
UNCLASSIFIED

AD NUMBER

AD838725

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors; Critical
Technology; JUN 1958. Other requests shall
be referred to Commanding Officer,
Edgewood Arsenal, Attn: SMUEA-TSTI-T,
Edgewood Arsenal, MD 21010.

AUTHORITY

USAEA notice, 11 Dec 1968

THIS PAGE IS UNCLASSIFIED

CIDS No. 5

(COMPUTER PROGRAMMING FOR AN EXPERIMENTAL

CHEMICAL INFORMATION AND DATA SYSTEM

Status Report

by

David Lafkovltz

Ruth V. Powers

Helen Hill

June 1968

DEPARTMENT OF THE ARMY

ED•EWOOD ARSENAL
Tschinical Support Directorate

Technical Data Coordination Office

Edgowood Arsenal, Maryland 21010

Contract DA-•4-035-AMC4.28(A)

UNIVERSITY OF PENNSYLVANIA

PHILADELPHIA PENNSYLVANIA 19104

307

I

Best
Available.

Copy

Distribution Statement

This documcnL is suibject LO .;,e(jal vxport controls and cacli
transmittal to a lorei2n, ,overivient or Inrei sýr. *iaton il. :riad

he made oni> by prior a&pproval1 of Llie ConimanaidinZ 01fI cez
Edgewood Arsenal, ATTN: SMITEA-TSTI-r, Fdaewood ArsnnLI ,
Maryland 21010)

Disc I a imwr

The findings in this rep)ort are not to be -o17srj#-d ts ar
of fic ial)cpartrient L1 Ole A.1niv pcos iLion twit~s.; su dIvt. gnfLCUe
by (-ther Authorized I'uLumenc s,

Spo~ns L t i c n

Dcstroy Lll"h repoiL wwiic no' Ion~v w iou,[;it .* low L IL
to Llic orgir-odor.

k

a.

a.

*11

$ *1

BLANK'PAGE

*1

* I

I

* I
I
I

I
I
I
I

-e

CIDS No. 5

COMPUTER PROGRAMMING FOR AN EXPERIMENTAi
CHEMICAL INFORM!ATION AND DATA SYSTEM

Status Report

by

David Lefkovitz

Ruth V. Powers

Helen N. Hill

June 1968

Distributioa Statement

This document is subject to special exporL ýontrols and
each transmittal to a foreign government ot a foreign
national may be made only by prior approval of the Comn-
manding Officer, Edgewood Arsenal, ATTN: SMUEA-TSTT-T,
Edgewood Arsenal, Maryland 21010

DEPARTMENT OF THE ARMY
EDGEWOOD ARSENAL

Technical Support Directorate
Technical Data Coordination Office
Edgewood Arsenal, Maryland 21010

Contract DA-18-035-AMC-288 (A)

Task 2PO62101A72702

UNIVERSITY OF PENNSYLVANIA

Philadelphia, Pennsylvania 19104

Il

FOREWORD

The work described in this report was authorized under Task 2P062101A72702,
Army Chemical Information and Data Systems (U). The work was started in

July 1964 and is continuing. The information contained in this report
represents part of the work accomplished during the calendar years 1966 and

1967.

The information in this document has not been cleared for release to
the general public.

Acknowledgment

This document presents descriptions of a series of computer programs
that collectively represent the present state of development of a compre-
hensive chemical information storage and retrieval system. The development
represents the combined contributions of individual analysts, programmers

and administrators both at the University of Pennsylvania and at Edgewood

Arsenal.

The authors of this report, therefore, wish to acknowledge the able and
effective project administration and technical guidance of the late Mr. James
P. Mitchell, Edgewood Arsenal, and of Dr. Clarence T. Van Meter, the principal
investigator of Project CIDS at the University of Pennsylvania.

The authors also wish to acknowledge the assistance of Dr. Eric N.
Goldschmidt in the various chemical phase of the work and the contributions
of the following analysts and programmers, Peter J. Brown, James W. Gerber,

Richard J. Haber, Jeffrey Kulick, John D. Leggett, Morris Plotkin, Bonnie Sherr,
and Paul R. Weinberg of the University of Pennsylvania, and of Messrs. Robert

E. Amos, Robert M. Black, Robert T. Brown, Robert J. Hartman, Joel K. Kaplan,

Eugene C. Logue and Capt. Walter M. Bryant of the Edgewood Arsenal.

The authors are also grateful for the generous assistance of Mary Jane
Potter in performing all of the art work and of Col. Frank M. Steadman in
various editorial capacities.

Reproduction

Reproduction of this document in whole or in part is prohibited except
with permission of CO, Edgewood Arsenal, ATTN: SMUEA-TSTD, Edgewood Arsenal,

Maryland 21010; however, Defense Documentation Center is authnrized to
reproduce the document for US Government purposes.

2

U

DIGEST

In April 1965, a list-structured, real time chemical information system was
demonstrated on a miniature file of 1800 compounds. It was knomn at that time
that (1) a considerably more comprehensive set of chemical screens (or keys)
would be required to effectively partition a large scale chemical file for a

A list-structured information retrieval systen, and (2) some modification in the
list-structuring techniques would be required in order to efficiently process
such large files. CIDS No. 3 Comprehensive Summary Report, A Proposed Chemical
Information and Data System, December 1965, reported on the software implementa-
tion oj this demonstration system.

The above stated requirements have beei, further developed and both a com-
prehensive chemical screer. system aLid a more efficient real time and batched
automated processor for large scale files can now be reported. The former is
described in CIDS No. 4 An Experimental Chemical Information and Data System,
Status Report, and the latter is documented in this CIDS No. 5 Report.

The basic difference in file organization concept between the system de-
scribed in CIDS No. 3 and that described in this report is that the former was
a variant of threaded list structures called the Cellular Multilist, whereas
the present system uses inverted lists. The principal reason for making this
change is that the exceedingly long list lengths* that are produced by the
screening system of CIDS No. 4, when used to process queries that contain
Boolean combinations (conjunctions, disjunctions and negations), must in the
foreseeable future be stored as inverted lists on mass random access memories.

The system has been subjected to user oriented tests comprising 273
questions on a file of 290,000 compounds. The list lengths for this file
ranged from 1 to 343,473. Results of these tests, including statistics on the
cost of assigning the screens, generating the list-structured search files and
searching the files with the batched processing system, are presented in the
document entitled Report to the AMC User AdvisoryGroup on the Initial Test of
an Experimental CIDSY 2 October 1967.

In addition to a considerably more comprehensive chemical screen assign-
ment and more efficient list search implementation, this report contains the
complete documentation of the CHEMTYPE system, which converts structural for-
mulas that have been typed on a chemical typewriter to connection tables, and
of the CIDS isomer sort registry system. Thus, the system described in this
report processes chemical structures plus auxiliary data in the following major
steps: (1) Editc' hard copy of the structures and data are typed on a chemical
typewriter; (2) Ltiz CHEMTYPE system generates connection tables and formats the
non-structural data; (3) the structure records are registered via the isomer
sort registry system; (2a, 3a) alternatively, the system can accept connection
tables from thL CAS registry system; (4) structural screens are automatically
assigned; (5) the list-structured search file is generated for either the real
time or batched system; (6) the files are searched by the real time, on-line

* A list is created for ev ry screen, which list has all compounds thac con-

tain or are described by the given screen.

3

system or by the batched system. The output of the search system is the struc-
turml formula plus all of the associated data. At present the formula is
printed on a Diura Mach chemical typewriter or a Data Products line printer.
Shortly, display on a cathode ray tube will be implemented.

I

lI

4

TABLE OF CONTENTS

1. Introduction .. 13.

1. 1 The CIDS Record and Data Structures 16

2. File Construction ... 18

2.1 CAS Conversion .. 18

2.1.1 CAS Structure Conversion (CASFMT) 21
2.1.1.1 Program Description ... 21
2.1.1.2 rrogram Structure ... 21
2.1.1.3 Operator Instructions .. 23

2.1.2 Structure Conversiun and Compression (CONVRT) 24
2.1.2.1 Program Description 24
2.1,2.2 Program Structure ... 24

2.1.3 Aidition of Molecular Formula (ADDMF) 31
2. 1 3.1 Program De scription ... 31
2.1.3.2 Program Structure ... 31
2.1.3.3 Operator Instructions ... 34

2.1.4 Molecular Formula E'xtraction Program (MOLEF) 35
2.1.4,1 Program Description ... 35
2.1.4.2 Program Structure 36
2.1.4.3 Operator Instructions .. 40

2.2 Chemical Typewriter Input 41

2.2.1 Mergenthaler Input Program (TAPWRM) 50
2.2.1.1 Program Description ... 50
2.2.1.2 Program Structure ... 52

2.2.2 Dura Mach Input Program (INPUTD) 59
2.2.2.1 Program Description .. 59
2.2.2.2 Program Structure ... 59

2.2.3 Field Recognizer and Format Program (ORGNZR) 61
2.2.3.1 Program Description ... 61
2.2.3.2 Program Structure ... 63

2.2.4 Molecular Formula Format Program (MOLFRiM) 69
2.2.4.1 Program Description ... 69
2.2.4.2 Program Structure ... 70

2.2.5 Nomenclature and Reference Field Formatting Program (MONIKR) .. 74
2.2.5.1 Program Description ... 74
2.2.5.2 Program Structure ... 74

5

TABLE OF CONTENTS continued

2.2.6 Descriptor Punch Program (PUNCH) 77
2.2.6.1 Program Description .. 77
2.2.6.2 Program Structure .. 77

2.2.7 SF1 Reordering Program (REGRUP) 79
2.2.7,1 Program Description .. 79
2.2.7.2 Program Structure ... 79

2.2.8 Structure of Non-Bracketed Information (EXCESS) 82
2.2.8.1 Program Description82

2.2.8.2 Program Structure ... 83

2.2.9 Error Message Program (APOLGY) 85
2.2.9.1 Program Description ... 85
2.2.9.2 Program Structure .. 85

2.2.10 Linear String Classification (SETUP) 86
2.2.10.1 Program Description .. 86
2.2.10.2 Program Structure .. 87

2.2.11 Reduction of the Matrix to Points and Lines (CLEANM) 89
2.2,11.1 Program Description .. 89
2.2,11.2 Program Structure ... 92

2.2.12 Generation of the Connection Table (MAKECT) 96
2.2.12.1 Program Description 96
2.2.12.2 Program Structure 97

2.2.13 Calling Program for Chemical Verification (PHASE5) 101
2.2.13.1 Program Description .. 101
2 2 13. 2 Program Structure ... 101

2.2.14 Chemical Verification (VERIFY) 102
2.2.14.1 Program Description 102
2.2.214.2 Program Structure 104

2.2.15 Expansion of the Connection Table (NFCF) 107
2.2.15.1 Program Description 107
2.2.15.2 Program Structure ... 107

2.2.16 Output of Chemical Record (TICKER) 109
2.2.16.1 Program Description #@........... 109
2.2.16.2 Program Structure ... 109

2.2.17 Rejection of Incorrect Records (REJECT) 112
2.2.17.1 Program Description 112
2.2,17.2 Program Structure ... 112

2.2.18 CHE14TYPE to CIDS Format Conversion (UPTAP) 113
2.2.18.1 Program Description 113
2.2.18.2 Program Structure ... 114

6,

A
I

TABLE OF CONTENTS continued

2.3 Registration .. 116

2.3.1 Master Registry Program (STARTA) 119
2.3.1.1 Program Description ... 11.9
2.3.1.2 Program Structure ... 119
2.3.1.2 Operator Instructions 120

2.3.2 Hold Tape Procesror (HLDPRC) 121
2.3,2.1 Program Description .. 121
2.3.2.2 Program Structure 121
2.3.2.3 Operating Instructions .. 124

2.3.3 Registry Print Tape Update (REGUD) 125
2.3.3.1 Program Description 125
2.3.3.2 Program Structure ... 125
2.3.3.3 Operating Instructions .. 125

2.3.4 Registry Print Tape Update II (RUDII) 126
2.3.4.1 Program Description ... 126
2.3.4.2 Program Structure ... 126
2.3.4.3 Operating Instructions .. 126

2.4 Key Assignment .. 127

2.4.1 Key Assignment Executive (SCNCAS) 128
2.4.1.1 Program Description ... 128
2.4.1.2 Program Structure ... 128
2.4.1.3 Operating Instructions .. 130

2.4.2 Key Assignment Sub-Executive (SCREEN, SCRNCR, SCRNDR) 131
2.4.2.1 Program Description ... 131
2.4.2.2 Program Structure ... 13M

2.4.3 Loading of Structural Fragment Screens (SLOAD) 136
2.4.3.1 Program De~criptton .. 136
2.4.3.2 Program Structure .. 138

2.4.4 Ring Analysis Executive (RINGI) 140
2.4.4.1 Program Description .. 140
2.4.4.2 Program Structure ... 146

2.4.5 Alternate Path Search (RING2, MUSTRP) 150
2.4.5.1 Program Description ... 150
2.4.5.2 Program Structure ... 153

2.4.6 Ring Comnression (RING3, COMPR) 154
2.4.6.1 Program Description ... 154
2.4.6.2 Program Structure ... 154

7

TABLE OF CONTENTS continued

2.4.7 Connection Table Expansion (RING4, TABLE) 156
2.4.7.1 Program Description ... 156
2.4.7.2 Program Structure ... 136

2.4.8 Atom-by-Atom Search (STRUC) 158
2.4.8.1 Program Description ... 158
2.4.8.2 Program Structure ... 159

2.4.9 Nonspecific Hydrocarbon Radical Key Assignment (HCRCT) 161
2.4.9.1 Program Description ... 161
2.4.9.2 Program Structure 162

2.4.10 Bond Count (BONDCT) 164
2.4.10.1 Program Description 164
2.4.10.2 Program Structure 165

2.4.11 Molecular Formula Key Assignment (NFSRN) 167
2.4.11.1 Program Description 167
2.4.11.2 Program Structk.re 167

2.4.12 Nonspeci-Lc Phosphorus Functioizal Group (PSCKYT) 169
2,4.12.1 Program Description......................... 169
2.4.12.2 Program Structure 169

2.5 1i.st-Structured File Generaticn 171

2.5.1 Search File Creation or Updating (NUFILE) 172
2'.5,1.1 Program Description ... 172
2.5.1.2 Program Structure ... 172
2.5.1.3 Operator Instructions .. 175

2.5.2 Key-Address Sort (KEYSRT) 176
2.5.2.1 Program Description ... 176
2.5.2.2 Program Structure ... 176
2.5.2.3 Operator Instructions ... 176

2.5.3 Key-Address Merge (MERGE) 177
2.5.3.1 Program Description ... 177
2,5.3.2 Program Structure ... 177
2.5.3.3 Operator Instructions ... 178

2.5.4 Index Creation (INDEX) .. 179
2.5.4.1 Program Description ... 179
2.5.4.2 Program Structure ... 179
2.5.4.3 Operator Instructions ... 182

3. File Search and Retrieval 183

3.1 Query Preprocessing ... 183

8

TABLE OF CONTENTS continued

3.1.1 Query Input Executive (INPUT) 186
3.1.1.1 Program Description 186
3.1.1.2 Program Structure ... 186

3.1.2 Query Preprocessor (EXEC30) 188
3.1.2.1 Program Description .. 188
3.1.2.2 Program Structure ... 190

3.1.3 Query Reader (READ) 195
3.1.3.1 Program Description ... 195
3.1.3.2 Program Structure .. . 195

3.1.4 Key-Expression te, Accession List Processor (KIAD) 198
3.1.4.1 Program Description .. 198
3.1.4.2 Program Structure I............. 201

3.1.5 Key Packing Program (PACKEL) 202
3.1.5.1 Program Description .. 202
3.1.5.2 Program Structure.................. 205

3.1.6 Connection Table Processor (MOLE) 206
3.1.6.1 Program Description ... 206
3.1.6.2 Program Structure .. 206

3.1.7 Molecular Formula Translator (MOPACK) '....... 209
3.1.7.1 Program Description 209
3.1.7.2 Program Structure .. 209

3.2 File Search ... 211

3.2.1 Search Executives (TAPE, TXINFO, DISKTT) 212
3.2.1.1 Program Description 212
3.2.1.2 Program Structure .. 217

3.2.2 Molecular Formula Search (MOLFM) 219
3.2.2.1 Program Description 219
3.2.2.2 Program Structure .. 223

3.3 Presentation of Responses 224

3.3.1 Registry Number and Descriptor Print Program (EAPRN) 225
3.3.1.1 Program Description ... 225
3.3.1.2 Program Structure ... 225

3.3.2 Structural Formula Reconstruction for Paper Tape Output (DURPIX)227
3.3.2.1 Program Description ... 227
3.3.2.2 Program Structure 227

9

r

r-I

TABLE OF CONTENTS continued

3.3.3 Structural Formula Recomstruction (PIX, LINPIX) 229
3.3,3.1. Program Description ... 229
3.3.3.2 Program Structure ... 229

3.3.&-. Dura Mach Output Package and Teletype Output Packagc
(DURADK, MFOU, LEADER) 231

3.3.4.1 Program Description ... 231
3.3.4.2 Program Structure ... 231

Literature Cited 233

APPENDIXES

A System Flowchart With Program Names 235
B Program Abstracts ... 241
C CAS Formats Input to CIDSS 249
D Principal CIDS Formats .. 263
E Error Detection and Analysis by CHEMTYPE 295
F Output Device Codes ... 303

Distribution List 307

Document Control Data - R&D, DD Form 1473, With Abstract
and Keyword List 311

10

I.

LIST OF TABLKS

I Condensed Scan Table for Queries 191
II Internal Storage for Queries 192

LIST OF FIGURES

1. The U.S. Army Chemical Information and Data System 15
2. File Construction From CAS Data 19
3. File Construction From Chemical Typewriter Input 20
4. Macro Flow Chart - CASF1T .. 22
5. Macro Flow Chart - CONVRT .. 25
6. Macro Flow Chart - ADDMF 32
7. Internal Organization of Molecular Formula Data 37
8. Macro Flow Chart - MOLEF ... 38
9. Copy Produced by Chemist 42

10. Copy Produced by Chemical Typist 43
11. CHEMTYPE System Process Chart U
12. Interrelation of Programs in the CHEMTYPE System 46
13. CHEMTYPE Output Format For One Chemical Record 49
14. Mergenthaler Coordinate Punch Code (Binary) 54
15. Macro Flow Chart - TAPWRM 57
16. Macro Flow Chart - INPUTD 60
17. Macro Flow Chart - ORGNZR 67
18. Formatted Molecular Formula 71
19. Macro Flow Chart - MOLFRM 73
20. Macro Flow Chart - MONTKR 76
21. Macro Flow Chart - PUNCH .. 78
22. Macro Flow Chart - REGRUP ... 81
23. Macro Flow Chart - EXCESS .. 84
24. Macro Flow Chart - SETUP 88
25. Macro Flow Chart - CLEANM .. 94
26. Macro Flow Chart - MAKECT 99
27. Macro Flow Chart - VERIFY .. 105
28. Macro Flow Chart - NFCF .. 108
29. Macro Flow Chart - TICKER .. i1
30. Macro Flow Chart - UPTAP .. 115
31. Registry System 117
32. Macro Flow Chart - HLDPRC .. 122
33. Macro Flow Chart - SCNCAS .. 129
34. Macro Flow Chart - SCRNCR, SCRNDR 132
35. Macro Flow Chart - SCREEN .. 134
36. Macro Flow Chart - SLOAD 137
37. Macro Flow Chart - FINGI 14.. . . .
38. Macro Flow Chart - RING2 ... 1
39. Macro Flow Chart - RING3 ... 155
40. Macro Flow Chart - RING4 ... 157

Ii •_-
11-

LIST OF FIGURES (c-n'd.)

41. Macro Flow Chart - STPIUC .. 160
42. Macro Flow Chart - HCRCT .. 163
43. Macro Flow Chart -, BONDCT ... 166
44. Macro Flow Chart - MFSRIN .. 168
45. Macro Flow Chart - PSCKYT ... 170
46. Macro Flow Chart - NUFILE ... 173
47. Construction of Three-Level Index 180
48, Batch Search System .. 184
49, Real Time Search System ... 185
50. Macro Flow Chart - INPUT ... 187
51. Macro Flow Chart - EXEC30 ... 189
52. Macro Flow Chart - READ ... 196
53. Macro Flow Chart - KIAD .. . 199
54. Macro Flow Chart - PACKEL ... 203
55. Macro Flow Chart - MOPACK ... 210
56. Macro Flow Chart - SEARCH EXECUTIVES 213
57. Macro Flow Chart - MOLrM .. 220
58. Macro Flow Chart - EAPRN .. 226
59. Macro Flow Chart - DURPIX ... 228
60. Nacrc Flow Chart - PIX 230

12

121

/i

r2

U

COMPUTER PROGRAMMING FOR AN

EXPERIMENTAL CHEMICAL INFORMATION AND DATA SYSTEM

1. INTRODUCTION

This report describes all programs written to date for the experimental
U. S. Army Chemical Information and Data System. They are interim programs
in the sense that they will be augmented and refined, in accord with present
plans and future experience, to meet more fully the requirements of an
operational system. Disclosure at this interim stage is designed primarily
to acquaint computer systems analysts with (a) the basic design principles
of the system, and (b) sufficient programming and logic detail to indicate
how these principles have been implemented on the IBM 7040 computer.

The descriptions are presented at three levels. The Introduction pre-
sents an overview of the entire system, including the relationships among
the major subsystems, the generation and flow of data within and through
the system, and the structure and content of the principal hardcore data
record. The subsequent two sections of the report are organized according
to the two major systems, which are the file generation and the search
systems. The latter is composed of a batched search system and a real time
search system. Within these respective sections, the total system is
described and then the individual programs are functionally and operationally
described.

The functional program descriptions relate only to how a given program
functions within its own executive environment and not its relation to the .

system as a whole. That is, it is a detailed description of the specific
task that a given program is to perform and is intended for an analyst who
might wish to see the design outline of each individual program below the
level of a total system functional description. Therefore, such a descrip-
tion will include a brief statement of program function called the Abstract
and a somewhat more detailed program description which includes, where
appropriate, a block diagram, buffers, lists, record format, input and out- 'I
put arguments and related sub or main programs.

The operational descriptions similarly relate to individual programs
and include, where required, program operating instructions such as tape
requirements, interpretation of error messages and restart instructions.
No microflow charts or listings are provided in this documentation. All
programs are written in the MAP language for the IBM 7040.

As an aid to the understanding of the relationship between the pto-
grams described in this report, a system flow chart of the complete computer
system is presented in Appendix A. The code names of the programs required
to perform each stage of processing are included. In Appendix B, abstracts
for each program described in this report are presented in alphabetical
order by code name. Important data formats appear in Appendix D as well
as in appropriate places in the text. Unless otherwise specified, all data
elements are stored in binary.

This report does not contain a system functional description in the
instructional sense for potential users of the system. Four existing reports

13

I

and CIDS No. 6 will collectively .rovide a user-oriented system functional
description. The four existing reports are those identified by the numbers
(1), (4), (5), and (6) in the literature citations on page 233.

The CIDS No. 4 report (1) describes the system of structural keys that
are automatically assigned to the compounds and which serves as the algor-
ithmic basis of the screen assignment programs described in Section 2.4. The
Guide to -he CIDS Retrieval Language (4) specifies the mode of querying the
system both in the batched and real time systems. The ACT II and III Chemical
Typing ronventions (5) and (6) specify the rules for editing and drawing struc-
tures for system input and the rules for typing them along with other related
data such as the molecular formula and nomenclature.

Another document, the Report of the AMC User Advisory Group on the
Initial Test of an Experimental CIDS (2), is of correlative interest. It
presunts the detailed results of a large scale experiment in which 180
stru.'tural questions were submitted to this system at a time when the file
size was 290,000 compounds.

Consonant with the purpose of producing an experimental system, the
programs described in this report continue to be modified and improved. Those
most subject to change are the screen assignment programs since they relate
directly to the experiments, and since the over-all performance of the system
is most sensitive to the quality and balance of these screens. Other parts
of the system, such as the list structuring programs have performed well and
are more stable, although it is planned to increase their efficiency some-
what in order to better accommodate massive files. A few additional pro-
grams, which were initially recognized as necessary for a maximally effec-
tive system but whose development has been intentionally deferred until
results of large scale experimentation were available, will be incorporated.

Fig. 1 presents the three systems that comprise the U. S. Army CIDS and
defines their interrelationship. These systems are labelled: (A) File
Construction (B) Batched Search, and (C) Real Time Search.

In System A the structural formula of a compound must be represented
as a connection table before it can be screened and added to the file. The
CIDS file construction programs accept this data from two sources, the
Chemical Abstracts Service registry system and the University of Pennsylvania
C±iEMMYPE system.* The connection tables from either of these sources are =

formatted into a record along with other data, and the structural screens**
are automatically assigned. Then, based upon the assigned keys (screens),
an inverted list is generated in which all compound record addresses
having a given key are listed in sequence. The outputs of this file 21
generation program are the inverted key index and the search file. The
program is capable of producing such a list-structured file for the batch

processing system (B) and the real time system (C). In the batch system,

*The CIMMMYPE system was developed at the University of Pennsylvania under
contract NSF C-467. Input, output and chemical verification programs
required to process CIDS compounds were produced under the University of
Pennsylvania Project CIDS, Contract DA-18-035-AMC-288 (A).

**See CIDS No. 4, Section 3, for a description of these screens.

14

.

[I

LL. a

I-ti- - - -- - - - - - - - - mI IL
I It

goI

I~ii

I 15

I

the index is stored on magneti disk for more efficient processing of the
inverted lists and the file is stored serially on magnetic tape; in the
real time system, both the index and the file are stored on magnetic
disk.

The batched prr' essing system, represented in Fig. I as (dashed) block
B, accepts queries iLom punched cards in batches of up to 2000 queries and
processes them in two stages. The query formats are described in Reference
4. The first processing stage performs list intersections, merges, or
deletions as required by the logical expression of keys in the query. The
number of compound record addresses that respond to this stage are printed
on the line printer as a retrieval statistic.

The second stage of the process utilizes the address records produced
by the first stage and performs all necessary subsequent processing on the
accessed records. This may include molecular formula qualification and
structural atom-by-atom search The responses from stage two are sorted
by query ID number and printed on the high ,peed line printer.

In the real time system, shown in (dashed) block C, both the index
and file are on random access disk. The organization of this system is
similar in its two stage operation to the batched system, differing in the
following respects: (1) The inputs and outputs are via teletype and
teletype/Dura Mach chemical typewriter, respectively. These are connected
on-line to the system via data sets. (2) The queries are processed one
at a time as soon as they are received. (3) The retrieval statistics
are returned immediately to the on-line typewrittr as soon as they are
computed in stage one. (4) The compound records are retrieved randomly
from the disk and returned immediately to the teletype, where they are
punched on paper tape and can be printed, with structural formula, on the
Dura Mach Chemical typewriter.

1.1 THA CIDS RECORD AND DATA STRUCTURES

The data fields of the CIDS records are listed below:

Registry Number

Additional Compound identification Numbers

Molecular Formula

Connection 'able and Abnormality Table

* Structural Formula Image

Structural Keys

Reference Block: !

* Nomenclature

* Descriptors

* Security Indicator

* Stereo Indicator

• • | |g | |

The fields marked by an asterisk appear in the records processed by the CHEM-
TYPE system, but not in the GAS record. Separate tape filesof the CAS system
contain nomenclature and bibliographic references,

Three basic kinds of data or information structures are represented in
this record. These are: (1) standard alphanumeric, (2) graphs, (3) pictorial
displays. The graphs are represented by a connection table which cites the
nodes and branches of the graph along with their values, such as COS, etc,
and single, double, triple bonds. Abnormalities related to specific nodes of
the graph, such as charge, mass, valence, are cited in a correlated table
called the abnormality table. The format of these tables is described in
Sections 2.1.2.2 and 3.1.6.2.

The pictorial display data contains the compound structural formula and
is represented in the •ecord as a table which contains every typed symbol (from I
the chemical typewriter) of the structure along with a number which gives its
relative location within a display matrix. In the future, it is intended
to replace t•his memory consuming representation with a more concise one which
stores only node coordinates, whereby all bond symbols can be algorithmically
reconstructed via Cartesian geometry plus a few heuristics. This part of the
record is called the structural formula image.

The remainder of the record is standard alphanumeric data, although the
nomenclature requires an extended symbol set because it contains Greek let-
ters, upper and lower case letters, plus other special characters.

The re-presentation of molecular formula, structural formula and nomen-
clature, therefore, requires a considerably expanded printer and display
font iapability, and both the input devices (Dura Mach and Mergenthaler chemi-
cal typewriters) and the output devices (Line printer, Dura Mach and CRT) are
designed to meet these specifications, although none of them has compatible
code sets. The character sets and binary code assignments of the Data Products
line printer and the Dura Mach and Mergenthaler chemical typewriters are pre-
sented in Appendix F.

1

17

oI

2. FILE CONSTRUCTION

This section describes in more detail the preparation of data for use by
the CIDS Retrieval System. Dashed block A in Figure 1 gives a simplified view
of the processing required for data from each of the two accepted sources,
the CAS Registry System and the University of Pennsylvania CHEH1YPE system.

Each of the following subsections describes one of the major phases of pro-
cessing in the construction of the Search File. These are (1) GAS Conversion,
(2) Chemical Typewriter Input, (3) Registration, (4) Key Assignment, and (5)
List-Structured File Construction.

Figure 2 gives an overall view of the processing of data received from the
WAS Registry System. The major processing phases required are those numbered
(1), (4) and (5) above. The process blocks in the flow chart are numbered in
this same way, and contain the code names of the programs required to perform the
processing.

Figure 3 gives an overall view of the processing required for data entered
through a chemical typewriter. Process blocks numbered (2), (3), (4) and (5)
refer to the major processing phases listed above. The blocks include the code
names of the programs required in each phase.

2.1 r,9A.S. CONVERSION

This section describes the programs required to prepare data received from
the GAS Registry System for use by CIDS. The first two programs, CASFMW and
CONVRT, translate data from the CAS Structure Master File to the CIDS format.
The next two programs described, ADDMF and MOLEF, perform a conversion of molec-
ular formula data found in the GAS Bibliography File and adds this to the corres-
ponding compound record. The output of this phase of processing is a compound
tape in the CIDS record format suitable for input to the Key Assignment System.

18

CA$
Structure
Moster

Structures in Sorted CAS
CID$ Format Structures Bibliography

CONVRI CAS Reg. No.

ADDMF

MOLE F

4

SCNCAS

SCRNCR

Add' RINGI R.N.

Ring Keys CFRINGZ M.F
RI N G3 C. T.

RING4

4

SCNCAS
SCREEN
STRUC
HCRCT
BONDCT
MFSRN
PSC K YT

CF Add',
Fn. Group &
Misc. Keys

_ . 5_

NUFILE CF: Compound File in

KEYSRT CIDS Record Format

MERGE
INDEX

File

Figure 2. File Construction From CAS Data

19

II

Progroms performing functions:
Input
For matt in 9
Creation of Connection a

Abnormality Table
Chemical Verification

Output

- -4

2 SONCAS
TID SCRNDR
M.F. RINGI
C.T. UPTAP CF RING2
S.F.h. RING3

Ref. RING4

4 N

Add; NSCINCAS Rog. No. 3 ,• ,

STRUC STARTA

HCRCT C- F HLDPRC C
BONDCT RUD T. Add:
MFSRN Ring KeysPSCKYT

NUFILE
KEYSRT

Add: MERGE
Fn. Grp.& INDEX
Misc. Kays

Search
File

CF' Compound File

in CIDS Record
Format

Figure 3. File Construction From Chemical Typewriter Input

2 0

2.1.1 CAS Structure Conversion

Code Name: CASFfI

Proprammer: James Gerber

Abstract: CASFMT reads the CAS Structure Master File and translates the
information to the CIDS format. The output of CASFNT is a tape containing the
registry number, connection table, and abrnormality table (if present) for each
CAS compound converted.

2.1.1.1 Program Description

CASMFT accepts CAS Structure Master tapes as input. The format of these
tapes can be found in Appendix C. These tapes contain a series of compound de-
scriptions made up of one to four records of types FK, F2, F3 and F4. The program
first reads a type Fl record and makes a table of "From-Attachments." Then a type
F2 record is read to obtain a list of element symbols. An F3 record is read to
obtain a table of bond types. The registry number and subsidiary information are
read from an F4 record and converted for use as textual descriptions. After an F4
record has been read, a CIDS connection table is produced by program CONVRT.

The CAS File is ordered to take advantage of the fact that many compounds
have identical first records, first two records or even first three records.
These identical records are not repeated, so that after reading and converting
a type F4 record (which must be the last record of every description), the next
record read (beginning a new description) need not necessarily be of type Fl.
The new description may begin with a type F2, F3, or F4 record, indicating that
the beginning records which have been omitted are identical to the corresponding
type records for the previous compound.

After a complete compound description has been read, CASF1!r produces X, B and
E tables as input to program CONVRT (Section 2.1.2)'. It reads and reformats the
modification list (abnormality cable), putting the charge, mass, and valence in-
formation into a CIDS abnormality table and the single-atom-addend information
into the CIDS connection table. Program CONVRT then converts the connection table
into CIDS format and renumbers the abnormality table to agree with the connection
table which has been renumbered by CONVRT.

CASFMW will produce CIDS output tapes which are used as input to programs
ADDMF and MOLEF which add molecular formula information and reformat the records.

A macro flow chart of the program is presented in Figure 4.

2.1.1.2 Program Structure

CASFMT is a main program which calls subroutine CONIVRT. The input consists
of the tapes holding the CAS Structure Master File. The output consists of a
tape of compound descriptions in the following format:

21

I..

SsTART D

CAS Record

SEnd Y

of File? END .

Record Type

Make Make MAke Convert
"From' Atom Bond Abnormality
List List List Table and

Reg.No.

Make Ring Make Insert
Closure Ring Closure Redundencies

List Bond List in
X,BE Lists

ICall CONVRT
to Format

C.T.

outputReg.No., C.T.,
Abn. Table

i~gtre 4. Macro Flow Chart - CASFM'

22

di*

I

Word

0 Bits 0-17: Number of rings in str,,cture (Binary)

Bits 18-35: Number of words in connection table (Binary)

1-2 (AS registry number (9 characters, right-Justified)

3-m Connection table (CIDS format) (See Sec. 2.1.2.2)

m+l-n Abnormality table (if any-last word is 0)
(See Section 2.2.11.2ý

Some compounds are allowed in the CAS system that cannot be converted to
CIDS format. These compounds are rejected and the message

REGISTRY NO DELETED

is printed on the line printer. No action is required. If Sense Switch 6 is
in, the connection table will be printed before the deletion message.

2.1.1.3 Operating Instructions

When running this program, tapes must be mounted as follows:

CAS Structure Master -- S.SU05
Checkpoint tape (no ring) -- S.SU25
Output tapes as specified on $FILE card

At the end of an input reel, the computer will halt after typing a message. If
the reel is not the last, press SS5 in and then start. This will cause a check-
point to be taken as a safety measure. Thenrestart with the new reel mounted
using the checkpoint code typed out. If the reel is the last, leave SS5 out and
press start. This will cause the output files to be closed (all remaining out-
put is written and a file mark is written) and the program will exit. Output
reel switching is automatic. When starting from a checkpoint, the same output
reels that were mounted when the checkpoint was taken should be mounted.

The following sense switch settings alter the program:

SS6: in- connection tables printed on line printer
out- no connection table printing

SS5: in- take checkpoint and terminate job
out- no action

When a check point is taken, all reel repositioning information to retained.
Restart can be achieved either by a $RESTART card or by an operator interrupt
with the restart code entered into the console keys.

23

mI

2.1.2 Structure Conversion and Compression

r, Code Name: CONVRT

Prograimmer: John D. Leggett

Abstract: The purpose of the program is to convert a structure to a
format suitable for storage and searching. The structure is compressed to
facilitate the atom-by-atom search. To accomplish this compression, carbon
atoms with exactly two direct attachments are removed, and the path lengths
and bonding are indicated. The program will also format structures which are
query fragments, in which case the resulting connection table has redundancy
removed and the atoms are ordered to speed searching. In addition, the vari-
ous types of free, or hanging, bonds are formatted.

2.1.2.1 Program Description

The first process is the addition of artificial atoms at the ends of any
hanging bonds in a query fragment. For a hanging bond, a carbon with "don't
care" number of connections is added. For dashed bonds (which are entered as
type 5 bonds and indicate attachment to C or H), the bond is deleted and a spe-
cial indicator is placed on the atom.

The next step is to compress by removal of carbon atoms with exactly two
attachments. The list of connections is examined to locate these atoms which
are then removed. Before removal of any atoms, each connection is considered
to be of path length 1. As an atom is removed, the atoms to which it is con-
nected are then indicated as being attached to each other by a path length
which is the sum of the two path lengths incident on the removed atom. The
bonds corresponding to these paths are concatenated and placed with the atoms
to which the removed atom is attached. When all the carbons with two connect-
ions have been removed, the program renumbers the atoms to form a compact seL
of atom numbers, and format-s the connection table.

If the structure is a query fragment, CONVRT then orders the atoms in the
connection table on the basis of element kind and atom connection complexity,
such that the most unusual or significant atom appears first. This technique
speeds atom-by-atom search, as the query fails an irrelevant compound more
quickly. Redundant entries are then removed from the connection table.

A macro flow chart of CONVRT is presented in Figure 5.

2.1.2.2 Program Structure

Program CONVRT is a subroutine which is utilized in many phases of the

CIDS system. The input consists of the connection table in the format de-

scribed below, the abnormality table (if any), an indication of whether the
structure is a query fragment, the location in core where the final connection
table is to be placed, and the number of atoms in the structure.

24

/

i I | I I I |

II NVI

Ader Artifca

Hanging \ Y A•m•d 1m. R tov
Bonds? Dashed Bonds.

!A

,TN

Remove Car-
bons with

Two At5 tachr-
mfent s

r
*_

LCncatenate
Bonds

FFormat

Connect ion

Tab le

F.igure 5. Macro Flow Chart -COtI';RT

I

The input connection (able consists of three lists: X. B, and E, in
which each atom and its connections are described in eight-word blocks. The
first eight words of each array are allocated to atom 1, the next 8 words to
atom 2, etc. Each eight word block in the X list contains the atom numbers
"for up to eight connections from that atom, right-adjusted in consecutive words.
The corresponding words in the B list contain the bond type of the connection,
right-adjusted. In the E list, the first word of each group of eight contains
the element kind for that atom, right-adjusted in BCD. In addition, bit 17 is
set to I for each word of the E list corresponding to an entry in the X list.
If the connection is a ring connection, the corresponding E word is set minus.
In the example belc-., the X, B, E representation is shown in nctal, wit'i lead-
ing zeros omitted.

X 3 B I E 1006042 vi

0 0 0

0 i0

o01
0 0

0 u0

0

0

3 3 (%4

0 0 0

0)0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 '1006023 #3

2 3 1000000

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

2-6

_______-- ------ ,-- _T

If thc connection is a rin2 connection, the corresponding E word ie set minus.

The output consists of the connection table (C.T.) stored in a block of
consecutive 7040 words. The connection table is divided into three parts:
the connection segment, the bond index, and the bond segment. In addition,
the first word of the C.T. is an index to the three parts. The address (bits
21-35) of the index word contains the relative location of the bond index seg-
ment; the decrement (bits 3-17) contains the relative location of the bond seg-
ment. This is illustrated below:

OOOOOxOOOOOy Tndex Word
1

II2

Cnnec tion Segment

y
Bond Index}

x-l

x
Bond Table

Connection Se&Ment:--In -he connection segment, carbz'u atoms with exactly
two attachments are not explicitly stored. The presence .; ,hese atoms is
indicated in the C.T. as follows:

N -L-= C - C-
CH3

Atom number 1 is connected t. atom number 2 by a path of length 4. Likewise
for a file compound the redundant connection is indicated- atom 2 is con-
nected to atom 1 by a path of length 4. Each atom presert in the C.T. is
stored as follows:

Ist word:

Bits Coatuents

s)
1 = I if aton is in a :_ing

0 otherwise

2-5 No. of connections to this atom

6 1= if 1st connet':ton is part of i ri-,gt 0 otherwise

7-11 Path leng~h to 1--

27

12-17 Atom no. of 1st connection

18-29 Element kind in BCD, right-justified

30-35 Node tý7pe (see below)

2nd word: (if necessary)

s I

i-ii 0

12 " if 3rd connection is part of a ring
I-- 0 otherwise

13-17 Path length to 3rd connection

18-23 Atom no. of 31d .onnecuie.i

24 1 if 2nd connection is part or a ringt=0 otherwise

25-29 Path length to 2nd connection

30-35 Atom no. of 2nd connectoz.

3rd, 4th words (if necessary)

Same format as 2nd word for the remaining connections.

An atom is node type I if it is not carbon, node type 2 if it is a carbon with
more than two attachments, and node type 4 if it is a carbon with one ccnnec-
tion (i.e. a branch end). If a compound contains only carbons with 2 connec-
tions (ex. benzene), one atom is chosen as node type 3, and the rest are com-

p-ressed.

