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ABSTRACT

Volume VI deals with the following topics:
1) Optimum Passive Detection

The problem of passive detection and target location by means of a linear array is
analyzed from a rather general point of view for the case of stationary Gaussian signals
and noises with known statistical properties. Relatiorships are developed between
detector performance indices and such parameters as array dimensions, observation
time, signal bandwidth, hydrophone spacing, signal source location and noise model
properties. Isotropic and anisotropic near and far field noises are considered. Array
gain and directivity measures are treated in detail.

2) Optimum Passive Bearing Estimation

Lower bounds are set on the rms baring error attainable with a linear array when
signal and noise are stationary Gaussian processes with known spectra and the noise
is statistically independent from hydrophone to hydrophone. The results are compared
with the rms error of a split beam tracker, modified by insertion of an appropriate
spectrum-shaping filter intoc each array half. The split beam tracker reaches the
lower bound for a two-element array and comes very close to the lower bound for
arrays of arbitrary size. Thus it is a very nearly optimal instrumentation under the
given circumstances.

3) Active Sonar Signal Design

The signal design problem is considered for the case of an ideal transmission medium
and reverberation modelled as reflections from a series of independent, Poisson dis-
tributed scatterers. Primary interest centers on the redesign of the pulse waveshape
in accordance with information gained from an earlier return. The results indicate
the possibility of some improvements in principle, but the highly idealized nature of
the assumption leaves the question of practically important gains open to consider-
able doubt,

1ii




—

TABLE OF CONTENTS

Title
Abstract
Foreword
Introduction
Optimum Passive Detection
Optimum Passive Bearing Estimation
Active Sonar Signal Design
Optimum Sonar Array Detection
Adaptive Sonar Signal Design

Optimum Passive Bearing Estimation in a Spatially
Incoherent Noise Environment

Page

iii

L e e T e e gl



FOREWORD

This is the sixth in a series of reports describing work performed by Yale University
under a subcontract with Electric Boat division of General Dynamics, prime contractor
of the SUBIC (SUBmarine Integral Control) Program, contract number NOnr 2512(00).
The Office of Naval Research is sponsor of the SUBIC Program; LCDR E. W. Lull is
Project Officer for ONR. Mr. J. W, Herring is Project Manager for Electric Boat
division under the direction of Dr. A. J. van Woerkom, Chief Scientist of the Applied
Sciences Department,
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I INTRODUCTION

The following is a summary of work completed under contract 8050-31-55001 between
Yale University and Electric Boat division during the period from 1 October 1967 to
30 June 1968. More detailed discussions of the results as well as their derivations
are contained in a series of three progress reports which are appended. Two of the
topics, dealing with passive detection and bearing estimation, represent continuation
of efforts reported in earlier volumes of this series. The third item deals with initial
results in a new area, optimum design of active sonar signals.

II OPTIMUM PASSIVE DETECTION

Report No. 35 contains the most comprehensive and general treatment in this series
of the optimum passive detection and target location problem. Signal and noise are
assumed to be stationary Gaussian processes with known statistical properties. The
receiving array is assumed to be linear and uniform hydrophone spacing is postulated
whenever specific computations are carried out. The basic analytical procedure
follows initially the familiar technique of representing the observed time function at
each point in space by a Fourier series. Then, following a basic suggestion by
Vanderkulk, the spatial structure of the data is treated by projecting the Fourier co-
efficients onto the spatial Eigenfunctions of the noise. Thus, each Fourier coefficient
is represented by an orthogonal expansion whose coefficients are statistically indepen-
dent in the absence of signal. This approach produces particularly simple versions of
the primary performance indices. Thus, one finds that the single frequency on target
array gain G0 of the optimum detector for a plane wave signal is given by a sum of the
form

2
k "k

where the )\k are the normalized Eigenvalues of the noise and h.k is the projection of

. th
the signal on the k™ Eigenfunction of the noise. The corresponding expression for the
conventional power detector assumes the form

Ak




where L is the array length. Straightforward comparisons of optimal and conven-
tional detector performance are now possible.

In the above formulation, the noise field is completely described by its Eigenvalues

lk. When the noise originates in a region remote from the array compared with the

array dimensions, the spatial correlation function (which generates the kk) becomes

stationary and is therefore specified completed by a spatial spectrum. Spatial spectra
are derived for various forms of sea noise, self noise, and interfering targets. Their
study sheds considerable light on the relative magnitudes of the Eigenvalues and un
the nature of the detection process. One finds, as expected from Vanderkulk’s
results, that the linear array has a much higher array gain in the endfire direction
than in the broadside direction when the noise consists predominately of spherically
isotropic sea noise. The effect is much less pronounced when the noise is circularly
isotropic, a fact readily explained by the concentration of noise power at spatial fre-
quencies associated with the endfire direction. The advantage of the endfire direction
in either case is drastically diminished by the presence of even a small amount of
self-noise (whose spatial spectrum is white, whereas the spectra of all far field noises
cut off sharply at a spatial frequency of 2x/A rad/ft, A being the acoustic wavelength).
For noises of a generally isotropic type, the advantage of the optimum detector over
the conventional detector is largely due to decreases in hydrophone spacing below a
half wavelength, This may be interpreted loosely as oversampling the spatial spectrum,
thus permitting recovery of signal energy shifted to frequencies outside of the basic
noise band by passage through the finite spatial window cof the array. The presence of
self-noise beyond the basic cutoff frequency of 2r/A clearly does much to offset that
advantage. On the other hand, spatially concentrated noise such as interference from
a point source remote from the target yields a spatial spectrum largely disjoint from
the signal spectrum, so that the optimal processor can eliminate most of the inter-
ference. As a result, one finds a high array gain in all directions except in the im-
mediate vicinity of the interference bearing. If the interference originates very close
to the array, the array gain is high even in the interference direction, because one
can now utilize the different attenuation rates of signal and interference across the
array to achieve the necessary discrimination.

Report No. 35 also discusses the directivity of the optimal and suboptimal detectors,
using as a criterion the ratio of the array gain off target by a certain angle to the
array gain on target. As one would expect, the sensitivity curve is considerably
broader for endfire than for broadside targets. A less obvious conclusion is that the
sensitivity curve of the conventional detector does not, in generrl, peak at the true
target bearing, eveu if the noise is isotropic. The magnitude and even the sign of
this bias varies with noise field geometry. The directivity curve of the optimum
detector, on the other hand, always exhibits a peak at the true target. Finally, the
report discusses the error in estimated target location resulting from the use of
optimum or conventional detectors. A convenient figure of merit is closely related
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to the likelihood function of the target location. Since the true likelihood function
varies randomly with the observed data, an average version is employed. For the
optimal detector this figure of merit always peaks at the true target location, whereas
the conventional detector exhibits the bias phenomenon mentioned earlier. At low
signal-to-ncise ratios the bias effect can be quite appreciable. The modified likeli-
hood function is plotted as a function of bearing and range. It permits not only com-
parisons of different detector types, but also allows study of the effeci of parameters
such as observation time, frequency band and target bearing on the target-locating
ability of a given receiver. As one might anticipate, the range discriminating ability
of the array is small except at very short ranges.

Il OPTIMUM PASSIVE BEARING EST(MATION

Report No. 37 generalizes the results given in Report No. 32 (Volume V), with regard
to array size and spectral properties of signal and noise. The earlier report used the
Cramer-Rao technique to set a lower band on the rms bearing error attainable with a
two-element array when signal and noise were stationary Gaussian processes with
spectra of the same shape and the noises received at the two hydrophones were statis-
tically independent. Report No, 37 allows an arbitrary number of hydrophones arbit-
rarily spaced on a linear array (the final comparison with a split beam tracker is only
carried out for equally spaced hydrophones). It also allows arbitrary signal and noise
spectra. All other assumptions of the earlier analysis (notably that of ncise indepen-
dence from hydrophone to hydropiione) are retained.

For an array of M equally spaced hydrophones, one finds a lower bound

D(9) on rms error given by

F"w Sr (w) BR%:
237 ¢ s 2 2
D(6) > duww N (»)
o
d\/'-l‘-cos 0 MJM2-1 o 1 4 M—(—)-J

N(w)

S{(w) and N (w) are the signal and noise spectra respect‘ively, d is the spacing between
the hydrophones, T the observation time, 0 the bearing angle relative to broadside,
wmax the upper end of the processed frequency range, and c the velocity of sound.

If M S(w) / N(w), the signal-to-noise ra.io after beamforminq )s large over the entire
processed frequency range, the lower bound varies as (S/N) For M S(w)/N(w) <<1,
the lower bound varies as (S/N)~ 1 The former is a type of behavior often associated
with coherent systems, whereas the latter is generally identified with incoherent
processors. Qualitative physical justification for these conclusions is furnished by
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where L is the array length. Straightforward comparisons oi optimal and conven-
tional detector performance are now possible,

In the zbove formulation, the noise field is completely described by its Eigenvalues

lk. When the noise originates in a region remote from the array compared with the

array dimensions, iiie spatial correlation function (which generates the )\k) becomes

stationary and is therefore specified completed by a spatial spectrum. $patial spectra
are derived for various forms of sea noise, self noise, and interfering targets. Their
study sheds considerable light on the relative magnitudes of the Eigenvalues and on
the nature of the detection process. One finds, as expected from Vanderkulk’s
results, that the linear array has a much higher array gain in the endfire direction
than in the broadside direction when the noise consists predominately of spherically
isotropic sea noise. The effect is much less pronounced when the noise is circularly
isotropic, a fact readily explained by the concentration of noise power at spatial fre-
quencies associatea with the endfire direction. The advantage of the endfire direction
in either case is drasticrlly diminished by the presence of even a small amount of
self-noise (whose spatial spectrum is white, whereas the spectra of all far field noises
cut off sharply at a spatial frequency of 27/A rad/ft, X being the acoustic wavelength).
For noises of a generally isotropic type, the advantage of the optimum detector over
the conventional detector is largecly due to decreases in hydrophone spacing below a
half wavelength, This may be interpreted loosely as oversampling the spatial spectrum,
thus permitting recovery of signal energy shifted to frequencies outside of the basic
noise band by passage through the finite spatial window of the array. The presence of
self-noise beyond the basic cutoff frequency of 2r/A clearly does much to offset that
advantage. On the other hand, spatially concentrated noise such as interference from
a point source remote from the target yields a spatial spectrum largely disjoint from
the signal spectrum, so that tne optimal processor can eliminate most of the inter-
ference. As a result, one finds a high array gain in all directions except in the im-
mexiiate vicinity of the interference bearing. If the interference originates very close
to the array, the array gain is high even in the interference direction, because one
can now utilize the different attenuation rates of signal and interference across the
array to achieve the necessary discrimination.

