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HRATIN3 AND COOLIMf OF SDIPLE GFXHETRIC BODIES

by Dr. Eng. Heinrich Groeber, Berlin-Wilmersdorf

Comimunication from the Heat Propagation Committee d3 the Association of
German Engineers. (This tssay will ah ortly be publishad in an expanded
"version as researoh report.)
Scit. Verein's Deutsch. ing-enieure 69(21): 705-11, 1925.

This article features graphs and curves on the heating and cooling
time of spherical bodies, cylinders, and plates so that these developments
can be easily traced. In looking at thesa results, we must keep in mind
that many tasks arising in furnace and heating technology, metal-working
and metal improvement can ba traced back to the heating and cooling of
these simple bodies. In some cases, the technical literature on the sub-
ject does not offer any data on the heat transfer 5ropagatio!7 numbers.
Here we can use the graphs in order to find the characteristic quantities
and, from this, the heat transfer number. i supplementary note mentions
a work by Williamson and L. H. ,%dars.

The technical theory of heat transfer has in the past been concerned
mostly with heat transfer [onductio~n processes in the settled state, al-
though the processes of heating and cooling of solid bodies play a major
role everywhere in the bast area of technology.

.. t..ýaiat•ul physics has been exploring these processes for the
simplest bodies quite accurately for a long time but the results do not
show up in the technical literature on the subject. The reason for this
is to be fcund in the unwieldiness and confusion of the final formulas,
irost of which contair. Fourier or other similar endless series. But the
practical operator in most instances does not have the necessary background,
nor does he have the time; he cannot calmlate and compute for days on end,
just to get a single numerical value.

This being the situation, it might be a good idea to have one man
tackle the computing and caloulation job and to work out several important
problems for the most frequently encountered numerical ranges. This would
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then give the general pub!oic and the specific user an easily handled body
of numerical data. The management group of the Committee of Technical and
Economic Experts of the Reich Coal Council for Fuel Consumption and of the
Scientific Advisory Council of t.he Association of German Engineers immediately
approved a suggestion along these lines and together prevailed upon their
boards to make the necessary funds available. Ma4thematics research stu-
dent Heinz Winterfeldt then made all of the computations 9n which I would
like to report below.

Cooling the Sphera

A sphe1 • with a radius of R, which was first heated in its entire
mass to a temperature of tloC, is suddenly placed in the vicinity of lower
temperature t 2 °C. 'he sphere will then give off its warmth to the surround-
ing area; the outer layers will cool off quickly and strongly while the
inner layers will follow slowly until, at the end - theoretically after
an infinite period of time - the entire sphere has been cooled to t 2 °C.

This entire process is so very simple that anyone without the slightest
physics background can understand it' this is why we might be inclined to
think that it should not be too difficult to follow the whole process
=thematically. The follz-ing paýes will show thoat this is not the case.

When we say that we want to follow the process mathematically, we
mean that we want the mathematical answer to the following three questions:

1. What is the time nurve of the surface temperature?

2. What is the time curve of the temperature at the center?

3. What is the time curve for the heat loss?

We can simplify tne way we write all of these equations from the very
outset by figuring the tamperature not in degrees Centigrade or in degrees
of absolute division but rather by setting the environmental temperature
at zero. All temperatures of the sphere are then considered to be over-
temperatur��, an-d can be da igrs.ed" w-_ e ... *, (Whon we heat a cold sphere
in a hot environment, we automatically get g values with a negative sign.)

Similarly, we are nit going to figure with the heat content of the
sphere but rather only -its' the heat surplus above the environmental tempera-
ture.

Let us use the following symbols here:

R the radius of the sphere .......... ................. in m,

t the time..............se........... ................ 0.. $- hrb ,

I
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eo the initial temperature of the sphere ) in degrees of the 100-
0. the surface temperature of the sphere ) part scale, measured as
e temperature in the center of the sphere ) overtemperatures,

(14U)0 thermal conductivity of the sphere in kcal at time 0,

thermal conductivity of sphere material in kcal

density of sphere material .,

.c specific heat of sphere material in kcal
'Tilt.

temperature conductivity--k of sphere material in E'
kcal

( heat transfer nurber in --

h relative heat transfer number in

The computation for the time curve of the surface temperature then
give us the expression (*)

Ut

4- "kn - a, coon, tOk

k=1 k (1,a)

(*) Derivation of this and subsequent formulas: e.g., Groeber, Die Grund-

gesetze der V'aerneleitunr und d es 14aermeueberganges (The Basic Laws
of Thermal Conductivity and Heat Transfer), 1921, pages 44, 51 and 54,
Julius Springer Publishers.

