UNCLASSIFIED

AD NUMBER

AD832961

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited. Document partially illegible.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; MAR 1968. Other requests shall be referred to Air Force Technical Application Center, Washington, DC 20333. Document partially illegible. This document contains export-controlled technical data.

AUTHORITY

usaf ltr, 25 jan 1972

PRECISION LOCATION OF UNDERGROUND NUCLEAR EXPLOSIONS USING TELESEISMIC NETWORKS AND PREDETERMINED TRAVEL-TIME ANOMALIES

i March 1968

Prepared for

AIP FORCE TECHNICAL APPLICATIONS CENTER Washington, D.C.

By
E. F. Chiburis
TELEDYNE, INC.

Under
Project VELA UNIFORM

JUN 6 1968

NEWSTUS

Sponsored By

ADVANCED RESEARCH PROJECTS AGENCY Nuclear Test Detection Office ARPA Order No. 624

MISSING PAGE NUMBERS ARE BLANK AND WERE NOT FILMED

PRECISION LOCATION OF UNDERGROUND NUCLEAR EXPLOSIONS USING TELESEISMIC NETWORKS AND PREDETERMINED TRAVEL-TIME ANOMALIES

SEISMIC DATA LABORATORY REPORT NO. 214

AFTAC Project No.: VELA T/6702

Project Title: Seismic Data Laboratory

ARPA Order No.: 624

ARPA Program Code No.: 5810

Name of Contractor: TELEDYNE, INC.

Contract No.: F 33657-67-C-1313

Date of Contract: 2 March 1967

Amount of Contract: \$ 1,736,617

Contract Expiration Date: 1 March 1968

Project Manager: William C. Dean (703) 836-7644

P. O. Box 334, Alexandria, Virginia

AVAILABILITY

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Chief, AFTAC.

Wash, D.C. 20333

This research was supported by the Advanced Research Projects Agency, Nuclear Test Detection Office, under Project VELA-UNIFORM and accomplished under the technical direction of the Air Force Technical Applications Center under Contract F 33657-67-C-1313.

Neither the Advanced Research Projects Agency nor the Air Force Technical Applications Center will be responsibile for information contained herein which may have been supplied by other organizations or contractors, and this document is subject to later revision as may be necessary.

ABSTRACT

Using a series of 19 explosions with accurately known epicenters within a 2500 km² area of the Nevada Test Site, the location effectiveness is demonstrated of applying predetermined travel-time anomalies to a limited network of teleseismic stations (comprised of between 4 and 13 stations greater than 1900 km distance). Three different travel-time tables were used: Jeffreys-Bullen; Herrin 1961 version; and Herrin, November 1966 version; and two different computer programs: LOCATE and SHIFT, the former which minimizes the sum of squares of residuals and the latter which minimizes the sum of squares of relative residuals. The mean location error for the 19 known epicenters, obtained without time anomalies, is about 26 km, and with anomalies is less than 3 km, regardless of travel-time table and regardless of program.

It is further demonstrated that neither the number of stations in the range of 3 or 4 to 13 nor the distance aperture of the network has an effect on the location of known surface events, although the azimuth aperture does.

Confidence estimates are made in three ways: the standard confidence ellipses; maximum-relative-error polygons; and standard-deviation contours about the final solution. It is shown that by applying travel-time anomalies, the standard confidence ellipses, which estimate the reliability of the data in a least squares sense, can be reduced in area by factors of 1/5 to 1/152 and still enclose the true epicenter.

A discussion is given of the stability of travel-time anomalies across the Nevada Test Site area, and of some problems involved in determining usable anomalies from earthquakes.

ACKNOWLEDGEMENTS

The author wishes to express his appreciation to Mr. R. O. Ahner for his assistance in seismic analysis and in program writing and modification; to Mrs. H. N. Johnson for her assistance in data reduction and to the research staff of the Seismic Data Laboratory with whom many fruitful discussions were held.

TABLE OF CONTENTS

	Page No.
ABSTRACT	i
ACKNOWLEDGEMENTS	ii
INTRODUCTION	1
DEFINITIONS	2
METHOD	3
DESCRIPTION OF THE DATA	5
PROCEDURE	5
RESULTS OF LOCATION	6
CONFIDENCE REGIONS	10
IMPROVING THE ESTIMATES OF TRAVEL-TIME ANOMALIES	14
CONCLUSIONS	17
REFERENCES	20
APPENDIX I	Al
APPENDIX II	Δ 5

LIST OF TABLES

TITLE	TABLE	NO
Event Information	I	
Station Anomalies and Residuals	II	
Arrival Time Data	III	
Location Errors when Neither Residuals nor		
Anomalies are used	IV	
Location Errors When Residuals or Anomalies		
are used	٧	
Actual Time Errors (Zero Mean) and Standard Deviations		
for all Events, With and Without Travel-Time Anomalies	VI	
Confidence Regions SHIFT-61	VII	
Relative Travel-Time Anomalies	VIII	
Relative Travel-Time Anomalies	IX	
Relative Travel-Time Anomalies	Х	

