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Dimensionless ma.gnitudes in the marginal areas of aesrodynamics.

by Theodore von Karman.

Transla.teid from: 2. f. Flugwiss., 4: 3-5 (1956).

-

Summary: \This paper contains a list of characteristic parameters’
occurring in specific domains of the science of aerodynamics.. Special
emphasis is laid on the dimensionless parameters of aerothermochemistry,
.since this domain becomes of increasing interest also to aeronautical

engineers., .
> —fe

Modern aerodynamics has, in the past decades, extended its domain
in an astounding manner. Certain areas heretofore exclusively investi-
gated by physicists and chemists, are now treated by the aerodynamicist.
It would seem interesting, for this reason, to assemble the most important
dimensionless paramneters occurring in these areas.

Classic aerodymamics considered the air as a nearly incompressible

fluid. Accordingly, Reynolds' number was the most important parameter of
similarity. Written in the form Re = 4 Lgo/# (m = velocity, L= a
characteristic length of the arrangement, @ = density, a = viscosity
coefficient), this parameter expresses the Tutio of inert to viscous
forces. The nomenclature dates back to 1904 and Amold Sommerfeld (1).
I pointed out in 1923 (2) that Reynolds' number may be interpreted as the
product of two relations, v/a = M (a = speed of sound or molecules) and
L/1 = Sm (1 = mean length of free path). The Mach number M, the designa-
tion of which originated with J. Ackeret, has meanwhile attained enormous
popularity. The relation L/l should be named after M. Smoluchowski .who

studied the transitional area between continuous fluid motion and molecular
flow. -

As the aerodynamics of compressible fluids saw further dcvelopment,
especially supersonic aerodynamics, it was natural that Reynolds' number
and the Mach number were utilized as the most important parameters of
similarity. The marginal area of molecular flow gained in importance
when studies were commenced of the motion of bodies in very thin media,
e.g. in the air at very* high altitudes. Zahm, in the United States, has
called this area "superaerodyramics." As H.S. Tsien has shown, the
parameter indicating the occurrence of molecular flow, e.g. at the body's
walls, is not the relation L/1l, but § /1, where the length J corresponds
. to the order of magnitude of the marginal layer's thickness. It is easily



shown that this relation is proportional to the magnitude “V Re/M. The
alr acts like a_continuous fluid as long -as: YRe/M »1; molecular flow
occurs when VRe/M =1, The square of this characteristic magnitude,
‘Re/M2, muy be interpreted as the relation between the time L/ in which
the fluic passes a body with length L, and the mean time interval 1/a
bet. :en the collision of one molecule with others.

The phecomena of atomized fluids have attracted the attention of
numerous aerodynamicists; the importance of these manifestations for
combustion processes and other technical applications of fluid mechanics
15 evident. Two dimensionless magnitudes can be listed here: a®V*L/S
and - .. v/5 (S = specific surface tension of the fluid to be atomized).
These magnitudes express the relation between inert or viscous forces
and surface tension. The first is called Weber's number, cf. (3). It
seems to me that F. Scheubel was the first to utilize the two magnitudes
in connection with the problem of atomization in his doctoral disserta-
tion at Aachen. The relation of the two magnitudes is identical with =
Reynolds' number. |

The study of thermal transition -- especially in the sense of
leynolds' analogy between friction and thermal transition -- suggests the
introduction of the relation of transport coefficients, e.g. for the '
trancport of movement and thermal energy. The magnitude Pr = s-Cp ,/ A
( ¢p = specific heat, A = thermal conductivity coefficient) is
generally known as Prandtl's number.

When the viscosity constant in Reynolds' number is replaced by the
thermal conductivity coefficient, Peclet's number Pe =w Ll cpo /A is
obtained. Sometimes Nusselt's and Stanton's numbers are spoken of; these,
however, are special forms of the thermal transition coefficient and do
not belong to the group of dimensionless magnitudes proper.

Many problems involve a third transport coefficient, namely the co-
efficient of mass trunsport or diffusion. We shall limit ourselves to
diffusion that occurs in a gaseous mixture due to the presence of a
concentration gradient of the components. For example, let us take a
mixture with two components, a socalled binary mixture. The binary
diffusion coefficient Dj» has the same dimension as the kinematic viscosity
- s /g and the magnitude N/Cp € . The relations /-L/Q D12 and

L/Q Cp D12 can therefore be introduced as characteristic dimensionless
parameters. The first mgnitude is often referred to as Schmidt's number.
It seems, however, that the scholars do not agree on the nomenclature.

Fer example, F. Schultz-Grunow designated @ Cp Dig /A  as Schmidt's
nunber. The quotient of the diffusion coefficient and temperature con-
ductivity is cited as Lewis' number after Bernard lewis. Lewis ard
Semenow upparently recognized the significance of this magnitude for the
flare theory in independent studies.