Here o o course O would be the system of the infiniteLl large

nilinber of oot~s of the transcendental equation

r co@W = (1 -- R) sinv

There is only one thing we can easily tell from this equation: the
value r is nronortiona2 to the value • • 4Y rn hr the+ 4re e .... -h c

is a rather confused function of the four independent variables t, R, a,
and h. Anyone can plainly see that the mathematical evaluation of this
equation is a rather timeconsuming process and that, no matter how good
our mathematical training, it is impossible to get the course /curvei of
the function from the fornula. Besides, because of the large number of
independent variables it is impossible to diow the numerical values of the
function in a single numerical table or on a single sheet of curves or
graphs. In short, the result of the mathematial compution in the form of
equation (la) has all of the properties that make it unsuitable for further
practical use.

Now, there is one way coat: we can say that • is the only

variable & single, unique vr.;'iabl27; and at the saam time we would of
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course note that the4 values, for their part, depend only of the single
variable hR. In this way we can conceive of the infinite'series as a
function with only two variables and equation (la) will then look like
this:

The values a a

we now call the characteristic quantitiou; these are alwayd pure ntmerical
values, i.e., magnitudes without dimension. The possibility if grouping
the four variables into groups of charmcteristic quantities can be ex-
plained with the help of the principle of similarity jBimilitude7 or the
theory of dimensions.

The numerical evaluation of the function o in equation (lb), with
its two variables, still requires a rather big "(omputation effort; but
once we have done this job, we can bring out the results in a single numeri-
cal table or in a single graph.

In a similar manner we can also convert t2,e equation for the tempera-

ture of the center. Here we have: -

e,-e. * .. (2a)
^ • la t R

latUR.AR.............(2b)

rNumerical Table 1
Surface Temperature of Sphere When

ti I - - -

0.=11: 00=0.*)0 101 AR).

J ' 0,01 1M - 1I,00 00 0 ,94 0,8.0,64 0,88 0,22 0.10 0,00)

0,6 110 00 0,9 0,9 0,620700, 26 00--------

-,5 - 1.000.99 O.8M2a0-0 M ----- -
,'10 l 97,0,7,•l0.,2--- -0,0 -----l- -}M 09 09 12 ,0 '



N•,.-rical Table 2
Temperature in Center of Sphure '1hen

Q h .~ QO;~0I0011 011 0 110.1 W M I 4 10 1 20i W

- - - - - 1- 1,0,• 100 h M
0,06 - 1,00 1,00 1,00 0,99 0,98 0,9W 0.7 0,97

.. , ,1 O l- ) 0099 (,9 7 11,95 U.7 0,80 470 (.73 0,710,26 1.00 ,09 0,97 M, 1 0,69 9BO 0,-26 0,22 0.19 o,17
0,6- 1.00 0.90 189 W58 0.87 O0* 0,8w2 t0,2 0oAo
1 . 10 - l0.97 0.77 o0,% 0.11 O ON "UUO

2,6 O 110 ,99 1 OMG,!~4,,j0
1 00 0939,0o X0,24 %, ,

1010 1,00 0,98 0.7oG - -- 0.0_

SIN0I0.9410,.iq OROo__

Numerical Table 3
Heat Loss of Sphere When e.=-.

( 0... .. • ( oV (1 ., hR) .

h. A = io1OWI1 ~OM d~I IMI1 .1 ý0A 1..1. [ 4 10 12
-- t - 0,00-0,0-2 0,03 o .OD Oi oj 0,22 0.27 0,31

0,06 - - 0,00 0.020,0F7 0,12 0.32 ,"4610.53 0,57 0,61
0 ' "0,03 0,1o ,2-30,51066071 0.75 0.77

0,5 0.000.0M 0,07 0,213 0,47 0 )0,90 .o 11.92 0,94 0.9b

•' Surface Tenlorature of Cylinder Whehn

jo•ooijo[oo ° ooo[0A ]0,.4C 11,49 0,U 0,190.9 0'.99 OD

10,00 - 0 ,00 i0,99 0,90 70,7 1 107 0,021 0,74 , 0,00 !
2,0 - OO 0,0.8 ,6 9 0 ,97 0, D