LIST OF FIGURES

FIGURE TITLE	FIGURE	NO.
Nevada Test Site Area	1	
Location error vs number of recording stations	2	
Location error vs azimuth aperture	3	
Location error vs distance aperture	4	
Maximum-relative-error output from SIGRID;		
event Bourbon	5	
Maximum-relative-error output from SIGRID;		
event Scotch	6	
Maximum-relative-error output from SIGRID;		
event Bourbon with three stations	7	
Maximum-relative error output from SIGRID;		
event Scotch with three stations	8	
Standard-deviation output from SIGRID;		
event Bourbon	9	
Location shifts with Longshot anomalies	10	
Faulted region illustrating difference when		
time-calibrating with residual R or anomalies A	11	

INTRODUCTION

It has been well-established that station time residuals and travel-time anomalies (relative residuals) are not constant but change significantly from one epicentral region to another at a rate dependent upon the region and the station or, with travel-time anomalies, upon the station-pair separation (see, for example, Chiburis and Dean, 1965; Chiburis, 1966a,b, and 1968). However, the time errors are reasonably well-behaved within each region such that they can be predicted (time-calibrated) for additional events occurring in the same region.

Any location scheme which assumes that there are no time errors other than those due to reading; or that a regional or azimuthal correction is valid for all stations in a network; or that a single-station correction for one region is adequate for another will necessarily do a poor job of locating epicenters. This report then, is primarily concerned with the teleseismic location accuracy obtainable for a particular region by using either station residuals, travel-time anomalies, or no corrections at all. Secondarily, we are concerned with the performance of two computer programs presently in use at the Seismic Data Laboratory, LOCATE and SHIFT. The principal difference between the two programs is that SHIFT minimizes in a least-squares sense the relative-anomaly errors rather than the absolute residuals.

Also investigated is a technique whereby limits of the solution are estimated either on the basis of an acceptable network standard deviation of time errors or of maximum relative-time errors at any station pair within the network.

DEFINITIONS

Travel-Time Anomaly.

The travel-time anomaly at station i relative to station j is defined as

$$A_{i/j} = T_i - T_j - H_i + H_j + e_i - e_i$$

where T is the observed arrival time, H is the expected travel time according to some travel-time and distance relationship, and e is a correction for ellipticity. In this report, values of H were computed from the Jeffreys-Bullen, Herrin 1961, and Herrin 1966 (November) travel-time tables. The above definition of anomaly makes no assumptions concerning crustal P-wave velocities (for station elevation corrections); it simply measures the net effect of all causes of travel-time errors at any station with respect to any arbitrary reference station.

Residuals.

The residual at station i is

$$R_{i} = T_{i} - T_{o} - (H_{i} + d_{i})$$

where $T_{\rm O}$ is event origin time and $d_{\rm i}$ is a correction both for ellipticity and for the elevation of the ith station assuming a value for the angle of incidence and for the P-wave velocity between the station and sea-level. Here, H is computed from the Herrin 1961 table which is the standard relationship in the particular version of LOCATE used for this report.

METHOD

The program LOCATE uses the standard Geiger technique, briefly described as follows:

Let the errors which are to be minimized in a least-squares sense be defined as

$$E_{i} = R_{i}^{!} - R_{i}^{0} + R_{i}$$

where R_i^0 is the observed residual at station i, R_i is the previously-determined residual for that region and $R_i^!$ is a theoretical residual such that

$$R_{i}^{!} = f(\lambda, \phi, Z, T_{o}) = \frac{\partial H_{i}}{\partial \lambda} d\lambda + \frac{\partial H_{i}}{\partial \phi} d\phi + \frac{\partial H_{i}}{\partial Z} dZ + \frac{\partial H_{i}}{\partial T_{o}} dT_{o}$$

where λ , ϕ , Z, and T_o are respectively the event longitude, latitude, depth, and origin time, and H is the expected travel time. As a change in origin time is the same as a change in expected travel time,

$$\frac{\partial H_i}{\partial T_o} = 1.$$

Also, to compare the two programs more closely, depths were restrained throughout such that

$$\frac{\partial H_i}{\partial Z} = 0.$$

Therefore

$$R_{i}^{!} = \frac{\partial H_{i}}{\partial \lambda} \quad d\lambda + \frac{\partial H_{i}}{\partial \phi} \quad d\phi + dT_{o}$$

It is desired that $\sum_{i=1}^{N} E_{i}^{2}$ be a minimum for N stations so

$$\frac{\partial}{\partial \mu_{k}} \left(\sum_{i=1}^{N} E_{i}^{2} \right) = 0 \quad k = 1,2,3$$

where $\mu_1 = d\lambda$, $\mu_2 = d\phi$, and $\mu_3 = dT_0$.

This differentiation yields three normal equations which can be solved simultaneously for the errors in the event parameters $d\lambda,\ d\phi,$ and $dT_{_{\rm O}}.$

The program SHIFT, on the other hand, defines an anomaly error at station i relative to station j as

$$dA_{i/j} = A_{i/j} - \overline{A}_{i/j}$$

where $\overline{A}_{i/j}$ is the previously-determined relative anomaly for that region. The relative errors to be minimized in a least-squares sense are

$$E_{i/j} = dA_{i/j} - dA_{i/j}$$

where dA'_{i/j} are the theoretical relative anomalies such that $dA'_{i/j} = \frac{\partial^A i/j}{\partial \lambda} \ d\lambda \, + \, \frac{\partial^A i/j}{\partial \phi} \ d\phi \, + \, c_j$

where c. is the average error, or bias, at the reference station j.

