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U.S. ARMY CHEMICAL CORPS
FORT DETRICK, FREDERICK, MARYIAND

Dimensionless magritudes in the marginal areas of aerodynamics.

by Theodore von Karman.

Translated from: Z. f. Flugwiss., 4: 3-5 (1956).

Summary: 'This paper contains a list of characteristic parameters'
occurring in specific domains of the science of aerodynamics.. Special
emphasis is laid on the dimensionless parameters of aerothermochemistry,
since this domain becomes of increasing interest also to aeronautical
engineers.

Modern aerodynamics has, in the past decades, extended its domain
in an astounding manner. Certain areas heretofore exclusively investi-
gated by physicists and chemists, are now treated by the aerodynamicist.
It would seem interesting, for this reason, to assemble the most important
dimensionless parameters occurring in these areas.

Classic aerodynamics considered the air as a nearly incompressible
fluid. Accordingly, Reynolds' number was the most important parameter of
similarity. Written in the form Re = u L Q//4 (o = velocity, L = a
characteristic length of the arrangement, _ a density, a,= viscosity
coefficient), this parameter expresses the Tatio of inert to viscous
forces. The nomenclature dates back to 1904 and Arnold Sonmerfeld (1).
I pointed out in 1923 (2) that Reynolds' number may be interpreted as the
product of two relations, v /a - M (a = speed of sound or molecules) and
L/1 - Sm (1 = mean length of free path). The Mach number M., the designa-
tion of which originated with J. Ackeret, has meanwhile attained enormous
popularity. The relation L/1 should be named after M. Smoluchowski who
studied the transitional area between continuous fluid motion and molecular
flow.

As the aerodynamics of compressible fluids saw further dovelopment,
especially supersonic aerodynamics, it was natural that Reynolds' number
and the Mach number were utilized as the most important parameters of
similarity. The marginal area of molecular flow gained in importance
when studies were commenced of the motion of bodies in very thin media,
e.g. in the air at very high altitudes. Zahm, in the United States, has
called this area "superaerodynamics." As H.S. Tsien has shown, the
parameter indicating the occurrence of molecular flow, e.g. at the body's
walls, is not the relation L/A, but 6 /, where the length 6 corresponds
to the order of magnitude of the marginal layer's thickness. It is easily



shown that this relation is proportional to the magnitude MVAeIM. The
air acts like a continuous fluid as long-as j-R/M ýI; molecular flow
occurs when Y-I-/M R 1. The square of this characteristic magnitude,
Re/M 2 , may be interpreted as the relation between the time L/A in which
the fluid passes a body with length L, and the mean time interval 1/a
bet. ;en the collision of one molecule with others.

The piheio:akena of dtomizea fluids have attracted the attention of
nuwerous aerodynamicists; the importance of these manifestations for
combustion processes and other technical applications of fluid mechanics
.i evident. Two diimensionless magnitudes can be listed here: Q uaL/S
and AI./S (S = specific surface tension of the fluid to be atomized).
These magnitudes express the relation between inert or viscous forces
and surface tension. The first is called Weber's number, cf. (3). It
seets to me that F,. Scheubel was the first to utilize the two magnitudes
in connection with the problem of atomization in his doctoral disserta-
tion at Aachen. The relation of the two magnitudes is identical with
Reynolds' nunmber.

The study of thermal transition -- especially in the sense of
Iteynoldcs' analogy between friction and thermal transition -- suggests the
introduction of the relation of transport coefficients, e.g. for the
transport of movement and thermal energy. The magnitude Pr =,M- Pce/
( Cp = specific heat, = thermal conductivity coefficient) is
generally known as Prandtl's number.

When the viscosity constant in Reynolds' number is replaced by the
thermal conductivity coefficient, Peclet's number Pe = u L Op Q / u is
obtained. Sometimes Nusselt's and Stanton's numbers are spoken of; these,
however, are special forms of the thermal transition coefficient and do
not belnng to the group of dimensionless magnitudes proper.