• o2.6 - O,9oo o,-,~o7lta ., - I-. .o~
6t 0,000, 10.0 0.01 0,-

2,6 IOMj~J WOJOO] - -

25,0 1
, 0,01 0, 10,05.1.0...........50116 - 100 0- 0.6 0_ 0 )

-5-1110 1,0 018 0ý6 1
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thmerical Table 5
Tomporature of Axis of Cylinder When

91 1Ox.0it . 0I'I0G 0 ,5 1~ 1.0 1 4.0 10 20 1

II I
(10 -- - -- 1A)I 1,00 0,99,0,99 O., m)I 'J

0,10 - - - N 4,P; ,99 0,97 0,94 41,94)0OA9 (1,67 4K.,%
04~6 - - 1,M1 0.98 0449 (YRI 0.5 0,4130.43 A0,) la3,
VO14 - -- 0.22 493 0.72 0,66 O.24 W5601 0,10 0.i'lt)
1,4 - - 10,g98 036 OA,6 M 0040tI 0,01(W
256 - 1,0 4.6030,2 0,2 0.000,00 .4AM 00
&.0 1.000,W90,91 048 11.01 0.00 - --

M0O low0 N40,96 O'1U04 0.4) - -
%4 ,00 U^010,6001 ----------- -

Numerical Table 6

Heat Loss of Cylinder When

-*.0010: Q=~(WU) 0'' k" AlM I 0- 1'1 O . , 0 7
at•

-. 00,01001 0,02 0, 0,11 ,1 001816 08I:

0-0 - 0,0110,06~oo 0,21 0.32 0.3 81,14-1 P1.:, i
0.10 - - 0,021 0, 0 15 0.37 0,48 O.4 (M 'ku.
0.M %00 0.00 0,20 0,311 .8 0.62~ (676 0,79 OAl'

IM0 0,02 0,1O 0,69,0.79 0,96 0,9 1,00 1 .N , I
%5 - , 0,0 0 , 0 ,89 089 0.96 1,00 1
6,0 AoM 0•00i-0.•10,99I,0- -IN

10.0 0.00OMl0,1.,610 l --

00 OM@ 0... AR .26.0- o1oo 40902 -l -

Figure 1. Surface temperature of sphere when
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Figure 2. Temperature3 of ecntcr of sph 'tWi1fli

Mai 4f '4

Fi&u1r 3. Heat loqsO sphere Mie - : ,Q (

The third question wie -5ked above -- t~ie tine~ cairve for the heat 1oss

-- can bea answered with the following equation. The heat volurae, which the

sphere has given off until tinw t, is

Since &cis the overtemperature of t he sphere over Zabove7 the on-
vironmenet, we haive

RJ x c 7 . (W V)0

which is equal to the heat surplus of the sphere at time t 0.

In keeping with whAt we said earlier, we can now write:

Q (W I QVbhi( AR :7b
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Nurrirical tables 1, 2, and 3 aill tbho curves in figurtet 1, 2, and 3

illustrate the va.lues of the three aunctions for tho sphere. Here the
abscissa in tho illustrations is plott.ed on tho .ogaritlhuic scale eo tlh

the entire rwigo of variables h R frox 0.0001 tW 50 euwi be shown.

Coo ing1 theCylinder:

A very long cylixier with a radius of R• is now suddenly brought ,'rom
a high temporature to a low environnmental temperature. We want to cumpute
the time curve of the surface temperature , , tie temporature 8. in the
axis, and the heat loas for a section idth a length L of thiu cylindur.

Disrogarding the cooling of the terminal surfaces because of the
great length of the cylinder, we have a computation here which is entirely
simillar to that of tho sphere. The fact is that we iave the following:

P1, o,ýF) I ph)(4a)

where Ak represents the system of infinitely many roots of the tran.9condon-
tal equation ft Jl () h1"do (I) and J0 ati woll as Jl are two Bouail
functions.

4k)

£ Figure 1 Surface temperature of cyl-ir~er when

-- 8--
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Figure 5. Temperature of' axis of cylindier when

-- -~ - e.-1 Q=(WtI) 0 W 4B h)

Figure 6. Heat loss of' cylinider w hen---4

~=o~~c 4 -jQ'(iO+jI-y (Ph (6a)

The nuflwric8l evaluation of the three equations

e, 00 h I?~) (4b2)

&I__O fthR (512))

(V 0), q,(hR ) (612)

is shown in numerical tables 4, 5, and 6 and in figures 4, 5, aind 6.