It is desired to minimize $\sum_{i=1}^{N} E_{i/j}^{2}$, so, as before,

$$\frac{\partial}{\partial \mu_{k}}$$
 ($\sum_{i=1}^{N} E_{i/j}^{2}$) = 0 k = 1,2,3

where μ_1 = d λ , μ_2 = d ϕ , and μ_3 = c $_j$. Solving these three normal equations yields the event-parameter corrections d λ , d ϕ , and the reference-station bias c $_j$.

DESCRIPTION OF THE DATA

All of the time data used in this study were derived from nuclear explosions detonated within the Nevada Test Site (NTS) area (Figure 1). Table I lists the event information. The events selected as references from which residuals and anomalies were measured are Bilby or Tan, the series of Bronze, Corduroy, and Buff, or the series of Nash, Agile, and Commodore. These several events were necessary so that residuals or anomalies could be obtained for an adequate number of recording stations. Table II lists the station anomalies, relative to RK-ON, computed from the three travel-time tables, in addition to the residuals computed from the Herrin/1961 table. A key letter, indicating which series of events were used as references in determining the corrections, is given in the last column.

PROCEDURE

Station records of all explosions were routinely read, with the identical networks of stations and arrival times being used for both programs. Depths for all events were restrained to the surface. Raw arrival times (Table III) were input to SHIFT and used within the program in conjunction with the appropriate input travel-time anomalies. For LOCATE, station arrival times were corrected by the residuals prior to their input into the program. These input times for LOCATE are obtained by subtracting the residuals in Table II from the arrival times input to SHIFT (Table III).

A description on the use of program SHIFT is given in Appendix I.

RESULTS OF LOCATION

Without Time Corrections.

Table IV lists the location errors, in kilometers, when neither residuals nor anomalies are applied to the event arrival times (the times have been corrected, however, for station elevation and ellipticity). The mean error for 17 events using LOCATE is seen to be 25.8 km and using SHIFT (Herrin 61) 25.9 km; the results from the two programs using the same travel-time table are essentially in agreement. With the J-B and Herrin 66 tables, the results using SHIFT are 27.7 km and 20.8 km respectively. It is not known at this time if the apparently better results obtained by using the Herrin 66 table are significant or not. It would be necessary to locate a larger sample of events to determine the effectiveness of this table for the networks used in this study and for the NTS area.

The resultant average errors of about 26 km demonstrate the best one could hope to do when no allowances are made for residuals (LOCATE) or anomalies (SHIFT).

With Time Corrections.

When the residuals or anomalies are determined for a particular region, such as the Nevada Test Site, and for each station which is to be used in subsequent location networks, the resultant location errors can be reduced by at least an order of magnitude. Table V lists the location errors, in kilometers, when either residuals (LOCATE) or relative anomalies (SHIFT) are applied to the event arrival times. The mean error for 17 events using LOCATE is now seen to be 2.98 km and using SHIFT (Herrin 61) 2.86 km. Again, the mean values from either program are in agreement, although individual event locations differ by as much as 4.1 km between the two methods. This difference implies, of course, that the programs are computing in significantly different ways but yield about the

same answer on the average. Using the J-B and Herrin 66 tables, the SHIFT mean errors are 2.92 km and 2.59 km respectively which suggests that when anomalies are applied, any reasonable traveltime table is adequate.

Actual Time Errors.

Although the events used for locating in this study were of a reasonable size which made film reading straightforward, time errors at the stations due to misreading, imperfectly-known anomalies, etc., were far from negligible. Actual time errors at station i relative to mean zero for the jth event are shown in Table VI, computed as

$$E_{i/o}^{j} = A_{i/r}^{j} - \overline{A}_{i/r} - \overline{E}^{j}$$

where A^{j} is the anomaly for the jth event, \overline{A} is the previously-measured input anomaly for the region of the jth event, and \overline{E}^{j} is the mean error for the jth event. Also included in this table are the errors for \overline{A} = 0 (which assumes that there are no anomalies). Event standard deviations are given at the far right of the table. As shown in the table, the actual standard deviations when anomalies are not used average about 0.86 sec, with errors as high as 1.9 sec. When allowances are made for the anomalies, the actual standard deviations average about 0.16 sec, a reasonable figure for reading error alone, although individual errors are as high as 0.8 sec. The point to be made is that the set of events used for testing the validity of applying anomalies is not unusual, because reading or other time errors are not particularly small, some even being quite large.

A similar study is presently being undertaken in which the set is composed of low-yield events, at least in a signal-to-noise ratio sense. However, selecting this set so that the events are recorded at a significantly smaller size than those used in this study is difficult because several of the events listed in Table I have quite low recorded signal amplitudes due to

deliberately-reduced station magnifications. The computed magnitudes, where known, are given in the following list for all 17 events:

Event	Magnitude
Fore	5.2
Buff	5.1
Chartreuse	5.3
Auk	4.9
Piledriver	5.5
Bourbon	5.1
Dumont	5.5
Agile	Not Calculated
Nash	5.2
Commodore	5.7
Greeley	6.3
Klickitat	5.0
Turf	4.9
Piranha	Not Calculated
Scotch	5.5
Corduroy	5.6
Bronze	5.2

Film Reading of First Extrema.

One of the methods used in this study, which can substantially reduce errors, is to permit readings of times other than those for first motion. Regardless of event size, first motion is usually difficult to read consistently to within 0.1 sec. However, by reading the arrival time of the first extremum (peak) rather than first motion at all stations, timing is considerably more precise. Therefore, most of the events in this study were read for this phase, although a few were so large the traces went off scale forcing the reading of first motion. The excellent location results show that, by reading either

first extrema or first motions, one does not lose, and may actually gain, network capability.