Bond Index: The bond *ndex serves the purpose of !o-imtfng entries 41: thc
bond table corresponding to :-azh atom in thie connection segment. Each entry in
the bond index require3 6 b•cs. The rigrtmost 6 bits of the first bond index

word gives the location, relative to the head of the bond table, of the start
of the bond entries of the second atom (the entries for the first atom are to

begin with the first word of the bond table). The format is:

Word 1:

Bits Relative Location of Bonds for

30-35 Atom 2
24-29 Atom 3
18-23 Atom 4
12-17 Atom 5

6-I Atom 6
s-5 Atom 7

Word 2 (if necessary)

30-35 Atom 8
24-29 Atom 9

28

U I

The table continues for as many words as necessary to provide an entry for
each atom. The last entry gives the relative location of the word following
the last word of the bond table.

Bond-Table: The bond table consists of a number of groups (one group
for each atom) of bond entries. The location of the beginning of each group is
specified by the bond index table. Each word of a given group represents the
bonds in a path from the given atom to another atom, in the form of a string
of three-bit digits, each of which represents the bond type of one segment of
the path. The rightmost six bits of each word contains the number of the
atom to which the string is connected. For a path of length greater than
10, the bond-string is continued in the next word where bits 30-35 are set
zero. The compound below:

SCH3
NM C- C = C

C H3

has the bond table:

000000031202 #1
000000021301 # 2
000000000103
000000000104
000000000102 #3
000000000102 4

A bond of type 4 indicates a non-fixed bond, i.e., a "resonant"bond.

29

rI

As an example, the octal representatiom of the tonnection table as for-
matted by CONVRT for the following compound is shown below.

,4 6. N

0

000016000014 Index Word
234601602302 #1
- 1024601
030101602302 #2
- 1040103
010102604601 #3 Cvnnection Segment
020102604601 #4
- 305
030304604501 #5
- 1070106
010105604601 #6
010105604601 #7
151411070603 od d16 , Bond Index

44444401 #1
44444401

102
101 #2
203
104
202 #3
102 #4 Bond Table

12105
12104 #5

20E
207
205 #6
205 #7

30

1.1.3 Addition of MolecuLgar

Code Name: ADDMF

ProfraK r: tuth V. P&were

A.rt: ADDMF reads a tape of compound connection tables which have
been tranialsted from CAS to CIDS format and are ordered by CAS Registry Numbers.
Molecular formula do,, from the CAS Bibliography File Is added to this tape and
the compound records are rewritten in CIDS record format.

2.1.3.1 Program Description

ADDMF reais a tape containing compound connection table (C.T.) records
which have been converted to CIDS connection table format from the CAS Structure
Master File. ADDMF calls subroutine MOLEF (Section 2.1.4) to read molecular
Formula data from the CAS Bibliography File.

As each compound C.T. record is read, the CAS Registry Number (R.N.) is
given to subroutine MOLEF which reads the bibliography tape until tht molecular
formula Tecord for that compound has been found or dntil a larger R.N. is read,
indicating that the desired record is not on the tape. When the desired mole-
cular formula record is found a Hill and addend formula is formed in the CIDS foi-
mat by MOLEr, :ompouads for which no M.F. can be found are rejected with error
messages.

ADDMF stores the R.N., C.T., and newly formatted M.F. in the CIDS compound
record format. Also stored at this time is a count of the total number of rings
in the compound which --. btained from the output of OASFMT. This is stored
as the first key in the Key block.

A macro flow chart uJ the program is presented in Figure 6.

2.1.3.2 Program Structure

ADDMF is a main program which calls subroutine MOLEF. It prepares data for
input to the Screen Assignment System.

The input to ADDMF consists of two tape files. One is the output of

CASFMT (Section 2.1.1) wbich contains C.T. records of the following format:

¶_oTd Contents

I D a No. Rings
A - No. Words in C.T.

2,3 R.N.

4 C.T.

31

Print 'NoP e "NpaeePitdN

&M. F. 1 C..

7; ad C ADS Forma

OututED.

Neeod.

eeISI
Figur 6.n' Caclo Flw OaLEADN

M2

Word Contents

m Abnormalities (if any)
(If present, the last word is zero)

In addition, the CAS Bibliography file is an input which is read by sub-
routine MOLEF.

The output of ADDMF is an IOBS tyDe 2 tape. Each compound record is a
logical record. These are grouped into physical records of 1000 words or less.
The CIDS record format follows:

Word Bits Contents

(3 17) 2's C (# words preceding Addit. Reg. No.)
(21-35) 2's C (# words in logical record)

2 (3-27) 2's C (# words preceding Abnormality Table)
(21-35) 2's C (# words preceding C.T.)

3 (3-17) 2's C (# words preceding References)
(21-35) 2's C (0 words preceding S.F.T.)

4 (3-17) 2's C (# words preceding Keys)

(21-35) 2's C (# words preceding Oualifiers)

5,6 Primary Registry Number (BCD)

7 Mol Form

Pq Additional Registry Number

n Structure (C.T.)

o Abnormality Table (if any)

Structural Formula Image (if any)

Reference (if any)

fualifiers (if any)

s Keys (2 words per key)

Note that several of the data blocks will be empty (or have zero word length).
The pointers to these blocks will point to the location where the data would be
stored if present.

33

I

Im U

If the M.F. record for a particular R.N. cannot be found, the following error

message is typed: "NO MF FOR" where the CAS R.N. is given.

2.1.3.3 Operator Instructions

The C.T. input tapes (output of CASFMT) are loaded sequentially on S.SU06.
When the end of each C.T. input tape is read, a message is printed requestingthat sense switch 3 be pressed in if this is the last input tape. The loading of
the CAS Bibliography tapes and other sense switch settings are described in

Section 2.1.4.3.

34

2-1.4 Molecular Formula Extraction r-ogram

Code Name: MOLEF

Pro rammer: Paul R. Weinberg

Abstract: Subroutine MOLEF consists of a package of programs that locate
and extract the file record corresponding to a given registry number from the
CAS Bibliograpty tapes. Summation and addend molecular formulas are computed
and returned in a format appropriate for the CIDS file.

2.1.4.1 Program Description

Subroutines within MOLEF allow addressing characters within the CAS tapeb
and positioning on a chiracter basis. A facility is also included to collect
characters. These subroutines are used to find and extract the CAS record for
a given registry number. Routine HILLFM is then used to compute the summation
formula and addend formula. The subroutines within MOLEF are:

(1) HILLFH

Purpose: Form the Hill and addend molecular formulas from a
pre-positioned CAS tape.

Input: Index position in POINT of start of formula in buffer.
Output: Molecular formula in CIDS format in OU.MLA block.

The accumulator contains zero at exit if formula
is unacceptable.

(2) COLEC2, COLEC3, COLEC4

Purpose: Get 2, 3, or 4 characters respectively from the
current CAS record. Charactero are returned right-
justified in the accumulator. (Zeros fill unused
positions.)

(3) CONVRT

Purpose: Convert a character number to index register codes.
Input: Character number in CHAR
Output: Index register codes (to access the character) stored

in INDEX. These codes point to the word number and
the character number within thc word of the designated
character.

(4) FORWRD

Purpose: Positions iorward in the tape buffer a given number
of characters. Repositions physical tape if necessary.

Input! Number of characters to be skipped.
Output: Length of the current block in CUR. Current register

setting of the current block in POINT. (Stored as
in INDEX.)

35

I

(5) REVERT

Purpose: Inver,;e of ,ON\TflT
Input: From INDEX
Output: TD CHAR

(6) LOCATE

Purpose: iinds a registry number on the tape.
Input: Registry number in REG and REG + 1.
Output: Positioned tape and location of first character fol-

lowing the registry number in POINT.

Figure 7 illustrates the internal organization of the molecular formula

data for each fragment or addend. The Hill molecular formula for the compound
is formed from these tables using the rule:

(1) The coefficient for each fragment is multiplied by the smallest
number that will make all fractional coefficients integers.
The result becomes a new coefficient.

(2) The number of hydrogens to be subtracted from each fragment is

calculated by multiplying the entries in SUBMR by the corres-
ponding coefficient.

(3) The summation formula is calculated by multiplying thu weights
in WEIGHT by the appropriate coefficient anu sunning lor each
element over all fragments.

(4) The number of hydro-ens in the sutmmation formula is adjusted
by subtracting the entries in SUBTR.

A macro flow chart for m:je program is presented in Figure 8

2.1.4.2 Program Structure

MOLEF is a subroutine which is called with a standard MAP CALL statement.
The input to the program is a CAS Registry Number in characters stored in REG
and REG + 1, Before calling MOLEF the first time, the calling program calls
subroutine INITL to initialize MOLEF (open filesJ set up error recovery pro-
cedures, etc.).

The output consists of the Hill and addend molecular formula for the re-
quested compound. The format of this block is described in Section 2.2.4.

The contents of the accumulator at exit indicate the following conditions:

AC -.0 means that the registry number is not in the tape. The
current registry number is stored in PEGFD and REGFD+1.

AC = 1 means that the number has been found but the file has been
rejected for some other reason.

AC = 2 means that there are no eLt-:s

/q

WV

FRAGMT 1 4 WEIG I .. . word I

4

frogments) - 4 31
4
4

FRACTN_ 150 lengthF RAC TN

Pairs of words

containing
froctionol parts
for frogment
multipliers

(length 20)

SUBTR Number of hydrogons

to be subtraoted
when generating
a stimmotion mol form.
(I entry / frogment)

Figure 7. Internal Organization of Molecular Formula Data

37

ProduceIsTp
Summation N Positioned Y
Formula jat a R~egistry

I~eie toRpsto
to theDDesiee "Numbr No

Figre C ac lol L ChArt No. ?

io T EDto Repsitio

Users of the program ahould note that FORM410 FOR420, FORK30 and FORK40
are the names of the decks containing MOLEF and related subroutines. The user
is warned that MOLEF alters the system control blocks for utilities S.SUO5 and
S.SUO7 and restores them at exit. If the program fails and does not exit nour-
mally, the operating system must be reloaded.

The following error messages may be printed when the described con-

ditions occur:

(I) END OF FTLE RPAD BY MOLEF
MOLEF has read a file mark and has returned assuming the reg-
istry number does not appear on the tape.

(2) RECORD DELETED FOR REGISTRY NUMBER X2CXXXXXXX
The file has been located but the record has been deleted
by CAS. MOLEF essumes the registry number does not appear
on the tape.

(3) NO FOIM4ULA GIVEN 3Y CAS FOR NUMBER XXXXXXXXX
MOLEF assumes the registry number does not appear on the tape.

(4) SUMHTION FOEK•IA FOR REGISTRY NUMBER XXKXXXXXX
Deleted due to missi'ng fraction coefficent XXXXXX
Syntactical error on the part of CAS. Return with 1 in the AC.

(5) STORAGE ALLOCATION PROBLEM FOR REG, XXXXXXX) DELETING SUMMA-
TION FORMULA
Not enough buffer spaceý has been assigned to compute the sum-
mation formula. ReturL with 1 in the AC.

(6) TOO MANY FRAGMENTS IN RVG NUMBER XXXXXXXXX DELETING SUM-
NATION FORMtULA
More than 10 fragments are not allowed. Return with I in AC.

(7) FOR4ULA TOO COMPLEX FOR REG. NUMBER XXXXXXXXX DELETING SUM-
MATION FO1KULA
Not enough buffer space. Return with 1 in AC.

*(8) CONTROL WORD OVERFLOW
More than 18 elements have been found. Not enough room
in format.

(9) END OF BUFFER REACHED AT NUMBER X=XXXXX
SUBROUTINE INDEX2 SKIPPING TO NEXT TAPE RECORD
Program error. Return with 0 in AC.

(10) UNABLE TO FIND REGISTRY XXXXXXXXX
TAPE POSITION TO XYOOOCXXM
A number highcr than the desired registry number has been located.
MOLEF returns with the nuhiber found in REGFD and REGFD+I. AC
set to 0.

39

2.1.4.3 Operating Instructior..

MOLEF expects to find the first CAS Bibliography tape on unit S.SU05.
The remainder of the tapes should be mounted alte'nately on S .SU07 and S .SU05
to allow reel switching to ta!cc place. Input is doubly buffered and reel
switching is automatic.

If sense switch 6 i:; 0jr: li, a Ilifig of the output blocks will be
produced.

-q9

#4

2.2 CORMICAL TYPEWRITER INPUT

The purpose of the Chemical Typewriter Input Programs (CIIEMTYPE) is to pro-
vide a means of introducing chemical structures into registry files which can
then be used directly with structural key assignment to generate search files.

The overall process consists of the following steps:

(I) Information about each compound to be entered is written by a
chemist in a standard form.

(2) A typist, using either a Dura Mach or Mergenthaler Chemical
Typewriter, transcribes the information simultaneously to typed
copy and to punched paper tape.

(3) The paper tape image is transcribed by a computer to magmntI,
tape.

(4) The CHEMTYPE programs exhaustively analyze the magnetIc tape
images and produce files which are suitable as input to a chemi-
cal registry system.

The entire process of entering chemical data requires that care be taken
by the chemist and the typist to ensure accuracy of input. However, a primary
objective of the CILEMTYPE programs was to permit the chemist and the typist the
widest posaible latitude both in entering data and in making corrections that
are consistent with the unambiguous interpretation of the paper tape input stream.
Thus, the CHEMTYPE programs recover a variety of retrievable errors and permit
wide variability of input formats. They signal errors only when the input con-
tains an error they cannot correct.

The chemist provides the original input data for the typist. It is his
job to present the structures to the typist in such a way that she may type
them with no knowledge of chemistry. The rules for the chemldt have been pre-
viously stated in ACT 11 Typing Conventions and ACT III Typing Conventions, and
are consistent with standard structuring conventions. These documents describe
the rules to be applied to the Mergenthaler and Dura Mach typewriters respec-
tively. The rules for the chemist are identical in both cases.

Figure 9 is an example uf the copy which the chemist produces.

The typist must type so that all pertinent information is recorded on
digital paper tape. The typewriter input is such that control characters are
punched which later are used to detecmine the location of each typed character
in a two dimensional matrix. The typist, therefore, has a certain amount of
freedom to move randomly within the record since the physical locati'on of char-
acters is not determined by the scrict order in which they appear on paper tape.
The specific rules for the typist to follow have beep previously stated In ACT
LI_ .. inR Conventionsband ACT II T-yping Conventions 6.

The typist is allowed a certain leeway in correcting errors. Procedures
are given for correcting a specific error and for deleting a record which is
partially typed and starting over again.

41

C4 H10AsCl N14S2 U4H8 AsCIN 3 °2C•11

[Arsine, (2-chlorovinyl)bis(guanylmercapto)-
7 7"-

The dihydrochloride: G i• ^^,. I,,\•,l - IICL.

Ethylenedlthioarsonit, 2-chloro-, diguanyl,
dihydrochloride

A
-1A/5--c

Figure 9. Copy Produced by Chemist

Figure I0 is the hard copy output produced by the typist from the input
copy shown in Figure 9. It must be noted that the nomenclature in both Figure 9
and Figure 10 is inaccurate. It is given to the typist as received without
editing since the nomenclature as presented may have served as an index term
on many previous occasior.3.

The Programmer has designed the system to recognize ali possible inputs
from completely meaningless information to good chemical records. A great
deal of error checking has been introduced into the system so that only correct
chemical records are entered into the file. The only real limitation on this
has been the impossibility of checking the accuracy of the nomenclature entered
for each compound, or the accuracy of the local control number (TID), stereo orclassification information. The only way incorrect data of this sort can be
kept out of the file is to visually check all typed copy and note the TID of
incorrect records. These records may then be deleted by using the TID's as in-
put to a subroutine which' prevents these compounds from being entered into the
file during processirg.

The accuracy of the molecular formula may i1e checked within limit-s by the

hydrogen parity rule and by comparison with the typed structure. Any discrep-
ancy between the molecular formula and the typer, structure is assumed due to an
error in one or the other.

The two kinds of typtewriters produce almost identical copy with the excep-
tion that the Dura Mach has a more restricted character set than the Mergenthaler

42

tI

and several of the required symbols must be simulated. There are, however,
enough differences in the manner in which the two typewriters accomplish this
that separate input programs had to be written specially tailored for the spe-
cific typewriter.

Toowa7 (U) C4H1oAsCtI N4S9
:C4HeAsC IN4SaCIH

C I 2CIH-A C

STEREO N
(Arsine, (ja-ch I orovny I) b i s(guary ime rcapo) -)
The dlhydrochlorlde:
Ethylenedlthloarsonit, 2-chloro-, diguany!,
di hydroch Iori de
=TLoo
-1 o8'•

Figuro 10. Copy Produced by Chemical Typist

THE DURA MACH

Since the Dura Mach does not record any coordinate information, the analy-
sis o!" structures entered through the Dura Mach must depend on line and space
contr•- punches. As a result the typist may not move the platen by hand, as this
does not register on the paper tape. Similarly, tab and margin use is restricted
as ,u-cified in the typing conventions.

The limited symbol set on the Dura Mach requires thc syn.oiesis of cert-ain
symbols. For example, the triple bond is indicated by a single bond overtyped
by an asterisk. This is true for all the triple bonds. The Dura Mach charac-
ters do not include a parity bit and no error checking is done directly by the
hardware.

THE MERGENTHALER

The Mergenthaler ty:,ewriter produces coordinates as a result of a backspace,

1ine advance, carriage return, tab or white ribbon or moving the platen by hand.
T.hese decode into the x and y coordinate far the first character which was typed
after the last coordinates were produced. As a result, the typist may move freely

within a record, moving the platen by hand at will. There are certain classes of

characters whose coordinates must not only be decoded, but to which a correcLion must

43

be applied before the character may be placed into a 2 dimensional matrix. I;
These are characters which print above or below the line and whose coordinates
are given as though they were typed directly on the line (see Section 4.1.1).

Since each Mergenthaler character includes a parity bit and the machine
has fairly comprehensive error detection hardware which causes the keyboard
to lock on the detection of a parity error, it results in fewer mispunches reach-
ing the computer. When parity errors .re detected by the computer it is almost
certain to be either because the typist made a correction incorrectly, or there
was an error due to the paper t pe reader when the paper tape was transferred to
magnetic tape,

In addition to the above considerations, certain syntax requirements have
been placed on each of the various fields of typed information. These are de-
scribed fully under the program descriptions associated with manipulating this
information,.i

Figure 11 describes the major functions performed by the CHEMTYPE System.

The relation of each program to the total CHEM1YPE System is pictured in
Figure 12 and is described in the following paragraphs.

(1) Input of Chemical Typewriter Information

(a) INPUTD-reads Dura Mach records from magnetic tape and
translates all of the typed information for a chemical
compound into Mergenthaler Code and places it in a 2-dimen-
sional matrix.

(b) TANVRM- does the same for Mergenthaler records.

(2) Forwmat ting

(a) ORGNZR- processes a single chemical record formatting the
faol~o-wig flclds:

(1) Temporary Identification (TID) (Local Control Number)

(2) Security classification

(3) Stereo informatiun

(4) Szructurel formula image (SFI), If bracketed informa-
tion is present, ORGNZR calls an REGRUP to reorder the
SFI so that all characters witin a single set of brack-
ets will appear compactly. If any atoms appear outside
of the brackeis, R.GRUP i. turn calls on XCESS to format
",his.

(5) Molecular formula (by calling MOLFRM)

(6) Nolmenclature and reference fields (by calling MONIIDF
which _- turn LUails PUNCH to punch cards for TOXINFO£i~e).

I+-'

Inu er In -

input program inDut program

Creation of connection
and abnormality tables

Chemical verification

Output
A Output

-I--
Peconstruct and 1
Drint picture
on switch

Figure 11. CHEMYPE System Process Chart

a45

0

0) 0 vZ Q) E- t (aE j

WW.E-4r ~ r4 4J4
Q14. (ao- cc)- J-J u

w E-4U4 vi 4 41 41 C: 4-J

s-~G)4 (n)4w 0 4 U) 44
4j Q -H 'n I 4j.fu o Ul

4j ai4 w)u 0 0 4c 4Q
,-4! E0

44 M~~- G 0 ~ I. 0
0

0
r 1 Z~ 'V CE.H 44.I-

4
0-~4-

a__ _ _Cho__ Ca _M C-4 WC

0 V ý41-4cu W 0d4j ý44
00PUý4"p1 0$ 14.

0~-4 w.0 W -1 W00 I

rU2l _ _ _ _ _ __Al p, ýH

~> L) 0> ~0
140 OW C.~WE 0 40~ to U(40wCI)-d 4 C) -44

U)~U 14(4 .

SI4JW .w 4O 14
4-4f.- 0*)~ U4 0 C44 0of

~~14ý A40 U)
4-4 WI G E- 00 0

z U)

60 '44 P1 4- 0

00a 4 Q) th 0(1

-. (U) 4. HB $ '-4o
H00W W E t~4.i)4 WU 0/U $40 V1) 0 . 4

Q42j W 4j Z44 P4 P m V) H o -A 41

(3) Connection Table Generation and Verification

(a) SETUP - uses SFI to find a capital letter in the matrix and
calls on CLEANM to remove all characters but atoms and bonds
from the matrix. It creates the Abnormality Table and ex-
pands any instances of Ph, (CH)n, or (C)n.

(b) MAKECT creates the Conneution Table.

(c) PHASE5 calls on VERIFY to verify the validity of the Chemical
Structure, the Abnormality Table and the Molecular Formula.

(4) O

(a) NFCF expands the Connection Table to a form acceptable as
input to CONVRT. NFCF calls on DECKA to print the Connec-
tion Table when a switch is set. NFCF calls on CONVRT to
transform the Connection Table to compacted format and on
TICKER to create an output tape containing all the formatted
information.

(b) PIX, DURPIX and LINPIX may be called on to reconstruct the
structural formula image for output on punched paper "tape
from the teletype which can then be printed on the Dura Mach,
for output directly on a Chemical Line Printer, or for simu-
lated output on a 1403 line printer. These programs are de-
scribed in Section 3.3, since they are used to output respon-
ses to queries.

Error messages are printed as each program encounters error conditions in
the typed recorl. These are discussed in greater depth in Section 5 of the
CHEBMYPE System . A listing of the possible errors appears in Appendix E.

The typewriter tr-nslation programs require the entire available core of
about 23,000 locations mnd mtst use blocks of storage for more than a single pur-
pose. The entire CHiJY!E system of programs is in core at all times,

The system input is a magnetic tape containing Mergenthaler or Dura Mach
code formatted as follow.,s in fixed 300 word records. Each paper tape consti-
tutes a file which begins with a six character tape number whose first char-
acter denotes the source of the typing: E=Edgewood Arsenal, FaFrankford Ar-
soznpl, U-University of Pennsylvania. The last paper tape on a magnetic tape is fol-
1--wed by a 300 word record of all 7's.

Mergeithale• or Dura Mach characters on mrgnetic tape are packed as fol-
low• during traziscripcion of the paper tape onto magnetic tape.

0 -- 3 4 --------- '0lI 12-'15 16-*-----P-23 24-.+27 28 3 --- 35

Typewriter Character

47 .

Data card input consists of a card giving the number of records on the input
tape to be skipped, and cards giving the TID's of typed records to be deleted
during processing. These must be followed by one blank card. The format of
the TID's to be deleted is as follows:

Blank B ank Blank Blank Blank

Tape • / '

Number •• •

S~~TID •m""

(Left Justified)

The output tape which is created by this system, consists of vaViab-i.'
length records, each record consisting of a siigle chemical record. T11.
format is presented in Figure 13.

mm

S-2 3 "17 18-20 214-----a-29 30-0-4-35

No. of words in block
WORD 0 not including 010 F(BCDWord 0

2's complement of 2's complement of 1st
WORD I first location of word of connection

MOLTAB table Locations
to

WORD 0
2's complement of first 2's complement of first

WORD 2 location of abnormality location of nomenclature
table
(0 if not present) _

2's complement of Number of RINGS
WORD 3 first location of

SCRUB list

WORD 4 REGISTRY NUMBER (first b characters)

WORD 5 REGISTRY NUMBER (second 6 characters)

WORD 6 CISTER (Classification and Stereo)

MOLTAB BLOCK

CONNECTION TABLE BLOCK

ABNORMALITY TABLE BLOCK (if present)

NOMENCLATURE & REFERENCE BLOCK

S-'2 3.-.5 - 17---------25 26-,v-------ý34 35

SF1 - + DELY DELX udSert if

Headerunderline_ _leader table exists

Charges
outside
of braclet.L; (total) SHI BLOCK

FigutLo 13. CEN•IfYPE Output Format ror One Chcriical Record'

i I I I I I I I I I I I I I I I I I I

•• - ' " : . .--..

2.2.1 Mergenthaler Input Program

Code Name: TAPWWM

Programmer: Helen Hill

Abstract: TAPWM4 reads typewriter characters in Mergenthaler Code from
a magnetic tape. It interprets these codes and constructs a 2-dimensional ar-

ray containing an image of the typed chemical record.

2.2.1.1 Program Description

A macro flow chart describing this program is presented in Fig. 15.
TAITWRM reads input cards giving the number of magnetic tape records to be

skipped before processing begins and the TID's of compounds to be deleted by
the program. It then begins reading the Mergenthaler character stream from
magnetic tape.

Parity is checked on every typewriter character and the program looks for

one of the following at the beginning of a paper tape: (a) a case character,

(b) a lozenge, (c) an E, F, or U indicating paper tape number follows. Each

case character encountered is identified and the current case is stored. When

an E, F, or U is found, the tape number which follows is formatted and printed

on the line printer. (The tape number is not necessarily present). The pre-

sence of a lozenge (<>) indicates the beginning of a chemical record.

The remainder of the chemical record is then readone character at a time,

and the characters are stored in the proper locations in the matrix until D

box, or ** are encountered. The presence of a box indicates that the typist
will begin the record anew and the record to this point should be ignored.
The ** indicates that the chemical record has been completed. When the ** is
reached, the program continues reading in characters until the next lozenge
is found, since the typist may correct the previous record at any time befo::e

typing the next lozenge, The program makes corrections on the presence of C
white ribbon punch which indicates that any characters found before the occur-
rence of a black ribbon punch are to be erased. Any characters which are
found to be typed into a location that already contains a character and which
are not legitimate overtypes (special characters not included in the character

set) are considered to be corrections and replace the character already in
the matrix. Legitimate overtypes are:

77Z is typed as Y or 41

\N' is typed as v or

III is typed as 1 or

50

I I iI

These are replaced in the matrix by the correct triple bond. When bond cross-

ings, such as 4+ or X are enc,)untered, one bond must be erased resulting

in I or X in the matrix. In the case of underlines, (Which print in

same matrix location as character underlined), the character is made minus and

the underline dropped. If any bond is typed into a location containing a brack-

et corner, it does not replace the bracket corner. Since typists have been

found typing bonds in the sane location as the bracket corners, the program was
"altered to prevent this fact from erasing the corner itself.

The actual input into the matrix is accomplished by reading characters
and storing them in a work area until coordinate punches are encountered which

give the coordinates for the first character which now occupies the work area.
Each set of coordinates appears as a series of six paper tape characters. The

first of these signals that coordinates are coming, the next two decode into
the y coordinate, the next two into the x coordinate, and the last is blank
tape. Using the decoded coordinates, the characters are placed in the appro-
priate location in the matrix after proper analysis has been made. Characters
which are typed while the carriage is in one location but which actually print
below the line one or two spaces, characters for which the carriage does not ad-

vance, and characters which are double symbols typed in a single location are
classes of characters which are recognized and the proper corrections made.
These classes are as follows:

(1) Characters whose Y coordinate Iq given for the line on which
the carriage rests, but which p int one Y coordinate below
this. These are:

sub case /X'/\

upper case

(2) Characters which print two Y coordinates below the Y coordinates
registered for carriage location:

sub case -

sub case

carbon dot

(3) "Non-escaping" characters for which the carriage does not move
after ting, but instead, stays in the same position for the
typing of the next character. There are three special groups
of these characters which in addition to being "non-escaping"
have one of the following characteristics:

(a) The character types one y coordinate below the coordin-
ate registered for the position of the carriage.

sub case II I

upper case I II

(b) The character types one y coordinate higher than the
carriage position.

lower case

51t

The virgule is one non-escaping character which because of its

special use must be mentioned separately. The non-escaping

characteristic requires that single digit fractions be typed in

the following manner: virgule, numerator, denominator: and in

the case of a two-digit numerator as follows: first digit of

numerator, virgule, second digit of numerator, denominator.

(4) Special double characters for which the registered y coordinate

is correct for the upper half of the character but for which the

lower half prints one y coordinate before the registered coor-

dinate:

sub cabe 1 1 (used in typing benzene ring, etc.)

The only analysis of fields in the matrix that TAPWRM does is to locate

the word STEREO which tells the program that the end of the structure has been

found and to locate the ** which indicate the end of the chemical record.

Since the word STEREO may be forgotten and typed in later, if the program does

not find STEREO as it goes along, a rescan for the word STEREO is done when the

** are found.

2.2.1.2 Program Structure

TAPWRM utilizes the following subroutines:

(1) INPUT- calls for the next 300 word logical record to be read from
magnetic tape into a buffer and looks for the terminating record
of all 7's. When this is found, it sets a bit and returns to the
program to finish processing the last record before exiting.

(2) N.XT- unpacks one 7040 word, placing the next eight bit char-
acter into the accumulator after stripping off the parity bit.
When the contents of a 300 word buffer have been exhausted, it
calls INPUT to get the next record. NEXT checks for parity errors
on each input character. If a parity error is found on input, a
bit is set, a parity error counter is incremented, and the record
is deleted. A count of the total parity error encountered be-
tween two correct compounds is printed out when compounds are
entered into file.

(3) CALCXY- calls NEXCOR to get each next coordinate word. It un-
packs the coordinates (next 5 input words) which come in as eight
bit Mergenthaler characters and calculates the x and y coordinates.
If the last character in coordinates is not a zero (or blank
punch) CAJCXY rejects the record. If a Code delete is found in
the coordinates, CALCXY assumes that a parity error was detected
by the typewriter and that the typist retyped the last typed
block. This block is erased and the program returns to processing.
A parit error in coordinate input results in an error message and
feJection of the record.

(4) NEXCOR- calls NEXT to get the next input word of coordinate input,
checks for the presence of either a code delete or parity error,
and strips off the low order bit of the coordinate word.

52

(5) YCOORD- recalculates input y coordinate, modulo 132, correcting
on the basis of the y coordinate of the lozenge as equal to 1.

(6) CASES- determines whether an input character is a case character,
and if so, stores the current case.

(7) STORE- stores the character found in the accumulator in the next
space in the work area.

(8) TERIlMIN- handles a normal end of tape situation.

(9) EOFEXI- is entered when end of paper tape image is encountered
(indicated by presence of file mark). It writes the following on
the line printer:

(a) total number of records processed (count of lozenges en-
countered).

(b) total number of records deleted by typist

(c) total number of records deleted by program.

(d) total number of records entered into the file.

(10) ERASEI- erases a record which is rejected before the system exits
from TAPWRM. All necessary locations are reinitialized.

(11) ERASE- erases records which are rejected after the system exits
from TAPWRM. All necessary locations are reinitialized.

TATU-RI takes as input Mergenthaler characters read from magnetic tape and
packed as follows:

0 .-e3 4. - 11 12..-.1l5 16 23 24.*e.27 28 35

070 1-01
A*4Mergenthaler Ch;racter_:;r

Physical records are 300 7040 words long (900 characters). If a paper
tape ends before the end of a physical record, the record is filled out with
zeroes. Each paper tape record is followed on magnetic tape by a file mark.
The final paper tape on a magnetic tape appears as follows:

(I) paper tape characters

(2) physical record filled with zeroes after end of 3aaper tape

(3) file mark

53

|I

(4) a physIcat record containing all 7's

(5) a second file mark

All Mergenthaler characters appearing on the paper tape appear also on the
magnetic tape. Each paper tape will have a tape number of up to six characters
which will be found at the beginning of the tape image. The first character is

(1) E for Edgewood tapes

(2) F for Frankford tapes

(3) U for University tapes

Each Mergenthaler character is e-ýght bits and may be a typed character, a
case character (upper, iower, or sub-case), a space, a control character white
ribbon, black ribbon, code delete, blank tape, or part of six character
coordinate punch as illustrated in Figure 14.

a 7 "-4 3 2 .

Blank
tape -40.

High order Bits

PARITY of X 1
BIT coc~rdinates\

(EVEN) Low order Bi ts
of X I

coordinaten ALWAYS PUNCKE:
High order Bits

of Y
- coordinate_I Low order Bits /

of Y 1
coordinates-....

"Coordinates I
folIlow""-
Punch 5 qa=--04

Figure 1/+. MERGENTHALER COORDINATE PUNCH CODE (BIIAR1)

TAPWRM also requires input cards which specify the following:

(1) record number on magnetic tape on which processing Is Lo begl-i.

(2) registrv numbers of compounds to be deleted on proco'.ci,. q".I
paper tape number on which they were typed.

(3) a blank car.].

Outputs from TAPWIg are as follows:

(1) MJATRIX--a 10000 location matrix containing or complete chemical.
record in Mergenthaler code with an added case bit. Each loca-
tion containing a character is formatted as follows:

O 1 -2. 27_28 29 3 35

C2Le nput char-
[bits acter with-

[1t parityl

I for underlined RpchaacerSUB - 01
haracterLOWER = 10

UPPER = II

(2) TAPE Number--printed on line printer at beginning of each
paper tape which was numbered.

(3) REGTAB -- a tabte of two word TID's in BCD of compounds to he
deleted by ORCNZR.

(4) TAPTAB--taIle of paper tape aumbcrs associated with the registry
numbers in RECTAB. Five registry numbers are associated with

each paper tape number as follows:

TAPTAB REGTAB
(BCD) (BCD)

TAPE 2

REG]ISTRY NUMBER '

II I, ,)'I + i
__________________ }I II /4

_____________~REG] STRY NUMBER

etc.

:.ir a% :aa bhe more than ,,n ttr\' f r ingi- paper -ap'.

[+-

(5) TAPXR--pointer to last entry in TAFIAB.

S(6) WRTREG--indicator made minus if registry number is to be printed
out when it has been formatted by ORGNZR (usually associated
with error message).

(7) DELX--horizontal size of the matrix.

(8) STELOC--two's complement of location with matrix of the S in STEREO.

(9) MTXLOC--location used to hold current matrix location (two's com-
plement pointer) during processing.

(10) WIPOUT--made minus if record is to be deleted after registry num-
ber has been formatted and printed. (due to error in input).

56

SSTART

Readi number
of records

to be
skipped

Open

Input File

INPUT
Read a

block

NEXT
Get next . .
character ! ZERC

ANALYZE CHARACTER

ILOZENGE
I E .F .U t a J , C A S E L - -4

I~~~ " j" 1-, I

Set bit & Np CASES

initalize N nund

Last r Format tape
N record Y number write

figure 15. Macro Flow Chart - TAPWR4

.I

AX,2B

NEXT ANALYZE CHARACTER CLK

ISPACELg PBLACK L IWHITE gCASE 71 CORIAE

OTHER L.....SOEProces

Or withblc
case bits r b o

yy

ORCNZR Maker ?n correc-io

tosfoun be-

foree neatlsz

aeng

P1 gre 1. Chrt -TAP4 (ointined)

58ud

2.2.2 Dura Mach Inout Proram

Coee Name: I N' P1/

Programmer: Bruce H1ack

Abstract: This program accepts magnetic tape images of the paper
tapt.. chemical records typed by the Dura Mach chemical typewriter and reconstructs
the chemical record in a 2-dimensional array called MATRIX.

2.2.2.1 Program Description

A macro flow chart describing this program is presented in Figure 9.

Since it is sometimes desired to skip a certain number of physical records
on the magnetic tape before beginning to precess the input data, the program

first reads from a card the number of physical records to skip. The size of the
record is specified on the $FILE card.

Certain chemical records may have been seen on the hard copy to be in error
before computer processing hbgan. Thes- records may be deleted by inserting
cards following the card containing the number of physical records to be skipped.

The tape number is formatted and printed at the beginning of each paper
tape. A data block is printed containing the number of records entered in the

file and the number rejected at the end of each paper tape.

The program finds the beginning of the chemical record to be processed which
is indicated by a special Dura Mach code, a leading wedge (>). Each typed
character is then entered into a 2-dimensional array called MATRIX. A cartesian
coordinate system is used, so that eac', typed character occupies a particular
(xy) coordinate. Two coordinate registers are maintained which are incremented
or decremented as a result of control character punches such as index, space,

reverse index, etc. The occurence of a typed character increments the x-register
by 1. Characters which are found to belong in an already occupied matrix location

are allowed to replace the character which is already there with the exception
of the legitimate overtypes described in Section2.2.1.1. The end of a record is

signalled by a dotible asterisk (**) in the input stream. The MAT is then
converted to an internal code (Morgenthaler code with added case bit) so that
the input from several devices looks the same to the programs which follow.
Field pointers are then set up and the program exits.

2.2.2.2 Program Structure

Input to INPUTD consists of cards as described in Section 2.2.1.2 and magnetic

tape containing 8 bit Dura Mach characters formatted as described in Section 2.2.1.2.

Output from INPUTD is the same as that described in Section 2.2.1.2.

59

I

Readnumbr ofFind start of
physical records A chemical record
to skip; TID'S to be
of records to be processed
skipped

S1 Re~d

character

-F

Table look up on character

r -- ----- I
I I I SPECIAL I

ICARRIAGE I TYPED I I SYMBOL

I CONTROL " ICHARACTER F- ISMO !
I(End marKer,

, ,, _ deletion
L ~~~ .L s y b o l) _

Change Enter into
coordinate matrix
registers

Take N Exit Y Normal Nt cppro°priate siymbol ? ed

Figure 16. Macro Flow Chart INPUTD

60

2.-..3 Field Pecognizer An Fot"rr ri-

Code Name: 'RGNZR

Programmer: lie len Ili l

Abstract: ORGNZR takes the reconstructed matrix (in Mergenthaler code
with a case bit added) and recognizes each field In the chexaical record. It
formats the temporary identification number, the security classifieation. the
molecular foL111ula(both Hill and addend mol form if the latter is present), the

structural formula image, the stcreo Information and the nomenclature.

2.2.3.1 Prograin DescriDtion

A macro flow chart describing this program is presented in Fig. i,.

The progra'i takes as input the reconstructed matrix containing one chemical
record stored in Mergenthaler code with a case bit added, and proceeds as follows:

(1) The TID (the first number or letter in the matrix) is found and
formatted. The TID must meet the following requirements:

(a) The number may not exceed 12 digits.

(b) The number may contain only upper or lower case numbers, upper
or lower case letters, commas, periods, and dashes.

.c) The end of the TID nist be signalled by a space and no spaces
are all,:;cw within t:,ý TID. The TID is stored in BCo in two
words starting with REGNO. If WIPOUT has been set by the in-
put program as a result of an error condition, the TID is

printed and control is returned to the input program to re-
initialize and get the next record.

I

{k'. ORGNZR then expects the security classification to follow the

MID. The presence of th,' security classification is signalled

by a left parenti,,tsis aui the ctd of the security classification

by a right parenthesis or by blanks. The program accepts one of

the following in the classification field: (C), (U), (c), (u),
() and allm,,s for the addition of other codes in the future. If

the first character following the TID is not a left parenthesis,

it is assumed that the classification is missing; a special code

for a missing classification is assigned (Sec. 2.2.3.2), and the

program continues to (3).

3, The program expects the Hill molecular formula to follow the

security classification and to begin with either an upper case

letter or a number. ORCNZR then calls on MOLFRM to format the

molecular formula. If the first character after the classificatlor
is not a number or capital letter or a left parenthesis, the recort

is r.j.t'rd.

I-+ 1.e -Prow, im , ýiw h ,• .:a!'- ý -;-4 liar;t , a t,,r 11_, .lcwing ýh:h!• .I II

nolelar for.u-iIa. itis is an upprr lictt hracke-t, I cheuks
to see whether a sin.Ie bond is present irmnediately below It.
If the bond is present, the bracket signals the beginning of the
structure of a bracketed compound and the program proceeds to (5).
If no bond is present beneath an upper left bracket, or if the

first character following the molecular formula is a colon, the
addend molecular formula is present and ORGNZR calls MOLFRM to
format this also.

(5) If the first character following the molform is not a colon
or an upper left bracket, it is assumed that this is the beginning
of the structural formula. In this case, a list is constructed
containing each structural character and its relative matrix
location. This is the structural form'ula image (SFI) which is

stored for future reconstruction ot the structure for output.
If brackets are found te have been typed around any portion of
the structure, they are r-ased except for the upper left and lower
right corners whose coordinates will be used to reconstruct the
brrckets for structural out:put in PIX and DURPIX. The x coordin-

ate of all lower right corner brackets is stored in table BXBRAK
to be used by REGRUP in reordering the SCRUB list. Any multiplier
found to the right of this bracket corner is stored in table

MULTAB to be used by VERIFY. If a dot is found not connected to
a bond, it is assumed that this indicates a monovalent salt and
its x coordinate is stored in the bracket table. The last entry
in this table is always the maximum x coordinate in the matrix.

