the observer ever 

makes a decision by choosing the 9 having maximum likelihood, 

then he has effectively chosen a priori probabilities anyway, 

i 
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in this case saying all 9 are equally probable a priori. 

They say that instead the observer should use all the 

information at his disposal and make an educated guess at 

the a priori distribution.  In many cases the observer will 

have so little to go on he will use a uniform distribution also. 

In this work it will be assumed that the observer 

has insufficient information to guess at any a priori 

distribution -- here denoted p (0) -- other than a uniform 

one within the surveillance region. The surveillance region 

requires some guess work on his part, and it is assumed he 

has decided to look in a delay interval T seconds long 

(beginning at some t and going to t.-t-T), and in a Doppler 

interval (-w  ,w  ), determined in this narrow-band case 
max' max 

mainly by the possible target speeds anticipated.  Because 

of this uniform p (9), (at least for the first ping), the 
o 

InvPF and MLE techniques become essentially identical. 

Hence, the likelihood function of (2-5), given now by 

p(y(t)/9), will be the function of prime interest. 

2.4 Derivation of the Estimator (following KR&R) 

The signal processing operations which the IivPF 

estimator must perform on the received signal are now 
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derived. The main difference between the analysis here 

and that in KR&R is the use of Fourier coefficients 

instead of Karhunen-Loeve coefficients. 

Since the a priori probabilities have been 

chosen uniform, the estimator form must be embodied in 

the likelihood function p(y(t)/9).  This function is 

derived by hypothesizing a particular value of 9 as well 

as a value of the unknown reflection coefficient a, (2-4), 

and thus hypothesizing that the received waveform is 

y(t) - as(t-e) + n(t) (2-6) 

In order to form the probability function  for the entire 

waveform, y(t)   is represented by an orthogonal expansion. 

The most convenient  schemes are those yielding uncorrelated 

coefficients.    The Karhunen-Loeve coefficients used by KR&R 
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1 
are always uncorrelated, but require the solution of an 

integral equation.  The Fourier coefficients have much more 

intuitive appeal and have been shown to grow less correlated 

as the expansion interval (which is here the observation | 

interval) grows larger.  (If the observation time is much 

larger than the correlation time of the process, the error 
I 
I 
1 
I 
I 



* -■ 
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in assuming the coefficients uncorrelated goes down as 

1/T .      We assume here that the observation time is 

indeed sufficiently long. 

The Fourier coefficients for any complex waveform, 

say y(t), are given by 

i   r      "^V 
yk T J y(t)e        dt (2"7) 

A T 

-. where i. (Jck"2"rrk/T 

ii. the integration limits are indicated by T, meaning 

the interval T:  (|t|^T/2), centered at the origin 

for symmetry. 
■ 

For the noise waveform n(t) we define coefficients nfe, 

-, and for the received sign*! waveform s(t,9) we define the 

set s. (9).  Thus from (2-A) we have 

i yk-2skW + nk (2-8) 

The n. , being the result of linear processing of the 

gaussian process n(t), are themselves jointly gaussian. 

J (Helstron/7) (Helstrom   p. 50). Lack of correlation therefore implies 

independence.  In addition the real and imaginary parts of 
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each coefficient are Independent, and each part has variance 

^(t^/T (Davenport & Root^ ^ p. 94). N(a) is the spectral 

density of the process n(t). 

KR&IT   (Eq. 17, p. 323) use this information to 

form p(y/9): 

2^ 

p(y/e) - Kj^ exp ,T . VSsk(e) I N(a^) 
k        K 

(2-9) 

where a, 8 are hypothesized values and K1 is a normalization 

constant. The maximum value of p(y/9) occurs when the ex- 

ponent is a minimum. We expand Che exponent, and name the 

significant parts: 

•T    —iSr7—7  - -T   r-T^ +2TRea X   " c 

k K k ^ k ^ 

s^e)*2 
2r  ■'V^' 

■Ta L N(O 

t     i2 
r   ^k1 * 2 2 ■T^   ^^-y +2Rea*D(e)K(e)-aV(e)   (2-10)** 

The real noise process of which n(t)   is the complex envelope 
has spectral density Nr(a>),  equal to N(a,-Q)4-N(-a:-Q) 
(Helstrom^7),  p.   50). 
Ir 
notation: Re"real part, Im"imaginary part,*-conjugate 
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, 

where we have called 

^5 K(e) ' D(e)  T L     N(a^ 

2 (2-11) 

) 
k 

The first term of (2-10) depends in no way on the hypothesized 

9, and is simply a constant once the waveform has been 

received.  It is incorporated into K, . K(8) is the actual 

signal processing term, as it alone depends on the waveform 

y(t). The other term, coupled with the reflection coefficient 

o, is a post-processing signal-to-noise ratio (hereafter SNR). 

We call the latter two terms of (2-10) L(o,9) f 

and complete the square: 

L(a,e) - -|oD(e)-K(e)|2+|K(e)|2 (2-12) 

The observer desires to eliminate the unknown reflection 

coefficient a rather than display all possible values, 

and he does this by making a MLE estimate on o, and substi- 

tuting the estimate back into (2-12) (Helstronr '  p. 205). 

As this is equivalent to maximizing L(o,9) with respect to 

o, the observer of course chooses o: 

a - K(©)/D(e) (2-13) 
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which eliminates the first part of  (2-12),  leaving only  |K(9)|   . 

The observer must display the inverse probability function: 

P(e/y)  - k po(9)  exp(|K(e)|2) (2-U) 

Thus K(0) is clearly the important term to the observer, 

and it merits discussion. We pass to the Integral form of 

the sum (2-11). This will yield Fourier transforms instead 

of Fourier coefficients: 

Y(a;) - f   y(t)e'Jü:t: dt (2-15)* 

But for waveforms that are zero outside of the interval T, 

the Infinite limits may be reduced to T/2 and -T/2. Then the 

only difference between the transform and expansion coeffi- 

cients is the scaling factor T.  From (2-7) 

Y(a.k) - T yk (2-16) J 

We similarly define S(üL ,0) - T 8,(0).  To determine the 

form 5(^,6) in terms of the transform of the transmitted 

8 

T 

- S(ü:k-w)e 

When the Integration limits are omitted, the integration 
Interval is taken to be (-«,»). 

B-?2 
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signal S(uO, we note ■» 

8(0^,0) - Tsk(ö) - T s(t-T)e  k ejw(t:"r) dt 

-Ja.\T r      -j(a:k-w)u ^ 
k  /  s(u)e   K    du (2-17) 
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Thus Che effect of Che CargeC is Co cause a frequency trans- 

lation by amount w,  and a phase shifC by amount car. 
2 

We pass Co Che inCegral forms for K (0)  and D (9) 

direcCly by noting ChaC Che frequency interval between suc- 

cesssive Fourier coefficients is 27r/T,  and approximating Che 

sum by Che inCegral. 

-   * 

•^ ■ 0(9) 

rn   Y(cck)S*(ü^-w)e    *      1 

h           N(üI)                        T 
k 

•         1 
0(9) 

f   Y(ü))S*(ü,-w)eJa:T      da: 
}             N(a:)                      2ir 

Similarly 

(2-18) 

^ *   f  ^ Mjl 
2ir 

(2-19) 

: 

: 

i 

IC is noted that D (9) depends on w but not on T, Thus 

the SNR will depend on the target speed, which is not so in 

the white noise case. 

The form of K(9) is recognized as a matched filter 

(Helstrom^ p. 214 ; Weinstein & Zubakov^11^ p. 266), which 
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passes Che received waveform with spectrum Y(a) through 

a filter with transfer function: 

0(9)   N(tc) U d{}) 

then passes the filter output through a magnitude squaring 

device (Cook & Bernfeld ' p. 285), and examines the output 

at time T. The filter divides by the noise spectrum level 

at each frequency, in order to "prewhiten" the noise portion 

2 
hypothesized Doppler shift w, since both D (6) and S*(a-w) 

of the estimator statistically. 

2.5 The Performance of the Estimator 

The actual received waveform contains the true 

parameter values: 

B-24 

of y(t). A different filter would be needed for each i 

I 
I 

depend on w. 

The main results of this section are (2-1A) , (2-18), 

and (2-19) , showing the inverse probability function which 

the observer must form, and the dependence of the component 

functions on the signal and noise spectra.  The observer 

displays p(6/y), and chooses as his estimates the 8 at 

which it peaks. Due to the presence of noise in y(t), however, 

this maximum will not necessarily occur at the true value 

9 .  It is consequently important to examine the accuracy 

~ 

: 
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y(t) - v^'V ^ n(t) 

Thus from (2-14) Che observer will have formed Che 

essential quantity 

(2-21) 

lK(e)|2 --j 1 

MT-T) 
p   S(a-wo)S*(ai-w)e da: 

D2(e) ^ /                      N(aO 27r 

f n(ü;)S*(ü:-w)eJtCT du 
J N(ü:)        2ir (2-22) 

This consists of a "signal function" and a "noise function" 

•     (4) N'OO, (to use terminology corresponding to Woodward s casev 

p. 86) and it is convenient to rename the former through 

the equation 

G(e'V - m 
p   S(ü:-W )S*(ü:-w)e 

WT) J C 

Jü:(T-T0) 

N(ü.) 

dec 
2ir 

(2-23) 

so that 

|K(e)|2 - 1^0(9^0(9,0^ + N^e)!2 (2-24) 

i 
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2 
The function |G(e,9o)|  is e generalized ambiguity function, 

extended from Woodward's form Co the general noise spectrum 

(p. 120).  It reaches a peak of unity height at 8*9 (see 

KR&R   p. 484). Thus if the noise function happened to be 

zero in a particular received waveform |K(9)| would peak 

at the true value and Che observer would obtain a perfect 

measurement. However» the normal non-zero functional form 

2 
of the noise function perturbs the behavior of |K(9)|' and 

can cause the peak Co occur at some other 9*9 .  The degree 

2 
to which |K(9)I  is perturbed depends on ehe SNR and the 

2 
specific shape of |G| .  (Arguments of G are suppressed 

for convenience). 

2 
If |G|' has a single major lobe near 9 and is 

small elsewhere, and if the SNR is large, the noise function 

2 
will with high probability merely cause the peak of lK(9)| 

Co shifc from 9 Co a nearby value sCill on Che major lobe. 

This is Che situation examined by KR&R, and explored further 

below. This type of error will here be called a "small 

error." However, if |G|" has other lobes of non-negligible 

height (compared to that of the main lobe), then the noise 

2 
function can actually cause the peak of |K(9)|  to occur on 
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one of these sidelobes, which may be located quite far from 

the main lobe.  This type will be called a "gross" error. 

It is the possibility of this kind of error that gives 

2 
rise to the term "ambiguity", since large sidelobes of |G| 

can permit several regions of high inverse probability. The 

various possible situations are sketched on Fig. 2-2, showing 

2 
|G(9,9 )|  as a function of 9. Fig. 2-2a shows the case 

of negligible ambiguity, since only a simple lobe is 

2 
present, and |K(9)| will with very high probability peak 

somewhere on this lobe. Fig. 2-2b shows the appearance 

of some significant sidelobes scattered over the 0-plane. 

For such cases one must examine the probability of a gross 

error occurence.  For Fig. 2-2c the sidelobes are so high 

2 
there is a very good chance that |K(9)|  will peak on a 

sidelobe, resulting in a gross error.  The signal giving rise 

to such a |G(9,9 )| would thus be unacceptable. There is 

still another situation, illustrated in Fig. 2-2d, where 

the sidelobes are rather high, but occur very near the main 

lobe.  In certain circumstances the observer may be willing 

2 
to accept this |G(9,9 )|  since even if a gross error does 

occur the resulting estimate will not be disastrously different 
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from 0 . This last case will not be considered further here, 
o 

and it will be assumed that all gross errors are unacceptable. 

If a gross error can occur wich high probability, 

Cher the method of KR&R for measuring esCimaCor performance 

simply does not apply.  It is importanC, therefore, Co 

sCudy Che inter-relation between i.) sidelobe heighCs 

2 
of |G| , ii.) Che probabiliCy ChaC a gross error will 

occur, and iii.) Che SNR required Co keep this probability 

small. This is done in an approximate fashion below. 

2.5.1 ApproximaCe Analysis of Che AmbiguiCy Problem 

IC would be very difficult Co deCermine Che pro- 

babiliCy of a gross error precisely, for this would require 

2 
calculating the probabiliCy ChaC   |K(e)|    will be larger 

aC one or more points 9 not on Che main lobe Chan ic is at 

any of Che points on the main lobe.    An observation of many 
2 

different |Gj  functions reveals, on the other hand, ChaC 

Chere are normally only one or two sidelobes of any 

significant heighC, Che others being quiCe small.  Thus 

we assume ChaC gross errors will be caused by these one or 

two sidelobes, Che other lobes contributing nothing Co 

Che probabiliCy of a gross error. We further assume ChaC 
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11 
2 n Che behavior of |K(8)|  on a lobe is predominantly li 

2 
determined by the local maximum level of |G| , since a n 

gross error will with highest probability occur at the 

peak of the lobe. These two assumptions allow us to obtain 

a simple but only approximate expression for the probability 

of a gross error. 

The computation is approached by finding the joint 

probability density function of the two random variables 

|K(9o)|
2 s K* and |K(ei)|

2 = K2, where ei is any point on J 

the 9 plane.  It is shown in Appendix B that in the large 

SNR case these variables are approximately jointly gaussian, 

with moments: 

EK2 - SNR,       EK2 - SNR|G(e .e.)!2 

o i        o  i 

var K2 - 2SNR     var K2 - 2SNR|G(eo,ei) | 2 (2-25) 

cover K2, K2  - 2SNR|G(eo,ei) |2 

where SNR - Ä (90) .* 

Thus the statistics depend only on the SNR and the 

height of the ambiguity function at 8. .    Given these statistics, 

*   2   2 
|o | = a , E is the expectation operator. 
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it is a simple,  although tedious process to determine the 

2        2 probability that K.   > K , which is approximately the pro- 

bability of occurence of a gross error when only one strong 

sidelobe exists.    This is carried out in Appendix B with 

the result, 

>e - Prob(K* > K*)  -  (fi)     -J ^SNRCI-IGOJ^)!2) (2-26) 

where 

-1/2 x4 

dx (2-27) 

(12) 
is the normal probability integral (Handbookv   , p. 966). 

P is plotted in Figure 2-3 versus the sidelobe height 

2 
|G(0o,01)| . It can be seen that for SNR of the order IS dB, 

sidelobes as high as .5 will only cause error probabilities of 

-3 
the order of 10  , which can be acceptable in many situations. 

As the SNR decreases the allowed sidelobe level rapidly 

drops for a fixed P , until the prescribed P cannot be met 

at all.  If there are two significant sidelobes of approximately 

equal height, P will be larger, but no more than twice as 
e 

large as the value shown in Fig. 2-3 (Appendix B). 
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FIGURE 2-3   APPROXIMATE PROBABILITY OF A GROSS ERROR 
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These approximate results can be used as guidelines 

when designing signals.  In the signal design portion of 

Chapter f, an allowable sldelobe height will be fixed, and 

only signals satisfying this constraint will be considered. 

A more precise method would be to fix an admissible P , 

and then determine the allowable sldelobe height for each 

value of SNR. However, the observer will not know the value 

of SNR until after the signal has been received and processed, 

and so an exact determination of the maximum permissible sldelobe 

level could not be made beforehand. We choose to follow the 

simpler scheme of selecting the maximum sldelobe height 

rather than the P . This scheme thus assumes that the SNR e 

is sufficiently large. 

2.5.2 Analysis of Estimate Variance for "Small" Errors 

If grc ;s errors occur with very small probability, 

then the KR&R ertlmate variance method applies, for one 

2 
Is almost certain that |K(9)| will peak In the Immediate 

vicinity of 9 . Following KR&R for the large SNR case, 

2 |K(0)|  Is first approximated by deleting the squared 

magnitude of the noise function N'CO) of (2.24): 

|K(e)|2 - SNR|G(9,eo)|
2+2ReooDoG(e,eo)N

,*(e) (2-28) 
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where Do - D(eo) and SNR - a^ (see (2.25)). Now this func- 

tion is expanded in a Taylor series about 0 , with only 

a few terms retained: 

|K(e)|2 - K0+Kr(r-r0)-«v(v-v0)-j| A(r-ro)
2+2B(r-ro)(v-vo) 

■K:(v-vor| + '] 
where   Ko - SNR |G(eo>eo) r+2Rea D G(e ,9 )N,*(e ) 

Kr- SNR IJ |G(e,eo)|
2+2Rea0Do |^ G(e.eo)N

,*(e) 

•SNR 1^ |G(e,eo)|
2+2Re2oDo |^ G(e,eo)N

,*(e) 

Ö 

: 

: 

: 

e 

A - -SNR S-r |G(e,ert)r 
Or      0 e (2-29) 

B--SNRb7 W'V2 
e 

C - -SNR S-r \G(9,9)\ 
hr 0 e 
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That is, Che first partial derivatives of the noise function 

are retained in K and K , but only the deterministic 
r     v*      ' 

portions of A, B, and C are retained (KR&R show that after 

making the approximation in (2-28) one may retain just these 

deterministic parts with no further loss in accuracy.) 

KR&R then calculate the value 9 "(r .v )'*', (where r , v 
P  P P P  P 

2 
are random variables) at which the expansion of |K(0)| 

peaks and determine the moments of the errors • »r T . r r p o* 

e "v -v . They show that «L- e "0, (so that the estimator v p o r   v 

is unbiased), and that 

er
2 - C/A 

Vv " 'BM (2-30)
H 

ev
2 - A/A 

2 
where A - AC-B 

If B-0, then er
2 - 1/A and e 2 - 1/C. 

In the work of KR&R these results were applied to 

a simple white noise example, but no detailed answers were 

For notational convenience we redefine 8a(rtv) where before 
we had 6"(T,W). The two forms differ only by scaling constants. 
The overbar is equivalent notationally to the expectation 
operator E. 
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developed. The remainder of this chapter will give a geometric 

analysis of the estimate error variances, and relate A, B 

and C to unified forms involving the signal and noise spectra. 

2«6 The Ellipse of Estimate Variances 

A simple pictorial representation of the estimation 

variances may be obtained by considering contours of equal 

probability of p(9/y) in (2-14).  It is shown in Appendix B 

that p(0/y) may be written as: 

-1/2.  n  . 
p(e/y) - kpje) e    p p      (2-31) o 

P 
(It is noise dependent).    A convenient choice for the 

A(r-r )2+2B(r-r )(v-v )-K:(v-v )2 - 1 (2-32) 

A typical illustration is given in Figure 2-4 (Helstronr ' 

p. 21 gives an analogous figure). 
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(«-«„) "U» cj (9-en) 

where 9 is the observed location of the peak in p(6/y)f 

" 
probability level is that which gives the exponent the 

value 1/2, since this is the usual definition for the 

standard deviation of a gausslan density function.  The 

resulting contour is an ellipse, centered at 0 , and given 

by 
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A rectangle may b* circumscribed about Che ellipse, whereupon 

each dimension of the rectangle is just twice the standard 

deviation of the corresponding estimate (see (2-30)). The 

covariance between the estimates causes a rotation of the 

ellipse.  Thus the ellipse dissensions embody the average 

properties of the estimate errors. The quantities A, B 

and C will hereafter be called the "ellipse parameters." 

They will prove very useful in the study of multiple ping and 

elap d time effects. 

2.7 The Form of the Estimate Variances 

The ellipse parameters of (2-29) are here related 

to the signal and noise spectra.  By evaluating the second 

deriv .ives in (2-29), we obtain 

kSNR r ü:2|Sfa)r do: 

D*N(<rtvo)   2T / 

u:ISftc) I da: 

D2N(a+w )     27r 

o o' 

B - KQ SNR Im 
/ 

ü:S(a)S*(a:)     da:  _   f   a|S(a-)l        d£ (2-33) 

v^^v 2T D N(a4w ) o   v      o' 
2T 

Im    f  SMS^M   dec 
D2N(a4wo)     2- 
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C - KQ SNR r i 
D N(ü.-4v ) 
0    o 

dtt I S(ü:)S*(üC)   Ar 

D N(aH^ ) 
o    o' 

2T 

where k - 8/c , c being Che propagation speed of sound, and 

Che doc indlcaCes derivatives wich respect to oc. The details 

are given in Appendix C. 

In the white-noise only case, several simplifica- 

tions are possible. As shown in Appendix C, the signal-to- 

noise ratio (denoted WSNR for the white noise case) is 
2 

WSNR ■ 2Ea /N for transmitted energy E and noise spectrum 

level N . Furthermore, B and C may be given as integrals 

in the time domain, and as such suggest useful definitions: 

Helstrom^7^ p. 18): 

k WSNR [k/« 2le/ Nl2 do: hf^^nV] 
k WSNR[ dispersion bandwidth] (2-34) 

B - kQ WSNR   [^   J   tm2(t)   i(t)dt-    ^    ra:|S(a)|2^ 

•l-    f Cm£(t)dt ] 
kQ WSNR [coupling-(center frequency)   (epoch)] 
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0 

0 
C - kQ2 WSNR  ^ J t2m2(t)dt - ^ f tm2(t)dtj  1 J| 

: 

kQ2 WSNR (dispersion duration]2 (2-36) 

The terms "dispersion bandwidth" and "dispersion duration" 

are used to distinguish these definitions, which involve 

second moments, or moments of inertia of the signal functions, 

from other definitions of bandwidth and duration which might 

be used. These forms are frequently used for their 

tractability, but they are not always appropriate from a 

physical point of view, as will be seen in Chapter 4. The 

it 
"center frequency" and the "epoch" as defined above are 

frequently made zero by proper choice of the time and frequency 

origins. This choice deletes the second terms in each of the 

expressloi s above.  The coupling term disappears if there is 

no frequency modulation, and the duration does not depend 

on the frequency modulation in any way. 

In the white noise case one can apply the 

"uncertainty principle" (Helstrom , p. 20) to demonstrate 

it 
This applies to the center frequency of the envelope s(t); 
the center frequency of the actual signal lies Q radians per 
second higher. 
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1       2 
that for any signal, the resulting A satisfies A ^ ^(k SNR Q) , 

with equality holding only for "gausslan signals", of the 

2 
form s(t) - exp(-l/2(a+jb)t ). The derivation of this 

fact Is outlined In Appendix G. A similar result does not 

seem to prevail In the colored noise case, although A > 0 

In all cases. 

A unified form for the ellipse parameters In the 

colored noise case may be given In terms of an Integral 

operator. The operator has a kernel P(u:) which Is a density 

function,* given by 

D     x  o' o 

The overbar operator notation Indicates the operation: 

W)  - / P^gCoc) ^ (2-38) 

We further define the phase spectrum V(^) for the trans- 

mitted signal such that: 

S(a:) a |S(o:)| e**^ (2-39) 

A density function Is any positive, unit-area function. 
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and in addition a normalized derivative of the amplitude '• 

spectrum: 

•<"-■> "TsT^TT i|s(a)l (2-40) |] 

When these definitions are applied to (2-33), and simplifica- 

tions are made, there results (see Appendix E) 

A - k SNR  (a-a)2 

B - -kQ SNR   (a:-ü:)(^-^) 

B-42 

:: 

C - kQ2 SNR     (a-a)2+(V/-i)2 (2-41) 

SNR - aV - oi r m£ & oo        o   «'     N(ü.4V )    2ir 

where ^(a) • d/dcc VfaO« 

These unified forms show that the ellipse parameters 

are analogous to central moments in statistics.  The 

expressions are particularly convenient conceptually 

because the noise properties and target speed dependence 

appear only in P(a).  For the white noise case P(ü) simplifies 

o 
to  |S(a:)|   /2E.    The unified forms also permit a very simple 

2 
proof that A-AC-B    is always positive  (see Appendix E). 