Mumber of Stations.

The number of stations of which the networks were comprised for locating the set of 17 NTS events varied between 4 and 13. Figure 2 shows the location errors, in kilometers, as a function of the number of stations for SHIFT-H61, both with and without anomalies. The results without anomalies show no dependence on the number of stations, and those with anomalies are too few to derive a clear relation. This result suggests that it is not necessary to require a large number of stations for locating accurately if proper allowances are made for the station traveltime anomalies.

Effect of Aperture.

Figure 3 shows the location errors in kilometers, of the 17 events as a function of azimuth aperture which is calculated as

$$d\theta_{i} = |\theta_{max} - \theta_{min}|$$

where θ is epicenter-to-station azimuth. Included on the figure are the results obtained both with and without travel-time anomalies. The errors appear to have a fairly certain dependence on the aperture of the azimuth, especially for the results obtained with anomalies. The actual dependence is hard to ascertain due to lack of data points at apertures less than 80°. This effect is presently being investigated.

The effect of distance aperture on the location error is negligible, as seen in Figure 4, both with and without anomalies.

CONFIDENCE REGIONS

Confidence regions were computed within SHIFT in the usual manner (e.g., Flinn, 1965) for all events, both with and without travel-time anomalies. Table VII lists, by event, the areas of the computed ellipses and the factors of reduction in ellipse areas when anomalies are used. Without anomalies, two events (Fore and Chartreuse) were not within the ellipse at the 95% level. With anomalies, all events were within the ellipse and the ellipses were reduced in area by factors of 5 to 152, with an average reduction of about 45. This reduction in ellipse area points out the necessity and value of travel-time anomalies.

Maximum Relative Errors.

When computations are made for confidence regions, the variances, or standard deviations, of the final solutions are used in the estimates. These variances are merely indicators of the goodness-of-fit in the least-squares procedures and if the number of degrees of freedom is small, the variances and, hence, the confidence-region estimates become unrealistic. (In fact, when as few as three stations are used, no estimate at all can be made of the location error, as the solution is unique). For example, the events Bourbon and Scotch have respectively actual standard deviations of 0.08 and 0.23 sec (Table VI, with travel-time anomalies) and N=4 and 5. ellipse area for Bourbon is 7118 ${\rm km}^2$ and the location error is 1.9 km, while for Scotch the area is 2309 ${\rm km}^2$ and the error is Both ellipse areas are abnormally high due strictly to the small number of stations used in locating, although the time data from these stations and the network apertures are as good as the data and apertures from the other networks. Therefore, when few stations are used in locating events, it may be of value to estimate the location error by considering the maximum permissable relative time error at any station-pair in the network rather than a statistical estimate using the variance of the

goodness-of-fit. In this way fairly good estimates of location error can be made even when the number of stations is three.

Figure 5 shows the maximum relative errors (X100) using Bourbon data for a grid of locations about the final SHIFT solution. This grid is computed as an option within SHIFT by subroutine SIGRID. The scale in latitude is 1.0 km and in longitude 2.4 km between center points of each number field of 4 spaces. With this proportion, the scale is equal in all directions. The errors at each grid point are computed as

$$E_{i/r} = T_i - H_i - T_r + H_r - \overline{A}_{i/r}$$
 $i = 1, 2, ..., N$

where all quantities have previously been defined. The maximum relative error, regardless of reference station bias, from this set of N errors is then

$$E_{\text{max}} = (E_{i/r})_{\text{max}} - (E_{i/r})_{\text{min}}$$

at each grid point.

The dashed-line polygon in Figure 5 is the contour of the (known) maximum relative error (0.18 sec) at the true epicenter marked at X. The circle enclosing the value 0.11 is the maximum relative error as a result of the final solution obtained with SHIFT-H61. The solid-line polygon is the contour of the maximum relative error estimated to be 0.4 sec (0.3 sec higher than that at the final solution) for this event. A seismic analyst can usually estimate his reading errors quite well, and if the effects of previously-determined relative travel-time anomalies are removed (they must be determined, not estimated), the estimates can be used to contour the maximum relative error. A relative error estimate of 0.4 sec is liberal for an event of the size of Bourbon, but it is an example of the manner of using any estimate. The approximate area of the estimated polygon is less thar 340 km². The area of the corresponding ellipse previously computed (Table VII) is 7118 km2.

Figure 6 shows similar results for Scotch. Again, an error estimate 0.3 sec higher than that obtained from the final solution (0.5 sec) is used to contour 0.8 sec. The approximate area of the estimated polygon is less than 400 km 2 compared to 2309 km 2 of the standard confidence ellipse.

Although Scotch was a large event and the reading errors were expected to be small, an actual maximum relative error of 0.7 sec is observed. The reason for this appears to be the slight instability of the relative anomalies for the Nevada Test Site. Scotch was located about 40 km to the northwest of Bourbon, and hence about 40 km from the area of the reference events used for determining the anomalies. For networks the size of that used for Scotch (80° azimuth aperture), it is not surprising that the anomalies are not constant.