(•) it is ustnmed that the Atructure must end before the Stereo field
is reached (the location of this is provided by TAPWRM or INPUT).
When the STEREO field is reached, the information stored here is
formatted.

(?) The nomenclature is assumed to start one or more lines under the
S in STEREO or one or two spaces to the right of this. When the
nomenclature is located, ORGNZR calls MONIKR to format this field
whose end is signalled by the double asterisk at the end of the
chemical record.

(8) During the formatting by ORGNZR, the following error conditions
are considered cause for rejection of the record:

(a) The TID contai.-.z an inadmtisable character or more than 12
characters.

(b) Tne classification contai.s an inadmissable character.

(c) The molecular formula begins with a lower cise letter.

(d) Molecular formula syntay -rrors were found in MOLFRM.

(e) An unidentified characte, was fo,,nd in matrix.

02

.if

(f) The structural formula extends beyond the STREP field.

k1) The structure extends into the molecular formula line.

(h) Too many characters were found for the SCRUB list.

(i) The addend molform is misting. At present, it is assumed
that if a bracketed structure is present and there is no
charge in the structure, an addend molform mnust be present.

(J) Stereo information does not match with admissible codes.

(9) If brackets were found during the for-nation of the SF1 or if a
dot was found not connected to any other character(indicating a
monovalent salt), REGRUP is called to reorder the SFI so that all
characters within a set of, brackets appea]7 compactly La the list.
If, in addition, it is found that there are atoms outside the
brackets, REGRUP in turn calls EXCESS to format this information
which will later be used by the chemical verification program.

2.2.3.2 Program Structure

ORGNZR requires 415G core locations and includes th6, following Tables which
are also used by other programs.

)
(1) AXACT2 - Mergenthaler input codes without a parity bit but wit%

a case bit added.

(2) INT - Internal Code (modified Dura Mach) counterparts of table
AXACT2.

(3) AXBC0)l - RCD numbers

(4) AXBCD - BCD letters

It contains the definitions of the following large blocks:

SCRUB list - 700 locations

B list 1201

Ex list 100 used by CONVRT and shared by REGRUP

Y 400

G 400

It makes use of a subroutlne,DELETE, which can delete from processing an5
compounds whose TID's are entered on data cards and stored in REGTAB and TAPTAB
(supplied b% the input programs).

6 3

Qj

W

input (n Og.GNZR Co0-'.Ft.-•L If:

(1) DELK - width of the matrix.

(2) HARIX - the reconstructed chemical record.

(3) qSTELOC - the location of the STEREO field in the matrix.

(0.) RECTAB and TAPTAB - tables giving p.per tnpe number a3d r1D's of

compounds to be deleted.

Output from ORGNZR is as follows:

(1) SCRUB - list of all structural characters and thir relative
matrix location formatted as follows!

3. 9 17 20 0

Relative matrix odified

loc.
dura

Case bit

The relative matrix locatiorn is given relative to the start of the

lst location, one y coocdinate before the firdt Structural image

y coordinate.

(2) REGNC - the formatted TID, up to 12 BCD characters left juatified.

(3) CLSTER - contaiia stereo and secu).ity cl•asification information
presently ia use, and which can be greatly expanded in the future.

30 -4-: 35

1 .on-SLereo I = unclassified

Z stcrto 2 = blank

3 ýzte-e,-, irij!ittitit d 3 = ctassizied

ro . l

(W) DELY actuti oordi nate i ize P the mav roquired by the
s truc ture.

(5) ASCRUB " pointes to ie end of scrvib I;s

(6) BXBRAK - table of x coordinates of right hand brackets in structurc

18 -35
x coordinate

lst x coord is - DELX

S;) GRP2 - pointer to last entry in SCRUB that lies within brackets
if they are present, and last entry in SCRUB if brackets are no'
present.

(8) AXTMOD - absolute address of first location of the SFI in the
MATRIX.

(9) MULTAB - table of multipliers for each nortion of a structurtv
that Is within a set of brackets.

MULTAB

18 21 22 '- --. 35

SI]multiplier

last multiplier is - to 1

(10) UNDTAB - A table of underlInes (10 locations) which contains
the SCRUB list entries .r undehr lined characters to be used in
reconstructing the matrix for print out.

(Ii) MOLTAB - formatted molecular formula as described in. Section

2.2.4.2.

(13) NOMTAB - formatted nomenclature and reference fields as described
in Section 2.2.5.2.

(14) MATRIX - the Structural formula in the matrix is stored in
modified Dura Mach code as folows on output from ORGNZR.

20 30 .I= 35

Duraý

Case bit

r/

tI

The rest of the record in the matrix remains in Mergenthaler Code.

The program produces diagnostic P-dumps when sense switch 5 is set. Whensense switch 6 is set, the formatted information is printed at the end of ORGNZR.

66

ORGNZR

Initialize

Find & for-

mat registry
nnumber

Figur 1 & foar- 1 w C a t - O G Z

mat cla67

ifcaio

Fin Is

if bracket

bruket inGRUck

STfEund ?

Char

Figurer17. Ma roelsCat n omen (contnure d

6f 8OII,

chrce

brake

Wer

U
I.

rf

"2;2.4 _eeuaIFo ula Fo i.at F_ rgrai;

Code Name: MOLFRM

Programmer: Pelen Hill

Abstract. This program formats the molecilar formulas.

2.2.4.1 Prograr. Desrription

A macro flow chart describing t;,is irogram is presented in rlgure 19.

MOLFRM is provided with a pointer to th, firsi molecular formu, la chara(ter
in the matrix by ORGNZR. It theti produces the formatted molecular formiila.

The following are definitionseof syntactical terms:

<PREFIX>: :,.NUMBER> [<EMPTY>

<SYMBOL>::--<CAPITAL LETTE" ;.:CAPITAL LFI*TER ,.SMALL LETTER>

<SEPARATOR>: :=<DOT-I<BLAN IC" - DC0 < -I iLANK:-' DO" <1BLAN1C D'l" BLANI

<TERMINATOR>: <BLANKC> <BLANK>

<SUBSCRIPT>: :=<NUMBER>

<COM1POUND S\YMBOL>: :=<SYN4BOL-VSYMBiOlf -i 5I;;cix lI'Y-

<FORMULA PART>:: -- COMPOUND Si'MIROL 'I-COM Pil)INDI b, lYMliL- CO)MPOUNI) SYMJIO.L>

The program requires the fol]J uwing synt.1. lor the Iii M,)Iectular formula

of the simple, non-hydrated compo.wid:

<1LL MOLFORW-:: =*-FORJIULA PART> <T'i(RMlNA'rO.L-

The hydrated Hill molecular formula must have the following

syntax which allows a multiplier for elLher or both the lill parent
and the water.

<HYDRATED HILL MOI.FORIM>: :- PRlEFIK)- -FORMILA PARI> <SEPARATOW> '-PREFIK>

FdRMUA PART• -TERMINATOR>

The addend molecular formula which must be present in addition to the

Hill Molecular formula for addends is either preceded by a colon (:) or is

surrounded by an upper left and tpper right bracket. The addend molecular
formula requires the use of the following expanded definitions:

<TERMINATOR;': : --<BIANKC> <BI4vNK>I<UPPER RIGHT CORNER> <BLANK> '-BLANK>

<SIGNAL>;:- [<UPPER LEFI CORNER-

<SEPARAWO:1?: :=,-DOT--- I<BLAN17- -"DOT- I,-BLANY,, - DOT> - BLANKI> <IlT-

"-BLANK>-I--,DOT-- : BIAN1K>I<UPPER RICHT CORNER> '[

-t'UIPER RIGHT CORNER> -.DO'r> -l1.I.AN-C>

* Backus-Natr Form.

69

L~. -

<ADDEND PART>: :<PREFIX> <FORMULA PARZ> <SEPARATOR>

<FINAL ADDEND PARt>: :-<PREFI)C> <FORMULA PART> <TERMINATOR>

The syntax required for the addend molecular formula is as follows:

<ADDEND MOLFORK>::= <ADDEND PART> <FINAL PART> <ADDEND PART>

<ADDEND PART> <FINAL PART>I<ADDEND PART>

<ADDEND PART> <ADDEND PART> <FINAL PART>

The addend molecular formula syntax allows for handling compounds consist-
ing of up to four addend parts. In the cass of addend molecular formulas,
water of hydration is treated as an addend part. Provision has been made,
however, not to reject a compound in which the typist has placed the dot and
the water outside the upper right corner bracket.

This program assumes that -11 polymers admitted to the system are con-
densation polymers and will ap, r with the sum of their atom counts in the
Hill molecular formula. Condensation polymers of indefinite size are assumed
to be present in a (...)n form and a bit is set by ORGNZR which instructs
MOLFRM to ignore the n.

2.2.4.2 PVegrsi St-ructure

MOLFRM is a subroutine requiring 448 core locations. it uses tables in
ORGNZR when recognizing Mergenthaler characters and converting them to BCD.
Its output, MOLTAB is a 25 loeation table.

The ,,out to MOLFRM is:

(a) Pointer to first molform character in MATRIX

(b) MATRIX

The output froM HOLflM is:

MOLTAB - formatted molecular formula is shown in FigureiB.

70

/=

r

,2 3 1718 - Z.6 27, •35

Total no. words in Multiplier of Multiplier of
WORD 0 molform block Hill parent water if a

including header if a hydrate hydrate

Set to I if addend /
molform exists .. l f ulipie•/.~ B1s]• if multiplier

14 is a fraction;
6 t 0 if an integer.

numerator denominator

If it is not a fraction, multiplier fills
Set if indefinite 8 Bits, right justified.

polymer
1--- 4q-i--m-O II-,o--17 18-,ý----26 27-4- 34 35

Number of Number of Number of Number of !WORD I oxygen nitrogen hydrogen carbonatoms atoms atoms atoms
No. words in

ms1. formula
(Hill)

S
0 o 11 1.2-e-17-18 --w29 30 .-o--35

I Element Number of Element kind Number of
WORD 2-M kind atoms of (atoms of

(Hill) (BCD) element j (BCD) element

O---------" 8 9 '-----17 18- o -26 27-o -35
Mlpe Multiplier Multiplier Multiplier

WORD M+1 of first of second of third of fourth
addend addend addend addend

FORMAT OF MULTIPLIER SAME AS WORD 0 MULTIPLIER

WORD M+2 SAME AS WORD 1 -- but for addend molform

WORD M+3 SAME AS WORD 2--M -- but for addend molform

Figure 18. Formatted Molecular Formula

71

,#I

Irn the preceding, the following rules hold:

1. If the element type is a single letter element, the first char-
acter in words 2-M is a BCD blank.

2. If no addend molform exists, the block ends with word M. If
there is more than one addend there is a separate block for each
addend containing words M+2 to M+n for that addend.

3. If the only addend is water, no addend form appears. If there is
an addend in addition to water, the water appears in the Hill form
as above and in the addend form. When the only addend is water,
the addend bit is not set in the Header word.

72

/ ,

-= • MOLFRM

Get next '- -
character N " y Get addend

AAddend I? multiplierS~and
store inSaddend header

cptal

letterStr B
Get ne t
character

APLY Number ? Y Store

N Next
character

0

N Ot? yEnd MOLpRIM
Numberupdate

Format
and N Dot 7

S tore ADMOL

Ge Wat-•,er I Got Addend

Flgure 19. macro Flow Chart -HOLFRM

73

U

2.2,5 Nomenclature And Refe renýc Field Formatting Program

Code Name: MONIKR

Pronrammer: Helen Hill

Abstract: MONIKI(formats the nomenclature and any other information
typed with it.

2.2.5.1 Program DescriDtion

A macro flow chart describing this program is presented in Figure 20.

MONIKR takes a t to the first word in the nomenclature and formats
all the information it finds until a double asterisk (**) is encountered. The
presence of a double bond or triple bond in this field signals the start of
the reference field. MONIKR allows for the presence of underlines, superscripts,
and any character which can be typed on a chemical typewriter with the exception
of certain bonds. It takes the characters which are in modified Mergenthaler
code in the MATRIX and translates them to the following for storage.

6 Cod 9 Bit character

Superscript Dura case bitUnderline

Each line of nomenclature is taken to be all the material in the same
coordinate and followed by at least three blanks in the matrix and is delimited
from the other lines in the output table. The same is done with the reference
material.

MONIKR allows up to 400 characters in these fields and rejects the compound
if there are more. It also checks to make certain it has not exceeded the matrix
area while getting characters to store.

MONIKR calls PUNCH if it is desired to punch -,t certain descriptor infor-
mation on cards.

2.2.5.2 Program Structure

This program is a subroutine which requires 423 core locations. It useo
tables in ORGNZR to recognize Mergenthaler characters and translate them to
modified Dura Mach.

Input to MONIKT cmnnlsts of:

(1) Pointer to first character in field.

(2) MATRIX - described in Section 2.2.1.2.

74

SgI!

r4 -

Output from MONiKR consists of NOHTAB, a table)f up to 100 locations con-
taining the formatted nomenclature and reference field. Each nomenclature entry
(one line of nomenclature) is delimited by a 7779 character from the next. The
last nomenclature word is filled out with zeros. References are separated from
each other by a 777 character and the beginnin.N of the reference field is pre-
ceded by a triple bond chacftetar in the output block. The last word in the
reference field is &Ua,&.mJ ' with zeros,

3-0- ----- 4... 17 Zi le-

219 comp.f number Is comp. of total numberj Header of
II nomenclature words of words in block nomenclature

I I block

IIn •- "-" - 8 9 m • --- 17 18 2 • 6 2 7 .'---- 35

757040 word

75

PI

Initialze I

A

Get a
character

Zero ? Look above y

forSuperscript

superscript

N

N or y Fill last Store=
7word with in next

adouble • words withR WUU

sterisk, ? zeroe

N Next
characteir

Soezsero ? J
(Next/ •'

*zero ?

Go to next
line

(A

Figure 20. Macro Flow Chart - MONIKR

76

'V!

-S1

U

F 2.2.6 Descriitor Punch Program

Code Name: PUNCH

Programmer! R. Chao

.Abstract This program finds the KA, T, and TL descriptors, if
there are any. It than g.ti tha correspouding TID numbez oi the compound and
punches it on a card followed by the EA, T, or TL descriptor number.

2.2.6.1 Program Description

A macro flow chart describing this program is presented in Figure 21.

PUNCH gets the matrix and the first location of the reference field as
input from the main program and searches for EA, T, and TL descriptors. If one
of the descriptors listed above is found, a card is punched containing the TID
compcund number and the descriptor.

2.2.6.2 Program Structure

PUNCH is a subroutine called from MONIKR which takes as input the MATRIX
and RFIELD which points to the reference field. Its output is cards with the
following format:

Card Column 1-12 12 character TID # (left justified)

13 Blank

14, 15 Codes EA, T, TL

16-20 Number (right justified)

7

I PUNCHD

GetRILIII.________,_______________,___________,.
If ine Main

Eooe TI a Punch Go No
Eex or TL a a next
Descriptor 7 cd lone

l'Igure 21. Macro FlIow Chart - PUNCH

78

line

2.2.7 SFn Reordering Frograv,

Code Name: REGRUP

Programmer: Helen Hill

Abstract: Program reorders the SFI when brackets or a monovalent
salt are present so that all characters within a given set of A coordinates ap-
pear compactly in the SFI.

2.2.7.1 Program Description

A macro flow chart describing this program is presented in Figure 22.

REGRUP takes the list of x coordinates of right lower corner buackets and
reorders them to make certain the x coordinates are in an ascending order,
checking for the following error conditions:

(1) 2 identical x coordinates

(2) An empty bracket list

These errors result in the rejection of a chemical record. It then takes
each entry in the scrub list, computes the x coordinate from the relative matrix
location, and stores this entry in the appropriate list. The following errors
result in rejection of a compound:

(1) Too many characters for a given list

(2) Empty or incorrect bracket list

REGRUP stores a pointer to the last entry in each list (which corresponds
to one set of brackets, the final set being assumed to be everything to the
right o2 the last explicit bracket) in MULTAB which will be used by VERIFY. It
then replaces the reordered lists in order in the SFI and stores a pointer to
the first character beyond explicit brackets (if any). REGRUP counts up all
plue and minus charges outside of explicit brackets and stores the totals in
the Header word of the SFI. If characters appear outside the explicit brackets,
REGRUP calls EXCESS to format them.

2.2.7.2 Program ýtructure

REGRUP is a subroutine which requires 303 core locations. It uses areas
defined in ORGNZR (13"0 locations) to reorder the various lists and it uses the
SCRUB list from ORGNZR (701 locations).

It is made up of 5 Macros:

(a) ADDUP and ORDER - sort the brackets.

(b) LIST - puts an entry in proper list and increments right

pointers.

79

Ii

(c) REFORM - transmics reordered lists to SCRUB list after

reordering.

(d) STOMLT- stores necessary information in MULTAB.

REGRUP takes as input the following:

SCRUB - SFI characters and their Relative Matrix location.

BXBRAK- list of x coordinates of lower right corner brackets.

MULTAB - contains multiplier associated with each set of brackets.

ASCRUB - pointer to end of SCRUB.

Output from REGRUP is as follows:

(a) Reordered SCRUB

(b) MULTAB- with pointers to last character in SCRUB using a
given multi- !ier

3 ~-- ~ ---- "17]A 20 1s

D1 Multiplier/
2's comp. pointer
to last entry -n
SCRUB list for this
Multiplier (and this
set of brackets)

8

8O

I
/ £

Sort:
bracket
list

sort Sr1
on basis
of bracket
list

LStore
pointer

to end
of SCRU1B

brcesPointer chargea out-

Yigur. 22. Macro Fl.ow Chart -REcRuP

81

2.2.8 Structure Of Non-Bracketed Information

Code Name: EXCESS

Programer: Helen Hill

Abstract: EXCESS formats all structural characters appearing out-
side of brackets when brackets appear in the structure.

2.2.8.1 Program Description

A macro flow chart describing this program is presented in Fig. 23.

EXCESS formats information found outside brackets it, structures such
as (_...) H SO since this portion of the compound does not appear in the cor.-
nection table ,nd is needed for chemical verification. EXCESS uses the poil'.ey
to the first word outside brackets in the SCRUB list to locate that zharac"F..
in the matrix using the relative matrix location in the SCRUB list for thae,
character. It then sets a bit (ION) to be used by VERIFY and looks for the
first addend dot in the matrix outside of brackets. It formats all charactcrz
on that y coordinate from that x coordlnate to the end of the line. EXCESZ
totals plus and minus charges outside brackets, using prefix multipliers if
any. EXCESS requires the following syntax in the information it formats.

<SYMBOL>: : -<CAP> CAP> <SMALL LETTER>

<SUBSCRIPT>: :- <N4BER>

<COMPOUND SYMBOL>: : -<SYMBOI><SYMBOL> <SUBSCRIPT>

<FORMULA PART>: :-,4ONP. SYMBOIL>z<FORMULA PART> <COMP. SYMBOL>

<EXCESS FORMULA PART>: -<SIGNAL> KPREF IX> <FORMULA PART> <COuP. SEPARATOR>

<PREFIX>: :-<N2UMER> 10
<SLMPLE SEPARATOR>-: -<BLANK> 0

<CO4P ° SEPARATOR>: : -<SEPARATOR>1 <SEPARATOR> <SEPARATOR> + <SEPARATOR>
<SEPARATOR>

<SIGNAL>::- <BLANR>

Everything that is found having the same y coordinate as Zhe first addend dot
outside the brackets is formatted provided it satisfies the following defini-
tion:

<FORMAT>::" EXCESS FORMULA PART> <FORMAT> <EXCESS FORMULA PART>

The prefix in this case is used to multiply each compound symbol until
the next prefix is found.

When water is found in the str'ing it is ignored. EXCESS allows any
combination such as (.H 2 So 4 .2C1 .1120) an long as the elements are all typed on
the same line.

82I1
Vi

2.2.8.2 Program Structure

EXCESS is a subroutine which requires 335 core locations and utilizes
tables AXACT2 and INT in ORGNZR. It contains a subroutine, SEARCH, which
takes a given SCRUB list charactec and translates it to Mergenthaler code
to allow range tests to be done for syntax analysis.

EXCESS takes as input the following output from ORGNZR dcscribed in
eleenton 2.2.3.2.

SCRUB

MULTAB

DELX
hae ORGNZR Outputt Scrron I.•aD• .

GRP2

MATRIX

SFILOC

Output from EXCESS is the i!_ng

XTAB - a table formattel- • c'l¢lows.

3 ON = 17 i4. --..- ,- _

Total atoms of bhitelement L :,'ewemn'.

JJ

"* if a single letter

element, the second
character is a BCD bla-.k

PL- total plus charges outside brackets
MIN -total minus charges outside brackets

ION - set to signal that there is something in XTAB for VERIFY toI
use,

83

L

RETRNoutside in

brackets ? matrix

Format in-
formation
to 2 blanks

Is there
N 2anythin. ACh

Figure 23. Macro Flow Chart - EXCESS

84

2.2.9 Error Messalte Program

Code Name: APOLGY

Programmer: Helen Hill

Abstract: AFOLGY writes error messages.

2.2. 9.1 Prograil Descriotion

APOLCY is transferred to from ORGNZR, EXCESS, REGRUP. MOLFRM and MONIKRto write error messages using Fortran read-write routines.

APOLGY

Print
appropriate
message

2.2.9.2 Program Structure
j

APOLOY is a Subroutine.

85

2.2.10 Linear String Classification

Code Name: SETUP

Programmer: Bruce Hack

Abstract: This program finds a capital letter in the SCRUB list
and then scans to the left and right of this letter in the MATRIX assigning a
type code to the linear string. It then transfers to CLEAMN for processing.

2.2.10.1 Program Description

A macro flow chart describing this program is presented in Figure244.

SETUP scans the SCRUB list until a capital letter is found and then locates
the left bound of the linear string on the basis of the following definition:

Definition: A linear string is a set of symbols on a horizontal line
bounded on the left and right by bonds or blanks and containing at least one
capital letter.

A left to right scan is made of the linear string placing each symbol in
one of the following classifications:

(a) C

(b) P

(c) H

(d) Other capital

(e) Small letter

(f) (4

(g))

(h) number

(I) Illegal symbol

The concatenation of these classifications is the code for the string.

e.g. -(CA 2) 6 - has the code: fachgh

An illegal symbol inmmedlately causes rejection of the record. Control is
given to CLEANM upon concatenation.

86

| I

J1
I

2.2.10.2 Proaram Structure

SETUP is a main program which receives control from ORGNZR cnd gives control
to CLEANM when through.

Input to SETUP are the SCRUB list and the MATRIX. These are described in
Section 2.2.3.2.

Output from SETUP is LINSTG, the code classification of a node.

8

I

87

I

*!

Locate cap- Noital in be
SCRUB poesd

find position
of capital in
matrix

Scan left in
matrix until a
bond or a blank
is found

Scan from left
to right class-
ifying and con-
catenating sym-
bol classifica-
tions

C.LEANM

Figure 24. Macro Flow Chart - SETUP

83

2.2.11 Reduction Of Th. Mn-t•iv Tn Pnint. An,=; IIng

Code Name: CLEANM

Programmer: Bruce Rack

Abstract: CLEANM is given a pointer to a specific node by SETUP.
It then "cleans" the eight locations around that .Lode in the matrix for use
in MAXECT. All charge signs and mass numbers are removed, double letter
elements are replaced by a one word symbol, and special cases such as Ph and
-(C)n- are treated. An abnormality table of abnormal masses, charges and
valeitces is created. A connection table number is assigned to each atom
and the word in SCRUB corresponding to a node which has been processed by
CLEANM is made minus. Control is returned to SETUP after operation on the
given node is complete.

2.2.11.1 Program Description

A macro flow chart describing this program is presented in Figure 25.

A code for the node to be operated on is provided by SETUP, classify-
ing the node in one of the following classes:

(a) Single letter atom (e.g., C)

(b) Double letter atom (e.g., Cl)

(c) H

(d) Ph (representing a phenyl or () group)

(e) -(C)n-

()-(cH 2)n.

In the typed structure, it is assumed that any symbol in any of the
8 positions surrounding an atom belongs to that atom.

/ The bond shown is assumed to belong

N to the N. This positioning of a
bond is incorrect anJ the computer
will reject the record.

The bond shown here Is assumed not
to belong to the N.

N9 89u

NOTE: By "belong to" we mean connected to in the z-ase of
a bond or associated with in the case of a charge sign,
mass number, etc.

The following actions are taken by CLEANM:

(a) The sign of the SCRUB word pointing to this atom is made
minus for use in MAKECT and the next available connection
table number is then assigned to this atom. This numbcr
is placed in the MATRIX word containing the atom. A zcarch
is then made around the atom, counting the connecting bonds
for comparison with the normal valence for that atom. If
the valence is found to be larger than the normal valence,
an entry is it de in the abnormality table. The upper left
is checked for a mass number. If one is found, an entry
is made in the abnormality table. The number is then removed
from the matrix and replaced by a bond if necessary.

I 4

e~g. before

after

Note: The "I" need not be erased

since it will not interfere

with future processing.

Similarly the upper right is checked for a -harge and an entry is
rrAde in the abnormality table if one is found.

q0

Ii
U'L

(b, The lower case letter of a 2 character element is placed in
bits 24-29 of the MATRIX entry for the upper case letter and
the lower case letter is replaced in the matrix by a bond
connection if necessary. The following example describes
this process.

IC+L MATRIX before (b)

L- 'MATRIX after (b)

control is then given to case (a),

(c) The presence of a hydrogen atom with a single connect--'oz, is s
ignored. A hydrogen atom wltL, two connectionS is treated as
a single letter atom and control is given to case (a). The
presence of a hydrogen in the .-onnection table will .ater
cause rejecti.-)n of the record during chemical verilication.j

(d) Tlhe phenyl grouap (Ph) is replaced by a single C atom tan :Iti
YATRIX and tih. internal connectionk of the expanded phenyl
group are placed. directly in the covnection table. The sig~i
of t,.he SCRUD lIst_ word containing the "P" is made minus and
the first and las connection table numbers of the atoms tij-
(-luded in the expansion are entered into the C word in the
MATRIX.

be fo re

91

after

(e) Carbon chains n-e replaced by a special code in the MATRIX.
The SCRUB Vst words are then hendled as in case (d).i3
be fo r--

after

CLEANM rejects che'vical records for the following reasons:

(1) More than 19 abnormalities present in compound.

(2) Inadmissible string fotnd i., structural formula

(3) Illegal symbol found around an atom.

(4) Hydrogen found in the 1rong place.

Z.211. F:ograx' Structa1"e

CLEAN* i6 a main program which is transferred to by SETUP and wh ch

tralsfesr back to SETUP when processing Is complete.

Input to %.EANM consists of the

(a) SCRUB - list which contains all structural formula information.

1b) MANTRIX - the coded two-dimensional picture of the structural
formula.

(c) DELX - the width of the MATRIX.

92

1'¢

Output from CLEANM is the following:

(a) Partial CONINCTION TABLE (I.e., expanded Ph and -(C)n-)

(b) ABNORMALITY TABLE - this table is a series of words, where
each word gives information about one atom which has abnorvmal
mass or valence or has a charge on it.
i.e.

Bits Contents

(S,1,2) Type of abnormality
10l-charge
llOwmass
11 lvalence

(3-17) Atom number

(18-35) Value of abnormal mass, abnormal
valence, or signed charge. The
sign of a signed charge is indi.ated
by bit 18.

A word of 7eros follows the last abnormality word.

(c) The MATRIX "cleaned" for processing by MAECT and containihg
only nodes and bonds.

93

p.!

U

Table look[i - I for single letter atom
o node j n 2 doublea

cod i 3" H
i - " Ph

It

4 May~e entry inl Erase abnormal
abnormality . character and
table complete con-

nection to atom

SCRUB wordminus

Add to Assign CoT.
i number

counter

Write I rFiieGSearch for
a /than normal Y ~ ~ hd? N non-blank

I 5 - charge I non-blank

Figure 25. Macro Flow Chart - CLEANM

94

Plc owrcs
lette in ITS xten bon

(D2 4 - 9 o uppr i

casue. 5.macrox w~ow hrd necLesary(otiu

(195

N Two

attachentsI

2.2.12 Generation Of The Connection Table

Code Name: MAKECT

Pro rammer: Bruce Hack

John Powers

Abstract: This program assumes a MATRIX of nodes and connecting
lines. A list is generated for each node indicating the type of node (element
type), all associated points, and the connecting line types (bonds). This pro-
gram also indicates if the atom is to multiplied in order to be correctly compared
with the molecular formula during chemical verification.

2.2.12.1 Program Description

A macro flow chart describing this program is provided in Figure 26.

The SCRUB list contains each atom, bond, or other types symbol In the struc-
tural formula and its relative MATRIX location. All atoms have been indicated
by a previous program (CLEANM) (i.e., capital letters in the SCRUB list are now
minus). The MATRIX now contains only atoms and bonds. The program proceeds by
first finding a minus sign in SCRUB and then calculating the position of this
in core(i.e., the absolute MATRIX location).

Search is then made in the eight locations around the atom until a bondis found. The bond type is noted and the bond is followed until a change in the
symbol type occurs. rhis new character is classified as one of the following
cases and the appropriate action is taken:

(a) Another atom - place the proper entry in the Connection
Table.

(b) A blank - check to see if it is a bond corner. If so, con-
tinue path; if not assume that an unknown attachment has
been found and place an entry in the Connection Table.

(c) A reduced carbon chain - make a Connection Table entry for
a carbon at this location.

(d) A hydrogen atom - if it has been assigned a Connection Table
number it is entered into the Connection Table. Otherwise,
it is ignored.

A check is made to see if the search around the initial atom is complete,
and that all bonds have been followed. If so, the next atom is located in the
SCRUB list and the process continues. If not, the next '-ond is found, and thebond is followed as above. In the case of a carbon chain a check is made to see
that the bond attachments are unambiguous. At the completion, all multiplier
pointers are inserted in the Connectior, Table.

9DI

2.2112.2 Progr&i Structure

MAKECT is a main program that takes as input the following:

SCRUB list of all typed characters in the structural formula and
their relative MATRIX locations.

MATRIX - now containing only nodes and bonds.

AXTMOD - the absolute address of the first character of the SF1 in the
MATRIX is stored in the address of this location by ORGNZR.

MAKECT rejects chemical records for the following reasons:

(a) Error in typing structural formula

(b) Illegal symbol in structural formula

(c) Bond ij wrong plac.p

(d) Typed symbols are too close for unambiguous analysis

(e) Non-straight attachmetits to carbon chains

Output from MAKECT is CT- the internal Connection Tab!e whose entries are
formatted as follows:

3 -• -- ------ 17 18-20 21-23 24 - 29 30O--35

Nunber of atom bonded t t- Bond 2nd t s t
plih type of atom of atom

The multiplier points to an entry in the list of bracket multipliers (MULTAB,
described in Section 2.2.7.2) where applicable. Each atom has 8 such entries
only the first of which contains the atom name. The second and third contain
the relative matrix location of this atom as follows:

Word 2 for
3-me P17 18-20 21-23 24-w2_7 28-o -- ----- .a given atom:

qSAE AS ABOVE 0000 digits of

Bond type relative matrix location

3 -17 18-2021-232- - No29 30---3 Word 3 for a

SAMEASABOVE 000000 Viatom:I /2 high order

Bond type digits of
relative matrix
location.

97

ex. relative matrix location 14321 is represented

28 - 35

321

30 - 35

14 j

98

I

TMAKECT

Find minus j
word in

SCRUB J

Calculate ab-solute matrix j
location of
a toni

B

Search squares
adjacent to
atom for bond

-- Is bond NReject

Sdirection Record

F ollow bondy..

until, path
Sends

Figure 26. Macro Flow Chart - MAKECT

91)

1

S~Classify new characters

LATOM - BLANK REDUCED I- H --.[I I! IC"CHAIN] IATOM

J J L _j

Bond Eg

Write C.T.
for unknown
locus of
Ltachment_

S{ Calculate
Reduced C,T. numberScarbon /• to which atom

ch d ICs lt be

connected

around atom

! /~~~Are all •' "..

i,, • N / ~~~~~atoms k• •C.•enter- Y•= Enrepltersple •mul"

Figure 26. Macro Flow Chart - MAKECT (c,,ntinued)

I0

ed i

2.2.13 Calling Program For Chemical Verification

Code Name: PHASE5

Programmer: Bruce Hack

Abstract: This is the call program for VERIFY.

PHAS E 5

Call
VERIMF'

- I
Is Compoundh\ -1
Chemically RE JIf, C~~~~Correct-"/ , .

2.2.13.1 Program oiescripttcm

If compound is found to be correct by verification, this program transfera I
to NFCF. Otherwise, an error exit is taken and control is transferred to REJECT.

2.2.1:3.2 Program Structure

PHASE5 is a program that serves as a switch.

101

ii ii ii i

2.-f;* • Mmical Verification

Code Name: VERIFY

Programmer: Helen Hill

Abstract: VERIFY checks the chemical consistency of the structural
formula, molecular formula, and connection table, and verifies the valence of
each element in the connection table and in the abnormality table.

2.2.14.1 Program Description

A macro flow chart describing this program is presented in Figtre 27.

VERIFY utilizes a table (Table A) as a table containing all elements and

the acceptable valences for each element. This table indicates whether an
element is in odd or even group of the periodic table. A portion of the table
is used as a counter for storing element totals during processing. VERIFY pro-
ceeds as follows:

VERIFY first takes each atom in connection table and totals all the
explicit bonds. It then looks in the abnormality table to determine if an ab-
normality exists for this atom. If a valence abnormality is present, VERIFY
uses the abnormal valence as the valence for this atom and checks to see if it
is a legitimate valence for this element. If no valence abnormality is presents
the minimum valence for this element (which is found in bits 15-23 of Table A)
is used.

If a charge abnormality exists, the charge is subtracted from the hydrogen
count. The hydrogen count for a molecular structure is equal tol (all explicit
hydrogens plus (valence of each atom minus total explicit attachments to this i
atom minus total charges in abnormality table for this atom minus total unknown
attachments from this atom)).

The program translates the atom type from Dura Code to BCO. It then look-
for this atom type in Table A and adds one to the tabulation in Table A of the
total number of occurrences of this element in the connection table. Hydrogens
are accumulated in HCTR rather then in Table A. If any hydrogens are found in
Table A, it indicates the illegal presence of hydrogen in the connection table
and the Chemical record Is rejected. If there is a multiplier for the atom
being processed, it is used to increase the atom count of this element by the
actual number of occurrences.

When all entries in the Connection Table have been processed, the program
checks to see if ION is set, indicating the presence of atoms not included in CT.
If ION is set, the program then uses subroutine IONIC to add these atoms which
are formatted in XTAB, to the totals in Table A.

Next VERIFY totals the number of atoms of each element present in the
Hill molform and places them in Table A. C, 11, N and 0 are totaled in MWC, MIH,
MFN, and MFO. Multipliers of the Hill molform found in case of a Hydrate are

102

applied in totaling the Hill parent, but the water is ignored. If the Hill
parent multiplier is a fraction it results in rejection of the compound.

The program then compares the Hill molform totals with the CT plus XTAB
totals and adds up the elements in the odd group to be used in the H parity count.

If ADDEND is found to be set, VERIFY totals the addend molform atoms using
any multipliers present and compares the total count for each element in the
addend molform with the totals in the Hill molform,

VERIFY next totals the minus and plus charges found attached to elements
in the Connection Table, and compares the totals to see that plus charges equal
minus charges.

Finally VERIFY performs the Hydrogen Parity test on the Hill molform.

Error conditions which result in rejection of the compound are the following:

(1) An illegal element was found in a molecular formula.

(2) An illegal element was found in Connection Table.

(3) An element in the Connection Table has high valence which is
incorrect for this element.

(4) The molecular formula contains a fraction.

(5) Addends are present but the first multiplier is zero.

(6) Hydrogen is present in the Connection Table.

(7) The assumed hydrogen count differs from the molform hydrogen
count.

(8) There was a hydrogen parity check error.

(9) Connection Table C,H,N, or 0 count different from the molform

C,H,N, or 0 count.

(10) An illegal valence was found in the Connection Table.

(11) The C,H,N, or 0 count in Hill molform differs from that in the
addend molform.

(12) Totals for elements other than C,H,N, or 0 are not the same in
the Hill and addend molforms.

(13) An illegal element was found outside of brackets.

(14) Connection Table total for C,H,N, or 0 is not equal to the Hill
molform total for the same element .

(15) The multiplier of the Hill molform in a hydrate is a fraction.

103

I

(16) Plus and minus charges do not balance.

2.2.14.2 Program Structure

VERIFY is a subroutine which occupies 983 core locations. Table A of
elements and valences is 102 locations long. In addition there is a table which
relates modified Dura Mach code to BCD.

VERIFY uses tile following input:

CONNECTION TABLE described in Section 2.2.12.2.

ABNORMALITY TABLE described in Section 2.2.11.2.

PL ------------ total plus charges outside of CT

MIN ----------- total minus charge-; outside of CT

XPOINT -------- pointer to end of XTAB

ION ----------- set if atoms exist outside of CT

MULT ---------- pointer set if multipliers exist

MULTAB -------- table of multipliers from REGRUP described in Section

2.2.7.2

XTAB ---------- table of atoms outside CT from EXCESS described in
Section 2.2.8.2.

MOLTAB -------- formatted molform from MOLFRM described in Section

2.2.4.2.

On output, VERIFY sets bits in the accumulator to indicate the type of error
io'ind if the compound was rejected.

104

4

i.-

VERIF

A

Get
connection
table entry

Does i si

Fihave an M F legitimatFab n r m a i t V a le n c e N?
abnormavale nce

B N Cargeabnormal
valence

Sutrac t B•
charge from -

H count =

Figure 27. Macro Flow Chart -VERIFY

10,

TB

Total bonds

D Valece Ad toaddeshd

Terret ?K tota mfo- /ihcn

RhisurneSetterrorio

I tabl
ill ol- ota Hil Io

Difo rmeq 27. Macolf]orm shr etY(oniud

concio tm

table

YI

2.2..15 Expanelon Of The Connection Table

Code Name: NFCF

Programmer: Bruce Hack

Nick Homer

Abstract: This program expands the connection table from the in-
ternal format to the format acceptable by program CONVRT and will print the
connection table and abnormality table if a switch is set.

2.2.15.1 Program Description

A macro flow chart describing this program is presented in Figure 28.

The connection table list is broken down into three lists:

(1) The E list - this contains the atom name.

(2) The B list - this contains the bond type.

(3) The X list - this contains the number of the connected atoms.

The format of these lists is described in Section 2.1.2.2.

If a switch is set the lists are printed by the line printer under appro-
priate headings and, the abnormality table is decoded and printed, The program
then calls CONVRT and TICKER.

2.2.15.2 Program Structure

NFCF is a main program which takes the connection table described in Sec- A

tion 2.2.12.2 as input and provides as output three expanded lists:

X - The connection list

B - The bond list

E The atom name list

NFCF rejects chemical records for the following reasons:

(a) Empty connection table

(b) Incorrect element symbol in bits 24-35 of CT

NFCF calls DECK A, a subroutine, which prints Connection Table titles
when a switch is set,

107

-i

CNFCF'

Expand C.T.

into
X,B,E

DECKA _,NVRT

Print

X,B,ETICKER
listsF

Print Uses deck RIY-

A- -JECT to printAb orab l it "entered i.n
Tbef i Ie"

"IREJECTJ

Figure 28. Macro Flow Chart - NFCF

1908

V.i
I

2.2 .16 Output Of Chemical Record

Code Name: TICKER

Programmer: Helen Hill

Abstract: TICKER writes an output tape containing the TID, clas-
sification and stereo information, molform, nomenclature and references, struc-
tural formula image, connection table, and abnormality table.

2.2.16.1 Program Description

A macro flow chart describing this program is presented in Figure 29.

TICKER uses a portion of the MATRIX into which to transmit all the informa-
tion required for the output and writes this block onto magnetic tape, writing
one record per chemical compound. It uses information provided by MOLFRM, VERIFY,
and CONVRT to calculate the number of rings in the compound and stores this in
the output record. It then writes the total number of parity errors encountered
since the last compound if the input was from a Mergenthaler typewriter. If
switch 2 is set, TICKER calls PIX or DURPIX to produce pictures.

2.2.16.2 Program Structurf

TICKER is a subroutine which requires 142 core locations and utilizes the
MATRIX area as an output buffer.

It requires the following input:

MOLTAB - the molecular formula described in Section 2.2.4,2

NOMTAB - the nomenclature described in Section 2.2.5.2

REGNO - the registry number

CLSTER - formatted classification and stereo information described
in Section 2.2.3.2

CONTOT - the number words in the connection table

UNDTAB - the underline table described in Section 2.2.3.2

SCRUB - the SFI described in Section 2 . 2 . 3 . 2

CELLB - connection table described in Sectioak 2.1.2

ATIR - the number of words in the abnormality table

ASCRUB - a pointer to end of the scrub list

ADTOT - number of addend fragments in the compound

DELX - x size of matrix

109

I

DELY - y size of matrix

RINGS - used to calculate total rings

The output from TICKER is the formatted chemical record described in
Figure 13. This is on magnetic tape, one chemical record per physical record.