Report No. 35 also discusses the directivity of the optimal and suboptimal detectors,
using as a criterion the ratio of the array gain off target by a certain angle to the
array gain on target. As one would expect, the sensitivity curve is considerably
broader for endfire than for broadside targets. A less obvious conclusion is that the
sensitivity curve of the conventional detector does not, in general, peak at the true
target bearing, even if the noise is isotropic. The'. magnitude and even the sign of
this bias varies with noise field geometry. The directivity curve of the optimum
detector, on the other hand, always exhibits a peak at the true target. Finally, the
report discusses the error in estimated target location resultiig from the use of
optimum or conventional detectors. A convenient figure of merit is closely related
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to the likelihood function of the target location. Since the true likelihood function
varies randomly with the observed data, an average version is employed. For the
optimal detector this figure of merit always peaks at the true target location, whereas
the conventional detector exhibits the bias phenomenon mentioned earlier. At low
signal-to-noise ratios the bias effect can be quite appreciable., The modified likeli-
hood function is plotted as a function of bearing and range. It permits not only com-
parisons of different detector types, but also allows study of the effect of parameters
such as observation time, frequency band and target bearing on the target-locating
abhility of a given receiver. As one riight anticipate, the range discriminating ability
of the array is small except at very short ranges.

I OPTIMUM PASSIVE BEARING ESTIMATION

Report No. 37 generalizes the results given in Report No. 32 (Volume V), with regard
to array size and spectral properties of signal and noise. The earlier report used the
Cramer-Rao technique to set a lower band on the rms bearing error attainable with a
two-element array when signal and noise were stationary Gaussian processes with
spectra of the same shape and the noises received at the two hydrophones were statis-
tically independent. Report No. 37 allows an arbitrary number of hydrophones arbit-
rarily spaced on a linear array (the final comparison with a split beam tracker is only
carried out for equally spaced hydrophones). It also allows arbitrary signal and noise
spectra. All other assumptions of the earlier analysis (notably that of noise indepen-
dence from hydrophone to hydrophone) are retained.

For an array of M equally spaced hydrophones, one finds a lower bound

D(6) on rms error given by
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S(w) and N(w) are the signal and noise spectra respectively, d is the spacing between
the hydrophones, T the observation time, 0 the bearing angle relative to broadside,
wmax the upper end of the processed frequency range, and c the velocity of sound.

If M S(w) / N(w), the signal-to-noise ratio after beamformin }s large over the entire
processed frequency range, the lower bound varies as (S/ N . For M S(w)/N(w) <<1,
the lower bound varies as (S/N)~ 1 The former is a type of behavior often associated
with coherent systems, whereas the latter is generally identified with incoherent
processors. Qualitative physical justification for these conclusions is furnished by




the observation that one can obtain a good estimate of the signal waveshape when the
post-beamforming signal-to-noise ratio is high. Hence, basically coherent techniques
are available in this situation. No such option exists when the post-beamforming
signal-to-noise ratio is low.

A second interesting feature of the lower bound is its dependence on the number of
hydrophones (M). If M > 1, one has a dependence on M2 and M-1 for low and high
pcst-beamforming signal-to-noise ratios respectively. Since dM = L, the length of
the array, a more significant observation is perhaps that the lower bound varies as
(LM)~1 and L-1 M-1/2 and high post-beamforming signal-to-noise ratios respectively.

Finally, the lower bound exhibits an anomaly which deserves some comment. The
dependence on (cos 0)~1 leads to an infinite lower bound for the endfire direction. In
order to understand this phenomenon, we note first that the version of the Cramer-Rao
inequality used in the derivation gives the minimum variance unbiased estimate.
Secondly, we observe that the basic data furnish information concerning relative signal
delay from hydrophone to hydrophone. Since delay is proportional to sin 6, it is
perfectly possible for noise-perturbed estimates of sin 0 to exceed unity, so that no
natural interpretation in terms of 6 is available. If one resolves this problem by
assigning 0 = 909 to all such cases, one clearly has a finite variance estimate, but
one which is now biased, It is clear, therefore, that hiased estimates exist whose
meanu square error is smaller than that of any unbiased estimate for some specific
value of 8. This suggests that one should look for a "best' bias function b(6). The
Cramer-Rao inequality with bias is not significantly more complicated than the un-
biased form, so that no serious obstacle exists on that score. However, there is

a certain arbitrariness in the use of bias, for one can in principle make the error for
any given target bearing as small as one pleases, at the expense of larger errors

for other bearings. At best, therefore, one could search for a bias function optimum
in an average sense, which in turn implies a priori knowledge concerning the prob-
ability of various target bearings. The question is perhaps worthy of some further
study. However, if one excludes bearings very close to endfire and if the observation
time T is long enough to make the indicated bearing practically useful, any improve-
ments due to bias should be quite small and would probably be outweighed by the
practical advantage of working with an unbiased instrumentation. It appears reason-
able, therefore, to regard the unbiased figure as a lower bound for most practically
interesting situations.

A more significant question concerns the ability to realize the lower bound. The
Cramer-Rao inequality gives a value of rms error which cannot be reduced, but
which cannot always be reached. In our case, the obvious instrumentation to check
rgainst the lower bound is the split beam tracker, which is unbiased for the postulated
noise field. If one obtains the required 90° phase shift with a differentiator and if
one modifies the conventional instrumentation by inserting into the summed output of
each array half a filter with transfer function H(jw), satisfying
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then the rms bearing error D(6) assumes a form similar to the lower bound. In fact,

°O £ [T
Lower bound vV 3 M2

This function increases monotonically from 1 to/4/3 as M increases from 2 to ©,
Thus the split beam tracker, with the minor modification described above, is an
optimal unbiased bearing estimator for M=2 and a very nearly optimal estimator for
arbitrary M.

Efforts to extend the above results to noise fields not necessarily independent from
hydrophone to hydrophone are now in progress,

IV ACTIVE SONAR SIGNAL DESIGN

Report No. 36 contains the results of the initial study in this series concerned with
the design of active sonar signals. Only the most idealized case is considered. The
reverberation model is based on independent Poisson distributed scatterers in indepen-
dent motion. Signals are assumed to remain undistorted in transmission and the tar-
get is modeled as a perfect reflector, changing the signal waveshape only by a fixed
doppler shift. The target is assumed to be moving on a straigit line course at a
constant velocity and its bearing is regarded as known (presumably from passive
sonar measurements), Thus only range and range rate must be estimated from the
active sonar return. The question of ultimate interest is the target position some
substantial time after the active sonar return has been received (e.g. at the time of
possible intercept). The study deals in particular with the possibility of using in-
formation from a first sonar ping to improve the design of a second ping.

In signal design, one is concerned with two distinct but interrelated problems:
ambiguity and accuracy. A return is ambiguous if two or more distinct regions in

the range-doppler shift plane represent probable locations of the target. The term
raccuracy" refers to the dii .ensions of a single such region of possible target
location. The analysis concentrates on the accuracy problem, the assumption being
that the signal-to-noise ratio is sufficiently high so that the gross errors of ambiguity
cannot occur with any significant probability. However, one cannot ignore the
ambiguity problem entirely, for one finds rather generally that signal designs cal-
culated to improve accuracy tend to increase ambiguity. Thus, bounds on attainable
accuracy are often set by the maximum tolerable level of ambigity.
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As time elapses after a pulse has been received, the region of uncertainty describing
the accuracy problem elongates in the range direction, but retains a fixed dimension

in the velocity direction. This is simply due to the fact that the target velocity is

fixed by assumption, but that any error in the velocity estimate reflects as a constantly
growing error in future range estimates. If there is substantial ""wait time" (time
between transmission and the instant at which the target position is ultimately required),
the error is largely due to this velocity component for any reasonable signal waveshape.
One is therefore led to the conclusion that the initial pulse of a two-pulse sequence
should seek primarily to establish target velocity, i.e. it should be a narrow band
pulse. If the target happens to be moving rapidly enough, - this will also improve the
signal-to-noise ratio because the reverberation will be spectrally disjoint from the
target return. This, however, is merely a fortuitous circumstance, for in the absence
of a priori information on target velocity one could not design a first pulse to discrimi-
nate against reverberation.