The terminology "dispersion bandwidth", "center 

frequency" etc. used In (2-34) to (2-36) for the white 

noise case may be employed here In the general case as 

well. Now» however, the definitions refer not to s(t) 

but to a signal s^t) having transform S(a)A'N(tc4w ) , as 

discussed in Appendix D. 

Example 2-1: Pictorial Demonstration of the Effect of 

2 
Target Speed on P(a>) and D0 

2 
Sample shapes for |r(u:)|  and N(a.) are shown 

in Figure 2-5 followed by four examples of the ratio 

jS(a)|2/N(ü?fw0). The area under |S(ü:) |2/N(a.4wo) is 

2 
D  see (2-41)  , whereas if each curve were adjusted for 

unit area, it would show P(a>). 

Several features of this example are listed below: 

1) N(a) consists of white noise level added to which is 

a narrow-band noise portion, such as that due to re- 

verberation. 

2 
2) |S(a')|  and N(u:) need not be symmetrical about cr-O 

(12) 
(Papoullsv ' p. 131) since they are generated by 

complex processes. Nor need the spectra fall-off so 

rapidly in practice. 
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3) If the spectra are not synmetrical, then P(a') and 

2 
D will be sensitive to the sign of w . Thus 
o o 

receding targets could be easier to locate than 

approaching ones, or vice versa. 

4) For large w the noise spectrum Is completely shifted 

away from the signal spectrum, and the estimator Is 

effectively white noise limited. Hence fast moving 

targets could be relatively easy to locate. 

2 
5) P(u:) Is entirely Independent of the levels of |S(a)| 

and N((x) because of Its normalization, but depends 

strongly on the relative level changes In the spectra. 

Thus an Important parameter Is the narrowband nolse-to- 

whlte-nolse level ratio, shown In Fig. 2-5 as 10:1. 

6) The SNR Is severely degraded by the narrow-band noise 

portion of N(u:) , especially for low target speeds. 

For large w there Is no such degradation. 

Example 2-2: Typical Values of A. B and C for Specific 

Signals In White Noise 

Two signal classes will be used In this example. 

The first Is the popular LIFMOP (Linear Frequency Modulated 

Pulse) signal, which has several desirable properties. 



a)  ENVELOPE 

M(t) 

M 

-d/2 (l-M)d/2d/2 

b) LIFMOP 
FREQUENCY MODULATION 

c)   RAFMOP 
FREQUENCY MODULATION 

FIGURE   2-6    A SIGNAL ENVELOPE AND TWO 
EXAMPLES OF FREQUENCY MODULATION 
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(Ramp and Wingrove^14^). The signal s(t) • «(t)«^^ is 

described by a nearly rectangular envelope lasting d seconds, 

and a phase derivative that Is linear. A so-called "up- 

chirp" is shown in Fig. 2-6. 

In Appendix F the ellipse parameters are evaluated 

for the case where the roll-off portion of the envelope 

m(t) Is small: 

A * k WSNR fe2 -^ + P2/3) 
V   ud      ^ 

B * kQ WSNR Pd/6 

C * kQ2 WSNR d2/12 

A *  (kQ WSNR)2  (^)2 ^ (2-42) 

The first  term in A Is due to the roll-off of the envelope. 

It Is assumed small here, but Is retained as otherwise A-0 

for this signal.    It Is shown In Appendix F that this form 
2 

for 4(t)  yields the maximum B    for a given A.    This property 

will be very Important. 

The second class of signals adds a degree of design 

freedom by making B adjustable.    Signals of this class will 
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be called RAFMOP (Rotatlonally Adjustable Frequency Modu- 

lated Pulses) since they Introduce an effective periodicity in 

the frequency aodulation. The frequency modulation is 

thought of as periodic, and may be translated with respect 

to the time origin. The envelope picks out the portion 

in te(-d/2, d/2). The set of translations of interest 

AN 6c(-d/4, d/4), for if P can take on positive and U 

negative values this exhausts the possible waveforms. 

(Cook & Bernfeld, ' p. 97, have considered the single 
-• 

case 6-0, and we extend the claas to other 6). Ignoring 

the small effects due to envelope roll-off, the results 

become: (App. F) 

o1 

2 
A - k WSNR P /3 

B * kQ WSNR Pd/8 (45/d) (2-4|5|/d) U 

C ■ kQ2 WSNR d2/12 

" 

A - (KQ WSNR)2(Pd/6)2 I l-(36/d)2(2-4l6|/d)2 1   (2-43) 

It is seen that B can be adjusted from 0 to +kQ WSNR Pd/8, 

only .75 as large as B for the LIFMOP signal with the same 
i. 

bandwidth. The appeal of thia signal is its adjustability. 

I. 

D 



The cnly effect of Che translation of <p(t) is in the value 

of B, allowing Independent variation of this parameter for 

constant bandwidth and duration. 

We now consider the estimation performance achieved 

by these two types of signals in the white noise, single-ping, 

and no-walt-time situation. Eq. (2-30) applies directly 

to give the estimate error variances. We do the RAFMOP 

case first, using (2-43). 

RAFMOP: 

k WSNR    p2 -feC^)2^^) 
-1 

e v      k WSNR (dQ)2 L    i6\dJ " k *J , 
-1 

(2-44) 

er v      k WSNR    2    PdQ   Vd y  V 
- 4 •)['-fe(^ 

0 '•»*) 
-1 

and when 6*0 

'r      k WSNR      p2 

B-49 
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2 . e ■ 

e e 
r v 

fl 
f] 

u. fl 

n (dQ) (2-45) 

level m as fixed, 
o 

For the LIFMOP signal we can apply (2-42) to 

(2-30) , and obtain: 

LIFMOP: 

i2   ^ov2 2 ,.  ud' a) 
2 

2k WSNR 

2 .-^2 
cv * k"wSNR 
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The range estimate accuracy improves with the signal band- 

width, while the range rate estimate accuracy Improves with 

the signal duration, the type behavior frequently noted 

for matched filter estimators (6, 7, 11). By inspection the 

highest accuracy is achieved for the choice 6*0, which 

eliminates correlation between the estimates. 

If one wishes to consider the performance of 

this signal under a peak or average power constraint, it is 

a simple matter to decompose the WSNR term into its 

constituents WSNR - m d a /N and then consider the envelope 
0   0  0 

• • 

M_ riy riy (2-46) 
SNR VQ/ ^T^ 

:: 

o 



rr —^— i d (?) er v    k WSNR Q   \irj 

Here a rather different behavior is observed with respect 

to the parameters involved. The range estimate variance 

now increases with signal duration, and is independent of 

the frequency modulation, while the range rate estimate 

variance increases with signal bandwidth. This dependence 

arises because of the very high range and range rate estimate 

correlation, which causes the area of the estimate variance 

ellipse to be independent of signal bandwidth and duration. 

Referring to  Figure 2-4, we note that as duration and band- 

width grow, both lArA and lAfC decrease (by (2-A2)), and the 

property of constant area thus forces the ellipse to 

stretch out rapidly. The ellipse quickly becomes long and 

narrow, yielding poorer estimate accuracies (See Fig. 2-7). 

Because the range estimate accuracy does not increase 

with the amount of frequency modulation P, the observer 

- 
musi. attempt to reduce e by decreasing d or n, effectively r 

shortening and sharpening the pulse envelope.    These considera- 

tions indicate  that the LIFMOP signal is not a good choice 

of signal in the  single-ping,  no-wait-time situation.     On the 
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other hand, it \ 11 prove to be a very desirable signal 

waveform when a wait time Is Involved. This case Is developed 

In Chapter 3. 

The estimate variances of (2-44) are evaluated using 

the ^et of sample parameter values given below: 

c • 5000 feet per second 

Q * (2Tr) 3000 radians per second (2-47) 

WSNR - 10 

d - 1/2 second 

P - (27r) 50rps 

U - .1 

This yields the following table: 

N|er feetJev ft/sec  — ft/sec.  — ft.  e e sec 
-1 

RAFMOP 

LIFMOP 

5-d/4 

5-0 

""1 

.V5.3 3.76 .206 3.08 -157.S 

4.65 .311 .206 3.08 -1.09 

3.08 .206 .206 3.08 0. 

TABLE 2-1: ESTIMATE STANDARD DEVIATIONS 

The error ellipses for these examples are drawn in 

Figure 2-7, and show the large size difference that makes 

the LIFMOP signal less suitable here. 

A-1.09 

A-.046 

B-1.188 

C-10.34 

: 

: 

- 

:: 

: 

: 

: 

: 

: 

:: 
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LIFMOP 
(UP-CHIRP) 

RAFMOP 8«d/4 

RAFMOP 8 = 0 

FIGURE 2-7   ERROR ELLIPSES FOR RAFMOP ft LIFMOP SIGNALS 
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CHAPTER 3 

MULTIPLE PING RECEPTION; EFFECT OF ELAPSED TIME 

In the present chapter the optimum estimator for 

two or more pings will be found and evaluated, and the 

effects of inter-ping time and wait time will be deter- 

mined. 

3.1 Effect of Elapsed Time on Estimates 

If the observer must wait for some reason after 

he has taken data before he can use it, he must update the 

measurements so that they apply at the time they are used. 

In the present context, the observer has Imperfect esti- 

mates of range and range rate at t-0 (origin chosen at 

ping time for convenience), and he wants to extrapolate 

them to time t in an optimum fashion. 

To do this extrapolation he must rely on one 

basic assumption: the target will not alter its course 

or speed after the ping is sent. (More generally, It may 

alter its course and speed in some way known to the observ 

er.) The assumption here is that the target maintains 
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'<*> - ro + vo t (3-1) 

I 

Considering Che true stete vector e (t) - (r -fv t,v ) 

es e function of time, ö (t) mey be obtained from 6 (0) 

by the linear transfoxmetlon Z : 

e0(t) - Zt eo(0), where Zt 
1 t 

0 1 
(3-2) 

The evolution of 6 (t) is sketched in Figure 3-1 for e 

few ceses. 

Sinue the observer knows that the terget has con- 

stant course end speed, his hypothesis will elso take the 

form e(t)-Z 0(0). The Inv FF for the evolved target state 

then follows ionedlately in terms of p(e(0)/y) of (2-31). 

We simply substitute Zt'
1e(t) for 6(0) end Zt"

1ep(t) for 

en(0) to obtein 
P 

p(e(t)/y>kp0(e)e- iC^^-V
0) V1 fe SIV'C'^W'O 

.kpo(e).-iC
e<t>-eP

(t)),ft-At«l2Bt^«(t)-«p(t)) 

(3-3) 
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I V2t 

POSITION 
t SECONDS 

«^ -     LATER 

f T 

i i 
POSITION AT 
PING TIME 

-»—•-   v 

FIGURE 3-1   EVOLUTION OF POINTS ON THE Ö-PLANE 
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which makes use of: 

-1 1 -t 

0  1 
(3-4) 

Thus the evolved ellipse has center (r , v )■ (r 4v t. v t) 
VP     Py P   P       P 

and ellipse parameters 

At - A 

Bt - B-At 

Ct - C-2Bt4At: 

(3-5) 

The following points are noted: 

1) the new ellipse has the same area for all t, since 

Z has unit Jacobean. A ■ A. 

2) B evolves linearly with time, causing a rotation 

of the ellipse. C always remains positive since 

2 
the roots of At -2Bt+O0 are complex (note: AX)). 

We now consider tha evolution of the shape of the 

ellipse with time, introducing a method which permits a 

simple understanding of the process. Instead of describ- 

ing ellipse orientation by the slope of the major axis (see 

Figure 2-4) we consider instead a "regression line." 
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If we solve the ellipse quadratic equation 

2 2 
Aty + 2B xy + C x - 1 (using y-r-r1 ,x-v-v»), we obtain 

y - (-Bt/At)x ± i-jAt - Ax: 
(3-6) 

2 
for A - AC-B .    Then In terms of the original parameters: 

y - (t-B/A)x + 7 (A - Ax2 (3-7) 

y"-A, 

or Ay2 + f x2 - 1 

The time dependent term contributes a straight line with 

slope (t-B/A).    It Is called a "regression line" by analogy 

with the mean square regression line for blvarlate 
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: 

Only the first tern depends on time. The second is con- 

stant, and determines the basic properties of the ellipse 

for all time. For this reason we define the "generic 

ellipse" by D 

: 

: 

- +x|Ä - Ax2 (3-8) I 

D 

D 



distributions (Cramer/    J p.  272).    The slope of this 

line is celled the "regression line slope" (hereafter RLS) 

RLS - t-B/A (3-9) 

These ideas are illustrated in Figure 3-2,  for three 

instants of time, and for a receding target.    The middle 

instant yields a generic ellipse.    The regression line 

intersects the points of maximum horizontal extension in 

the ellipse.    It coincides with the major or minor axis 

only in the generic case.    If the RLS is initially nega- 

tive, the generic case will sooner or later occur.    (Notes 

the ellipses shown in Figure 3-2 are drawn to scale for 

the RAFMOP signal of Example 2-2 using the typical values 

listed there.    The scales used are  given in the figure.) 

One immediate consequence of these considerations 

is that the range error is smallest for the generic case. 

This is easily shown by considering: 

2      2 2 
er   * Ct/Ä " A I " <1 + -r>/At      <3-10> 
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SKETCHES SHOW 

rIN FEET 

vp=l FOOT/SECOND 
GENERIC TIME tg - 11.4 SECONDS 
tb' 31.4 SECONDS 

2- 

rp + 

I    » v IN FEET/ 
I       SECOND 

-ih 

EVOLVED ELLIPSE AT tb 

GENERIC POSITION (RLS«0) 
AT tg « B/A 

AT PING TIME t = 0 

REGRESSION LINE, 
WITH SLOPE-B/A ATt'O 

vp v_ 

FIGURE 3-2   EVOLUTION OF ERROR ELLIPSE 
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I 
I 
I 
I Thus the standard deviation is % = /e : 

r M r 

I 
I 
I 

%t mß   . /l +^(B-At)2 (3-11) 

which clearly is minimized when B«At, Thus the observer, 

who is assumed to know the wait time t, should design the 

ping so that B/A-t. He thus "pre-rotates" the ellipse by 

choise of B/A so that it evolves into the generic position 

at the correct time. This may not be possible, as will be 

shown in Sect. 3-4. 

It may seem strange that the observer should be 

able to obtain more accurate estimates Just by waiting, 

since he is obtaining no additional information after the 

ping. The answer is that information is being transformed 

into a more useful form for the observer's purpose. Be- 

cause errors in the v estimate affect later errors in the 

r estimate, the observer wishes to bias Che measurements 

so that on the average the v estimate errors do not enter 

at the action time. He does this by designing B/A« 

Thus elapsed time between data acquisition and 

data usage alters the simple estimation problem by intro- 

ducing another degree of freedom, which the observer 

attempts to control by signal design. 
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The answer was basically given by Woodward^ (p. 64), 

P(e/y2) - k p(e/y1)p(y2^)-kpo(e)p(y]/e)p(y2/e)  (3-12) 

which can be generalized to n pings: 
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r 
D 

3.2 Multiple Ping Processing 

The question here ist how should the observer 

combine data taken fron two pings separated in time? 

: 

: 

and follows from the Inv PF philosophy: After the first 

ping has been processed, the Inv PF of ping #1 becomes 

the a priori probability function for ping #2, because 

it represents the observer's total "state of mind" con- 

cerning 9. Thus for the second ping (using subscripts 

to index the corresponding ping): 

B 
P(ö/yn) - k p0(e)p(yl/

/e)p(y^)...p(yiv/e)      (3-13) n 

where the a priori function for the n  ping has been 

broken down into its constituents. The noise must be inde- 

pendent ping to ping so that the probabilities may be 

multiplied. 

:: 

D 



At Woodward points out, the quantities being esti- 

mated may not change between data samples in order for this 

scheme to work. In the present context the target is in- 

deed moving, but the information desired about the target 

(r .v ) does not change. The transformation Z permits one 

to extrapolate from any target position back to (r ,v ). 

Thus we can use the result in (3-13). 

Eq (3-13) causes a fundamental change from the 

single ping case procedure, as it instructs the observer 

to retain the entire Inv PF from each ping, rather than 

Just the estimates. Each ping's Inv PF is transformed the 

appropriate amount, and they are all combined finally at 

the action time. 

Specializing to the two ping case, the Joint Inv PF 

for two pings is found using (2-14), the basic Inv PF form. 

Referring to Fig. 1-1, the first ping has a total wait time 

of t - t.+t seconds, while the second ping has a wait: of 

t seconds. Since K(e) in each case appears as an exponent, 

the properly transformed exponents must be added to comply 

with (3-12). There the matrices 
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-1        -1 -1 

simply add (see (3-3)), and the ellipse parameters for 

the Joint estimation ellipse are 

A*  - Aj + A2 

B«  - (B1-A1tt) + (B2-A2tw) (3-14) 

C«  - (C^t* -21^,) + (C24A2t2 .2B2tw) 

er
2 - CVA» 

Vv " ■B,/A, (3"15) 

ev
2 - A'/A« 
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: 

Thus the Joint ellipse parameters are simply the sums of 

the properly evolved individual parameters.    (Subscripts 

Indicate the corresponding ping.)    The estimate variances 

for the two-ping case then follow immediately from (2-30) 

and 3-14): 

• 



• 2 
with A* - A'C'-B 

(It is shown in Appendix I that ä'X)) 

A geometrical interpretation is given in Figure 

3-3, where the ellipses are shown at three instants of 

time: 1) tine of ping #1 where ping #1 ellipse is shown, 

2) time of ping #2 where the evolved ping #1 ellipse is 

shown along with the new #2 ellipse and the Joint ellipse 

resulting, and 3) the evolved Joint ellipse at the action 

time. The following features are noted: 

1) The centers of the individual ellipses need not coin- 

cide. The centers have random (noise-dependent) 

locations, and thus can be displaced from the true 

centers. However, if noise were absent on both pings, 

both ping centers would coincide on the true target 

range and speed for all times thereafter. 

2) The ellipses may differ in size, due either to signal 

design, or to varying target strength (the weaker the 

target return, the larger the area of the ellipse is). 

For the ellipses shown, the #2 return hsd a SNR one 

half as large as that of #1 (see example below). 
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3) In the figure the interplng tine was so chosen that 

the #1 ping was generic at the time of #2 ping. This 

case was chosen for illustration only, and will later 

be shown to be far from the optimum choice. The wait 

time shown here was sufficiently large that the joint 

ellipse evolved through its generic position. The 

observer would like the Joint ellipse to be generic 

at the action time, but as seen below this is not 

always possible. 

Example 3-1. BAFHOP signals used on Both Pings 

The ellipses shown in Figure 3-3 were based on 

the use of RAFMOP signals for both pings, each with 6-d/4. 

(see ex. 2-2) The white noise case was assumed, with 

WSNR-10 for #1 and WSNR-5 for #2. It is informative to 

see how much Improvement two pings as opposed to one ping 

affords in this example. We assume the observer waits 

t seconds after the final ping in both cases. In the 

first case this is the only ping sent, whereas in the sec- 

ond case there was a previous ping sent t. seconds before 

the final ping. In the table below the estimate standard 

deviations are given for three choices of t . (Figure 3-3 

shows t "20 seconds), t.-ll seconds in each case. 
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^ V0 Vio tw-20 
Vev! 

•"S, 
#2 alone 

both pings 

6.57 4.4 5.8 
ft 

.44 

2.65 2.9 4.4 .23 
ft/sec. 

TABLE 3-1: Effect of First Ping, end of Wait Tine 

There is a significant amount of improvement achieved in 

the two-ping case for snail tw, but this degree of improve* 

ment diminishes for larger t • We note that ^ T for the 
w er 

#2 ping-alone case decreases for t -10. This Is because 

its ellipse is generic about 11 seconds after ping time. 

When both pings are used, the Joint ellipse is generic 

only 3.8 seconds after the #2 ping time, and so the Joint 

ellipse has evolved well beyond its generic position at 

the action time. 

It will be shown below that the ewards obtained 

by using two pings over just a single ping can be very 

great if the interping time and signal shapes are chosen 

more carefully. The results in this example are less 

dramatic since no attempt was made at an optimal selection 

of either t. or 6. 

:: 
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3.3    The Final Range Estimate Varlmnce 

The stated goal of the observer is to minimize 

the range estimate variance (hereafter REV)  t    seconds 

after the second ping.    From (3-15) this is REV-e^-C'M' 

which may be simplified (see (3-10)): 

1 B«2 

REV - ±r (l + fr") 0-16) 

Therefore the minimum value of REV is 1/(A. + A^)» which 
2 

is attainable if the observer can make B* «0. As the 

2 
structure of B1 /A* is rather complicated, we first examine 

the behavior of REV with respect to A., A.» C. t and C. 

in a general way. Taking partial derivatives, it is easy 

to see that 

dREV/a^ - -(C'+B't^2/^2 < 0 

ÖREV/aA2 - -(C'+B
1^)2/^2 < 0 (3-17) 

äREV/ÖC^ - ÖREV/dC2 - -B'
2/^2 ^ 0 
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Since the partial derivatives are negative, REV is a de- 

creasing function of each variable for all values of the 

others. Consequently, if the parameters A and C can be 

designed independently for each ping, then the observer 

must always maximize A and C on each ping, regardless of 

wait or interping times. The dependence on C., C2 vanishes 

if B'-O. Once the A's and C's are maximized, the only re- 

maining problem is to adjust the B's and t. in order to 

minimize REV. 

The question of designing A and C Independently 

in the white noise case is considered in Appendix J, where 

it is shown that the maximum allowable values of A and C 

can always be obtained independently. (The duration and 

bandwidth constraints considered use the dispersion dura- 

tion and bandwidth definitions of (2-34) and (2-36)). 

However, in the general colored noise case no such results 

have been obtained. It is possible that an attempt to 

maximize, say, C, would restrict the attainable values of 

A, B such that REV would be higher than for a reduced value 

of C. It is felt, however, that a good design procedure is 

to attempt to maximize A and C in any case. 
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3.4 Behavior of REV ai • Function of Design PTancter» 

2 
As seen in (3-16), B* /A* represents the fraction- 

al increase in REV over its absolute minimum of l/A*. B' 

can be made zero by making each ping ellipse generic at 

the action time: 

B1/A1 - tt    ;   B2/A2 - tw (desired)    (3-18) 

One need not know the target strength to achieve this con- 

dition, since only ratios such as B./A. appear. If this 

condition could be attained for all t the problem would 

be solved. The observer would select a convenient t., and 

design each B/A so that the corresponding ellipse would be 

generic at the action time. The error would always be 

l/A». 

However, there are two problems with this plan. 

1) The observer cannot always predict B,/A, with certainty 

except in the white noise case, because this ratio will 

in general depend on target speed.  (He may be able to 

predict B./A, if the first ping gives acceptable range 

rate accuracy.) 
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2. t may be too large. Since all sets A, B, and C 

satisfy AC-B X», B/A is always smaller than/CTA. 

Consequently if t exceeds the attainable J C/A then 

condition (3-18) may not be used. 

In view of these difficulties it is more appro- 

priate to determine the general behavior of REV in terms 

of the B's and interping time, in order to form guide- 

lines for the observer. These guidelines will dictate 

which ranges of the parameters are to be used, and which 

avoided, in order to make REV reasonably sm£ll. 

It is convenient to consider a normalized version 

of REV. This allows us to compare the two-ping and single- 

ping situations.  The normalization is with respect to A«, 

since the error would be l/A. for a single ping md no 

wait time: 

REV - 7- J 
A2 

where 

R2(l + B
,2/V) (3-19) 
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and 

R2" Ä$r2 <3-19b> 

For convenience we also define R.-l-R« - A-AA.-WO. 

