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ABSTRACT 

As is well known, magnetoionic splitting of obliquely propagated 

HF radio waves may result in deviation of such waves from the great- 

circle plane between transmitter and receiver.  A computer raytracing 

routine has been employed at Stanford to investigate the properties and 

maximum extent of this phenomenon under realistic ionospheric conditions. 

It is concluded that for a 1000 km path the difference in azimuthal 

bearing between the ordinary and extraordinary modes could reach a maxi- 

mum of 0.5 deg, corresponding to an 0.25 deg variation of either mode 

from the true bearing.  However, in most practical bearing estimation 

problems, the difference is an order of magnitude smaller than this 

maximum, and thus is truly small in comparison with other sources of 

error. 
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I.  INTRODUCTION 

It is well known that interaction with the earth's magnetic field 

may cause obliquely propagated HF radio rays to deviate from the great- 

circle path determined by the initial direction of the ray.  Under certain 

ionospheric conditions an obliquely propagated ray may return to earth in 

a great-circle plane different from, but parallel to, the initial great- 

circle plane.  This phenomenon can be a source of error in determining 

the azimuthal bearing from a point of observation to th  source of a ray, 

as in a direction-finding system.  A number of invest ,ators have studied 

this problem with varying degrees of success; most of the limitations on 

their findings have arisen by virtue of extensive approximations neces- 

* sary to make the problem amenable to manual computation. 

In this report the results of a study of the possible import of 

lateral deviation caused by the earth's magnetic field will be described. 

A fairly sophisticated raytracing technique has been used in a high-speed 

digital computation routine.  It should be pointed out that this study 

represents only a brief inquiry into the properties and extent of lateral 

deviation.  A particular goal was to obtain a working estimate of the 

maximum value of deviation obtained in realistic propagation situations. 

For this reason, the results depicted herein are only representative 

examples of lateral deviation, rather than an exhaustive study of the 

phenomenon. 

Perhaps it is best to begin by summarizing some of the earlier work, 

which by and large gives a good account of the qualitative aspects of the 

problem, but a somewhat inconsistent picture of the maximum magnitude 

of bearing errors which one may expect. 
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Booker (1949)  employed his famous quartic formulation to obtain 

an analytical expression for the differential lateral displacement of a 

radio ray.  This expression, when integrated over the ray path, could 

yield a val-ie for the net lateral deviation of the ray.  However, Booker 

did not perform any calculations for this net effect, and observed only 

that its magnitude would be small except in unusual circumstances. 

Elghozi (1953) reviewed the work of Al'pert (1948) and extended Booker's 

analysis to determine the extent of lateral deviation over some specific 

paths (mostly near-vertical),  Millington (1951, 1954) reduced the 

quartic equation to a quadratic equation under a number of assumptions 

and looked at the limiting value of lateral deviation as the ray moved 

toward vertical incidence.  His notation is difficult to follow, but 

Gething (1962) reformulated Millington's work into a more conventional 

format and extended the calculations somewhat to arrive at an estimate 

of the maximum bearing error that is possible because of lateral devia- 

tion in a parabolic ionospheric layer.  Titherid?e (1959) employed many 

approximations to enable him to calculate lateral deviation in a linear 

or parabolic layer.  His parameterization of the problem is somewhat 

ambiguous, and his results do not compare in a reliable manner with those 

described in this report.  Furthermore, he compared his results with 

those of Chatterjee (1952) and drew attention to good agretr.ent between 

the two sets of results; yet his choice of layer critical frequency was 

significantly different from the choice Chatterjee made for the purpose 

of his calculation. 

All references are listed alphabetically in the Bibliography at the end 
of the paper. 
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Several other investigators have considered the lateral deviation 

problem, particularly for vertical incidence [see Kelso (1964) and NBS 

Monograph 80 for a review for this work].  A summary of the various 

aspects of direction finding may be found in the recent review article 

by Gething (1966),  Without embarking upon a critical review of the 

generous supply of previous work on this subject, it is important to 

observe that all of the previous work assumed a single linear or para- 

bolic ionospheric layer for ease of computation.  Use of a more realistic 

ionospheric profile should give one greater confidence in the results 

obtained.  Furthermore, in the previous work values were used for sev- 

eral ionospheric parameters, which are not found in practice; yet no 

attempts were made to verify that the use of such values does not alter 

the results significantly. 