110

/
S__

C TICKER

Get all in-
formation to
be outputted

Write

PII

DI

Y!` u r , . . ' A. .a c r , 1 o , h a r- t - T l C K IE P

!.!4

-•_ _._ _ • ,_ _•o_ _•-- -_ _

2.2.17 Rejection Of Incorrect Records

Code Name: REJECT

Programmer: John Powers

Bruce Hack

Abstract: This program is transferred to from various portions of
the system. A message is printed out and the program transfers to AEND.

2.2.17.1 Program Description

The following macro flow chart describes this program.

i represents
the error
numbe r

WRITE

MESSAGE

<END

NOTE: AEND transfers the program from the generalized processing
portion of the system to one of the input programs for the
processing of the next chemical record.

2.2.17.2 Program Structure

REJECT is a subroutine.

112

2.2.18 CHEMTYPE To CIDS Format Conversion

Code Name: UPTAP

Programmer: Ed Hebel

Abstract: This program reformats the output of Lne CHEMTYPE system into
CIDS format and merges into the record descriptors which were introduced throughi
punched cards.

2.2.18.1 Program Description

UPTAP passes through the following pnases: sort, format, card read, print
TID's (temporary identification), and sort.

The first phase of UPTAP sorts on the two word field TID for each logical
record created by the CHEMTYPE programs. At the start of the program d check
is made to see if any record read exceeds 1,000 words. ShoUld a record exceed
1000 words, it is skipped and its TID is printed.

The next phase inserts one to four words from the Molform Table at rhi be-
ginning of each record. Word five is the base address for all relative addresses
to be calculated. The actual word count of the entire CIDS record with the
excepticn of tne four MF words, and the two's complement relative addresses in
the record for Additional Registry Numbers, Abnormality Table, Compound Con-
nection Table, Reference Block, Structural Formula Image, Keys, and Qualifiers
are calculated and placed. in words 5,6,-/8. (See Section 2.1.3.2).

Within the Reference Block, a header and a table of ecot-ents is created.
The decrement of the header holds the count for the table of content words.
The address portion contains the number of words in the Reference Block includ-
ing the heýder. The decrement in each table of contents word contains the i-
dentification number for the type of information. In this portion of the Refer-
ence Block, Bits 18-20 indicate the type of data: BCD, BINARY, Modified DURA,
or Compressed Modified Dora. The address portion of each word has the addrevs
relative to the header of the Reference Block. The table of contents shown in
Section 2.1.3.2 allows the Reference Block to be expanded without difficulty in r)h-
future.

The card routine reads a card and cova'.,ares its TID against the TID of tLe
,iurrent record. If the record TID proves to be larger than the cava TID an error
message is generated stating that fact. The next card is read and the same test
applied.

If more than one card is present with the same TID a check is made to ascertair.
rhat the cards are in contiguous sequence. If they are not, an error message is
generated. Whenever a card is encountered with a new TID, the descriptor on the
card for the previous TID will be transferred into the -urrent record. Prior to
transfer, a check is made to see whether the new TOD on card is greater than the
TID of the descriptor being stored. Should the new T]ID prove to be less, an error
message results.

The TID of all records processed are saved on an output !:ape called '']DNP'.

/

After formatting the CIDS records, UPTAP prints the number ,l input and
output records processed.

In the final phase of the program a sort is performed on two fields:
1) the four Molform Table words, and, 2) the two word TTD. The sorted records
are written on the final output tape for input to the registry system.

REFERENCE BLOCK FORMAT

WORD S-2 3 17 18 20 21 35
HEADER

No. of words in No. of words in reference
0 table of contents block (including Word 0)

CLSTER ** +

1 1 1* RA to Peader of Ref Blk

Nomenclature ** +

2 2 3* RA to Header of Ref Blk

EA No.(type k +
30) 3 0* RA to Header of Ref Blk

4 CLSTER

5 Nomenclature

LA Number (S)x

NOTE:

* Type of Data

0 BCD
1 Binary
2 Modified Dura
3 Compressed Modified Dura

** Jf Decrenent is zero
no data is stored

2. 18.2 Program Structure

UPTAP is a main program.

£ 4

LI

ASTART

I I

=Reformat Dil1 ME Block

[and Store as NF Sort Ke'.F Words of

[New Record.

SCalculate the RA of Addit.

Reg. No., ABN. Table, C.T.,

and Ref. Block. Move These

Blocks
4nto the New Record.

Read card. Transfer

REach TID Descriptor Mns

the Ref. Block of the

New Record.

Calculate RA of Qualifiers
and Keys. Move these

Blocks into the New Record.

Output CIDS Record.

6

Pigure 30. Macro Fiow (hart - UPTAP

i!5

Reg.No. ABN Tale, .T/

2.3 REGISTRATION

The CIDS Registry System examines compound records which are candidates
for the file in order to determine which compounds are duplicates of those al-
ready in the file. In order to locate duplicates, a Master Registry File is
maintained in molecular formula sequence. Potential new compounds are sorted
in this same order and compared against the Master Registry File. An atom-by-
atom search is performed to compare the structure of each potential registrant
with each of its isomers (compounds with identical molecular formulas) in the
file. If a connection table match is found, a further test is made to see if
the complete records are exact duplicates.

Figure 31 shows the general flow of the registration process. The four
principal programs STARTA, HLDPRC, REGUD, and RUD II are described in the fol-
lowing sections. The principal files involved are the Master Registry file,
the Print file, 8 d the Structure file. All utilize the CIDS record format as
described in Section 2.1.3.2, but the blocks of data actually stored differs
between files.

The Master Registry file contains:

Registry number

Additional compound identification numbers

Molecular fo~mula

Connection table and abnormality table

Reference block

The items in the reference block are listed in Section 1.1.

The Print file is an auxiliary file to the search system. It is main-
tained separately because the data it contains is not searched, but merely ac-
cessed for printing after the answers to a query have been determined. Thus
the data it contains does not have to be maintained on the same high speed stor-
age devices as the remainder of the search file. An additional reason for keep-
ing this data separate is that it is likely to be updated,while the rest of the
search data remains static. This separation considerably shortens the update
process. The items contained in each record on the Print file are:

Registry number

Additional compound identification numbers

Molecular formula

Structural formula iuage

Reference block

The Structure file is the input to the key assignment programs described
i Section 2.4 and illustratced in Figure 3. The data blocks contained in thi5

I1U.

OdPotential Old
CegipouydP rint

Mastr CmpondCOmpD nd

Reistry 31.~ Reitrlyse

NumberMatche

Hold ai' Doc

Compundsf oI

I

file are:

Registry number

Molecular formula

Connection table and abnormality table

Sitructural Keys,

The structural keys will be removed from the compound records before they
are entered into the search file.

Potential registrants to the file are processed in one of the fo11.owing
ways by program STARTA:

(1) Those which have no connection table matches in the file
are immediately registered.

(2) Those whose complete records exactly match some compolind re-
cord on the Master Registry File are discarded.

(3) Those whose connection table matches one or more file com-
pound connection tables, but do not have a complete record
match are saved for further inspection by a chemist.

Those compounds which have initially been determined to be unique by pro-
gram STARTA, can be itmmediately prepared for entry into the file by program
REGUD which adds Print information from these records to the Print tape and
outputs a structure tape for input to the functional group key assignment programs.

Those compounds in category (3) above are written on a Hold tape by STARTA
and must be examined by a chemist before further action can be taken. He must
determine for each compound match whether the two are different compounds (in
which case they must be stereoisorers), or whether they are the same compound,
but have some different data in the compound record. This difference may oc-
cur because of an error in one of the two records, or one may contain additional
data which the other does not.

Program HLDPRC processes those compounds on the Hold tape based on the de-
cisions of the chemist. These compounds are processed in one of the following
ways:

(1) Those that are different (stereoisamers) of all their isomers

in the file are registered as new compounds.

(2) Those that are the same compound are

(a) Ignored if the data already in the file is more complete
and more correct than that on the Hold tape.

(b) Selected parts of the data record are used to update the
file recora if the data on the Hold tape is more completE

or more correct.

]18

-2.3.1 Master Registry Program

Code Name: STArTA

Programmer: Donald Headley

Abstract: STARTA determines which of a group of potential new compounds
are different from those already registered in the master file. These com-
pounds are registered, positive matches are discarded, and questionable matches
are printed for further examination by i chemist.

2.3.1.1 Program Description

STARTA reads a tape of potential registrants which was produced by program
TTPTAP (Section 2.2.17). These are sorted according to the 4-word molecular
formula sort key which precedes the normal CIDS record This tape is then Lozn-
pared against the Master Registry File which is also in MF sequence. Program
STRUC (Section 2.4.8) is called to determine if two connection tables match when-
ever a molecular formula match is found.

If the connection table of the candidate record does not match any records
on the Registry Master File, a unique registry number is assigned to the com-
pound, and it is written on the new Registry Master and on the new compound file
NREGC. This tape will then be processed by program REGUD.

If the connection table of the candidate compound matches that of one or
more file compounds, a further test is made to determine if the entire record
is the same. This means that the temporary identification number CID) of the
candidate record must match one of the additional registry numbers of the file
compound. As a further check, the stereo indicator and nomenclature must ex-
actly match. If these data fields are all identical, the candidate compound
is considered a duplicate and is discarded.

If there was a connection table match but one of the other fields failed
to match, then that data from the matching compou,.d records must be printed
for examination by a chemist. The compound record for a potential registrant
which falls in this category is stored on the Hold tape for later processing
by program HLDPRC (Section 2.3.2). A card is punched containing the TID of
each compound on the Hold tape. After a decision is made by a chemist, an ac-
tion code must be punched on c3ch of these cards indicating the type of process.-
ing to be performed on each.

2.3.1.2 Program Structure

STARTA is a main program which requires subroutine STRUC. The inputs for
the program are:

(I) 'INPUTI': Potential new compounds from program UPTAP,

(2) 'MAST2A': The old Registry Master File. For the initial
run, a paramet('r card specifies that the file is not present.

II

(3) A card with chc, ncxt registry nrater to bt, a:-signcd in
columuis 25-36.

The outpuLS Lif the program are:

(1) 'MASI 2B': The new Registry Master File

(2) 'HOLDTP': Hold Tape File. The potenci-l registrants from.

'INPUTT1' that matched a record (s) in the Rcgistry Master F! le

(3) 'NEW(14P': The new registered compounds.

(4) A listing on the printer of the records on the Hold tape
with the matching records from the Registry Master.

(5) A punched card for each record on the Hold tape containing
TID number and a card sequence number.

(6) A card with the next registry number to be assigned in
columns 25-36.

All files have IOBS type 2 format, with a maximum block slze of 1.000 wordis

2.3.1.3 Operating Instructions

For execution, tapes must be mounted as follows;:

'INPUT1' S.SU07 (B6)

'MAST2A' S.SU04 (C4)

'MAST2B' S.SUO5 (B5)

'HOLDTP' S.SITV 34)

'NEWCMP' S.S-AO (B3)

Scratch S.SU02 (C2)

"s.suoI (c3)

P'cr multi-reel operation, a message will print at the end o[each input Lapc.
Sense switch 2 must be set to signal the last input reel for file 'INFUll'.
Sense switch 3 must be set to signal the last reel for file 'MAST2A'.

I

1 '•-f*1

L

I *~t

'2.3.2 Hold Tape Processor

Code Name: HLDPRC

Prozra r: David Sherr

Aglr ~t: - HLDPRC processes the Hold tape produced by program STARTA
according to an action code punched on each card of the TID card deck pro-
duced by STARTA. The action codes are the results of a chemist's decision
to register, ignore, or update the compound record for each compound on the
Hold tape.

2.3.2.1 Program Description

As each compound record is read from the Hold tape, the next card in
the card input is checked to see if it contains the same TID. If it does,
the compound record is processed according to the action code punched on
the card. The present allowable action codes are:

(1) Ignore record

(2) Register as new compound

(3) Replace nomenclature.

Action code 3 is presently the only type of update available. In this case
the registry number of the compound whose nomenclature is being replaced is
also punched on the TID cards. Other types of updates are in the process of
being implemented.

Compounds that are to be registered are assigned the i-.xt available reg-
istry number and the record is written iu; sequence on the new Registry Master
and on 'NREGC', the tape of new compounds to be input to RUD 11. Updates are
also written on 'NREGC' after the compound record on the new Registry Master
is updated.

A macro flow chart of the program is presented in Figure 32.

2.3.2.2 Program Structure

HLDPRC is a main program which requires as input:

(1) 'HOLD': The Hold tape

(2) 'OLMAS': The old Registry Master File

(3) A card with the next registry number to be assigned in
columns 25-36

(4) The TID card deck from STARTA with action codes punched in
columns 13-18 right-Justified.

121•

Read AtoSRC Registry

Reco dP foCard and
Open Files •

Read Hold Pi
Tape Record

sCopy Res
EOF? Y lof Old -

•1Master on

- • [New Master

Read Action

Card Lf nott ETN

in Core

Record for L s M t h t a r Hold Record.[
Card. Print onHlrn
Message. Tp ?Message

Master ifMaster
K ecorU not Record on i

iFigur New Master

2Less

O. N for Hold GI Message
EOF?/ ~~and 'Old' esa:.

? No MF Matchi

Figure 32. Macro Flow Chart -HLDPRC

STake Proper
~Action Code

] - --- --

Assign /Reg. No.\
Ignore Registry /on Card - L "
Record No. to hold

Record

.1+
A New Registry Nomenclature

and
'INTER' Record with
Fiue3TEaRo Fthat in Hold

Copy Updatedn

Record on•__
New Registry
and 'INTER' --

Figure 32. Macro Flow Chart: HLDPRC (Conatinued)

123

The outputs produced are:

(1) 'NWMAS': The new Registry Master riJ.e

(2) 'INTER': An intermediate tape for RUD II containing
new compounds and updates.

(3) A card with the next registry number to be assigned in
columns 25-36.

All files contain IOBS type 2 records in CIDS record format.

2.3.2.3 Operating Instructions

For execution, tapes must be mounted as follows:

'HOLD' S.SUO5
'OLMAS' S.SU04
SNWMAS' S.SU07
'INTER' S.SUO6

When the last reel of the 'OLMAS' file is mounted, sense switch 5 must be set.
Similarly, sense switch 4 must be set when the last 'HOLD' reel is mounted.

The first input card must have the next registry number punched in columns
25-36 and must be followed by the action cards (output from STARA). An end
of data card with END punched in columns 1-3 must inmmediately follow these
cards. The action cards are sequenced and must remain in that order.

124

2.3.3 ReS•etry Print Tape Update

Code Name: REGUD

Programmer: David Sherr

Abstract: REGUD updates the Print tape by adding new records for a group
of newly registered compounds.

2.3.3.1 Program Description

REGUD reads a tape of newly registered compounds. These records are then
sorted by registry number in order to add new records to the Print tape which
is in registry number sequence. The program reads the last old Print tape
and tihecke that the last registry number is smaller than the first of the ne
records. If not, an error is indicated. A new Print tape is written with t ie
new Print records added to the tape.

2.3.3.2 Program Structure

REGUD is a main program which requires as input:

'OLD': Old Print tape
'N1EGC': Tape of new registered compounds
Data card containing number of reels in the 'OLD' file.

The outputs produced are:

'PRN1T' : New Print tape
'STRUC'• Structure tape
Date card containing number of reels in the 'PRNT' file

All tapes are written in IOBS type 2 records and the logical records are in
the CIDS record format described in Section 2.1.2.2.

The input tape N1RECC' was produced by program STAKTA (Section 2.3.1).
The output tape 'STRUC' is the input to the key assignmcnt programs described
in Section 2.4.

2.3.3.3 Operating Instructions

The last reel of the 'OLD' file must be mounted on S.SU04 with SS5 set.
An input card with the number of reels in the 'OLD' file must follow the $ENTRY
card. The first 'NREGC' file tape must be mounted on S.SUO5. Typewriter mes-
sages call for successive reels. When the last 'NREGC' tape is mounted, SS 4
must be set. When the program ends, it prints record counts for each file and
punches a card with the ninber of reels in the 'FRNT1 file.

t25

i/

L

2.3.4 Registry Print Tayie Update II

Code Name: RUD II

Programmer: David Sherr

Abstract: RUD II updates the Print tape by adding new records for a group
of newly registered compounds and updating records corresponding to previous-
ly registered compounds.

2.3.4.1 Program Description

RUD II reads a tape produced by program HLDPRC (Sect"an 2.3.2) which con-
tains newly registered compounds and Print data for addition to or replace-
ment of Print records for previously registered compounds. These records are
sorted by registry number for merger with the Print tape.

RUD II must pass the entire old Print tape in order to update or replace
records which have been changed. When the end of the file is read, records
corresponding to newly registered compounds (which automatically have larger
registry numbers) are added to the file.

2.3.4.2 Program Structure

RUD II requires the same inputs as REGUD (Section 2.3.2), except that'File 'NREGC', which is in this case produced by program HIDPRC (Section 2.3.1),
contains both newly registered compounds and updates for previously registered

compounds. The outputs produced are the same as those by REGUD.

2.3.4.3 Operating Instructions

The operating procedure is the same as for program REGUD except that all
reels of the old Print tape must be read and updated.

126

2.4 KEY ASSIGNMENT

The Rey Assignment System is broken into two subsystems, (1) the ring key
assignment system and (2) the specific fragment and miscellaneous key assignment
system. The programs are broken up into two groups because of the large core
requirements of each.

The ring key assignment programs analyze the ring systems of a structure
from its connection table and automatically assign the appropriate CIDS generic
ring keys as described in CIDS No. 4. In addition, if the compound connection
tables being processed do not have ring atoms and ring bonds explicitly marked,
then these programs also perform this function. For this class of data, it is
necessary to perform ring analysis before assigning specific fragment and acyc-
lic keys. Otherwise, the order of processing is unimportant. The programs which
make up the ring key assignment system are SCNCAS, SCRNCR, SCRNDR, RINGI, RING2,
RING3, and RING4. SCRNCR and SCRNDR ari. two versions of the same program, the
first being used for data which previously had ring bonds and ring atoms expli-
citly marked and the second for data wnich does not yet contain these indicators.

The remainder of the key assignment programs are grouped together. The pro-
grams comprising this system are SONCAS, SCREEN, STRUC, HCRCT, BONDCT, MFSRN,
and PSCKYT. The executive program SCNCAS is the same for both systems. SCREEN
is the sub-executive program which serves a similar function as SCRNCR and SCRNDR
in the ring key assignment system. Each of the other subroutines assigns some
particular type of key to a compound. Program STRUC is called to perform an
atom-by-atom search to determine if a particular functional group or hydrocarbon
radical fragment is present in a compound. Program HCRCT assigns a key when a
compound is found to contain a nonspecific hydrocarbon radical as described in
Section 2.4.9. Program BONDCT assigns the CIDS acyclic nuclei keys described in
CIDS No. 4. Program MFSRN assigns molecular formula keys. Program PSCKYT assigns
non-specific phosphorus functional group keys.

1

127

I
I

2.4.1 Key Assignment Executive

Code Name: SCNCAS

Program•mer: Ruth V. Powers

Abstract: SCNCAS is the executive for the Key Assignment programs. For
each compound on the input tape, the sub-executive program is called which in
turn calls the appropriate screening subroutines. SCNCAS writes the compound
record on tape in the same format with the newly assigned keys added to the re-
cord. The program has been wr4irtn so as to provide flexibility in restarting
the screening.

2.4.1.1 Program Description

SCNCAS first calls a subroutine which reads the fragment screens (output of
SLOAD) if it is used with the fragment screening programs.

A data card is then read which provides the parameters for restarting the
program. The first number of the card gives the registry number of the last
compound which has already been processed from the input file. SCNCAS skips to
this compound on the tape and begins processing with the following compound.
If this first number is zero, processing begins with the first compound on the
tape.

The second number on the data card gives the registry number of the last
compound processed on the previous output tape if it is desired to add to it.
This number is zero if a new output tape is to be started.

As each compound record is read from the input tape, pointers are set to
the locations of the molecular formula and connection tables. One of several
possible sub-executive programs is then called, depending on the type of key
assignment to be done. When control is returned to SCNCAS, a test is made to
see if the compound was successfully screened. If so, the keys are added to
the record and it Is rewritten on the output tape. If any type of error is
encountered, or it the size of the compound exceeds some program limitation, it
is written on a Reject Tape.

Processing is halted and all files closed when either an end-of-file 1t
encountered on the input tape or sense switch 5 is pressed in at the console.

A macro flow chart of the program is presented in Figure 33.

2.4.1.2 Program Structure

SCNCAS is the main program of the Key Assignment system. It calls one of
the subexecutive programs SCREEN, SCRNCR, or SCRNDR, depending on the phase of
Key Assignment to be accomplished.

128

SSCNCAS

Read Data
Card.

Columns Copy from Old

(13-24)-0 Output Tape to
New to this

Reg. NoN

S(1-12)-O N Space on Input
S? / Tape to this

S Read Next I-EOF

Compound an

Input Tape.

L New S en Si Did ry iWritee-Sto Cc minrd N Typ e of v. VOp OUI,• 011'

F Write on Mrro Flow Chjrt TaCe
Output' Tape.\

• • v/Test Close Files

LOUT• Sens e Swit ch I, and~on Print o

Compounds

Figure 33. Macro Flow Ch art - SCNCAS

129

,,

The input to SCNCAS is the tape of compounds in the CIDS record format.
This format is described in Section 2.1.3. In addition, for the assignment of
functional group and hydrocarbott radical keys, the tape of screen fragments (out-

put of SLOAD) must be loaded into core. The output of SCNCAS is a compound tape
in the same format as the input tape, with any newly assigned keys added to the
record.

SCNCAS causes the following messages to be typed for compounds that have
been rejected:

(1) NO C.T. XXXXXXXXXXXX.
Compound record contains no connection table because of some
error in entering the compound in the file.

(2) XUXEUXXXXXXX REJECTED. BOILJ TABLE TOO LONW.
Number of bonds in the compound exceeds a Vro, am limitation.

Further error messages are described in subroutine descriptions.

2.4.1.3 Operator Instructions

Tapes for the key assignment programs are mounted as follows:

Compound Input Tape S.SU06
Fragment Screens (if needed) S.SU05
Previous Output Tape (if needed) S.SU04
Output Tape S.SU07
Reject Tape S.SUlO

Sense switch 2 is pressed in to print the keys that have been assigned.
(Otherwise only the registry numbers of the compounds processed are printed.)
Pressing sense switch 5 in causes the program to halt processing and close all
files. See subroutines for other switch settings.

130

|

n.4.2 Key Aasianment Sub-Executive

C2de Namee: SCREEN, SCRNCR, SCRNDh

Programmer: Ruth V. Powers

Abstract: This program serves as part of the Key Assignment Executive.
It is a subroutine of program SCNCAS and acts as an intermediary between it and
the various key assignment subroutines. SCREEN, the version used-when hydrocarbon
radical and functional group fragment keys are being assigned, selects the par-
ticular screen fragments which must be applied to the compound being screened.

2.4.2.1 Program Description

Three versions exist for the Scpeen Assignment Sub-Executive program for
use with different data and different types of key assignment. All three are
called by program SCNCAS and serve the functions of initializing counts, print-
ing the registry number of the compound being processed, and transmitting to the
screening subroutines the address of the compound connection table and its length.

Programs SCRNCR and SCRNDR are employed for the assignment of the generic
,ýyclic nuclei keys. They in turn call the ring analysis subroutines to assign
these keys. The only difference between these two versions is that in SCRNCR
a location CASWCH is set minus, and in SCRNDR it is set plus. SCRNDR is used
wnen the connection table data being processed does not yet have the ring bonds,
ring atoms, and resonant bonds marked. In this case, the ring analysis programs
perform this function. SCRNCR is used when CAS data is being processed, in
which case these marks have already been recorded. A flow chart for these two
programs are presented in Figure 34

Program SCREEN is used when hydrocarbon radical and functional group frag-
ment keys are being assigned. It serves the function of selection of the par-
ticular screen fragments which must be applied to the compound being screened.
The program selects the fragments and points to each of them in turn while
calling the atom-by-atom search program (STRUC) to decide whether the fragment
is present in the compound.

If the result of an atom-by-atom search is affirmative, STRIJC is called
again to determine if the fragment is present in another part of the clmipound.
When STRUC locates a fragment in the file connection table (C.T.), the atoms
which correspond to those in the fragment are "erased" from the core buffer so
that they are not available as possible choices on the next attempt to locate
the fragment in the ,MpouOd C.T. In this way the total number of occurrences
of the fragment can be decermined. This "erasure" is carried through the en-
tire assignment of functional group keys. Since the order in which the frag-
ments will be tested for assignment is from largest to smallest, this means
that if one functional group appears within a larger functional group, only
the key corresponding to the larger one will be assigned.

The selection of fragments which are potential keys for a particular com-
po,,nd is based on the molecular formula of the compound. The first level of
discrimination is based on the kind of elements present in the compound. This
information is used to select the fragment groups which contain no elements

131

r

SSCRNCR
SCRNDR

1U

Print Reg. No.
Length of C.T.

--a XRI
Location of C.T.

-63Acc.

Set CASWCR SCRNCR: -

+ or - SCRNDR: +

Call RINGi If CASWCII
to Assign is +, Ring

JAlso Marked.

Was C.T. I ndicate Error
q~cctess fu~lly N._= or Algorithm

Pocessed?y Insufficient.

Compound to be
Rejected.

YI

TU

Figure 34. Macro Flow Chart - SCRNCR, SCRNDR

132

U.•.

other than those present in the file compound. The CROSS table produced by
program SLOAD (Section 2.4.3) is consulted to find those fragment groups which
contain acceptable elements for a particular compound.

After a group has been selected, each fragment in the group is submitted
to a molecular formula test which requires that the number of atoms of each
element be less than or equal to the number of the corresponding element in the
file compound. If this test is passed, an atom-by-atom search is then performed.
If the fragment passes this search, it is assigned as a key to the compound, and
the key number which represents it is stored in the key section of the compound
record.

When the last screen of the candidate group is tested, SCREEN returns to
its scan of the CROSS array to find the next candidate group. When the scan
of CROSS has been completed, all appropriate fragment keys have been assigned.

SCREEN also calls program HCRCT (Section 2.4.9) to assign nonspecific hydro-
carbon radical keys, program BONDCT (Section 2.4.10) to assign acyclic keys,
program MFSRN (Section 2.4.11) to assign keys based on the Hill molecular for-
mula, and program PSCKYT (Section 2.4.12) to assign nonspecific phosphorus func-
tional group keys. Control is then returned to SCNCAS.

Figure 35 presents a macro flow chart of SCREEN.

2.4.2.2 Program Structure

This program is a subroutine of program SCNCAS in the Key Assignment
system. It requires the following input data:

RINGCT--contains total ring count of compound

T)OCNO--2 word array containing the registry number in BCD

DOCAD--decrement contains addre-, of v-'v'nund C.T.

COUNTS--contains number of words in t'.e compound C.T.

'The program prints the registry number of all compounds processed. Ir
addition, whenever sense switch 2 is pressed in, the keys which were assigned
to the compound are printed.

133 'I

Call HCRCr
to Assign

Nonspec. Hydro-
Cnrbon Rad. Keys

Call BONDCTr
to Assign

Acyclic Keys

Use CROSS to
Determine if
1at Fragment

Group is Applicable

Lo at I es.

N igext Gru \ Gru /

FIgure 35. Wacro Flow Chart -TCREEN

134

AI

kU

Address lot
Screen in

Group,

I Doe.s.Compound
= Satisfy Fragment \N

MI? ?

Call STrJC
to Perform

A/A •Nf

~~Loca'te Next]

Key. Record if Group.
Attached to
a Ring. Try

Same Fr agment

Figure 35. Maci-o Flow Chart -SCREEN (Continued)

135

2.4.3 Loading of Structural Fragment Screens

Code Name: SLOAD

Programe~r: Ruth V. Powers

Abstract: Program SLOAD prepares structural fragment data for use by the
screen assignment program. Connection table data defining the specific function-
al groups and hydrocarbon radicals presented in CIDS No. 4 are read from cards,
The fragments are converted to the proper format and stored in groups based on
the presence or absence of certain important elements. The fragment groups are
written on tape together with an index to the location to each group.

2.4.3.1 Program Description

The cards containing fragment screens are divided into groups on the basis
of the presence of certain important elements before they are loaded into the
computer. Preceding each group is a title card which names the group. The
name is composed of the combination of the following elements which are present
in the fragments in the group: C, N, 0, P, S, and X, where X is one of the
halogens (F, C1, Br, or I). Examples of titles are: CNO, CX, N. In addition,
there will be one group composed of fragments which contain none of these
elements. The groups are ordered so that those with the longest titles appear
first. Within each group the fragments are ordered by size (number of atoms),
with the larger fragments appearing first.

As the data is read from cards the molecular formula, connection table,
and abnormalities associated with each fragment are converted to the CIDS in-
ternal formats and stored in an 8000 word buffer. Program CONVRT (Section 2.1.2)
is called to format the connection table.

When another title card is encountered in the input data, the end of a
group has been reached. A word of zeros followed by a word of binary ones is
stored after the last fragment of the group in the output buffer. The next
group is stored immediately following the word of ones in the buffer.

Whenever the title card of a group is read from the input file, the cur-
rent buffer address is stored as the location of the beginning of that group.
This information is stored as a two word entry in the index table (CROSS) in
the format:

Word Contents
1 Title word of group

2 Location of first screen of group
relative to beginning of buffer

The title word indicates by bits in certain positions the contents of
the block. The first six bit positions (S,1-5) indlzstes the presence or ab-
sence of C, N, 0, P, S, and X in that order.

Screen groups can be separated into larger blocks (corresponding to dif-
ferent fragment types) to interrupt the erasure process and to cause the con-
nection table atoms to be replaced which have been erased because of fragments

136

SLA

Card for Group Group in Cross

Weas aKStreKe

Cardd

1tReaod Mon

Worit CarO sS

EX Was 2 nd Record.Ke

IWriieate

Figure~~Tale 36CMcrnvoeCrrt-SLA

137nena ora

EXIT Stor in /

Read bnoI

UI~In
J

being assigned to it. New values can be given to ERASE at this time to alteri

the atoms to be erased. It can take on the following values:
S- No erasure

1 - Erase non-carbons only

2 - Erase carbons only

This can be accomplished by placing a card with 'REPLAC' in columns I to 6
and 'OOXOOO' in 7 to 12 where X is the value to be assigned to ERASE. These
cards are inserted before group title cards, and cause a two word entry in the
CROSS array of the form:

777777777777

where X is the new value for ERASE and YYYYYY is the address of the previous
screen group.

2.4.3.2 Program Structure

The data cards for the CIDS screens are ordered as follows:

RE-PLACO02000

C (Title card)

(Hydrocarbon Radicals)

REPLACO01000

CNOP (Title card)

I'unctional Groups Containing CNOP)

CNOS

('unctional Groups Containing C.ONOS)

(Rest of Functional Groups)

000000 (End Card)

The functional groups must be assigned last so that the connection table
retains the proper erasure for processing by PSCKYT and NONSPC for the assign-
ment of non-specific functional groups.

The input for each structural fragment consists of data cards containing

138

/,

the following informotion:

Key Number

Molecular Formula

Connection Table

Abnormalities (if any)

The key number is a 6 character number punched in the first 6 columns of the
card. The formats for the mol form and C.T. cards can be found in CIDS No. 3
(pages 164 and 165) with the exception that column 24 of the first mol form
card now indicates whether any abnormalities are present. Each abnormality
has the form "XY-Z". Where X is the abnormality type, Y is the atom number,
and Z is the value of the abnormality. The abnornality types are V (Valence),
C (Charge), M (Mass). Examples: Vl-5.Cl-+l.M5=14.

The data for the next fragment follows inmmediately except when control
cards are needed to separate groups or blocks. See discussion in Section 2.4.3.1.

The output of SLOAD is a tape on which the first physical record contains
the fragment data. The format of the data associated with each fragment is
stored as follows:

Word Contents

1 D-No. of words in fragment record
A-No. of words preceding structure (n)

2 D-No. of words preceding abnormality table
(-0 if no abnormalities)

A=No. of words in structure

3 Molecular formula

m Key number
j

m+l Connection table

n Abnormality table (if needed)
(a zero word follows last entry)

.he internal format of the mol form is the same as that for a query mol
form as described in Section 3.2.2.2. The inLernal format of the CT. is
given in Section 2.1.2.2.

The index is written as the second record on the output Lape. The de-
crement of the first word of this record contains the complement of the
number of words in the index. This word is to be read into a location CROSCT,
immediately preceding CROSS when the tape is read for screen assignment.

When the program is run, an output tape must be loaded on S.SUO5. The
data cards are loaded after the program and must be terminated by a card
containing '000000' in the first six columns.

139

Z.4.4 Ring Analysis Executive

Code Name: RING1

Programmer: Jeffrey H. Kulick

Abstract: The general function of RINGI is to find the smallest set of
smallest cycles in a compound patterned after the rules of the Ring Index.
These cycles are determined and the generic cyclic nuclei keys are assigned to
the compound. The keys themselves are discussed in CIDS No. 4, and the
algorithm for assigning them is discussed below.

2.4.4.1 Program Description

In the process of finding 'ie smallest set of smallest rings (hereafter
called SSSR), there are two bat - processes, "compression", and "cycle finding".
Compression involves a number of Qabses over the compound record. On each pass
a rule is applied until it cannot be applied any further. Control then passes
to a succeeding rule, which is again applied as many times as possible.

Compression-rule I is called "side-chain peeling". This involves the re-
moval of any node with only one connection and its redundant entry. Three
passes over a typical compound are shown below:

Pass 0 Pass I Pass 2 Pass 3

Compression-rule II is called "compression over two-nodes". This means
simply that any node with exactly two connections is removed from the table and
the two attached nodes are shown as having a longer chain connecting them. This
is in addition to the standard CIDS compression over all carbon two-nodes.
Typical final compression compounds look as follows:

INITIAL FINAL

t c 1-10

140

The second process that RINGI performs is to select the SSSR. The follow-

ing rule is used:

(1) Find a path between two nodes.

(2) Is there a better path between these two nodes?

NO - Go to (1).

YES - Record in cycle storage, the cycle obtained by concatenat-
ing the path obtained in (1), and the best path obtained
in (2). Then erase from the connection table the path
obtained in (1) above. Go to (1).

This rule is repeated until all cycles of the structure are found or steps
(1) and (2) fail to find a cycle in the compound record. If an insufficient
number of cycles are found, the compound is rejected with the notation "ring
algorithm insufficient." Otherwise processing proceeds with key assignment.
Two examples of the selection of the SSSR is given below:

Consider the compound:

10 I I 2 3

C C C - C - C

* a 7 0 5

Ring Selection Process:

(1) Select path: 7-8-9

(2) Best alternate path: None

(3) Select path: 9-10-11-1

(4) Best alternate path: 9-2-1

(5) Record ring: C5

(6) Remove path: 9-10-I1-I

(7) Select path: 2-3-4-5-6-7

(8) Best alternate path: 2-1-7

(9) Record ring: C7

(10) Remove path: 2-3-4-5-6-7.
The compound is now

1 2i

/11
C--C

7 a 9

141

* (11) Record ring: C5

The program would select rings C51 C5 and C7 as the rings of the above compound.

Consider the compound: 4

6 1 % N2

Ring Selection Process:

(1) Select path: 1-2-3-4

(2) Best alternate path: 1-6-5-4
* (3) Record ring: C5 N

(4) Remove path: 1-2-3-4
The compound is now: C4

C 0
I i

* (5) Record ring: C 5 e0.C.I;

The program would select rings C5N and C-0 for the above compound.

For these above processes, the major sub-programs used are RING2, which
performs the alternate path search and RING3. and RING4, which perform the
compression. In the alternaote path search, one path is considered '"better"
than another if:

(1) It is shorter (contains fewer atoms), or

(2) The number of atoms is the same, but the "better" path
(a) Contains more carbon atoms or

(b) Contains the same number of carbon atoms but
contains more atoms of the highest ranked hetero-
atom which appears in unequal amounts in the two
paths. The precedence of heteroatoms is defined
in the order: I, 0, S, Se, Te, N, P, As, Sb, Bi,
Si, Ge, Sn, Pb, Hg, B, all others.

For example, if a choice is to be made between a C OS path and a C2 OP path,
the C 2OS path would be considered the "better" patd.

The assignment of keys is now performed. First, ring storage is exam..
ined to obtain the ring molecular formulas recorded during the ring selec--
tion process. For each ring in ring storage, a key is generated, indicating
the atom types composing the rings.

Next, the rings in ring storage are sorted according to size, the small-
est to the largest. At this point, each ring is assigned a number of the

142

form 2n (i.e. 1, 2, 4, 8, 16...).

The identification of the nuclei follows. This is done by partition-
ing the rings into eauivalence classes. The classes are defined such
that: Ring 1 is a member of the same eauivalence class (nucleus) as
Xing 2, if and only ir there exists at least one atom A, such that
A is in both Ring I and Ring 2. This is accomplished by intersecting
the atom numbers of each ring with the atom numbers of all other rings.
If they have an atom in common, they are noted as being in the same
nucleus. When two rings are merged to form a nucleus, a notation is made
as to which rings and which atoms, are in that nucleus. This process is
continued until all intersections yield no further nuclei.

For each nucleus, the list of rings in that nucleus is used to obtain

both the ke' for the number of rings in the n..cleus and the redundant numer-
ical rin. population key (by going back to ring ztorage for each ring number
and obtaining the size of the ring).

At the same time, for each nucleus, the atoms compositing it are obtained
from the list made during the intersection of the rings. The original struc-
ture is searched to obtain the element type for each atom, and the skeleton
molecular formula key is assigned.

The above processing is performed for each of the nuclei, keeping a count
of the number of n'.clei. From this, "the number of nuclei" key is generated.
These counts are maintained for each addend senarately.

The number of double bonds in each nucleus is now comnuted. In a large
Dart of the data processed by the CTDS programs, resonant bonds have been
marked as type 4 bonds, and these must be processed separately from the
standard notation for double bonds (i.e. type 2). if no bonds in a structure
have been marked resonant, then the number of double bonds in the cyclic part
are merely counted. If a cyclic substructure of a structure was nreviouslv
marked resonant (denoted by type 4 bonds), then the total number of double
bonds in the resonant substructure must be computed before determining the
number of double bonds in the non-resonant cyclic part. In the resonant
part:

6

1
DB = RB - RC + 1

2

where DB is the number of double bonds in the resenant part, RB is the number
of resonant bonds, and RC is the number of ring closures.

Consider the structur
25

0
2 4 a666 10

24 (c1 3 7 9 11

22 20 IS 16 4 I

21 19 ii 23 It, 13

143

F

Thia structure is processed as follows,

(1) Start at node 6.
(2) It is connected to one atom not in the nucleus

and so we now have 1 direct attachment.
(3) It is connected to two atoms in the nucleus, 5 and 7,

which have not been processed. These are put in the
"To Process" list giving (5, 7) and the "Processed"
list becomes (6). The number of double bonds in the
6-5 and 6-7 connections are saved.

(4) Now process atom 5.
(5) It has a resonant connection so we put it into the

Resonant list giving (4).
(6) It has another resonant connection, so we also put 18

in the Resonant list (4, 18).
(7) The total number of 4-bonds encountered is now (2).
(8) 5 is put into the "Processed" list, giving (6, 5) and

the "To Process" list is (7).
(9) Next, process resonant atom 4.

(10) 5 has been processed so look at 3.
(21) 3 is not processed so add it to the "Resonant" list

which is now (18, 3).
(12) Put 4 in the "Processed" list giving (6,5,4).
(13) The "Resonant" list is not empty so process 18.
(14) 18 is connected to 17 so add 17 to the "To Process"

list giving (7, 17). Also add the number of double
bonds to the D bond count.

(15) 18 is also connected to 19 sc add 19 tc the "Resonant"
list (3, 19).

t16) Mark as processed 18, and the "Processed" list is now
(6, 5, 4, 18).

The process is continued as follows:

Atom Being Ring
Processed Processed Resonant To Process 4-bonds D--bonda Closure

3 i4,5,6,18) (19) 17) (4) (0) M19 (3,4,5,6,18) (20, 2) (7, 17) (6) (0) (0)

Now 19 is processed, but 19 points to 18, which is
processed. Therefore this is a ring closure. Add 1
to the ring closure count and continue.

20 (3,4,5,6,18, (2) (7, 17) (7) (0) (1)
1.9)

2 (3,4,5,6,18, (21) (7, 17) (8) "0) (1)

19,20)
21 (2-6,18,19, (1) (7, 17) (9) (0) (1)

20)
1 (2-6,18,19, (22) (7, 17) (10) (0) (1)

20,21)

144

UL

Again a ring clonure has been found. Atom 1 connects -o 2 which is processed,
and to 2? which is in a table. Tn addition it connects to 24 which is not
in this nucleus. Therefore the number of direct attachments is increased
to 2.