IF

Unilateral Coolinj of Plate

Let us take a very large plate with thickness X and let us insula"
it completely on one side while the other three sides are free. If this
plate is suddenly brought from a high temperature to a colder environment,
it v4-ll gradually give off its ontire heat content to the environment
through the noninsulated surface. Now we are going to have to deterxine
the time curve of temperature 0<0 of the free surface, the temperature 6•,
of the insulated surface, and the heat loss Q for a section F of the plp.te I

The computa; ion gives us the following

"•3-__= C4- .... __ --"-o

where t represents the infinitely many roots of the equation

. 2 In dk -- j( x) - -

k=1

(9a)

The numerical values from these three equations

(9t.0 (4 ,XXj. .......

0.- (X.. . . .... (8b)

Q ~ 11 1V 'iX~............(9b)

are shown in numerical table3 7, 8, and 9 aid in figures 7, 8, C2nd 9.

-- 7 T



Figure 8. Temnperature of' insuJ..ated plate surface Aheyn

7~ -
__t __4 I 0 z -

6ý=V: Q~=(WO)vji 2 A X.

Figure 9. Heat loss of plate cooling on one side when

Bilateral-Coolini, of Plate

The last problem dealing ui.th the onesided cooling also readily
gives us the solution for an equal bilateral cooling of' the plate.

* if the cooling conditions of the plate on either side are exactly the
samfe, then -- for reasons of synunetry -- the temperature gradient %%ill have
to be zero in the m~iddle of the pliate. Btit it so happens that in our last
problem the c.ondition frequireineng for complete insulation meant that we
found prescribed that the temperature gradient at tuhat point likewise had

*to be zero. '4hen the plate is cooled on both sides, we thus see that each
half of the plate behaves as in t~e case of a unilaterally cooling plate.

If the plate h~as thickness D), then w6 use an auxiliary magnitude

-Li-



and we can get the vluea for tLe functions "

-~ ~ ~ ~ ~ ci th4ua. h nd 2/fromfigures 7. 8. and 9, if we use this r7agnitude. Here we a st keep nmind that we haves
(W(J>,m2XFc;,

7 ..

bZ,1 to Use the Figu-e s

Let us take a n nerical eammple to show you how fast we can computethe cooling processes with the help of these illustrations.

A steel sphere %ith a diameter of 20 cm is heated, to 2800 C itsentire mass Zweghg and is then quickly dipped in an oil bath with atemperature of 300 0, NjC,-,,tohep u aft 3A _. U whx t is the temperature distribution in thesohereaft/ r )a 3 me and 12 mini when we tako the valuZIQI 4 o" th a-C( - 500h S the heat transfer number from th6 sphere to the oil bath?
Preparatory computation. The radius of the sphere must be given inmeters; i.e.:

The time is put in terms af hours:

1f h'

Numerical Table 7
Temperature of Free Plate Surface ;hen

10-,,, 09:-. to + (!-,:' h, x)
Ax= Io,•oIO"O 0.0, to , .0 6,

at.002 - 1,0o 0,99 0,08 0,03 0,6•A6 600 ,8 0,1IO O080 0,00

0,0(i - 1,CO 0,19 0,18.0,69 0,79 0,46 0,23 0.12 0.06 0.0001 1,00 1,951•,07 Ot'610,7 , 0,37,0,17 0.08 0,04 .000
0, 100) 1.OM 0.92 0,6910,61 0,17100 0.M 0, 0,(001,0 -- 1,00 W810, 680 ,0 l (1,68 002 0,011 wu -

2,0 -- 1,00 09? 0,79 0,37 0,17 0,02 ).00 0600 U6.0 - 100 k •0.,(00,, 0.10 0.112 0',% -10.0 1,00 v,99 090 0o863 0.01 0.00 - --
0O ,10 •0.o0.81 -,10 - - - - - -

- 12-
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Siwumerical Table 8
Temperature of Insulated Plate Surface "/hen

1 o =, 1 : 4 ,. g-- 4 '" t, A X J .