As an example, Gething (1962) computes the maximum bearing error 

over a path where Y ■ 1/2,  which corresponds to signal frequencies in 

the vicinity of 2 MHz.  Near the gyro frequency the rays have stronger 

magnetic interaction and will display relatively large deviation.  Gething 

quotes a maximum bearing error of 6.8 deg for the ordinary mode and 4.1 

deg for the extraordinary mode in a parabolic ionospheric layer; however, 

this condition occurs where the ratio of plasma frequency at the path 

apex to plasma frequency at the layer maximum tends very closely to one 

(0.98 and higher).  In practice, very little energy ever gets this deep 

within the ionosphere without penetrating the entire layer.  Reference 

to Fig. 1 in Gething's paper will show that revising the maximum attained 

value of the ratio downward to 0.97 will reduce his estimate of maximum 

bearing errors by a factor of three.  One may also note that in Gething's 
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figure, the ratio mentioned above is incorrectly interpreted as the 

ratio of signal frequency to maximum usable frequency (MUF).  This 

incorrect interpretation was first pointed out to the author by Dr. 

J. M. Kelso of the ITT Electro-Physics Laboratories.  Finally, one 

should emphasize that Gething's computations were made for a range of 

about 600 km.  As will be pointed out later, range is a major factor 

in determining angular bearing errors. 
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II.  COMPUTATION OF LATERAL DEVIATION 

In 1963, Finney programmed a solution of the Haselgrove equations 

[Haselgrove (1954)] to trace rays through an ionosphere of arbitrary 

vertical electron density profile while employing a dipole model of the 

earth's magnetic field.  Dr. T. A. Croft of the Radioscience Laboratory 

at Stanford University has implemented Finney's work for use at the 

university.  A number of ionospheric ray paths have been computed by 

means of the resulting program, and by varying the parameters involved, 

a fairly good description of the qualitative features of lateral devia- 

tion may be constructed.  In accordance with the primary purpose of the 

present study, an estimate of the magnitude of the lateral deviation 

effect is obtained under various ionospheric conditions.  This technique 

appears to provide a quick and inexpensive way to obtain the bearing 

error over types of oblique paths found in practice.  In the summary of 

the technique that follows, it becomes readily apparent that a qualita- 

tive descripti?.: of the features of the phenomenon of lateral deviation 

is complex, since the effects of the several ionospheric parameters 

involved are highly interdependent. 

A convex electron density profile with a critical frequency of 9 MHz 

(see Fig. 1) was employed for most of the computation.  Such a density 

profile is fairly representative of daytime ambient conditions. 

The magnetic azimuth 0^,     defined as the clockwise angle from the 

vertical plane that passes through the magnetic field lines to the ver- 

tical plane that passes through the initial ray direction, is an important 

parameter.  For 0M - 0 deg or 180 deg the raypath remains in the great- 

circle path between take-off and landing points.  For 0  = 90 dee or 
M 
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A433I8 
ELECTRON DENSITY (electrons p«r cm3) 

FIG. 1.  ELECTRON DENSITY PROFILE USED IN COMPUTATION 
OF LATERAL DEVIATION.  Critical frequency, 9 MHz. 

270 deg the ray path may be diverted from the great-circle path while 

the ray is in the ionosphere; but it always returns to the great-circle 

path upon returning to earth.  These properties were observed analytically 

by Booker (1949); and the computations performed by the author of the 

present study, using the Finney raytracing routine, bear out the pre- 

dictions.  If the magnetic azimuth for an oblique path lies between the 

two extremes, a net lateral deviation with attendant bearing error may 

arise. 

Figure 2a depicts an example of a ray path that exhibits net lateral 

deviation upon returning to earth.  The observation that the ray comes 

to earth in a plane parallel to, but not necessarily coincident with, 
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RAY PATH 

TRANSMITTER 

30RESIGHT  FROM 
TRANSMITTER TO RECEIVER 

APPARENT JL 
BEARING 

A433I3 

FIG. 2.  EXAMPLE OF A RAY PATH EXHIBITING NET LATERAL DEVIATION. 

a. Profile of ray path 

b. Ground projection of ray path 

its plane of departure has been confirmed analytically by Budden (1961) 

directly from the Booker formulation.  The condition comes about because 

the ray direction departs from the plane of incidence while in the iono- 

sphere, although the wave normal remains in the plane of incidence at 

all times.  Figure 2b shows the ground projection of the ray path.  The 

ground projection contains the pertinent information for azimuthal bearing 

determination.  Direction A is the true bearing to the transmitter, while 

direction B indicates the apparent bearing.  The angle of error in bearing 

is e. 

Figure 3a depicts an example of the ground projection of the ordinary 

and extraordinary rays in a ray path with lateral deviation.  The angle 
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ORD EXT, 

(a) 

-ORD 

-EXT. 