The function of the second pulse is primarily to measure target range. It appears
clear on intuitive grounds that this pulse should be sent as late as possible, but ther2
are two conflicting factors affecting the choice of waveform: For a given signal-to-
noise ratio, best range accuracy is achieved by a wideband signal, but a wideband
signal does not permit spectral separation of signal from reverberation and therefore
leads to lower signal-to-noise ratios when the target is moving. If the first pulse
return indicates a target moving above the same minimal velocity (depending on rms
scatterer motion), some compromise in signal design is clearly indicated. The
matter is further complicated by the ambiguity problem mentioned above. The re-
sulting complexity is such that straightforward analytical optimization becomes im-
practical and one has to resort to numerical procedures instead. The results indicate
that substantial improvements in final accuracy can often be made in principle by
proper design of the second pulse. However, the required waveshapes tend to be
rather complicated and critically dependent on the velocity information gained from
the first pulse. Furthermore, if one hopes to extract most of the information coded
into the complex waveshape of the second pulse, one cannot relax the postulate of
distortion-free transmission appreciably. Thus there ia serious doubt whether impor-
tant gains over the most obvious signal designs can in fact be made in many interesting
situations. To resolve this question, one must deal with more realistic transmission
models, Studies directed toward this end are now in progress.
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PSTPACT

"Optimum' weak signal passive detection is studied for a linear
array of hydrophones in & Gaussian noise field. Relationships are
developed between the detector performance and the array length, otser-
vation time, processing frequency band, hydrophone spacing, signal
source location and characteristics, and noise model properties. The
basis for the analysis is the eigenfunction expansion introduced ty
Vanderkulk (3). The roise models considered are two types of isotropic
sea noise, a noise of local origin, interference frim a previously
detected source, and the self noise in the hydrophones. Particular
attention is paid to self noise limitations on endfire detection. The
measures used to describe the arrey performance are the output signal-
to-noise ratio, the array pain, and directivity measures that indicate
output changes as a function of either steering angle or of noise
source location relative to a fixed steering angle. A new measure of
the ability to locate a given signal courcc is also employed. The
conventional power detector and nne other suboptimum detector are
analyzed for comparisor with the "optimum" detector. A measure of the

weak signal bias in the conventional cetector is introduced.
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CHAPTER 1

INTRODUCTION

s Background and Objective

Much recent progress has been made in the analysis of passive sonar
detection using an array of hydrophones. In 1962 Bryn [1] shoved how to
calculate the array gain and directivity of ln'artay vhose elements are
so closely spaced that significant noise dependence exists between neigh-
boring elements. He went on to indicate how op’imum (likelihood tltiol)
processing might be implemented using a combination steering and shading
filter folloving each element of the array. This analysis and design are
valid for the detection of low level Gaussian plane wave signals in a
wideband Gaussian noise field with arbitrary continuous power spectra.
Specifically, Bryn discusses the processing characteristics of a cubic
array operating in an isotropic noise field. He concludes that "at low
frequencies the optimum detector offers marked improvements over the
standard delay-square-integrate detector...”, and that "the degree to
which the improvements can be realized in practice depends largely on the
extent to which self noise can be eliminated in the input circuits of the
detector."

In 1963 Vanderkulk [3] made a more complete study of the effects on

1The relationships between this and certain other processing objectives
such as the maximization of output signal to noise ratio are the subject of
a mathematical comparison by Edelblute, Fisk, and Kinnison [2]. It is shown
that Bryn's optimum detector maximizes the output signal to noise ratio.




-

. o . “
‘ AN SN AR S e (T PR SRS L B A T AR PRI R b 17 3

)

array performance of self noise and the number of elements composing the
array. The low frequency advantage was restated but with the warning
that it could be offset by measurement errors in parameters required by

the optimum detector. The analysis was carried out for spherical, linear,

and ring shaped arrays operating in isotropic noise. It was mentioned
that optimum processing might be most useful when the noise process is
nonisotropic.

Supporting this study, Vanderkulk introduced the use of an eigen-
function expansion for the single frequency covariance matrix of the

noise. The mathematical structure of the detector which results from

el R N NN e e D BB

the use of this expansion provides significant additional insight into
array behavior. It is the object of the present study to exploit this 53 |
expansion in a more extensive and somewhat less restrictive analysis of = J
optimum linesr array processing. !2
Bryn's assumptions regarding the noise field are used here, that is, -
the noise field is assumed to be Gaussian and ergodic with an arbitrary 5§ %
continuous power spectrum. Model fields of nonisotropic as well as ,?
| isotropic noise are considered. In particular, the nonisotropic ¢ffects !5 f
of interfering targets and of local noise erising from sources on or ncar ;i %
the array are discussed and simple examples presented. The medium . = %

surrounding the array is assumed to be homogeneous and nvndispersive (so

[
L

o

| that the velocity of propagation will be constant). Spherical, attenuating

i signals from the target ere included so that the effects of the target 'T
|

| range may be studied. |
M

| In making these assumptions and particularly in selecting the noise !

| models, no attempt is mede to set up special situations in which the

!

‘i

'a f
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optimum processor could significantly outperform the conventional detector.

Such situations do exist, but our aim is to give a somewhat more detailed

account of optimum processing under familiar and ecsily analyzed conditionms.

Even though optimum processing undcr these conditions may yicld small
performance gains over conventionel processing, the enalysis itself is
valuable because it provides an easily calculated ond understood upper
limit to the performance of any detector. Thus we shall usc performance

measures defincd for the optimum detector to deal with the basic "detect-

ability" (for a fixed array) of the target signals themselves. For example,

a new measure is proposed to indicete how well a signal sourcc mey be
located, given the observation time, the array length, the signal to noise
ratio, etc.

In the analysis made here it beceme convenient to define & detector
vhose processing includes thc eigenfunction expansion used by Vanderkulk.
Although not a practical detector from an operational standpoint, it
processcs optimelly as defincd by Bryn and provides far more insight into
the behavior of 2n optimum processor undur a variety of signal and noise
conditions.

The analysis using this detcctor proceeds through the usual perfor-
mance meesures, the output signal to noise ratio and the array gein. The
cffects of the significant properties of the noise models are discussed.

A rough criterion is given for equivalence between the optimum and conven-
tional detectors (see also [4]). Comparisons are made with a detector
that is similar to thc conventional detector in [1] and [3] end also with
another simple suboptimum detector introduced here.

Since the output of zarrsy detectors is commonly shown plotted egainst

steering direction, an account of the dircctivity properties is also

A-3
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incluced. Terms ere identified in the optimum detcctor output which are
unimportant when analyzing detection in a single fixed direction but which
can be prime factors in a directivity plot. An explanation is offered for
bias that develops in the conventional detector display as the observation
time is increased.

The representation of the detector in terms of the eigenfunction
expansion permits a simple and direct analysis of the behavior mentioned
above. The question then arises whether this representation can also lead
to a simple and direct processing algorithm for practical detectors. Much
further study is required to provide a conclusive answer; some initial

thoughts are presented in appendices E and F.
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1.2 Description of the Detection Proller
a) The Received Signal

An origin is placed at the center of a straight line array of hydrophones

(acoustic transducers) and an x coordinate axis is aligned with this array

and centerea at the origin (Fig. 1 - 1). A member of the random process

" observed at the hydrophone outputs at time t (in seconds) and position

x (in meters) is denoted by v(t,x) . The time interval used for detection
1s denoted by T and the length of the array by L . Though in practice
hydrophoncs cannot be placed at every x within the interval (- % . 12‘") ,
cvery x 1is available to the array; for now, x 1s allowed to assume all

valucs within (- -211 , L) . Dectection thus begins with an observed

0<«<t <T
v(t,x)L L 1-1

-=< X < ¥

2 2

The array is surrounded ty a homogeneous, nondispersive medium occupying
the real space ({ . (This mzy be cffz or 6{3 depending upon whether the
problem is to detect in a pl :e or in a volume). Various stationary
Gaussian noise processes arc assumed to propagate within this medium, and
the statistics of the resulting disturbance along the array are assumed
known. Now ir oddition to these noise processcs, it is assumed that 2 low
level Gaussian sigrzl process may or may not be emanating from 2 single
point sourcc somewhere within (R . Presence of this signal is exprcssed
by the statement Y e ({ where the tip of the vector Y is the location
of the point source, and the ebsence of signal is expressed by Y tﬁ’ .

The ¢ priori probabilitics

plth(lcQ) 1 -2

posPr(_gt(f() 1 -3 1
]

A-5




Signal
Source

Array

Ll

Figure 1 - 1 The Array with a Target Signal Present

L

-

s aw

[ SR, 4

LY
| G

!



are assumed known. The spcctrum of the signal proccss (when Z,e'{) as
observed at the center of the array is assu:cd known. The detection
problem treated here is to decide on the basis of the received signal v
whether !_e(ﬂ . Some of the assumptions made above may bte somewhat
unrezlistic, but at this point they provide the basis for a straightforward
analysis. Some of them may later be droppud (completc knowledge of pl end
po) and others mcy be satisfied approximately by adaptive techniques
(knowledge of signcl and noise statistics). For a more inclusive hypothesis
see [5].

According tc the aliove hypothesis, then, v{(t,x) 1is a member of &

Geussien process; that is, all sets of the random variables
v(tl, xl), v(tl, xz), oo
cer v(tz, xl). v(tz, xz), 500
for

t1. t2| LI I

Xis Xg g oon € (- L 2)

a2re normally distributcd. Th: mean of this process is assumed to be zcro.
The covariance function R 1is defined by
R(t, x, s, y) = <v(t, x) v(s, y» . 1 -4

in which the brackets <: :> denote the ensemble average. Because

stationarity is assumed,
k(t, x, s. y) = R(t - 8;x,y) . l1-5
When no sigrel source is present,

R(t-s; %, y) = G(t-s; x, y) . l1-6

A-7
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The signal to be detected is assumed independent of and additive to the

noise background so that when a signal source is present,
R(t-s; x, y) = Q(t-s; x, y) + P(t-s; x, y) . 1-7

When the sigual source alone is present the covariance function R is

equal to P .

b nf sion for the Received Signal
Since v(t,x) 1is defined for all t ¢ (0,T) and x € (- %3 %) ’

the member v represents the joint occurence of events at all points
t,x in this interval. To avoid having to consider this infinite
'mensional representation, v is replaced by a finite dimensional
vector u . The vector u will not contain all the detection information
in v, but by giving u a sufficiently large number of properly chosen
components, the practically retrievable detection information in v that
i left out of u may be made arbitrarily small. These components, in
fact, are obtained by the projection of v onto a set of orthonormal

basis vectors {Oi}, 1ieD where D 1is a finite index set. That is

(u) 1eD

u
- i

T L
2

u, = f f 01*(t,x) v(t,x) dx dt
.