J may be put into a more meaningful form by defining fur- 

ther the quantities 

Bl 

,A1C1 

•yE^ (3-20) 

and similarly for p2 and 7.. 7. has dimensions of time, 

while p. is dimensionless and satisfies |p. |<1.  p Is 

called a correlation coefficient, since in the single ping 

case (see (2-30)) 

-e e 
r v 

-vL 2 Ä 2 A e  e 
r  v 

(3-21) 

p may be made to approach +1 for signals with large time 

bandwidth products  (see Appendix G).    Each p and y is inde- 

pendent of target strength and SNR (all this information 

is now in R., R,, and A,)» and y terms may be compared 

Similar statements apply to 72» P2' 
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directly with t. and t . 7 and py  are identified with the 

slopes of the lines in Figure 3-4. It is noted that PY is 

the time required for an ellipse to evolve into the generic 

position. 

It is shown in Appendix I that J now takes the 

form: 

J - R, 1 ,     [<VP2,Y2)4ltl(t:i-Pl'yl-fP2,y2)J 
_2 

Vl2(1-Pl2)+R2'y22(1"p22)+RlR2(ti",'p2'v2"pl'Yl)2 

(3-22) 

and has the shape sketched in Figure 3-5. The quantities 

noted in Figure 3-5 are given by 

■ * 

R2 
'n- (Pl>l-tw) + if ^a'V 

As " *iYl2(l'pl2) + V'22(1'P22) (3-23) 

(t -p272) is the RLS of the ellipse #2 at the action time, 

t is the interplng time for which the Joint ellipse is 
n 

generic (i.e. B'-O). 
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FIGURE 3-4   GEOMETRICAL INTERPRETATION OF r AND/»/ 
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SECOND PING ONLY 

SINGLE  PING. KNOWN 
RANGE RATE CASE 

tj 

R2(tw-.2/2)
XV^^y2, 

FIGURE 3-5    BASIC SHAPE OF J VERSUS  ti 
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Several features  ere apparent from (> 22) and the 

shape of Figure 3-5: 

1) A desirable minimum for J exists at t.-t ,  for which i   n 

J-IU» or REV-l/A1, its absolute minimum.    Unfortunately 

the values of t^ to be expected in practice are much 

larger than the pyy. values attainable so that this 

minimum cannot always be achieved. 

2) For sufficiently small t.,  the relative rotation between 

the #1 and #2 ping ellipses is not significant and the 

Joint ellipse parameters at the second ping time are 

simply:    A.-tA», B.+B-» and C.+C. respectively.    Thus 

the performance is equivalent to a single ping situation 

with these new parameters. 

3) In the limit of large t. an asymptote is observed at 

which J«l. For such large t. the first ping ellipse 

will evolve into an almost vertical line as shown in 

Figure 3-6.   When the second ping ellipse is added, 

the joint ellipse will also be thin and nearly vertical, 

with vertical extent determined mainly by A^.    The 

wait time will consequently have little effect on the 

range variance.    The resulting performance will be 
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FIGURE 3-6    EFFECT OF LONG INTERRING TIME 
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called the "single-ping, known range rate" perform- 

ance, since in effect the long interping time leaves 

only a narrow region of the range-rate plane with 

significant inverse probability, and thus eliminates 

most of the range rate ambiguity. Then the second 

ping can be used to obtain range information only, 

and the REV will be approximately 1/A.. The use of 

very large interping times thus separates the roles of 

the two pings, using the first for range rate esti- 

mates, and the second for range estimates. 

4) For the single ping case (effectively IL^O), the optimal 

signal design (choice of pj) is determined using sim- 

ple minimization techniques in Appendix K, yielding 

i. if t <7<,, J . . -1      for pv^o-t. 
w '2* single r2r2 w 

11. if t^. J,la,u-(tv/T2)
2 for p2-y2/tw   (3.24) 

Therefore for a single ping, t causes the REV to in- 

2 
crease as t (when t >v0). For large wait times this 

W        W  2 

can result in a severe degradation of performance. 
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The use of CUD pings can «fork Co overcooe this de- 

ficiency. 

5)    The single ping case always results in a larger J 

than the two-ping case (where ILf^O).    The single ping 

case yields (use 1^-0, R2-l in (3-22)): 

j    I | CW2) (3-25) 
y2 

Comparing this with the peak value of J observed in 

Figure 3-5, it is easy to see that the distance be- 

tween the levels is 

single ping ' both pings 

2 

(VP2O     WC^PI
2
) 

y2
2(i'P2

2y Whi2>ww) 
(3-26) 

which is large if t    is large and R.   is reasonably far 
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from sero.    Thus Che use of two pings can yield a sis- 

able improvement even for Che worst choice of c.. 

3.5    Design of p,  and p2 for OpCimum Performance in 

Whice Noise 

In order Co undersCand more clearly Che effects of 

t , C. and R,, we now consider Che absolute minimum value 

that J may have for given values of these variables. These 

minima will occur in the white-noise-only case, since A and 

C are maximised in this case (see Appendix G), and perform- 

ance improves monotonically with A and C. 

For the white noise case, the values of 7, and y. 

are determined by the allowable bandwidth and duration con- 

straints. Since these constraints will be the same on each 

ping, and the observer will use the largest allowable 

values in order to maximize his performance, the two values 

will be equal: ^ - Yj ' ^ 

The observer will know only t before he sends the 

first ping, and he must choose p, before sending this 

ping, and t. as well as p2 before sending the second. He 

will not know R. until both pings have been sent. To deter- 

mine an upper bound on performance, however, we choose values 
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E 

of t , t. and IL, and pretending they are known beforehand, 

minimize J by proper choice of p and p . 

With y  common to both pings, it is convenient to 

normalize the times t^  and tw as well in (3-22): 

Tw - Sjl 

Than J simplifies to 

J - A2 REV 

T1 - tjy (3-27) 

- R, 1 + [CvP2>*i(3rpi*p2)] 
l-R1P1 -R2p2

2+R1R2 (J^-Px+P^ _ 

(3-28) 

A numerical search procedure was employed to find 

the p. and p. which minimize J for fixed values of T , x. 

and R.. The results are shown in Figures 3-7 through 3-10. 

In figures 3-7 through 3-9 J .  is plotted versus T. for 

different values of R, and T . J  , (the performance 

resulting from the worst choice possible of p., p.) is also 

shown to demonstrate the variability of J with signal design. 

For reference purposes recall that 7-15 seconds for the 
LIFMOP and RAFMOP signals of example 2-2. 
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J8lnÄle 8iven by 0-2b)  is also included. Finally in 

Figures 3-10 Che optimum values of p. and p? are shown for 

the parameter values considered. 

The three major issues of interest here are: 

1) A comparison of the single ping and two-ping perform- 

ances. 

2) The importance of signal design on the value of J. 

3) The effect of the interping time on the performance. 

1) For large values of t the two-ping performance is 

far superior to that for a single ping, especially 

if the first ping return is strong (large R.). (As 

R. approaches zero, the two cases perform equally 

well, of course.) This superiority requires that rea- 

sonable choices for p. and p2 be made. On the other 

hand, when T is small only slight improvement is 

possible for the two-ping case, and this requires 

careful choice of p, and p.. 

2) Proper signal design is seen to be very important for 

small values of T and T., as very different perform- 

ance levels are exhibited for the best and worst 
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choices of p. and p . As T. becomes large all signals 

yield the same value of J, (J*l). This is the "single- 

ping, known range rate" situation discussed previously. 

Also as T becomes large, the performance is poor re- 

gardless of signal design due to the extreme ellipse evo- 

lution. 

From Figure 3-10 the best choices for p. and p. 

are seen to form two rather distinct groups, such that 

p. should generally be negative (ellipse #1 already 

beyond its generic position at ping time) except when 

T is very small, and p should be positive in all cases 

(ellipse #2 prerotated so that it will move toward its 

generic position as time elapses). In many cases the 

best choices for p. and p do not depend heavily on R,, 

so that the actual lack of knowledge of R1 will not be 

too significant. The worst choices were found to be: 

p - -1   always 

P 1 

r-l  for ^ < 1 

L+l  for ti > 1 (3-29) 

B-88 

D 
D 



The worst choice for p. always tends to align the two 

ellipse RLS's. 

3) The general conclusion that may be drawn with regard to 

tjls that It should be as large as possible if -r Is 

large. In order to approach the "single-ping known 

range rate" condition* Only for T of the order unity 

can any gains be made by reducing T1. When T is large, 

the value of T. required to achieve the asymptotic con- 

dition is about four times larger, and may be too large 

to use in practice. These results indicate that large 

waiting times can markedly degrade the estimator 

performance. 

3-6 A Design Perspective for the Reverberation Noise Case 

The last section discussed the effects of signal 

design for the white noise only case, for which the observ- 

er will always use the largest A and C parameters permitted 

by the bandwidth and duration constraints. The design pro- 

cedure there was quite simple because the observer does 

not make use of first ping information in designing the 

second ping. However, in the general noise case discussed 

in Chapter 2 the performance depends strongly on the true 

target range rate, and so if the observer can accurately 
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measure this quantity on the first ping, he may be able to 

redesign the second ping to achieve a greatly Improved 

final range estimate. When the noise is signal dependent 

as in the next chapter this will be particularly true. 

We now show that the observer's best design pro- 

cedure is to consider only range rate measurement on the 

first ping, and range measurement on the second ping. 

This vastly simplifies his task since he need only strive 

to maximize (^ and A,, the other ellipse parameters having 

little effect. We have shown that for large values of t., 

REV*1/A2 (see Figure 3-5), and that this corresponds to the 

performance level for the known range rate situation. The 

absolute minimum for REV is REV-l/CA.-tAO, (see (3-19)) 

but this value will not be significantly smaller than 1/A- 

since in practice A. » A. (the observer has more informa- 

tion with which to design the second ping, and so can do s 

better Job). Thus if a sufficiently large t. is used the 

final performance depends mainly on A., and this is clearly 

the quantity to maximize. The range rate needn't actually 

be measured on the first ping to arrive at this conclusion: 

the only requirement is that t. be very large. However, 
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there are two Important reasons for making an accurate 

range rate estimate on the first ping: 1). The required 

value of t. needn't be unpractically large, and 2). knowl- 

edge of target range rate permits much greater values of 

A. to be achieved. The second point will become apparent 

in the signal design study of the next chapter, but the 

first point deserves more comment here. We must again 

examine the behavior of J to determine the size of t. 

required. 

Because the signals used to combat reverberation 

in Chapter 4 will have extremely small B, and B,, we rewrite 

J of (3-22) with p1 - p2 - 0. 

1 + 
(tw + R^) 

Vl2 + V22 + RlR2ti2 

- R, 

r 2 
(1 + RJTJT 

1 + 
r + R^V 

(3-30) 

where T.  - t./t    and 1        1    w 
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w 

J It plotted as a function of T. in Figure 3-11 for differ- 

ent values of R. and r. If r is of the order one then any 

value of T. will be acceptable (where "acceptable" could 

be considered as the region of J < 2, for instance). For 

smaller values of r, T. must be about 10 when R -.01, and 

must be about 30 when R.-.001. The case R.-.S, which corre- 

sponds to the situation A^-A as in the white noise cases 

in Figures 3-8 and 3-9, requires that T. be about 3. Thus 

two things are clear: 

1) The value of t. required to keep J < 2 does indeed in- 

crease as R. becomes very small (due to disregarding a 

careful design of A. for the first ping), but the 

increase is not prohibitively large. 

2) r should be made large (of the order one) if possible. 

This may be accomplished by using a large value of C, , 

provided t  is not excessively great. Then any value 
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more than about .1, then at the sizes of T. required 
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D 
The above Arguments have shown that the observer 

need only strive to maximize C, on the first ping, and A 

on the second. The principal reason for obtaining a large 

C, is that an accurate range rate measurement will permit 

careful second ping design to achieve much larger values 

of A. than otherwise possible. The details of this last 

point are considered in the next chapter. 
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CHAPTER 4 

Signal Deaign of Two Plnga in the Strong 

Reverberation Environment 

4.1 The Reverberation Noise Spectrum 

The noise model used here was recently treated 

[16] 
by Van Trees   • It assumes a distribution of scatter- 

ers through a volume of the ocean medium, each scatterer 

acting as a point reflector of sonar energy. The scatter- 

ers are assumed to have random positions, velocities and 

scattering strengths, and all of the quantities are statis- 

tically independent one from the other. This model , 

therefore, would rather poorly describe the case of surface 

reverberation or of small clouds of interacting scatterers, 

but it is a useful model for volume reverberation. 

The reverberation model makes the following specif- 

ic assumptions: The complex envelope n(t) of the noise 

waveform is given by 

n(t) - Y   Zi  sCt-r^ eJV (4-1) 
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where for the 1  scatterer 

4 
power from scatterer at t.+T   t. 

power from scatterer at t.    ,  ._*< 
.4 

* 1 - 4T/tb (4-2) 
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r 
r 
: 

TJ  ■ time delay of reflected waveform 

w.  ■ doppler shift of waveform 

Z.  ■ complex reflection coefficient 

8(t)  is the complex envelope of the transmitted waveform 

(see (2-2)). 

The summation  is performed over all  scatterers that 

yield noise energy  in  the observation  interval T given by 

T - t*   j te(t. jt.+T)  V   (see p.   2-6).     Van Trees uses  two 

assumptions that will be retained here.    The reflection 

coefficient of the  i       scatterer is  independent of the 

: 

: 

: 

: 

scatterer*s exact position, and the average number of scat- 

terers per unit  increment ui range (or delay)   is constant. 

These assumptions are  reasonable approximations  if T/t, «1, 

as will now be  indicated.    Inverse square  law spreading 

loss causes the  received power from a  scatterer to decrease 

as the  fourth power of the distance.    Hence  the ratio of D 
the powers received  from scatterers at delays  t,+T and t.   is 

:: 

D 

D 
D 



if T«t. . Similarly, a sonar beam intercepts an area which 
D 

increases linearly with range, so that if the average density 

of scatterers in any volume is the same then 

avg. number intercepted at t.+T 
 2  - i + T/t 
avg, number intercepted at t. b  (4-3) 

which again will be nearly unity if T«t.. Thus the approxi- 

mations involved in Van Trees assumptions are quite reason- 

able as long as the target distance Is large compared with 

the distance covered by sound in T sec. 

The statistics assumed for the random variables are 

1) EZ^O  , E|Zil
2 - \Z\2        for all i 

2) PT (O -f
1/T   T^eT 
1/T 

0     otherwise 

3) avg. number of scatterers in summation - 7 T 

4) prob, density function of w. is p (w) for all i. 

(4-4) 

Statement 3 contains the additional assumption that the 

number of scatterers present is large. We can then say that 

the actual number of scatterers illuminated (a random 
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n 
variable) will with high probability be close Co the stated 

mean value y T. 

Van Trees uses these assumptions to calculate the 

complex autocorrelation function R(T)  for the noise process 

consisting of the reverberation noise and an added white 

noise component representing receiver noise.    His result 

Is exact  In the limit of large observation Interval T,  but 

Is a good approximation as long as  the observation Interval 

Is much larger than the correlation tune of the process, 

(but still short compared with t.   above). 

R(T)  - AR (T)f p..(w) ejWTdw + N *(T) (4-5) 

where 

s    v •  w 

R (T)  ■  / s(t)  s*(t+T) dt 
S w 

N    ■ spectrum level of white noise component 

A   - i 78IZ|2 

The noise autocorrelation function Is thus the product of 

the scatterer Doppler characteristic function and the 

signal "correlation function." The noise spectral density 
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N(ü>) is Che Fourier transform of R(T), and is Chen Che con- 

volution of p (w) wich Che transform of R (T). Since the 
W 5 

Cransform of R (T)   is simply   |S(a)) |2,   (Papoulis(13\ Eq. 2-71), 
8 

we have 

N(aJ) - A/PW(W) |S(ü)-W) I2 dw + No (4-6) 

The reverberacion spectrum is essentially the transmitted 

signal spectrum, "smeared" out by the convolution with p (w) 

If the scatterers do not move, p (w) - ^(w), and 

N(ü)) . A|S(O)|
2
 + N (4-7) 

o 

The dependence of the noise spectrum on the transmitted 

signal spectrum adds significantly to the complexity of the 

signal design problem. 

4,2 Basic Signal Design Implications of the 

Reverberation Spectrum 

In Section 3-3, it was shown that the ellipse para- 

meters A and C should be maximized in order to minimize REV, 

the final range estimate variance. With the white noise 
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level N    fixed, A and C are always maximized when the effect 

of the  reverberation component of N(a))  can be eliminated 

(see App.  G). 

To see how this might be accomplished, we note that 

in (2-41) the ellipse parameters, as well as SNR, are func- 

tional» involving P(ü)) of (2-37): 

p/o))  - 4-     ISHI2 (4-8) 
^  ;      D2      N(">fwo) ^ *' 

o 

For the noise spectrum given in (4-6), this becomes 

D^  A|s(a>fw ) r + N o   ' v  o7 'p   o 

where for convenience we have set 

|S(«) if - /p„(w) |S(ü)-w) (2 dw (4-10) 

Roughly speaking, in order to maximize A and c, the observer 

2 
will try to choose |S(^)|  so that in the frequency ranges 

2 2 
where |S(a)) ( is large |S(a>+w )| will be small relative to 

the white noise level N . To do this he must take advantage 
o 
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of Che shift w due to the cargec range race. If he is 

successful, Chen Che reverberacion incerference will have 

been essenCially eliminated. Figure 4-1 shows a sample 

2 
situation: a) a possible |S(u)) | , b) ehe "smeared" version 

shifted by amount w and added to ehe whicc noise level. 
'       o ' 

and c) Che resultant P(u), scaled to unit area. In Che case 

shown, Che shift w was not quiCe sufficient to completely 

eliminate the reverberacion. 

4.3 Design of Che Firsc Ping 

2 
In order Co design |S(co) | ' using these principles, 

Che observer muse know w . On Che firsc ping, however, he 

does noC have Che benefit of this knowledge, and so he muse 

use a signal which will perform well over a large range of 

target range rates. Since the observer must concentrate on 

maximizing C, on the first ping, a natural signal to use 

is a very narrowband ping with long duration. For a narrow- 

2 band   |S(u>) |    even rather small target range rates will be 

sufficient to shift the signal spectrum off of the reverbera- 

tion spectrum,   leaving only white noise interference.    In 

the white noise  case  (2-36) applies, and so C.   is propor- 

tional  to the signal duration squared. 
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a). 

b). 

c). PU) 

u) 

FIGURE 4-1   SAMPLE SIGNAL AND NOISE SPECTRA 
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The observer is thus led to use a long pulse with 

no frequency modulation, such as a pure tone lasting d 

seconds,  (This is a special case of the LIFMOF signal of 

example 2-2, with P-0.) If w is sufficient to shift the 

resulMnp. narrow lobe of |S(^>) |" off of the reverberation 

lobe, then the results o^ (2-42) apply. We see that B-0, 

the SNR is maximized (for constraints of fixed d and peak 

signal amplitude m ), and so the signal is optimum in terms 

of maximizing C,. S("0 for the constant frequency tone has 

significant amplitude only in the band |w|<2r/d, so that 

w * Air/d is sufficient to eliminate the reverberation if 
o 

the scatterers are not moving.* A larger w is required 

if the scatterers do move.  For insufficiently large w 

partial elimination will be achieved. 

When only partial elimination is obtained due to 

small w , this la still a jrood signal to use, since: 
o 

1) a narrowband signal has a very concentrated spectrum 

lobe  with high power density.  Since scatterer motion smears 

2 
out  this  lobe  to  form   |S(<"4w ) (   ,  a significant amount of 

reverberation power can be shifted out of the target echo 

band. Thus ?(&) of (4-r) can still be large over much of 

its  range even for small w  , 

* Using  typical values of (2-47), w    ■ 47r/d correspond?  to 
a  target range rate of 3.3  ft/sec. 
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2)    As a special  case  of the last comment,  where  the target 

Is not moving at all,  it can be shown that ^  will  increase 

as the signal  becomes more narrowband under ordinary cir- 

cumstances.    A  calculation of C.   is performed  in Appendix H 

for the gaussIan-shaped sienal: 

sft)  - m -Ht/d) r4-ll) 

and  for scatterer Doppler probability density  function 

rw    ' 
-\fw/rt) 

(t*-}2) 

The signal here has a narrow spectral lobe similar to that 

of the constant frequency tone above, and this signal form 

leads to tractable mathematics. It is shown in Appendix H 

that for the  strong reverberation interference case 

'1   " ß 

2  2 1+26 (T 
26d (4-13) 

Hence if S»l/d  (i.e.,   if the rms  scatterer doppler shift 

is much larger than the signal  bandwidth)  then  Z.   is 
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2 
proportional  to 3d  ,  and d should be made  large,  or equlva- 

lently the bandwidth should be made very narrow,* 

4.4    Design of the Second Ping 

The observer's primary goal with the second ping Is 

to measure range, and so he will strive to maximize A? 

2 
given In (2-31), Only the spectrum IS(a)) |  Is Involved In 

the range measuring capability of a signal; the phase 

function ^(üJ) of (2-3^) has no effect. 

We assume that the estimate of target range rate 

made with the first ping was sufficiently accurate that w 

can be com dered known. The designer will make use of 

this knowledge In an attempt to put signal power In fre- 

quency bands disjoint from those of the reverberation. 

However, the previous device of using very narrowband sig- 

nals Is unsatisfactory here since A? is essentially a 

2 
variance of ?(oS)  as seen in (2-41), so that |S(<u) I must 

be dispersed over a wideband. 

The problem Is then to maximize (see (2-41) and 

(4-0)) 

it 
For rms scatterer velocity of 2  ft/sec,  and the typical 

values of (2-47),  2ß2d2 * 114. 
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or 

A  - ka ü)2|S(a)) I2 

0 -• A(S(ü>fw )|2 + N a 0    'p o 

du) 
2v 

ko Of 

f   <pisrua i 
-oc AlSCüHv^l^ + N 

d(0 
2ir 

(4-14) 

The constraints  Imposed on the  signal are: 

i.       time-limiting:    the signal  is wholly contained in 

ltl^d/2. 

ii.    band-limiting:     the signal has  bandwidth 2W. 

It  is not meaningful  in the  present context  to use 

the "dispersion bandwidth" of  (2-34) as  the bandwidth defini- 

tion,  because  if only the dispersion bandwidth is  restricted 

in size,  the designer is led to use  totally unrealistic 

signal spectra  in order to eliminate  reverberation.     It  is 

shown in Appendix L that reverberation may always be elimi- 

nated by spreading the signal  power over a  sufficiently 

wide band.    The band required would normally be exorbitantly 

large.    Consequently a more  realistic constraint is used; 

an allowed processing band  (-W,W)*  is   fired,  and is beyond 

This bandwidth might be  the  fundamental passband of 
the hydrophone array.    Note:    W is not to be confused 
with w, which  is a doppler shift. 
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Che control of the observer.    All energy at  frequencies 

outside of this band Is rejected.    This constraint on 

usable bandwidth  Is  frequently used In practical systems 

and is convenient analytically:    Its use simply requires 

that  the Integration limits  In (4-14)  be altered. 

The  finite  limits of Integration In  (4-14) permit 

a very useful normalization, which will throw Into per- 

spective the quantities under consideration.    We define 

the normalized  frequency variable x - u;/w so  that the pro- 

cessing band becomes   |x|^l.    Then we may define normalized 

signal and reverberation spectra: 

*<*> "  272E   l5^) I2 

Vx)" 2T2F: |S(WX)IP (4-15> 

2 
These   functions have unit area  (since   |S(<a) |    has area 

2E27r,  as  In  010): 

1 
f   g(x)  dx -   ■'     g  (x)  dx - 1 (4-16)* 

-1 -co P 

it 
The infinite  limits  in (4-16) must be used since scne 

of the reverberation power may be spread outside of the 
processing band   |x|^l. 
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If we  further define  the normalized probability density 

function of scatterer ran£>e rate p* (x) ■ Wp  (W ),  then 

from (4-10) 

Pp(x) 
-1 

p,(x-y)r,(y)  dy (4-17) 

Hence signal  design in the x-domain amounts   to   :hoosinp 

appropriate positive unit-area shapes  for g(x)   in the  inter- 

val   (x|^l.    Now using  the definition of A  in  C4-14), we 

obtain 

R       k WSNR W2 

where we define 

2EA 

1         2  ^ 
■  X/iX x1   dx - 

1   Rgp(x+^)+l 
1 

SNRF 

1 
'      x  g(x)          . 