) We shall now discuss a marginal area of aerodynamics that has ex~
p?menced a mighty advance in the past two decades and which I should
like to call aerotherm.chemistry. €., A. Crocco has suggested :the term
aerothermcdynamics for the field combining aerodynamics and thermal
chemistry. aerothernochemistry is to elaborate on aerothermodynamics
in the sense that chemical changes (reactions) occur in the flowing
medium. Chemical changes may occur in an originally homogeneous gas
flow. 1In the case of hypersonic flows (at very high Mach numbers),
temperatures often occur that cause dissociation of the gas. When we
observe such a flow, we obviously must consider dissociation and re-
combination of atoms. The science of comustion in flowing gas and the
science of detonation also belong to aerothermochemistry.

Various authors who studied the laws of similarity pertaining to
combustion, have suggested dimensionless combinations of characteristic
magnitudes of combustive manifestations (4). First of all I want to
mention G. Damkoehler (5), who in 1936 listed a number of similarity
groups. S. Penner has recently held two of Damkoehler's parameters to
be particularly useful in a study presented at the congress on model
regulation in Venice.

One parametei represents the product of the time element /v and
the reaction frequency U. If we introduce the reciprocal value of the
reaction frequency as reaction time 1/U, LU/v  equals the relation of the
time element L/v to the reaction time. This magnitude really seems to
be useful and clear for the understanding of practical problems. If, for
example, L is the length ‘of a combustion chamber, possibly the cylinder
of a rocket with liquid propellant, and V equals the mean velod.ty at
which the vaporized fuel passes through the chamber, then L/¥ is pro-
portional to the socalled "residence time," i.e. the time spent by the
fuel in the chamber. It is obvious that the completeness of combustion
depends on this relation.

The second magnitude of Damkoehler which according to Penners
deserves general attention, contains the heat tone q connected with the
reaction. It is defined as the difference between the formation
enthalpies of the components present in the mixture before and after the
reaction, measured at a ceitain temperature. Damkoehler lists the
dimensionless magnitude qLU/ucPo’l}) as 4an essential parameter of
similarity. If we consider a combustion apparatus whose linear measure-
ments are desigunated by the length L, the heat introduced through
combustion during the time period will be proportional to Qo =Su 9 ,
whereas the amount of heat introduced with the gas by convection during
the time period will be proportional to o l29¢pg Ty , where v is a
characteristic velocity, Cpyp the specific heat, To the temperauure
and @ 5 the density of the introduced mixture.
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el m,zif:u-\ig of Damkoehler's may obviously be considered as a ‘
L kentoal thc faciors, of wnich we have already discussed the first,
Lrie . Thr osecond, q/¢pgTp , has the simple meaning that it
rEpresznie ihe relation of heat tone (reaction enthalpy) to the thermal

eatnalpy, in which both magnitudes are applied to the mass of the
~ricinal mixture, <

The most important parameter that occurs in combustion or detonaticn
chenorena, in my opinion, is the relation of the time scales Ltat identify
the ourely mechanical-thermodynamic processes -— as viscosity, diffusion,
nesl conauetivity -~ on one hand, and the chemical processes on the other.
The mean time interval between the collision of molecules in a gas or a
gas mixture is proportional to the magnitude 1/a (1 = mean length of path,
a = wolecular velocity). We can also write this magnitude as /J—/P or
A-/cpp .« The time period characteristic for the chemical reaction is
conversely propcrtional to the rate of reaction. The rate of reaction is
generally defined as the number of moles converted in a given time and
volume by chemists who are not afraid of complicated dimensional combina-
tions.  If we call the rate of reaction.r, the "reaction time" btecomes
proportional to @ /0M,.v , where @ is the density and MM, a mean
moleculur welght.. The magnitude o /m‘l,,,, is obviously the mean number
of moles in the volume unit. We now introduce the relation

a = tpech/tchem ® r mm r/ecﬂla

(tmech'.\\,fl/cp ’ tchemwg/ﬂlmr ) as a characteristic dimensionless )
parameter. For slew, i.e. non-explosive reactions, a <& 1. We shall now
consider a combustive process with stationary propagation, accomplished

best by observing the flow relative to the propagating wave. This uni-
dimensional, stationary flow and the mechanical, thermal and chemical

processes connected therewith are govermed by the preservation of the

material, the element of movement, and energy. The velocity of wave
propagation equals the rate Vy at which the unexpended mixture is supplied,
and 1)0/40 is desigrated as thie Mach coeffiient ¥y of the flow.

