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HEATING AND COOLING OF SIMPLE GEOMETRIC BODIES

"by Dr. Eng. Heinrich Greeber, Berlin-Wilmersdorf

Communication from the Heat Propagation Committee of the Association of
German Engineers. {(This 'ssa.y will & ortly be published in an expanded
versioin &5 researoh report
X ‘%Ma/nﬁ’ﬁ"ﬂ/IWWVV‘;{//YX//WW#/W/WW

zcit. Vereines Deutsch. Inzenieure 69(21): 705-11, 1925, :

This article features graphs and curves on the heating and cooling .

time of spherical bodies; cylinders, and plates so that these developments
can be easily traced. In lookdng at thesa results, we must keep in mind
that many tasks arising in furnace and heating technology, metal-working
and metal improvement can be traced back to the hsating and cooling of
these simple bodies, In some cases, tne technical literature on the sub-
Jject does not offer any data on the heat transfer 5ropagat.io_r] numbers.
Here we can use the graphs in order to find the characteristic quantities
and, from this, the heat transfer number. s supplemsntary note mentions
a work by Williamson and L. H. adans.

The technical theory of heat transfer has in the past been concerned
mostly with heat transfer /conduction/ processes in the settled state, al-
though the processes of heating end cooling of solid bodies play a major
role everywhere in the bast area of technology.

Mgthematical phyeic2 has been exploring these processea for the
simplest bodies quite accurately for a long time but the results do notu
show up in the technical literature on the subject. The reason for this
is to be feund in the wwieldiness and confusion of the final formilas,
r.ost of which contain Fourier or other similar endless series, But the
practical operator in most instances does not havs the necessary background,
nor does he have the time; he cannot calculate and compute for days on end,
just to get a aingle numerical value.

This being the situation, it might be a gcod idea to have one man
tackle the computing and calculation job and to work out several important
problems for the most frequently encountered numerical ranges., This would




then give the general public and the specific user an easily handled body

of numerical duta. The management group of the Committee of Technical and
Economic Experts of the Reich Coal Council for Fuel Conswmption and of the
Scientific Advisary Council of the issocilation of German Enginsers immediately
approvad a suggestion along these lines and together prevailed upon their
boards to make the nocesssry funds available, Mathematigs research stu-

dent Heinz Winterfeldt then made all of the computations an which I would
like to report below.

Cooling the Sphere

A sphe.o with a radius of R, which was first heated in its entire
mase to a temperature of $1°C, is suddenly placed in the vieinity of lower
temperature t2°C. The sphere will then give off its wamth to the surround-
ing area; the outer layers will cool off quiekly and strongly while the
inner layers will follow slowly until, at the end — theoretically ai‘ter

an infinite period of time == the entire sphere has been cooled to ty °c.

This entire process is so very simple that anyone without the slightest
physics background can understand it; this is vhy we might be inclined to
think that it should not be too difficult to follow the whole process
mathematicaliy. The following paxes will show thiat this is not the cass,

When we say that we want to follow the process methematically, we
mean that we want the mathematical answer to the following three queations:

l. What is the time ~urve of the smurface temperature?
2., Whati is the time curve of the temperaturs at the center?
3. What is the time curve for the heat loss?

: We can simplify tire way we write all of these equations from the very
cutset by figuring the tamperature not in degrees Centigrade or in degrees

of abgsolute division but rather by setting the environmental temperature

at zero. All temperatux-es of the sphere are then considered to be over-

tempercturss and can LE dreignated with (? . (Whon we hsat a cold sphere

in a hot environment, we iutomatically get ¢/ values with & negative sign.)