in which #* denotes the complex conjugate. The resulting transformation

is denoted by

E-Ev. 1"9

Since the rows of E (the basis vectors 01 ) are orthogonal, a

i



pseudoinverse of E 48 E*° whcre ° denotes transposition. Operation

on u with E*° produces
veEty 1-10

and it will be presumed that the set of basis vectors is chosen such that

the relation

vav | 1-1
may be accepted for the purposes of detcction. Then

vE*¥yu ., 1-12
The covariance matrix of u 1is

A= (aij) i, €D l1-13

where

- <u1 uj*)
j f 0 * (t,x) dx dt [ [ R(t-8; x,y) Oj(s.y) dy ds . 1-14
L

] - L
2 2

A particularly simple form for A results vhen the ¢, are

i
chosen to be a set of orthonormal eigenfunctions of the 'noise only'

covariance function Q . In fact, let the ¢, solve the equations

i
L

2

f Q(t-s; x,y) Oi(s,y) ds dy = Ai Oi(t,x) 1-15
L

° =2

A-9
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and {
(0, ¢) = & 1- 16 -
1* ") 13 {
7 1 3
l 1=
where A, 1s a scalar quentity and §,, = . Then, when no
1 1) [
0 143 l
signal source is present,
1
A-A:(l16ij), i, eD. 1-17 "’i
When a signal source as well as the background noise is present, 1
=
A= pA+C 1-18 (%
waeTe
{1
& 0
2 T 2 I
$19 ~ f [L ¢, *(t,x) dx dt f f P(t-8; %,¥) ¢,(a,5) dy ds . -
o -3 * L {
2 o -3 1-19 §
For the gnalvais that will be presented here, it is required that ii
¥
the e¢igenfunctions ¢ defined on t and x be scparable into two
factorsz. one depundent only on t and the other only on x . For the i}
-
separativn that w’..1 be made here, the following two conditions are

assuned - 1) that the nolse process is stationary, «nd 2) that the

FLopcTy
[ I |

observation time i3 at least an order of magnitude greater than the

[ Gl 8

coherence time of the noise process.

1(01. Oj) stands for the inner product of * and °j 5

2See Courant and Kilbert [6]. p.56.
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Under assumption 1) the covariance function Q may be written

Q(t-s: x,y) = E% J[. ql(w.x.y) ejw(t-s)du 1-20
in which
ql('w. X, Y) - ql*(w. X, Y) » . 1 -21
ql(w. Yy X) - ql*(w. X, Y) ’ 1 - 22
and
j s V - 1 ) 1 - 23

The intermediate form q; may be rerarded as either a cross power
spcetral dengity in the time frequency  or a single frequency spaticl
covaeriance function. Then assumption 2) means that at all pairs of x
and y in (- %3 %) the cross power spectral density 9 is relatively
constant (smooth) over ( intervals (uw - W, w+ W) , for W significantly
greater than Z% . Consequently
T
]f Q(t-s; x,y) ¢,(s) ds = q)(w, x, y) ¢,(t) , 0 <t <T 1- 24
o

in which oi telongs to a sct of sinusoids. These sinusoids are

ej“’it
@1(t) - = ' @(;0, ), 1€0 1 -25
T

wherc QD is the "boxcar" function defined by Eq. A-1 (in Appendix A)
end pictured in Fig. A-1l. The index set § contains integers such that

the frequencies w, (positive and negative) given by

i

2ni
wi - T 1 - 26

A-11
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are vithin the frequency bard of interest. Note that
o= 04" 1-27
and that the ¢1 form an orthonormal set, i.c.

T

f ¢y*(t) o ,.(t) de = 5., . 1- 28
o

Now for earh 1 ¢ q , a set of eigenfunctions Vi k € Di is

deternined by

(X1

L L
j ql(wi’ X, y) wik(y) - xik *1k(x) s T i S ope s 2 1-25

e

cnd the orthonormality condition

L
2

N e

Also, according to Eq. 1 - 21,

Yo " Yut e 1-31

Though D, could be infinite in general, it will develop later that

i
only 2 finite number of $1k can serve useful detection purposes.
Consider D1 to be composed of the double indices ik of this finite
set.

Replacing the indices in D with double indices, the separation

of the ¢ is achieved by writing

ik
¢1k(t.x) = ¢i(t) wik(x) 1 -32
ikeDs= U D1 . 1 -33
iefl
A-12
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The function oi(t) will be called & time eigenfunction and wik(x)
will be called a space eigenfunction. The eigenvalue associated with
¢

1k in Eq. 1 - 15 1s now A Projection of the reccived signal v

ik °
onto this sct of time and space eigenfunctions to obtain u will be the
first major operation in the detection analysis. The result u of this

projection (Eq. 1 - 8) of the real process v is constrained by

LA 1- 34

gty
Since further analysis will begin with u it is useful to relate the

total average noise power in v :9 quentities directly associated with

u . In particular the relations below are useful in normalizing detector

performance measures and in calculating absolute noise levels using

measurements at a single hydrophone. According to Eq. 1 - 20, the total

average noise power N in v {s

L -
2 L
N« Q(0; x, x) dx = 27 j’ nl(w) dw l-35
L -
)
where ny is defined by
L
1[2 .
nl(w) L qu(u, x, x) dx , 1 - 36
)

The form q, is Hermitian (Eq. 1 - 22) and can therefore1 be expressed

lﬂalnos {7}, p. 38.
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sleg Xy = ) ¥y () gy bt 1-3
ikeD,

Consequently,

1 Z -
nl(wi) I Ail_c' 1 - 38

:I.keD1

¢) _The Received Cignal through Discretely Located Hydrophoncs

The usc of hydrophones along the array imposes a sampling function
on the space dimension x . For simplicity in approximating the integral
form along the erray length or "aperture" (- L3 %) , the m discrcte
hydrophones will be assumed to be cqually spaced at a separation of ﬁ'.
They will be centercd within (- %3 %) » 80 that there is an interval %ﬁ
before the first hydrophone and beyond the last onc (see Fig. 1 - 2).
Strictly spcaking, then, the length of the hydrophone array is L(1 - ﬁp
or very nearly L for large m .

With the above convention, spatial sampling may be introduced at

the positions Xy » h=1,..., m by replacing the mcasure dx with

m
% Zd(x - x,) dx 1-3¢
h=1
in which the function (the Dirac delta function) is such thaot

d(x)-O.x#O 1 - 40
and
€
frd(x)dx-l,e#o. 1 - 41
- €
A-14
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Por instance, with hydrophone sampling Eq. 1 - 29 becomecs

l‘ m
f Qg X V) v N 2 ) Ay -y dy
-k h’=1
2
2
L ]
B gl x w0 Y1 Ohe) = Ay Pp(xy) o 1-42

h’=l

h-l.ooc.mo

The orthonormality condition given in Eq. 1 - 3C becones

n
&Z Vi (%) g ex) = Syl 1-43
hel

As the hydrophones approach a spacing that is small relative to the
variation in a particular space eigenfunction defined on thc unsampled
array dimension, the corresponding space eigenfunction on the sampled
dimension becomes proportioncl at the sample points (hydrophone locations)
to this particular eigenfunction. The detection characteristics using the
sampled dimension then become the same as thosc obtained without sampling.
On the othur hand, if the hydrophone spacing is increased, the array
performance will vorsen from that obtaincd without spece sanmpling.

Depending upon the noise mod:l and the time frequency, the received
noise from separate hydrophones may become independent as their distance

apart incrcases. With independent hydrophoncs the simple set

{*k} k=1, ... ,m 1 - 44
defined by
&
% (x) = QQ S X ®Xpy oeey X 1 - 45
A-16
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is a valid set of space cigenfunctions. In the analysis to follow, the

unsampled integral forms will be preferred for their simplicity. The

space dimension will be sampled only when 1) the specific effects of

hydrophone spacing arc being considered and 2) actual arrays are analyzed

for 1llustration.

d) The Dctection Problem

After the transformation from the received signal v to the

equivalent finite dimensionel vector u , the detection problem is to

deternine from u whether Y ¢ (R . The best that can be done toward

this is to fcrm

7,y

PrreRlw - MACKEERRD) LE=pec

where f o(g) is the probability density function of u when background
noise alone is present, and fl(g) is the probability density of u
when a signal is also present somewhere within R . By hypothesis,

fo and fl ere (complex) Gaussian probability density functionc.l

Using
the notation C||c| |2 to denote the quadratic form ¢*“Cc
-1 2
I Sy e 1) =
fo(g) detmn © - Sl
and
£, (w) -I £l £ @® o 1 - 48

lSee Arens (8], p. 205.
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vhere

-1 2
= Y - (A + G(X)) u
£, @D detn(A + CQO) © D) el 1-49

and tl(;) is the g priori probebility density function of X knowing
Y 1is somevhere within tR .

With the likelihood ratio £ defined by

. p, £, (v _EL £ (_\_.|,|_X_)f1(£) ' i
Laer v _LL_Pofo‘E) ~ ‘x—l—fo——-@ dx 1-50

the detection probability in Bq. 1 - 46 may be written

PriYce® |w = 1 . 1-51
since £ 1s = monotonic function of Pr(Y e ®R |v) , £ may replace

Pr(Y ¢ R |u) as the dctection statistic. According to Eq. 1 - 50, this
likelihood £ factors into

P £ (D, G
- f—l—‘%-)-(—.j—:)-dg : 1-52
pO (Q Ou

The second factor provides & measure on all possible u that zllows thenm
to be arranged in order of increasing likelihood that they arose in the

P
preseace of a signel source. The factor p—l- is used in getting a detection
° P
threshold within this continuum of ordered u . Since ;]* is almost always
()
only veguely known, this threshoid will usually be approximate. Further-

more, in practice, not all the steps in processing u prescribed by

£,@lpE®
dX may be implemented, and the crdering itself may be cnly
g D 2
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approximately realized. In fact, an cpproximate likelihoo¢ ordering of u

may be performed subjectively by observing the shape of the integrand
£, £,

fo(g) displayed on a screen as a function cf X for each u

that is observed. |
£, (u|X) £,(X)
1 1 may be
fo(y)

For c¢xample, for each u , the integrand

duisplayec et X of fixed length (range) and angle of incidence (bearing

B in Fig. 1 - 1) between 0° ana 180° . The observer mey feel thet o

A
r»-w-ﬁ..rw--—\f . /\,M—-.._‘

180° 0°

shnpe

is more indicative of signel presence than

B
M‘-JWWV\/\M/’ \I\'V\-c
180° 0°
Thus i (gA) would be judged larger than X (9{3) . Next, the threshold

for deciding that a signal is in fact present is determined from a sub-
P

jective estinate of p—]‘ , end the cost of errors. In sumary, the
o

nthematicel processing cf the received signel may end in practice with

& display of the stipe of f(gjg) f;fé) versus X . An experienceo
f (v
o

cbserver may then complete the detection process subjectively.