Many problems involve a third transport coefficient, namely the co-
efficient of mass transport or diffusion. We shall limit ourselves to
diffusion that occurs in a gaseous mixture due to the presence of a
concentration gradient of the components. For example, let us take a
mixture with two components, a socalled binary mixture. The binary
diffusion coefficient D1 2 has the same dimension as the kinematic viscosity

,"-/P_ and the magnitude ?'/Cp Q . The relations ýz/p D12 and
iL/a Cp D12 can therefore be introduced as characteristic dimensionless

parameters. The first magnitude is often referred to as Schmidt's number.
It seems, however, that the scholars do not agree on the nomenclature.
For e.xanple, F. Schultz-Grunow designated Q c- Dl j- as Schmidt's
number. The quotient of the diffusion coefficient and temperature con-
dictivity is cited as Lewis' number after Bernard Lewis. Lewis arxi
Semenow apparently recognized the significance of this magnitude for the
flarme theory in independent studies.
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We shall now discuss a marginal area of aerodynamics that has ex-
perienced a mighty advwnce in the past two decades and which I should
like to call aerothermi..zkemistry. Go. A. Crocco has suggested 1the term
aerotherynodynamics fo,' the field combining aerodynamics and thermal
chemistry. Aerothernmochemistr-y is to elaborate on aerothermodynamics
in the sense that chemical changes (reactions) occur in the flowing
medium. Chenmical changes may occur in an originally homogeneous gas
flow. In the case of hypersonic flows (at very high Mach numbers),
temperatures often occur that cause dissociation of the gas. When w,
observe sach a flow, we obviously must consider dissociation and re-
combination of atoms. The science of comustion in flowing gas and the
science of detonation also belong to aerothermochemistry.

Various authors who studied the laws of similarity pertaining to
combustion, nave suggested dimensionless combinations of characteristic
magnitudes of combustive manifestations (4). First of all I want to
mention G. Damkoehler (5), who in 1936 listed a number of similarity
groups. S. Penner has recently held two of Damkoehler's parameters to
be particularly u.eful in a study presented at the congress on model
regulation in Venice.

One parametei- represents the product of the time element L/v and
the reaction frequency U. If we introduce the reciprocal value of the
reaction frequency as reaction time 1/U, LU/, equals the relation of the
time element L/v to the reaction time. This magnitude really seems to
be useful and clear for the unxerstanding of practical problems. If, for
example, L is the length of a combustion chamber, possibly the cylinder
of a rocket with liquid propellant, and I equals the mean veloc.ty at
which the vaporized fuel passes through the chamber, then L/4) is pro-
portional to the socalled "residence time," i.e. the time spent by the
fuel in the chamber. It is obvious that the completeness of combustion
depends on this relation.

ThL' second magnitude of Damkoehler which according to Penners
deserves general attention, contains the heat tone q connected with the
reaction. It is defined as the difference between the formation
enthalpie: of the components present in the mixture before and after the
reaction, measured at a cvitain temperature. Damhoehler lists the
dimensionless naiitude qLUi/ucpj0I as an essential parameter of
similarity. If we consider a combustion apparatus whose linear measure-
ments are desigriated byl tho• length L, the heat introduced through
combustion during th; tt2aie period will be proportional to vo L ] U ,
whereas the amount of heat introduced with the gas by convection during
the time period will be proportiornl to Q0o L2'ICpo- , where 'U is a
characteristic velocity, Cpo the specific heat, 7"0 the temperabure
and £0 the deiosity of the introduced mixture.
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u uýf i.-mucoehlier's r y obviously be considered as a
• . t:J;C fact~urs, of which we have already discussed the first,

. hc: sccond, q/CpOTO , has the simple meaning that it
rýp:..ýns the relation of heat tone (reaction enthalpy) to the thermal
enta.-Ipy JX, :n Wich both magnitudes are applied to the mass of the

Thci most important parameter that occurs in combustion or detonation
:.1;•',r.., in my opinion, is the relation of the time scales that identify
t oe r..t'e4v ,.:naniic•al-thermodynramic processes a5 viscosity, diffusion,
hI v ,x!c•ictivity -- on one hand, and the chemical processes on the other.
The mean time interval between the collision of molecules in a gas or a
gas mixture is proportional to the magitude 1/a (l = mean length of path,
a = iolecular velocity). We can also write this magnitude as n/h or
ý-ap p . The time per.~od characteristic for the chemical reaction is
conversely proportional to the rate of reaction. The rate of reaction is
generally defined as the number of moles converted in a given time and
volume by chemists who are not afraid of complicated dimensional combina-
tions. If we call the rate of reaction.r, the "reaction time" becomes
proportional to Q/OflY , where e is the density andOUK-L a mean
molecular weight. The xignitude / is obviously the mean number
of moles in the volume unit. We now introduce the relation