Figures 7 and 8 show the maximum-relative-error grid for a network of three stations obtained by deleting SV3QB from Bourbon and SV3QB and PG-BC from Scotch. For three stations, it is impossible to estimate the location errors by the usual means as the statistical degrees of freedom are reduced by zero. However, with maximum relative errors, reliable estimates can be made. Again, for Bourbon, which is located within the area of the reference events, an error estimate of 0.4 sec is contoured (Figure 7), and for Scotch, 40 km from the area of the reference events, an error estimate of 0.7 sec is used (Figure 8). The approximate areas of the polygons for Bourbon and Scotch are 350 km² and 630 km² respectively. Therefore, by using estimates of the maximum relative errors, reasonable estimates of location errors can be made when the usual statistical confidence estimates are impossible to compute.

Standard Deviation Ellipses.

Subroutine SIGRID also produces an output of network standard deviations, in addition to the maximum relative errors, for a similar set of grid positions.

Figure 9 shows the zero-mean standard deviation output for Bourbon, with anomalies. The values (X100) at each grid point k are computed as

$$\sigma_{k} = \begin{bmatrix} \sum_{i=1}^{N} (A_{k/r}^{k} - \overline{A}_{i/r} - E_{r})^{2} \\ \frac{1}{N-2} \end{bmatrix}^{1/2}$$

where A^k is the computed anomaly at k, \overline{A} is the predetermined anomaly, and E_r is the average error, or bias, at the reference station r. This output actually shows how the least-squares procedure within SHIFT minimizes the sum of squares (or standard deviation) of errors. The dashed-line ellipse is the contour of the known standard deviation of time errors for Bourbon. The standard confidence ellipse would be the same as that shown in Figure 5.

Therefore, by using the parameters of the computed confidence ellipse, the maximum-relative-error SIGRID, and the standard-deviation SIGRID, the utmost information is being elicited from the time data.

IMPROVING THE ESTIMATES OF TRAVEL-TIME ANOMALIES

The computed travel-time anomalies used in this report were derived from a few selected reference events to show the teleseismic network capability for locating events in the Nevada Test Site area. It is known that the anomalies, for some stations and for this area, are not constant but exhibit some variability at different positions within the area shown in Figure 1. much better estimate of the true travel-time anomaly for the NTS area can be obtained by averaging the anomalies at each station for all 19 events in this study. These average anomalies, given in Table VIII using the Herrin 66 travel-time table, should be used for locating new events in the NTS area when a network is comprised of any of the listed stations. Table VIII is a computer output of program TIMEANOM; the key circled numbers shown are described in Appendix II. Tables IX and X list the station anomalies for the Jeffreys-Bullan and Herrin 61 travel-time tables respectively.

Other Variables for Computing Anomalies.

All of the station anomalies in this report were, of course, computed from nuclear explosions, the positions of which are extremely well known in the three dimensions of latitude, longitude, and depth. Past studies (Chiburis and Dean, ibid, and Chiburis, ibid) and studies currently in progress show that earthquakes are not quite so well behaved as explosions for several reasons. First, simple epicenter mislocations can yield errors in anomaly estimates as high as two or three seconds for large networks. The mislocation effect is described in Chiburis and Dean, ibid, p. 31 ff. Second, and perhaps more serious, depth effects must be taken into account. There are no reasons to suppose that the anomalies measured for shallow events in a particular region may not change significantly for deep events in the same region. Added to these effects are the problems of depth errors in the located events.

One of the current studies at the SDL has shown conclusively that for a North American Network of 21 LRSM stations, the station anomalies computed from the explosion LONG SHOT on Amchitka Island are not in as good agreement as expected with the anomalies computed from earthquakes in the large region of the Rat-Andreanof Is. at depths of 15 km to 300 km (discrepancies as large as 1.5-2.0 sec). At least part of the difficulty seems to be associated with hypocenter mislocation, because when the set of earthquakes was relocated by using the LONG SHOT anomalies, most of the epicenters shifted an average of about 50 km after which, in general, the serious time errors were significantly reduced. Certainly the LONG SHOT anomalies are not valid for all of the events in the set because the linear size of the region is about 800 km or more, much too large for a single set of anomalies to exist throughout, but they should be valid for events very near LONG SHOT and these still shift 40-50 km. Figure 10 shows the directions of the shifts, indicating that large bias effects may exist for the Andreanof locations as reported by the U.S.C. and G.S. This study is continuing.

Anomalies vs. Residuals.

The preceding results indicate that comparable location accuracies for explosions are obtained when using either relative anomalies or absolute residuals. The question may arise then as to what differences, if any, one may expect when trying to determine a true, physical time correction for an earthquake region. Some of the possible differences are as follows:

- 1. Origin time errors (serious for some earthquakes) play no role when relative times are used; time bias is removed, so that events in the same region may be compared with one another in determining the actual anomaly.
- 2. First extrema as well as first motions can be read to determine consistent corrections from different events in the same regions. This is important if one has only a few small

events for time calibrating.

When using residuals, the defined regions can be greater in number and smaller in area than when using anomalies, and the problem of time calibrating the earth becomes more difficult. simple case qualitatively illustrates this point where Figure 11 shows a geologically faulted area composed of two different crustal media I and II with average P-wave velocities of V_1 and V_2 . The network stations are labeled 1, 2, and 3 each having a residual from an event in medium I computes as R_1^I , R_2^I , and R_3^I and anomalies relative to station 1 computed as 0, $A_{2/1}^{I}$, $A_{3/1}^{I}$. an event occurring in region II, however, each of the residuals will have a bias added to them due to the different velocity in the vicinity of the source in this region; the anomalies, however, would be expected to change only slightly because the hypocenter-station raypath differences between the two (teleseismic) sources would be negligible. Hence, for each of the stations there would have to be two residual regions but only one anomaly region. Of course, for stations situated on the side of region II and opposite to the reference station, there would then be two regions for both residuals and anomalies. However, at least some reduction in the time-calibration regionalization should be realized when relative anomalies are used.