Similarly, we are niyt going to figure with the heal content of the
sphere but rather only wit: the heat aurplus above the envircnmental tempera~
ture,

Lot us ume the following symbols here:

R the I‘&di\lﬁ of u"o aphau..ooico.!In.-nlloollDo.oll. inm‘
t tha tm.onin|alllcoloo...llolOi!o.ﬂ!o.l.ul'oulIOOO j’l hI‘B,
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6, the initial temperature of the sphere ) in degrees of the 100-
6, the surface temperature of the sphere ) part scale, measured as
O« temperature in the center of the sphere ) overtemperatures,

(HU)O thermal conductivity of the sphere in kcal at time O,
A thermal conductivity of sphere material in kel
J density of sphere material ' ‘nif, '
e, '3pccific heat of sphere material in T‘::%'

a  temperature conductivity:cjé/' of sphere material in . B’

A heat transfer murber ' i kel

h relative heat transfer number = %‘- in m-L

The 'computation for the time curve of the surface temperature then
give us the expresesion (¥)
' A= ’ o 8t
— Sy, —v, cosy, ~'k Riginw
N AT - (1a)

r=1

(#) Derivation of this and subsequent fopmulas: e.g., Groeber, Dje Grund-
Zesetze der Waermeleitung und d es Waermeusberganges (The Basic Laws
of Thermal Conductivity and Heat Transfer), 1921, pages 44, 51 and 54,
Julius Springer Publishews,

Here of course L’x would be the system of the infinitely large
nmber of roota of the transcendental squation

rcosy =(1—A R)siny

Thers is only one thing we can easily tell from this equation: the
value Q,_\ is proportional to the value @é s as for the rest, the expression
is a rether confused function of the four independent variables t, R, a,
and h. Anyone can plainly see that the mathematical evaluation of this
equation is a rather timeconsuming process and that, no matier how good
our mathcmatical training, it is impossible to get the course ﬁurvg of
the function from the fomula. Besides, because of the large number of
independent variables it is impossible to show the mumerical values of the
function in a single numerical table or on a single shest of curves or
graphs, In short, the result of the mithemati.al compution in the foim of
equation (la) has all of the properties that make it unsuitahle for further
practical use,

Now, there is one way ocutt we can say that ";a—: is the only
variable @ aingle, unique Vr.:'iahlpj ; and at tho sam time we would of

-3 -
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course note that theyj values, for their part, depend only of the single
variable hR., In this way we can conceive of the infinite series as a
function with only two variables and equation (1la) will then look like

~this: :

- 6e=6.0, (34, Ax). o (1b)

The values %23 and h R

we now call the characteristic quantities; these are always pure nwerical
values, i.,e., magnitudes without dimension. The posaibility if growping
the four variables into groups of characteristic quantities can be ex-

plained with the heip of the principle of similarity /similitude/ or the
theory of dimensions.

The mumerical evaluation of the function @ 5 in equation (1b), with
its two variables, still requires a rather big “tomputation effort; but

once we have done this job, we can bring out the results in a single numeri-
cal table or in a singie graph.

In a similar manner we can alsc convert the equation for the tempera-
ture of the center. Here we havo:

S !i;v.' ""' o8 net
— v 08y, =
e,.=g,22__"__i___". Man
’ ¥s — sin*ycos ¥y

~ ++. (2a)

;9.@.(;‘,. hR! e . (2v)

Humerical Table 1
Surface Temperature of Sphere VWhen

6 = 1% 9°=6.00(-;?—;. hﬂ). - 'l

ar= Josom[oom|oat| ot |os[ 1 [ 4]0 |m|e! o
%5-« 001 |100| ~ (100099 094|089/ 0,64[0,8022]0.10] 0.00
006! — |1.00l000l007/08sl07e'0 300,07 0001605 6o
10— |1.00(6.05| 060 | 0:79| 064 0.2610,10| 010 | 0:02| 0,00
Gz | ~ [149]0.99|0.09/0.64|0.4¢ 0,10]0:03|0.01
95 {— |1:00(0.98/0,85(045(0.24 0,08
10 | - [1,0000.07/0,73(0:23/0,07 000
35 |100

1
i 0,99/0.93/0,62{0.030,00] ~
i - 60 [1000,99/086|0.23(0,00
!
1

PrEiIg

—

43
3

0.97/0,76|0,06]0,00| — | —
100 |0.94]0,48/0,00] — | — | —

g

1




Nuw.orical Table 2
Temperature in Center of Sphore ihen

00==1 Op =, 0 (fn‘ m).