Atom Being Ring

Processed Pr6cessed Resonant To Process 4-bonds D-bonds Closure

22 (1-6,18,19,20,21) (0) (7, 17) (11) (0) (2)

The "Resonant" table has now been emptied. Before
going back to the "To Process" table perform the computation:

(RB - RC + 1)12 /- D8

(11 - 2 + 1) /2 - 5 double bonds.

7 (1-6, 18-22) (0) (17) (0) [) (0)
8 (1-7, 18-22) (8, 16) (17) (2) (5) (0)

16 (1-8, 18-22) (9) (17) (3) (5) (0)
9 (1-8,16,18-22) (15) (17, 23) (4) (5) (0)

15 (1-9,16,18-22) (14,10) (17, 23) (6) (5) (0)
14 (1-9,15-16,18-22) (10) (17, 23) (7) (5) (1)
10 (1-9,14-16,18-22) (13) (17, 23) (8) (5) (1)
13 (1-10,14-16,18-22) (11) (17, 23) (9) (5) (1)
11 (1-10,13-16,18-22) (!2) (17, 23) (10) (5) (1)
12 (1-11,13-16,18-22) (0) (17, 23) (11) (5)

No more resonant bonds, therefore coupuce

(11 - 2 + 1) /2 - 5 double bonds.

17 (1-16,18-22) (0) (23) (0) (10) (0)

23 (1-22) (0) (0) (0) (11) (0)

Totals: 11 double bonds, 2 direct attachments.

This is the procedure determining the number of double bonds in a structure.
The following basic assumptions have been made:

(1) There are no resonant spiro structures
(2) The number of double bonds in a resonant structure

is (RB - RC - 1) /2 as stated above.

At this point, the key for the total number of direct attachments to all
nuclei is assigned.

During this computation, a note has been made of the number of bonds of
each type appearing in each path; i.e. for the path between 16-17, one
double bond was noted. Only those structurPe not marked resonant already
(non-CAS data) will be marked resonant by the next process. To mark the
resonant structure, ring storage is again consulted. The process is illustrated

145

by means of a typical example. Consider the compound:

First, all rings with an odd number of atoms are removed. It has been as-
sumed that any structure with an odd number of nodes cannot be resonant.

2 4 6 8 g0

25 V 10i17 15
24 22 20 16 6

Next try to find a "handle". A handle is defined as a ring which meets the
requirement of being resonant as defined by the rule that the number of double
bonds be exactly one-half the number of nodes. Suppose that ring (3,4,5,21,
22,23) is chosen. It is determined that by itself it is not resonant (6 nodes -
2 double bonds). Now pick (1,2,3,23,24,25). This satisfies the criterion for
resonance, and therefore is considered to be the first handle.

The next step is to find another ring connected to this ring. This is
done similarly to the nucleus search. Each of the other rings in ring storage
is intersected with the handle. It is found that (3,4,5,21,22,23) is connected
to the handle. When (1,2,3,4,5,21,22,23,24,25) is tested for resonance, we
find that this whole structure is resonant, and erase from storage the individ-
ual rings. This new structure is now the handle. Again, a search is made for
a ring that is concatenated with the new structure, and (5,6,7,19,20,21) is
found. It is found that (1,2,3,4,5,6,7,19,20,21,22,23,24,25) is not resonant.
Not only is ring (5,6,7,19,20,21) rejected as being part of this resonant
structure, but it can never be a member of any resonant structure and so it
is erased from ring storage. No other rings can be found in common with the
first resonant structure, so the program proceeds to mark the bonds of these
rings as being resonant.

The same procedure is followed for the second part of the structure. It
is found that the second part is also resonant and it is marked accordingly.
Finally, the "marked-up" structure is copied into the output area.

2.4.4.2 Program Structure

RING1 is a subroutine of the Key Assignment System. It is callad by a
"TSL RINGd. It in turn calls subroutines RING2, RING3, and RING4. Tihe
program requires the following input:

(1) CIDS formatted connection table

(2) Flag word CASWCH set plus for GAS data, otherwise minus

(3) Index Register I contains size of connection table

(4) Address of connection table right-adjusted in accumulator

146

The following output is produced by the program:

(1) CIDS formatted connection table. (If non-CAS data,
ring bonds, ring atoms, and resonant bonds have been
marked. The cotnnection table for CAS data is left
unchanged.)

(2) The keys assigned are stored, 2 words per key, starting at
location, SCKY+I.

(3) BADAT - 0 if no error was detected in the connection
table. BADATOO if bad compound record.

In addition, if sense switch 2 is pressed in, the keys which were assigned
are printed. If sense switch 3 is pressed in, an octal dump of the marked-
up connection table is printed.

The following diagnostics are printed to signal con''tions that cannot be
handled by the program:

(1) "Over 3 non-specific types in ring". This means that a ring
or nucleus contains more than three different element kinds
which are other than C, N, 0, P, S.

(2) "Too many rings per nuclei" This means a nucleus contains
more than 17 rings.

(3) "Ring algorithm insufficient" This message appears when struc-
tures are too complex to be analyzed by the present ring al-
gorithm.

(4) Error El - bad connection table.

A macro flow chart of the program is presented in Figure 37.

147
/

F

LA

SRING in-

Call Numbers to
RING4 Compressed

Carbons

to
Perform

Compression
/..

Erase Candidate
Path. Decrease
Count of Rings
Fd.o be Found

Candidate

pPPath

1*
CallS RING2 S
to FindAlt erna tePath

Any
N /Is Alter-

Enter Ring

More 3nate Path r in Ring

Ind ica t e A ss ign R in g- / N M or e

Ring Algorithm
Mol Form

• Ringsb to u d° -/Insufficient
Keys

b on

Cto
Assign a Mo. 1to Each Ring.

Figure 37. Macro Flow Chart - RINGI

148

U

Determine the
1Rings that Make

Up Each Nucleus

For Each Nucleus, Assign
Keys for (1) Ring Count,
(2) RNRP, (3) Skeleton M.F.
(4) No.Double Bonds.
Assign Keys for (1) No.

Nuclei, (2) Total No. of
Direct Attachments.

CASY ,S
45gData?

ErE e Rings Locate andS[with Odd No. Mark

Sof Atoms from Resonant •
JRing Storage -Bonds

FFind a - None Copy MarkedRing(Hand la Output Area

$Found

__ II

Mark It AsResonant in An y RingR

C.T. EraseShrAtm
from RingWihI

Storage

SY

Ring from N Stuur
Ring StorageReoat

Figure 37. Macro Flow Chart - RINGI (Continued)
149

2.4.5 Alternate Path Search

Code Name: MUSTRP or RING2

Programmer: Helen Hill

Abstract: MUSTRP is given a connection table path between two nodes in
a ring and searches for any alternate paths between these two nodes. If more
thao one alternate path is found, the "best" of these is chosen.

2.4.5.1 Program Description

MUSTRP examines a connection table which has been compressed as described
in Section 2.4.4.1. The program takes a pointer to a given path between two
nodes in a ring and looks for the "best" alternate path between those two
nodes. The criterion by which one path Is considered to be "better" than
another path is described in Section 2.4.4.1.

On being called by the main ring program RING1, MUSTRP checks that the
given pointer indicates a path of length 2 or greater and also compares the
two terminal nodes. If these are found to be the same node, control is re-
turned to the main program with anindication that a self-ring was found.
This occurs when a ring contains at most one atom which has more than two
connections to it.

The program follows each path from one of the nodes until the path length
exceeds the given path length without having passed through the second node.
Given the compound

4

C-C IC
CC-

and given the path 1-2--3, the program begins with atom 3 and examines each path
from this atom. Path 3-5-4-1 is found to be too long to aualify as "better"
than the given path 1-2-3, but it is an alternate path, so this is noted as
the present best alternate path. Path 3-6 is a possible candidate, so it is
stored in a linked list. The program then examines other paths leading from
atom 6 to determine whether the 3-6 path is part of a better path between
3 and 1. Path 3-6-7-8-6 is considered and found to be too long to qualify.
Path 3-6-8-7-6 is also too long. The only remaining alternative is 3-6-1,
and this now turns out to be a better path than the present best alternate
path 3-5-4-1. It therefoze replaces it as the best alternate path. This is
returned to the main program with a bit set indicating that an alternate
path was found. If no alternate path is found, the given path is returned
without the hit being set.

A flow chart of the program Is presented in Figure 38.

150

'V

Atm Store

Given Path as
Blest so far.

from "From" than and Quality

Atom Givn? Btter

Figur 38 ar lw hr IG

151

C

Get Entry
from List.

Replace "From" :N List Y
Atom with "To" Empty? RETURN
Atom o Entry.

D
F--O

Concatenate

More next Connection
Unlink Y with List Entry.
this Entry M-.ý to "From" Check that Path

N Connections Y

Atom? Doesn't return
on itself.

Is "ToP Does Tota
N Atom same Y Path Length N

as Given? Exceed Best
so far?

Y

Path Length
S1 Store as

h _ýt
wit be

Best
Path

Shorter, or -L-,0ith better
uality? so far

NN

Path Store

Pa
thLength Short- Y Concatenated

e r a tnder and "To" Path in
Atom

engt

h
S hoAto Linked List.D i ffe re ntDifferent? Yrt-
' 'ToNN

Figure 38, Macro Flow Chart RING2 (Continued)

152

I.

2.4.5.2 Program Structure

RING2 is a subroutine of the Ring Analysis portion of the Key Assignment
System. The input consists of a pointer to a connection table entry. In
addition, the X, E, C and ECOUNT tables are in core.

The output consits of a 7 word block describing the best alternate path

foxind by the program. The format of the block is

Word Contents

1 Path length

2-3 One of 72 bits is set for each
atom number in the path

4-7 Stores the count of atoms of each
element type in the path

In addition, the following indicators are set by the program:

BADAT - Set to indicate an error was detec-!-
SPIRO - Set if a self-ring was found
QUAL - Set if an alternate path was founr.-

153

2.4.6 Ring Compression

Code Name: COMPR or RING3

Programmer: John D. Leggett

Abstract: The purpose of program COMPR is to remove all atoms in the
connection table which have exactly two attachments and to remove side
chains from the structure, in order that the ring descriptors may be found.
The program also contains a subroutine which removes a prescribed path
from the structure.

2.4.6.1 Program Description

The compression portion of the program operates similarly to program
CONVRT, with two exceptions: (1) all atoms with two connections are
removed, and (2) the bond table is not treated. As each atom is removed,
the internal node numbers (or numbers representing previously removed atoms
are combined to form the description of the path between the two atoms to
which the removed atom is connected. Likewise the element description of the
paths are combined to give the specification of the new path. Upon completion
of the first compression, the side chains are removed, and the structure is
compressed again.

When a ring has been found in the structure by program RING1, the path
removal subroucine (SSC) is called. The connection table is compressed again
and side chains are removed after a path has been deleted. If a self-ring is
found at any stage of the compression, control is immediately returned to the
main ring program, since this ring must be one of the desired cycles.

A flow chart of the program is presented in Figure 39

2.4.6.2 Program Structure

RING3 is a subroutine of-program RINGI. The input to the program is
the connection table produced by RING4. The output consists of the compressed
connection table and/or a connection table with some path removed, and/or the
location of any self-ring.

If an error is found in the connection table, control is returned to the
main ring program with an error bit set.

1S

.5,

RING3

Self- Compress
ring C.T.)

found SSC

Remove Remove
Side Prescribed

Chains Path

self- Compress RETURN
rin• C.T. k

foung

Figýre 39. Haro Flow Chart - RING3

155

6

2.4.7 Connection Table Expansion

Code Name: TABLE or RING4

Proitrammer: John D. Leggett

Abstract: The purpose of the program is to expand a connection table
given in the compressed format (see program CONVRT) to a form suitable for
application of the ring analysis programs.

2.4.7.1 Program Description

The program takes the connection table in the form in which it is
output from CONVRT (Section 2.1.2) and expands it into X and E tables. This
form is the same as the stage Just prior to formating in CONVRT.

The next step is the generation of path descriptors. The first such
descriptor is the atom numbers of the nodes present in a given path, includ-
ing the "from atom" but not the "to atom". For any atoms not explicitly
specified in the connection table (i.e. if a path is of length greater than
one) artificial atom numbers are added. The second descriptor is the element
kind of each atom in the given path.

A macro flow chart of the program is presented in Figure 40.

2.4.7.2 Program Structure

RING4 is a subroutine which is called by RING1. It is given a compressed
connection table (Section 2.1.2.2) as input. The output consists of X and E
tables as described in Section 2.1.2.2 and the generation of path descriptors
for use by the other ring analysis programs.

If an error is detected in the connection table, control is returned to
the main ring program with an error bit set.

156

RING4

Expand

C. T. ° -•"

Set~
error bit |

Add node L ..
numbers into

path descriptor

I '
Add element
kinds into

path descriptor

L-j
(RETURN

Figure 40. Macro Flow Chart - RING4

157

2.4.8 Atom-by-Atom Search

Code Name: STRUC

Programner: John D. Leggett

Abstract: The purpose of the atom-by-atom search program is to deter-
mine if a one-to-one correspondence exists between the nodes (atoms) and con-
nections in a given query structure, and some set of nodes and connections
in a given file compound structure. The element kinds of the nodes in each
are compared as well as the connections between the atoms, and any cyclic prop-
erties. The output of the program is a yea or no answer for a given query frag-
ment and compound structure. Provision is made to erase portions of the file
compound in core during processing to avoid fragment overlap during repetitive
search.

2.4.8.1 Program Description

In order that a one-to-one correspondence exists between the query nodes
(atoms) and branches (bonds), and some set of nodes and branches in the file
compound, it is necessary and sufficient that every possible path through the
query structure have a corresponding path through the file compound. It is
not necessary to examine every path of the file compound, provided that every
node and branch in the query is contained in the set of paths that we chose to
examine.

It is required that each pair of atoms matched have the same element kind,
except for two special codes used in queries, which may match any of a set
of element types in a file compound. These are (1.) EE which represents any
element except hydrogen, and (2) EL which represents any element except carbon
and hydrogen. In addition, any abnormality in the query must be satisfied.
It is also required that each pair of atoms matched have the same number
of direct attachments except where this restriction is specifically relaxed by
a special character in the query.

In the connection table, special indicators mark atoms which are members
of a ring and paths which are part of a ring. The atom-by-atom search re-
quires that matched atoms must either both be in a ring or neither be in a
ring. Likewise, paths must be matched as bo-h either ring or non-ring paths.

The element of the starting query atom is matched against successive
file atoms until a match is found. The trace then begins by placing one of
the connections in the hypothesis list, and the remainder in a choice list.
A similar step is taken in the file compound, and the pair of atoms in the
hypothesis list is matched. If the test is successful, the stepping continue6
until (a) the end of a path is reached, (b) a cycle is closed, or (c) a mis-
match is found. If (a) or (b) occurs the program searches back up the
choice list for che last available (untraced) path in the query and file com-
pound, and the trace begins again. When a mismatch is found, the trace backs
up to the last available alternate path in the file compound and starts again
using the same query path.

13

14A

When the alternate paths have been exhausted, a new file compound start-
ing atom must be selected. If the list of possible starting atoms is ex-
hausted, the search is said to fail.

If every path in the query is successfully matched against a path in the
file compound, the search is said to pass. In this case any appropriate erasure
of the file compound takes place. Thus if the program is called again to de-
termine if the query fragment is present in another part of the file compound,
the set of atoms which were previously matched with the query fragment are no
longer available choices. Thus the program must look further in the connec-
tion table to locate some other set of atoms which satisfies all the require-
ments of the query.

2.4.8.2 Program Structure

STRUC is a subroutine which serves important functions in several differ-

ent parts of the CIDS system. In the Key Assignment System, STRUC is called
to determine if a given screen fragment is satisfied by a given file compound
in order to decide if the corresponding key should be assigned to the compound.
In the Retrieval System, STRUC is called to decide whether a file compound
should be retrieved by a query by determining whether the compound satisfies
the query structure. In the Registration System, STRUC determines if a possible
registrant has the same connection table as a registered compound which has
the same molecular formula.

The program requires as input the core locations of the connection tables
for the query fragment and the file compound, and ;he length of the latter.
In addition, the locations(s) of the abnormality table(s) if any are required.
Location ERASE is used to indicate the type of erasure (if any) to be performed.

If a match was found between the query and the fiLe compound, STRUC returns
to the calling program with the accumulator non-zero. If the search failed,
the accumulator is set to zero before returning control.

A macro flow chart of the program is presented in Figure 41.

159

[/
r
I..

-- _ --- '
STRUC

Start
at Least Common

Element in

Query

S Trace

Query and Take New

File Paths File Path

Take New / ElementAnte
Query and /Kinds, Bonds, N

File Paths \Cycles Satis-Fiept?

1
N~Another

/Y

Query Path!

N

LS-arch
Sac

PaSOe al

[rs t~ ntlcompound which match • .•

atoms in query fragment.

Figure 41. Macro Flow Chart -STMJC

160

I U

2.4.9 Nonspecific Hydrocarbon Radical Key Assignment

Code Name: HCRCT

Programmer: Jeffrey H. Kulick

Abstract: Program HCRCT has been developed to assign to a structure a
sub-class of the set of aliphatic hydrocarbon radical keys.

2.4.9.1 Program Description

HCRCT assigns to a compound the following hydrocarbon radical keys:

(1) A single key, 3-A-1-28, is assigned to compounds
which contain a straight single-bonded (i.e. saturated)
carbon chain which is attached to only one non-carbon
atom and which contains more than 19 carbons.

(2) The key (C) - El is assigned to any single-bonded
carbon chain (branched or unbranched) which contains
at least 5 carbon atoms and is attached to one and
only one non-carbon atom (El). A different key is
assigned for each value of n.

Program HCRCT first creates two dictionaries. Both have one entry per atow.
117e first dictionary contains the following information for each atom:

(1) Ring or non-ring atom
(2) Number of attachments to the atom.

" econd dictionary contains the following information for each atom:

(1) Carbon or non- carbon
(2) A number which identifies the hydrocarbon

radical to which this atom has been assigned
(3) Location of this atom in the connection table.

1he program first locates a "candidate atom" (a carbon atom with only one
attachment that has not previously been assigned to a hydrocarbon radical)
If the attached atom is carbon, then each of its connections are searched
in turn to see if the structure qualifies for being a monovalent hydro-
carbon radical (HCR). A count of the number of atoms is maintained as this
search progresses. Additionally, as each atom is searched in turn, the
second entry of Dictionary 2 is filled in, indicating membership in a can-
didate HCR. This is to prevent double assignment for atoms 1 and 2 in the
structure:

C,

CN -C C - C 2

161

/

I'I

The search along any particular path is continued until a non-carbon
is encountered. The number of non-carbons attached to any candidate HCR
is saved, and a key is assigned only if this count equals one., A candidate
HCR is also rejected if any double or triple bonds appear within it. A
further restriction is that none of the carbon atoms within the HCR may be
a member of a ring, but the non-carbon to which it is attached may or may not
be.

A flow chart of the program is presented in Figure 42.

2.4.9.2 Program Structure

HCRCT is a subroutine of the Key Assignment System. It requires as input
a compressed connection table as described in Section 2.1.2.2. The accumulator
must contain the core address of the connection table, and index register 1
must contain the length of the connection table. The program stores any keys
that are assigned to the compound in an array for later addition to the compound
record.

162

d

r

:HCRCT

"E 1D
I
I

Initialize.
Create

Dictionaries 1 & 2.

Obtain an Unprocessed
Carbon Atom

With One Attachment.
Store Zero in counts.

Is

Save all Attachments

Increase on "Save List".
Count of Mark this Atom

Non-Carbons as Processed.

Save counts
,-For Keys.

y•uAny more

Unproeesned
Atoms in/

'Save List".

iN

Assign Appropriate
Keys if Non-Carbon
Count - 1 & Carbon

Count i 5.

Atoms' =RETURN

-Figure 42. Macro Flow Chart - HCRCT

163

2.4.10 Bond Count

Code Name: BONDCT

Programmer: Jeffrey H. Kulick

Abstract: Program BONDCT was developed to assign a specific limited sub-
class of the aliphatic keys. It assigns the acyclic nucleus keys and two
types of hydrocarbon radical keys.

2.4.10.1 Program Description

BONDCT assigns the following keys described in CIDS No. 4 as acyclic
nuclei keys to acyclic compounds or acyclic addends of cyclic c-mpounds only:

(1) Number of double bonds between carbon atoms

(2) Number of triple bonds between carbon atoms

(3) Number of carbons with three carboi attached
regardless of internal bonding or additional
non-carbon connections

I
C-c-C C=C-CI .I

C C

Number of carbons with four iarbons attachec

regardless of additional connections

C

c--c--c
CC

Note that keys are assigned for each of the above four structural features
even if some of the resulting counts are zero. Separate counts are made
for each acyclic parent or addend, and separate keys are assigned for each,
except that at most one zero key is assigned to a compound for any of the
four above keys.

In addition, the following hydrocarbon radical keys are assigned to
any compounds in which they occur:

(1) El- (C)_--El For any aliphatic unbranched single-
bonded carbon chains attached to two non-carbons (El),
a key is assigned which gives the length of the chain.
Each El can be any element other than carbon (or hydrogen)
and may or may not be a member of a ring. They cannot, of
course, be in the same nucleus.

(2) El-C-C--El This key is listed as 3-B-2-I in CIDS
No. 4.

164

/ | |

U

Program BONDCT first creates 2 dictionarieu. One has an entry for each atom.
This dictionary contains information as to whether the atom is carbon or not,
whether it is in a ring or not, and which addend it is in.

The second dictionary contains one entry for each entry in the bond table,
i.e., for every bond in the CIDS compressed connection table as described in
Section 2.1.2.2. This dictionary tells whether a pa-ticular bond is a ring bond
(a bond in a cycle).

BONDCT starts at the last atom, and processes each atom from last to first.
The basic processing for each atom is as follows:

(1) Find an atom

(2) For each bond chain (compressed carbon chain) connected to
that atom:

(a) Count the double and triple bonds between carbon
atoms.

(b) If the "From" and "To" atoms are non-carbon and

all bonds are single bonds, count the bonds and
assign key for El.- (C) - El.n

(3) If the "From" atom is carbon, check the number of carbon
connections for possible increase in the count of

-- -- n cr - CU 2orfigurations.

When all atoms have been processed, all sums are divided in halt (because o`

redundant entries) end keys are assigned.

A flow chart of the program is presented in Figure 43.

2.4.10.2 Program Structure

BONDCT is a subroutine of the Key Assignment System. A call to subroutine
HCRCT must precede a call to BONDCT because that program sets up certain arrays
which are used by BONDCT. The input requirements and the output are the same as
for program HCRCT (Section 2.4.9).

-ill

r•

BONDCT)

Initialize

Make Dictionary

Access an Unprocessed I
Atom

Count Bonds Between
Carbon Atoms

Save Information for
other Keys:

-C - -C -

Mark Atom as

Processed

othe
an toms in

Figure 43. Macro Flow Chart - BONDG•

166

T ?

2.4.11 Molecular Formula KeyA2ssinment

Code Name: MFSRN

Programmer: Ruth V. Powers

Abstract: Molecular Formula keys are assigned to a compound based on the
Hill molecular formula. One key is assigned to identify each element present.

2.4.11.1 Program Description

A key is assigned for each element appearing in the Hill molecular
formula of a compound. The key specifies the number of atoms present for the
elements: C, H, N, O0 P, S, F, Cl, Hr, I, Si and B. For all other elements
the key specifies only the presence of the element, regardless of the number
of atoms. In addition, a metal key is assigned to the compound if it containselements other than the twelve special listed above and As, Sb, Se, Te.

A flow chart of the program is presented in Figure 44.

2.4.11.2 Program Structure

MFSRN is a subroutine in the Key Assignment System. It is called by a
'TSL MFSRN'. Location COMPND must be defined in the calling program as an
entry point. The location must contain 2 in the tag portion, and the address
of the first word of the Hill mol form (the second word of the mol form block)
in the address portion.

The keys assigned to the compound are stored in the SCKY array, which is
defined as an entry point in the calling program. The new keys are added
to those already stored, and location SCKY is updated to equal the number of
words in the array. The second word of each mol form key is zero. The first
%.ord has the format:

(S,1-5) (6-17) (18-35)
101000 El Count

"El" is the abbreviation of the element kind in BCD. For a single letter I
abbreviation, such as "C", a BCD blank precedes the letter. "Count" is the
number of atoms of that element kind if it is one of the twelve special ele-

ments listed above. Otherwise it is zero. The abbreviation "M" takes the
place of the element kind for metal keys.

If sense switch 2 is pressed in, the keys are printed on the system
output tape.

167

mA

initialize. Pre-
pare to look
at compound
mol form.

Obtain next
element
kind.

Is Store element I tr
element N= kind only element N Metal

one of 12 as key. As, Sb, Se, Key
sapeical? o e

Y Y

Store element
kind and atom
count as key

Any un-
processed•
e lements ?

N

Figure 44. Macro Flow Chart - MFSRN

1.68

U,!

1"68 j

2.4.12 Nonspecific Phosphorus FuLnctional Group

Code Name: PSCKYT

Proirammer: Ed Hebel

Abstract: Subroutine PSCKYT assigns keys to compounds which contain cer-tain types of phosphorus functional groups which were not among those selectedas Specific Functional Group keys (listed in Table XIV in CIDS No. 4).

2.4.12.1 Program Description

Subroutine PSCKYi examines a compound connection table (C.T.) in corefor the presence of nonspecific phosphorus functional groups. Previous to this,the C.T. was searched for the presence of Specific Functional Group fragments,
and whenever one of these was located, the non-carbon atoms which correspondedto those in the fragment were zeroed out in the C.T. Thus, it is known thatnone of the phosphorus atoms remaining in the C.T. were present in any of the
specific fragments.

PSCKYT first examines the C.T. for phosphorus atoms. When one is located,its connections are examined, and keys are assigned based on the combination ofthe following elements which are attached to the phosphorus atom- N, 0, 5, X(any of the halogens: F, Cl, Br, I), and the CN group. The various keys whichmay be assigned are listed in Table XVI in CIDS No. 4. A macro flow chart of the
program is presented in Figure 45.

2.4.12.2 Program Structure

Subroutine PSCKYT is called with the core address of the compound connec-tion table in the address portion of the accumulator. If any keys are assignea:the corresponding two-word codes are stored in the SCKY array and the count of
keys is increased.

I

16

T

Initia lize

Look at

Element Kind
of C.T. Atom

osro _

II
Il

II

a Look at Element

___3 o ACtachdAtoom

IncremeAt Kind of Each
to NetatomAttached Atom.to Next Atom Set Corresponding

Bit When NO,SX
or CN is Found

CT' Pattern)

SReturn Store Key

in SCKY
Array. Increase

Count of Keys.

Figure 45, Macro Flow Chart - PSCKiT

170

4.5 LIST-STRUCTLIrED FILE GENERATION

hlograms NUFILE, KEYSRT, MERGE, and INDEX together create or update thesearch file, and form the inverted key index. The tape files produced are tileinput to the CIDS Retrieval System. The four programs are described in thissection and their interrelationship is shown in the following schematic:

UpdatedTape
Tpsearch

Search

,0
*()rc1

Comp sNUFILE aa KEY. S R
Pairs

\p

Disk Updated
SerhDisk

File

Olgd
SortedM9 Yjdd C.Key- Addr.

Kity-ddr.Pairs

I1•'K'K# y ---A d d r

""Add

Tape or Disk n ddr

171

2.5.1 Search File Creation cr Updato

Code Name: NUFILE

Programmer: Peter J. Brown

Abstract: NUFILE creates a search file of compounds by simply assigning
each compound to an area in the file as it is input to NUFILE. An existing
file may be updated by the same process. NUFILE simultaneously creates a
tape of key and file address pairs which will be used by programs MERGE and
INDEX to create ao index to the complete compound file.

2•5.1.l Program Description

NUFILE may either create the initial file of compounds or update an exist
Ing search file. Either function may be selected by placing an appropriate
data card at the end of the deck (described in Section 2.5.1.2)

NUFILE simultaneously creates or updates both a tape search file and a
disk search file. NUFILE may also create or update only a tape search file.
Either function may be selected by means of a sense switch (section 2.5.1.2),

The disk search file is actually produced on tape !n a format which will per-
mit an easy transference to a disk unit and differ3 free the tape search file
only In the blocking of the data. This differenco causes the same compound to
have different file addresses in the two files. The key-address tape, from
which the index is formed, must therefore have two addresses for each key ol
the list.

A macro flow chart of this program Is presented in Figure 46.

2.5.1.2 Program Structure

NUFILE is a main program which requires as input (1)the new compound
tape(s) and (2)the last tape of the existing search file.

The new compound file is the output of the final screening program.

The information on this tape is blocked in lOBS Type 2 records. The last
compound is followed by a special sentinel record, the first word of which
is zero, to signal the end of the input data.

The last tape of the existing search file is required only if NUFILE
is being used to update an existing file. The information on this tape,
up to and including the last compound record, is copied onto the output
tape. Following this record and an end-of-file mark, there is a special
record containing the count of compounds presently in the file, and the next
file address to be assigned to a compound. After this tape is copied, it iii
rewound and unloaded, and this tape drive becomes the alternate unit for the
search-file output tape.

Two data cards must be placed at the end of the decl (in the foilo•
ing order):

(1) A card conta-' tnz the maximum number of blocks to I
placed on each t~pp of the Tape Sea'-h File. If rbt,

START

Input a New

Compound

Sentiunel Y

Place Compound on Tape File.
Place each Key Followed by

the Compound's Tape Address,
on the Key-Address Tape.

SSwitchs
Ses

Place Compound on Disk File.
Place Compound's Disk Ad-S dress After Each Key,

on Key-Address Tape.

Figure 46. Macro Flow Chart - NUFILE

173

tape is filled before this numblr of blocks is reached,
tape switching automatically occurs. This is a safe-
guard so that the tape may be copied on a slightly
shorter tape and still contain the same number of blocks
as the original. For 2400 foot tapes, 2400 blocks
leaves about a quarter of an inch of turns unused. This
number is punched in columns 1 through 6; leading zeros
must be punched.

(2) A card with either the word NUFILE or UPDATE punched in
columns 1 through 6: This determines whether a new file
is to be created oi an existing file updated.

The output consists of (1) the Tape Search File, (2) the Disk Search
File, and (3) the Key-Address tape.

The Tape Search File is composed of a series of tapes with variable
length block size, up to a maximum of 1000 words. A compound record can-
Lot be split between two physical records. The information on each tapc
is followed by an end-of-file mark and a small (10 word) dummy block. At
the end of the last tape of the file, following two consecutive end-of-fil1
marks, is a special record 10 words long. The first word contains the next
file address to be assigned to a compound in the format:

Bits Contents

(S,1-5) Tape Number (1 -

(6-18) Record Number (0

(19-35) Relative address (0

'lie second word contairs (right-adjusted) the current number of compounds !r:
the file

The Disk Search File contains the same items as the Tape Search File anu
in the same order. The block size is 465 words. Compounds may be split be-
tween two physical records, but never more than two. The end-of-tape and
end-of-file sentinels are the same as for the Tape Search File, except that the
10 word special record at the end of the data file contains the following infor-
mation:

Word Bits Contents

1 (S,l-17) Record (track) Number (I

(18-35) Relative address (0-464)

2 Number of words left unfilled
in last data record written on
the tape (right-adjusted).

The Key-Address Tape is an lOBS tape of Type 1 records with LRL=4,
RCT=250, block size=1000. It contains a four word logical record for each kx,.
occurrence on the compound input tape in the format:

174

Word Contents

1 Key (high order 36 bits)

2 Key tlow order 36 bits)

3 Address in Disk Search File of
compound containing this key

4 Address in Tape Search File of
compound containing rhis key.

This tape is used as the input to KEYSRT.

2.5.1.3 Operator Instructions

The new compound tape(s) are loaded alternate2y on S. SU04(C4) and
S.SU06(C0). Output tapes for the Tape Search File are loaded alternately on
S.SU1O(B1) and S.SUO7(B6). Output tapes for the Disk Search File are loaded
alternately on S.SU19(C6) and S.SU02(C3). For Update runs the last tape for
the previous Tape File is lo,'.id r the first output unit for the 'rape File.
The first output tape is chen lobled on the alternate unit. If a Disk File
is tr be updated the last tape of the previous Disk File must be loaded on the
first Disk File output unit. The Key-*ddress tape(s) are loaded or S.SU05 (B5).

I

2.5.2 Key-Address Sort

Code Name: KEYSRT

Programmer: Peter J. Brown

Abstract: KEYSRT sorts the Key-Address tape which is output from program
NUFILE. The key-address pairs are sorted in ascending order according to
key number. It maintains the ascending order of addresses as they are produced
by NUFILE.

2.5.2.1 Program Description

KEYSRT is an IBSRT prograir. It is a logical -ort wherein the sign bit
of a word is considered the high order bit of that word. The option EQUALS
insures that in the case of a tie (i.e., two keys being the same), they are put

on the output tape in the same order as they appeared on the Input tape. This
keeps the addresses corresponding to these keys in ascending order.

2.5.2.2 Program Structure

KEYSRT is a main program which requires ae an input, the Ke--Add'esF
tape which is output from NUFILE. The output prou'iced is thv Sorted KeyA.Adr-i--
tape which is in the same format as the input tape. This tape 'eeome• t.1 Irr.

to program MERGE.

2.5.2.3 Operator Instructions

The input tape must be mounted on unit B5 (S.SUO5), and the outpur tij
is mounted on unit C4 (S.SUO4). This is an order four sort. This requites.
addition to the input and output units, eight scratch units, four on c!jch
channel. If there are not enough units available, there are two alterracivt

(1) If short by one unit, the input unit can be used as a
scratch. Push START when IBSRT requests another unit.

Then, when the information on the input tapes have been

(read, IBSRT will request that a scratch be mounted and
readied on that unit. The output unit can be utilized
similarly - before the last phase of the sort, IBSRT
will indicate the unit on which the final sorted infor-
mation will be placed.

(2) The other alternative is to select, on-line, a lower
order sort. This is standard operating procedure.

IBSRT will request that t0.- 2. r of input reels be "keyed" in.

I.

tV

!S

2.5.3 Key-Address Merge

Code Name: MERGE

Programmer: Peter J. Brown

Abstract: MERGE combines the Sorted Key-Address tape (see NUFILE and
KEYSRT) with the Old Merged Key-Address tape containing all the keys in the
file (prior to the present run) and the addresses of their occurrences. This
combination results in a New Merged Key-Address tape, which is an inverted file
(by keys) of all the compounds in the file. This tape is the input to program
INDEX, which creates a three level key-to-compound Locater Table.

2.5.3.1 Program Description

MERGE groups together all the Search File addresses paired with the same
key on the Sorted Key-Address tape. These addresses are written on the New
Merged Key-Address tape in one list, with the key present only at the head of
the list, This is illustrated in the following example:

Sorted Key-Address Tape New Merged Key-Address Tape

Key I Key 1
Address I Address I
Key I Address II
Address II Key 2
Key 2

I

During update runs, MERGE combines the Old Merged Key-Address tape with
the Sorted Key-Address tape to produce a New Merged Key-Address tape.

2.5.3.2 Program Structure

MERGE is a main program which reýquire., as input (1) the Sorted Key-Address
tape and (2) the Old Merged Key-Address tape. The format of the Sorted
Key-Address tape is described in Section 2.5.1.2.

The Old Merged Key-Address tape is present for Update runs only.
No tape is needed when creating a new Index. This tape, which is the
output of program M1ERGE, is blocked in variable length records, maximum
block-size 1000 words. A logical record consists of a key and its occurrences,
and thus it varies in size. At the end of each tape is an end-of-file mark
followed by a dummy block. Two consecutive end-of-file marks terminate the
last tape. The following is the logical record format:

17-7

Word Contents

o- Key (Ist half)

Key (2nd half)

SDisk File Address of Ist compound containing this key

4 Tape File Address " "

2n-i Disk File Address of last compound containing this key

2n Tape File Address ' " "

2n+l Word of zeros (end of list sentinel).

The program produces as Output the New Merged Key-Address tape. This
tape has the same format as the Old Merged Key-Address tape.

2.5.3.3. Operator Instructions

When running MERGE, the Sorted Key-Address tape(s) should be loaded
alternately on units S.SUO4 (C4) and S.SU06 (C0). For an Update run, the Old
Merged Key-Address tape(s) should be loaded alternately on S.SUO5 (B5) and
S.SU07 (B6). The New Merged Key-Address tape(s) should be loaded alternatel)
on S.SUIO (BI) and S.SUl9 (C6).

The on-line typewriter will request that the number of reels be keyed
in. The operator must key in the number of Old Merged Key-Address tape reels.
For a 'nufile' run, for which there is no Old Merged Key-Address tape, key in
zero reels.

1*.

-E

/L

I

2.5.4 Index tin

Code Neme,. INDEX'

Programmer: Peter J. r1rown

Abstract: The key-tc-co.npound locater table, used Ly the CIDS Retrieval
System, is created by program INDEX from the inverted key list produced by
program MERGE,

2.5.4.1 Program Description

INDEX converts the inverted key list (output from program MERGE)
into a three level key-to-compound locater table. The inverted key list,
as it appears on the Merged Key-Address tape, contains each key in the system,
followed by the Tape Search File and Disk Search File addresses of all corres-
ponding compound records. From this, a Locater Table, or Index, may be created
for either the Tape File or the Disk File. Either option may be selected
by placing an appropriate parameter card at the end of the program deck.

INDEX places each address list from the inverted key list onto a new file
(called the List-of-Addresses), which differs from the original in two ways:
The "header" key of each list is removed, and each list is reduced to addresses
of compounds in only one of the two search files. Each header key, together
with the location on the List-of-Addresses of the list corresponding to this
key, is placed on a second new file called the Key-Address List. Both of thse
files are produced on tape, but are blocked in 465 word records to permit easy
transference to a disk unit. The last key in each record in placed on a third
file, called INDX, along with its track (or record) number. This file is small
and is loaded into core at search time.

Figure 47 illustrates the construction of a three-level Tape File Index
from the Merged Key-Address Tape. In the diagram, D represents the Disk File
address and T represents the Tape File address. A| represents the address o,
the List-of-Addresses level of the Index for those addresses corresponding
to Keyj.

2.5.4.2 Program Structure

INDEX is a main program which requires as input the Merged Key-Addres.s
tape, which is output from program MERGE. Its format is described in
Section 2.5.3.2. The program produces as output (I) the List-of-Addresses
tape and (2) the Key-Address List. The latter tape also contains the INDX
level of the Index.

The List-of-Addresses Tape is blocked in 1000 word records. Each list .

followed by a word of zeros. Each tape is terminated by an end-of-file mark
and a dummy block (10 words). The last tape, however, is terminated by tw.o
consecutive end-of-file marks. The addresses within these lists are in
ascending order. If the index to the Disk Search File was selected, the

179

Merged Key-Address Tape:

D-, iT 0lT 0 ,IoT~o D o T iCIlYI HTDio TlDl101 i!:

I~l~l~i~ !,l....l.lol...
Tape File Index: > lLitZo-drse

Al A2 A3

Ai is the record (trock)number

and relative address of the

list of addresses for key I

(2) Key-Address List

4165 words

****Key I *** ISentinel ISentinelE'y'IAIKe2 A K~~A~ mIA5510 Key Address

(3) INDX7

IKeIIIY 3 12 1
Key tIrockI

j.ast tey or track I of the Key-Addross List

P'igure 47. Construction of Three-LUvel Index

180

format of each address is:

Bits (s,1-17): Track No. (I-
(18-35): Relative Address (0-464)

If the index to the Tape Search File was selected, the format. of each
address is:

Bits (s,l-5): Tape No. (I-)
(6-18): Record No (0-)

(19-35): Relative Address (0-)

The Key-Address List coi.tains each key (2 words), coupled with the
address of its corresponding list on the List-of-Addresses tape. The format
of this address is:

Bits (s,l-17): Track No. (0-)
(18-35): Relative Address (0-464)

Since each logical record is three words, there can be as many as 1%5 ke,.
01, - track. The last key on this file is a special stLaL,jnfl key (all 1 bhks)

Each Key-Address List tape is terminated by an end-of-file mark and a
-utnmv block except that the last tape is terminated by two consecutive
end-of-file marks. The third file, INDX, is then placed on this tape, direct],
following the two end-of-file marks. This file is always small enough to plac-
on tape in one block, because 1000 words would accomodate a file containin-
over 50,000 different keys. This block is then followed by an end-of-file
itia rk .