_                                    _ 

(4-18) 

R -  2Tr N W o 

t « w /W       :     normalized  target range  rate 
0 1 

SNRF - SNR/WSNR üiül 

WSNR 
ZEo' 
 ( 

N 

Rg   (x+O+1 
dx 

:     (see page 2-25) 

(4-10) 
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A is normalized to A    by  isolating terms which the observer 

cannot control,  and A    is dimensionless.    R is a reverbera- 

tion power to white-noise-power ratio,  since E    is propor- 

tional to the total reverberation power received, and N W 

is proportional  to  the white noise power in the processing 

band.    SNRF is the ratio of the signal-to-noise ratio 

achieved by a particular set  (g(x), ^»R.p'Cx))  to that 

always obtained  in the white noise only case.    It  is a mea- 

sure of the degradation in signal-to-noise  ratio due to 

reverberation, and equals one  if the reverberation  is elimi- 

nated. 

Efficient  signal  design must also consider the am- 

biguity problem discussed in Section 2-5,   since the per- 

formance measure A applies only if gross errors occur with 

very small probability.     In the known range rate case con- 
2 

sidered here,  th«: ambiguity  function   lG(^,0   )|     of  (2-23) 

becomes 

iG(6,*0)r W"W 

do) 
27 

(4-20) 
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Thus the ambiguity function Is the squared magnitude of the 

Fourier transform of P(u)) of (2-37). Normalizing as before, 

with a~W(T-T ), the ambiguity function becomes: 

AMB(u) 
1   f g(x) ejlxX  . 

SNRF ^ R g (x+a)+l X (4-21) 

ex 4-1;    AMBdi)   for a sample  K(X)   in White Noise 

To show the basic characteristics of AMB(ii) ,  we 

choose a p(x)  having two paussian-shaped  lobes separated 

in  frequency as  shown in Figure 4-2a.     The ilacement or 

the  lobes makes  the value of A    large.     Now since SNRF-1 

in the white noise only case,  we have 

AMB(u) 

1 
1 r 

-l 
ejux 

ZifTw 

•n a r l-fcos(r 

e-^x-m1)
2/ß2 ^-5(x-m2)

2/32 
dx 

s e 
(4-22) 

As seen  In Figure 4-2b, AMB(u)   has many larpe sldfclobes 

which would make  the signal  unacceptable.    A  , which  is pro- 
Ö 

portlonal to the curvature of AMB(ii) at ii«0 (see the defini- 

tion of A,   (2-2r)   is large,  but  the high  sidelobes would 

make gross errors quite probable so that A    is a poor mnsure 
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b). 

AMB(M) 

FIGURE 4-2.  2-LOBE SPECTRUM AND AUTOCORRELATION FUNCTION 
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of performance. The dotted line in Figure 4-2b is the ambi- 

guity function for a g(x) consisting of only a single lobe 

centered at x-0. The curvature of AMB(u) at u«0 is much 

smaller for this signal, but there are no longer any side- 

lobes. This simple example thus shows the tradeoff that 

must be made between "small error" estimate variance and 

ambiguity sidelobes. 

4.5 Some Bounds on A and Simple ^ases 
 S  

A is maximized when only white noise is present, 

as discussed in Section 4.2. Choosing g(x) symmetrical for 

convenience, we have from (4-18) 

1 

A - •  x2 g(x) dx (4-23) 

This is clearly maximized with respect to g(x) by setting 

g(x) ■ * A(x-l) + "Kx+ln , which yields A -1.  Thus an 

absolute upper bound for A is unity. However, this form 

for g(x) implies a signal consisting of two sinusoids at 

cu-HHW.  Such a signal (i), is not duration limited, and (ii) 

has a totally unacceptable AMBOi). As may be seen be 

setting 3-0, m.-m -2 in (4-22), AMB(u.) is periodic in u. 
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Another choice for g(x) would be a flat shaped 

g(x) - 

1° 
* for   |x|^l 

0 otherwise (4-24) 

which yields 

Ag - i /   x2 dx - 1/3     ,    AMBdi)  -   p^l (4-25) 

A    is 5 dB below ehe absolute maximum, but AMB(u)  is now 

acceptable with maximum sidelobe heights equal to  .045. 

This  form for g(x) will be called the "flat spectrum" case, 

and will be used as a reference case below. 

In contrast to these rather high levels of perform- 

ance,  the strong reverberation case will give an indication 

of the degradation of A    to be expected.    If both the target 

and scatterers are not moving,  so that their sonar returns 

look as much alike as possible, we have  (see 4-18) 

8 
f     x2

ft(x) 
Jml R g(x)+l    ax 

1 
SNRF 

f     x fi(x)      d 
jml R g(x)+l 

(4-26) 
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with 

1 

Now if R g(x)»l for all x in the band, then 

1 2 

A * / ^s dK - 2/3R (4-27) 
g ^i    R 

Consequently, all signal spectra having energy distributed 

over the whole band yield equally accurate range estimates 

when target and scatterers are stationary. For smaller 

values of R where the approximation of (4-27) no longer 

applies, the optimum g(x) was found using dynamic program- 

ming techniques, as discussed in Appendix M. The resulting 

A is shown in Figure 4-3 as a function of R, along with 

the other examples discussed above. The asymptote A -2/3R 

is rapidly approached as R increases. 

4.6 Some Commonly Used Signals 

Certain types of signals have been used frequently 

in sonar and radar systems'  , and it is well to examine 

their ability to combat reverberation interference in the 

present context. 
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1) LIFMOF SIGHAL 

For signals of this type with large duration-bandwidth 

products,  the corresponding spectra are approximately flat 

over a wide bend, and then fall off rapidly outside of this 

band (ref,  5, p. 208).    Thus we can use as an approximation 

of the LIFMOF spectrum the "flat spectrum" case discussed 

above.    A    was calculated  for such a  flat spectrum as a  func- 
g 

tion of target speed, and the results appear as part of 

Figure 4-4 for the case R-100 and no scatterer motion. 

(Since this spectrum covers the entire processing band, 

and typical bandwidths would be much larger than scatterer 

doppler shifts,  the effect of scatterer motion on the shape 

of R (x) would be very small in this example).    A rather 

slow rise in A    versus a is noted over this range of target, 

since a is  such a small percentage of the  total signal band.* 

2) Signals with Sine x-type Spectra 

The spectrum of general shape 

2 
g(x)  « sine    vx 

12 
sinrryx 

TTyX   J (4-28) 

it 
Using typical  values of (2-47) and W»27r(50),  i and target 

fi 

: 

: 

speed v are related by v*40a. 
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arises repeatedly in radar signal theories  . Simple 

pulses with rectangular envelopes have spectra of this 

shape as do some Important pulse trains. One such is the 

"stagger pulse train" class, (Cook & Bemfeld1  , p. 232) 

consisting of a burst of, say, 8 short pulses positioned 

at irregular Instants Inside the over-all ping duration. 

The position staggering yields good over-all ambiguity 

properties. Another signal class with roughly this spectral 

shape is a pulse train with phase modulated according to 

one of the Barker codes (ref. 5, p. 245). 

Thus we consider the performance A associated with 

the spectrum shape shown in Fig. 4-^.  The spectrum is, of 

course, bandllmlted to |x|<l, so that dlfferer«- values of 

2 
v will retain different amounts of the basic sine shape 

within the band.  For example with v^l onJy the major lobe 

of the spectrum lies in the band.  For larger v the major 

lobe is narrower, and one would expect more variation of A 
g 

with target speed in this case. The results are shown 

In Figure 4-4 for various values of v,  A  is consistently 

lower than that achieved for the wideband ilat spectrum, 

and furthermore there is not a great deal of variation in 
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FIGURE4-5    SINC2 SPECTRUM EXAMPLE 
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A due to changes in 7. One concludes, therefore, that the 

9 
LIFMOP signal would perform slightly better than the sine 

spectra signals, but that neither seems to take real advan- 

tage of the target motion in order to substantially elimin- 

ate reverberation. This drawback will be attacked in the 

following sections, and the RAFMOP signal will also be 

discussed. 

4.7 Multi-lobe Spectra 

We introduce the class of spectra consisting of n 

identical lobes distributed over the band. Each lobe has 

the basic shape g (x), and the lobes are centered at the r 

frequencies m ■ (m, ,m2,,,,,m ). A sample case is pictured 

in Figure 4-6. The advantage of this spectrum class in ehe 

known target range rate case is obvious:  the observer will 

attempt to construct the lobes sufficiently narrow and far 

apart so that the reverberation lobes will not coincide at 

all with the signal lobes, yielding complete reverberation 

elimination.  The ambiguity problem will be important here 

as it limits the observer's ability to choose freely the 

lobe shapes and positions. 

If the chosen spectrum Is successful in eliminating 

the reverberation then we can calculate the ambiguity 

function AMB( 11) using (4-21). 
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FIGURE 4-6   SAMPLE n-LOBE SIGNAL SPECTRUM 
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Then 

AMB(ii)  - 

n      1 
1 / /     g (x-m )  e JU- 

i-1 
o .       O 

dr. 

n 1 
1 jm.u   f      ,  v     jay   . 
n i   J   8o(y)  e        dy 

i-1 -1 

G0(u) C(u) (4-29) 

where G (u)  Is  the Fourier transform of g (x), and 

C(u) i 
n 

n 

i-1 

e^mi 
n 

n-1 n 

n + 2 cos(m.-ni.)a 

i-1 j-i+1 

(4-30) 

is an oscillatory function consisting of all the intermodu- 

lation products, or "beat frequencies" arising from the n 

frequencies m,  C(u) satisfies 0 ^ C(u) <£ C(0) - 1, 

The goal of the observer is to choose the function 

g (x) and the set m^ under the constraints imposed by the 

known target range rate and scatterer Doppler spread, so 

that R(u) will have no sidelobe levels above a permissible 
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height. He must choose m carefully so that the white-noise* 

only case is approximately maintained, and so that C(u) 

remains small for all a up to some value where the "envelope" 

2 
I^0(M.) I has dropped to the allowable sidelobe level. This 

may or may not be possible depending on the constraints 

imposed on m. 

We consider the easily visualized case of a rectangu- 

lar g (x), which drops to zero outside of a set band, 

|x| <£X, so that |Go (n) I - sine (^O, Also, the probabil- 

ity density function of the scatterer motion is chosen 

rectangular for convenience. (Actually, the only property 

of p'Cx) used is that it drops to zero outside of a given 

band.) Using g (x) and p'Cx) as shown in Figure 4-7a) and 

b), the convolved version g (x) is easily obtained and is 

shown for two cases in Figure 4-7c) and d). From these 

forms it is a simple matter to determine the target speed a 

required to shift each signal lobe off its corresponding 

reverberation lobe. Also one can infer how close the sig- 

nal lobes may be spaced. The signal and reverberation 

spectra are superposed in Figure 4-8 for the case where 

the reverberation interference will just be eliminated. 
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FIGURE4-7   SAMPLE SPECTRUM, AND RESULTING REVERBERATION SPECTRUM 

t a+2X-fy  *J 

H 
—H 

X+y 
+-K 

SIGNAL LOBE 
NOISE LOBE 

^ 

nn j -f o ^ i +1 

FIGURE 4-8   NECESSARY a Ar.D LOBE SPACING FOR 
REVERBERATION ELIMINATION 

B-124 

0 
i: 
D 
D 



I 
I 
I 
I 

I 

1 
I 
I 
I 

such that any Increase in Che lobe width would cause some 

overlap. This then Illuminates the constraints that exist. 

For any given a and 7, we must choose 'K  and each lobe 

spacing £m - mi"mi.i» i " 2,3,•..n so that 

Zh + y £ a 

£m.  2 a + (2X47) 

i«! I £  l-> , all i (4-31) 

The last constraint on the size of each m. forces the lobes 

to lie wholly within the processing band |x|^l. The first 

constraint shows that if y>a  (target range rate smaller 

than maximum scatterer range rate) the reverberation cannot 

be completely eliminated. 

ex 4-2 Equally spaced lobes 

If the observer places the lobes at equal intervals 

so that m. - i»Am, i"0,+l,+2,... ,+(n-l)/2. then C(n) may 

be written 

C(n) - 
I 
n 

t<n-l) 
eJiAmn 

l-}(n-l) 

I  8in(nAmi/2)I 
n sin(ZinHi/2) (A-32) 

/ 
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such that any Increase in the lobe width would cause some 

overlap. This then illuminates the constraints that exist. 

For any given a and yt  we must choose X and each lobe 

spacing tm ■ m.-m. ., i ■ 2,3,..^ so that 

ZK  + y ^ a 

, all i (A-31) 

The last constraint on the size of each m. forces the lobes 

to lie wholly within the processing band |x|£l. The first 

constraint shows that if 7>a (target range rate smaller 

than maximum scatterer range rate) the reverberation cannot 

be completely eliminated, 

ex 4-2 Equally spaced lobes 

If the observer places the lobes at equal intervals 

so that m. ■ i»Am, i"0,+l,+2,... ,+(n-l)/2, then C(M.) may 

be written 

C(M.) 
I 
n 

Rn-i) 
, eJ i^mn 

i-4(n-l) l? sin(nAmu/2)| 
sin(Amn/2)   | (4-32) 
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foil 
seme times called the Fourier Series kernel (GulUemln1  , 

p, 485, Pepoulls1  J, p. 44). This function Is sketched 

in Fig. 4-9, end is seen to be periodic 2w/hm,    For an even 

number of lobes, omitting the lobe at x«0, we would have 

CM  - ^ sinC(rH-l)Amu/2] m  1 
sln[Amn/2] n  L, 

which has the same periodicity, with slightly narrower large 

lobes. In both cases the sidelobes are of height Inversely 

proportional to n and acceptably small, so that only the 

periodic peaks need concern us. We must Insure that the 

function |G (u) )  is acceptably small for u ■ 2w//\m  In 

order that this class of spectra be allowed. If the permit- 

2 
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e ted side lobe height is made equal to .5, then since sine 

(>M./T) ■ .5 for >u ■ 1.39, we have the requirement on X and 

A mi X (Zir/tm) £  1.3S. If we push the constraints of (4-31) 

to their limit and use X - jia-y) t  /ra"2a, then the condition 

becomes 

0 
|(a-Y)27r/2a - ^d-y/«) > 1.39 (4-J3) fl 

0 
I: 
0 
0 

  



C(M) 

II 

^d \r^r\lä^>>m 1 i^wiC. 
Zw 
Am 

FIGURE 4-9   C(/i) FOR n EQUALLY SPACED SPECTRAL LOBES 
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or 

•y/a < .12 

Thus If the clutter can move at speeds no more Chan 12% of 

the known target speed then one may use equally spaced 

lobes. Of course (4-31) also requires 2X £ a, and the 

signal duration constraint places a lower limit on the size 

of X (notes a spectrum width of 2X  implies a signal dura- 

tion of order 1/2X), so these results only pertain to the 

case where a is sufficiently large. One must also keep in 

mind that the above case yields a marginal situation.  If 

the acceptable sidelobe level were reduced to .4, for 

example, the constraint on X and Am would be X(2n7Am) ^1.6, 

leading to 7<1 - y/a)  ^1,6, which is obviously impossible. 

Thus one sees that the equally spaced xobe signal has mar- 

ginal utility except in special cases, and care must be exer- 

cised in Judging its performance. 

ex 4-3 The RAFMOP Class of Signals U 

Signals of the RAFMOP class have very complicated n 

spectra, because the frequency modulation ^(t) (see Figure 

2-6) sweeps through its range of values more than once and 
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in opposite directions. This causes phase Interference 

in the frequency domain, producing spectra with many 

closely spaced lobes. The general form for |S(u>) | is 

derived in Appendix F for the case 6-0, and a sample spec- 

trum is shown in Figure 4-10. A computer routine was used 

to generate RAFMOP spectra, and showed that changing P or 

5 can markedly alter both the number and spacing of the 

lobes. For large values of P (desirable in order to achieve 

a large bandwidth) the lobes are very close together and 

spaced in a complicated manner (see Appendix F). Despite 

the many narrow lobes this signal still has an acceptable 

ambiguity function (at least in the white noise case) as 

discussed by Cook & Bernfeld^5, p*  971. 

Because of the complicated spectral forms for this 

signal class, it would be extremely difficult to use RAFMOP 

signals in an attempt to combat reverberation, since there 

are only two degrees of design freedom (P and 5). The 

nature of the lobe spacing could make the RAFMOP signal 

useful only for very small target and scatterer speeds, 

and even then there is no control over any ambiguity 

problems that might arise in the absence of complete rever- 

] 

II 
] 
] 

beration elimination.    The observer should therefore avoid 
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using RAFMOP signals, since they concentrate large amounts 

of energy in small bands. For unfavorable target speeds at 

least some of the signal and reverberation lobes will tend 

to overlap due to the irregular spacing, causing worse 

interference than if a flat spectrum had been used. 

Returning to the multi-lobe spectrum class of 

Figure 4-6, for non-equally spaced lobes the periodic struc- 

ture of C(u.) can be destroyed, in hopes that these large 

sidelobes will be reduced to acceptable levels.  From 

(4-30) the goal will be to prevent too many of the "beat 

frequency" cosines from adding constructively at any value 

of ix away from u-O. This requires that the beat frequencies 

be in some way incommensurate. Considering the multiplicity 

of constraints on the m., no straight forward algorithm for 

choosing m seems possible.  Instead a trial and error method 

was used for each pair 5, y, selecting X and a permissible 

m (for reverberation elimination) and determining the side- 

lobe heights, until the desired conditions were met. 

ex 4-3 Sample Result 

Let a ■ .1, 7 - ,05, and the acceptable minor lobe 

height be .5. Then the constraints are x <; .025, Am > .2. 

If ?v - .025 is actually used, then at most 10 lobes can be 
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fitted into the band.    The following vector m was found to 

be satisfactory, with performance A    also noted.  (SNRF-1 
O 

since reverberation was eliminated.) AMB(II) is sketched 

in Figure 4-11. 

m - [.9,.7,.45,.2,0.,-.25,-.48,-.82] 

A - .305 - -5.15 dB (4-34) 

One can see by examining the differences m.-m. above that 

there are several occurrences of Am*.2 and .25. These 

make up the major contributions to the main sidelobes 

(at n"27r/Am, which here were LL-STT and IOTT). Only eight 

lobes were used here, in order to allow more freedom in 

placing them. The performance level A -, J05 is very near 

the level of .333 achieved for the flat spectrum signal in 

white noise (see (4-25)). Thus the placement of several 

narrow lobes across the band both eliminates reverberation 

and achieves the same level of performance as the simple 

broadband signal in white noise. 

Other choices of m were made, and for slight shifts 

of the lobes the function AMB(u) changed markedly. Therefore 
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this schene does not offer an easily implemented design 

procedure, although with care the observer could indeed 

construct such a signal by sending tones at the frequen- 

cies m, either in rapid succession or simultaneously. 

(The phase interference problem associated with the 

RAFKOP signals would be absent  since only different tones 

are sent during the ping duration.)    The important conclu- 

sion here is that there exists a signal which eliminates 

reverberation while yielding an acceptable ambiguity 

function. 

The trial and error procedure mentioned above 

yielded the results plotted in Figure &-12,  showing A 
o 

versus a. The sidelobe height permitted was set to .5 

when SNRF"1 (reverberation elimination case). It can be 

seen that for a certain range of values of a and y, A is 

equal to or slightly above the flat spectrum in white 

noise case (from (4-25) we had A »1/3—4.8 dB), so that 

the effect of reverberation interference has been com- 

pletely eliminated.* The regions in which this level is 

it 
Actual levels of Ag vs a range + .4 uB about the straight 
line shown. The single line is shown for clarity. 
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attained have both upper and lower cutoffs, and outside 

these regions the multi-lobe spectra class cannot be used, 

due to excessive ambiguity. 

1) Y-O. 

The lower cut-off is not actually shown in the 

figure, as it is determined only by the minimum width of 

each lobe, which depends on the signal duration constraint 

(see discussion on page 4-26), and in practice would be 

very small. Since the ratio 7/a is here equal to zero, 

we can always use equally spaced lobes (see example 4-2). 

2) 7^0. 

The lower cut-off now occurs when a approaches 7 

in value, for then X must be made small in order to keep 

the signal and reverberation lobes separate (see first con- 

straint in (4-31)) and a smaj.1 > gives rise to exct ssive 

ambiguity. The upper cut-offs occur when only a few lobes 

will fit in the band with the proper spacing (see second 

and third constraints in (4-31)). v/hen only a few lobes 

may be used, there is little chance of choosing m so that 

the beat frequencies will interact sufficiently to keep 

C(u) small.  It is indeed possible to find 3 suitable lobes 

for some a and 7, but as a increases this ability finally 

disappears. 
B-136 



Beyond these cut-offs one must turn to different 

kinds of signals.    Since the reverberation can no longer 

be completely eliminated,  the SNRF will be reduced.    With 

a smaller signal-to-noise ratio the allowable ambiguity 

sidelobe level will have to be reduced,  since gross errors 

will become more probable (see Figure 2-3).    Consequently 

only signals which inherently have low ambiguity levels 

will be usable.    The most promising of these is the flat 

spectrum signal discussed above, and its performance dis- 

played in Figure 4-4 is reproduced in Figure 4-12 with 

R"100 as before.     (Note:    the multi-lobe spectra perform- 

ance in Figure 4-12 applies for all levels of R since the 

reverberation has been successfully avoided.)    The value 

of A    is about 13 dB lower for the flat spectrum signal 

than for the multi-lobe spectrum with the reverberation 

eliminated.    This is a significant change in the perform- 

ance level,  and shows that proper signal design with the 

knowledge of the target range rate can yield greatly im- 

proved range estimate accuracy. 
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CHAPTER 5 

Conclusions and Proposals  for Further Research 

The basic motivation  for this research was a desire 

to see what could be done to  improve the target locating 

abilities of active  sonar in a reverberation-limited en- 

vironment.    The examination was enlarged to  include  improve- 

ments attainable if the observer could send a sequence of 

signal bursts, and alter successive sonar waveforms  to 

take advantage of information already gained.    Thus the 

problem was naturally divided into two categories:    a) 

estimation accuracy  in the presence of colored noise,  and 

b)    effect of several  pings and of the  interping elapsed 

times.    An additional effect was examined;     the degrada- 

tion of the estimator when the observer must wait after 

receiving the data before making use of it;   i.e.,   it was 

asked:    what is the accuracy of the observer's estimate 

of the  target's present  location given data  taken t    seconds 

in the past? 

The approach  taken was based on the   inverse proba- 

bility principle, which was used to derive   the estimator 
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for a  single ping received In the presence of colored 

gausslan noise. The estimator was shown In this case to be 

a prewhltenlng filter followed by a filter matched to delayed 

and Doppler shifted versions of the transmitted signal. The 

Inverse probability approach Instructs the observer to exam- 

ine the filter output for each possible pair of values 

(delay and Doppler shift), and to choose as his estimate 

that pair having the largest output. 

The estimate accuracy was evaluated for the large 

signal-to-noise ratio case In the manner used by Kelly, 

Reed & Root^ ', which relates the estimate error variance 

to the curvature of the Inverse probability function at 

the true value of delay and Doppler. The applicability of 

this method was examined, and a probability of "gross error" 

was defined, being the probability that the inverse proba- 

bility function would not peak on the main ambiguity lobe. 

If a gross error occurred the estimate error variance mea- 

sure did not apply. This probability of gross error was 

approximated and shown to depend on the signal-to-noise 

ratio and the relative heights of the ambiguity function 

sidelobes.  That is, for a preset value of this probability, 
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Che range estimate variance at time t second? after the w 

second ping was  found as a  function of the  individual ping 

B-140 
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D 
and a known signal-to-noise ratio,  a certain ambiguity 

function sidelobe  level was permissible.    The highest  side- 

lobes could occur anywhere  in the delay-Doppler plane. 