Uncder the assumptions meade in this study, further mathematical
£(u D) £,

fo(g)
however, this possibility will not be considered here. Instead, only the

f](glli) £, Q@
tern f (0 in L (Eq. 1 - 50) will be analyzed. Explicitly,
o

processing of could lead to a decision without an obscrver;

this tern is
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fl(l‘.l.&) f1® i eb(!'-x-)

) 1-53
vhere
b(u,X) = x(u,X) - In det (A + G(X)) + 1ln det A + 1n fl(y 1-56
and
X(!:D"[(M’G(E))'l-l\'l] lull? . 1-55

A cetector labeled the b-detector will form b(u,X) from u .

£ £
Since the shape of ) . (considered as & function of X)
o

is the key to detection by an observer, it is significant to note theat
the signal source location probability density function f1(§_|9) has
the same shape. In fact,

fl(!ly fl(.x.) e b(u,X)
£, Xlw » == @ " X® 1-56

where K(u) i1s independent of X . Thus in addition to being a detection
statistic, the shape of eb(-'-“-’-x) will also determine the location of
the signal scurce a2s accurately as possible.
Conditions for deciding that a signal source is present are thut
p.f (u in Eq. 1 - 50 be small and that p [f (u|® £,7X)dX te
oo 1 " 1% 1
large. The first of these conditions alone may in some cases serve cs
an indicetion of signul presence. 1f this approach is used, errors
that will be made when both p £ (u) and »p ff (u|X) £.(X)dX. are
oo 1 &1 1
small nust be accepted. But, these errors may be infrequent enough for
a detector forming pcfo(g) to perform usefully. Since fo(g) is
very simple to form and is affected by signal preserze over a large

region of scan, the following suboptimum detector is oroposed. This
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detector, labeled the f-letector, will fomm

£

l(g.y--ln(;-i@)- A ||y_||2+1ndetﬂl\+ln£1(_!) v 1-957

The g pricri probability of signal absence P, is assumed clcse
enough to unity to be omitted. To make this detector crudely

steerable, the set D of incices of the conponents of u will be

mede & function of the steering vector X . That is,

A method for choosing the indices to accomnlicsh ‘he desired steering
will be discussel after perfornance measures have been defined.

This chapter has given a general deceription of the detection problem
end outlined the signal processing procedure. The aims in the remainder
of this etudy are to

1) Determine the spatial set {wik' Aik}’ ik e D (Eq. 1 - 29)
snd the resulting signal covariance matrix G (Eq. 1 - 19) for
specific noise fi:lds.

2) ’ Define perfcimance measures for detectors forming b and

£ (Eqs. 1 -~ 5S4 ancd 1 - 57) and use these to analyze cdetection

in the specific noise ficlds of 1).
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CHAPTER 2

SIGNAL AND NOISE MODELS

2.0 Introduction

This chapter begins with a description of various noise fields and the
sets of eigenfunctions and eigenvalues they determine. Then, with the
eigenfunctions in mind, characteristics of the signal covariance matrix G
s«re given. The intent is to supplement some of the definitions in the last
chapter with examples. The quantities discussed are important in under-
standing and constructing the detectygn statistics b and £ (Eqs. 1 - 54
and 1 - 57),

The noise fields considered here are the superposition of four possible
independent components. These components are

1) Sea noise (acoustic background noise) - noise from surface

vaves, and other noise that is not highly directional.

2) Interfering target noise - noise from signal sources that

have already been detected and located.

3) Local noise - noise generated in the immediate vicinity of

the array. The primary source of this noise is the ship or

other platform supporting the array.

4) Self noise - noise that is generated in the hydrophones

composing the array.
Since all the components are assumed Gaussian (with zero mean), they are
completely described by their covariance function. This function is given
in the following for forms of the noise components that are both typical
end easily represented mathematically. Examples of the eigenfunctions and

eigenvalues determined by the covariance function are also included.

A-22
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2.1 Sea Noise

The sea noise observed in time t and in the space dimension x
is assumed to be homogeneous.1 Consequently, the covariance fuaction Q

may be written

Q(t-s, x, y) = Q(t-s, x-y) = Q(r, X) , 2-1
where
T e t-s 2 -2
and
X = x-y . 2 -3

The Fourier transform of Q yields the power spectrum n(w, v) in
which w (in radiens/second) is called the time frequency and v

(in radians/meter) is called the space frequency. That is,

n(w, v) = f j e~ Jlut #+ vx)Q(t, x) dt dx 2 -4

-0 -g0

and inversely,

Q(r, x) = L 2 jﬁ /' ej(wT + vX)n(w, v) dw dv . 2 -5
(2m) -

Since the noise proccss is real,
n(-w, =v) = n(w, v) . 2 -6

The transformation from Q(t, ») to n(w, v) may be considered either

“See Yaglom [9], pp. 81-84,
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a transformation from Q(t, x) to an intermediate form ql(“” x) and
then to n(w, v) , or a transformation first from Q(t, x) to an inter-
mediate form qz(t. v) and then to n(w, v) . The transform pairs

describing the Q +*q, < n transformation are

q, (ws x) = f atr, ) o 394, 2-1

Q(t, x) = %; j ql(w. X) e3*%au 2 -8
and

n(w, V) = ] q, (w, X) e IVXgy 2-9

q,_(w. X) = %—; f n(w, v) e3VXqv ; 2 - 10

L4

The transform pairs describing the Q+* qzﬂ n transformations are I
: :
q,(1, V) = j acr, 0 o IVax 2-1 d
. 2
L ]

[ ]

A Jvx - f
Q(r, x) = 53 jqz(r. v) e’ “dv 2 - 12 [ .
. |
|
and - I :
n(us \’) = j qz(To V) e- ijdT 2 -13 . f.
e -
g 5
- ]
1 10T .
q?_if. v) = o f n(w, v) e dw . 2 - 14 : 3

8 g
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Eq. 2 - 8 1s recognized as Eq. 1 - 20 in the last section. Since

ql(u. x-x) = ql(w. 0) , Eq. 1 - 36 for n, becomes '
nl(W) - ql(wy 0) . 2 - 15

For sea noise, then, nl(u) is the power spectrum of the time process
observed at eny point along the array. By Eqs. 2 - 7 and 2 - 10 n,

is related to Q and n through the equatioms

1
|
j
i

o
nl(w) = %—; [n(u. v) dv 2 - 16 d
-
and j
nl(w) = j Q(t, 0) e JuTye 2 - 17 }
The relation !
nl(- w) = nl(w) 2 - 18 ﬁ

follows from Eqs. 1 - 21 and 1 - 22 for this two-sided spectrum. The
spectral normelization implied by Eqs. 1 - 20 and 2 - 15 is such that
the noise power in bands of width Aw centered at 0, and - W, is E
2 nl(wc) Aw/2r  when ny is flat over these bands. (This normaliza-
tion is also employed by Helstroml).

A homogeneous Gaussian sca noise field may be constructed by

superimposing an infinite numbzr of independent, infinitesimally small ;

single frequency plane waves propagating within a homogeneous

1i101, pp. 2, 2.
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nondispersive medium. The space frequency v at which power is received

from any one of these planc waves is
Ve ':‘:’- cos § 2-19

vhere B 1s the angle of incidence of the wave (Fig. 1 - 1) and ¢ is

the velocity of propagation within the medium. (The quantity -c‘?- is

recognized as the wavenuaber.) Now for any 8 ,

]

c

2 -20

This band limiting in space frequency is an important characteristic of
sea noise.
Two simple examples of sea noise are the following isotropic models.
1) When the direction vectors of the infinitesimal wave
components are uniformly distributed and confined to a
horizontal plane, the total field is isotropic in two
dimensions and is labeled I2 sea noise. Physically, this
field might approximate noise conclitions in an expanee of
shallow water.
2) When the direction vectors are uniformly distributed in
three dimensions, the noise is labeled I3 sea noise. This
noise might approximate the noise backgroutid in deep water.

The power spectrun of 12 gea noise is (Appendix B)

2n,(w) '
au, V) s —t= @M -2, - 2-2

[o? w2
V2!
c
vhere @ 1s the "boxcar” function definzd %y Lq..A - 1. This spectrum

is sketched in Fig. 2 - 1 for the case in which the time peowcr spectrum
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nl(u) is a "boxcar" function (note the spatial frequency bandlimiting).
The spatial covariance function 9, » obtained from n through Eq. 2 - 10,

is
- O ¢ -
“1(‘“' x) = n,(w) Jo(c ) 2 - 22
wvhere
X*X-y.

The I3 sea noise power spectrum is

n(w, v) = 'f':' nl(u) @ ; - ‘:. ":) 2-23

and is sketched in Fig. 2 - 2 for the case in which nl(m) is a

"boxcar" function. The spatial covariance function 9, is

ql(w. X) = nl(m) sinc (£X) . 2 - 24

According to Eq. ) - 29, the spatial eigenfunctions and eigenvalues

associated with the I3 sea noise field solve the equation
L
2 wy
nl(wi) fL sinc [E-(x-y)] wik(y) dy = A, wik(x) : 2 - 25
T2

The eigenfunctions obteained are in fact prolate spheroidal wave-
functions [11].