The last key to appear on INDX will naturally be the sentinel key, ,irtn
tne last track on the Key-Address List may not be completely fillel, the
address corresponding to the sentinel key will not necessarily imply word 4-.'
or. that track. The logical :ecord format of INDX is,

Word I: Key (ist half)

Word 2: Key (2nd half)

Word 3: Track (1-), contained in: bits (s,l-17)

Program INDEX also provides a printer listing consisting of each rte

present in the Search File and its number of occurrences in the file (thE
number of times the key was assigned). The relative address of the list i'

Search File addresses corresponding to each key is also provided. This ke,
listing is a helpful tool in analyzing the usefulness of the keys in the
aystem and to some extent the nature of the compounds in the file. It pro
vides to the querist an upper limit on the number of responses he cen expe..
from a query. It can also be an aid in planning search strategy, in re-
ducing the number of keys that must be utilized for optimum retrieval ft:
a query

181

I

U

2.5.4.3 Operator Instructions

The Merged Key-Address tape(s) are loaded alternately on S.SUIO (Bi)
and S.SUI9 (C6). The List-of-Addresses tape(s) are loaded alternately on
S.SU04 (C4) and 9.SU06 (C5). The Key-Address List tape is loaded on
S.SU05 (B5).

A card with the word TAPE or DISK punched in columns 1-4 must be placed
at the end of tha program deck. This card determines whether an index to
the Tape Search File or the Disk Search File is to be created.

The typewriter console will request that the number of input reels be
keyed in.

182

•. FILE SEARCH AND RETRIEVAL

This section describes the programs which accomplish the actual file

search and retrieval portion of the CIDS system. This process includes three

separate and distinct actious, the input and preprocessing of the query, the

file search and the output of retrieved records. There are two systems in-
volved, the batch search system which is described by Figure 48 and the on-

line search system which is described by Figure 49. These are similar in most

respects and are described more fully in Section 1.

3.1 QUERY PREPROCESSING

The following programs read in the queries, do all the necessary trans-

lation from external query formats to internal formats, and intersect the

lists of addresses for keys as specified in the query. They provide the

accession list of actual records to be searched if the query specifies addi-

tional requirements that entail a molecular formula search or an atom-by-ator

search of the connection table.

* I-

/

Sor

BEGIN Ide
Read~

a ytx mC

of accession i
Ilist

Sort

accession list

on address

Search items
f NI svocified by

T3pe :,c,:ession list

,.';"i by atom

qur, .umnber and
re 9- S. y number

Print "

output for Tape

CAS file jfor Chemical
CAS file j Line Printer

for TypewriterQ NDnput File

Figure. 48 Batch Search Syste'

184

Batch
Sear~ch Index

Syntaxer Yes uery Index

No~
u

et rn le gt

of intersected
list to user

Search items specified
Disk by list intersection
File 1] I. Molform

2. Atom by atom search

Output

Print output
on terminal
device (s)

A

Real Time Searci Svyqtern

185

M

3.1.i Query Input Executive

Code Name: INPUT

Programmer: Richard Haber

Abstract: Program INPUT is used to keep track of the number of queries
correctly entered in the system. It also stores the disk address of each
query in the query disk-core table.

3.1.1.1 Program Description

A macro flow chart describing this program is presented in Figure 50.

Program INPUT is first used to open the output file on which the acces-
sion list is written by program KIAD. It then gives control to program EXECIý
which is used to preprocess a query.

When control is returned from EXEC30, INPUT checks to determine whether
the query has been accepted or not. If the query has been accepted, a word
containing the number of queries is incremented by one, and the disk address
of the query is stored in the query disk-core table. INPUT then determines if
more queries can be preprocessed.

If more queries can be preprocessed or if the previous query has been
thrown out, INPUT again gives control to EXEC30 to preprocess another query.
When no further queries can be preprocessed, control is given to program READ
which closes the output file on which the accession list is written.

The number of queries which may be preprocessed deperins upon whether the
system is operating in batch or real-time mode. At present, only one query at

a time may be preprocessed (and then processed) when the real-time system I.
used. Up to 2000 queries may be preprocessed at a time when the system is

operating in batch mode.

3.1.1.2 Program Structure -

INPUT is initially given control by program MONITO. it normally call.
EXEC30 which, in turn, calls READ. Control is returned to INPUT from READ
via EXEC30 unless a $ (signalling the end of queries) is encountered in colir.:
one of any input line (either a line of teletype or a punched card). ITI --i
case READ retains control and INPUT Is not reentered.

:INPUT

Open file for

fcr accession
llist

F~ur 5. Cacrllo EX Char Coto isnot

topero87reund fn

a qury frthr qur~e

exisI

3.1.2 Query Preprocessor

Code Name- EXEC3C

Programmer: Paul Weinberg

Abstract: The Query Preprocessor is a set of programs that scans the
source text of a query presented by the user and translates it into the inter-
nal coding of the retrieval system. Queries are checked for syntactical er-
rors and edited. In this role, the Query Preprocessor communicates with the
other programs of the CIDS system to allow the system to adjust to particu-
lar user requirements.

3 1,2.1 Program Description

A macro flow chart describing this program is presented in Figure 51.

The entire preprocessor is arranged in one deck, EXEC30. Chains of core
and disk storage are located in deck BUFFRS. There are three parts to the
preprocessor.

To utilize storage in an efficient manner, a set of subroutines manip-
ulates the lists of core and disk storage used by the preprocessor and real-
time monitor. The technique involves chains of buffer control words, each con-
trol word representing a block of storage. The subroutines which perform
these functions are:

(1) POPTOP (CHAIN, HOL) removes the "top" buffer from the chain
named CHAIN and presents the address of the control word for that
buffer in HOL. If the chain is empty, 0 is returned to HOL.

(2) ADDBUF (CHAIN, EOL) adds the buffer whose control word is indi
cated by the address part of E0L to the chain named CHAIN

(3) MVECHN (CHAIN, HOL) adds the entire list of buffers starting
with the control word indicated in HOI to the end of the chain namea
CHAIN.

A number of macros is available to generate chain structures. A chain
should be formed for each different size of buffers used. Chains are used
to control disk as well as core storage pools.

A second set of subroutines (SCAN) is used to scan the query text, extract
ing symbols (strings of non-blank characters or a delimeter character) in or-
der.

A third set of subroutines is included to interpret the query statements
as they are scanned, and set up the block of information that will represent
the query internally for the retrieval system.

The basic mechanism of the preprocessor is to scan the input text until
a symboi has been collected. A table (known as the dispatcher or scan table)
is then consulted to transfer to a routine which interprets the symbol. The

t88

Assume init-
ial LOCATION
is 'start of

No more query'
symbols

Error-query Call 'SCAN'
terminated to collect
abruptly next symbol

Set error Check scan table to deter-

flags mine which routine whould
be entered to process the
symbol in the current con-
text (LOCATION)

CRETURN
Execute the routine Indi-

cated. (The routine may
call SCAN5 to get

-further symbols).
(Error if state-
ments specified in
INPUT statement Change 'CURRENT LOCATION'
not processed) as indicated in the scan

table (i.e., Update assum-I ~ed context)

from the accumu- - statement ?

lated parts

Call KMAD to create Find disk

and merge accession spae (ub
list for the query rO P O aTd

write the -
query on the
disk for lat-
er processing

Figure 51. Macr-o Flow Chart - EXEC30

189

scan table (Table i) lists different transfer points depending on the part
of the query in which the scanned symbol has been detected. Consulting this
table, for example, the symbol STRUCTURE causes the routine IS to be entered
if it is encountered while scanning an INPUT string but will cause the rou-
tine D.DFST to be entered if it is encountered while scanning a DEFINE state-
ment.

Each routine may call on SCAN to remove successive symbols from the input
text and process them. At its conclusion the routine returns to the main
scanning mechanism with a new assumed location for the input scan.

When an END statement has been encountered, the preprocessor assembles
the sect'ons of the query that have been collected from individual state-
ments. Routine KIAD is called to compute an accession list and the query
is formatted for searching. The query is then written onto a disk buffer
and control is returned to the search programs which will read the query back
in when searching starts.

The input accepted by the preprocessor is described in a separate doc-
ument describing the query language. The internal format for querics is out-
lined in Table II.

3.1.2.2 Program Organization

EXEC30 is a subroutine which is :,illed by a stan'iard CALL statement.
Its entry name is D.STRT.

Input to EXEC30 is the BCD .uerv text stored ii. a buffer whose location
is given in D.INBF.

The output is the query in internal format stored on disk.
disk buffers holding output has the name OUCIIAN.

The Query Processor generates the following messages:

1. ILLEGAL QUERY CXX .iX.

The first symbol in the qucr-, cannot be used as a query identi-
fier. 'C' identifies the consolt . Xvxx is the bad symbol. Th,
query is skipped.

2. UNABLE TO LOCATE QUERY

The query preprocessor cann,L ;ind a syntactically correct quer,

in the input text presented.

3. COMMENTS FOR QUERY CXXXXX.

A query has been found and comments regarding it follow. 'C
identifies the contole. XXXXX is the query name.

4. A~SSUMED PRIORITY 07

A priority other '-h;,,i I, . or 3 has been so,. ti-.

[LJ,i

1 ANr : C' -I -CA% [AE'Li. FOR Žý*' I K

TR1ANSFER NEW LOCtATION OFl
CIRILEN-r L.CATION SYMBOL To PURPOSE (IF INPUT SCAN AFTER
OF' INI'Pt SCAN LNC(I1.'FERED R~l.*INE ROITISNE ROUTINE EXIT

START OF' 1tLLT I M
QI'ERY P'RIORITY IG;NORE QUERY POSITIONED

Im~tIT SINCE NO TO END OF'
OUTlrrPt 0.501* NAMII AS QUIERY. (ENITIREi
DEFINE KEEN GIVENA QUERY SKIPPED).

STRUCTURE
KEYS

QUALIFI'ERS

ANY OTHIER O.IIAME RECORD SYMBOL lEfADER
SYMBOCL AS NAMEY GIVEN DECIARATIONS I

TO THlE QUERY

tED REALTIME D. REA L SET OPTION FLAGS)LEtADERI DUCL. I
DECLARATIONS I PRIORITY D.PRlIO

CHIEMICAL D.CLEm
BATCII D.Or1CiI

llOIRI - D.IISR ____________

.IXHAIN FINALIZE lEFADER VIECt. S1

ANY OTHIER D. MA IT PASS SYMBIOL HIEAVElR DECL. 11

lEADER IIYI IINPT .9 4IIF xlrrPIl IN147 STRINt'
flECIRATI(*IS 11 OPTIONS__ _______ ___________

AVXIVT C.OECI'T sI'ECI~iNI) C.JTPEt OI'TnT STRING

ANLY (l1'IIR P.flCmn PASS SYHRSOL START OCF A

SYNIOI.ON TO NENT TFN r !;TATIIG'NT

IIIPIFT STRINIO KEYS I
STttiCTOfRF sIn TIE

FMRIIEA IF STATEWINTS IPTIREI
QUCALIFIEIRS IQ ~ TO FOLLOW.I

REGISTRYE III _____________ _____

7IJ.IAIEI TME3IETE STATISIINT CI.11II~iI.I
ANY OHE Iq SPPI1(Ni

rlsrIP IC T TT ROI H E T VA

oTIELCCT 'REIN ''l' (CI OR1 SE NC.

S,~r Cl 'RSI N ,'AI IC ME;-4 C11l NTRIN

1) W r FIIA I:ST_1:111U "JAHI 'IV A

START 11 ' A STEI III ! M ' K 11. *IN SI I I_ II I t lpcIl l 'IC AIII -11 A
qTATr:!EI~f it 151151 E~ll

ýooj~
CCC

I

I II k,

TAi•.b 11 INTERNAI. STORAGE FOR QUERIES (ON DISK TRACKS)

N1'HB1 R S 2 3 17 18 20 21 35

1 MZE if ,nly track OUTnPt ELZENiTS v sequence Disk positioning address

bit element 1, 2... of preceding track (77777 it none)
PON if last track 3 Key@
it. query 4 structure

5 formula
P117 if first 6 qualifiers
track 7 tics

8 statistics

PME otherwise q time M 1: first word repeated on each track)

INM1f ltiFORMtTIC3I
bit

to I If baic4

0 if real time

it I if chom TT

12 1 it structure is exact m•tch
13 Rll O.!-TY
141
17 For He Atom by Atom Search

2 Console id Query name
(6 hit binary) (3 cKaracter alphameric)

TABL OF CO S

3 Track seq. number Word number within track Track seq. num. Word number within track of

of end of keys of end of keys of start of keys start of keys (0 if no keys

are found or given)

4 Bame as above for formula

5 Same as above for structure

6 Track sequence Word Dumber within track Track sequence Word number within track of

thru number of start of nth structure number start of (n 4. 1)st structure

24 Track .squenco Word numbsr within track Track sequence Word number within track of

number of end of qualifiers number Start of qualifiers

25 Control word address of
compound accession list

26 Track seq. non. Word number of end of query
of end of query ____________________

TABLE NC Y .EFINITIONS

2? Start fise
77 fur ear,h wT~C CIVEN by ;,scr t. kc, (4 0J.o.t,
externally de omXistrnn , otheitisa left J.stlfi,'d)

fined keyR

75 i Rpented ffor each

fIned key I /

Alphancric or internal ending for the key

(may extend for many w.rds)

f.'ll-'ing keys

My HINTERN BIT INDEXT 74 FLitor
?.It psitn Key 0 # nf Kit p"siti,, Kty 0 - f

((hits) (6 hits> .,.,rrcnC..A (6 hits) (c hits) .c..rmnce&

_______ V(repeated a. many timrs au nc&ttiu y)

SlbT tio.ur ________

Ioint., ,, ujlnt/rni'f ,ib t ip to' 3f];t•...,Iu.

l i t i t t ori .f t .,h 1" ir i,,' irt ,o t t t o t' I lit, 1 'i . Bit I ' .d 1 -rd
-- j o t r itni-t- -,u ti .. (Bit *'rdtr lit by 111- ýfi k, d f,,ito hi,).J

"TARLE II INTI RNAI '•0TPAGE t't IIItP 011 IFS ,I.....It omil

MINI)
i'iL BLB S 2 3)7 11 .10 11 35

TIIII.: II STIIUCTURE DEFI~tINIOfS

ý t. a rtf IJ•a J

17 for eflIO
t ructure Name giveni to ntruCttire.

(5 character maximum) fepeated lot earh

Connection table structure de.hIntti o..

(man extend for mnnv ý,ords)

Following struct-ire definitiont,

HMnteom Bit Index

74 FlaR -. rd

Bit post-ion Structure * of Bit trIoittl, Stru're 0 of

number o'curon-fc nrre r urcuroncen

(6 bite) i(bit.) (6 bits) k6 rita) I-, lit-) 1 l, (tIA

(repeat.d RN mov tLime" a. 1eveflnary)

7 6 Fla nuitrd

Pat-, ri -irds d.srrlbliii mIniteim (I- Ith1 k-)a

'ze for IlilI bit '9 1IiI

P17F for Addend Ie.grlh 0 restricted length 'W'
bit 2u-1 if[
la~t formula aPt ..

Lt Ia I.mit Words addend #

S' a'n-. . Iufntlt*eri. nll .

,,],'t',L . i .O ,i' t' it uii,

FIF (tsiN fll'S(IIN"

fNI -W. I h

5. ILLEGAL STRING SENTINEL XXXXXX

In looking for a statement head, the symbol XXXXXX has been en-

countered and is not a legal statement name. The symbol is ignored.

6 REPETITION TABLE OVERFLOW SCANNING ISTRUCTUREJ

Too many (more than 36) defined keys or structures appear in a
logical statement.

7. UNDEFINED SYMBOL XXXXX DETECTED DURING SCAN OF LOGICAL STATEMENT

STRUCTUREJ

A symbol which has not been defined in a DEFINE statement has
been used in a logical statement. The symbol is ignored.

f KEYS
8. OVERFLOW OF MINTERM TABLE FOR STRUCTURE

More than 463 'OR' connectives appear in a logical statement.
The statement is ignored.

9. SYNTAX ERROR IN KEY XY-XXXX

General purpose error message in program that converts CIDS keys
(appearing in DEFINE statements) to the internal format of the search
system.

10. SYNTAX ERROR-IGNORE XXXXXX

Symbol XXXXXX appears out of place and has been ignored.

11. OVERFLOW OF DEFINITION AREA

A slash is missing in a DEFINE statement.

12. SKIPPING FORMULA

Used to indicate a syntax error in a FORMULA statement that has
caused it to be skipped.

13. SKIPPING TO END OF QUERY

A catastrophic error in the specification of a query, typically

the omission of a logical expression for keys. has caused the entire

query to be skipped.

fKEYS
14. NO DEFINED 1STRUCTLUREJ SKIPPING LOGICAL EXPRESSION

3.1.3 Ouery Reader

Code Name: RFAD

Progranser: Richard Haber

Abstract: Program READ is used to read queries from an input device. It
can be used to read either nunched cards or punched paper tape produced by a
teletype.

3.1,3.1 Program Descriotion

A macro flow chart describing this nrogram is Presented in Fi ire 52

Program READ is called by program EXFC30 tc read a query from an input
device and Place it in a buffer for processing bv EXEC30. It can read either
punched cards or punched paver tape, and will read an entire nuery provided the

query is less than 465 words long.

When called by EXEC30, READ begins reading a auery one line at a time. If

punched paper tape is being read, a line is considered to be one line on the
teletype which produced the tape. If punched cards are beine used, one line is
equivalent to one card.

The query is read, one line at a time, until one of the following three
conditions occur:

(a) END occurs in columns 1-3 of a line. This signifiez
that the entire ouerv has been read. The auerv is
now in a buffer and control is returned to the call-
Ing program.

(b) 465 words of the auery have been read. Since a
single buffer contains room for only 465 words, con-
trol ir returned to EXEC30 which prepares another
buffer for the remainder of the querv. READ is then
called again by EXFC30 to continue reading the auerv.

(c) A $ occurs in column 1 of a line. This signals the

end of all of the aueries. In this case, a dummy
record is written to end the accession list produced'
by program KIAD. The file containing the accesaion

list is closed and Is now ready to be sorted. Thfe
querv nreproce.sing has been finlshe&" and the re-

trieval system Is ready to begin searchinp the file.

3.1.3.2 Program Structure

RVAD is a suhroutine called ti, L'7(30 a., detC(-Tbed -\I,
he transferred to by proer-3.r, !-.Pr t-at lr- vx - dt--: ,
further queries may bte read. In t'k. lattt- , t0e - c,.-' . t r-*
m.n.lttd and the fi ce' "losed ¢i- yzh-.iJt-, ahoyve i-7 -- v (C.,:" nd it, r'

triv, s. -stC"' rk.ov to .i.r .h th, fI

. i
I I I I I I I I I I I I I I I I I

READ

Find one

- --

line of a
query

thi ionnd cloD filave46

/ ,• \ o i o No. N.o o\°
Scolumn columns words been

1 3 7TUadN

jrga INU Terminate ac-

Imay enter at reseion list
this point and close file

RETURN

Figure 52. Macro Flow Chart - READ

196

U

Any number of END statements may be placed at the end (or the begin-
ning) of a query. However, an error message will be given if the $ stateme'.-
doei not directly follow an END statement. The last query will not be pre-
processed correctly in this case, but no previous queries will be affert_•d.

:1

/_

r -
SI

I

3.1.4 Key-Expression to Accession List Processor

Code Name: KIAD

Programmer: James W. Gerber

Abstract: This program accepts the boolean key expression as input and
produces the list of all compound record addresses that pass the key expres-
sion (the accession list.)

3.1.4.1 Program Description

A macro flow chart describing this program is presented in Figure 53.

KIAD (Key-Index Address Decoder) is a subroutine which produces the
accession list for a query. When it is called the accumulator contains the
following information:

bits 21-35: address of first word of key definitions
bits 3-17: address of last word of minterms

KIAD produces pairs of words on the output unit (defined in file defin-
ition card FILEl) with the following format:

Word 1: Query number (internal) from external location INDEX
Word 2: Tape or disk address

The file is opened and closed by the search executive.

KIAD uses the index produced by program INDEX. This index is in three
parts. The first part, the list of addresses, is loaded onto S.SUl5 (disk)
and the second, the Key-Address list, is loaded onto S.SUl4. The third part
of the index must be loaded into core memory at location INDX. This table
is 1000 words or less. Table INDX is external to KIAD.

There are two versions of program KIAD at present. The only difference
between them lies in the handling of the output file definition. The tape
system version has the file defined with a FILE pseudo-op card in KIAD. In

the Pseudo-realtime system (disk system) the file definition is contained in
a $FILE card in the main link and is thus external to KIAD.

KIAD makes use of the routines: ADDBUF, POPTOP, MVECHN. These routines
allow dynamic disk-buffer storage allocation and are used to produce inter-
mediate storage of partial results. The name of the free storage chain is
(external) DISKBF. This chain should contain enough buffers to accept the
longest list produced by KIAD. This list length is the longer of:

(1) The length of the longest of the accession lists produced
by the first literal in each minterm

(2) The total length of the accession list on exit from KIAD.

The input format is described in Table TI.

198

• _ -w'I

U

CIA

Convert
_Query

Get MakeKey PARTMT|
empty1

"mntrmmnte rms ? t

Figure 53. Macro Flow Chart - V1'1

199

KIAD first translates the Key Definition table as follows:

1. The word in core following 'he last minterm is replaced by 0
(This word will be restored before KIAD returns to its caller)

2. The list of key definitions is transmitted to KFYLST

3. The Key Index is unpacked from 2 to a word representatlon to
1 to a word and the result is transmitted to KEVIND

4. Pointer is set up which points to the minterms in location
MINTRM.

KIAD then proceeds to process the query. Each minterm is handled
separately and the result is merged with the list from the previous minterm
(if any) by routine MERGE. KIAD intersects lists within each minterm by
calling routine INTSEC. INTSEC axamines location LITSrN to determine the sign
of the current literal. LITSGN will be plus if the literal is nonneaated.

The result of processing a minterm is left in disk buffer PARTMT. During
intersection, the new result is in buffer chain NWPTMT. MERGE accepts the

results of the minterm in PARTMT and the list in PARTMG and produces a list
containing the union of the addresses of both lists in PARTMG. It uses NWPMG
during merging to store the intermediate result. INTSEC accepts the list in
PARTMT and intersects it with the list for the key whose location is in
location LISTAD. INTSEC expects to find the number of occurrences for the key
in location NUMOCC. This will be set by OETKEY, the routine that finds a
key in the index and sets up a pointer to it in LISTAD. GETKEY will print a
message if the key is not in the index (i.e. it has not been assigned to any
compound on file. The processing of the query will continue as if the list
fur that key oere piesent LuL had no items in it. If the key appears non-
negated in a minterm, that minterm will produce no items for the accession
list. If the key appears negated, it will have no effect on the items in the
accession list.

No minterm may consist only of negated literals. If such a minterm is
encountered by KIAD, it will be treated as if its first key (leftmost bit in
minterm word) were nonnegated. Thus, the following query:

NOT K1 and NOT K2 and NOT K3

Would be translated as:

KI and NOT K2 and NOT K3

The order of negated and nonnegated literals in the query is unimportant.

KIAD treats the multiple occurrence of a key to mean:

"n or more of ... key"

thus, NOT 5K5 means:

NOT 5 or more of K5 (i.e none, one, two, three, or four of this key).

200

7he only limitation on the length of the auirv is that only-36 key definitions-
are allowed and that the minterm list be on one disk track (i.e. that it all be
in core memory at once when KIAD is called). This limits the number of mInterms
to a maximum of approximately 175-200. There is no limitation to the length of
address lists that KIAD can handle except for the number of buffers available
in the disk buffer chain DISKBr at the time KIAD is entered. MIAD returns all
buffers used to the free chain as soon as they are not needed by the Program.
on exit, KIAD has returned all buffers used during its processing.

3.1.4.2 Program Structure

KIAD is a subroutine whose input is the key expression part of the auery
(see ouery internal formats Table II).

The output is the accession list.

201

3.1.5 Key Packing Program

Code Name: PACKEL

Programmer: James W. Gerber

Abstract: Thin -rogram translates the individual key names froit query
language format to internal format.

3.1.5.1 Program Description

A macro flow chart describing this program is presented in Figure 54.

PACKEL is a subroutine. When it is called, the accumulator contains the
location of the first word of the key definition as scanned by the executive
and the number of words in the key definition. PACKEL returns the key in the
accumulator. If a syntactical error is found in the key definition, the accu-
mulator is set to zero.

The possible key formats for input to PACKE. are as follows (It is to bp
understood that the key in core has been scanned by the standard CIDS input
manner):

FRAGMENT KEYS: FRAG aaaaaa bbbbbb or FRAG aaaaaa

aaaaaa is the first part of the key and bbbbbb is the second part
of the key and may be omitted if zero.

RING MOLFORM KEYS: RINGMF at count at cvuut ...

SKELETON MOTICRM KEYS .qKVLMF At ci-t Rt -ount ...

at is the element kind and is either one or two characters.
count is the number of that element and must be explicitly mentioned

even if one. At least one space must follow the element kind and
there must be at least one blank between each element kind which
follows.

There may be only three elements mentioned which are not one of these:

C, N, 0, S, P.

The total couut of all elements not specifically mentioned in RINGMF's
and SKELMF's as specified hetero elements should be included in the
count under the element kind UH (unspecified hetero). UH counts as
one of the three elements mentioned above. There is n- restlicLiol
on the order of elements in the input, except that C, N, 0, S, P must
precede other elements. PACKEL reorders the elements to correspond
with the assigned order.

REDUNDANT NUMERIC RING POPULATION KEYS: RNRP n1 or RNRP nl, n2 , n 3 ,... nm

where m is less than or equal to 17. Each of the n's may be any number
greater than or equal to 3. If a number greater than 178 (1510) is men-
tioned, it will be translated into the number 1 which is the code used for

rings with more than 15 atoms. The order of the n's should be increasing
(i.e. n k is less than or equal to nk+l1

202

/f

SPACKEL

Save po.-
ition &
lerngth

Type ?

Get 6 Set bit Set bit Set bits Set bit
BCD Digits 2 1 0 andl 0

N Any c Convert Store a Convert

More? C, N, 0, S,P number Subtype' -
Get 6 di- Convert an V Any Convert
gits & in- element & More ? Count
sert in- count
stead of
following N

blanks

PutAny Put them tgte
'? together

More? in key in key

RETURN

Figure 54. Macro Flow Chart - PACKEL

20f 3

5a 5b

Convert Convert
element element

type symbol

Convert
count

RETURN~

Figure 54. Macro Flow Chart - PACKEL (continued)

204

atoms. The order of the n's should be increasing (i.e., nk is less
than or equal to n kl).

COUNT KEYS: NUMBER a count

e is the subtype. It must be explicitly mentioned, even if 0. It
is one digit except for subtype 10. count is the number of this partic-
ular feature and should be typed with leading zeros omitted. A count of
0 should be explicitly mentioned.

MOLFORM KEYS: MOLFRM l count

el is the element kind and is one or tuo characters.
count is the number of ci.v- element and is typed with leading
zeros omitted. A count of 0 is used only for those elements
which do not have molform keys assigned for specific counts but
have keys assigned indicating only the presence of the element.

NONSPECIFIC KEYS: NONSPC el

el is the element kind and is one or two characters.

EXAMIPLES:I

FRAG 011001 FRAG 011001 FRAG 01A015 000001

RINGMF C 4 N 1 HG 1

SKELMF C 22 N 3 HG 2

RNRP 6 RNRP 5,6,6,6

RNRP 6,20 RNRP 6,69 RNRP 6,999999 (all these will be,
translated the same as RNRP 6,1 would have been translated)

a

NUMBER 4 0 NUMBER 10 0 NUMBER 0 5

MOLFRM C 12 MOLFRM H 70 MOLFRM BE 0

NONSPC TE

3.1.5.2 Program Structure

PACKEL is a subroutine whose input is the key in query language as
scanned by the input scanner and whose output Is the key in internal format.

note that replacing a number greater than 1510 with 1 in the input will
not cause any change in the translation schefe but it is not recommended
since it is not as mnemonic.

205
/

I.

3.1.5 Connection Table Processor

Code Name: MOLE

Programmer: Peter J. Brown

Abstract: Proeram MOLE processes chemical stiuctural data In the corm
of manually generated connection tables. The data is converted into an inter-
mediate format which is then compressed into the CIDS internal connection table

by program CONVRT.

3.1.6.1 Program Deszription

The structural information is edited into three separate lists which
serve directly as input to CONVRT. The format of these lists and of the
connection table produced by CONVRT is fully discussed in the documentation of
that program. MOLE does little error checking, and if i- does encounter a
symbol which it does not recognize, or which is out of place, control is re-
turned to the calling program with minus zero stored in location MOLE.

A molecular formula is created fro. the structural information and this
is output along with the connection table. kbnormalities, such as charge,
unusual valence, and mass, are indicated in the input structure, and these are
reformatted into a coded abnormality table. the actual format of this is
discussed below.

3.1.6.2 Program Structure

Program MOLE is a subroutine which is called by EXEC30 to convert a
users structural connection table to the internal format. It is a subroutine
of the Retrieval System.

The structural information which is the input to MOLE is provided in BCD
as it was punched on cards after being pre-processed by program SCAN. (Section
3.1.2.1) An asterisk may appear between the bond and the connection to in-
dicate that the bond is in a ring. Abnormalities are set off by parentheses.
All blank characters are ignored. The following example will illustrate this:

N+
N

4)
0

I.NI0-10-1"2-1*2-1"6.2Cl.1-2.3.3C2.2-!•4.401.3-1.5.5C1.4-2*6 6C2*5-1A1.
(Vl-5.Cl=÷l,)

206

/I

U,

MOLE must be given the core location of this data and the length of the
array. These are to be provided by the calling program in the address anzi de-
crement portions of the accumulator, respectively.

MOLE generates the following block of data containing the molecular tormula,

connection table, and abnormality table:

Word Contents

I A-No. of words preceding the C.T.(,+2)

D-Total number of words (X+Y+Z+2)

2 A-No. of words in the C.T. (Y)

D=No. of words preceding the Abnormality Table

(X+Y+2 or 0 if no abnormalities)

3 Molecular Formula

(X words)

X+2 Connection Table

(Y words)

X+Y+2 Abnornality Table

(Z words)

The location of this block is stored in the accumulator, bits (21-35),
with the length in bits (3-17), when control is returned to the calling program.

The molecular formula is stored in the same format as the Hill formula
for a file compound.

The Abnormality Table will consist of a series of words, where each word
contains information about one atom which has an "abnormality", either charge,
mass, valence, or attachments. The format of these words is:

Bits Contents

(S,1,2) Type of Abnormality:

101=charge

110-mass

11lvalence

100attachments

(3-17) Atom number

207

•~II

alto Contents

(18) 1 if negative abnormality value
(e.g., a negative charge). Other-
wise 0.

(21-35) Value of abnormaAty: mass,
valence, signed charge, or number
of attachments.

A word of zeros follows the last abnormality word. This is included
in the length of the output buffer.

208

U

3.1.7 Molecular Formula Translator

C,,ode Name: MOPACK

Programmer: James W. Gerber

Abstract: This program translates the query molecular formula to internal
query format. It checks the query molecular formula for syntactical errors and
indicates these to the calling program.

3.1.7.1 Program Description

A macro flow chart describing this program is presented in Figure 55.

Mopack translates the molecular formula from external format to internal
format. The external format is contained in EXEC30 described in Table II
and the internal format is contained in MOLFRM described in Section 3.2.2.2.

3.1.7.2 Program Structure

Mopack is a subroutine which takes as input the molecular formula as
scanned by the query scanning program.

The input to MOPACK is accomplished by the routine external to MOPACK
called SCAN69. This routine is called to obtain a scanned word. Each time
SCAN69 is called it must return with the next scanned word in the accumulator.
MOPACK will return the following output:

(a) Accumulator sign positive and molform in BUFF if molform
is found to be correct.

(b) Accumulator sign negative if a syntactical error is found.
In this case MOPACK will print the message SYNTAX ERROR
before returning.

MOPACK uses external routines SCAN69 and BCDBIN as well as JOBOUL. Entry
points for MOPACK are MOPACK and BUFF.

209

/

ConvertCoKind

Aded il oe s
Element

Fiue5.McoFlwCat-MPC

Erro210

Re u n ovr

stice? il btMutple

Ly

3.2 FILE SEARCH

The programs described in thie section perform the actual search of thos
compound records which respond to the key requirements of a query. These pr,,-
grams determine if the molecular formula or structural requirements which hp.0
'en specified by the query are satisfied.

I'

/

rt

U

3.2.1 Search Executives

Code Name: TAPE, TXINFO, DISKTT

Programmer: Richard Haber

Abstract: These programs are used to retrieve compounds from a file
stored either on tape or on disk. With the aid of the molecular formula
search and structure search programs, the executives determine which of the
selected compounds actually satisfy the requirements of va-ious queries.
Output programs are then called to print the resulting compounds.

3.2.1.1 Program Descriptions

A macro flow chart describing this program is presented in Figure 56.

Three slightly different search executive programs exist:

(a) Program TAPE is used to search a file of compounds
stored on a series of magnetic tapes. The output,
consisting of query numbers and c, pound registry
numbers, is sorted by query number and printed on
a line printer.

(b) Program TXINFO is used to search a file of compounds
stored on a disk unit. The output, consisting of

k query numbers, compound registry numbers, molecular

formulas, and structural diagrams, is punched on a
paper tape. This tape can then be read by a Dura
Mach Chemical typewriter and the results printed.

(c) Program DISKTT is identical to TXINFO except that the
output consists of query number, registry numbers and
molforms and is printed directly on a teletype.
Structural diagrams are not part of this output.

Each of the executives begins by obtaining (from a tape) the query
disk-to-core table giving the location of each query stored on the disk.

The executive then obtains (also from a tape) the merged accession list.
This is a list of pairs of words containing query numbers and compound ad-
dresses. This list has been sorted by compound address, and is used by the
executive to determine which compounds must be further processed as possible
retrievals to the queries.

The accession list is passed through twice. On the first pass, each
query number is checked to determine whether the query has been read into core
from its storage location on disk. Queries which have not previously been
entered into core are entered at this time until the area set aside for them
is filled. When a query is entered inito core, its core location is stored in
the query disk-to-core table.

212

A,|

..

*1

Read query disk-toOS
core table and mergedaccession list

CObi-irn pcir o f wo.ds
from. merged accession
lcst s

Is que a c No Read queryready in cr into

7-5--woes inr===

Are there oe N

mergedaceso
list ?

Y213

SObtain cor- Skip to cor-rect pair rect compoundCan more queries of words from and read itfit in core ? "o merged acces- into coreS~sion list

Yes

Swords from merged ac- lrsac
cession listdeid?

Figure 56. Macro Flow 3hart -SEARCH EXECUTIVES

213

TU

corect query :and cm;
copound mtructulrefrm

Does entire stru..?\ No

p 14

3

Is query Y~
aiLedoy ill
Ccore v

Erase entire
query core
array

Read query in-
to beginning
of core array

I

K2

Figure 56. M4acro Flow Chart SEARCH EXECUTIVES
(continued)

215

/

U

When the query array has been filled, cr when the accession list has been
passed through to completion, the executive begins to pass through the acces-
sion list again. From each pair of words, a compound address and a query num-
ber are obtained. The compound address is used to position the storage device
containing the file to the record containing the compound of interest. This
record is read into core to be searched on the basis of the further specific
requirements of the query. The compound addresses are in ascending order on
the accession list in order to insure that the file tapes may be read without
having to back up.

The query number is used to obtain the correct word of the query disk-to-
core table. From this word the location of the query in core is found. The
compound just obtained is tested to determine whether it satisfies the require-
ments of the query as described below. While this searching proceeds, the next
pair of words from the accession list is obtained in order to locate and read
the next compound to be te'st-d.

The query is first checked to determine whether a molecular formula search
is desired. If it is, the locations of the correct query and compound molecular
formulas are obtained and control is given to program MOLFM to perform the
search. Either the entire molecular formula (Hill molform) or addend molecular
formulas, or both, may be searched. The addend molecular formulas do not have
to be in the same order in the query and compound in order to pass. Only one
query molform and one compound molform are given to MOLFM at a time. Thus,
if addend molecular formula searches are desired, each query molecular formula
will be searched against each compound addend molecular formula in order to
determine if a match occurs.

A query may include constraint equations with each molecular formula.
These allow the querist to use algebraic expressions in place of numbers in
the molform. For example, the querist may require the following molecular
formula:

C H where n=2,3,4,5
n 2n+2

In this case, the constraint equation would be:

H=2C+2

and the number of carbon atoms would be required to be between 2 and 5.

Any constraint equations associated with a query molform are tested by
the executive when MOLFM has indicated thac the query and compound molecular
formulas match. If the constraint equations are satisfied, the next query
molecular formula is considered. If the constraint equations are not satis-
fied, or MOLFM has indicated that the query and compound molforms do not match,
the next compound molform is tested against the current query molecular formula.

If the molecular formula search has passed the compound, or if no molec-
ular formula search is desired, the query is tested to determine if a struc-
ture search is required. If it is, the locations of the compound structure
and the correct query structure are obtained and control is given to program
STRUC (Section 2.4.8) to perform the search.

216

Of

I

More than one structure may appear in a query. These structures must be
combined together in a disjunctive normal form logical expression. More than
one occurrence of any structure may be required by the query. In addition, the
absence, rather than than the presence of a structure may be desired. All of
these conditions are handled in a straightforward manner by the executive, which
decides whether or not the structure requirements of the query have been satis-
fied. If the requirements have not been met, the executive goes cn to consider
the next pair of words from the accession list.

If no structure search was desired, or if the structure search has been

successful, the compound being searched is considered a successful retrieval
to the query. In this case the executive either outputs the compound directly,
or calls an output program to do so.

(a) Program TAPE writes the query name and compound number directly
on tape. These records are later sorted by query number and
printed by either program REGPRN or program EAPRN.

(b) Program TXINFO calls programs MFOU, DURPIX, and DLPADK which
format and output the query name, compound number, molecular
formulas, and structural diagrams directly on punched paper
tape. This tape, punched in DURA code, may then be printed
on a Dura Mach chemical typewriter.

(c) Program DISKTT prints the query name and compound number
directly on a teletype. DISKTT calls program MFOU which then
prints the compound molecular formula on the teletype. A
punched paper tape record of what has been printed may also
be obtained.

After a compound has been output, the executive goes on to consider the
next pair of words from the accession list. The accession list is passed
through in the manner described above until either the entire list has been
passed through, or a query which has not yet been entered into core is en-
countered. In the latter case, the executive again goes through the two part
process of reading queries and then searching them against the compound file
starting from where it had left off before.

When the entire accession list has been traversed and the search has been
completed the executive returns control to the operating system.

3.2.1.2 Program Structure

The executive programs accept as input a file of compounds, a set of
queries, a query disk-to-core table, and a merged accession list. The query
disk-to-core table is used to give the locations of the query both on disk and,
when applicable, in core. This table is read from a utility (either tape or
disk) which was created by program READ during the query preprocessing.

The accession list is used by the executive to determine which compounds
to search against each of the queries. It is read from a utility (either
tape or disk) which was created by program KIAD and sorted by query number dur-
ing the query preprocessing. For purposes of simplicity, it was implied in the

217

program description above that the entire accession list is read into core at
one time. This can not be the case since the accession list may be quite long.
Up to 920 words of the accession list may be in core at once. More is read as
needed. The program, however, still functions in the manner described above,

The queries are storod on a disk utility by program EXEC30. Each query
starts on a new track. The internal format of a query is shown in Table II.

The compound file is contained either on a series of tapes pr on a disa
utility. Due to its limited size, only approximately 40,000 compounds may be
stored on the disk. These compounds are loaded onto the disk by a utility pru-
gram prior to the running of the search system.

The compound file may be unlimited ii; size when tt Is contained op a
series of tapes. The executive programs automatically switch from one tape to
another. Mounting messages are printed on the on-iine typewriter giving the
operator the needed information as to which tapes to mount on which tape drives.
The cxecutive requires the mounting of only those tapes which are actually to
be searched. Thus, in a particular run of the retrieval system, some of the
file tapes may not even have to be mounted.

Program TAPE will print an error message for any of the following three
conditions:

(1) A tape address is encountered which is smaller than a pr~-
vious address. This would cause the tape being searched to
be rewound.

(2) A tape address is encountered which Is larget than the
largest possible tape address for the file

(3) An error occurred while skipping to the next compound
to je searched.

Program TXINI0 apd DISKTT will print an error message for either of
the following two conditions:

(I) The occurrence of an error whil. skipping to the next compound
to be searched.

(2) The occurence of an error while reading into core a compound

to be searched.

When any of the above errors occur, the search run is terminated after
the error message has been printed.

218

U

3.2,2 Molecular Formula Search

Code Name: MOLeF

Programmer: Richard Haber

Abstract: Program MOLFM is used to determine whether the molecular for-
mula of a particular file compound satisfies the requirements specified in a
particular query.

3.2.2.1 Program Description

A macro flow chart describing this program is presented in F-gure 57.

Program MOLFM is used to determine whether the molecular formula of a
particular file compound satisfies certain requirements specified in a QUeTV.
MOLFM is called by the search executive when a molecular formula sear-h is
asked for in the query.