Assuming that a gross error did not occur,   the 

error variance measure was adopted, and was extended  from 

the Kelly,  Reed & Root  formulation to a  form much inore 

easily dealt with.     It was  shown  that  the  various estimate 

moments  that arise may be expressed in the  form of central 

moments with respect to a density function P(^),  see (2-37). 

This  function described the effect of the noise properties 

as well as those of the signal spectrum, and its  shape de- 

pended strongly on the true  target  speed.    The effect of 

the  target speed was  to shift  the  signal and noise  spectra 

with respect  to one another along  the  frequency axis,  an 

effect which has great significance  in combatting reverbera- 

tion. 

The analysis was then extended to the multiple 

ping, elapsed time case, and the important case of two 

pings was  considered in detail.     The general expression  for 

:. 

D 
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performances, the elapsed time between pings, and the wait 

time t .  It was shown that the wait time, if sufficiently 

large, could cause severe degradation of the range estimate. 

The degradation resulted from the imperfect range rate 

knowledge, since as time progressed an error in the range 

rate estimate would adversely affect the observer's extra- 

polation to the target's range at a later time. This de- 

gradation could be ameliorated, however, by using a long 

inter-ping time. This long time between pings effectively 

separated the roles of the two pings, making the first an 

estimator of target range rate, and the second an estimator 

of target range.  In this way the first ping effectively 

reduced the region of the ambiguity plane to be considered, 

so that the wait time following the second ping had only a 

small effect on the range estimate accuracy. For the case 

of white noise the optimum individual ping design parameters 

were found, and the optimum amount of correlation between 

the estimates of range and range rate was calculated, in 

many cases this correlation should be as large as possible 

(a conclusion very different from that when no elapsed time 

considerations are made), and thus signals such as the 
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linear frequency modulated chirp would be very useful. In 

other cases little correlation is desired, and a signal was 

introduced that permitted an adjustable amount of correla- 

tion. The use of two pings as opposed Co a single ping was 

considered, and it was shown that two pings could signifi- 

cantly improve the final range estimate accuracy, especially 

if long wait times were required. In the white noise case 

adaptive signal design did not apply under the assumptions 

used, for the knowledge of target range or range rate ob- 

tained approximately from the first ping was of no use in 

redesigning the second ping. The optimum second ping was 

indeed different from the first ping, but the observer knew 

which second ping to send before the first ping was sent. 

The problem of combatting reverberation (clutter) 

interference was then considered explicitly. The spectrum 

for a process consisting of white noise plus clutter was 

derived in terms of the transmitted signal spectrum, using 

a scatterer model of Van Trees, and the estimator perform- 

ance was evaluated in terms of this spectrum.  It was shown 

that when a long interping time was used (so that the first 

ping should be used for range rate measurement), the first 
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ping should be very narrowband, so chat even small target 

range rates would be sufficient to shift the signal spectrum 

away from the reverberation spectrum. The degradation due 

to reverberation was then eliminated, and only white noise 

interference remained. The very accurate range rate estimate 

that resulted had two important effects: 1) the interping 

time required to cause the separation of roles of the first 

and second pings was reduced, and 2) the knowledge of target 

range rate could be put to excellent use in the design of 

the second ping. It is in this sense that the signal design 

is adaptive, for the observer must wait until the first ping 

echo has been processed and an estimate of range rate has 

been made before he can select the best second ping. Over 

a wide range of target and scatterer speeds it was shown 

that a signal consisting of several tones could eliminate 

the effects of reverberation.  Such signals have multi-lobe 

spectra, the lobes of high power density being separated 

by frequency bands of very low power density. The target 

speed caused the signal and reverberation spectrum lobes 

to be disjoint and interleaved, so that the reverberation 

had no effect. The tones had to be chosen carefully so that 
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Che signal had an acceptable ambiguity function. When the 

target and scatterers were moving with nearly the same range 

rate, or when their range rates were very large, no accept- 

able multi-lobe spectrum was found due to excessive ambiguity 

problems, and a more conventional signal had to be used. 

Hence the effect of reverberation could no longer be eliminated, 

and performance was severely degraded.  It was shown that the 

estimate variances of signals commonly used in radar and 

sonar systems could be increased by about 100 times due to 

strong reverberation. Thus the multi-lobe signal, when appli- 

cable, could significantly improve the estimate accuracies. 

Recommendations for Future Research 

Probably the greatest single fault of the analysis 

presented here is the simplicity of the models for the tar- 

get and transmission medium. The assumption of a point 

target and a single-path transmission is not supported by 

actual measurements, and the true ocean situation can lead 

to severe degradation of performance due to multi-path 

arrivals of the target echo. The estimate accuracies cal- 

culated here turned out very high, and it is believed that 

the simple model used was the cause of this.  The model was 
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chosen for Its mathematical  tractability,  since the multi- 

path situation is extremely difficult to analyze.    Future 

work should consider extensions of the analysis here to two 

or more transmission paths, as well as two or more target 

reflection points, or "highlights."    This could alter the 

conclusions concerning the signal design problem for clutter 

rejection, although it  is not believed that the conclusions 

concerning elapsed time and interping time would be signifi- 

cantly changed. 

Only the case of a target moving with constant 

course and speed was  investigated, while the  interesting 

situation where the target can change course after the first 

ping was not examined.    This  could well lead to rather dif- 

ferent conclusions about the effects of two pings over one, 

and the effects of waiting time. 

The reverberation model could be extended in several 

useful directions.    It would be interesting to know what 

effect correlations between scatterer motions would have, 

to see  if schools of fish would generate radically differ- 

ent clutter rejection problemt, than clusters of randomly 

moving scatterers.    The difficulty in distinguishing a 
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coherently moving school of fish  from a true target (with 

multiple reflecting highlights)  could then be investigated. 
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APPENDIX A: Discussion of Target Motion Geometry 

We consider the configuration shown in Figure 

A-l, where the target is assumed to be located at range 

r at t-0, and is proceeding at speed v at an angle 

a with respect to line L. 

The range to the target is simply described by 

(t) -J(ro-tvtco8a) +(vtt sina) 

ro + vot| (A-l) 

where v ■ -v,, cos a o    t 

so chosen to make v positive for receding targets. 

The approximation used in (A-l) is clearly valid as long 

as the target is sufficiently remote so that the distance 

travelled perpendicular to L is always small compared to 

the distance remaining along L. 
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B-148 

: 

: 

o 
D 
D 



APPENDIX B: /pproximate Probability of Gross Errors 

1. The Statistics of lK(e)l2 

2 
From (2-24) we can write [KC©,)!  as 

KCQ^I2 - SNR|G10|
2 + 2ReaoDoG10N

,*(ei) + IN
1^)!2   (B-l)* 

where D - D(9 ) o     o 

2 2 SNR - a D o o 

G10 - 0(9,.^) 

N./fl x . JL   T n(a;)S*fa-w)e
Ja'T dr m    I   T "kV^^ 

" ^V       D(ei) J     N(aO        2ir      0(0^  L       N^) 

and the n are independent gaussian random variables, with 

independent real and imaginary parts, each with variance 

N(u^)/2T. For the large signal to noise ratio case, we 

can neglect the IN1^)!2 term. Then IK^)!2 is the sum 
2 

of a deterministic part SNR|G10|  and a zero mean gaussian 

part. Hence 

ElKCG^I2 - SNR|G10|
2 (B-2) 

*   2 2 

** E is the expectation operator 
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The covarlance C.« of two distinct random variables 

im©,)!2 and |K(e2)|
2 may be calculated as follows: 

C12 - E^IW^i^SNRlG^I^ |K(e2)|
2-SNR|G20|

2]] 

- *»*[«DVlO
l,,*<$l)]R#[«o0oC20N,*<92>] 

20 " E 4DoG10G20K'*(ei)N'*(e2) + E[l2ol2DoG10G 

+El2ol2DoGlSG20N'<ei)N,*(e2> 

+ E<'o2DoG10G2>'<ei>N,<e2) 

which makes use of the identity ReA - ^ (A+A*) .    Now 

(B-3) 

n n. s. (OJs. (9«) 

I (•l)II («j) - D(e )D(9 ) I     A   N(a.)N(a«) 
1   2  1  j J 

(B-A) 

tince n.n - 0. Similarly for EN' (e^N1 (e2). On the 

other hand 

B-150 



I 
I 
I 

1    J 1 z        1        J 

(B-5) 

Ö2> 

Combining the results, 

C12 - aoDo^lOG2SG12 + G10G20G12> 

(B-6) 

- 2 SNR ReCG^G^Gj*) 

2 
Thus iKCöj)! has variance (use 92-ei In (B-6), and G.^l) 

var IK^)!2 - 2 SNR|G10|
2 (B-7) 

If we consider the correlation between |K(0pr and the 
2 

value |K(e )| at the true peak, we have (use 0.-0 ) 
o 2     0 

C10 - 2 SNR|G10|
2 (B-8) 

The correlation coefficient Is then 

C12 
I6in| (B-9) 

v/var|K(eo)|2Var|K(ei)|
2 

B-151 

'10' 



2 2 
Thus the random variables x-|K(e )r and y-|K(91)| are 

Jointly gausslan with moments 

Ex - SNR,     Ey - SNR p2 

var x - 2 SNR, var y - 2 SNR c2 (B-10) 

so that their Joint distribution is 

Px,y(X'y)  "   [Wtof1?   J   l    exp[- Ilk 1^2   [^-SNR)2 

(B-ll) 
-2(x-SNR)(y-n2SNR) 

+ ^2 (y-r2SNR)2l1 

2 
2. Calculation of the Probability that |K(6 ) [  Exceeds 

|K(eo)|
2 

The probability that y exceeds x Is the total weight 

of p -r(x,y) in region II given by /(x,y):y2x} . We have 
Xjy >        ' 

the line y"x and the function p „(Xjy) of Equation (B-ll). x,y 4J 

To simplify these we use the following transformations: 

I. Translation and Normalization: 

x'  -  (x-SNR)A'2 SNR (B-12) 
y*  -  (y-p2SNR)/p /2  SNR 
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II. Rotation of Coordinates in order to make the random 

variables uncorrelated: 

( 

,n ) 

.•i 

1_ 

-1 

• ) 

.1 f 

(B-I3) 

III. Renormallzatlon: 

i n 

o 
^P 

.•I 

.•> 

These transformations result in the new probability 

density function 

»W^) 2*    e 

(B-I4) 

(B-15) 

and in the new lin* describing the border of Region II, 

This line has distance 6 from the origin. 

The distance 6 is found by simple trigonometry to be 

(B-16) 
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»Vl«?    Jl-P2 (B-17) 

Due to Che symmetry,  Che probability that   (£,T))   lies in 

Region II is easily found: 

PrdKCe^l^lKC^)!2) - PrCa.T!) e Region II) - 

- ®  (-5) (B-18) 

x 2 
where ®  (x) - —   /     e"1/2a da (B-19) 

/Sr J 
-60 

r 121 
Is Che normal probability integral, with tabulated values1 

3. The Case Where Several Sidelobes are Significant 

If Chere are 2 large sidelobes instead of only one, we 

wish Co examine Che effect this has on Che probability of 

a gross error. We call Che random variables 

x0 - |K(eo)|
2 ,  x1 - IKCG^I

2 , x2 - |K(e2)|
2       (B-20) 

and denote Che evenCs 

A ■ evenC Chat x.   > x 1        o 

B - event ChaC x*  > x z       o 

(B-21) 
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Then using standard set theory notations, 

the probability P that a gross error occurs» 

rial l* J we have for 

P - Pr(AUB) - 1 - PrMA.B) 

- 1 - Pr(^A)?r(^aM) 

Now due to the specific nature of the events A and B, it 

is clesr by Inspection that 

Pr(^BAvA) 2 Pr(^) 

so that 

(B-22) 

(B-23) 

P - 1 - PrHOPr(^A*A) 

^1 - PrC^Pr^B) (B-2A) 

Pr(A) + Pr(B) (B-25) 

the last form being a valid approximation when the 

probabilities are small. Thus P is bounded above by 

Pr(A) + Pr(B) for any degree of correlation between the 

x's. The bound would be reached if the x's were independent. 

It is obviously bounded below by the larger of Fr(A) and 

Px(B), since it is more likely that either A or B will 

occur, then that only one will occur. 
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This analysis may be extended to n sidelobes in 

a straight-forvara fashion, yielding 

Pe 1 1 - n (l-PrCA^) i ^ Pr(Ai) <B-26) 
1-1 i-1 

for events A^. xi > xo,  each xi -  iKiQ^]   t where the 

last equality is true for Pr(Ai) < < 1,  i-1, 2,...,n 

rp - ro + I (KrC-KvB> 

v    - v    + T (K A-K B) p        o      A     v      r ' 
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2.    Derivation of the Form for   p(e/v)   of Eg  (2-31) 

From (2-29)  we have the expansion 

|K(e)|2 - Ko + Kr(r-ro) + Kv  (v-vo)  - i A(r-ro)2 

-B(r.ro)(v-vo)  - ic(v-vo)2 + .... (B-27) JJ 

By setting |j- |K(e)|2 and |^|K(e)(2 to zero we can see Q 

that |K(8)|  is a maximum at 9 •(r tv ) given by 

0 
(B-28) n 

(Note: it is shown in Appendix E that A and A  are always 

positive. Thus we are assured that the above point is n 

r 



Indeed a maximum.) By straightforward algebra, substituting 

for r »v in (8-27), we can rewrite (B-27) in the form 

|K(e)|2 i k; - i [A(r-rp)
2+2B(r-rp)(v-vp)+C(v.vp)

2]      (B-29) 

where 

kö ■ ko + 5S [A \2-21iKT% + C Kr2 ] (B-30> 

Since we are going to use (2-14) to form p(6/y) which is 

a probability density, the constant term k* will not 

affect the shape of p(0/y) as a function of r or v, and 

so may be incorporated in the normalization constant k 

of (2-14) . The remaining terms may be conveniently 

written using matrix notation: 

A(r-rp)
2+2B(r-rp)(v-vp)+C(v-vp)

2 - (9-0p)' I B c| (*'*p)    (B-31) 

which is the desired form for (2-31), with 

e-e - / r"rp i (B-32) 

( v-v 
P) 
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APPENDIX C: Derlvtion of the Ellipse Parameters 

We wish to determine the forms of the second derivative 

terms A, B, and C given by (2-29). We first find these 

forms for derivatives with respect to t and w, and then 

convert finally to those with respect to r, v. Naming 

the forms for convenience: 

a 

b-^ lG(e.V'2'e-eo ^ 

c -i-r  |G(e,0 )(2|0-0 
äwZ 0 ' 

G<9'0o>- be«: ,o. 

(C-2) 

This is conveniently written in the form of an inner product, 

which will greatly simplify the ensuing derivation: 

0(0,0  ) - (H .H ) 
0 0     e B-158 

: 

: 

D 
gj |G(e.eo)|2|9.eo |j 

I 
: 

: 

i 
with G(0,0o)  given by (2-23) R 

1 r S(avwo)S*(a>w)e^<^To>  ^ ■ 
OHBJ J N(^5 2ir 

D 
D 
D 

D 



with H (CO)-H    (a)), and 
0 eo 

H (co) 5    SiagjgJü (c.3) 
e D(0>yN(cD) 

The inner product form Is given by 

«•„.«,) - /H0C)H*«») f - (He.H0)* (0-4) 

We note in passing that G(6 ,0 )*1, and that by the defini- 

tion of D2(e) of (2-19),  l|Hel|23(H0,H0)-l>  for all 0. 

Consider the result of taking derivatives with respect to T: 

ITKVV'2 •2 "• ("o'V^o-"«)* 

a2 

ST 
|(H0.He)|

2 - 2 to [ |(H0.H,)|2-KH0.He)(H0,He)*] 

with H.(aj) - t H,(a--).    Then at e-e. we heve 
8 OT      6 O 

- 2[|(Ho,HT)|
2 + Re (H0.HTT)] (C-5) 
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wh«re HT(a)) - |^ He((D)L ^  .    The following argument Is u«ed 
o 

to show the relation 

R«(H0,HTT) - -  ||HTI|2 (06) 

Derivation: 

1. (H0,He) - 1 for all 6. 

2. Thus any derivative of this term will vanish: 

|7(W - 2 Re (He'V - 0 

3. Likewise for the second derivative: 

2te[<VV + (vv] "0 

4.    So that at 0-0    we ha\e   the result  (C-6).    qed 

Similarly one can show the following identities: 

i.    Re (H^H^) - -  (Iigf2 (C-7) 

ii.    Re (H0,HTW) - - Re (HT,HW) 
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These identities allow one to write only first derivatives 

of the H (a») terms in the expressions for a, b, and c« Thus 

for a: 

a - - 2 [||HTI|2-   |(HO>HT)|
2] (C-8) 

Similarly,  for the remaining two parameters, one can show: 

b - - 2 j^Re (HT,Hw) - Re  (H0.HW)(H0,HT)*J 

c - - 2[||H||I|2 -   l(H0,Hw)|2] (C-9) 

To discover what these forms mean in terms of the signal 

and noise frequency functions, it is necessary to calculate 

the expressions for H (a>) and H (<»)• It is convenient to 

separate the component D(9) from the rest of Hd(u>) since 

D(8) depends only on w, and derivatives with respect to w 

must be taken* We define 

H0(ü)) - ge(ü)) D(e) (C-10) 

B-161 



e        J¥<«5 

Thus by Inspection, 

r. 

E 

e 
HT(üO - 5- (-Ja«0(">)) 

o 
(Oil) 

where we cell D(e )-D  . end g. (co) - grt(a)) o      o o o o 

.* 

S D(e)       öw^     C   ^       2 D(e) J N(a)) Zr 

so that et e    it becomes o 

I;*«) L - - I- Re(g0.g0) 
•  o 0 

(C-12) 

Hence we have for Hw(a3)» 

ft li ' 

D g0(^) -  -^ 8o(ü>) Re(«o»8o) 

o 
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wmm 

Now cooblning the expressions to fom a, bt end c: 

s - - 2 72^o"2-  ITZ^O^T] <C-14> 

b - - 2Re -^(-JüVSO+^O^O^) 

- ^Mo ♦^5«oto<«o'«o>)^a^'»o>J 

- - 2Re 
LJ

lI(-J«t0.io) +^T<-J(ü8o»«o)Re(8o»8o) 

o o 

--J(g0,g0)(-J^0.g0) 
o 

1 (80,g0)R«(g0,g0)(-Jcog0 •«o>J 

- - 2 ^Im (^g0,g0)- ^I«(g0.g0)(^0.g0)] 
(CiS) 
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«here Che laic form is obtained by noticing that in Che 

middle form ehe second and fourth terms cancel since 

(80.8Q) - ß0
2.    Also, we use Äe(-Ja)go>go) - Im(a)go>go). 

Finally, 

c - - 2 T'^r^oM^o^ 
10 '   ~      D o o 

l^lCvio + 728o,te<8o'«o>)   l2_ 

- 2 Mi/'lV-V^-HWio) 

+ 72,te<«o.8o)|2 

o 

- - 2 
■    o o Uo -» 

- 2 

•-   o o 
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Now these simplified forms nay be written in terms of S(a>) 

end N(a)) by using the definitions in (O10): 

* - - 2 
r^  IS^VIda)      1  pIS^VI    da) 

J n 2. ,^      2r      \J       D 2^^      2ir D0
fcN(ü)) 

b - - 2 Im 
/ 

•* #* 

üS(a).wo)S (a)-wo) ^ ,- S(ü)-WO)S (a>-wo) ^ 

D0
fcN(a)) 

da>     _    /" 
27-IaJ Do'-N(ü)) 

/ Do
2N(ü))       2Tr 

- 2 
/ 2ir D0 N(a)) / 

S(a>-wo)S  (a)-wo) ^ 

(C-17) 

The remaining steps are simple: 

1.    Make a change of variable by translating u> by amount w • 
2 

Then expand the integrands (the terms such as (u>fw ) ) 

and note the cancellations between integrels. These 

steps make N(u>fw ) appear in each denominator. 
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2.    Use the chain rule for derivatives to convert from 

derivatives in T and w to those in r and v.    That is, 

(see page 2-3) 

K-h*    -V/^ 

3. Use (2-29) to add the appropriate constants, thus form« 

ing the A, B, and C expressions given in (2-33). 

Simplification for the White Noise Case 

2 
When N(a))-N for all tu, Do becomes equal to 

2E/N , with transmitted signal energy defined by 

2E - / m2(t)dt - J  |S(ü)) l2^ (C-19) 

[13] 
This follows directly from Parseval's theorem (Papoulis,1 

p. 27). The terns remaining in B and C of (2-33) may be 
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simplified by suitable Fourier transform substitutions,  as 

follows:       (HelstrotJ71 p.   18) 

2dü) 1) j«Z|S(a))|z|f.j|;(t)|2dt 

2) /a>|S(a))|2^- im/8*(t);(t)dt 

3) /|S(co)|2|f-   /t2m2(t)dt 

4)Im/s(a))S  (^)|f -/t m2(t)dt 

r »"ff        A f • 

5)lmjv S(a))S  (oo)-| - Im/t8*(t)s(t)dt (C-20) 

The derivative definition  follows  from the transform defini- 

tion: 

.* 
S  (a))- j/t s*(t)eja:t: dt (C-21) 

Using this  in #4,   for instance! 
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/•(«)iV)^ - j/H/dt t «t).'*'*J**MvJm 

i ,>..(,)> ^(^-^^J 

- j/t|8(t)|2dt (C-22) 

which is valid if the integration order can be reversed, 

(requiring mild continuity properties of s(t)), and which 

makes use of the "equality" 

I- J««*S.6(t) (C-23) 

for the Dirac delta function.    Although this equality is 

open to question on grounds of rigor»   its use in an Integral 

as in (C-22)  rests firmly in the theory of distribution. 

(Papoulis,^13^  p.  269).    The derivations  for the other 

equivalences  in  (C-20)  follow in the  same way.    However, 

for #5 some more discussion is merited: 
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/afi(a))S*(a)|f -/|f a> S(CD)/J  t 8*(t)e3a>t dt 

-Jdt t 8*(t)/|f j a) S(tc)eJü)t (C-24) 

and the Inner Integral is recognized as s(t)»    The imaginary 

parts are then taken to yield #5.    Heistrom    J arrives at 

the same result  (p.  18)(with a misprint of a minus sign in 
it 

his Eq,  (5.7)), but this form is considered much simpler. 

The forms above are finally simplified by using 

8(t)-m(t)e^ ',   taking derivatives, and sorting out real 

or imaginary parts.    For the mean square frequency deviation 

in #1 this gives 

Ja>2|S(CD)|2g -   Jm2(t) dt +/m2(t)i2(t) dt (0-25) 

showing chat it consists of portions due to envelope 

derivatives and phase derivatives. 

* 
Note:    ß used here has the same sign as Helstrom's b, 
p. 21, since his ellipse is aT2-2bTW+cw2-l and w is pro- 
portional to -v. 
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APPENDIX D!    Equivalent Signal for Matched Filtering 

From (2-18) K(e)  is a filtering operation on the 

received signal with spectrum Y (w)f where the  filter has 

transfer function as in (2-20) •    But as far as the value 

of K(9)  is concerned, the input could be the signal with 

spectrum Y(ü3)/jN(a)), passing through filter with 

characteristic 

Then the definitions of duration and bandwidth suggested 

for (2-34)  to (2-36) apply directly to the signal part of 

this new normalised received signal.    This makes the 

colored noise case identical to the white noise case with a 

new transmitted signal. 
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APPENDIX EI    Derivation of Unified Forms of A. B. C 

Here it is indicated how (2-41) follows from 

(2-33).    The forms for A follow directly from the substi- 

tution of the operator form in the (2-33) version.    The 

others arise as shown now. 