I

CARm o.ooo:omt[o.m[m[o.s[l|4[10[m]w]u
4 !

at :

=00l [~ | — [~ | — = |~ |100/1.00{1.00{1.00] 1,00

006 — (— (~ [100(100(1.00(09'095(0.08]0.07] 007 .
v 8100~ | — |160 0.90]0,97|0,.96]0,87|0.80]1,76|0,73] 071

ol 0281~ [1.00(0,00(0,97(0.81|0.69(0:88|0.26(0:23]0110] 037

) 08 | ~ (1.00/080]1,80|0,88|0.87|0,00|0,08 |02|0,09

oo 104~ 1100(0,97(0,77(0,29(0,11[0,00{000]0.00|0,00] — *
© 25 1010891003610 004/000) = | — | ~ | <) —

;- 80 11.00/099,087)08slege] ~ | — | = | = | 2| 2

! 100 11001098 025(C.06| o |-= | =~ | = | — | = | =

© w0 [100094]09j000) — |~ [— | = |~ |= 12

- , LA . v S S U S

NMumerical Table 3 .
 Heat Loss of Sphere When 9.~ ¥,

| . qﬁ(wukw(m.m). :

‘ AR= W.oom[oml i01|°b 10 |‘°]’°l“.f“’

~ .OOIO 0210.031000(0,18]0,22,0,27| 0,31 -

— |90.00]0.02,0,0710,12/0.22/0.46]0.68) 0,67 0,61
—~ |0::)[0,03|0,13/0,23[0.61 0,.66,0,71|0.75| 077
0,00:0.01(0,07(0.200.47[0.80|0,90|1,92]0,54 | C.95 .
0.x1[6,02|0,14]0,49{0,71 {1,56/0,99 0,99|1,00| 1,00
0.00{0,03(0.26(0,74|0,92| 1,00 |1,00| 1,U0| 1,00 ~
0,00/0,08/0,64/9.97 [ 1.00| = | =1 — | — | —

§|H|a| |

005 |0ib6 Q77100 =] = |~ | —= | ==
0,000,023 0,27 096|100 = | = | ~= | =— | —
000 — ] | s ] -

0.06(0:36| 699} 100] —

Numerical Table I
Surface Tempeorature of Cylinder When

) 0, =10 6= 9,¢(m.nn). ":
Y = ou»ulom:]om]m]o.&]1.0]«0]10]20]50'
] . B
m=oo| - | — ' ,oo'o.no 0,96(0.89 (0,66 |0,42(0,24(0.11| 000 °
; 006 [ — [1,00 o‘sglo 97(0.8710,77M42(0.21|0,10,0,06' 0,00 |
: Q10 [ — 1,00/099,09¢]0,62|0.69|0,310,14!006/003' 6 '
3 026 | — [1,0010,99!0,9310,71]0,63]0,17 0,06]0.33/0,01 000
i 060 | — (1,00(0,510.88{0,67]0.36|,070.72'0.01 ] 0.00] -— !
) 10 | — 11,00/0,98,0.80|0.36;0,16/6.01 |0,40|0,00! — | — !
i 26 | — .ooooﬁosu«v.womum— ~]=]=-
50 [1,00)0 omoa'lo.mo.m— — ==
: 100 [1.00/098/0s2i0.14l000| — | — | = | Z |2 |
260 [1o0i088l081/00| — | — | |~ || |D }-