Both the compound and the query may zontain addends. Thus they may eaco
contain more than one molecular formula. MOLFF is used tc test one specific
compound molecular formula against the requirements of one specific ouery mole-
cular formula. The detailed formats of the molecular formulas are shown inr
Section 3.2.2.2.

When MOLFM receives control, it first checks to make certain that the
query actually contains a molecular formula. If no molecular formula is present
in the query, control is returned to the executive program and the search is
considered to have failed.

If a molecular formula is present, the actual molecular formula search is
then performed. All information sDecified in the query must be contained in the
compound for the compound to be considered as satisfying the query requirements.

As shown in Figure 18the number of carbon, hydrogen, nitrogen, and oxygen
atoms are scored in the first word of the molecular formula of the compound.
All other elements appear alphabetically in the following words. in the query
the elements are arranged such that carbon is first, hydrogen is second, and
the remaining elements are in alphabetical order.

Various types of searches are possible for each element in the query:

a) Fxact search. A test is made tQ, determine whether the com-
pound contains exactly the same number of atoms of the
particular element as appear in the query. Any number of
atoms between 0 and 63 may be renuested for any element in
an exact search. For oxvgen, and nitrogen any number of
atoms up to 127 may be requested, while the unper limit
for carbon is 255 and for hydrogen is 511.

b) Range search. The -ompound is checked for the presence
of the element in question. 14hen the element has been
found, its atom count is compared with the limits appearing

219

forunt the qaueryn RETURN

"cMpoleu
nda nd

query

Yes

Doescompo nd N

Figuret matc Maery FlwCat1 O

eleme220

Ye

-_ - -- _____ _

Search

compound ?

query element search desired

* I Search

Figure 57. Macro Flow Chart - MOLFM
(continued)

221

I

-F

remainin(contyinued)

eleme222

Ye

C Do cmpoun

I

in the query. For the compound to be considered

further, the atom count of the element in the compound must
be greater than or equal to the lower limit and less than or
equal to the upper limit. The same restrictions on the max-
imum number of atoms requested for eaeh element apply here
also.

c) A search to check for the presence of the given element
within the compound. In this case the number of atoms of
the element does not matter.

The symbol X is used as an element symbol in queries. It represents the sum
of all halogens (Br, Cl, F, and I) and is treated like any other element symbol
by MOLFM. For example, both C2F 6 and C2Cl F would satisfy a query requiring
six halogens (X6). C2 C12 FA would also satisfy a query requiring four fluorine
atoms and six halogens (F4D 6) since the total halogen requirements is independ-
ent of the requirements placed on specific halogen elements,

MOLFM also has the capability of performing a restricted search. For a
compound to pass a restricted search, each of its elements must have passed one
of the three types of searches already mentioned. In other words, in order to
pass, a compound may contain no elements other than those listed in the query.

3.2.2.2 Program Structure

MOLFH Is a subroutine which returns with the sign of the accumulator set
to plus if the search has passed and to minus if the search has failed. The
format of the molecular formula in the query is as follows:

Word of Formula Bits Contents

First Word 3-17 Number of words in molecular formula

19 t 1 if restricted search
- 0 otherwise

Additional 0-il Element (BCD)
Element Words 12-20 M ximum number of atoms if range search;

Number of atoms if exact search,
i 0 otherwise

21-28 f Minimum number of atoms if range search
t-0 otherwise

34 - 1 if search of atoms is a range search{ 0 otherwise

35 1 if search of atom is an exact match
{:search
0 otherwise

The format of the molecular formula in the compound is given in Section
2.2.4,

223

m/

.3 PRESENTATION OF RESIIONSI"'

The programs in this sec¢-.n Drovide the output of both the batch ano.'n-line query system.

2.r
V

22'

/t

WL

fi I

3.3.1 Registry Number and Descriptor Print Program

Code Name: EAPRN

Programmer: Richard Haber

Abstract: Program EAPRN is used to format and print compound regisLry
numbers and descriptors obtained as retrievals to queries searched against
the tape file.

3.3.1.1 Program Description

A macro flow chart describing this program is presented in Figure ,8,.

Program EAPRN is used to format and prirz registry numbers and descriptors
of compounds retrieved by the batch search system. This information is con-
tained on a system utility as a result of TAPE (Section 3.2 1.1I
and has been sorted by query number.

EAPRN obtains the retrievals (query number, registry number and auy
associated descriptors) one at a time and prints the query number. One
twelve character registry number is then printed on each line. It may be
followed by 0 - 10 descriptors, each of which is preceded by the letters EA
(standing for Edgewood Arsenal).

The number of retrievals obtained for each query is printed below the
list of registry numbers for the query. A new page is used to list the
answers of each new query.

3.3.1.2 Program Structure

EAPRN is an autonomous program which accepts 14 - word lOBS type i re-
cords from system utility unit 14. The first word of each record is considercd
to contain a query number, the next two, a compound registry number, and thE
remainder, any descriptors which may be present

EAPRN is terminated when an end-of file is enmountered on the utility

'24'

rm m, m,

Read first record from
system utility unit

Print Query
Number

Print registry
number, and all

descriptors

EAny more recor~ds '

to be re~d ?moeEI

RYes

Next
Record

Is query numberNo /different than pre-

Viu query nube /

Yes
F Print Str

Query New
Number Pg

Figure 58. Macro Flow Chart - EAPRN

226

/V

3.3.2 Structural Formula Reconstructioa For Paper Tape Output

Code Name: DURPIX

Programmer: Helen Hill

Abstract: Reconstructs picture for output from 7040 through

PDP-8 to punch Dura Mach paper tape.

3.3.2.1 Program Description

A macro flow chart describing this program is presented in Figure 59.

DURPIX takes the Scrub list and decodes each word one at a time, fill-
ing a buffer with the proper Dura Mach characters to punch paper tape
efficiently. This tape can then be used to type the picture on the Dura Mach.

3.3.2.2 Program Structure

The program occupies 894 core locations and contains a 127 location
table which translates compact Dura Mach characters to actual Dura Mach
characters. Subroutine PACK is used to pack Dura Mach characters for output.
Transmission of the information to the PDP-8 for the production of paper
tape is accomplished by a modified version of Joboul.

DURPIX is a subroutine which takes as input the SCRUB list and outputs
a buffer of packed Dura Mach characters.

II

IDURPIX

A

LGet SCRUB

lip t entry

Calculate X

& Y doordin-
ates

Issue necessary
spacing char-
acters & pack
them

Translate
character &
pack

N Y JOBOUL

AFinished ? (1 buffer
S~full)

DONE ? •

i RETURN)

•'igure 59. Ma, ro Flow Chart - DURPIX

228

U'

U

2.3.3 Structural Formula Reconstruction

Code Name: PIX & LINPIX

P~roxrammer: Helen Hill

Abstract: PIX reconstructs the picture from the stored structural
formula image and calls TRANSL and WRITE to output on the 1401 printer. LINPIX
reconstructs the picture line by line for output on the chemical Line Printer.

3.3.3.1 Program Description

A macro flow chart describing PIX is presented in Figure 25.

PIK and LINPIX take as input the stored structural formula image (SCRUB)
containing each character in the structure and its relative location in a matrix,
and the x and y size of the matrix. PIX reconstructs the picture in the matrix
in compact internal code (six bit code with an added case bit). LINPIX does the
same thing one line at a time.

30 -- 35

D I~ra~oe
\Case Bit

3.3.3.2 Program Structure

PIX is a subroutine which utilizes a 10000 location matrix in which
to reconstruct the picture. LINPIX uses a 100 local-ion bliffer to reconstruct
a single line of the picture

PIX & LINPIX make use of the following Inozti

SCRUB - 701 locations

DELX and DELY

UNDTAB - table of underlines

?:/

SPIX

4 1 _

Get SCRUB list

entry

Compact
character
code

Place character
in

matrix

T1RANSL

!,TURN

Figure 60. Macro Flow Chart - PIX

230

3,3.t Dura Mach Output Package and Teletype Zbutpn.t Package

Code Name: DURADK, MFOU, LEADER

Programmer: James Gerber

Abstract: DURADK contains routines to translate and format information
and to punch this on the teletype to produce a t,,e for the Dura Mach type-
writer. Leader is produced by routine LEADER in another deck MFOU will format
and print the Molform on the teletype or line printer.

3.3.4.1 Program Description

DURADK consists of the following routines wbin are callee b,, TYINFO to
produce Dura Mach output:

(!) MFDURA will punch the Molform in Dura code to be tvyed
out in readable format. It operates similarly to MFOU.
The location of the first word of the Molform is found
in the accumulator when the routine is called.

(2) OUERNO will punch out the query number and the header
query number, The location of the query number is in
the accumulator when OUERNO is called,

(3) RU€NO will print the registry number with leadine zeros
eliminated. The registry number is preceded bv the
character RN. The registry number is Preceded by the
DOsa "print on" code. The accumulator contains the loca-
tion of the first word of the two word registry numter
when REGNO is called.

(4) QNASCI will punch the Dura print off code, the query number
in ASCII code. The accumulator should contain the loca-
tion of the query number when it is called.

DURADK uses routine BINBCD and JOBOUL. If used without the CIDS JOBOUL
package, the resulting output on the 1403 line printer will be the garbled
version of the Dura output since the output is formatted three characters to a
7040 word. Thus each Dura character will print as two printer characters which
will have no relation to the Dura character.

These routines expect the Dura Mach to be at the beginning of a line and
always return with the Dura Mach at the beginning of a line. The Dura Mach
must be in lower case at both the start and end. Any routines used with this
parkago must therefore return with the Dura Mach in lower case and at the
beginning of a line.

3.3.4.2 Program Structure

MFOU consists of two routines:

(1) MFOU is called with the location of the first word of the
item Molform in the accumulator. MFOU will format and
print the Molform (both hill and addend Molform if present)

231

using JOBOUL. If the teletvpe version of JOBOUL is used,
this will print out on the on-line(PDP)teletypes.

(2) LEADER will produce about 12" of leader (octal code 200)
on the teletype.

NFOU uses routines BINBCD and JOBOUL.

ii

•3 I

U

LITERATURE CITED

I. C. T. Van Meter, D. Lefkovitz, and R. V. Powers, An Experimental
Chemical Information and Data System, CIDS No. 4, University of Penti-
sylvania, Philadelphia, Pa., January 1967.

2. Report to The AMC User Advisory Group on The Initial Test of an Experi-
mental CIDS, US Army Materiel Command, US Army Munitions Command, October
2, 1967.

3. B. Hack, H. Hill, D. Lefkovitz, The CHEXTYPE System, Office of Engineering
Research, University of Pennsylvania, Philadelphia, Pa., October 22, 1967.

4. P. R. Weinberg, A Guide to the CIDS RetrievalLanguage, University of
Pennsylvania, Philadelphia, Pa., November 1967.

5. ACT II Chemical Typing Conventions, Office of Engineering Research,
University of Pennsylvania, Philadelphia, Pa., January 16, 1967.

6. ACT III (Dura) Chemical Typing Conventions, Office of Engineering
Research, University of Pennsylvania, Philadelphia, Pa., January 16, 1967.

233

t,/

~ *BLANK'PAGEý

/j

APPENDIX A

SYSTEM FLOWCHART WITH PROGRA14 NAMES

A macro flowc] irt of the complete CIDS system is presented on the
following pages. The code names of the programs required to perform each
phase of processing are included. The file construction subsystem is
presented first. The initial processing differs for chemical typewriter
input and CAS input, thus these charts are shown separately. A single
chart describes the remainder 'of the processing which is the same for both
types of input. The search subsystem is divided into two charts - the
batch search system and the real time search system. The designation CF
on a tape symbol means that the compound file is in CIDS record format.

I

235

/

CHEMTYPE: Input of Com-
pounds, Formatting,
Creation of Connection
Table, Verification

Chemical Typewriter
InputAOLGY ORGNZR

CLEANM PHASE5
CONVRT PUNCH
EXCESS REGRUP
INPUTD REJECT
MAKECT SETUP
MOLFRM TAPWRM
MONIKR TICKER
NFCF VERIFY

Creation of TIDAdd: MF CIDS Record Sort M.F
EA Descrip- UPTAP TID S.FI

tors Ref

I EA Nos.

3 I
I Ring Key Assignment

Sort by SCRNDR
MF jRINGI C

Sort Key RING2
RING3!

'RING4 Add :
---- Ring Keys

Add:A

Reg. No. L Registration

> S TARTA

- 'CF- REGUD

HLDPRC
RUD II

Remove: S TRUC
MF Sort Key

File Construction (Chemical rypewriter Input)

236

$'

- - - - - --

CAS
Structure
Master Structures in

CIDS Format

CAS Structure
Conversion Sort by9 GAS Reg. No.

GAS
Bibliography

Add Molecular
Formula

ADDMF
MOLEF

Ring Key Assignment

SCNCAS
SCRNCR R.N.

C RINGI - CF M.F.
RING2 C.T.
RING3

Add: RING4

Ring Keys

File Construction (CAS Input)

237

Data

Fragment Preparation mren-Data- - -ment
SLOAD KEYS

CONVRT

A

Functional Group &
Search File Generation Acyclic Key Assignment

NUFILE SCNCAS
KEYSRT SNA

MERGE _ CF SCREEN
STRUCINDEX RT

HCRCT
Add: BONDCT

Fn, Grp. & MFSRN
PS CKYT

______ Misc. Keys

SearchINE
File (nIE

File Construction (All Input) (Continued)

238

al -

0- 0

7LL4
to I) 4

uO 0
;L.4- "

00I

0 0)~

p 0 C

cn5

.4.4

23 9

I4I4 1
I0

.4o to -

14

14)

42)

APPENDIX B

PROGRAM ABSTRACTS

ADDMF - Addition of l'olecular Formula (2.1.3)

ADDMF reads a tape of compound connection tables which have been translated
from CAS to CIDS format and are ordered by GAS Registry Number.
Molecular formula data from the CAS Bibliography File is added to this
tape and the compound records are rewritten in CIDS record format.

APOLGY - Error Message Program (2.2.9)

APOLGY is transferred to from ORGNZR, EXCESS, REGRUP, MOLFRM, and
MONIKP to write error messages using Fortran read-write routLines.

BONDCT - Bond Count (2.4.10)

Program BONDCT assigns a specific limited subclass of the aliphatic
keys. It assigns the acyclic nucleus keys and two types of hydro-
carbon radical keys.

CASFMT- CAS Structure Conversion (2.1.1)

CASFMT reads the CAS Structure Master File and translates the infor-
mation to th'- CIDS format. The output of CASFMT is a tape containing
the registry number, connection table, and abnormality table (if
present) for each CAS compound converted.

CLEANM - Reduction of the Matrix to Points and Lines (2.2.11)

CLEANM is given a pointer to a specific node by SETUP. It then
"cleans" the eight locations around that node in the matrix for use
in MAKECT. All charge signs and mass numbers are removed, double

letter elements are replaced by a one word symbol, and special cases
such as Ph and -(C)n - are treated. An abnormality table of abnormal
masses, charges and valences is created. A connection table number
is assigned to each atom and the word in SCRUB corresponding to a node
which has been processed by CLEANM is made minus. Control is returned
to SETUP after operation on the given node is romplete.

COMPR - Ring Compression (2.4.6)

Program COMPR (RING3) removes all atoms in the connection table which
have exactly two attachments and removes side chains from the struc-
ture, in ordar that the ring descriptors may be found. The program
also contains a subroutine which removes a prescribed path from the
structure.

241

I{

II

CONVRT - Structure Conversion and Compression (2.1.2)

This program converts a structure to a format suitable for storage
and searching. The structure is compressed to facilitate the atom-
by-atom search by removing carbon atoms with exactly two direct
attachments, leaving only a description of the bonds in the chain.
The program will also format structures which are query fragments,

in whicAh case the resulting connection table has redundancy removed
and the atoms are ordered to speed searching. In addition, the
various types of free, or hanging, bonds are formatted.

DISKTT - See TAPE.

DURADK - Dura Mach Output Package and Teletype Output Package (3.3.4)

DUJDK contains routines to translate and format information and to

punch this on the teletype to produce a tape for the Dura Mach type-
writer.

DURPIX - Structural Formula Reconstruction for Pape- Tape Output (3.3.2)

Reconstructs picture for output from 7040 through PDP-8 to punch
Dura Mach paper tape.

EAPRN - Registry Number and Descriptor Print Program (3.3.1)

Program EAPRN is used to format and print compound registry numbers
and descriptors obtained as retrievals to queries searched against the
tape file.

SEXCESS - Structure of Non-Bracketed lI.formation (2.2.8)

EXCESS formats all structural characters appearing outside of
brackets in a brack.,ted structure.

EXEC30- Query Preprocessor (3.1.2)

The Query Preprocessor is a set of programs that scans the source
text of a query presented by the user and translates. it into the
internal coding of the retrieval system. Queries are checked for
syntactical errors and edited. In this role, the Query Preprocessor
communicates with the other programs of the CIDS system to allow

system to adjust to particular uqer requirements.

HCRCT - Nonspecific Hydrocarbon Radical Key Assignment (2.4.9) t

Program HCRCT assigns to a structure a sub-,lass of :he set of4
aliphatic hydrocarbon radical keys.

242

IILDPRC- Hold Tape Processor (2.3.2)

HLDPRC is a program of the Registry System which processes compounds
oý the Hold tape produced by program STARTA, according to an action
code punched on each card of the TID card deck produced by STARTA.
The action codes are the results of a chemist's decision to register,
ignore, or update the compound record for each compound on the Hold
tape.

INDEX - Index Creation (2.5.4)
I i I

The key-to-compound locater table, used by the CIDS Retrieval
System, is created by program INDEX from the inverted key list by
program MERGE.

IINPUTD - Lura Mach Input Program (2.2.2)

This program accepts magnetic tape images of the paper tape chemical
records typed by the Dura Mach chemical typewriter and reconstructs
the chemical record in a 2-dimensional array called MATRIX.

INPUT - Query Input Executive (3.1.1)

Program INPUT is used to keep track of the number of queries correctly
entered in the system. It also stores the disk address of each query
in the query disk-core table.

KEYSRT- Key-Address Sort (2.5.2)

KEYSRT sorts the Key-Address tape which is output from program NUFILE.
The key-address pairs are sorted in ascending order according to key
number. It maintains the ascending order of addresses as they are
produced by NUFILE.

IKIAD - Key-Expression to Accession List Processor (3,1.4)

KIAD accepts the boolean key expression as input and produces the
list of all compound record addresses that pass the key expression
(the accession list.)

LEADER - Dura Mach Output Package and Teletype Output Package (3.3.4)

Paper tape leader is produced by routine LEADER.

LINPIX - Structural Formula Reconstruction (3.3.3)

LINPITX reconstructs the picture from the stored structural formula
image line by line for output on the chemical line printer.

243

I4

MA•ECT - Generation of the Connection Table (2.2.12)

MAKECT assumes a MATRIX of nodes and connecting lines. A list is
generated for each node indicating the type of node (element type),
all associated points, and the connecting line types (bonds). This
program also indicates if the atom is to be multiplied in order to
be correctly compared with the molecular formula during chemical
verification.

MERGE - Key-Address Merge (2.5.3)

MERGE combines the Sorted Key-Address tape (see NUFILE and KEYSRT)
with the Old Merged Key-Address tape containing all the keys in the
file (prior to the present run) and the addresses of their occurrenctr
to produce a New Merged Key-Address tape. 4

MFOU - Dura Mach Output Package and Teletype Output Package (3.3.4)

MFOU formats and prints the Molform on the teletype or line printer.

MFSRN - Molecular Formula Key Assignment (2.4.11)

Molecular Formula keys are assigned to a compound based on the Hill.
molecular formula. One key is assigned to identify each element
present.

MOLE - Connection Table Processor (3.1.6)

Program MOLE processes chemical structural data in the form of
manually generated connection tables. The data is converted into
an intermediate format which is then compressed into the CIDS interiaa.
connection table by program CONVRT.

MOLEF - Molecular Formula Extraction Program (2.1.4)

Subroutine MOLEF consists of a package of programs that locate and
extract the file rccord corresponding to a given registry number fro=
the CAS Bibliography tapes. Summation and addend molecular formulas

are computed and stored in CIDS format.

MOLFM - Molecular Formula Search (3.2.2)

Program MOLFM is used to determine whether the molecular formula of
a particular file compound satisfies the requirements specified in
a particular query.

MOLFRM - Molecular Formula Format Program (2.2.4)

This program formats the molecular formulas in the typed chemical rec,:.

MONIKR - Nomenclature and Reference Field Formatting Program (2.2.5)

MONIKR formats the nomenclature and any other information typed witll

244

II

MOPACK - Molecular Formula Translator (3.1.7)

This program translates the query molecular formula to internal query
format. It checks the query molecular formula for syntactical errors
and indicates these to the calling program.

MUSTRP - Alternate Path Search (2.4.5)

MUSTRP (RING2) is given a connection table path between two nodes in
a ring and searches for any alternate paths between these two nodes.
If more than one alternate path is found, the "best" of these is
chosen.

NFCF - Expansion of the Connection Table (2.2.15)

This program expands the connection table from the internal format to
the format acceptable oy program CONVRT and will print the connection
table and abnormality table if a switch is set.

NUFILE - Search File Creation or Update (2.5.1)

NUFILE creates a search file of compounds by simply assigning each
compound to an area in the file as it is input to NUFILE. An
existing file may be updated by the same process. NUFILE simultaneous-
ly creates a tape of key and file address pairs which will be used by
programs MERGE and INDEX to create an index to the complete compound
file.

ORGNZR - Field Recognizer and Format Program (2.2.3)

ORGNZR takes the reconstructed matrix (in Mergenthaler code with a
case bit added) and recognizes each field in the chemical record.
It formats the temporary identification number, the security
classification, the molecular formula (both Hill and addend molform
if the latter is present), the structural formula image, the stereo
information and the nomenclature.

PACKEL - Key Packing Program (3.1.5)

The program translates the individual key names from query language
format to internal format.

PHASES - Calling Program for Chemical Verification (2.2.13)

This is the call program for VERIFY. If a compound is found to be
correct by verification, this program transfers to NFCF. Otherwise,
an error exit is taken and control is transferred to REJECT.

FIX - Structural Formula Reconstruction (3.3.3)

PEX reconstructs the picture from the stored structural formula image
and calls TRANSL and WRITE to output on the 1401 printer.

249

PSCKYT - Nonspecific Phosphorus Functional Group (2.4.12)

Subroutine PSCKYT assigns keys to compounds which contain certain types
of phosphorus functional groups which were not among those selected
as Specific Functional Group keys.

PUNCH - Descriptor Punch Program (2.2.6)

This program finds the EA, T, and TL descriptors, if there are any.
It then gets the corresponding TID number of the compound and punches
it on a card followed by the EA, T, or TI descriptor number.

READ - Query Reader (3.1.3)

Program READ is used to read queries from an input device. It can be
used to read either punched cards or punched paper tape produced by a
teletype.

REGRUP - SF1 Reordering Program (2.2.7)

Program reorders the SFI when brackets or a monovalent salt are
present so that all characters within a given set of coordinates appear
compactly in the SFI.

REGUD - Registry Print Tape Update (2.3.3)

REGUD updates the Print tape by adding new records for a group of
newly registered compounds.

REJECT - Rejection of Incorrect Records (2.2.17)

This program is transferred to from various portions of the CHEMIYPE
system. A messkge is printed out and the program transfers to AEND.

RINGI - Ring Analysis Executive (2.4.4)

The general function of RINGI is to find the smallest set of smallest
cycles in a compound patterned after the rules of the Ring Index.
These cycles are determined and the generic cyclic nuclei keys are
assigned to the compound.

RING2 - See MUSTRP.

RING3 - See COMPR.

RING4 - See TABLE.

RUD II - Registry Print Tape Update II (2.3.4)

RUD II updates the Print tape by adding new records for a group of
newly registered compounds and updating records corresponding to
previously registered compounds.

246

I

SCNCAS - Key Assignment Executive (2.4.1)

SCNCAS is the executive for the Key Assignment programs. For each
compound on the input tape, the sub-executive program is called which in
turn calls the appropriate screening subroutines. SCNCAS writes the
compound record on tape in the same format with the newly assigned
keys added to the record.

SCREEN - Key Assignment Sub-Executive (2.4.2)

Program SCREEN (other versions SCRNCR, SCRNDR) is a subroutine of
program SCNCAS and acts as an intermediary between it and the various
key assignment subroutines. SCREEN, the version used when hydro-
carbon radical and functional group fragment keys are being assigned,
selects the particular screen fragments which must be applied to tne
compound being screened.

SCRNCR - See SCREEN.

SCRNDR - See SCREEN.

SETUP - Linear String Classification (2.2.10)

This program finds a capital letter in the SCRUB list and then scans
to the left and right of this letter in the MATRIX assigning a type
code to the linear string. It then transfers to CLEANM for processing.

SLOAD - Loading of Structural fragment Screens (2.4.3)

SLOAD prepares structural fragment data for use by the screen assignment
program.

STARTA - Master Registry Program (2.3.1)

STARTA determines which of a group of potential new compounds are
different from those already registered in the master file. These
compounds are registered, positive matches are discarded, and question-
able matches are printed for further examination by a chemist.

STRUC - Atom-by-Atom Search (2.4.8)

The purpose of the atom-by-atom search program is to determine if a
one-to-one correspondence exists betqeen the nodes (atoms) and con-
nections in a given query structure, and some set of nodes and connections
in a given file compound structure.

TABLE - Connection Table Expa.ision (2.4.7)

TABLE (RING4) expands a connection table given in the compressed format
(see program CONVRT) to a form suitable for application of the ring
analysis programs.

247

pI

TAPE - Search Executives (3.2.1)

Programs TAPE,TXINFO and DISKTT are used to retrieve compounds from a
file stored either on tape or on disk. With the aid of the molecular
formula search and structure search programs, the executives determine
which of the selected compounds actually satisfy the requirements of
various queries. Output programs are then called to print the
resulting compounds.

TAPWRM - Mergenthaler Input Program (2.2.1)

TAPWRM reads typewriter characters in Mergenthaler Code from a magnetic
tape. It interprets these codes and constructs a 2-dimensional array
containing an image of the typed chemical record.

TICKER - Output of Chemical Record (2.2.16)

TICKER writts an output tape containing the TID, classification and
stereo information, molform, nomenclature and references, structural
formula image, connection table, and abnormality table.

TXINFO - See TAPE.

UPTAP - CHEMTYPE to CIDS Format Conversion (2.2.18)

UPTAP reformats the output of the CHEMTYPE systen into the CIDS
record format and merges into the record descriptors which were
introduced through punched cards.

VERIFY - Chemical Verification (2.2.14)

VERIFY checks the chemical consistency of the structural formula,
molecular formula, and connection table, and verifies the valence of
each element in the connection table and in the abnormalicy table.

248

APPENDIX C

CAS FORMATS INPUT TO CIDS

This appendix is a reproduction of selected portions of the Chem-
ical Abstracts Service Registry System Manual, revised February 1966.
It describes the formats of the CAS Structure Master File which is the
input to CIDS program CASFMT (Section 2.1.1) and the CAS Bibliography
File which is the input to CIDS program MOLEF (Section 2.1.4).

I

249

I

o 0 0 00 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o 0 0 0 00 0 0 0 t a 0 a 0 0 a 0 a 0 0 0 0 0 0 0 0 e)

A w to w d N . 0 t i N w 0 w d N '0 q d -4 4p wi N - A t

A 0 w 0 w 0 0 AO

*0 4 nJ 0a 0 (N 0 n C

0 -
A - A A 0 -a. ' 0 - 0 0

aN - A C - A 0 0 N A 0 -0 00 -I t 0 -0 0 - C

- n q n 0 N 0 U 0 0N 0 U' N 0

0~~ 0 t- 0 - N , 0 0 0 N

N 0 00 0 0-
fl 0 0 Nto0 N 0 0 m 0 0 wi N 0 0 . 0

M 0 ON w 0 0 0 N - 0 " 0 - 0 w 0-
o * 0 6 0 0 0 0 0 - 0 0 - 0 - 0

A~ 0 0 o t t - d N I
o 00 I00t 0 0 n 0 0 0

N 0N N N - N - - 0

A I ~ 0 000 - 0 0 N 0 0 N 0 0 N 0 -
2 50 0 0 N 0 - 0 0 N 0 0 - 0

o U (1 N N 0 - 4 N 0 N 0 AN 0 - A No 0 0 0
41 N - 0 N 0 N -

N A * A N ' 0 WA N ' 0 to 0 00
A A N0 N 0 - 0

A mS 0 0 A 0 M 0 0 A A 0ON 4
0 N 0O nd 0W m O 10A n 0

0~~~ 0 A 0000* 00-

Ci IiU (i d NC N - 0
0 00 6 A 0 (A 0 A A 0 U
I0 0 w0 I 0 0 1

0 aA 0 0 to 0 f9 W0
*~ 0a -2 2 0 00 0

s 0 n 0 0 F. 0 C
N0 0 0 0 :

0 A 0 A 0 A 0 A 0
-4 -A -4 C'

*0 0 A 0 A 0 A 0
0 0 0 0

0 0 0-4
A 0 0

o~4 0 i

i lo
N 0

0 Z
A -

0 0 0 0An

N Es

41 N N5A A A X -)

to0

o 0 0 a oh0

n m n n n

250

Structure File

The preceding page is a photographic re-production of a tape dump
of part of the Structure File. The Structure File contains all
the information in the unique/compact connection table Generated
for a compound by the Registry programs. On the left of the sheet,
the notations "BL" and "RC" appear. These notations which are not
on the tape, are generated by the program which prints the tap, dump.
"BL" stands for block length and is followed by a count of the char-
acters in that physical tape record. "RC" stands for record count
and is followed by a count of the characters appearing in the
asso-iated logical record. For the structure file a logical
record way be a "Fl", "F2"1 "F3"1, or "F4" record (see descriptions).
Several logical records may appear within one physical tape record.

Description

1. Block count (IBM standard). This four-position count appears
at the beginning of each physical tape record (block) and
indicates the number of characters in the block. As per IBM
standard, the digits 0-9 in the units position print as +, A,
B, C, D, E, F, G, H, and I, respectively.

2. Record count (IBM standard required for variable length, blocked
records). This four-position count gives the nwmber of
characters in the following logical tape record. The record
count is the first field of the logical record.

3. Record Type. This two-position field defines the contents of
the records.

4a. (• is "Fi") From list. The "from list" defines the graph of
a compound. (see page 99).

5a. Record Mark. This character marks the end of a logical record.

4b. (3 is "F2"). Element list. This list gives the node values for
the previous F1 record. (See page 100).

5b. Record Mark.

4c. (3 s"F3"). Bond list. This list gives the connection values for
the-iiaI previous F! record. (See page 101).

5c. Record Mark.

4d. (3 is "F4"). Registry Nwnrfer. A nil e-podition field containing
the-S Registry Number assigned to the compound. (See page 88).

5d. Hydrogen Count. A three-position field]hdicating the number

-`he humber of hydrosen attorns in the onpou-nd.

" . . I

6d. Abnormalities Count. This three-position count indicates
the length of the abnormalities present.

7d. Text length. A two-position field indicating -he length of
the textual descriptor.

8d. Abnormalities. A variable tength fxe*c ontainr.-,g ar,'r',. .•-
and the textual descriptor (See pages. ';L an- •fK3)

9d. Record Mark.

iL

L. H. Leighner 1/12/66

' 52

FrOm L,1st
CHEMICAL ABSTRACTS SERVICE

Format Layout

Format Type (T,C,D, or K) T Format Number . 14a

record
Length Fl From List Ring Closure List

I'" ' ' " _, I I II I I I 19 111I 0

"r'I

Posi ions
-From To DATA FIELD REMARKS

_____Numeric Record chai~actet count

Fl - Record .dentificatioi

* ~ *j __________Length from position 8 to bteY."

Siring closure list. Blank U a* ring '4

nPlus zone(+) if discontinuity.

10 12 Numeric From attachment of second atom.

3 n6 Numeric From attachment of nth atom

3a±9 13n+9 Blank or record mark Blank-ring closures follow'

I I.,,H

.. F Record Mark - no ring closu.res

3n_1 #3nt15 Numeric First ring closure

3+15_________ _nl 4"n
S +10 +15 Numeric Last ring closure (mth)
3n+6 3nfl4m _ I__

't'lRecordoiar markoEnd oflrecord

)53

i________________________________

CHEMICAL ABSTRACTS SF• j-,Cn
Format Layout

Format Type (T,CD, or K) T Format Fumee- 14b

Reco
Length F2 Flement lsst.

T-- T- -r-?

Positions 204

Fj'rm _o DATA FIELD __ REMARKS

4 _ Numeric Record character count

6 F2 Record identification

8 Alphabetic First atom symbol

9 10 Alphabetic Second atom symbol

2n+6 2n*7 Alphabetic _ Last atom aymboi knth)
2n+8 2n48 Record mark End of record

Vn+G __ _ _ _.

I
Format Layout

Format Type (T,C,D, or K) T Format Number 14c

Record
Length F5 Bond list Ring bonds

51101

'"l '" 1 6,51 ; 701 ' ;o " I "" ' ''"W' ' ;''- i ''

I IOWA II e 1I I ',!!U I A ,m

Positions
grom To DATA FIELD REMARKS

1 4 Numeric Record character count

5j 6 1 F3 Record identification

7 7 -Alphanumeric First bond type

8 8 Alphanumeric Second bond type

n+6 n+6 Alphanumeric Last bond type (nth)

n+7 n+7 Alphabetic or First ring closure bond type,

or end of record ()
n+8 n+8 Alphabetic Second ring closure bond type

n+m+6 n+m+6 Alphabetic Las-.. -. ng closure bond type (mth)

n+m+7 n +m+7 Record mark End of record

* I

255

l"I q"' -10r, RpvIsed £/ '.

m-"

Modification List
CHEMICAL ABSTRACTS SERVICE

Format Layout

Format Type (T,C,D, or K) TFormat Number l4d_

Record ryd. Mold. xtW t Mod~ication Textual
Length F4 Registry No. Cnt.Lnh. Lnh. List Descriptor

.51 101 151 1 01 251 1 v I "51 I v 4l ,0

,Il , I'I d I I 0 -1 , 7q0 '' "1 8"" I T"

.P 1l 14J 143 5
-rm To DATA FIELD REMARKS

1 4 Numeric Record character count

6 F4 Record identification

7 15 Numeric Registry number

16 18 Numeric Hýydrogen count

19 21 Numeric Length of modification list

22 23 Numeric Length of textual descriptor

24 24 Alphanumeric Bit switch for modification list*

25 - Alphanumeric Modification list'

__ _ _ _ _ _ _ _ __ _ _ _ _ _ ___ I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- Blank Blank separates modifications and

text "

- _ _ Alphanumeric Textual descriptor (up to 50 char..)

- Record mark End of record

-[. .- w E page

" if there are no modifications, thi'

blank separates the bit switch from

.T the textual descriptor

Modification List in F4 Record0
The modification list is preceded by a bit switch in position

24 which indicates which modifications are present:

1 bit on: mass citations present
2 bit on: charge citations present
4 bit on: fractional coefficients present

AB bit on: special segments present

Up to five subfields may be present in the modificatioa list.
They are: (1) valence, (2) mass, (3) charge, (4) fractional coefficients,
and (5) special segments, and if present must appear in that order.
These subfields have the following format:

Vaaab... Maaaddd. . Caaae... Fgxxx... Shhhx 9• jKLmmuacxxx....

Wherei

V - valence subfield
aaa - atom number
b - valence
M - mass subfield
ddd - mass value
C - charge subfield
e - charge value
F - fractional coefficient subfield
g - fragment number

C3= - fractional coefficient (two digit numerator
and denoxinator)

S - special segment subfield
hhh - gment number (ID)

element symbol
K - no. of hy'drogens attached
L - actual valence
Smmii - mass citation
•o- charge

K. L. Weisenberger

~0

DOT MOLECULAR FORMULA

The dot molecular formula is composed of sunmstion molecular foxvC.aAe

for each disconnected fragment in the structurf

Associated with each of the molecular formu.,.t -ragnents except tb's

first is P. coefficient which defines the number ol occurrences of that

fragment. The coefficients of the fragments are normalized so that thi •x.rt

fragment has a coefficient of one.

The following are the three types of molform fragments wid the •.

for ordering within each fragment:

A. Carbon containing fragments: (1) carbon, (2) hydrogen, • e..-rent

symbols in ascending alphabetical order.

B. Non-carbon containing fragments: (i) element symbola in ascending

alphabetical order. Preferences are imposed here to change H901,,4

to F2SO4, etc.

"Single atom fragments: (1) hydrogen, (2) element symbol.

The full dot molecular forntmla is generated from the fragments b.• assigning

a preference to each fraiment boed on (1) high carbon count, (2) high hydrogen

count, (3) low alphabetical element : mbol, (4) high element count. S ingle

atom fragments always appear last.

w]

FORMATS

1. Carbon containing fragments: Carbon and hydrogen have four position
counts, all hetero atoms have three position counts.

2. Non-carbon containing fragments: All hetero atoms have three positiop
counts.

3. Single atcm fragments: These fragments have u fixed format.

Hydrogen count / Fractional coefficient

Element Symbol %umber of hydrogens to be subtrapted
when generating a summation mo34orm.

4. Fractional Coefficientst

Decimal 7 1 \Fractional
Representation Representation

5. Unknown Coefficients:

Decimal % ýFractionaJ
Representation Representation

EXAMPLES

2.. .3Na

2.CY03HlNOPq.3N&P03bYONWAO* 0

rW l * I 4 ~al134 O

BIBLIOGRAPHY RECORD
CHEMICAL ABSTRACTS SERVICEFormat Layout

Format Type (T,C, or K) T-282 Format Number 131

FILEFORM 4, Blocksize 2000

' "1 00• o""

.I
S. ... I

,, P o s i t I o n s '' •. . .

From To DATA FIELD REMARKS

1 4 R e c o r d L e n g t h_. _._ _

5 13 Registry Number

!4 14 Manual Registration In(icator

15 19 Ring Index Number

20 20 Ring Query Indicator__

233 23 MERCK Indicator

24 28 Location of CA Added I dex Name

29)3 Location of Molform

Location of CA Systemra ic Index Name

_3_3 Location of Reference
S44 44 Blank

.- Beginning of Data

26O

i
I I I I Ii i iii l i i

.DI -1 V~

t~-:j E. 03-4

cr. 0t- -

c~

C> W

C) Li

,j u's c ~

Z)d

0V* 0)> CQL .c
4-

I- f

(V) C:

ti) .0. V?
c %.. C c

-4 0 -

m -

t4'4' C -0

Too4ý c-
>, 0 o 4

_C) .- 'J - 4'-

oL ;z 'o

IC) b

C)0 0 (r'

'A qIJ -J
c."3 to m - 0 -1 t

9()~~~L X. ,' 0 C4
U- C)' M, 4) 0*

8 L jz~ 0 04'
co to <~ .J! LY6ii W 'j

0m acQ m ' O~

Mo

13BLANK PAGE

Vim
ol

Wb

APPENDIX D

PRINCIPAL CIDS FORMATS

As an aid to the reader, a collection of the most important formats
appearing in this report is presented here. In addition, a few formats are
provided which do n"ot appear in the text.

263

CASFMT OUTPUT FORMAT

Word Contents

0 Bits 0-17: Number of rings in structure

Bits 18-35: Number of words in connection table

1-2 CAS registry number (9 characters, right-justified)

3-mr Connection table (CIDS format)

m+l-n Abnormality table (if any-last word is 0)

tt

X, B, E LISTS (INPUT TO CONVRT)

The input connection table consists of three liits: K, B, and
E, in which each atom and its connections are described 'n eizht-word
blocks. The first eight words of each array is allocated to atom 1,

the next 8 words to atom 2, etc. Each eight word block in the X list

contains the atom numbers for up to eight connections from that atom,
right-adjusted in consecutive words. The corresponding words in the B
list contain the bond type of the coanection, right-adjusted. In he E
list, the first word of each group of eight contains the element kind
for that atom, right-adjusted in BCD. In addition, bit 17 is set to I

for each word of the E list corresponding to an entry in the X list.

If the connection is a ring connection, the corresponding E word is set
minus. In the example below, the X, B, E representation is shown in
octal, with leading zeros omitted.