AX . [ A0.5 A4 10 v bjoj
at '

0.,6 - - o- - - I ..00 1 ,li ,Io.Iom I ,oo
0,1 - - 1.•- 1.00 1,00 0,98 (9111G 0.9 0,950,5 - 1,00 0,97 o,087 (,7810.,X 0,46 0,41 0.89 0,37

,,00 0,99 0,92 o,70 0,641o0,1510,l61,13 0,1 0,11
.2,0 !JI00 0,98 b,831MiO, ),0.1 6 0,02,0 U.01 1O 0,01

0,0 - 1,00 0,9I 0.62 0 ,00,
10.0 1,00 0,909,9.0 0,8 thou002 0,00 0.00,37 0,0a7]o,o 0
20.0 1.00 0,1)8 0,8J 0 14 U.0 - 150,o 100 0,11 10,6• .01 , _

Numerical Table 9
Reat Loss of Unilaterally Cooling Plate Ishen

I Lj-• t•LHoo o., lo71- ,•' oi•I

AX= 0.WV1 W40 0.011 , 0,2 0. I 0sI I I I ,
0.0 I - - - [0. 0,00 M 0101 010t,0,05 009 011.1

0,06 - I0,0I1o,o1 0,0.O40,4 0,1810,23 oQ.
o,I0-- - .0o2;0 1 0,05 0,081o,020 0,2710,3410,36,

:.' ,G - I-- 00 hr",oU05n9IO,40 0,32o:0:60,9I07,3 0764 -- I- !oW- 19 1 0oo7o, a •10,1,1 0,180,9 0,7,5i0,76
1,0 - - 0,11 0:10;017 0165- 063, 0,0811,90,0920,113
2,0 - - 002 0,17'031 o,78-0,4638, 0,8o( ,o9

* 6,0 - 0,00 0,05ý0,3910:6310:!,9 1,00 1,00 1,00~ 1,(
10,0 - 0,01 0,10 0,62, 0,84 0,99 1100 -. . .
20,0 0,00 0,ý0ol80,81!0,93 1,00.'. . .- -
0.o0 001 0,0410o,89iO ,o,•21o,9 - -

From the physical numerical tables we get the following figures for
steel:

A = 60 [kcal/m h 00o,
y = 7700 [kg/mr],
C =0,13 [kcal/kg o0];

from which we can calculate:

cyv C,13•7 - 0,06 iM'/hi.

- 13

'aI



Figure U1. Cooling speed for center or axis of various bodies
according to Williamson and A'dams. Legend: a - plate;
b - square beam, length infinite; c - c~linder, length
infinite; d - sphere; e - cylinder, length equals
dia-meter; f - cube.

Computation of characteristic quantities from these values:

(1) = , _ 0 10t.0,0 ý 0,06 .1 'a t 0,05
(0~ ,05 -0,25

ft~4 0,05

V-o can now read off directly and get the follocrng:

Numerical Table 10

(a)Wprto ZIUR ZOce
dotr Borechnung 1. It, L 8mIm [=lm

1. der Oboerilhehon- O e : .temneratur .... l n AAA ^

2. der Tempor'atur 9 i "
dotr itte .i ... .. 1,0o o,6 0 ,1

3. der abgegebenon " 0Whrme....... . .1 .

4. der zurtlckgebiie' Q
benen Wiirme 0 .88 0M, A

Legend: a - values for computation purposes; 1. of surface temperature;
2. of temperature in the middle; 3. of heat given off;
'. of remaining heat.

4--
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Figure 10. How to Illustrate the Determination of the Temperatures
Along the Radius of a Sphere.

Plotting the temperature distribution. 1"e plot the radius as the
abscissa; as the ordinates, we plot, above tne terminal points of the
radius, on the one hand, the three values 0. / 0-ý and, on the other
hýnd, the three values 9,,,/ 0, . These six v-rlues alone give us a
pretty good idea of the attenuation of the tennperatures.

By drawing the illustration in Figure 10 we can get more detailed
inforj:ation on the tijperaturc curve along thu radius. In the center, this
curve must have a horizontal t~agent for s i=m-etry reasons. •. ong the
surface, hcr.-ver, the tangents of all curves must go through the same point
which lies on tIL abscissa axis at a distance of 1/h ZF out-side the sur-
face (this applies equally to tY2 cylinder add the plate; for explanation,
see Groeber, loc. cit., page 14). With the help of these tangents, we can
then draw the te.sperature curves with the kind of accuracy that will

4c~ +~nic 1 g~ro~yptirposeas.

Comoutation of heat loss of sphere. The heat surtlus of the sphere
/ooled7 from 2800 C via the oil bath temperature of 30 C is

4

* 4 1
= 4 1 5 0. 1 3.-7 7 0 0 ,2 5 0 10-- - - -[k c a l ..

- 15 -



Of this amount, the fraction given in line 3 of 14umerical Table 10 was
transfoerred to the oil at times tl, t 2 , and t 3 ; the rest romained in the
sphere.