Mumerical Table 5
Temperature of ixis of Cylinler when

Q=19 G =6,0n (;‘;' ‘R)" ’,

o aR= Joowlext|onfes ] os] e aa] 0| 2|0
i at ‘
P — = | — = | = [— [~ [100]1.00/1,00/ 140 }
. 08|~ j = — | — [100i1,00]1,00{0,69!0.97/099|n
. 0| — [ — | — |L,M0|u.00 0.97|094]090 088|067 nx
| 046 | —~ | — [1,00(0.98,049(1481 10.65]0,48'(243,0.40( 13
; 050 | — | —- |089]003|0.72/0.65 0.24|0.18 3010 0m | - .
! 10 | — | — [0]0.56/0.46(0,96 0,04!0.01 [0,01 [001] 01
, 25 | — |100'0.96|0,68/¢,12/0.02,0,00|0,00|0,0u | G| O
| 50 |1.00(090 0.91|088[m01{g00| — [ — | —|~|~ - .
{ 109 | 100 |u9s 853 014{000) — | — | = | = |= |~ - :
L 950 |100]090,0811001| — |~ | — |— |~ |~ |~ :
Mumerical Table 6
Heat Loss of Cyliinder \hen -
[X
- .. . L By= 1t Q.=(W0)°V'(E,>.hﬂ). —
sr= Josonjacnl oo} oa [os a0 | 0| njuie
: ?;.-o.m I B e 01{016/018 92 |
. 0051 — [ — |~ [0.01(0.050.08{0.21 (0.32/038:%42 0.8 |
: 010 — | -~ | — |0.020:09,0,15(0.37]0,48]054 0Sis i
026 | — 1 — [0,00(0.06 0:20,0.33(062]¢,76 079 0.1 04
060 | — | — [0.01(0,091086 0,560,550, .04 046 W -
: 10 | — [ — (0:09/0,15'069,0.,79|0.98(0,99{1.00 1w Jiet .
: %5 | — [0.00/005/0,50 0.89,0.98 100100 — i — '~
i . 80 |n00,00i1000/063/0.98100| — |~ |-~ T
- 1006 |0.00 0.02(0.18(0.86(1,00] — | —~ | ~—. —l-|",
360 |0,00/0,04/089090] ~ | — |~ | = |~ |— |~
I e S e i % =5 &
A N N \j\K\\*__\ 2
NAYANANLNAN S 65
N AR R BN .

o § o \cx'\ .x\\ AN =. .’.'"‘q‘- '
NEAWCITIRD WAN i
AMVAVAVANANANANER N

NN N SN T
. A\ ANTANEAN N e .
N NF N N N~ ~ ,“.&:'
hirw 5.00.'2 Jqfr s, ¢ .4'.”1 S o
Hin<] _-_.—.QL_:_M; 6y =6, ®, .‘1‘7,“; . '

Figure 1, Surface temperature of sphere when
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] Figure 2, Temperaturs of center of sphere When™™ =
: . o /j‘ J 1 -’jF“'f(’Md‘ ',
! T A L
- ' \", 08 DR A N & ,7 / »L’jr'
: I y .1}’/ o LA .
’ T VA AL g T el O
A N i Iy 2 s Gl
S ! VAN,V V4 //_ﬁ};’ Iu.05‘/ .
5 / VAAVAVAVAW. . & |
5 ' N A AL . : gt "1 |
® A "’/;ég : l .
: . IR e e o = 1 o
N PR e S &% @ ¢ 5 A RO \
Z —— —— et '
- Figure 3. Heat loss of sphere when: ™ 10 Q=(WOKY (?m"“‘)‘ ,
z 3 The thind question we =siced above -~ the time curve for the heat loss
;i -- canbe angwered with the following equation. The heat volume, which the
- sphere has given off until time t, is
- ; ! ko -7
Lo =4 e 1 (sin v, — v, cosr,) ( "k';:)
;; % Q 3II‘SC79¢P2—‘:5:..-—————————‘-——’b_.ln"co.'. 1—4¢ (3&)
§§ Since @cis the overtemperature of the sphere over Zz-xbov§7 the en-

vironment, we have
§ RacyO=(W Uk
which is equal to the heat surplus of the sphore at time t = 0,

In kecping with what we said earlier, we can now write:

‘; .,?,%(Wb); ;"(%,hn),.. o ‘3b)
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Numerical tables 1, 2, and 3 anl the curves in figures 1, 2, und 3
111lustrate the values of the three functions for the sphers., Here the
absclissa in the 1llustrations is plotted on tho logarithmic scuale so thati

the entire range of variables h R fram 0,000l to 50 cun be shown.

Cooliny the Cylinder

i very long ecylinder with a radius of R 1s now suddenly broughti Jrom
a high temporature to a low envirowmental temperature. We want to coumpute
the time curve of the surface temperature ¢, , the temperature Z1,iu the
axis, and the heat loss for a section with a length L of this cylinder.