KI- C3 N2

X B E

3 1 1006042 ,kl

0 0 0
0 0 0

0 0 o

0 0 0
0 0 0
o 0 0
0 0

3 3 100604'1 ,2
0 0 0
0 0 0
0 0 0
0 0 .
0 0

0
0 0

o

l'I

INTERNAL CONNECTION TABLE (OUTPUT OF CONVRT)

The connection table is divided into three parts: the connection
segment, the bond index, and the bond segment. In addition, the first
word of the C.T. is an index to the three parts. The address (bits 21-
35) of the invex word contains the relative location of the bond index
segment; the decrement (bits 3-17) contains the relative location of
the bond segment. This is illustrated below:

OOOOOxOOOOOy Index Word

2
Connection Segment

y-1

Bond Index

x- 1
"x

Bond Table

Connection Segmen.t:--In the connection segment, carbon atoms with
exactly two attachments are not explicitly stored1. Every other atom
in the C.T. is stored as follows-

ist word:

Bits Contents

s 0
I I if atom is in a ring

=0 otherwise

2-5 No. of conrect-_ons to this atom

6 1 oif st connection is part of a ring
=0 otherwise

7-11 Path length to 1st connection

266

12-17 Atom no. of Ist connection

18-29 Elerrent kind in BCD, right-justified

30-35 Node type

2nd word: (if necessary)

8 1

1-11 0

12 1= if 3rd connection is part of a ring

= 0 otherwise

13-17 Path length to 3rd connection

18-23 Atom no. of 3rd connection

24 1= if 2nd connection is part of a ring
I= 0 otherwise

25-29 Path length to 2nd connection

30-35 Atom no. of 2nd connection

3rd, 4th words: (if necessary)

Same format as 2nd word for the remaining connections.

Bond Index: The bond index serves the purpose of location entries
in the bond table corresponding to each atom in the connection segment.
The format is:

Word 1:

Bits Relative location of Bonds for

30-35 Atom 2
24-29 Atom 3
18-23 Atom 4
12-17 Atom 5
6-11 Atom 6
s-5 Atom 7

Word 2- (if necessary)

30-35 Atom 8
24-29 Atom 9

267

The table continues for as many words as necessary to provide an entry

for each atom. The last entry gives the relative location of the word

following the last word of the bond table.

Bond Table: The bond table consists of a number of groups (one
group for each atom) of bond entries. The location of the beginning
of each group is specified by the bond index table. Each word of a
given group represents the bonds in a path from the given atom to an-
other atom, in the form of a string of three-bit digits, each of which
represents the bond type of one segment of the path. The rightmost six
bits of each word contains the number of the atom to which the string
is connected. For a path of length greater than 10, the bond string
is continued in the next word where bits 30-35 are set zero.

As an example, the octal representation of the connection table
as formatted by CONVRT for the following compound is shown below:

a -4- C= C- N•O

000016000014 Index Word
234601602302 #1
- 1024601

030101602302 #2
- 1040103
010102604601 #3 Connection Segment

020102604601 #4
- 305

030304604501 #5
- 1070106

O.0105604601 #6
010105604601 #7
151411070603 B}6 Bond Index

16
44444401 # 1
44444401

102

101 #2
203
104
202 43 Bond Table

102 #4
12105 4

12104 #5
206
207
205 #6
205 #7

268

'i

ABNORMALITY TABLE

The abnormality table is a series of words, where each word gives
information about one atom which has abnormal mass or valence or has
a charge on it.

Bi ts Contents

(S,1,2) Type of abnormality
10 1=charge
110=mass
l Il=va lence

(.3-17) Atom number

(18-35) Value of abnormal mass, abnormal
valence, or signed charge. The
sign of a signed charge is indicate:
by bit 18.

A word of zeros follows the last abnormality word.

26

269

MOLECULAR FORMULA FOHMA.T

0 1-2 3 -17 18-2e------- *26 27 -35

Total no. words In Multiplier of Multipller of
WORD 0 molform block Hill parent I water if a

rincluding header if a hvtftaLe hydrate

Set to I if addend
molform exists I-- 1 if multiplier

I4 BitsI 4 Bit~s I is a fraction;
S4 -- 0 if an integer.

numerator denominator

If it is not a fraction, multiplicr fills
8 bits, right justified.

Set if indefiniLe I
polymer

4 1-.3 4 -a-s-- 0 ll-mc--t-17 18-c--------e26 27-c-----34 35

Number of Number of Number of Number of
WORD 1 oxygen nitrogen hydrogen carbon

atoms atoms atoms atoms

No. words in
mol. formula

(Hill)

0 o 11 12 "017 18 -29 30 - 35

Element Number off Element kind Number ofUI I
WORD 2-M i kind atoms of (BCD) atoms of

(Hill) (BCD) element element

0- -- 8 9 - -- 17 18 -- 26 27 -- 35

Multinlier Mul'iplier Multiplier Multiplier
WORD M+l of first of second of third of fourth

addend addend addend addend

FORMAT OF MULTIPLIER SAME AS WORD 0 MULTIPLIER

WORD M+2 SAME AS WORD I -- but for addend molform

WORD M+3 SAME AS WORD 2-M -- but for addend molform

270

I

CIDS RECORD FORMAT

The output of ADDMF is an lOBS type 2 tape. Each compound record
is a logical record. These are grouped inte physical records of 1000
words or less. The CIDS record format follows:

Word Bits Contents

1 (3-17) 2's C (# words prccedlug Addit. Reg. No)
(21-35) 2's C (4 words ii l)gi•e! record)

2 (3-17) 2's C (# words preceding Ao:urmality larle)
(2t-35) 2's C (# words preceding C.I.)

3 (3-17) 2's C (# words precedin, References)
(21-35) 2's C (IP words preceding SF.I.)

4 (3-17) 2's C ,k words -recedfr. 6 *vys) s
(21-5) 2's C (# words o:.e'edIng Qualifiers)

5,6 Primary Reglotry Number BCD)

7 Mol Formt

m Addi,.io;t.%i _•gi vr, Numuber

n Srru(ture (CT.'

Abnormality Table (if any)

Structural Formula Image (if any)

q Reference (if any)

r Qualifiers (if any)

Keys (2 words per key)

Note that several of the data blocks will be empty. The pointers to these
blocks will point to the location where the data would be stored if present.

271

MF SORT KEY

The four word MF Sort block is attached at the beginning of each com-

pound record prior to Registry so that the records can be sorted in Hill
formula sequence. The order of preference is C, H, followed by the other
elements in alphabetical order.

Word I:

Bits Contents

S,1-8 No. carbon atoms

9-17 No. hydrogen atoms

18-29 1st element (2 BCD characters)

10-35 No. atoms of Ist element

Word 2:

S,l-l1 2nd element (2 BCD characters)

12-17 No. atoms of 2nd element

18-29 3rd element (2 BCD characters)

30-35 Ne. atoms of 3rd element

Wjord 3. 4.

Same format at Word1 2 for remaining elements. Unused words are
set zer-. *

272

-Il

INPUT TO CHEMTYPE

INPUT to the CHEMTYFE system is a magnetic tape with the chemical
typewriter characters packed as follows:

0-•mWm34----ml 12"-,15 16 •-------23 24--217 28 --*-----Wm35

L 0 1 10
"------4Typewriter Character -

Physical records are 300 7040 words long (900 characters). If a paper
tape ends before the end of a physical recurd, the record is filled out with
zeroes. Each paper tape record is followed on magnetic tape by a file mark.
The final paper tape on a magnetic tape appears as follows:

(1) paper tape characters

(2) physical record filled with zeroes after end of paper tape

(3) file mark

(4) a physical record containing all 7's

(5) a second file mark

8- 7- 3 2 1

Blank 0 0 0 0 0 0
t ap

High order Bits
PARITY--&- of X 0 0 1
BIT coordinates
(EVEN),-, Low order Bits

of X 0 0 1
coordinates ALWAYS PUNCHED

High order Bits
of Y 0 1

coordinates

Low order Bits
of Y 0 0 1

coordinates

"Coordinates 0 0 0 1 i 0 0 0
f o I low" I

Punch 5 4

MERGENTHALER COORDINATE PUNCH CODE (BINARY)

3•4

Fz

F
F

Data card input indicatlig which compounds on a paper tape are to be

deleLed is formatted as follows:

Blank Blank Blank Blank Bl,

Tape 1

Number

(Left Justified)

CHEXTYPE INTERNAL FORMATS

MATRIX CONTENTS Af END OF INPUT PROGRAMS:

0 l- -- o26 27 28 29------- -35

Case Input char-
bits acttr with-

out parity
bit

1 for underlined • /
character SUB = 01 Mergenthaler

LOWER 1 10 Code
UPPER = 11

MATRIX CONTENTS AT END OF ORGNZR:

20 30

code

Case bit

BXBRAK - table of x coordinates of right hand brackets in structure

last x coord is = DEIX

18 O a-35

x coordinate

2~79

MULTAB AT END Or ORGNZR:

18-.21 22-0=- "-35

last multiplier is - to 1

MULTAB AT END OF REGRUP:

3 • 17 18"-20 214 •3 5

I I I I MultiplierI

2'9 comp. pointer to
last entry in SCRUB
list for this Mul-
tiplier (and this set
of brackets)

rAB- & Ldblae ormatted &v golloWs;

3 m -17 24- - 35

tal atoms of this Element

element I
\if a single element,

the second character
is a BCD blank

276

CT - tne internal Connection Table whose entries are formatted as

follows:

3 m-e on17 18-20 21-23 24--&---a-29 3D-.----m-35

Number of atom bonded to IMulti- Bond 2nd letter I1Sto letter

plier Itype of atom Iof atom

The multiplier points to an entry in the list of bracket multipliers
(MULTAB, described in Section 2.2.7.2) where applicable. Each atom
has 8 such entries only the first of which contains the atom name,
The second and third contain the relative matrix location of this atom
as follows:

3 ow s17 18-22 21-23 24 -"a---o-27 28 ----- b.35 Word 2 for
. -I /a given atom

S SAME AS ABOVE I Bond zeroes 3 Low order

Litype]digits of

matrix location

3 ID 17 18-20 21-23 24 -*-- 29 30"I§-P-35 AWord 3 for a

SAME AS ABOVE Bond zeroes i v hngh order:
Stype, digits of rel-ative matrix location.

ex. relative matrix location 14321 is represented as:

3I21

14

277

CHEMTYPE OUTPUT RECORD FORMAT

S;-P2 3- w 17 18.020 21-=.---------•29 30-4---35

No. of words in block F

WORD 0 not including 010 F(BCD)
Word 0

2's complement of 2's complement of 1st
first location of word of connection
MOLTAB table

2's complement of first 2's complement, o•. ,irst Locations
WORD 2 location of abnormality location of ,-omen•laturei to

table WORD 0
(0 if not present)

2's complement of Numbs
WORD 3 first location of

SCRUB list I

WORD 4 REGISTRY NUMBER (first 6 characters,

WORD 5 REGISTRY NUMBER (second 6 characters)

WORD 6 CLSTER (Classification and Stereo)

MOLTAB BLOCK

CONN-ECTiON TABLE BLOCK

ABNORMALITY TABLE BLOCK (if present)

NOMENCLATURE & REFERENCE BLOCK

S-.2 3-5 do so 17-a------25 26 -w--- 34 35

SrI - + DELY DELXnderine
Header table ex'stq

Charges
outside
of brackets (total) SFI BLOCK (SCRUB LIST)

The output tape which is created by this system consists of

variable length records, each record consisting of a single chemical

record.

278

CHEMTYPE DATA FORMATS

FORMAT OF CLSTER:

15 as -i-"17 30 -6-----33

Stereo Class ifi-
cation

= Non-Stereo 1 = unclassified

2 = Stereo 2 = blank

3 - Stereo Unidentified 3 = classified

0 = not present

SCRUB LIST FORMAT:

3 1-17 20 300 .---- 35

L c I. ode

Case bit

279

NOMENCLATURE FORMATT:

Each nomenclat-re entry (one line of nomenclature) is delimited
by a 777, characte, 7om the next. The last nomenclature word is
filled cut w4 th zeroes. References are separated from each other by
a 7776 character and the beginning of the reference field is pre-
ceded by a triple bond character in the output block. The last word
in the reference field is also filled with zeroes.

3 0- 17 21 up-35

2' comp. of number I2's comp. of total. number Header of
nomenclature words of words in block nomenclature

block

0 0-- 8 9 ----- 17 18 -ý 26 27-c n35
4 characters
per 7040
word

6 Bit 9 Bit character

Dura Code

Superscript Dura case bit
Under line

280

REFERENCE BLOCK FORMAT

(OUTPUT OF UPTAP)

WORD 3 - 17 18 - 20 21 - 35

0 No. of words in No. of words in reference
table of contents block (including Word 0)

1 1** 1* RA to CLSTER Block

2 2** 3* RA to Nomenclature Block

3 3** 0* RA to EA Number Block

4 CLSTER

5 Nomenclature

x EA Number (S)

NOTE:

* Type of Data

0 BCD
I Binary
2 Modified Dura

3 Compressed Modified Dura

** 7f Decrement is zero
no data is stored

281

ORDER OF DATA CARDS FOR CIDS

FRACMENTS AS INPUT TO SLOAD

REPLAC002000

C (Title card)

(Hydrocarbon Radicals)

REPLACQO 1000
CNOP (Title card)
(Functional Groups Containing C,N,O,P)

CNOS

(Functional Groups Containing C,N,O,S)

(Rest of Functional Groups)

000000 (End card)
The input for each structural fragment consists of data cards contafnp1-.

the following information:

Kcy Number

Molecular Formula

Connection Table

Abnormalities (if any)
The key number is a 6 character number punched in the first 6 columns of thLcard. The formats for the mol form and C.T. cards can be found in CIDS No.(pages 164 and 165) with the exception that column 24 of the first mol formcard now indicates whether any abnormalities are present. Each abnormalityhas the form "XY=Z". Where X is the abnormality type, Y is the atom number,and Z is the value of the abnormality. The abnormality types are V (Valence'C (Charge), M(Mass). Examples: Vl=5.Cl=+1.M5=I4.

The data for the next fragment follows immediately except when control.cards are needed to separate groups or blocks.

282

U

OUTPUT OF SLOAD

The output of SLOAD is a tape on which the first physical record con-
tains the fragment data. The format of the data associated with each frag-
ment is stored as follows:

Word Contents

1 D=No. of words in fragment record
A-No. of words preceding structure (W)

2 DD=No. of words preceding abnormality table
(=O if no abnormalities)

A=No. of words in structure

3 Molecular formula

m Key number

m+l Connection table

n Abnormality table (if needed)
(a zero word follows last entry)

The index is written as the second record on the output tape. -
The decrement of the first word of this record contains the complement
of the number of words in the index. This word is to be read into a lo-
cation CROSCT, immediately preceding CROSS when the tape is read for
screen assignment.

283

INTERNAL KEY FORM4ATS

Each of the CIDS keys occupies two computer words. The first 3
bits of the first word gives the key type, enabling the programs which

process these keys to interpret the information in the remainder of

the two .. rds. The present CIDS keys have the following formats:

TYPE 0: Structural Fragment Keys

S,l,2 3-35 S,1-34 35

10001 BCD Code 0J 0

Bit 35 1 1 if fragment is attached to a ring

Word 2(0 if fragment is not attached to a ring

Example: Key I-A-1 is stored internally as the following (1t BCD)j

S,1-35 9,1-35

1o0 1_ l 30 003011o0o1o01 o00

TYPE 1: Skeleton Molecular Formula

S,1,2 3 4-10 1.1-17 18-23 24-29 30-35 S.I-5 6-11 12-17 18-23 24-29 30-35

00-111 C N 0 S Cd Amt~ CodelAmt l~odeIAm

In this key, the number of atoms of C,N,O,S,P are stored in fixed

positions in Word 1. Codes from a table are stored in Word 2 for

other elements occurring in the nucleus, followed by the number of

atoms of that element. Up to three of these "other elements" may

occur and they are stored in alphabetical order.

*Types 1, 2, 3: Bit 3 of word 1 = 0 if 2nd word is unused

I otherwise

284

Example: Key "SKELMF C12 NI Sbl" is stored internally as the following
binary representation:

S,l,2 3 4-10 11-17 18-35 S,1-5 6-11 12-35

__1110001100 0000001 O -- oCode
0S 0011 0-- 0

TYPE 2: Ring Molecular Formula

This key is stored in the same format as type 1 except that bits (8,1,2)
of word 1 contain 010.

TYPE 3: Redundant Numerical Ring Population

S,1,2 3 4-7 8-11 12-15 . 32-35

01 Ol *jR1_ R2 IR3 IR4 IR5 _R6 _IR7 IR8

S-3 4-7 .32-35

IRampIe: Key R14 -R 6 Ri l n

The count of atoms in each ring of a nucleus is stored in ascending
order in consecutive 4-bit blocks in the key. If a ring contains
more than 15 atoms, 0001 is stored as the atom count.
Example: Key "RNRP 5,6,10" is stored internally as the following I

binary representation:

S,1,2 3 4+-7 8-11 12-15 16-35 S,1-35

101• !o101o1 o11oi1o1o io - 0 Fo - o i

*Types 1, 2, 3: Bit 3 of word 1 0 if 2nd word is unused
1 otherwise

285

TYPE 4: Counts

S,1,2 3-6 7-35 S,1-35100]Sub- Count 0o
.tyPe, I

This format is used to represent a variety of keys which are counts
The subtype field identifies the particular feature that is being
counted.

Subtype Count of:

0 Rings in nucleus
1 Double bonds in nucleus
2 Nuclei in Molecule
3 Total number of direct attachments to all nuLLel
4 Double bonds between C (acyclic)
5 Triple bonds between C (acyclic)

6 C-C-C configurations regardless of bonding (acyclic)
I
C

7 C-C-C configurations (acyclic)

C
8 [C] -El count of carbons connected by

n single bonds, any configuration.

9 El--(C]n--El count of carbons in unbranched
chain (single bonds)

10 Total ring coitnt (Summed over all nuclei in
parent and addends, if any)

Examplet Key "Number 2 3" or "Nuclei in Molecule = 3" is stored

internally as the following binary representation:

S,1,2 3-6 7-35 S,1-35

F 100 001 0-011 0i 0

286

TYPE 5: Subtype 0: Molecular Formula Key

S,1,2 3-5 6-17 18-35 S,1-35

101 000 Element Count or 0 0 0
(BCD) 1

This count of the number of atoms in the Hill formula Is gi-en for
elements CH,N,O,P,S,F,Cl.Br,ISi,B. For other elements, 0 is stored
instead of the count.

Example: Key "MOLFRM C 10" is stored internally in the following
binary representation:

S,1,2 3-5 6-17 18-35 S,1-32

101 100l 1110000010011 10 - 01010 0---___

ýC il BCD

TYPE 5: Subtype 1: Nonspecific Functional Group

S1,2 3-5 6-23 24-35 S,1-35
0'0'01 10 - 01 Element

(BCD)

Example: Key 'NONSPC AS' is stored internally in tho frt[lowir,
binary representation:

S,1,2 3-5 6-17 24-35 S,1-35

101 001 0 - - 0 01-00011100 0-

As in BCD

287

LIST-STRUCTURED FILE GENERATION

Programs NUFILE, KEYSRT, MERGE, and INDZX together create or update
the search file and form the inverted key int.ex. The formats and a
brief description of the final output tapeo from this system are listed
here for easy reference.

(I) The Tape Search File

The compound records in the Tape Search File are blocked in
variable length physical records whose maximum size is 1000 words. A
compound record is always entirely contained within one physical record.
The information on each tape in the Search File, except the last, is ter-
minated by an end-of-file mark followed by a small (10 word) duimmy
block. The last tape of the File is terminated by two consecutive end-
of-file marks and a special ten word block containing information which
NUFILE uses when updating the File. The first word of the special block
contains the address which will be assigned to the next compound to be
added to the File. The second word contains the total number of com-
pounds in the File.

Word Bits Contents

1 (S,I-5) Tape Number (1-)
(6-18) Record Number (0-)
(19-35) Relative kddress (0-)

2 Number of Compounds in the file
(right adjusted)

(2) The Disk Search File

Th1 Compound records in the Disk Search File are blocked in
465 word physical records. Compounds may be split between two physical
records, but never more than two. The end-of-tape and end-of-file
sentinels are the same as for the Tape Search File, except that the
special ten-word record at the end of the File contains the following
information:

Word B ts Contents

(Sl-17) Record (track) Number (I-)
(18-35) Relative Address (0-464)

2 Number of unused words in last data
record written on the tape (right
adjusted)

288

(3) List-of Addresses File

The address-lists on this file are blocked in variable length
records whose maximum size is 1000 words. The data on each tape except
the last is terminated by one end-of-file mark followed by a ten-word
dummy record. Two consecutive end-of-file marks terminate the last tape
in the file. Each address-list (i.e., all the Search File addresses
corresponding to a single key) is followed by a word of zeros, and the
addresses comprising these lists are in ascending order.

The format of an address in the Index for the Tape Search File is:

Bits Contents

(S,1-5) Tape No. (1-)
(6-18) Record No. (0-)
(19-35) Relative Address (0-)

The format of an address in the Index for the Disk Search File is:

Bits Contents

(S,1-17) Track No. (I-)
(18-35) Relative Address (0-464)

(4) The Key-Address List and INDX

The Key-Address List contains each key (2 words) coupled with
the address of its corresponding list on .the List-of-Addresses File
(1 word). The format of this address is:

B its Contents

(S,1-17) Track Number (0-)
(18-35) Relative Addreus (0-464)

This data is blocked in 465 word physical records. Since each logical
record is three words, there can be as many as 155 keys per block (or _,

track). The last key on this fIle is followed by a special sentinel
"key" composed of two words of all 1 bits.

Each Key-Address List tape, except the last, is terminated by an
end-of-file mark and a dummy block. The Key-Address List data on the
last tape in the file is terminated by two consecutive end-of-file marks,
directly followed by the third level of the Inverted Key List, INDX.
INDX identifies the first key on each track of the Key-Address List in
order to provide quick access to the desired key list, INDX is always
small enough to place to tape in one block (e.g., 1000 words would ac-
comodate a file containing over 50,000 different keys).

26t)

i,•. logic.4 r•¢cord format of TNDX is:

Word Bits Contents

1 (S,1-35) Key (Ist h1lld

2 (S,-35) Key (2nd half)

3 (S,1-17) Track (I-)

The last key to appear on INDX will naturally be the special. sentinei.
Since the last track on the Key-Address List may not be completely
filled, the address corresponding to the sentinel key will not neces-
sarily be word 462 on that track as it would normally be for the last
key on a track.

29

II

.29

OUTPUT OF MOLE

MOLE generates the following block of data containing the molec-'ar
formula, connection table, and abnormality table:

Word Contents

I A=No. of words preceding the C./. (X+2)

D=Total number of words (X+Y+Z+2)

2 A=No. of words in the C.T. (Y)

D= No. of words preceding the Abnormality Table

(X+Y+2 or 0 if no abnormalities)

3 Molecular Formula

(X words)

X+2 Con-ection Table
(Y words)

X+Y+2 Abnormality Table

(Z words)

The molecular formula is ;tored in the same format as the Hill for-
mulA for a file compound. The connection table and abnormality table
has the same format as in the file compound except that redundancy has
been removed from the C.T.

291

U

MOLECULAR FORMULA IN QUERY

Word of Formula Bits Contents

First Word 3-17 Number of words in molecular formula

19 = I if restricted search

= 0 if otherwise

Additional 0-11 Element (BCD)
E lement Wo'rds 12-20 Maximum number of atoms if range search

Number of atoms if exact search

0 otherwise

21-28 Minimum number of atoms if range search
= 0 otherwise

34 1 1 if search of atoms is a range search
= 0 otherwise

35 = I if search of atoms is an exact match
search

= 0 otherwise

I?(2

292

U-

WORD FORMAT FOR RECONSTRUCTED PICTURE (STRUCTURE OUTPUT)

S- .28 29 300 35

o 0 J6 Bit
Dura Code

'"• Case Bit

2

293--

r
L

SEARCH SYSTEM OUTPUT

QUERY NUMBER CIDS I

RN A0000514 CIDS Registry Number

TN T03603 Identification Numbers
TN X00000637 in File of Origin

C15 H12 N2 Molecular Formula

Structure

Quinoline, 2-(p-ominophenyl)- Nomenclature

TF67087 Reference Numbers

STEREO N CODE U Stereo and Security Clossifict;or

DC25440 Edgewood Arsenal

Document Code

lq

U

APPENDIX E

ERROR DETECTION AND ANALYSIS BY CHEMTYPE

Compounds are rejected during processing by CHEMTYPE as a result of
73 different error conditions. Errors are detected by almost every individual
program. The messages and a description of the conditions that cause them
are described below.

It is difficult, however, to have an absolutely crystal clear inter-
pretation of the causes 3f the errors. In many instances, errors may be
caused by the paper tape reader during the transfer of the paper tape image
to magnetic tape. This may result in bits being dropped or added to a
character (or characters) and the program may reject the compound for a rea-
son not ascribed directly to the paper tape reader. In othet words, in th,
case of such errors, a garbled record results and the true reason for the
error is not reflected by the program printout.

ERROR MESSAGES

The following list gives the error messages generated hy the CHEMTYPE
system, the name of the program that detects them, and a hscription of '-1-
error itself.

(I) Number of parity errors since last compound entered. (TAPWRM)

The total parity errors found in Mergenthaler input between
two good compounds is printed when each correct compound is
entered into the file. This may be due to a typewriter mal-
function, an error in the paper tape reader in which a bit i•
dropped or added, or an error in the procedure followed by
the typist in correcting a parity error.

(2) Parity error in coordinate input. No code delete found. (TAPWRIM)

Either a paper tape read error occurred resulting in parity error
or the typist did not correct a parity error in the proper way.

(3) Low bit not punched in coordinates., (TAPWRM) f

Parity error found in the coordinates wab a result of thu low
hit not being punched.

(4) Typist goofed again. Last coordinate word iot equal zero 'TAPWRkt)

If the typist hits a character too quickly after do101ing a
carriage control operation which results in .oordinatps, thb
character may land in the middle of the co. rdiMates sinkc
each set o0 coordinates consists of 6 pW'CI s.

2935

U

(5) Coordinate bit 2 or 3 punched. (TAPWRM)

Punch appears in coordinates where it shouldn't as a result
of a hardware (typewriter punch error), a paper taoe read[
error, or a typing error . The lat - i is ca, ."d bý ti-. pist
responding incorrectly to typewriter parity light.

(6) Unidentified input character. (TAPWRM)

Character does not correspond to any legitimate Mergenthaler
code. May be due to paper tape read error which does not
result in parity error or to a mispunch by the typewriter.

(7) Undefined symbol in record. (INPUTD)

The Dura punched an illegal code.

(8) Overflowed MATRIX erasing brackets, (ORGNZR)

Coordinate error resulting in misplaced characters in MATRIX.

(9) Unidentified character found in nomenclature. (MONIKR)

Input information was in error and may have been mispunched.

(10) Overflowed nomenclature block. (MONIKR)

The nomenclature information was longer than 400 characters.

(11) Unable to identify character found in MATRIX. (ORGNZR)

Input is an unintelligible character.

(12) Brackets contain character other than bond or corner. (ORGNZR)

Wrong character in brackets, due to mispunch.

(13) Input exceeds 10000 MATRIX.(TAPWRM)

Either input record was too large, or the typist typed a
lozenge and then reverse indexed above lozenge and typed a
character. The latter would result in a y coordinate larger
than 100 when the y coordinate is corrected on the basis of the
lozenge coordinate =1. This could also have been caused by
a tap, reader error.

(14) Compound too large for MATRIX. (INPUTD)

Compound exceeds dimensions of MATRIX.

height: 100

length: 82

296

(15) Tape reading problem, (TAPWRM)

Physical problem occurred while reading tape resulting in an
incomplete word being read during Mergenthaler input.

(16) Magnetic Tape read error. (INPUITD)

Magnetic tape reading problem in Dura Mach input.

(17) First character found in MATRIX not number or letter. (ORGNZR)

The first character of TID must be the first character found
in MATRIX and must be a number or letter.

(18) Space not found after 12 registry number characters. (ORGNZR)

TID is too big, or typist did not skip a space.

(19) No match found in table of classification, (ORGNZR)

Classification information is unintelligible.

(20) Classification found to have more than 8 characters, (ORGNZR)

Classification information is unintelligible.

(21) Structure exteids past STEREO field. (ORGNZR)

Typist went too far down in record and part of the compound
extends past the STEREO line of the input.

(22) No match in table for STER1O informatibn. (ORGNZR)

STEREO information is unintelligible.

(23) Addend molform missing, (,,,,,FRMN,

The structure is bracketed and the addend molform is not
present; there is no charge present to indicate that the
structure is an ion.

(24) Character in molform wrong. (MOLFRM)

There is a syntax error in molfor-m, or input tape wan mis-
punched.

(25) Character following blank in molform not a dot. (MOLIFRM)

There was a syntax error in the molform or input tape was
mispunched.

297

k2b) Cannot reorder scrub list. (ORGNZR)

This is an addend but the bracket is missing.

(27) Addend presents problem. Too many characters for list. (REGRUP)

There was eithei an excessively long addend or coordinates
were wrong and other information got into the structure by
mistake.

(28) Too many entries for scrub list. (ORGNZR)

Structure consisted of more than 700 characters.

(29) Nomenclature field missing. (ORGNZR)

No nomenclature field was found.

(30) Structural formula too high. (ORGNZR)

Structure extended into molform line.

(31) STEREO field missing. (TAPWRM)

Typist either left out STEREO information, or somehow erased
the S as a result of making a correction incorrectly.

(32) ST=, .O not typed after exit from S.F. field. (INPUTD)

Either program did not find stereo text, typist failed to
type STEREO information, or the typewriter mispunched.

(33) Platen reversed above start of record. (INPUTD)

Typing occurred above the leaudi-ng wedge.

(34) Unknown character outside brackets. (EXCESS)

There was an input error due to a mispunch or a syntax error.

(35) Small letter outside of brackets. (EXCESS)

Formula outside of brackets begins with a small letter due to
a syntax error.

(3Q) Polymer molform subscript nor tL. MOLFRM)

Error in input.

(37) Fractional addend multiplier. (MOLFRN)

The multiplier of an addend is a fraction and cannot be
handled in verification.

298

(38) Nothin& found outsjde brackets by EXCESS. (EXCESS)

No characters found where they wele expected. Input error.

(39) Error in typing structural formula. (CLEANM)

Any violation of the typing conventions for the s' uctural
formula.

ex. C-Cl

(40) Inadmissible linear string in S.F. (CLEANM)

(a) Unexpanded chemical line notation
ex. --co-

(b) Confusion due to closeness of atoms

ex. --C1C I- or

(41) Bond in wrong place. (SEitLP)

ex. -l/

(42) Picture too scrunched up. (MAKECT)

Analysis problem caused by closeness of characters.

L It is difficult to determine
which bond belongs to upper
right carbon.

(43) Illegal symbol around atom. (CLEAVIM)

An illegal symbol has been detected in one of the eight
locations surrounding an atom.

ex. C

(44) H in wrong place. (CLEANM)

Unexpanded hydrogen connection.

ex. or

299

(45) Non-strai ht attachment to carbon chain. (MAKECT)

ex.

-(C

(46) Illegal symbol in structural formula (SETUP)

Symbol in structural formula other than bond, atom, number,
charge, bracket corner, or mid-line dot.

(47) Reject syambol typed. (INPUT)

Typist pressed 6key to delete record typed thus far foi

Dura Mach input.

(48) Box found. Record deleted. (TAPWRM)

Typist pressed El key to delete record typed thuE far for

Mergenthaler input.

(49) Format error detected by CONVRT. (CONVRT)

The compound is unprocessable by the CIDS system.

(50) More than 19 abnormalities. (CLEANM)

The Abnormality Table (AT) has too many entries.

(51) Bond redundancy error. (CONVRT)

Atom A is connected to atom B, but atom B is not connected to
atom A in the connectien table.

(52) Incorrect symbol in bits 24-35 of CT. (NFCF)

An illegal symbol has been found in the connection table.

(53) Et connection table. (NFCF)

There are no atoms listed in the connection table.

(54) _V_&le found fraction not followed y ce. (TAPWRM)

Since the virgule is a non-spacing character, the typist
must leave a space aftei a fraction to allow for spreading
the fraction apart in the MATRIX,

(55) Illegal character in MATRIX. Program Error. (CLEANM)

Character in MATRIX greater than 177.

300

(56) Registry number does not start with letter. (ORGNZR)

(57) Illegal Character in Registry number. (ORGNZR)

Chemical Verification Errors encountered by VERIFY:

CV(21) Illegal element was found in molecular formula.

CV(22) Illegal element symbol was found in the Connection Table.

CV(23) An element was found in the Connection Table having a
valance too high to be valid for this element.

CV(24) Molecular formula was found to contain no Carbon.

CV(25) The multiplier of the first addend in the addend molecular
formula was fount. to be zero.

CV(26) Hydrogen was found in the Connection Table.

CV(27) The assumed Hydrogen count for the compound was different
from the Hydrogen count in the molecular formula.

CV(30) Illegal unknown attachment was found.

CV(31) Atom count for C,B,N, or 0 in Connection Tabli uj r,,-
equal that in molecular formula.

CV(32) Illegal element symbol was found among elewents not
included in Connection Table.

CV(33) Total element count for non C, H, N, ry 0 not equal to
that in Connection Table.

CV(41) Illegal valence found in the abnormality table.

CV(42) Total atom count for C, 11, N, or 0 in addend molecular
formula not equal to that in the Hill molecular formula.

CV(43) Count for non C, H, N, or 0 elements in addend molecular
formula is not equal to that in the Hill molecular
formula.

CV(44) Multiplier for Hill parent of a hydrate is a fraction and
cannot at present be handled by verification.

CV(45) Total plus charges in the molecule do not equal the total
minus charges.

301

SBLANK PAGE

- r -*- --

APPENDIX F

MERGENTHALER CHEMICAL TYPEWRITERS CODES

OCT. SUR LOWER UPPER OCT. SUB LOWER UPPER
CODE CASE CASE CASE CODE CASE CASE CASE

245 1 I 3 120 L P P
254 - 321 q Q

55 322 r .9
56 A * 123 5 S

60) 0 o 324 t T
261 r 12 125 U U

262 2 2 126 2 V V
63 3 3 327 0 W W
264 % 4 4 330 x X
65 + 5 5 131 - y Y
66 6 8 132 - z Z
267 7 7 135 /

270 * 8

71 (9
2 7 3 "

77
OCT.
CODE CONTROL CHARACTERS

101 a a A 000 Null code

102 b B 377 Code delete

303 C C 201 Power on
104 d D 210 Backspace

305 e E I1 Tab

306 j f F 12 Line feed

107 y 9 G 215 Carciage return

110 1 h H 216 Upper case
311 i I 17 Sub case
312 4 24 Stop code
113 ik K 30 Coord. follow

314 1 L 232 'Lower case

115 t m M 234 Ribbon shift - White

116 n f N 35 Ribbon shift - Black

317 G 0 0 240 Space

303

DURA MACH CHEMICAL TYPEWRITER CODES

OCT. UPPER LOWER OCT. UPPER LOWER OCT. SPECIAL
CODE CASE CASE CODE CASE CASE CODE CHARS.

000 Stop
134 A a 177 / ¶ 002 Carriage

140 B b return
166 2

154 C 004 Space
176 /3

155 D d 010 Upper
S171 U1 4 Case

145 E 165 0 020 Lower

116 F f Case
164 I

117 G 1 040 Backspace

001 Tab

111 200 Delete

161 1 003 Nonprint107 J J161 0

144 K k 006 Print
L 114 restore

151 L 1 126 / . 050 Skip
res tore

137 M rn(

016 Punch on
146 I100\+

1131 0 012 Punch off

014 Index105 P P12 o-

030 Reverse

104 Q 125 > Index

135 R r 106

1121 S

147 T t

r 156 U u

136 V v

120 W w

157 X x

101 Y y

167 z

304

CHEMICAL LINE PRINTER CODES

OCTAL CHARACTER CHARACTER OCTAL CHARACTER CHARACTER
CODE (Upper (Lower CODE (Upper (Lower

Case) Case) Case) Case)

00 / 40 SPACE SPACE

01 A a 41 6

02 B b 42

03 C c 43 #

04 D d 44 $

05 E e 45

06 F f 46 &

07 G g 47
10 H h50 /

11 I 1)

12 j 52 ,

13 K k 53 +

14 L 1 54

15 M m 55 1
16 N n 56

17 O o 57 / w

20 P p 60 o 0

21 Q q 61 1 1

22 R r 62 2 2

23 S s 63 3 3

24 T t 64

25 U u 65 6 5
26 v v 66 6 6

27 W w 67 7 7
30 x x 70 8 8

31 y y 71 9

32 z z 72

33 6[73

34 of 74 <

35I] 75 0
36 III 76 >

37 y. 77 ?

305

I

CONTROL CODES

OCTAI DEFINITION

15 Shift to upper case
17 File mar:.
35 Shift to upper case for one character
36 Function code: means . Control Code follows
55 Shift to lower case
72 End of line
75 Shift to lower case for one character

Notes:
1. A function code must precede every control code.
2. The function code defines the next character as a control code

except where the function code is follmed by an end of line, then the
second character is also a control code.

3636 means print fl or } depending on shift.

LINE SPACE CONTROLS

20 Space 0 lines at six lines per inch
21 Space 1 line at six lines per inch
22 Space 2 lines at six lines per inch
23 Space 3 lines at six lines per inch
24 Space 4 lines at six lines per inch
25 Space 5 lines at six lines per inch
26 Space 6 lines at six lines per inch
27 Space 7 lines at six lines per inch
40 Skip to channel 0 (6 lines per inch)
41 Skip to channel 1 (6 lines per inch)
42 Skip to channel 2 (6 lines per inch)
43 Skip to channel 3 (6 lines per inch)
44 Skip to channel 4 (6 lines per inch)
45 Skip to channel 5 (6 lines per inch)
46 Skip to channel 6 (6 lines per inch)
47 Skip to channel 7 (6 lines per inch)
60 Space 0 lines at twelve lines per inch
61 Space 1 line at twelve lines per inch
62 Space 2 lines at twelve lines per inch
63 Space 3 lines at twelve lines per inch
64 Space 4 lines at twelve lines per inch
65 Space 5 lines at twelve lines per inch
66 Space 6 lines at twelve lines per inch
67 Space 7 lines at twelve lines per inch

306

U

DOCUMENT CONTROL DATA - R & D

L. ORIGIN.ATING ACTIVITY "o'Cofpoall. aandat Ia". b E PORT SECU ITY cLAS .ICATIO)
'UNIVERSITY OF PENNSYLVANIA UNCLASSIFIED

Philadelphia, Pennsylvania 19104 1"12 ,GOUP

, N REPORT TITL OI
NA

COMPUTER PROGRAMMING FOR AN EXPERIMENTAL CHEMICAL INFORMATION AND DATA SYSTEM

A4. DESCRIPTISVE NOTE$ (T*P@A ad ? o 1 And dnatrO. udd)

Status Report, CIDS No. 5 - January 1967-Januare 1968I. ,AUTHOR15) (Fitat racte ss * idiff ,,IIII, Saa= ae)

Lefkovitz, David, Powers, Ruth V., and Hill, Helen N.

6. RE POR T DAT E 7a*. TOTAL ?40. O F PA GES wmml[. ;O. 01"6144's
June 1968 o 312 n A T

G ONT.RACT OR GANT .. PONIQSN& MILITART NrMeIalS)
DA-18m035-AMC-288 (A)| CIDS-5/STATUS REPORT

PnOitc r No.

Army chmia andE infor1atio Tehnca Support D uirectorat"ew Edeawoosd

daTask: 2P062101A72702 ' Maryan 21010

IS. ASTRAIIT iS rTATEMpcNT This document is subject to special export controls and each
transmittal to a foreign national or a foreign government may be mAde only with
mior agptoval pf the romthCan SrgOistry sygem. T den tatin o SMUEA-TSTI-T,

agewooa rsenalt Mary na. -RfOfieEdeod reu TN
ft 'IW'N rAA Y* OT K ta,-*tNS,•RINGMiI.,.ARY ACTVITYV Edgewood Arsenal --

Army chemical and information al Technical Support Directorate, Edgewood
data systems a Arsenal, Maryland 21010 dcpo ft

|(Stanley Goldberg, ProJ. 0., Ext 6126)

tol ssThis report contains computer program documentation of a chemical struc-
ture information storage and retrieval system, The primary data source of this -
system is a drawn structural formula along with auxiliary data, such as a local
control number, molecular formula, and nomenclature. The system can also accept
magnetic tape input from the CAS registry system. The documentation of the programstm
is both functional and operational and flow charting is limited to nmcrof low charts.
The documentation is presented at three levels: First, a general description of the

total system is giver.; then a general description is given of each major subsystem; [

and finally a detailed functional and operational description format is given for
each program in the subsystem.

Few D , * FPO"¢ O 1'• E sI JAN 66. WHICH to

311 - ty Ieseicition

I~ MI

4.U LINK A LINK 8 LINK CKFV WORDS - --

ROLE WT ROLE W T R0L 9 W T

Atom-by-atom search
Batched search system
Chemical compounds
Chemical information
Chemical structure
Chemical typewriters
Chemical verification
CHEMTYPE system
Computer
Computer programs
Connection table generation
Connection tables
Consoles
Data processing
File construction
File organization
Flow charts
List search implementation
List-structured file
Molecular formulas
Nomenclature
Nonstructural information
Queries
Query format
Real time retrieval
Registration of chemical compounds
Retrieval
Search techniques
Software
Structural diagrams
Structural formula image
Structural input
Structural output
Structural screens
Substructure search
System configuration

a

31- 1INIMe/SITED
312 Security Classoeltlmilon