a tmech/tchem ?- C. vV/c

(tmech v• J/•P' th , e/zo r ) as a charau:eristic dimensionless
parameter. For slow, i.e. non-explosive reactions, a 4e 1. We shall now
consider a combustive process 'with stationary propagation, accomplished
best by observing the flow relative to the propagating wave. This uni-
dimensional, stationary flow and the mechanical, thermal and chemical
processes connected therewith are governed by the preservation of themeterial, the element of movement, and energy. The velocity of wave
propagation equals the rate 00 at which the unexpended mixture is supplied,
ani /) 0 is desigrated as the 16-ch cocfficient Mo of the flow.

Now, if the condition a <- 1 is observed in the basic equations of
aerotherm-.chermiistry, i.e. in the continuity equations of the reaction

.art-r.ers, in the diffusion equationb a-id in the equations for the
,. nnCeC the elenents of movement and energp, the following state-
mrnt .3 result:

i. .f buth - i r I *±nd a/My2 (< 1, first approximations may disregard
... ,.• -. tnnt s o rti:~g "e coefficients of viscosity, diffusion and
hat conductivity i;n favor of those determining changes in density,
i ~ture, vdlouity and pressure according to the laws of the thermo-

o- P!:a e Such a process, in which a << ., 0 1, is
•:i~& !'d ~..-d."'.• The characteristic sign of tle process is a
s::.,J< irv:, pr•"-.ing *,ee C)mLustion zone. The heating cf the mixture

,-.b•::.. •.d, rwing to the dif.erent orders of magnitude in the
tir• i nm: .rva!.< (tpnh <Z tchem), combustion nay be ignored during the
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2. If a4l, but a/Mo2  .1, the forces of viscosity and dissipation
corresponding to the viscosity, may still be ditsregarded. The equation
for the maintenance of moveent yIelds approximately the condition of
constant pressure due to Mo 'o 1. In equations of continuity, on the
other hand, diffusion plays a dtecisive role, as does heat conductivity
in the energy equation. Such a process is called a deflagration wave
or a slow combustion wave.

The propagation rate of a slow combustion wave resulting from the
above equations - without regard for a possible turbulence and the
heightened diffusional and heat conductive processes connected therewith -
is known as the laminar flame velocity. The theory of laminar flame
velocity was initially developed in the form of a purely "thermal theory"
without recourse to difflsion. In this case it is shown that the
parameter a/Mo2 offers a very useful service by yielding a dimensionless
relation between the flame velocity and the characteri~tic values of the
process. (The discussion of the quantities a and a/Mo0 was first given
in 1953 as part of n7 lectures at the Sorbonne and reproduced in my paper
(6). The magiitude a/Mo is essentially identical Aith one of Schultz-
Grunow's similarity groups).

The determination of flame velocity is an eigenvalue problem. The
quantity of mass flow in the time period must be determined by a standard
cross section that permits the satisfaction of marginal conditions before
and after the combustive process. The mass flow is a constant throughout
the entire flame zone, so that

is valid for any arbitrary point.

Now the rngniltude

represents a dimensionless combination of (a V and I Tim r/cP
It follows that -- ceteris paribus -- the mass flow Rj) becomes pro-
portional to A..ztel/C

The significance of this assertion is this: The eigenvalue of mass
flow becomes the product of magnitude V/ 1,t/Cp (taken for a
certain temperature, e.g. temperature Tf corresponding to the ultimate
condition) and certain functions of the temperature and the concentra-
tional conditions. These functions depend on the changes in quantities

S, • , r and wp with the temperature and the concentrations.
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In any case, the well-known rule for the pressure--dependability of
the flame velocity may be derived therefrom. We consider a simple
reaction in which each of the "partners" occurs with a molecular
number 01 , I' , V3  , ..... (I have borrowed the amusing expression
"reaction partner" from a paper by 0. Lutz that appeared in this
publication, 3 (1955), p. 151-159.) It is then generally assumed that
the rate of reaction may be split up into a constant K, a temperature
function F(T) and a product flq-0;

C; represents concentrations, i.e. moles per unit of volume.
d therefore write K.= (T)VC; .