Disregarding the cooling of the terminal surfaces because of the
great length of the cylinder, we have a computation here which is entirely
similar to that of t.ho sphere. The fact is that we huve the following:

A=

Vo1 i) '—».'9,-,1 :
| 9"‘9'2;“2#“ [EEZACE

(4a)

where 4, represents the system of ini’mltely many roots of the tranacondon~
tal equation ¢ J1 (¥) R (//,() anrd Jgy aa me. as Jy are two Bousol

—

functions. A m s i
B = 8, L 1(Fx _F.‘R'
® }; "n Jo’(#,,)+J|T(u,) (5a)
! 1 _ = A i S < ___ a_-s,--
RN AR AN NN AN ]
N \liﬁ B ‘\\\ Y g
FER LI ) lera
IR TARANR RN e
o R N I w\\lk A A DY va , ]
] \\ \\\\X\ \‘ \\X_\ I N G
LY JNSANA RS ==
: w&m“ S 295 o 5, S o

00 =19 6,=6, o (",. hR)
Figure I  Surface temperature of cy.Linder when
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Figure 5, Temperatwre of axis of cyllrder when

—1 - -1 1 . 1
R 0 i G A s
| A A
: ) %/4‘,/ Lgy__@/ -
L (9 4 b
_7%"/_._‘3/7\7 N4 O o wll)
| VA8 VARV AR WA VA W S e PR
L A LY. /“74’ ]
,4/ 7 / / f/ P o oo -
AR 4y <A ,/{ AT ]
o e e = : G0 iYL
:‘a‘"’g'_,le Jq”l 5 ar 4 5 gy & E - ] 5
_ . 8, = 10: Q_(\\ u)o\P (m' ) _
Figure 6, Heat loss of cylinder when ] _
. :ﬂ 1 Jl’ (M&) ( Pk' :-:)
= e —- )
, A=fizbove %‘#J-’o’(ﬂk)+-ﬁ w0 L (ea)
The numerical evaluation of the three equutions
9.-—9.%(hR,R, L (Lb)
Gm=0u0m (AR5} (50)
_(wt))ow(hn,m) =8 (6b)

i{s shown in numerical tables 4, 5, and 6 and in figures 4, 5, and 6.




Unilateral Cooling of Plate

Llet us take a very large plate with thickness X and let us insulace
it completely on one sids while the other three sides are free, If this
plate ies suddenly brought from a high temperature to & colder envircnment,
it will gradually give off its eatire heat content to the environment
through the noninsulated surface. Now we ars going to have to determine
the time curve of temperature @ of the freec surface, the temparature &l
of the insulated surface, and tba heat loss Q for a section I' of the platel

The computa:ion gives us the followmp

¢
_ 8ln & 4 a)?i 0 (73)
S— &'_8‘7 zga.+-m hcca onds cos &;

-

vhera § g represem‘:a the infinitcly many roots of the egquati
dsin g =(h X) cos

- N sind ~%5%
Em G'k%26.+-m‘.coaei;° o (8a)
k= * u\
[y 8‘n76y ( ~%'
Q=FXer8. 05’-{-6“1:16/.(:056& 1= J/
~———————— B =1 [
‘“' (9a)
The numsrical values from thease three equations
9,—9.%{/:)(,;) . (7o)
e,..--a.w...(hx.kf). e (8b)
_’“(WU)o !'(hX.A,) e .1/ . (gb)
are shown in numerical tables 7, 8, end 9 and in figures 7, 8, and 9.
i et \N\T"ﬁ:\\ = ; - » 108
; SRS “
, AR NIRRT )
NN RN NEANETA |
NN N INEANE S 2 656
AVOVANACIAIIRIAN 4
SR R TN ,
NAVAVAWANA AN\ i
g
. il < }_\ \\l, - -\L‘\*:b 1
wim}ﬁ goor 4 ar 4 5 ar ° K] P F 5 o Y3 eg”@‘

By =10: eo_o,w,,(ﬂ,hx)
Figwe 7. Temperature of free plate surface wien
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Figure 8. Temperature of insulated plate swrface when
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CAAAAA A e
e s ot iy gl =— ] ao(Wil),

wor g’ we P g ¢ T a2 % s 2 S gt Y e

1;6:=i°: o—_-(wuw(%. hx).