Examples of these eigeafunctions are given in Fig. 2 - 3 for a-
time frequency of 40 hz and an array length of 50 meters. Since these
eigenfunctions are not periodic, they do not have a frequency in the
strict sense. However, some rough space 'frequency' is usually
assignable, based on zer¢ crossings or sometimes on sinusoidal appearance.

The spectrum {Aik} is plctted in Fig. 2 - 4 versus such a 'frequency'
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measure. The spatial spectrzl density function

2w, v) = =0 W) @ (v; - , f) 2 - 26

given in Eq. 2 - 23 and Fig. 2 - 2 is shown in Fig. 2 - 4 for comparison.

In normalized form, Eq. 2 - 25 is

! A L
8, (w,) j sinc — 2 (x"-y )J wiki'y’) dy” = =5 ¥, GE) . 2 - 27

It is of interest to note that since w and L appear only in product

form in the argument of the sinc function on the left-hand side of
W

ik obtained at E% = 40 hz and 1L = 50

meters are valid at all pairs of w

this equation, the solutions V¥

and L whose product is

i
wiL = 251 x 50 .
For example, if %; = 200 hz and L = i0 meters, then
A1k
b () = /Ew NC TRWEE o 2 - 28
will solve
L
2 wi
. Y - 2 -
nl(wi) .]’L sinc z (x-y) wik(y) dy = ik ik(x) . 29
-2
9y
where wik and Aik cre obtained at rri 40 hz and L = 50 meters

(Figs. 2 - 3 and 2 - 4). This is only characteristic of certain 'special'
noise models such as the I2 and 13 seca noise models; less regular

dependence on frequency cnd length may be expected in general.
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2.2 Interfering Target Noise and Local Noise

Interference noise and local noise as modcled here are Gaussian
processes that are stationmary but not homogeneous. Interference
originates at some presumably known location or locations, and local
noise originates in the vicinity of the receiving array. Interference
could be generated by a vessel that has already been detected and located,
and local noise could be generated by the vessel or other platform that is
supporting the array.

Since these noise processes are not homogeneous, there is no point
in defining the process on x beyond the interval (- %3 %) . The
spectral equations of Sect. 2.1 apply directly, describing the transforma-
tions Q « q - Repeating Eqs. 2 - 7 and 2 - 8 ,

ql(w. X, y) = f Q(r; x, y) e Jur dr 2 - 30

-0

Q(T; X, Y) - %—T; j ql(wp X, Y) eJUT dw - 2 - 31

The two dimensional spectrum n describing sea noise is not defined for
this inhomogeneous noise, and instead, the discrete set {Ak(w)} contains
the spectral information. In fact, composing Eqs. 1 - 29, 1 - 30 and

1 - 37 , the transformation q1 <+« )\ may be written

Ak(w) = ‘[ 2 wk*(w. X) J( 2 ql(m, X, y) wk(w, y) dy dx 2 - 32
L - _ L
T2 2
q,(w, x, y) = z Vb (@ x) AL (0) ¥ (w, y) 2-33
keD(w)
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A simple example of an inhomogeneous process is the noise generated

at a point source, and such a process is now described. Locating the

point source one meter beyond the negative end of the array (at x = - %'- 1),

a member of this process is

v(t, x) = f o Tl { () 2 - 34

where Y 1is a complex random point function with normally distributed

orthogonal 1ncrementa.1 In this equation Y 1s normalized so that

<dY(“’) dY*(w)) - %’7 ql(w. - %. - -12-") dw 2 -35
where ql(u. -'%.-%) is recognized as the power spectrum of the time
process measured at the end of the array x = - %-. Furthermore, since

v 1is real

Y(- w) = - YR(w) . 2 - 36

Néw according to Eqs. 1 - 4,2 -34 and 2 - 35
Q(t - s, x, y) = <v(t, x) vk(s, y)>

Yoo
- 1 fql(w, - 12‘-, - %) ej[w(t-‘) - c(x y)] dw .

mx+Len g+len 2 - 37

2

Comparing this with Eq. 2 - 31 in which Tt = t-s,

L _ L .- 3x-y)
q,(w, =5, - 3) ¢ “c .
ql(“" X, Y) - —l—' Lz 2 L . 2 - 38
(x+-2-+1) (y+2+1)
Yaglom (2], p. 38.
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1f this noise were present by itself, the set {wik, Aik} of
spatial eigenfunctions and eigenvalues would follow from Eqs. 1 - 29
and 1 - 30. In fact for each time frequency index 1 there wouid be

one nonzero eigenvalue

L L _L .
Mo " T4z Uler -3 =) 4138
with associated eigenfunction
wix
1 "%
e

Py LX) =[] e =——————— 2 - 40

2Q L X + % +1

In addition.Eqs. 1 - 29 and 1 - 30 indicate an arbitrarily large number
of spatial eigenfunctions with zero eigenvalues. In practice, however,
the continuous model discussed here is replaced by a discrete model
defined only at the hydrophone locations, so that the total number of
spatial eigenfunctions may not exceed m , the number of hydrophones in

the array. The total single frequency noise power n, defined by

1
Eq. 1 - 38 is

o) = w, =L _L -
AR e AL CUR (R U 2-4

In an actual detection problem there will always be some sea noise
(Sect. 2.3) present along with the interference or local noise. The
eigenvalues determined by the composite noise covariance function will
be nonzero in general. 1f the interference (or local noise) is strong,
the eigenfunction or eigenfunctions upon which this interference is
principally received will be close to those associated with the major
nonzero eigenvalues of the interference covariance function by itself.

As an example, consider a process made up of the noise from a

point source one meter beyond the negative end of the array (Eqs. 2 - 34 -

A-35
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2 - 41) 1in the presence of -10 db of 13 sea noise. (By -10 db it is

meant that n, for the sea noise (Eq. 2 - 15) 1s 1C db below n, for

1
the local noise (Eq. 2 - 41). The eigenfunctions are as shown in Fig.
2 - 5 for an array of length L=50 meters at a time frequency 'g; = 40 hz ,
Because of the nonisotropic component in the noise, some of the
eigenfunctions are necessarily complex. Any eigenfunction may be multi-
plied by a complex scalar of absolute value unity without changing its
normalization. The separation into real and imaginary parts, then, is
not unique. A separation is chosen here such that the real and imaginary
parts are orthogonal and such that the real part has the larger norm.
The spectrum (Xk} of the noise p&éer is plotted in Fig. 2 - 6
versus the index k . The sea noise level and local noise power are
plotted for reference. According to this spectrum almost all of the
local noise appears on the first eigenfunction. The shape of this eigen-
function evidences the attenuation of the local noise due to spreading,
and the phase relation between the real and imaginary parts indicatcs

that the noise cnergy is propagating from the negative cnd of the array

(see Eq. 2 - 40).
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2.3 Self Noise

In addition to thc acoustic noise just considered, there is always
some s.1f noise generated in the transducing elements (hydrophones) of
the array [12]. This sclf noise in any hydrophone is assumed to be
stationary and Gaussian with uniform power spectral density‘7z over all
frequencies w of practical interest. PFurthermore, the noise at cach

hydrophone is independent of that at all others, so that

q,(wy X = y,0) -‘h St 2 - 42
in which h 1s the hydrophone position index.
A direct spcctral comparison may be made with the sea roise processes
defined on the whole array dinensiﬁn (Sect. 2.1) under the following

conditions. 1) The hydrophones are spaced ﬁ- apart over the entire space

dimension (h = -», ..., ®») . 2) The space frequency v 1is significantly

less than the Nyquist cutoff frequency

m ™
Yo 2 2L L 4 -4
Under these conditions a power spectrum is adequately defined by a
sampled version ﬁ(w, v) of n(w, v) . From Eq. 2 - 9
- 2 N Ivxy,
n(w, v) = = L qy(w, xp) e . 2 - 44
h=-a
For self noise, since q, is 71 th, ,
nw, v) = €, 2 - 45
where
L
=2 N . 2 - 46
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Pig. 2 - 7 shows the shape of thc spatial spectrum at fixed time
frequency w of a noise proccss consisting of I3 sea noise plus self
noise (n = n (I3 sea noise) + n (self noise)) . Note that the spectrum
is not bandlimited to % as it was with sea noise alone (Fig. 2 - 2).
Although this spectrum is not defined in the vicinity of Vo and beyond,
this is a small restriction because m equally spaced hydrophones do not
permit effective processing above v, By increasing = , one decreascs
the self noise level ¢ (Eq. 2 - 46), and extends the effective process-
ing range (- Vor vo) (Eq. 2 - 43).

An important property of the intermediate form 93 for sclf noise

is that

m
i 2:: qqCws X, =y, £(y, ) -,tk £(x,)) = ¢ £(x,) 2 - 47
h*=1

for any f defined at the hydrophone positions Xys weey X Now

consider another noise process observed at Xps eees X whose inter-

mediate form is qi and whose spatial set at wy is
{wik(xh)’ Aik' h - 1, eeay m}, lk € Di 2 - 108

determined by Eq. 1 - 42. According to Eq. 2 - 47 the addition of

self noise to this srocess (q1 in Eq. 2 - 42 is added to qi) will
not change the spatial c¢igenfunctions. The only change, in fact, is

the addition of the constant level £ to each eigenvaluc Xik . In

any noisc model that includes self noise, then, none of the eigenvalues
can be less than £ . Since the self noise is added to the acousti:
noisc, the effect it will have dcpends on the r2tio of £ to the eigen-

values Ai; of the acoustic noise process. The relative self noise
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level, defined by

- g -
€D(w)
expresses this ratio. According to Eqs. 1 - 38 and 2 - 46 this is
also
o(w) = L JZL—‘ 2 - 50
m nl(w)

where 77 is the time spectral level of the self noise ot a single
hydrophone and ni(w) is nl(w) for the acoustic noise process alone.
When the acoustic noise is sea (homogeneous) noise, the ratio “i(w)

may be directly measured at a hydrophone output, using a narrow band
filter of center frequency w . If

Filter power output with acoustic

noisc absent (self noise) 2 - 51

Filter power cutput with acoustic
noise prusent (self noisc also present)

then

N R -
ar () I-® ° SEp

When 7{ < < ni .

i < 2 - 53

nl(w)
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4 ¢ Signal Ccvariance Matrix

The "signal only" covariancc mntrix G defined by Eq. 1 - 19
depends upon the cigenfunctions of Q and hence on the prevailing noise
conditions. Significant characteristics of the matrix G ere presented
ia the following for the noise fields discussed in the first part of
this chapter. To display these characteristics, a rcletive signal
spectrum on the cigenfunctions used will be constructed from principal
€¢lements of G .