CONCLUSIONS

The following conclusions are made concerning the results obtained by analyzing 19 nuclear explosions detonated within a 2500 km² area of the Nevada Test Site. Seismograms were used from teleseismic stations forming networks of four to thirteen stations.

- 1. For limited-station teleseismic networks, the location capability, for 17 events occurring in the Nevada Test Site and without applying previously-determined residuals or travel-time anomalies, is about 26 km, regardless of the program used (LOCATE or SHIFT) and regardless of the travel-time table employed (Herrin 61, Herrin 66, or JB tables).
- 2. The location capability for the same networks and time data is better than 3 km when previously-determined residuals or travel-time anomalies are applied, regardless of program and travel-time table. That is to say, when these travel-time curves can equivalently be replaced by observed travel times from each station to an accurately known explosion point, the particular curve selected as a standard is essentially irrelevant and epicenters of other nearby explosions can be located within the indicated error limit.
- 3. The effect of the number of stations in the range from 3 or 4 to 13 on the location capability of the networks used in the study is negligible, either with or without travel-time anomalies.
- 4. The effect of the range of epicentral distances (distance aperture) on the capability of locating known surface events with the same networks is negligible, either with or without traveltime anomalies.
- 5. The azimuth aperture has an observable effect on the location capability of the networks where, for apertures down to 60°, the location errors without travel-time anomalies are as high as 60 km, and with anomalies 6 km.

- 6. The areas of computed confidence ellipses can be reduced by factors of 1/5 to 1/152 with the application of travel-time anomalies and still enclose the event locations which, for this study, are accurately known, as are the explosions used to calibrate the praticular epicenter-station paths used in the study. In effect, these reduced ellipses represent uncertainties in the position of the epicenters relative to the positions of the calibration events.
- 7. With as few as 4 or 5 stations, computed confidence ellipses with anomalies are unrealistically large due to the small number of statistical degrees of freedom. (The Bourbon explosion, with 4 stations, has an ellipse 7,000 km² and a location error of 1.9 km). Estimates of the maximum relative time errors for a network of stations permits more realistic confidence limits to be set on the solution. In this way, Bourbon's confidence polygon is about 340 km². Also, as few as three stations can be used to obtain the confidence limits when maximum relative errors are estimated.
- 8. Travel-time anomalies, computed from a few selected events, show some variability across the NTS area in Figure 1, but the effect on relative location accuracy is small. The size of the area in Figure 1 is about 2500 km², implying that fairly large regions are involved for determining reasonably constant anomalies, so the problem of time calibrating a stationary network for any region of the earth from which either explosions at accurately known locations or earthquakes (bias effects not included) are recorded is not formidable. In either case, if accurate locations are not independently known, the epicentral solutions with anomalies included reduce to locations relative to one another with the actual error of the whole set remaining unknown.

9. Relative anomalies for earthquake regions can be simpler to assess than absolute residuals because (a) origin time errors are eliminated; (b) first-extremum anomalies and first motion anomalies from several events can be combined (except when obvious period differences are noted); and (c) depending on the region and on the network geometry, the regions for which the calibrations need to be determined can be fewer in number and larger in area.

REFERENCES

- Chiburis, E.F., and Dean, W.C., 1965, Teleseismic Signal Alignment at the Tonto Forest Extended Array; Teledyne Report No. 125, 15 October.
- Chiburis, E.F., 1966a, Relative Travel-Time Anomalies at LASA and the Location of Epicenters using SHIFT; Teledyne Report No. 147, 7 June.
- Chiburis, E.F., 1966b, LASA Travel-Time Anomalies for Various Epicentral Regions; Teledyne Report No. 159, 13 September.
- Chiburis, E.F., 1968, LASA Travel-Time Anomalies for 65 Regions Computed with the Herrin Travel-Time Table, November 1966 Version; Teledyne Report No. 204, 10 January 1968.
- Flinn, E.A., 1965, Confidence Regions and Error Determinations for Seismic Event Location; Reviews of Geophysics, Vol. 3, No. 1.

TABLE I
Event Information

Event	Da	<u>te</u>	<u>Ori</u>	gin Time	Latitude	Longitude	No. of Stations
AUK	02 Oc	t 64	20	03 00.0	37.078N	116.009W	6
FORE	16 Ja:	n 64	16	00 00.1	.142	.049	12
DUMONT	19 May	y 66	13	56 28.1	.111	.058	8
CHARTREUSE	06 May	y 66	15	00 00.1	.348	.322	7
TURF	24 Apr	64	20	10 00.2	.150	.055	10
KLICKITAT	20 Fel	64	15	30 00.1	.151	.040	9
PILEDRIVER	02 Jui	n 66	15	30 00.1	. 227	.055	7
BRONZE	23 Ju	L 65	17	00 00.0	.098	.033	9
CGRDUROY	03 Dec	65	15	13 02.1	.165	.052	9
BUFF	16 Dec	65	19	15 00.0	.073	.029	8
GREELEY	20 Dec	66	15	30 00.1	.302	.408	13
PIRANHA	13 May	66	13	30 00.0	.087	.034	9
NASH	19 Jar	67	16	45 00.1	.144	.136	7
BOURBON	20 Jan	67	17	40 04.1	.100	.004	4
AGILE	23 Fel	67	18	50 00.0	.127	.067	7
COMMODORE	20 May	67	15	00 00.2	.130	.064	5
SCOTCH	23 May	67	14	00 00.0	.275	.370	5
BILBY	13 Sep	63	17	00 00.1	.061	.022	14
TAN	03 Jar	66	14	00 00.0	.068	.035	8