Figure 9. Heat loss of plate cooling on one side when

Bilateral Cooling of Plute

The last problem dealing with the onesided cooling also readily
gives us the solution for an equal bilateral cooling of the plats,

If the cooling conditions of the plate on either side are exactly the
same, then -~ for reasons of symmetry ~- the temperature gradient will have
to be zero in the middle of the plate. But it so happens that in our last
problem the condition /requirement/ for complete insulation meant that we
found prescribed that the temperature gradient at that point likewise had
to be zero, When the plate is cooled on both sides, we thus see that each
half of the plate behaves as in tle case of a unilaterally cocling plate,

If the plate has thickness D, then we use an awxiliary magnitude

X=

“val by




and we can get the valuas fo

r the functions @,Jm and ¥ from
figures 7, 8, and 9, 1f we use this magnitude. Here we must keep "=
mind that we have:

 (WUy=~3XFcye, .

How to Use the Fipures /Tilustratious?'

Lot us take a numerical example to show you how fast we can
the cooling processos with the help of these illustrations,

A steel sphere with 3 diameter of
entire mass ﬁei@g and is then quickly
tenperature of 300 C: Now, what is the

Sphere after 36 s, 3 min and 12 min,
Lieal/m no 27’ as the heat tran

compute

<0 am is heated to 280° C with its
dipped in an oil bath with a
tempsrature distribution in the
when we takec the value of = 500

sfer number from the Sphere to the oil bath?
Preparatory computation,

The redius of the sphere must be given in
meters; i.e.: :
R Oool [’IIJO
The time is put in terms of hours: s
. * 3600 = O0L (h),
3
b= 5 =005,

Numerical Tavle 7
Temperature of Free Plate Surface .hen

Be= 19 Gy= 6, ¥, (‘%.»x).

rX= {o.am{o.rm'Lom}v-l!‘)"l ijsfjulnleje;
|

l 1 N
& woc| — 1.oo’o,soio,oaio.93 05610,60(0:34[0,i9{0.08| 0,00
A 0.00
= - 9910,0810,89|0.7010,4610.23}0.12|0.06{ 0;
Rl Bl i b et 0:27,0,171008]0.04| 000
o | = 1100,099]092(0.69 051|017 002 100l DL &3
10 | — {1,00{0.98(0,8816.66 0,35 |1,08!0,03{0,01 0,00 -
20 | — [100/0.9710720{0,3710.17)0,03/0.90| 0,00 -
s0 f = |Loolous oo odolomloe — |~ | = | =
169 11,00 10.9/0,00/0361001 000 ~ | = | = | = | =
200 1.00/003/08110181000) — | — | = | = | = | =
., 500 |100]0.96/0.60/601| — | = | — | —
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Iumerical Table 8
Temperature of Tnsulated Plate Surface When

AX= o.oool[omn[ 001 | 04 | 05 ['T"] lw_]m l 0| o
et | -
B Oabi] Bl badl Il BN R R B s ==
006 — | — | — | — | — [ — 3{00[1,/D]1,001,00] 1,00
. LGy = = (00100 1,.0044,00{0,98{ 0,970,961 0.55 09 .
9;5 — [1,00]0,99]0,97|0,87 0,78 0.56,0,46 0,41{0,899,37
+ B0 [ — 1100.0990.92(0,70,054/0,25{0.16|0.13 | 0,12{ 0,11

2 Lo g.gg 835 3:‘}3‘8"3}, g:(o&o.oaiu.m 0,01 |0.01

) - y ( y |O T w 0: 0 O(D
100 |1,000.95]9.90|0:37 | 0,02]0100] | 20000
© 200 11.0010.9808310.14 | 000 -

L A e

—
o — | -, | - -

—_— | =] =

Numerical Table 9
lieat Less of Unilaterally Cooling Plate Vhen
6o= 10: -
Q =(WU) w(?t-:, hx).