Now, if the condition a €& 1 is observed in the basic equations of
aerothermechemistry, i.e. in the centinuity equations of the reaction
jartners, in the diffusion equations and in the equations for the
wxtnoenzace of the elements of movament and energy, the follcwing state-
ment 5 resuitbs

i. 3f btoth 5 &€ 1 and a,-’F.02(< 1, first approximtions nay disregard
tnozs zegment s o ptuining he coefficlents of viscesity, diffusion and
heat conductivity in favor of those determining changes in density,
temgervatare, velosity and pressure according to the laws of the thermo-
Avrzoacs of 1d24) pases. Such a process, in which a <& %, Mo,?, 1, is
ca2lixd o detonaiion wave., The characteristic sign of the process is a
ghock wave praceding the comustion 2one. The heating <f the mixture '
vzemite ecorbuetlon 2nd, cwing to the different orders of magnitude in the
tirme intervals (tpaen <@ btohem)s comtustion wmay be igrored during the

alack,




2, If akl, but a/}loz’aéﬁ 1, the forces of viscosity and dissipation
corresponding to the viscosity, may still be cCisregarded. The equation
for the maintenance of moveynt vields approximately the condition of
constant pressure due to M, ~+ In equations of continuity, on the
other hand, diffusion plays a cGecisive role, as does heat conductivity

in the energy equation. Such a process is called a deflagration wave
or a slow combustion wave,

The propagation rate of a slow combustion wave resulting from the
above equations —- without regard for a possible turbulence and the
heightened diffusional and heat conductive proceases connected therewith —-
is known as the laminar flame velocity. The theory of laminar flame
velocity was initially developed in the form of a purely "thermal theory"
without recourse to diffusion. In this case it is shown that the
parameter a/l*LJ2 offers a very useful service by yielding a dimensionless
relation between the flame velocity and the characterigtic values of the
process. (The discussion of the quantities a and a/Mo was first given
in 1953 as part of my legtures at the Sorbonne and reproduced in my paper
(6). The magnitude a/My< is essentially identical with one of Schultz-
Grunow's similarity groups).

The determination of flame velocity is an eigenvalue problem. The
quantity of mass flow in the time period must be determined by a standard
cross section that permits the satisfaction of marginal conditions before
and after the combustive process. The mass flow is a constant throughout
the entire flame zone, so that

is valid for any arbitrary point.

Now the magnitude

L lmmr a/l” 2‘_'__,’}.)1.'_“’.:.

Moz QCPP Y CPQJ-,D:.

‘ 2 , /
represents a dimensionless combination of (£ ”) and lmm r/<cp
It follows that —- ceteris paribus -- the mass flow RN becomes pro-
portional to )mef/cF .

The significance of this assertion is this: The eigenvalue of mass
flow becomes the product of magnitude '\/Z’,mmf 7CP (taken for a
certain temperature, e.g. temperature T¢ corresponding to the ultimate
condition) and certain functions of the temperature and the concentra-
tional conditions. .These functions depend on the changes in quantities

s Wy, r and (,P with the temperature and the concentrations.




In any case; the well-known rule for the pressure--dependability of
the flame velocity may be derived therefrom. We consider a simple
reaction in which each of the "partners" occurs with a molecular
number ¥, , V2. , V3 ,e.... (I have borrowed the amusing expression
"reaction partner" from a paper by 0. Lutz that appeared in this
* publication, 3 (1955), p. 151-159.) It is then generally assumed that

the rate of reaction may be split up into a constant K, a temperature
function F(T) and a product Te; i . ‘
1

€, represents concentrations, i.e. moles per unit of volume.

W Ltherefore write 3
r = KR(DTT¢; " .
]

The sum n = Z'V,' indi cates the order of reaction.

If we introduce the dimensionless molar relations %L} = C;/C'c

where Cy = P/ T indicates the number of moles in the unit of
volume, we get

P .V}
02 . 902 vozz lcflm KF(T) RTY 'I.T'X,D’ .

Since 245 is proportional to the pressure, we get the result that —
again ceteris paribus -- the flame velocity is proportional to the
L(n/z)-l_] th power of the pressure. '

It must be pointed out that, if diffusion is being considered,
Lewis! number, i.e. the relation between the diffusion coefficient and
the value of heat conductivity, exerts a decisive influence on flame
velocity. Moreover, the simple laws indicated here are not valid without
additional interpretation for simultaneous reactions, especially chain
reactions.

Finally, I sheunld like to mention a few additional areas that
saggast the introducstion of further dimensionless magnitudes. Aero-
dynamic problems dealing with the gravitational field profit by the
introduction of Froude's number which is well-known in hydraulics and
the thecry of gravitational waves. Problems of natural convection
utilize Grashof'!'s number which actually represents a combination of
Froude's and Reynolds' number, where the gravity acceleration is re-
placed by the relative gravitational difference of heated air. If
Froude’s number is written in the form F = 1%/Lg, Grashof's number is
Gr = Re2BH[F ( 3 = expansion coefficient of the fluid, ® = tempera-
ture elevation).

A thoroughly modern branch of aerodynam’cs is the cosmic variety of
our 3zience, often cailed magnetohydrodynamics and concerned with the
flow of thir, electrically charged media (7). In equations that, for
example, describe socalled alfven's waves, the reciprocal value of
elzctrical conductivity plays the role of viscosity inhibitor in the
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sense that the waves would propagate uninhibitedly in the case of
infinite conductivity. Indeed, the magnitude ¢2/6 (c = speed of light,
O = conductivity) has the same dimension as the kinematic viscosity/&/e .
Hence a parameter may be introduced with a magnitude ‘analogous to

Reynolds! number: Ba =‘ULO'/C . This magnitude ought to enter the
literature as Batchelor's number. '
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