To derive an explicit form for G according to Eq. 1 - 19, the

"signal only" covariance function P is needed. Repeating Eq. 1 - 4,

P(t, x, 5,y |1 = Q(t, x| Y) ve(s, y | }'_)> . 21- 54
signa

only
which depends, as indicated, un the signal source location vector
. cOf . Since the signal is assumed to 1) be emanating from & point
source et Y , 2) be propagating through a homogeneous nondispersive
medium and, 3) bc 2 member of a Gaussian process, the signal v received

from Y in the absence of background noise may be written

vit, x | Y) = fp(x |p JE+YETD) 4o 2 - 55

in which Z(w) 1is a complex Gaussian random point function with

orthogonal increments. Furthermore,

2(- w) = - 2*%(w) , 2 - 56
<dZ(w) dZ*(w)> - %ﬁ" dw 2 - 57

ana
s (- w =8 (w 2 - 58
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where s(w) 1s the two-sided signal powcr spectral density function

observed at the center of the crray. (For simplicity, the dependence

of 6(w) on Y caused by possible range dependent high frequency
transmission loss will be omitted from the notation, 1i.e.,
s(w) = s(ulY) ).

The time advance vy(x|Y) along each scparate wavefront relative to

the center of the crray (v(0]Y) = 0) 1is

vl = 2l e e 2 e 2yl o 8 L 258

The signal attenuation p(xll) » 21so relative to the array center

(p(0]Y) = 1) , is

2 - 60
p(x]Y) = 7
X

X et
e (77T <

(1 +

wher¢ € 18 the angle of incidence of Y (Fig. 1 - 1) and c¢ 1is the

velocity of propagation in the medium. When |[Y|| > > L,

2
ok L X 2 -
y(x|Y) = . (x cos 27 TYIT sin® B) 2 - 61

and in the limit when the sigrel may be considered a plane weve,

y(x|Y) = % X cos 8 2 - 62

and
p(x'!) =1 2 - 63

Now the covariance function P (Eq. 2 - 54) is

P(t.%,8,5|9) = 3= o(x|D) o(y|D) f Julesti D -1 g,

= 37 a(xy|D) fej“’(t-sq ®I1D)g ) aa 2 - 64
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where

a(x,y|¥) = o(xlY) o(yly) 2 - 65

and

T(x,y) s vyl - vxlp . 2 - 66

This coveriance function P leads to an explicit form for G
through Eq. 1 - 19. Howuver, before leaving the discussion of P
itself, it will be useful to obtain the total average signal powcr

S in v . This is

L ®
2 L
S = f P(0; x, x) dx-M(x_)z—"j 8(w) dw 2 - 67
L
-3 -
where
L
Nee
M(Y) = & j p (x|Y) dx . 2 - 68
L L -
T2

For plane wave signals,

M(D - 1 . 2 - 69
Now writing G according to Eq. 1 - 19 end rccalling Eq. 2 - b4,

G(Y) = (81k < ik (¥ ) 2 - 70

2 L
Bix x ik = fzwﬂt(*) _[i f o] (t) 'I'P(t.x,s,yIDO{(s) ds dt y7e(y)dy dx
2

) L ) )
2 o
L L
2 2
- IL Vi (0 p(xlD) jL Flef TOGY IV () o(y|D) dy ax 2 - 71
"2 T2
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where
T T ®
Fui(r) £ foI(t) j —;; j ej“’(t's") s(w) dw o{(e) ds dt . 2-172
o 0 -
When
1l jut
¢, (t) = =" @ (¢t; 0, T) 2 - 73
i /ﬁ? .
F assunes the siuople form
- j T
5@ “1 i={
Fii (1) = 2 - 74
0 141
(si z 8(uy) ) 2 - 75

under the following conditions.

1. The signal power spectral density s(w) 1is smooth over

intervals 4w = %1 in w.

cT

2. The constant 2 dcfined by & =
cosB

is very much greater
than the array length L .

In this analysis it is supposed that these conditions iold well

c¢nough so that

1 -
gkxkt(g) 1 - 1
). . 2 - 76
Bik x ik )
0 i¢1
L L
Sy 2 " j’Z -jwit(x,yll) g
Bxic D = j Vi p(x|Y) s, Le Vi) p(y|Y) dy dx
- L - - _
2 2 2 - 77
with negligible crror.
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Continuing with the nonzero elements of G , Eq. 2 - 66 indicates

that
3110&(!) = 8 hyp (D hg O s
in which
L
2 Ju,v (xlD) .
h, (@ = jr. v, i(x) e p(x]Y) dx . 2

2

Consequently with

B = (b, @), thed, £
the single frequency (wi) submatrix G1 of G defined by
. i
nay be written
- *
6,0 = 8.0, ® B*D . 2

This result will be of primary importance to the detection analysis
in the next chapter,

For the prescnt note that

.h.-i-h_i* 2

and, for normalization purposes, that
||k (Y)||2-LM(1) . 2
.—1-
In particular, for planc waves,

2
I I" =1 . 2

In describing the nature of G, for different noise backgrounds,

i

it is sufficient to consider ‘gi . For instance, the relative spaticl
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spectrum of the signal {Ihiklz), ik ¢ D, shows how signal pover is

i
distridbuted within G1 » Or equivalently, how it is distributed on the

spatial eigenfunctions {wik}, ik ¢ D, . This speétrun is now plotted in

i
two cxiamples using the eigenfunctions shown in Figs. % - 3 and 2 - 5.

As a first example, the relative spatial spectrum of the signal
(Ihk(w)lzl. k ¢ D(w) 1s given in Fig. 2 - 8 for plane wave signals incident
between 0° and 90° . The spatial eigenfunctions used are those obtained
for 13 sea noise at -g; = 40 hz with an array length of 50 meters
(see Fig. 2 - 3).

At 90° (broadside) incidence most of the average signal energy is
received on wo . At 55° 4incidence most of the average signal energy
is received on V) » and at 0° (endfire) incidence, on y, - When k > 3
the spectral component is a maximum for endfire signals. It is of intercst
to note that the angular interval in the endfire regiom over which thc
spectral component is large decreases as k increzses. That is, thc space
eigenfunctions become more selective over incidence angle as k 1is increasea.

As a second example, the spectrum {|hk(w)|2). k ¢ D(w) 41s obtained
using the cigenfunctions for I3 sea noise plus 10 db of local noise (sece
Fig. 2 - 5). 1In table 2 ~ 1, which contains the results , the k = 0
element in the spectra of 0° 1incident and 180° {ncident signals shows
that endfire signals from the negative end of the d.r2v have a large average
power component on wo in Fig. 2 - 5, whereas endfire signals from the
positive end of the array do not. This situation is reversed for wz and
03 :

In this chapter, noise m-iels for sea noisc, loczl noise, iuterferecnce

and self noise were introduced. Examples were then given of spatial
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L = 50 Meters
w = 2% x 4C
= 251 Rads/Scc

¢ = 1500 Meters/Sec
Background Noise is

I3 Sea Noise

+ 10 db of Local Noise
from Source

at x = ~26 Meters
m = 12 Hydropliones

b o0 8|7
¢ 0.0° 90.0° 180.0°
|
' 2.61 5.28 21.8
626 39.5 611
2|13 592 7.37
i3 | 21,8 4. 54 14.3
: 5.40 10902 5.32
|
| 396 0409 514
a
| .0186 0000141 .0192
'[,_.
| .000491 0000453 000472

Relative Spatial Spectra of the Signal in I3 and Local Noise

Table 2 - 1
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eigenfunctions fitting these models according to the definitions in the
first chapter. Finally, G was expressed by its nonzero submatrices

(Gi =8 Lt.‘} and its characteristics were i)lustrated by two examples.
Overall, it was tlte obj:ctive of this chapter to provide a familiarization

with the elements A, ¥y, acd h which will be used in later descriptions

of detector behavior.
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3.0

Introduction

CHAPTER 3

CETECTOR DLFINITIONS

The three detectors whose behavior is analyzed in chapter 4 are the

following:

It should be remembered that analysis alone is the object here and that the

1. The b-detector defined on page 20 - essentially the "optimum"

detector of {1]) and [3]).

2. The c-detector - essentially the '"conventional"” or 'power"

detector. This detector will be derived by abbreviating the

realization of the b-detector.

3. The f&-detector - the suboptimum detector introduced on page 21.

equations and structures describing these detectors are not necessarily

directly realizable in a practical detection system. The adaptation of

the b-detector equations to practical realization is discussed in Appendix E.

s(w)

Throughout the analysis to follow, Condition 1 on the smoothness of

and Condition 2 that

£ >> L on page 47 are presumed.
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3.0 Introduction

CHAPTER 3

DETECTOR DLFINITIONS

The three detectors whose behavior is analyzed in chapter 4 are the

following:

1. The b-detector defined on page 20 - essentially the "optimum"

detector of [1]) and [3].