ax=oseor|oon| oor| ot |0z )osl 1 4l

¢ ;
Si=om|— |- |- [om{n.oolo,m:om 0,050.09'0,12{ 0,13
S 008~ | — | = |0.01i0,m|om;0.04 0,12]0,1810.23' 0,23
o1 [~ = |~ :002,0031006{0,08/0,20{0.270.i410,36
06 | — | — 10,0010.050,09]0,20,0,32 0,68:0,69(0,73{ 0,76
10 V=~ | — Jonj0,10!0,17;0:35:6.63'0,81 [0:89,0,92 0.93
26 | — |~ .002(0,17;0.310,59:0,78:0,96:0,08/0,99/ 0,90
50 | — 1000/0,05.0.3910,6310,8310.98|1,00]1,00(1,00] 1,00
100 | — |ootlonoioce:08s 099 1,00 — | — | — | ~
20,0 10,00 |0,0210,1B10.811093(1,00! = | — | — | = | —
60,0 |001[0.04/0,391092,098| — |~ |— | — | — | —

From the physical numerical tables we get the following figures for
steel:

4 =150 [keal/m h 0C),
y= 7700 [kc/m’] »
¢ =013 [keal/kg °C);

from which ws can calcu]_.g_ttg: .

-13 -
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Figure )l. Cooling speed for center or axis of varicus bodies

Computation of characteristic quantities from these values:

We can now read off directly ard get the following:

Logend:

according to Williamson and /dams.
b = square beam, length infinite; ¢ - cylinder, length
infinite; d - sphere; e - cylindsr, len;th equals

diamster; £ -

cube.

I

1

hR="5 Rui%o-(M:l,O.
al 0,05

at) 006, o o oc
(1), = o0, 005 =025,

at 0,05
(R"), =oo1 020 =100,

————— o ea .

I\.unemcal Table 10

Legend: a -~ plate;

4e of remaining heat,

- 1k -

w o ' T
(a) Jote pum Zocke Ju=s54] =0 min | = 2 min
. 1, der Oborilichen- 6 . :

. temperatur . . . . ) 8, =1 o7 044 oo
. 2. der Temporatur = 9'
dor Mitte. . . . . -6"-' 1,00 0,69 011
3. %r nbgegebenen Q ‘ ’
Arme . — =
. (Wm 0,12 0,{7 0,93
4. dor zurlickgeblie- Q . .
benen Wirme . . I—EW = 0,88 0,63 0,08
. o .

a - values for computation purposes; l. of surface temperature;
2, of temperature in the middle; 3. of heat given off;

1
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Figure 10, How to Illustrate the Determination of the Temperatures
slong the Radius of a Sphere.

Plotting the temperature distribution, ¥e plot the radius as the
abscissa; as the ordirates, we plo%, above the ierminal points of the
radius, on the one hand, the three values e,/ O. and, on the othey
hind, the three values ),/ &, . These six vulues alone give us a
pretty good idea of thne attenuation of the temperatures.

By drawing the illustration in Figure 10 we can get more detailed

curve must have a horizontal tangent for symmetry reasons. i ong the
surface, however, the tangents of all curves must go through the same point
which lies on the abscissa axis at a distance of 1/h /m/ outside the sur-
face (this applies equally to tis cylinder add the plste; for explanation,
see Groeber, loc., cit., page 1i), With the help of these tangents, we can
then draw the terperature curves with the kind of accuracy that will

suffice for tochnical Jengineering/ purposes,

Computation of heat loss of sphere. The heat sarglus of the sphere

/cooled/ from 280° C via the oil bath temperature of 30° C is
S(Wly= 3 xcr 8, -
=3 ™ 0137700 250 = 1045 [keal . '

information on the tusperature curve along the radius. In the center, this




THIRTUT

Of this amount, the fracticn given in line 3 of Numerical Tuble 10 was
transferred to the oil at times t1, by, and ty; the rest romained in the
sphere.