Use S(eD)-|8(a))|a^^ and thus 8(a)-18(a) l^^ 

+J |8(a) |^((i>)«^^ to expand B and C in (2-33), where 

iL|S(a>)=|S(a>)|w: 

B - kQ SNR 
,2  * P \S(v) \2O*((ü) da)     rto|S(a))r      da 

' J * 2„/^.„ v      2ir    ^ ^ CZ!Z v  2ir D AN(a>fw ) o    ^      o' Doni(a>Hf0) 

r  IS(a))|2i2(ü))  da 
^    D  2N(aHw )       2ir 

o    x      o' 

C - kQ' SNR 
/ 

|S(aO|2w-HS(a))|2y 2(a)  da, 

Do
2N(ü>fWo) 

2ir 

/ 

2! |S(a))(   |S(a)|  .j|S(a)|^(a)) dü) 

D 'N(ü>fw ) o    v      o' 
2Tr 

(fi-D 
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Now using th« definition «(üü)-|S(a)) |  /|S(ü)) | and substi- 

tuting P(a)) for its (2-37) equivalent: 

B - - kQ SlJ/(Dj(a)P((D)|| -/P(a))a) ^/p(a))i(cD)^J 

C - kQ^ SNR /P(«)[*2(«)  + f2(^)]|f 

" [/P(a>)[*(a>).ji(a>)]|2 

Expending the squared magnitude term, and resorting terms 

yields (2-41) exactly. 

To show that AC-B    Is positive one need simply 

write It as 

AC-B2 - k2Q2(SNR)2 
_ 2  . -  2 _    • T 

(üWD)   (f-VO  - (ü)-(ü) (t-v) + (üi-"ü))2(a-a)2 

(E-3) 
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I 

The first term is non-negative by the following argument. 

(See Cramer1        p. 263).    For any values C, u, the follow- 

ing function is non-negative: 

OS t(ü>-a)) + uCV-?) - t2(ü>ä))2 + 2tu(awi))(W) + u2(t«f)2 

(E-4) 

and so this is a non-negative quadratic form in t,u«    Hence 

the matrix: 

- 2 —    •  • (own) (a>-co)(^-^) 

•   T •   T 
(awoX^)  (t-f) (E-5) 

has a non-negative determinant, q.e.d.    The second term in 

(E-3) is a product of two terms which are positive by 

2 — 2 inspection,  since ((o-a>)    and (a-a)    are positive functions 

of frequency« 
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Appendix F: LIFMOP_and_RAFMOP Ai&nal^examp^es. 

I. CALCUUTION OF THE ELLIPSE PARAMETERS 

For the whit« noise case, the ellipse parameters 

are found using (2-34)-(2-36) and the time domain equivalent 

forms given in (C-20). By the definitions of these signal 

forms, both epoch and center frequency are zero. 

A - k WSNR jg   f    1 ii2(t)-hn2(t)i2(t)l dt 
T 

(F-l) 

B - kQ WSNR ^ f   tm2(t)i(t)dt 

T 

2     1   f 2 2 
C - kQ WSNR fe / t m (t)dt 

T 

For both classes of signals, the envelope roll-off is 

given by 

m(t) - ^mo(l-cos 2~  (t-d/2))  | t|e(d/2(l-u) ,d/2) 

2 T (f'2) 

- no 8ln Sd (,:-d/2) 

so that the envelope derivative contribution to the band- 

width is given by 
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'mTN2      d/2 

ffwt-tQS)   I     8in2 ird^2^ 
fd-u) 

(F-3) 
m T\2    . 

2 Vu3 

The signal energy is simply given as 

2E - fm2(t)dt  - mo
2(l(l-5u/8) (F-4) 

For Che LIFMOP signal the calculation of A, B, and C is 

awkward but straightforward, and yields, 

2    2 2„2 

A - k WSNR 1     riV    +
moPd    n    ,3  Y2PVT1 

2E   ["IST   +—I-    (1^)    +\Tj     lj 

Tm 2 

B - k Q WSNR ^  I -2-   Pd2(l-n)3 + ^    11 (F-5) 

C - k Q2 WSNR 5E      f tno
2   (|)3  (1-u)3 +1 

A - AC-B2 -   (k Q WSNR/2E)2  ( ^-^   j   fe ino
2(|)   (l-u)3+I j 

• 
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where 

d/2 

i m 2 f    Afitut - 32 ^ "»Q20340^2) <F"6> 
fd-u) 

We have evaluated I only to terms of order u since the 

envelope roll-off lasts a small fraction of the signal 

duration. Now simplifying the above expressions, and 

keeping terms to this same order, we obtain. 

(F-7) 

A - k WSNR     !:—r (1+5M/8)+P2/3  (1-5U/2)     -H)^2) 
L 2udz -» 

B - K Q WSNR [Pd/6]   (l-5u/4)+0(n2) 

C - k Q2 WSNK [d2/12]   (l-5n/A)-K)(n2) 

A -  (k Q WSNR)2[^"jd + 3^ ) + 0(n) 

Thus, for H « 1 we have the forms given in (2-42). 

A is independent of the frequency modulation P, depending 

instead on the envelope shape.  The terms involving P have 

2 
cancelled out because they were of equal size in AC and B , 

a property peculiar to the LIFMOP sigial, as shown below. 

B-176 

r 



■ 

I 
I 

2 
For the RAFMOP signal B is much smaller, and there 

is no difficulty with A. Thus we may ignore the envelope 

roll-off in all calculations except that of the first part 

of A in (F-l).  Ignoring the roll-off makes A Independent 

of 6. For the B term we must compute the Integral over 

each segment of <p(t) separately.   These calculations 

4B 
finally give for the u « 1 case:  (note:  |-p| ^1) 

2    „2 
A « k WSNR 

2nd' L,„.2  3 J 

[fa ri(2.4|6|/d) B - k Q WSNR Ll^ J^J (2-4|6|/d) (F-8) 

C - k Q2 WSNR d2/12 

A (k Q WSNR)2   |i- + 1^! [l - fj (&j  (2-4| B| /d) 2] 1 

The calculation of B is done for 6 > 0, and then the 6 < 0 

2 
case follows by inspection. A has a term in P which is 

positive for all permissible 6. 

II.  PROOF THAT THE LIFMOP SIGNAL ATTAINS LARGEST B FOR FIXED A 

Neglecting the envelope roll-off and considering 

class of cp(t) such that the center frequency is zero: 
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J   i(t)dt - 0 (F-9) 

Chen, 

A " Kl / ^2^t)dt» B - ^ / ^(Odt (F-10) 

«nd we can use the Lagrange parameter method^ ^ page 151. 

1) define J - BfXA - J   I K2ti(t)+XK1i
2(t)l dt 

2) Differentiate with respect to i and set to zero: 

K2t + nm^tt) - o 

so that 

i(t) - -(K2/2XK1)t 

Thus i(t) must be linear in t, which is indeed the LIFMOP 

form. 

III.     THE RAFMOP SPECTRUM 

We consider the case of 5-0 and neglect the envelope 

roll-off.    Then the RAFMOP signal has the Fourier transform: 

<i/2 

8(0=)  - .0  /   e^'V^dt (F-12) B 

0 
-d/2 

Pt(l+2t/d) t < 0 

where    (p(t) -J (F-13) 
Pt(l-2t/d) t > 0 
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Since ((p(t)-at)  is odd, S(a:) is purely real: 

d/2   r 1 
S(üO - 2mo J    cos ^ t2+(a:-P)t  dt (F-14) 

This integral may be evaluated in terms of Fresnel integrals 

(ref. 12, p. 304, eq. 7.4.38) 

X 

Fc (X) - f   cos (| t2) dt (F-15) 
0 

FS(X) - / sin (J t2) dt 

The integral is given by 

S(a) -v(^  cos^ r2(x-l)2) rFc(7(x+l)VFc(r(x.l))l 

+ iir.^l r2(x-l)2 ^ |Vs(y(x+l)).Fs(7(x-l))J 

(F-16) 

where y  ■ /*Pd/4ir and X - a7P. Finally, the spectrum is 

2   2 
'l(oc)|  - S (CD).  It is easy to show that the Fresnel term 

differences Fc(r(x-H))-Fc(7(x-1)) and Fs(7(x+1))-Fs(r(x-1)) 

are nearly constant over the signal band |x| £ 1, and then 
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drop rapidly to zero.  Thus Che RAFMOP signal is significant 

only for |u:| £ P. The sine and cosine terms oscillate 

2    2 
rapidly over this band, and when a (x-1) - (2n+3/2), n-0, 

+1, +2  they are equal in size and opposite in sign, 

causing a null In S(a:). Thus S(a:) has nulls approximately 

at 

x - 1 + - v/2n+3/2 (F-17) 
n    — y  \ 
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APPENDIX G 

!• Proof that A and C are Maximum for White Noise Alone 

Consider noise spectra of the general form 

N(ü>) - N+LNr(üO (G-l) 

2 
For any positive function, say G (u), the Inequality Is 

obvious: 

/        gJlgL  ■  *<* <      f     £M g (G-2) 

2 ~ 2 2 For the ellipse parameter A,   (see 2-412» G (<ü)-(ü)-ü))* (S(CD) j*; 

for parameter C,  G2(a))  -   |(a-a)2 + (i-i) J   |S(a)) |2; and for 

SNR, G (w) ■   (S(u>) |   .    Consequently each of these Is maximized 

when L»0.    This Is not so for B,  since the function (owu)* 

(^-V)   |S(u)) |    Is not always positive. 

2.    The Uncertainty Principle  for A In White Noise 

Helstrom (7)  (p.20) uses Schwartz's  inequality to show« 

-i—j \j   t2tn2(t)dt / a)2(S(ü>) |2 ^ - [j/M2(t)t(f(t)dt] J ^ ^ 
(2E)     L_ 

(G.3) 

But from (2-34) - (2-36) A, B, and C are proportional to 

these quantities when center frequency and epoch are zero,  so 
2      1 that when the constants are Included, one has A - AC-B   2 ^ 

(kQ WSNR)2. 
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Helstrom has shown (p. 21) that Che equality holds only for 

gaussIan signals 

s(t) . e-(a+Jb)t2       a>0 (G-4) 

which exist for all time.    Now from (3-20)  p2-B2/AC so that 

the uncertainty principle asserts 

1 m P2 1 ^(kqWSNR)2/AC (G-5) 

Using the definitions of dispersion bandwidth and duration 

of (2-34) and (2-36) we then hav 

P2 < 1 j (G-6) 
(2 bandwidth'duration) 

Hence for large values of the bandwidth-duration product the 

upper limit approaches one.    This limit can be attained by 

using the  signal of (G-4). 
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Appendix H 

Approximate Calculation of c for a Motionless Target 

We assume that the signal has the form 

8(t) - ^ -L_ e-i/2(t/d)
2 

o    - (H-l) 

so that 

If the probability density function of scatterer doppler 

shifts Is also gausslan 

p (w) - -i- e-l/2(w/9)
2 

(H-3) 

then using (A-10) we have 

S(a)|2 - m 2 -L-  f e-l/2(x/8)
2.d2(a-x)2 . p    0 rtt  J   ' 

-00 

2 ,-      -(ü.>d)2/y 

where 

7 - 1 + 20d)2 

We note that for the motionless target case w - 0 the 

function 
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N(a>) 

is odd, so Chat the second term of C in (2-33) vanishes, 

leaving only 

2 2 2 .4 2 -ocV 
0  0      r     m    d a- e 

C ■ "^"o / -2 ZT—   f <H-3) 
A 2/r-^ -ad /7j« Am A'r e        o 

Now if Che reverberation level is much larger than N over o 
2 

all frequencies for which |S(u:)|  is significant then we 

may find an approximation to the value for C by deleting 

the N    term, o 

cWo^/A   dA    /V .-<-d>2<1-1/''>    ^ 

M -      -2 

N^Ae 
[m^\ (H-6) 
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APPENDIX I 

Form of J 

2 
To find the form of J we analyze B' /A* 

we have for A'-A^'-B'2: 

Using (3-14) 

: 

(i-i) 

where ä1"A
1CJ-B1    > 0 and similarly for A-.    Hence t'X), 

2 
To form J we simplify B'   . 

B'2-   ^-A^) + (B2.A2tw)] 2 

-    A'2 [tw + R1t1 -R1P1y1-R2P272J2 

"     A,2[(VP2^2) +Rl(VPin+P2^2)J: (1-2) 

using (3-19b),   (3-20), and -R^^-l.    Similarly from (1-1) 

A'/A'2 ti^d-pj) + V**1'^ + hWh+WWi*] 
(1-3) 

2 
Combining these to form B' /A* we have J as in (3-22). 
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The shape of J es a function of t.   is simply discovered 

by considering V'/t* as a function of xst.-p.y.+p^. 

where A8 - ^(1-pJ) + R^jd-p^).    B'2^'  clearly he« a 

minimum value of zero when R^x » -(t -p^Yj)»    I' ha« a single 

maximum when x • Ä
s/

IMtw'p2Y2*  8lnce 

*      B^ . 2 KVaizMlj k-(tw-p2>2)R2't] /T   ,, 
[&.+ w2] 

(The second derivative  is negative at the x given above.) 
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APPENDIX J 

Demonstration that A. C are attainable in White Noise Case 

claim: Given bandwidth and duration constraints, W and 

D, respectively, using the definitions 

(bw)2 -^J[A2(t)-hn2(t)52(t)] dt 

(dur)2 - igj t2m2(t)dt (J-l) 

signals may always be found having bandwidth and duration 

allowed by the constraints. 

Consider the class G, of signals with gaussian envelope! 

2 
s(t)-m(t)eJ;!>(t)eG1 if m(t)-e"at     for some a>0.  (J-2) 

It is easy to se ■ that 

(dur)2 ■ dbr (J-J) 

and 

1iJ*
2
lt)dt-7f (J.4) 
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2  2 
Ore can always adjust in(t) so that (dur) -D just by making 

m(t) of sufficient width. This condition is 

« —h= (J-5) 
4D%/T 

2 
from which the contribution to the bandwidth from the A (t) 

2 
integral is 1/8D . Now if this contribution is less than 

2 
the allowed W , one can always adjust i(t)  to make up the 

2 
difference, simply by increasing $  (t) until the contribution 

2        2 
it makes in (J-l) to (bw)  yields W . Thus the only question 

2 2 
is whether the integral of A (t) can ever exceed W . The 

answer is no, and follows immediately from the uncertainty 
9 2 1 

principle (see Appendix G) which gives WD Vr. For if the 

A (t) Integral component were greater than W , then we would 
2 2 have W D <l/8, which is impossible.    Consequently one can 

always  find a signal, having a guassian shaped envelope, 

which meets any W,D with WD>l/2.    qed 
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APPENDIX K 

Determine  p2 For Minimum J in Single Ping Case 

From  (3-25) we have  immediately 

*p2 M2 (K-l) 

and 

'VVS* 
- 2   Wy. 

2 

> 0 (K-2) 

Now by inspection of (3-25) J has a minimum of one at 

p0-t /Y,. This is attainable if t /*-<!. If on the other 
A     W     A W    ' 2 

hand tw/72>l,   then we can set p-yjt  , which is then a 

minimum for J, with value 
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If we assume no target or scatterer motion for sim- 

plicity, and choose |S(w)| summetrlcal, then from (4-7) and 

(4-14) 

APPENDIX L 

Clutter Elimination under Dispersion Bandwidth Constraint 

0 J AISC«)!2 «0 

D 
Under a dispersion bandwidth constraint we have some preset 

value W* [see definition (2-34)] : 

wi2 ■ hJ ü)2|S(<D) ,2 ^'where 2E "i,s(a>) |2 F (L-2) n 

class of spectra shown in Figure L-l.   All but a fraction e 

of the signal energy is put in a very narrow region about 

<JM), while the fraction e of 2E is distributed evenly over a 

large band of width 2W.    Then to satisfy (L-2): 

To show that an   |S(<u) |     is always possible that satisfies 

(L-2) and eliminates the effect of clutter, consider the 

0 
: 

Ml2 " 1  [v£b <w3-b3) + ^ b!] "I [«"2+(l-t)b2J for b«W. 
(L-3) [] 

We need only choose W such that 

0 
W2 - ^ [aW^ - (l-e)b

2J (L-4) 

: 
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1 

' 

2(W-b) 

A      27 2ElS(w)l 

2b 

-•• w 

FIGURE L-l   SPECTRUM FOR REVERBERATION ELIMINATION 

i, 
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Now the ellipse parameter A becomes (using  (L-l) and (L-5)), 

as well as WSNR ■ 2Eo 2/N    , o      o  * 

A - k WSNR \_ht%+2 + dl'~l)+2b_ (L-6) 

- k WSNR «I 
3W,2 -  (l-e)b2 

Zl '   .     (l-e)bJ 

3/2 '2 2 If e is now chosen very small so that AE      «2.; 3W.   -(l-£)b  , 

then 

A - k WSNR ^    [A(3W1
2-b2)+6bW1

2J  /(A+2b) (L-7) 

2 2 
Finally,  if b is chosen small so that  2b«/,  b «3W.   ,  then 

A - k WSNR W, a-8) 

It is clear that this is the same value as would have been 

obtained if no clutter were present (A-0).  Consequently the 

clutter has been entirely eliminated by using this peculiar 

distribution of signal energy. Very large processing bands 

W must be used however. 

If the target and scatterers were movin", the same 

kind of argument would apply, since the basic stance of this 

argument is that the signal energy is spread so thinly over 

the band that A|S(ü>+W ) |2 «N in (L-l). 

B-192 

• 



APPENDIX M 

Optimum g(x) for no Target or Scatterer Motion 

We wish to maximize A    given by (4-26) by selecting g(x) 

under the constraint that g(x)  is positive and has unit 

area.    We first show that g(x) should be symmetrical. 

1.    Show that the optimum g(x)  is symmetrical about x-0. 

Define P(x) - g(xy(Rg(x)+l) - Pe(x)+Po(x) (M-l) 

where P and P are the even and odd parts of P respectively. 

Then 

Ag- 
ix  PÄ(x)dx 

-1 

"»-I 

J 
-1 

Pe(x)dx /xP (x)dx 
J  ov ' 

L-l 

(M-2) 

which is maximized when P (x)  * 0.    qed 

2.    Maximize A    for symmetric g(x). 

We now wish to choose a unit area symmetrical g(x)  to 

maximize: 

1 2 

A   . /^^Ldx lg     J   Rg(x)+1 
-1 

« 
(M-3) 
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Using Lagrange Multipliers (J. Tou,  (19) p. 151), define 

1 

L - Ag - X jg(x)dx ,   |x| ^ 1 

-1 

Then bLl bg - 0 yie Ids 

(M-4) 

(Rg(x)+1) 
- X  - 0 (M-5) 

or 

•w-iW-1] • i*1*1 

as sketched in Figure M-la.    The difficulty with this solution 

is that it goes negative for  |xj< lA/X , which is not 
permitted. 

To determine the actual optimum g(x), a dynamic pro- 

gramming technique was used on a computer*    The problem here 

is equivalent to the "allocation problem" (Bellman (20), 

Chapter 1)  if we partition the interval   jxj^l into, say 2n 

equal subintervals, and select n quantities g. as the level 

of g(x) in the i      sub Interval,    Then we rephrase the 

question as:    Given a total resource n/2, allocate amounts 

g.  to maximize 

n 

g ,,3      L.   Rg.+l   L1    1 + 3J 
n      i-1      1 

(M-6) 
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a). 

I 
1 

: 

: 

b). 

4 g(x) 

g(x) 

». x 

-»• X 

FIGURE M-l   LAGRANGE MULTIPLIER 
AND DYNAMIC PROGRAMMING RESULTS 

B-195 



under the constraint 

n 
V 

i-1 
8i " n/2    » «£ ^ 0 (M-7) 

The algorithm for this class of problems is given by Bellman, 
and is easily applied to a computer program.    The result for 
R-10 is shown in Figure M-lb. 

In retrospect one can see that the Lagrange parameter solution 
was very nearly optimum.    In fact,  if the solution in (M-5)  is 
simply altered so that g(x)-0 for   |x(<l/^, and if x   is now 
found according to the area constraint on g(x),  the result is 

g(x) 
h*i l+R/2.x/^4]   if  |x(2    1+R 2.v'R+R2/4 

otherwise 

(M.8) 

This matches the computer solution within the resolution of 
the program, and is thus a satisfactory result. 
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Sunaary 

This report investigates the minlmua bearing error attainable with 

a linear passive srrsy. Signal and noiae are stationary Gaussisn processes 

end the noise is assumed to be statistically independent fvcm hydrophone to 

hydrophone. The Cramfer-Rao technique is used to set s lover bound on the 

ras bearing error for linear srrays with an arbitrary number of arbitrarily 

spaced hydrophones. In order to obtain meaningful comparisons with the 

performance of a conventional aplit beam tracker the reaults are then 

specialised to the case of equally apsced hydrophones. One finds 

1) For a two hydrophone array (arbitrary signal and noise spectra) 

the split beam tracker rasches the Cramer-Rao lower bound (and is 

therefore optimal) if each hydrophone output is passed through an 

appropriate linear filter prior to further processing. The 

required filter is a generalised version of the Eckart filter. 

2) For arrays with M equally spsced hydrophones the split beam 

tracker accuracy comes very close to the Cramir-Rao lower bound 

if the combined output of each array half is passed through a 

generalised Eckart filter prior to further processing. Under 

these conditions the split beam tracker rms error exceeds the 

lower bound by s factor depending only on the number of hydrophones 

and increasing monotonlcally from unity at M - 2 to A73 at 

M f • . 

3) The dependence of the rms error on signal-to-noise rstio is the 

same for the split beam tracker and for the Cramer-Rao lower bound. 

If the post beam forming signal-to-nolse ratio is much smaller 

than unity throughout the processed frequency band the rms error 
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varies as the Inverse first power of the signal-to-nolse ratio. 

If the post beam forming signal-to-noise ratio Is much larger than 

unity throughout the processed frequency band the rms error 

varies Inversely with the half power of the signal- to-noise ratio. 
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I. Introduction 

The present report treats the case of a linear array with an arbitrary 

number of hydrophones and arbitrary spacing. The Craser-Rao lover bound on 

ras bearing estimation error Is derived In terms of samples of the Fourier 

transforms of the hydrophone outputs over a finite observation time. We 

assume a plane vavefront, emanating from a distant target. The bearing 

angle 6 is measured from an axis perpendicular to the array axis. (See 

Figure 1). 

Noise is assumed independent from hydrophone to hydrophone. Hydro- 

phone outputs due to signal and due to noise are assumed to be sero-mean 

Gaussian variables. 

For arbitrary spacing, the lover bound Is obtained in a cumbersome 

form, but for uniform spacing, the result is relatively simple. 

to target ^  ' bearing 
i reference ^ 

6 , axis _ö ^^ej^-- 

Figure 1 

Array Geometry 
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R ^(T) - N6(T) for all l . m 

This assumption Is actually not at all restrictive: One can think of 

each hydrophone output as having been passed through a filter which 

prevhitens the noise prior to further processing. Such an operation 

clearly does not alter the miniraum rms error for, if necessary, it could 

always be reversed by the optiirum processor. It follows that the results 

are quite general with tcgard to signal and noise spectral properties, if 

C-4 

' 

II. Fourier Transforms of Hydrophone Outputs 

The voltage waveform f (t) produced by each of the M hydrophones 

in the assumed linear array may be written as the superposition of a signal 

component s (t) and a noise component n (t) . If the voltage induced by 

the signal plane wavefront in a hypothetical hydrophone at the arbitrary 

array axis origin is written as s(t) , then the signal waveform at the ith 

hydrophone is s(t-A ) , where A.  is the wavefront delay between the 

origin and the ith hydrophone. We shall use the following expression 

frequently, with c representing sound velocity: 

(1) A1 - 
ri/c sin 6 . (i - 1 M) 

The hydrophone outputs are expressed as "r 

(2) f1(t) - sU-^) + n^t)       (1-1, .... M) 

Note that attenuation of signal amplitude and nonuniformity of velocity 

along the array are neglected. M 

We shall soon require an expression for the correlation between .. 

hydrophone outputs. Let R (T) represent the sir.nal autocorrelation, and 
S 

let R . (T) represent noise autocorrelation at the ith hydrophone. Assume 

that the noise is white, with the same power level at all hydrophones; then 

: 

: 

i 
i 
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I 
I 
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• • 

. . 

il 

,; 

. J 

0 

one interprets Che signal spectrum as the actual signal spectrum modified 

by a linear filter which prevhitens the noise. 