2. The c-detector - essentially the '"conventional" or "power"

detector. This detector will be derived Ly abbreviating the

realization of the b-detector.

3. The fi-detector - the suboptimum detector introduced on page 21.

It should be remembered that analysis alone is the object here and that the

equations and structures describing these detectors are not necessarily

directly realizable in a practical detection system. The adaptation of

the b-detector equations to practical realization is discussed in Appendix E.

Throughout the analyeis to follow, Condition 1 on the smoothness of

s(w) and Condition 2 that

£ >> L on page 47 are presumed.
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3.1 The b-Detector

The b-detector output, rccalled from its definition on page 20 1is

b(u, X) = x(u, X) = i det(A + G(X)) + 1n det A + In £, .

3=1

Now according to Eq. 2 - 76 and 2 ~ 82, the function x (Bq. 1 - 55)

may be expanded as follows.l

x(u, X) = - [(A 104 B N IIgII2

-

o -1 -
==Y (gt @t - n

1eQ
* -1 2
. eglh,” @ Ay

L -1 12 .
Rk R R 11 e

Similarly,

In det(A + G(X)) - 1n det A

- det(Ai + 8, b—i(D Li* X))
=/, 1o det A
ieQ i

1

) i *‘
- }_ Indec(t +8 2 p® 0" ®) .

1ef

Since the non-zero eigenvalue of the rank one matrix Ai-

1

A-54
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Ai-l ||hi| |2 , the above determinant may be expressed in the following

polynomial form. L

det(I+aA (_)h (_))-1+sA

_-1

These relations (Eqs. 3 - 2, 3 - 3 and 3 - 4) allow the output of the

b-detector as given by Eq. 3 - 1 to be written .

»

b © = ) [lg @ g1? - 1ma s 4 p @]+ g @

ieQ

with the functional 2z, defined by

i

Y lip, @112

5y

£ =

(Eq. 1 - 34) ¢nd

Z_l =

X
because h = h (Eq. 2 - 83) so that

-4 i
*‘

2
|=
e

=

Consequentiy, if O+ is the set of all positive indices in &,

b(u, X) = ZZ {lgi* X -‘-‘-1'2 - 1ln(l + s

ied+

lsee Middleton [13], pp. 724, 725.

-1 2
1+, A7 b1

*
[

9.1! = |z,

A-55
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The processing of the received signal v to obtain u and then
b(y, X) 1s shown schemiatically in Fig. 3 - 1. The conversion from v
to o and subsequent noise weighting by A-l is independent of the
steering vector X and takes place before steering is effected. Thus
processing logically separates into the production of the weighted

u
components ril‘- and the steering of the array according to X .

Altemati:ely. the same result may be obtained starting with v and
processing as shown in Fig. 3 - 2 (see [1]). The exact definitions of f .
j and S are left until after the following general explanation.

First, the received signal is delayed and attenuated along the
array to match the delay - y(x|X) and the attenuation p(x|X) along
a wavefront arriving from the location at which the array is steered.
Consider the received signal to be represented by(Eqs. 1 - 12 and 1 - 32)

v(t, x) = }: LY Qi.(t) wik(x) . 3-10
ikeD

Then since Qi(t) is sinusoidal, the form

Z Ui wik(x) 3-11

1.keD1

is the time frequency domain representation of v(t, x) , and the
delayed and attenuated version in the frequency domain is

= 3 wv(x|D

e D(XLX_) Z uik vik(x) . 3 -12
1keDi

Next, filters ,f(w. xlg) accomplish shading along the array. In
general, this shading is dependent on the time frequency ® and the

steering vector X . After shading the results are summed along
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T {("-'OX!-_Y-,)

M

Filvering
(wiX)

ALE Squering

s(x)

inteyraticn

over ITims

inf (ﬁ) »

b{y,X)

Figurs 3=2 An Alternaisive t=l2irotsr Structure

A-58

R A T et CU e T T s " T TG ——r

— —n - TR SO SR



- i

x e(- % ,-L) and then the result is filtered according to éff(ulg) 0

These operations yield

(] [

- Ju v x|¥)
j e p(xlg(_){a(ui, x|X) wik(x) dx 3 -13

H
o “’1'39 Z Uik
1

L
ikeD -3

in the time frequerncy donain.

Returning to the time domain through multiplication by oi(t)
followed by summation over the time frequency index se: 0 , the
expression

L

- =Ju, v (x| X)
' g i
2¢(C)J(w ?L)E u fe x|X(w,» x|X)y,, (x)dx 3 - 14
%1 gl ik °|—>€w1 1D vy
ieQ ichi -3

is obtained. This is now squared and unbiased by subtracting a term
S(X) . And finally, the results are integrated over the observation
interval (0, T) and then weighted by adding &n fl(p . The overall
result 1is

L

T

w =Ju, v (x]X)
j”z‘oi(t)f(wd}) }_’ Ui fe g p(xll_()f(wi, xlpwik(x)dﬂz—s(l{_)]dt
) 1keD, -12‘-

+1n £,(0) . 3-15

When the square in the integrand is written explicitly, the integration
over time may be performed over the product pairs ¢1(t) ¢i,(t) . The

orthogonality of the {¢i} then reduces the above to

e

2
o -ju v (x|%)
Z,'f(“1|§) Z uikj e 1 p(xlpf(wi, xlg(_)wik(x)dxlz-TS(_)g)ﬂn £,0 .
ief ikeDi -12‘-
3 - 16
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This detector output is seen to be in a form similar to that in
Eq. 3 - 9. Hence if the above is equated with the right-hand side of
this equation, it is apparent that the total index set 0 may be replaced

with (4 , the set of all positive indices in Q , and that

L
2
-ju,v(x|X) _
1F @, 10| j:. e o x|V (wy, x|X) ¥, (x) ex
T2

L
2 '1 ‘ 1 2 ‘jin(xLx_)
- r-j Vg () e p(x|X) dx 3-17
1 ik

-1 2
+s, 0|, 1 _g.

and

@ =7y ma+ a7 in @D
1eft+

2 -}j In(1+s(w) A-l(w)||h(w. yllz) dw . 3 - 18

o

The phase of f(wll) is arbitrary. For each :I.kr:Di the two sides of
Eq. 3 ~ 17 may be regarded as elements of a vector relative to the
basis wik} . Returning to the space domain one obtains the following

expression for &"(will)f (w, yi® ,

A-60
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r"

- -Ju Y (x| X)
e

lf(w1|l‘)|z f PxIDF (o, x|D) vy, &) & v ()

L
1keDi -3
~Ju, v(y|X)
= [Fw, ©] eyl e T T f g, vID
L
2
“Juy v (x|X)
by (x) e p(x|X)dx
- L
2s i
/ i \ 2 *
- -1 2 L X Y ()
\/“51'\1 iy, @] 1keD, ik
so that
|5(w1|§)|-&(w. ylX) =
L
2
-Jw v(x|X)
| Wik(x) e o (x|X)dx
' Ju v (¥ X) L
2 s;i e 1 -3
=1 2 o(y|® A
s n, 7| b, (0] | i, 1k
' Ju v(y|X) *
.\/ 2 % e l 5 lu® .
-1 ACES X k'Y’
s A7 | |y (0 || thep, 1K

The magnitude of the space independent factor § may be separated

3 -~-196
*
Yy

3 -20
from

this. The phase of F may be assigned as is most convenient in the

design of the actual filters < and f G
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For signals from within a given region 02 » h is appreciable

ik

only for the set D, of indices ik . 1If Aik is constant over this

i
set, the b-detector implcmentation may be simplified considerably. The

resulting detector, labeled the c-detector, is similar to the¢ "standard"
or "conventional" detector. Without changing its structure, the defini-
tion of the c-detector is extended to cover conditions under which the
A 8re unequal. The c-detector is then considered a separate detector
and its characteristics compared with the unsimplified b-detector. In the
next chepter quantitative measures will establish typical physical condi-
tions for the c-detector to be equivalent to the b-detector. Wkhen it is
not equivalent, the c-detector will not perform as well as the b-detcctor.
The specific differences will also be discussed in the next chapter.

The mathematical dcofinition of the c-detector follows from two rela-

tions derived from the condition that the significant Ai cDi all be thc

k
same. Thesc rclations are

L
— b 2 -, v (x|
ik * ®
/\_, m Vi () = il—i z fL by (%) e 1 p(x|X)dx Vi ()
:I.keD1 ichi -3
1 'Jwiy(Y|§) )
- e oyl 3 -21
i
and
o h, M, @112 = 2 [1p, @117 = 22 i 3 - 22
i1 =1 Xi =1 Ai
in which Ai = Aik for all ikeD1 . If the first reclation is placed

in Eq. 3 - 20, it is observud that the shading1f (w, x|X) for the
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c-detector 1s uniform in x along the array. In virtue of the two

reclations, in fact, the assignments

,{@(m. x|X) = 1 3j-23
and
|5 @lp|® - et e A
A5 148 (WA (W | Ih(w, X)}]
- _S_Lszw 1 3 - 2
s
A" (w) 1+:%§% LM(X)

may bc made. Also

s =+ | 1029 ix)) ay . 3 - 25
1 A (w)

(o}

If the signals to be detccted are plane waves, then M(X) = 1 and the
second relation shows that the term 81A1-1||51(§)||2 does not vary
with the steering direction X . Hence, for plane wave signals, J?J
and S are indcpendent of the steering direction X , and the particu-
larly simple schematic shown in Fig. 3 - 3 rcsults.

in these assignments, when th¢ significant xk(m)c D(w) are
uncqual, A(w) 1s urndefined. A definition for A(w) that
is consistent when the significent Ak(w) are equal and which also
defines A(w) 1n a reasonable way when the Ak(w) are unequal 1is as
follows.

Aw) = A(w, 2)

L
2
- Z
- L 1 z A (w) [L ¥ (u,x) e i""Y(xl--)a(xlz_) ax <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>