I

The sum n = 2 V,- indicates the order of reaction.

IU we introduce the dimensionless molar relations ; = CZ
where Cr = R/T indicates the number of moles in the unit of
volume, we ge h

1 1022'eo K F T Y ,Cp"

Since P0 is proportional to the pressure, we get the result that -
again ceteris paribus -- the flame velocity is proportional to the
[(n/2)-l] th power of the pressure.

It must be pointed out that, if diffusion is being considered,
Lewis' number, i.e. the relation between the diffusion coefficient and
the value of heat conductivity, exerts a decisive influence on flame
velocity. Moreover, the simple laws indicated here are not valid without
additiorial interpretation for simultaneous reactions, especially chain
reactions.

Finally, I thruld like to mention a few additional areas that
scggezt the 'ntir'du-tion of further dimensionless magnitudes. Aero-
dynanu c problems dealing with the gravitational field profit by the
:ntro.iuction of Froudels number which is well-known in hydraulics and
the theory of gravitational waves. Problems of natural convection
utilize Grashof's number which actually represents a combination of
Froude's and Reynolds' number, where the gravity acceleration is re-
placed by the relative gravitational difference of heated air. If
Froude's number is written in the form F -- u2/Lg, Grashof's number is
Or = Re2 0/)/F ( P 9 expansion coefficient of the fluid, @ - tempera-
ture elevation).

A theoroughly modern branch of aerodynamics is the cosmic variety of
our 3sience, often called mngnetohydrodynamics and concerned with the
flcw, of thir.: electrically charged meadia (7). In equations that, for
eyanmple, describe socalled Alfven's waves, the reciprocal value of
eL-ect.r17d cnduactivity plays the role of viscosity inhibitor in the
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In any case, the well-known rule for the pressure-dependability of
the flame velocity may be derived therefrom. We consider a simple
reaction in which each of the "partners" occurs with a molecular
number *0 1 ' j, ,V3 Y..... (I have borrowed the amusing expression
"reaction partner" from a paper by 0. Lutz that appeared in this
publication, 3 (1955), p. 151-159.) It is then generally ,assumed that
the rate of reaction zwy be split up into a constant K, a temIperature
fuinction F(T) and a product TTc.i

C; represents concentrations, i.e. moles per unit of volume.
4-9 therefore write

The sum n - indicates the order of reaction.

I we introduce the dimensionless molar relations • -
here C p/RT indicates the number of moles in the unit of

volume, we get
2 2 2 2. ~71 rv

Since PO is proportional to the pressure, we get the result that -
again ceteris paribus -- the flame velocity is proportional to the
[(n/2)-1) th power of the pressure.

It must be pointed out that, if diffusion is being considered,
Lewis' number, i.e. the relation between the diffusion coefficient and
the value of heat conductivity, exerts a decisive influence on flame
velocity. Moreover, the simple laws indicated here are not valid without
addito-ial interpretation for simultaneous reactions, especially chain
reactions.

Finafly, I ho&uld like to mention a few additional areas that
.aggeot the -,ntroduztion of further dimensionless magnitudes. Aero-
dyrnamtic problems dealing with the gravitational field profit by the
introduction of Froude's number which is well-known in hydraulics and
the thec.'y of gravitational waves. Problems of natural convection
utilize Grashof's number which actually represents a combination of
Froude's and Reynolds' number, where the gravity acceleration is re-
placed by the relative gravitational difference of heated air. If
Froude's number is written in the form F ,. j/Lg, Grashof's number is
Or = Re2 r/P.( /3 r: expansion coefficient of the fluid, e - tempera-
ture elevation).

A thoroughly modern branch of aerodynmincs is the cosmic variety of
our s1ience, often called magnetohydrodynamics and concerned with the
flow of thinr. electrically charged media (7). In equations that, for
example, describe socalled tlfven's waves, the reciprocal value of
electrirul conduc÷tivity plays the role of viscosity inhibitor in the

6



sense that the waves would propagate uninhibitedly in the case of
infinite conductivity. Indeed, the magnitude c2 /d (c - speed of light,

- conductivity) has the same dimension as the kinematic viscosityiA/e
Hence a parameter may be introduced with a magnitude analogous to
Reynolds' number: Ba =Lo'/& . This magnitude ought to enter the
literature as Batchelor's number.
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