Sup lemontary Comment

While this article was at the printer's, Prof. 14. Jakob, Berlin,
told me about an i•merican work by 'dilliamson and jLdams who were after a
siiLr objective (cf., twilliamson and L. 11. tdams, "Temperature Distri-
bution in Solids during Heating or Cooling," Phvsical Review, Vol XIV
5eries II, 1919, page 99). Unfortunately, the authors always assume that
it is not the environmental temporature buL directly the surface tempo•'a-
ture which is given, respectively, changed. This is the same thing as if
in this work here, only the perpendicular series were given for h R and
h X-- 0 0. In the first part of the work the authors furthermore assume
that, after the settled state has set in, the surface temperature rises
constantly from time t = 0 on in accordance with the law 6a - cons#. t.
Since this case Js of no consequence from the technical ZngineeringJ
viewpoint, wc need not discuss it any further here.

In the second part the authors assurme that, after the settled state
has set in, the surface temperature suddenly jumps by th• value O.-c and
that the heating or cooling process ncw takes place. They accurately
computed the example of the sphere and give the values C2 /(9,, for
varying distance r from the center of the sphere; see Numerical table 11.
The values for r/R - 0 of course correspond to the values 9n, / -0, for
h R= v< in Numerical Table 2. On the other l'.nd, the values of the other
perpendicular series constitute an important supplement here.

aat I think that Nurierical Table 12 is particularly noteworthy here;
this table is likewise taken from that work. It seems that the authors
have computed and compiled the cooling speed of the center and the a'd-s
for the various bodies listed at the top of the table. See Figure .1.

Numerical Table 11
TAm wr.-t~ire' in t1h T, -r"'r of t -- ...... ', -- n

-~~~~~~9 4 e-l:O•O•r I

I I.. . . . I . . . . . .

0,000 1.1 00 1,00 1,00 1.00 1,K0 1,00 1,00 1,00
0004 rFO 1,00 1,00 , 1,)0 1,00 ,0W) 0,91 0,309 l0,O

/-1,( 1,iO 1,00 100 1,00 0,99 0,91 0,79 0,18 0,00OO~16 0,9 ' 0,99 1,98 0,9(6 0,88 0,68 0,53 0,10) 0,00
O,.g;4 0,91 I 0.01 0,8[i 0.81 0,68 0,47 0,36 (1,06 11,00

DO110 0,71 0,70 0,65 0,60 0,47 0,32 0,:23 0,04 0,00
0,1)6 o(,9 .0,'20 0,'26 0,24 0,18 (1,12 0,19 0.02 0,00
0,42M O,IG 1 0,10 0,14 0,14 0,10 0,07 0,06 0,01 0.00
0,40U 0,04 0104 j 0,03 0,13 I ,(2 0,02 0,01 0,00 0,00

- 0,ol',o0o) ,0o 0,00 1 0,00 0,00 0,00 0,00 0.00

- 16 -



I'uimorical Table 12
Tcnperaturos at Ccnter or Axis of Vý,Inuf Bodies Th'aon

ad• •] tt r~n .' ZyJindor Zy11iaor

. P)toU I Lingo Lingo Nufo, I

0,032 1,00 1,00) 1,00 1,n 1,00 1 1,00
0 ". 1 i,%, 0,93 0,92 0,69 o,6•3

O, loo 9,9/5 0,90 i),SG (,6¢5 0,61 0,7 1 .

f, I C•) 0, K) 0,72 0,)1 0,63 0,63 0,41
0.2.10 0.70 0,49 f,,05 0,40 0,28 0,19
O,32z 0,68 0,83 0,19 J 0,25 015 0,0q
0,800 ( , I 0,013 0,01 o ,02 0,00 0,0g
1,f0(1 001: 0,00 0,0, 0,00 - --3,'2u) 0,4K . . .. - -

Legend: a - plate; b - square beam, length infinite; c - cube;
d - cylinder, length infinite; e - c,,1in.der, length
equals diameter; f - sphere.

, comr parJ.son between the sphere and the cube or between the cylinder

of infinite le,,gth and tle cylinder whose length equals the diameter would,
I think, be rather interesting here. lthough these relations apply only
to an infinitely large heat transfer number, i.e., Only for h R=oC.
they nevertheless do permit a transfor Zonversioj2/ to processes with a
finite heat transfer number, if we are careful enough.
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