Suprlemsntary Comment

While this article was at the printer's, Prof. M, Jalkob, Berlin,
told me about an american work by Williamson end idams who were after a
similar objective (cf., Williamson and L. H. adams, "Temperature Distri-
bution in Solids during Heating or Cooling," Physical Review, Vol XIV
Series II, 1919, page 99). Unfortunately, the authors always assume that
it is not the environmental temperature bul directly the surface tempera-
ture which is given, respectively, changed. This is the same thing as if
in this work here, only the perpendicular series were given for h R and
h X=o. Inthe first part of the wark the authors furth:rmore assume
that, after the settled state has set in, the surface temperature rises
constantly from timo t = O on in accordance with the law & = const. t.
Sincs this cage is of no consequonce from the technical /engineeri
viewpoint, we need not discuss it any further here,

In the second purt the authors assume that, after the setiled state
hzs sct in, the surface temperature suddenly jumps by the value &e. and
that the heating or cooling process now takes place. They accurately
computed the example of the sphcre and give the values & /@, for
varying distance r from the center of the sphere; seo Numericzl table 1ll.
The values for r/R = 0 of course correspond to the values Em / é)r, for
h R= oo in Rumerical Table 2, On the other hkend, the values of the other
perpendicular series constitute an important supplement here.

But I think that Numerical Table 12 is particularly notewarthy here;
this table is likewise taken from that work. It seems that the authors
have computed and compiled the cooling speced of the center and the axds
for the various bodies listed at the top of the teble. See Figurs 11,

: , Numerical Table 11
Temperztura in the Intericr of the Sphers When

ay iR

Ly 0

i Y e iy Vs s l LA e }

. 0000 ) 1.
T 0,004 1)

N0 | 1,00 ] 1,00 | 1,00 | 1,00 § 1,00 | 1,00 | 1,00
,00 | 1,00 | 1,00 | 1,0 | 1,00 | 0,97 | 0,39 | 0,000
00 | 1,00 1,00 | 0,09 | 0.91 | 0,70 | 0,18 | 0,00
09 1 0,98 [ A6 ; 0,88 [ 0.63 | 063 | 0,iD | 0,00
04164 | 0, 01 | 0,86 | 0.81 | 0,63 | 0,47 1 0,30 1 0,06 | 1,00
0,100 | 0, 0,70 | 0,66 } 0,60 | 0,47 { 0,32 [ 0,23 | 0,04 | 0,00
0,106 { 0,29 020 | 026 | 0,24 1 0,18 [ 0,12 | 049 | 0,02 | 0,00
1 0,256 | 0,46 10,16 | 0,14 | 0,13 | 0,10 | 007 | 0,06 | ,01 1 0.00 -
S 0400 | 0,04 1 0,04 | 0,03 ] 003 | 002 1 0.02] 001 | 0,00 1 OO
o {000,000 000 0,00]0C0 | 000] 000} 000|000

0G| 1
6,035 | 0,

. — -
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Murerical Table 12
Temperatures at Center or ixis of Vurious Bodiea ihon

Gp=11;

- ‘ _
oo (5] )
/A \ ‘) -
——— SR .
at I%:,‘L';n' | Zylinder thu or () -
Xt (:33"0 - Lknno : gfjel Linge | LAoge Kugsl . '

= w = Dme,

|

0,032 | 100 ' 100 ' 10 100 l 1,00 |- 300 ;
nosc | oma.| 095 | ooz | oo | os9 ! 063 .
000 { 9 | 090 1 asc | aws | o8t | o7l

oce | 08 | 072 « 061 | 063 | 063 | 041
024 | 070 | 040 ! x5 | o040 | o023 -] 019
o3x | 058 | 03 | 019 | 02 | 016 ) 009
0,800 g 03 | 0,01 003 oW 0,00
6o | 005 | 000 0,00 600 | — -
320 | 000 | - | - - -

Lagend: a - plate; b - square beam, length infinite; ¢ ~ cube;
d - cylinder, length infinite; e - ¢yrlinder, length
equals diameter; f - sphore. '

. comparison between the sphere and the cube or betweon the cylinder
of infinite le.gth and tre cylinder whose length equals the diameter would,
I think, be rather interesting here. ..lthough these relations apply only
to an infinitely large hect transfer numper, i.e.,_only for h R=oQ,
they nevertheless do pernit a transfer [onversio_/ to processes with a

© o g + e o ® = Yoo 44

R TRER. .t

P A g

a0

oo ) 161 hfeggrpiedt |

L AR

=1

finite heat tranafer number, if we are careful enouga.
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