Assumr. also that noise is independent from hydrophone to hydrophone n 
and independent of the signal process. Then, 

rj (3)  f^t+T) f^t) - IsCt+T-^) + ^(t+t)! IsCt-Aj) + n^t) J 

- R^T-^+A.J) + N«(T) 6^, where 

1  i - j 
6iJ 

i 0  i i< j 

The Fourier trrnsforms of the hydrophone outputs over an observation 

time T may be written as 
T/2 

(4) F1(w) - J   f^t) e"
Jwt dt .        (1-1 M) 

-T/2 

. , Henceforth we shall consider a hypothetical processor which samples these 

Fourier transforms at frequencies f. - k / T , or 

(5) w - Ä . 
k    T 

Note that if s(t) and all n (t) are assumed to be zero-mean Gaussian 

variables, then all f (t) are zero-mean Gaussian variables. The real 

and imaginary parts of all the F (w) , being the result of linear operations 

on the f.(t) , are likewise zero-mean Gaussian variables. 

The likelihood function, which depends on bearing 6 , is the joint 

probability density of all the frequency samples of the Fourier transforms 

of all the hydrophone outputs; we write the likelihood function as 

- transpose; * - complex conjugate. 
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(6) T(e) - 
- m1®"1 (e) F* 

(2i»)llMdet£ 

where F 1« the vector of all samples, arrayed In the form 

(7) F- Fj^), ...lFM(w1); f^^»  •••• ^(Wj);...; FjCw^ ^^ * 

The corresponding Mn x Mn correlation matrix is 4& , whose elements, in 

terms of hydrophone indices 1, J and frequency indices k, I, are 

     (i, J • 1, .... M) 
(8) *i k. i . ■ 1/2 P/(V Vwi) • 1• *'• J* *      1  k  J 1     (k, 1 - 1, ..., n) 

In Appendix A, certain conditions are shown to bt necessary to permit 

the writing of the Joint probability density of Gaussian complex variables 

in the form (6).    Presently we shall verify that these conditions are 

fulfilled for the variables    F . 

First we derive an expression for the correlation F *(w) F (o) , 

making use of the fundamental relationship between the autocorrelation 

function and spectrum of any real stationary random process. 

(9)      S(w)  -   j    R(T)e'JwTdT R(T)  - ^    f   S(w)ejWTdw 

On the basis of (3) and (4), substituting (9), we obtain 

T/2 

(10) FMW)  F co) »  // Mt) Mu) e^'^dt du f^W  F^o) - Jj    f^t) f^u) e^ 

' ^/, (RgCt^-u + AJ) + N6(t-u)6iJJ eJ(wt"0u)dt du 

- jf dt 4. 1- / da,S („, ♦ »HU  eJa(t'U + W  .l('rt-W, 
^1/2        2V     im B 

oo j/2 T/2 

• h J wv^V •   *    j  dt •J<a*">t /  du e"J(0+0)u 
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In the above expressions,    S (a)    represents the signal spectrum, and   N s 

Is the white noise spectral density. Consider the type of Integral which 

appears In the last line of (10). 

^'au .-!<-«)" - e-i<^>T/2 .e.)(«*°W* . 2 .1.^)1/2 
-J(o+o) 0+0 

-T/2 

In the limit as T * ■> , the above expression approaches 2ir 6(a+o) , 

where 6( ) is the Dlrac delta function. If a " - o » the value of the 

expression Is T . The limiting form of the correlation for large T Is 

limit 
^ (12)  T -• F *(w)F4(o) 
i '    J 

] mT*mhld* .[S (a) + N6, J eJ0(^"Al) 2  ^^T/2 • 2  slnyo)T/2 
s      1J a+w a+o 

Ja(A.-A.) r jau.-ö.) 
2i j do(S8(a) + N« J e   J 1 6(a+w) ö(a+o) 

It Is clear that for Infinite observation time, samples at different 

frequencies w and a    are uncorrelated. We shall assume that the actual 

observation time Is sufficiently large so that the correlation of samples 

at different frequencies Is negligible compared with the correlation of 

samples at the same frequency. At a single frequency, the correlation, with 

the assumption of large T , Is 

—« 

—«• 

-jw(A -A ) Jw(A1-AJ 
- [S (-w)+N6,J e    J X T - T(S (w)+N6,4l e   

1 ^ 
8       lj S       1J 
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The conditions (A-14) which must bu satisfied In order for the formula- 

tion (6) to be valid may be expressed for the present case as 

(14a)  Pcl(v) FcJ(o) - Fgl(w) F8j(o) 

(Ub)  Pcl(w) Fgl(w) - 0 

(14c)  FC1(II) P8j(o)--F8l(w) Fcj(o) . 

where F
clC

w) and F .(w) represent the real and imaginary parts of 

F (w) , obeying the relations 

(15)  F^w) - Fcl(w) + J F8l(w) 

T/2 T/2 

Fcl(w) • j      fi(t) cos wt dt   
F
8l(

w) " / {
i^  8ln wt dt • 

-T/2 -T/2 

In Appendix B It is proved that these conditions are asymptotically 

satisfied as the observation time approaches infinity, so long as all 

sample frequencies have the same sign. We shall arbitrarily deal with 

positive frequencies only. No information Is discarded, since the Fourier 

transform of a real variable obeys the relation F(-w) ■ F*(w) . 
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III. The Correlation Matrix. Its Deteraliunt. and It»  InvttM 

In the previous section, it was established that samples at dlfftreat 

frequencies are asymptotically uncorrelated as the observation tine approaches 

infinity. The elements of the correlation matrix, by (8) and (13), are 

T -JWV (16) «l.kJJ.t - «W f •    J    CS.CV+N^J 

'klf'Jj^V' 
(i,J-l....,M) 

(k.t"l n) 

where the following notation is implicitly defined for convenience. 

(17) ajj - e k i j 
S - S8(wk) . 

We are now ready to write out the correlation matrix in detail. For 

reference, the F vector is written at the edges. Note that the matrix is 

2 
composed of n  submstrices of dimension M * M , each of which correlates 

samples from all hydrophones at two sample frequencies. Only the diagonal 

submatrices are nonsero. 

(18) 

A-? 

S +N    ai 2**       ' * * 
1  el 

T 

AM mO          9       »Tl                 •   •   • 

• •                       • 
• •                            • 
• •                                 • 

a1 S1 a1 S1 

Vlb    ^25      *•• 

• 
• 
• 

•     •     • all elements 

tero 

2 • • •                                               | 
• e •                                               1 

e • •                                               1 

Sn+N 
"U5    ••• •lMb 

all elements •      •      e an Sn 

•215 ^^      • • •   ^914^ 

zero • 
• 
• 

• •                  el 
• •               •            .1 

• •           •            1 

•Si8' 3|yi^w      • • •   J>  xN      I 

W 

Fi(V 

F2(r ) 

W 
F1(w1), F2(w1), ..., Vyiv^); .-. ; F^w,,), F<)(wM), ..., FM(wn) lx n" ^^n' 
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Appendix C furnishes verification of the results given here for the 

detemlnant end inverse o: J£ . The dttereinant is found to be independent 

of bearing angle. The inverse, like (£ itself» contains nonzero elements 

only in the n diagonal M * M subnatrices. Bach diagonal submatrix of 

£~  is the inverse of the corresponding subaatrix of Ä . The determinant 

and inverse follow. 

(19)  det£- (T^)*111 N(M'1)n n (N4MSk) 
k-1 

(20) 

ft   T 

(M-l)Sl+N -Hi? ... 
MsHl-HI2 

■v. 
MSHJ-HI2 MsHl-W2 

k«1 
(M-DS^ .. 

MsSwi2 

•                      • 

. -V 
• • • 

ill elements 

zero MsHj-fN2 

* 

MSSJ+N2 

• 

kasl 
MsSi+N2 

• 

•                t 

.   (M-DS1-« 

• 

IMsHl+N2 MS1!»«2 

• 
• • 

(M-i)sn+N  ^r*    ... -an Sn       1 
Ml      1 

MSnN+N2     \ MSVN2  MsVrtJ2 

all elements 

zero 
• • • 

■•2l8      (M-l)Sn+N  ... 
-a11 Sn        1 a2MS          i 

MSnN+N2 MS'V+N2 

• • • • 

MSnN+N2     j 
•                           j 
*              ! 

•                                 • 

n .n           n -n 
'^l8         "W5      ... 

• 

(M-l)Sn+K 

MS^+N2      MS^+N2 MSnN+N2 
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IV.    The LlkeXlhood Function 

We are now in a position to write out a detailed expression for the 

likelihood function   L (e)    in the form (6).    F, det <£    and  Ä'     are 

"aken fron (7),  (19), and (20)» respectively; 1   and    J    are the hydrophone 

indices; k    and    i   are frequency Indices. 

(21)    ^e) L-.-'ilVW 
(2Tr)ndet Ä 

{n     n     M     K 

-HT T T T ^ä:
1
., ,F;* ^U   L,  L. L-,    i   i.k;J,l   J 

k-l i-l l-l j-1 

n      M     M I 

^ (^detÄ |       C   ^C.    i    l.M.k    J   j 
1 exp 

(2ir)n (1/2)"" N(M,'1)n J    (N-mSk) 
k-l 

0 n      M     M k    ck 

k-l i-l J-1 

n     M 
"- k -" E Z ^ f i{tPri > M   f-l     1  1    MS^J+N 

'* 

k-l i-l 

on 



V. General Results for the Lower bound on Bfearing Estlaatloo Error 

The variable 6 , bearing» which in a practical situation has a fixed 

but unknown value, appears as a paraaeter in the probability density (the 

likelihood function L (6) ) of the set F of random variables. When an 

estimate of 6 is derived from a set of measured values of F , a method 

is known for computing the lower bound on the variance of the estimate 

6 of e . According to this method, 

-1 

(22)  D'(e) > 
a log L 

2 

ae 

where the avcroge is taken over the random variables F . 

In the find form of (21), note that L(e) depends on 6 only through 

k 
the terms a   . By (1) and (17), 

(23)  ajj - e k  c 
jw. -^r-1 sin e 

•Jj ■ aJi* " 1/aJi 

Now we differentiate the logarithm of the likelihood function 

(24) 

M  M 
9 log L 
36 

1_ 
36 

k-1 1-1 J-l 

k  k 

FV* k   2 1 
MS N+N  J 

r ^ f ^i 'Ai'd*)sk* 
k-l 1-1 j-l 

MSk N+N2 
FJ* 

Harold Cramer, Mathematical Methods of Statistics. Princeton, 1963, S32.8 
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BUM 

-IT Jw. -^r^ cos e a^, sk 

k-1 i-1 j-1 HS N+N 

n  N  M 

. 1 .POP. 

k-l i-1 J-1 1    MS* N+N*     J 
Tc 

Now, for the next step toward the lower bound, with k and t frequency 

indices, and i, J, p, and q hydrophone indices, 

(25) 9 log L 
36 

n     M     M w^r.-rj ak
4 Sk   u   I 1 cos e ^r r r  w wk^i-ri; \sa rk 

Tc L   U    L.      i uck^2 J 
k-l i-1 J-1 

*  >       X 

MS    N+N 

n     M     M 
-.1 cos 6 ^T   y   y   rift 

W£(rp-
r

q
) aqP 

Sl ,i 

t-ip-iq'ri p     Msk^2 
Tc        L. F 

2      n      n      M      M .   M     M 
wi w«(rj"'j)(r "r )ajja    s S 

*«  r, r, h h S s ' 3 ^ ^    '«s'w2« ^Wi k-l i-1 i-1 J-1 p-1 q-1 

In Appendix D we demonstrate that the following expansion is valid for 

complex variables with «ero-mean real and imaginary parts, all Jointly 

Gaussian: 

(26)       Fk Fk* F1*  F* -  Y\ F^*.F£* Fl + F* F1*-   Fk*F£ + F^ F1  .  Fk* Fl* 
iJpq       ijpq       ip       Jq       iq      JP 

The above correlaticns may be deduced from Section II.    Correlations between 

"Tte discontinue writing    "i^J,"    since the factor    (r^-r.)    cancels 
terms in which    i-J    anyway. * 
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samples st different frequencies are essentially zero. Terms of the form 

^ Fq " Fl^wk^ V1*^ recluire sPecial attention. When this term Is q   x K  q 

developed as In (12), the result Is 

(27)  F1(mk) P^Cw^ * 2ir / da(St(o) ♦ N6lq] e   1 q 6(o-wk) 6(0^^ . 

Since we are considering only positive ssmple frequencies, this expression 

k      £ 
must equal tero;    F * F *   also equals tero.    Returning to (26), substituting 

the correlations (13), we have 

(26)       Fj Fj* FJ* FJ - (.^ TSk)   (ap
£
q TSl) 

♦ l-pi T(Sk
+N6pl)l   [ajq 1(8^)1   6^ 

This result Is now substituted Into (25). 

(29) 3 log L 
36 

n      n      M      M     M 

T c 

M w1w.(rJ-rJ)(r -r )a).al sV 
22 L r r r r^'kW£vti"^/-^"t^^a^ 

k-l   i'l  1-1 j-1 p-1 q-1 (MSkN+N2][HSlN+N2] 

l2"!|l V Skst + 'pl •J,<,k+,,V)   "^'jq'  '»l 

n     n     M     M     M     M 
.cosier r r r 

2    L.   U   L.   L. 
«.w^r -rj(r -r )a^«lf4«* a* (Sk)   (S£) \* t    1    1       p    q     11   11 qp PQ 

^-    ^ 
k-l  l-l 1-1 j-1 p-1 q-1 [MSkN+N2J[MS£N+N2l 

n      M      M      M       M 
cos e 

k-l 1-1 j-1 p-1 q-1 

k    k    k    k ^M 2-«^   rX   ^,   ^11,   ^i,   I (w. )'"(r.-r,)(r -r U^a^a^.a"" (S^)' k     ^  1    j       p    q    U   qp pl  1q 
2x2 (MS^J+N2) 

[(Sk)    + 8^(6 4+64  ) + N26   .6.   1 ) 
pi  jq pi Jq [ 
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c 

n 
»Li^ r r r r r   Vt^ri-rj 
c2  L L. u u u L .    2 

k-l t-1 i-1 j-1 p-1 q-p+l [MsViri   [KS*N+N^1 
ll 

* 

D 
0 

= ^ 2 
,   n     n     K     11     M     H . .< ^ ^ IJL*W 

CO.2B^ r r r r r   vi(ri-rj) WvV (s s) 

2 
. a ^   <-   r-  <-   c-     (wk)  (r^Xtp-^)  (S ) 

+    c2      ^   L.   L   L.   L 
k-l ffl J^l J^L i^l (MsSi+N2) 

jwk(A -A +A -A +A -A +A  -A ) k 2      u , 1 
e    k    1    J    q    p    P    i    J    *»    [(Sk) +25^6 ,+N2« 4Ö4  J pi        pi Jq 

= 0 
/ ^ s 4 

i\ n      M      M      M      M       /     \2# .   / v   /«Ky 

mcoA y y r y y (V <v'i> <v^n^> <8> 
c2     L L L L L tt?W? C k-l 1-1 J-l p-l q-p+l (MS-N+N ) 

3 

+ r r r r [V (rrri) (rrr
q
) 2(s) N 

k-l 1-1 j-l q-1 (MsS^+N2) 

2 
(w.)   (r.-r.)   (S ) N 

: • 1.1. P^S ■ k-l 1-1 J-l (I'sVt-N2) 

^^   ^     "    ^ ^ (wk)2(r1-r1)
2 2(Sk)3N 

c2    L L L L*        k   22 

k-l  1-1  i-l+l q-1 (MS N+N  ) 

nMM 2 2k22 
+ r   ^    ^ (wk)     2(rrri)

Z  (SK) N* 
^ C   i^   L.   —^ ^"^ 

k-l 1-1 J-l+1 (MSkN+N2)2 

2        M      M 

2^4 f   JVÜL.2 r   y     (r    r ,2 (,AV) 

  

—' v/e replace    (6  .+6J  )    v;lth    26   .   , which Is equivalent because of 
pi    jq pi  * 

symmetries In the expression. 
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For computational convenience» we use an Integral with respect to 

frequency to replace the summation on the frequency Index k . by (S), 

the Interval between sample frequencies is Aw ■ 2it/T . Ve multiply and 

divide the final result in (29) by Aw , then replace the summation by 

an integral and Aw by dw . We assume that the observation time T 

is large enough so that this approximation introduces little error, and 

that the signal spectrum is essentially zero for frequencies above the 

higheat sample frequency, w max From (22) and (29), 

(30)  D'(e) > 2Cfl) JTL. 2 cos29 ^Xw2S2(w)dH 
2n 

J'  w a twjov 

I?S(w)N+K3 o 

M  M 

Y.Z 
_i-l J-i-H 

«W 
-1 

This result is entirely general for any signal spectrum and any hydrophone 

spacing in a linear array. Equation (30) assumes a particularly simple 

form when the elements of the array are uniformly spaced. In that case 

(31)  ri - id. (i - 1, .... M) 

where    d    is the distance between hydrophones.    Substituting (31)  into 

(30) and taking the square root of the result, we have 

(32)      0(6) > /T c/n 

d /T COSö 

max    2 2 MM 
r    wV(w)dw r* r^ 

i    MS(W)K+N2 i-i £i+i 
d-j) 

-ii 

We show in Appendix F that 

(33) 

M  M 

i-1 J-i+1 

2  K4-M2 ■ ——— 
12 

rr(y-n)(K-i) 
12 

Substituting (33) into (32) we have 
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ij 

(34)       0(6)   > 2^r 
d^cosO MAM+1)(M-1) 

1 -h 
I 

/ 
o 

max 
w2S2(w)dw 

MS(w)N-HI2 

2/37 

d/T cose M^-l 

max 

/ ■ 
dw v 

2       N2 

1 + M 
S(w) 

N 

-»5 

Finally, Invoking the fact that the signal spectrum of our derivation may 

be regarded as the actual signal spectrum modified by passage through a 

filter which prevhitens the noise (see p. 4 ), one obtains 

(35)       D(e)  > 
2/3it 

d/f"cose M^-I 

max 

/ ■ 
dw w 

S^wl 

2        N2(w) 

T* 

1 + M 
S(w) 
N(w) 

where S(w) and N(w) now stand for the actual signal and noise spectra. 

0 

1 
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VI. Comparison with Split Bean Tracker 

We now compare the lower bound on nns error given by Equation (35) 

with the rms error of the conventional split beam tracker (linear equally 

spaced array) whose idealized block diagram Is shown in Figure 2. The 

basic theory of this tracker is developed in Report No. 29. Adapting 

the results obtained there to our present purposes and nomenclature we 

obtain: 

The average output Z is given by 

M/2 M/2 wmax 

(36)  2 - |^ ^  f  dw w S(w)|H(Jw)|2 «in(w(k-l+ j)^(8in 6 - sin ♦) ] 

l-l k-1 o 

8 is the target bearing, as before, while 4> is the direction in which 

the tracker is steered. An elementary computation now yields the on target 

slope of the average tracker output curve. 

(37) H 

Wmax M/2 M/2 

- |^ f  dw w2 S(w)|H(Jw)|2 f cos 9 ^ ^ (k-l + |) 

^-6       o £-1 k-l 

With the change of variable k-l  ■ r one can readily evaluate the double 

sum. 

note: In Report No. 29 the total number of hydrophones is 2M , 
here it is M .  In Report No. 29 the 90° phase shift is obtained by an 
element with transfer function jw/|w| , a prime phase shift, here It is 
obtained by a differentiator with transfer function Jw . Furthermore, 
S(w) is here defined such that total power is     * 

h lSM *• ■ 
—00 
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: 

: 

: 

2  x M/2 M/2 

(M) £  £ (k.»*f). ^M(^)(^|r|) 
1-1 k-1 r--^ -1) 

^ -1      ä - 1 2 i     2 - l f- 
ä(M.1)+^      | r |r(.^    |r| 

r-(| -1)  r-(f -1 r-(f -1) 

M 
' 8 

Hftne«, uilng the fact that S(w) la even, 

™     If 2ir c 
cos 6 

♦-9 
{"/ dv w2 S(w) |H(Jw)|2 

The on target tracker output variance o  la (by «imllar adaptation of 

results In Report No. 29) 

e» 

(40)  o2 - ^ f dw w2 |H(Jw)|4 {M3 S(w) N(w) ♦ M2N(w) ) 

It follows that the nns error is given by 

ymax 

j    dww2|H(jw)|4  {MS(w) N(w) ■►N2(w)) 

(41)  D(9) - — 

ii 

-w max 

ae 
max 

♦•6  ^"d cos 6 M2  I dww2|H(w)| S(w) 

-w max 

There remains the adjustment of the spectrum shaping filter H(Jw) . 

Taking a clue from optimum detection theory one suspects that a good 
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candidate for H(jw) would be Che generalised Eckert filter 

(42) |H(jw) |2 - lisl 

1 •»• M l^j-  M S(w) N(w) -► N2(w) 

Substituting Equation (42) Into Equation (41) one finds 

(43) D(e) - •5r • 4 c 

/F d cos 6 M2 

max 
to w2  N

2(w)  

1 + M N(w) 

-»I 

Comparing Equation (43) and Equation (35) and using once more the fact that 

S(w) and N(w) are even function« of v 

(44) 
D(e) ,r',y  M' 

Equation (44) equals unity for M"2 and Increases steadily to an asymptotic 

value of /ATI for large M . Thus the split been tracker reaches the 

Cramer-Rao lover bound for M-2 , a fact which had already been observed in 

Report No. 32 for the special case of S(w) • N(w) . For M-2 , therefore» 

the split beam tracker la the absolute optimum Instrumentation in the sense 

that it yields the minimum rms error.  For M > 2 some improvement may 

be possible, although one cannot assert in general that the Cramer-Rao 

lower bound is attainable. The Important point to observe, however, is the 

small factor by which D(e) can exceed D(9) [Equation (44)]. One can 

therefore reasonably conclude that the conventions! split beam tracker 

operating in a noise environment independent from hydrophone to hydrophone 

is so close to the optimum that a search for better instrumentations would 
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candidate for H(Jv) would be the generalised Lckirt filter 

(42) |H(Jw) |2 - W2(v) 
■ + M S(w) 
1 * " N(w) 

S(w) 

M S(w) N(v) + N (w) 

Substituting Equstlon (42) Into Equation (41) one finds 

(43) D(e) i^T • 4 c 

»^ d cos 6 M2 

msx 

j     dw w 2 - N2(w) 
1 . H^Sl 

ID ax 

-h 

Comparing Equation (43) end Equation (35) end using once sore the fact that 

S(w) and N(w) are even functions of w 

(44) 
D(e) '* Y       H 

Equation (44) equals unity for M-2 and Increases steadily to an asymptotic 

value of /US   for large M . Thus the split beam tracker reaches the 

Cramer-Rao lower bound for M-2 , a fact which had already been observed in 

Report No. 32 for the special case of S(w) - N(w) . For M-2 , therefore, 

the split beam tracker Is the absolute optimum Instrumentation In the senae 

that It /lelds the minimum ras error.  For M > 2 some Improvement may 

be possible, although one cannot assert In general that the Cramer-Rao 

lower bound Is attainable. The Important point to observe, however, is the 

small factor by which 0(6) can exceed 0(6) [Equation (44)]. One can 

therefore reasonably conclude chat the conventional split beam tracker 

operating in a noise environment Independent from hydrophone to hydrophone 

is so close to the optimum that a aearch for better instrumentations would 

C-21 



b« very difficult to Justify. 