TABLE II Station Anomalies and Residuals

	Anomaly Re	lative to RK	-ON	Residua1	Event
<u>Station</u>	Herrin 61			Herrin 61	Key*
AD-IS	+1.11 sec	+0.04 sec	+0.57 sec	-1.1 sec	В
AX2AL	+2.21	+1.61	+2.23	+0.2	Α
BE-FL	+1.11	+1.11	+1.15	-0.9	Α
BL-WV	+0.66	+0.61	+0.84	-1.6	Α
BR-PA	+0.74	+0.76	+0.84	-1.5	Α
CPO08	+1.51	+0.86	+1.55	-0.6	Α
DH-NY	+0.09	+0.03	+0.11	-2.2	Α
EB-MT	-0.84	+0.08	-0.68	-3.1	Α
EN-MO	+0.08	+0.54	+0.04	-2.0	В
EU-AL	+2.66	+1.94	+2.71	+0.6	Α
GG-GR	+1.06	+1.00	+2.07	-1.2	Α
HN-ME	+1.11	+0.55	+0.97	-1.0	Α
KC-MO	+1.71	+1.81	+1.45	-0.7	D
LV-LA	+1.51	+1.90	+1.48	-0.6	· A
LZ-BV	+0.90	+0.94	+1.19	-1.9	Α
NP-NT	+1.88	+0.96	+1.52	-0.2	Α
00-NW	-0.01	+0.01	+0.52	-2.4	Α
PG-BC	+2.66	+2.94	+2.57	+0.3	С
PZ-PR	+2.28	+1.17	+1.53	+0.1	Α
SI-BC	+1.87	+2.81	+2.05	-0.2	Α
SV 2QB	+0.35	-0.37	+0.16	-2.0	A**
SV3QB	+0.35	-0.37	+0.16	-2.0	Α
WH2YK	+1.36	+1.13	+1.50	-0.8	C
RK-ON	0	0	0	-2.1	Α