(b) 

A433I4 

FIG. 3.  REPRESENTATIVE GROUND PROJECTIONS OF ORDINARY 
AND EXTRAORDINARY RAY PATHS EXHIBITING NET LATERAL 
DEVIATION. 

a. 0M = 30°,  ß = 32°,  f = 10 MHz,  R = 1000 km 

b. 0M - 54°,  ß = 27°,  f = 12 MHz,  R = 1022 km 

e^    is the angular bearing error for the ordinary ray, and 3  for the 

extraordinary ray.  A convenient measure of bearing errors is £6, 

which is the angular magnitude of the difference between 0  and 6 ; 
o      x 

this measure is useful because the ray paths for the two modes are 

usually much like mirror images of each other; therefore 

1 o  ^true1   2    ' 

and similarly for 6  .     As is well known (see NBS monograph 80), the 

point of n lection for the ordinary ray is deflected toward the nearer 

pole, while the extraordinary ray is deflected toward the equator.  If 

used carefully, this observation serves as a guide for outlining quali- 

tative features of the ray path behavior. 
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Under some conditions, the loci of the ground projections of the 

ray paths are more distorted than in Fig. 3a, as is indicated in Fig. 

3b; however, the essential features of the situation do not change much. 

One comment is in order here—namely, that the deviated rays are 

near the great-circle path in the region of the path midpoint, except 

for the case of propagation transverse to the field lines.  This means, 

contrary to the conclusions drawn by some observers, that the deviated 

ray does not sample a significantly different part of the ionosphere than 

does an undjviated ray, particularly near the path apex, where ionospheric 

variability is large and tends to have maximum effect upon ray path 

parameters. 

Figure 4 shows the variation ci bearing error £ß    vs magnetic 

azimuth.  For the paths used in obtaining Fig. 4 the signal frequency 

f was 14.0 MHz; the take-off angle ß  was 31.5 deg; the range  R was 

f= 14.0MHz 
)8=3I.50 

R^ 1000 km 
DIP =62° 
RECEIVER AT STANFORD 

30        60 
MAGNETIC AZIMUTH, ^ (deg) 

A433I5 

FIG. 4.  DIFFERENCE BETWEEN  o  AND x  BEARINGS VS 
MAGNETIC AZIMUTH.  Ray paths chosen near penetration 
to maximize difference in bearing. 

9 SEL-68-045 

fSM^^ 



1000 km; and the magnetic dip at the receiver was 62 deg.  The maximum 

difference between the bearings of the two modes is roughly 0.2 deg, 

occurring near 45 deg magnetic azimuth.  The magnitude of  ^ vs 0 
M 

was also computed with other values of the parameters; however, because 

of the small number of cases surveyed in this study, it is valid only to 

suggest that the effects of net lateral deviation have a broad maximum 

centered at an angle about midway between the field direction and the 

perpendicular to the field direction.  This behavior occurred in ray- 

tracings in all four of the azimuthal quadrants.  This result also 

formed a conclusion of the sevt-al papers cited in the Introduction. 

It is interesting to observe the variation of bearing error with 

range.  Figure 5 shows the result of varying the range for the case 

where 0^  = 45 deg,  magnetic dip = 62 deg, and frequency is chosen to 

08 

| 
<^   06 

öl zu 
LÜCD 
R       0 2 
Li. 
U. 
a 

4 
l 
\ 

\ 
\ 
\ 
\ 

f «0.95 MUF 

6 =45° 

DIP=620 

O «COMPUTED POINT 

I 

\ 
\ 

■-o^-. 
 -o 

J L I i 1 I i i 
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500 1000 1500 
RANGE (km) 

2000 

FIG. 5.  DIFFERENCE BETWEEN o AND x  BEARINGS 
(^6)  VS  RANGE  R.  Receiver at Stanford. 
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be roughly 0.95 MUF.  Since apparent bearing errors are small, one finds 

i + a 

where JL^    and i^ are, respectively, the ordinary and extraordinary 

lateral deviations in km, and R is the range in km.  A slow variation 

of the lateral deviation with range gives rise to a variation of tB 

approximately as  1/R over the range increment 500-2000 km, as is shown 

in Fig. 5 by a comparison of the computed points with the dashed curve. 

For shorter ranges, of course, this trend must change; however, shorter 

range paths have not been computed. 

It was found that bearing errors tended to be larger for smaller 

magnetic dip, other conditions being held fixed as closely as possible. 

A plot of the difference, tB%     between o and x bearings (i.e., 

bearing error) vs signal frequency for two magnetic dips (62 deg and 

0 deg) is shown in Fig. 6.  Particularly for F-layer propagation, the 

effect is larger at 0 deg dip.  As far as the interaction of the ray 

with the magnetic field is concerned, it is not the magnetic azimuth in 

itself that is important, nor the magnetic dip in itself.  The really 

important parameter is the angle between the field lines and the ray 

direction.  For this reason it is only partially satisfactory to describe 

the lateral deviation of radio rays in terms of parameters such as mag- 

netic azimuth and magnetic dip which are descriptive of an oblique path 

as a whole. 