The dependence of 0(6) and D(e) on signal-to-noise ratio is 

precisely the sane as that observed in Report No. 32. For low input 

•1 signal-to-noise ratios the rms error varies as    (S/N)      , whereas for 

large input signal-to-noise ratios it varies aa    (S/N) 

C-22 
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Appendix A 

Joint Probability Density for n Complex Gaussian Variable» 

We assume that every member of the n-dlmenslonal vector ^ Is a complex 

Gaussian variable; I.e., when x.  Is written X. - a.'fjb. (k»l, ..., n) , 

the real variables a  and b. are Gaussian variables. For convenience, 

resume a, « b, - 0 . We wish to establish the conditions on all the 
k   k 

variables {a. , b. } which are necessary to permit writing the joint 

probability density of the n complex Gaussian variables In the following 

form, analogous to the Joint probability density for reel Gaussian variables: 

(2it)n det P 

where P is the n * n correlation matrix with elements 

(A-2)       PkJl - 1/2 Xk* X^ (k-1 n) 

As a first step, we derive the characteristic function corresponding to 

2 
the above probability density. The procedure parallels that used by Cramer 

for real variables. The characteristic function 0(T.) is related to the 

probability density as follows, with dX. ■ da^ dbi ... da db  and 

1 - {Tk} - {yk+J«k} : 

1 T 
Notation:   - transpose; * - complex conjugate 

2 * 
Harald Cremer, op. clt., ill.12 
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(*-3> »(i) • j*   j ^H-   ^ PW ä 

: 

J in'    J (2iOn i dec P 
JRe{T*TX } - % xV"    X* 

%-l 
Let C designate the unitary matrix which transforms P  into the diagonal 

matrix 0 as follows: 

:. 

(A-4) T -1 
D - C*1 P 1 C 

-1 
Let    D    and    D        be represented as 

(A-5) d1   0 

0     d. 

0 

0 
• • • • 
• ■ • • 
• • • • 

0      0 

Note the following relations: 

(A-6) D"1 - C*T P C 

-1 

^0 

0   d 
-1 

•       • 

0   0 

C* C - I 

0 

0 

•     • 

.. 

•" 

-1    n    -1 
det P - det D  - T d. 

"    k-1 k 

Let the n-dlmenslonal vectors v and j^ be defined as follows 

(A-7) 

x ■ C* ^ 

Vk " "k + JVk 

\ '  pk + Jqk 

:. 

Wc shall use the following results! 

(A-8)     T*T x - v*T CT C* jfe - v*T i 

dji -  |det C*| djfc - 1 • dp. dq.   ,.. dp   dq 
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Substitute (A-7) and (A-8) into (A-3): 

1 

(A-9)    #(t) - jii- j a.fict D-1 ^R£l^T i1 - ^ lT S.*T E"1 £ i* djt 

-0» 

f 2i'   J (2,)n dot D"1 e^6^*1 ±> - ^ i1 E i* d^ 

« 

n     M^t 
dk J(Vk^kV " ^ (Pk+^k)dk(V^k) 

dpkdqk 

; dk f JVk - ^ W"     LdVk * ^ Vk2. 
^ T. j e dPk J ^ d^ 

c-l 2* \/dk 

-Hdk      uk      /2.    -,sdk     Vk 

n      - Wu^jv ) dk-l(uk-Jvk) 
n    e 

k-1 

T     -1 T        T 
- Jj v    D     v*        - H v    C*    P C v* 

-  i5   T     P   T* 

] 
2 

The next step Is to set the above characteristic function equal to 

the characteristic function for the 2n real variables ia, , b, } to 

ascertain the necessary conditions on these variables. The 2n real 

variables may be arrayed in the vector x ■ (a,, b., .,., a , b ) .  Let 
■"linn 

R designate the corresponding 2n * 2n correlation matrix, and let the 

argument of the characteristic function be the vector t. ■ (YIizi»•••»yn»
z
n) 

The characteristic function is 
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2      —r- \        W yk 

VK   bk
2 J 

**\ 

: 

(A-10) 0(t) 
^    - »S tl R t 
t) " t;  

: 

We shall now write out the logarithms of 0(O and 0(T) In detail and 

compare them« 

n      n 

(A-ll)        - 2 log 0(t)  - ^     ^   [y^] 

k-1 1-1 
Sai  akbi 
b, a.    b. bB k i      k i 

n     n        c 

k' c-1 l-k+1 | 

■ " 

.'tj 
Vi \\ 

\al \bi\ 

- i I a .a,     aab, 

bl\    ht\ 

2.   2 
" E   yk2 \   + 2ykEk \bk + 'k^k 

k-1 

n     n 
+E r. vi^v^+vt

(2\bi)+2ky
t
(2w+vi(2vt) 

k-1 l-k+1 

By the result  (A-9)  and definitions  (A-2)  and  (A-7), 

:: 

(A-12)      - 2 log 0(T) 

n      n 

k-1 (-1 :: 

r-. 2       2 2 2 
'k     k '   v k        k 

k-1 

n      n 
+ Z Z ^VJV^k^V^^^xviV1 

k-1 l-l 
k+l 
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151 <yk2+ \> t\W> 
k-1 

n     n 

k-l l-k+1 I 

n 

■ ^ Z (yi2+z''2) (£'-2+b'2> 'k    "k '   x k     k 
k-l 

n     n 
+ ^ Z E  l(v^v (ck^v+ (v^v ^k-^v1 

k-l l-k+1 

n n      n 

■ ^ Z (yk2+2k2^ (\2+bk2> ^ Z Z 2(AkVW • 
k-l k-l  fc-k+l 

where the following definitions arc implied: 

aka£+bkbi 

ekbrbkai 

To continue, 

(A-13) 0(T) - »5 ^   ^k
2+z

k
2>(a

k
2+b

k
2> 

k-l 

n      n 
+ Z Z [(vi

+Vi)(^+W-(vrVt)(aX-Vl)1 

k-i £-k+i 
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We now ccapare (A-ll) and (A-13), equetlng coefficients of like variable 

products. 

Hi) 

Vk 

'k 

ykyi 

'kyi 

#(t) 

2 
\ 

2\\ 

\2 

2 Vt 
2\bt 
2'i\ 

[* vj 

^ak2+bk2> 

0 

^*k2+bk2) 

%a£+bkbl 

wv* 
bka£-akbl 

. Vt^t 

The following conditions result from solving the sbove set of equations 

(A-14) akal - b^, 

•k^ b.   -    0 {k,l "1,   ..., n) 

akb£ " " allbk 

When these conditions sre satisfied,  the Joint probability density of the 

n complex Gaussian variables may be written as in (A-l). 

C-28 



» 

Appendix B 

Verification of Requirements on Fourier Cosine and Sine Transforms 

The conditions  (14)   to be verified are 

(B-l) F  .(w)   F   .(o)  - F  .(w)  F   .(o) 
Ci CJ si SJ 

(B-2) F ,(w)   Fo,(w)  - 0 
Cl si 

(B-3) Fci(w)   F8;J(o)  - - F8i(w)  Fcj(a)   . 

where, by (5), sample frequencies w and a    are multiples of 2ir/T . 

To verify (B-l) we use a trigonometric expansion of both sides of this 

equation, taking the definitions of F . and F .  from (10). 
ci      si 

T/2 

a (B-4^)    F (w) F (o) •  //  fi(t) f (u) cos wt cos o u dt du 

T/2 

H     1/  f1(t) f (u) [cos(wt-ou) + cos(wt+ou)] 

-T/2 

T/2 

I (b-4b)    F ,(w) F .(o) -   /  f^t) f^u) sin wt sin ou dt du 
si    sj      j;   i    J 

T/2 

I h   11      f^Ct) f.(u) lco8(wt-ou) - cos(wt+au)] 

Evidently the two sides of (B-l) are equal if the following relation is 

true: 

T/2 

(B-5)      ||  f (t) f (u) cos(wt+ou) -0 
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To verify (B-5), we employ the mathematical procedure which it explained 

in detail in Section II. 

T/2 

: 

: 

I! 

n l 
//  [^(t-u-A^Aj-WiCt-u)! coe(wt+ou) dt du 

i 

8 

^ I tAt)  f (u) co8(wt+ou) dt du 

T/2 

- ^ / dalVa)^! e^'V  fV dt dule^>t ^(a-o^ 

-T/2       + eJ(o-w)t e-j(a+o)u 

We are assuming that the observation time T is sufficiently large so that 

the last line above is a good approximation. Unless w - -o , the above 

expression must equal zero (or nearly zero in actual practice). By 

restricting sample frequencies to be of one sign or.ly» so that the reletion 

w ■ -o is impossible, v;e can force the expression to be :*sro, so that (B-l) 

is satisfied. 

C-30 

: 

fd«(8 (.)«..„) .^W \i  ItejtoUa . I  .ln(.-0)T/2 
J B 12 L     a+w a~0 

+ 2 sin(n-w)T/2 i  2  sin(a+o)T/21 
o-w a+o    J 

f JaU.-AJ 
j dolS^C^+Nd^l e   J * [«(a4w)ö(o-o)+6(a-w)6(o+o)l 

0 

To test (B-2) and (B-3), we next derive F .(w) F . (o) . ci    sj 

: 



T/2 

(B-7) Fcl(w)  F8j(o) - JJ t.it) f .(u) cos wt •in ou dt dv> 

Ja(A -A.) 
T/2 

lot dt e      cos vt 

Jo(A -&.) 

-T/2 

T/2 

T/2 

|   du e J sin ou 

-T/2 

ii J «MV'^V 
e J dt e 

— -T/2 

«Vwt^-jwtj x 

T/2 

f   du e-^Vqu-e^0U) 
-T/2 

it   /^S.C^^d^l Jai/y^) [2 8in(tt-v)T/2      2 sln(a4v)T/2 

2 8ln(o-o)T/2 _ 2 8ln(a-t-o)T/2 
a-o a+o 

ao 

\   JdolSi(a)+K6ljl e 
jaCA.-A^ 

[6(a-w)+fi(a-K01  x 

2 8ln(a-o)T/2 _ 2 sln(a-t-o)T/2l 
a-o a+o J 

iJ|lSi(w)4N6ljl  e 
jw(A -Ai) 2 sin(w-o)T/2  2 8ln(v»o)T/2l 

w+o    J w-o 

+ [Si(-ii)-HI« ) e    3 2 6ln(-w-o)T/2 _ 2 8ln(-wfq)T/2 

-w-o -w+o 

Again, a long observation time is assumed to justify the approximation. 

Using the fact that sample frequencies w and 0 are multiples of 2Tt/T , 

the fact that all sample frequencies have the same sign, and the fact that 

S (w) - S (-w) , we conclude that 
s     s 
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(B-8)    Pci(w) F8J(o) - 0 w ^ o 

. jw(A -A ) 
- f-  lSs(w)^61J] (e   J 1 T + 

-Jw(A -A.) 
e    j i (-T)l 

- j  [Sa(w)+N6.J T sin w(A -A.)      w - o 2      s ij J  1 

Simply by interchanging 1 and J , w and o , we have 

(B-9)    F8i<
w) F

cj(
0) " 0 w ^ 0 

- 7 [S (o)+N6..1 T sin o(A.-A,)      w - o 
2   8       ij i  J 

Comparison of  (B-8)  and (B-9)  reveals that  (B-2)  and  (B-3) are verified. 
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Appendix C 

Determinant and Inverse of the Corrfclatlon Matrix 

The correlation matrix </? (18) Is composed of n  submatrlces of 

dimension M x M . Only the n diagonal submatrlces, each of which corresponds 

to a particular sample frequency, are nonzero. Hence, the determinant of 

& is the product of the determinants of the diagonal submatrlces. Each 

submatrlx has the form 

(C-l) 

k TS: 

V 2 

i+xf 

l21 

^ 

k 
a12 

i+x' 

k 
^2 

a 13 

»23 

k 
•113 

alK 

»2M 

1+X 

where 

(C-2) 
k    -^k<Aj-

Al) 
aij"e 

Xk " N/Sk 

We use an Inductive method to establish the determinant of the following 

matrix: 

(C-3) 

'l+X a12 a13  •• *m 

K - 
a21 

• 
• 

1+X 

• 
• 

a23  •* 

• 

'    aa: 
• 

•     • • 

«Kl "Ml "MS  ' 
..  i+x 

we no« «p.nd the detemlnent of   ^   .long the Let e.1».. for ethltt.ty 

M , we .hell expend det K4    etoultmeooely for « concrete lllu.tretlon. 
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(C-4) 

h 

ifx 

a21 

"12 

1+X 

l3J      a32 

a 13      al4 

a23 

1+X 

'41      a42      a43 

a24 

834 

1+X 

riJ The notation    |KjJJi    will be used to signify the    (i,j)th   minor of    K^ 

M-l 

(C-5.) IK^I - (1+X)   ISJJ^I + £   (-1)1+M -iM^I 
i-1 

(C-5b) IJCJ - (1+X)   |K3| - a14 

+ a 24 

1+X     a12      au 

a31      a32      1+X 

a41      a42      a43 

- a 

a21  1+X  a23 

a31 a32      1+X 

a41  a42  aO 

1+X  a12  a13 

a21  1+X  a23 

a41  a42  a43 

34 

,11! 
The last row of each (K-l) *  (M-l) matrix K   is 

laMl ^12 ^3 ••• ■K.K-I1 " ^i^il ai2 ai3 ••• ^.M-l1 

;iM Let K   represent the matrix obtained by changing the last row of 1^. 
IK 

to (ailf ai2, .13 

(C-6a) 

.IK, ai.M.il • Then K\ - a::il^ 
M-l 

IK, 

i-1 
ii 

K-l 
1+^. i ^11-i 

(1>X) IK^I + ^ (-I)141" l^1 

i-1 

Note that a.. - 1 
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(C-6b) |K4| - (1+X) |K3| 

J»1M 

a21 
1+X a23 

e31 a32 H* 

1 a12 a13 

1+X a12 a13 
1+X a12 

a31 a32 
1+X - a21 

1+X 

a21 1 a23 a31 a32 

'13 

23 

IM 
Now let ^ * designate the matrix obtained by moving the last row of K 

into the ith position. K   is converted into K   by (M-l-i) interchanges 

of rows; hence  IK^I - (-I)1'"1'i|^iMl 

(C-7a) 

11 M 

M-l 

|K .1 - (1+X) |Kv J + 7 (-I)1*1"1 (-D11"1"1 tV 

i-1 

M-l 

(1+X) 1^1 - ^ KM
1M 

i-1 

(C-7b) |K.| - (1+X) |K, 

1+X  a 12 

a 21 

•31 

The (M-l) « (M-l) matrices K 

32 

IM 

M 

21 

^1 

a 
13 

a23 

1+X 

a12  a13 

1+X  a. 

32 

'23 

1+X 

1+X  a 

-21 

12  "13 

1+X  a 

a31  a32 

23 

differ from IC., only in that the 
!
riM 

(i,i)th term is 1 instead of 1+x • If K,.  is expanded along the ith 

column, the minor corresponding to the (i,i)th element is equal or 

equivalent to |K .| . If the same expansion is made of  |KM_II • thc 
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coefficient of this same minor is (1+x) . It follows that |K | • 

'Vi' 'x 'Va' * for a11  i ' 
(C-8a) 

- (2'»'X-M) K   + (M-l) X |K  I 
"M-l ">I-2 

(C-8b) IJL I - a+x) |K | 
4 3 

- 3 

1+X a12 a13 

a21 
1+X a23 

a,. a,o 1+X 

- X 

1+X  a 

3z 

23 

1+X 

We assert that 

(C-9) |K | - X*1"1 (X4M) . 

We verify this formula by substitution into (C-8a): 

(C-10)     XM"1(X+M) • (2+X-M) XM'2(X+M-1) + (M-l)X.XM'3(x-rtI-2) 

- XM'2[X2+X(K-l+2-M) + (M-l) (2-K)] 

+XM"2((M-1) X + (M-l) (M-2)l 

- XM"2[X2+X + (M-l) (2-M) + (M-l)X + (M-l) (II-2) J 

- XM'2[X2+MXJ 

- XM'1(X+M) 

By reference to (18), (C-l) - (C-3), and (C-9), we obtain the final result 

(C-ll) n 
det £ - n 

k-1 
'2 

M 
M-l " 
x" X(X+M) - n 

k-l 

I 
2 

M 

iV"1 
sK 

n 
(T/2)Mn n NM"1(N4MSk) 

k-l 
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We now verify that  (fc~      in  (20)  is  the correct inverse of <ft .    If 

>-l each diagonal submatrix of   d^-1    is the Inverse of the corresponding sub- 

matrix of   Ä »   then   jjT1    is the inverse of   Ö? .    In notation like that 

rl of (C-l), we write each submatrix of   £x    as 

(C-12) 

-M TS' Xk(K+Xk) 

(M-l)+xk        -ak
2 -a 

-a 21 

k 
■^1 

(M-D+X*    -a 

13 
k 
23 

k k 
^13 

-a 

•a 

m 
k 
2M 

(M-l)+X 

. k 
The matrices    B      are the inverses of the matrices    A      in (C-l)  if the 

~M n 

following matrix    K~ is the inverse of    K      in  (C-3). 
M "W 

(C-13) (M-l)+X      -a12 -a13 
•   •   • 

-alM 

K-1 1 
-a21    (Il-D+X 

• • 
• • 

-a23 
• 
• 

•  •   • 

• 
• 

-a2H 
• 
• 

* X(M+X) 

";M1         -;M2 -"«o 
• 

•  •   • 
• 

(M-l)+X 

We now show that    K K"      equals  the identity matrix. 
~K"M 

(C-14) 
l+X i-j 

I'll H»J 

r (M-D+X 
xC-i+x) i-J 

ür' 
■alj 

y(M+x) H*J 
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(C-15) 

M 

I 
k-1 

-1 
^lk ^Ikj 

M 

^   Älk      X(MfX) * U X;       X(M+X) 
k-1 
kjtl 

M 

(k-i) 

^   aik      X(M+X) + u+x;  X(M+X)  * alj  X(M+X) 
k-1 

k#l.J (k-1) (k-J) 

r M 
V        -1       ■   (M-1)4MX-I- 
4-    X<M+X) X(M+X) 
k-1 
Mi 

M 

£.    X(M+X) * aij x(M+X) 
k-1 

k^i.j 

i-j 

lf»j 

i-j 

i*j 

-(M-l)        (M-l)4MX-»-X^ 
X(M+X)  T      X(M+X) 

-^CM-2)      a    (M-2) 

X(M+X)    +    X(M+X) 

i-J 

1 

0 

1-J 

rl It follows that the expression for  (ft       in (20)  is correct. 
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Appendix D 

Mean of a Fourfold Product 

For four «ero-tnean Jointly Gaussian real variables, the following 

relation is known to be valid. 

(D-D abed - ab «cd -K^tc'bd + ad »bo 

We propose to prove that for four complex variables, whose real and imaginary 

parts are all zero-mean Jointly Gaussian, 

(D-2) ABCD - AB»CD + AC'BD -t- AD'BC 

Ue use a strictly    brute force" technique of expanding the left side of  (D--2), 

using  (D-l),  and recombining to obtain the right side of  (D-2).    We define 

(D-3) A - a+Ja* 

B - b+Jb' 

C - c+Jc' 

D - d+Jd' 

(D-4) ABCD - ^a+Ja')   (b+Jb')   (c+Jc1)   (d+Jd')) 

- ^lab-a'b'+jCa'b+ab*)]   [cd-c'd'+jCc'd+cd')]^ 

-^abcd+a'b'c'd'-abc'd'-a'b'cd-Ca'bc'd+a'bcd'+ab'c'd+ab'cd') 

+J(a,bcd+ab,cd-a,bc,d,-ab,c,d'+abcld+abcd,-a,b,cld-a'bicd')^ 

-/abcd+a'b'c'd'-Ca'b'cd+a'bc'd+a'bcd'+ab'c'd+ab'cd'+abc'd') 

+Jla,bcd+ab,cd+abc,d+abcd,-(ab,c,d,+a,bc,d,+a,b,cd,+a,b,c,cl)]^ 

- {(ab•cd+ac•bd+ad•bc)+(aTbT•c,dl+a,c,•b,d,+a•d,•b,c,) rrr.u i. 

-[(a'b,•cd+a,^•b,d+a,d•b,c)■Ka'b•c,d+a,c,•bd+a,d•bc,) 

+(7T'^+äT-b^+ä^' ^)+(^'7^+aP'«7rd+äd'b 'c') 

"Kab,«cd,+ac'b,d,+ad,-b,c)+(ab'cfd,+ac,'bd,+adl'bc,)l} 
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+ ab •c'd+ac^bd+äd • be7)+(ab • cd' +4ic • bd1^•dr» bc) 

-l (äP"»cM,+ä?'»b,d,+^'b,c,)+(a^»rr^+atc,»bdT+a,d,«bcT) 

+(aV •^+rc»b,d,4rir«b17)+irv »cM+aV 'bVl+a7!-bV ) ]) 

• {äb-cd+a'b'-c'd'- (a' b' • cd+ab • c' d' ^T^'T^ä7^ •^4^» cM+äb7» cd7) 

+j(ab»c,d+ab'cd,+a,b«cd+äbT'cd-(aV«c,d+albl'cdl+a,b*cldt 

+ab,«c,d,)J) 

+{ac»bd+a,ct'b,d,-(ac'b,d,+a'c,'bd+ac,'bd,+ac,'b'd+a,c»bdl+a,c'b,ü) 

+J[ac•bd,+ac•b,d+ac,•bd■•■a,c•bd-(a,c,•bd,+a,c,•b,d+ac,•b,d, 

+a,c'b,d,)J} 

+{äd• bc+aM7»b7^7-(äd«b'c'■♦'a'd' •bc+äd7'^4^ad7»b7c+T7d»b^+ä7^"• bc7") 

+j (äd • bTc+äd • bc^Väd1"« bc+ä7?» bc - ( a'd'» Pc+a'd'« bc^fäd1"« b'c* 

+ Pd-bT1"))} 

(ab-a'b'+JCa'b+ab'^^cd-c'd'+jCc'd+cd1)^ 

+ <^c-a,c,+J(a,c+ac,)\/bd-b,d,+J(b,d+bd,)N 

+^ad-a,d,+j(a,d+ad,)\ ^bc-b'c'+jCb'c+bc'A 

^(a-fja')  (b+jb'^^c+jc')  (d+Jd')^) 

+((a+Ja,)   (c+jc'^X^b+jb1)  (d-t-Jd*)\ 

+<(a+Ja')   (d+jd'^^bvjb')  (c+Jc')^ 

ÄB'C5fÄC'iEfÄD»BC 
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An Integral 

(E-l) 

Appendix E 

2TT(f +B/2) 
o 

2 
w dw ■ I 3 

2ir(fo-B/2) 

(f +B/2)- 
o -  (f0-B/2)3 

Hü. 3  p 
f 3+3f 2 B/2+3f B2/4+B3/8 
0   o       o 

-(f 3-3f 2 B/2+3f B2/4-B3/8) 
0   0       o 

- *Q~  (3f 2 B+B3/4) - (2Tt)3 (f 2 B+B3/12) 
JO o 

I 
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Appendix F 

A DoubU Su—atlon 

Mak« the change of variable k - l-j . Then 

(F-i) M     M M-l M-l M-l 

Z Z (i"j)2" L, k?'(M-k) ■ MEk2" E k 
1-1 j"l+l kpl 

M  (M-l) M(2M-1)       (M-l)2 M2 

" 6 " 4 

k-1 k-1 

1 

. 2h2(M-l)   (2M-1?2- 3M2(M-1)2 . M^ ^^   . 3^.^, 

M2(K-1)   (tHl) 
12 

li. B. Dvlght, Table« of Integrale and Other Mathematical Data. 
Macmlllan, 1964, §29. ' 
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