In line with the primary interest in this study, it was thought 

desirable to determine some value for the maximum bearing error resulting 

from lateral deviation under ionospheric conditions which might be met in 
• 
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5       10 
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FIG. 6.  DIFFERENCE BETWEEN o AND 3t  BEARINGS VS 
FREQUENCY FOR I^GNETIC DIP ANGLES OF 0° AND 62°. 
Range = 1000 km, magnetic azimuth ■ 45 de^. 

practice.  As indicated by Figs. 4, 5, and 6, the effect is largest 

(1) for the shorter ranges; (2) near the MUF; (3) at 0 deg magnetic 

dip; and (4) for propagation at 45 deg from the magnetic meridian. 

For a range of 1000 km, it is seen in Fig. 6 that the maximum value of 

£6     for F-layer propagation in a region of 0 deg magnetic dip is roughly 

0.5 deg (corresponding to a situation in which the ordinary and extraor- 

dinary modes each have an apparent bearing 0.25 deg away from the true 

bearing).  A plot similar to Fig. 5, except for employing a magnetic dip 

of 0 deg, would demonstrate that shorter ranges can increase this maximum 

value several-fold to roughly 2 deg at 500 km; however, the principal 

interest here was in ranges of 1000 km and more.  It is worth repeating. 
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however, that any estimate of maximum bearing errors due to lateral 

deviation over oblique paths should include the range as a parameter 

13 SEL-68-045 
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III.  ACCURACY AND SIGNIFICANCE OF THE COMPUTATION 

Comparison of the predictions made in Section II for lateral- 

deviation bearing errors with predictions made by previous investigators 

shows some divergences.  Generally speaking, the Finney program gives 

reasonable values for lateral deviation which appear to be consistent 

within themselves and are consistent qualitatively with what has been 

predicted from the analytical considerations of Booker and Millington. 

However, some means of verification of the accuracy of computations 

based on the Finney program is clearly necessary.  Such a need became 

apparent in the present investigation when the computations for several 

paths were performed with transmitter and receiver lorations interchanged. 

For the reversed paths, the angular deviation from the great-circle bear- 

ing differed by as much as 10 percent from that for the initial path con- 

figurations.  This suggests that round-off errors made an appreciable 

contribution to the computed lateral deviation. 

There are several possibilities for checking the computations 

referred to above.  First, Jones (1968) has programmed another version 

of the Haselgrove equations which is mor^ accurate than the Finney ver- 

sion, although it is still in the developmental stage.  Comparative com- 

putations performed with both programs would lend insight into the 

accuracy with which the tedious computation routine itself is carried 

out.  Secondly, it would be extremely satisfying to provide experimental 

verification of bearing errors caused by lateral deviation.  This project 

would probably involve the use of a large-aperture interferometer with a 

means for determining fairly detailed information about the ionospheric 

profile over the path.  (Knowledge of ionospheric tilts would be 
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extremely important.)  Finally, a computer-aided analytical study could 

also provide verification for the computations performed for this report, 

although this too appears to present a sizable task. 

Some years ago the potential bearing errors caused by magnetoionic 

splitting were considered negligible in most applications; however, with 

the gathering of knowledge about ionospheric phenomena, the state of the 

art has progressed to a point for which bearing errors such as those 

described here may be significant.  Of course, the natural field of 

application of these results would be in direction finding, where lateral 

deviation may bias the estimate of bearing to the transmitter.  If the 

constraint of making bearing estimates in minimum time is recognized, 

the bearing variance caused by the numerous sources of error present 

will almost surely be significantly larger than any bearing bias caused 

by lateral deviation.  (See Gething, 1962, for estimates of variance.) 

A further factor in interpreting the bearing errors caused by 

lateral deviation is that the estimates presented in the present report 

were computed for the two characteristic modes, ordinary and extraordinary. 

In general, an antenna (array) will not receive the characteristic polari- 

zation.  To determine the effects of lateral deviation on the accuracy 

of azimuthal bearing estimates obtained with a practical receiving array 

setup, one should employ the estimates for errors for each mode (as in 

the case presented herein), together with statistical information as to 

the fading of the ordinary and extraordinary modes.  One could then, in 

principle, obtain a probability distribution of apparent bearing between 

the two extremes of bearing (ordinary on one side of boresight bearing, 

and extraordinary on the other). 

15 SEL-68-045 
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To summarize the results of this investigation, it may be said that 

the effects of lateral deviation on azimuthal bearing estimates may be 

detectable, particularly in the extreme cases cited in this report.  For 

cases of practical interest, this phenomenon leads to errors that are 

small in relation to other sources of error. 
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