*A = Bilby-Tan
B = Bronze-Corduroy-Buff
C = Nash-Agile-Commodore
D = Gree ey

^{**}Set equal to anomaly for SV3QB determined from A

TABLE III - Arrival Time Data

AD-LIS AD-LIS C 5.5.4 C 5.5.4 <th< th=""><th>Event Reference Hour</th><th>Bilby 17</th><th>Tan 14</th><th>Auk 20</th><th>Fore 16</th><th>Dumont 14</th><th>Chartreuse 15</th><th>Turf 20</th><th>Klickitat 15</th><th>Piledriver 15</th><th>Bronze 17</th></th<>	Event Reference Hour	Bilby 17	Tan 14	Auk 20	Fore 16	Dumont 14	Chartreuse 15	Turf 20	Klickitat 15	Piledriver 15	Bronze 17
0548.4 0555.4 0558.9 0527.7 1548.9 3505.5 3507.7 0548.9 0523.7 1548.9 3509.1 3509.7 0503.0 0503.0 0503.0 0503.0 0503.0 0503.0 0503.0 0503.0 0503.0 0503.0 0503.0 0523.7 1522.1 3521.8 3521.8 3521.8 0522.2 0522.2 0522.2 0522.2 0522.2 0522.2 0522.0 0425.8 0707.9 07	STATION										
15.6.4 15.6.4 15.6.4 15.6.6 15.4.9 1	AD-IS										0812.2
1548.4 1548.4 1548.4 1548.4 1548.4 1548.6 1	AX2AL		0525.4			0153.6	0527.7			3525.5	
0603-0 0603-0 0603-0 0603-3 0603-3 0603-3 0603-3 0603-3 0603-3 0603-3 0603-3 0603-3 0603-3 0603-3 0603-3 0603-3 0603-3 0603-3 0603-1 06	BE-FL		0607.2			0235.6		1548.9		3607.7	0548.4
0603.0 0521.6 0521.7 0521.8 0522.1 0525.2 0526.8 0626.7 0626.7 0626.7 0626.7 0626.7 0626.7 0626.8 0626.7 0626.8 0626.7 0626.8 0626.7 0626.8 0626.7 0626.8 0626.7 0626.8 06	BL-WV	0548.4			0548.9				3548.6		
0626.7 0921.8 0521.7 0246.4 1627.3 0522.1 3521.8 3521.8 0522.8 0626.7 0926.8 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 3626.7 1627.3 16	R-PA	0.603.0			0603.3			1503.4	3603.1		0603.1
0626.7 0926.8 1627.4 1426.6 3426.5 34	РО	0521.6	0521.7	0821.9	0521.7	0149.9	0523.7	1522.1	3521.8	3521.8	0521.7
0512.2 1221.9 1221.9 0707.9 0707.9 0707.9 0708.1 1111.0 0441.1 1111.0 0731.5 0731.5 0731.8 1131.8 0837.0 0837.0 0428.5 13	H-NY	0626.7		0926.8				1627.3	3626.7		0626.7
0512.2 1221.9 1221.9 0707.9 0708.1 1007.9 0708.1 1007.9 0708.1 1111.0 0711.1 1131.8 1131.8 1131.8 04428.5 1221.0 0344.3 0716.2 1146.4 1441.1 06445.8 0716.2 1146.4 1141.1 0718.8 0718.7 1730.6 1730.7 1730.6 1730.7 1730.6 1730.7	EB-MT	0426.8			0426.4			1426.6	3426.5		
0512.2 1221.9 1221.9 0707.9 07	EN-MO										
1221.9 0707.9 0708.1 1007.9 0707.8 0336.1 0708.8 1707.9 3707.9 3707.5 0441.1 1111.0 1411.10 0731.5 0731.1 1031.3 0730.8 0358.7 0729.0 1730.6 3730.6 3729.9 1131.8 1131.8 0837.0 0428.5 0445.8 0445.8 0445.4 0113.6 0445.2 1445.4 3445.1 13 7 6 11 7 6 11 7 6 9 8 6	EU-AL	0512.2			0512.6						
0441.1 1111.0 0731.5 0731.5 0731.8 1131.8 1131.8 0837.0 0445.8 0708.8 1707.9 0708.8 1707.9 3707.9 3707.5 37	G-GR	1221.9			1221.0			2222.7	4221.2		
0441.1 1111.0 0731.5 0731.5 1131.8 1131.8 1131.8 0837.0 0428.5 0445.8 0445.8 0445.8 0445.8 0445.8 0445.7 06485.8 0445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7 06485.8 06445.7	N-ME	0707.9	0708.1	1007.9	0707.8	0336.1	0708.8	1707.9	3707.9	3707.5	0707.9
00441.1 1111.0 1111.0 0731.5 1131.8 1131.8 1131.8 0837.0 0428.5 13	C-M0										
1111.0 1411.10 2111.6 3730.8 0358.7 0729.0 1730.6 3730.6 3729.9 1731.8 1131.5 1131.5 1131.5 1131.5 1131.5 1131.5 1131.5 1131.5 1131.5 1131.6 0428.1 0428.5 0424.4 0716.2 1445.4 0113.6 0445.2 1445.4 3445.1 3444.7 1131.6 0445.2 1445.4 3445.1 3444.7 1131.7 6 11 7 6 9 8 6	V-LA	0441.1			0441.6						
0731.5 0731.1 1031.3 0730.8 0358.7 0729.0 1730.6 3730.6 3729.9 1131.8 1131.5 1131.5 0838.1 0055.9 0424.4 3426.7 0716.2 1445.8 0445.8 0445.4 0113.6 0445.2 1445.4 3445.1 3444.7 1131.7 6 9 8 6	AB-2	1111.0		1411.10				2111.6			
1131.8 0837.0 0428.5 0428.5 0716.5 0716.5 0445.8 0445.8 0445.8 0445.4 0113.6 0445.2 1445.4 3444.7 13 7 6 11 7 6 9 8 6	P-NT	0731.5	0731.1	1031.3	0730.8	0358.7	0729.0	1730.6	3730.6	3729.9	0730.8
0837.0 0428.5 0428.5 0716.5 0716.5 0445.8 0445.8 0445.8 0445.4 0113.6 0445.2 1445.4 3444.7 13 7 6 11 7 6 9 8 6	N-NW	1131.8			1131.5						
0837.0 0838.1 0055.9 0424.4 3426.7 3426.7 0016.5 0344.3 0716.2 0445.8 0445.4 0113.6 0445.2 1445.4 3445.1 3444.7 6 11 7 6 9 8 6	3-BC										
0716.5 0344.3 0716.2 1445.4 3444.7 6 11 7 6 9 8 6	2-PR	0837.0			0838.1						
0716.5 0344.3 0716.2 0344.7 3445.1 3444.7 0113.6 0445.2 1445.4 3445.1 3444.7	I-BC		0428.5			6.3500	0424.4			3426.7	
0716.5 0344.3 0716.2	72QB										0716.0
0445.8 0445.4 0113.6 0445.4 3445.1 3444.7	73QB		0716.5			0344.3	0716.2				
C445.8 O445.9 O745.4 O113.6 O445.2 1445.4 3445.1 3444.7	H2YK		P								
. 7 6 11 7 6 9 8 6	K-ON	8.5440	0445.9	0745.8	4.5440	0113.6	0445.2	1445.4	3445.1	3444.7	0445.5
		. EI	7	ø	11	7	ø	თ	α	ဖ	00

TABLE III (Continued)

2113.9 2312.5 3528.1 1909.5 1823.8 2021.8 3524.2 5522.0 5022.7 1740.2 1938.0 2009.6 2207.8 3529.2 4731.4 5708.1 5208.8 0708.1 2032.5 2231.2 3729.2 4734.6 5730.8 5231.0 4130.7 3403.6 5033.4 1729.5 1928.4 2018.0 2216.5 3716.3 4719.9 5716.5 5216.7 0716.3 3 535.8 6 6 4	Hour Reference Hour	Corduroy 15	y Buff 19	Greeley 15	Bourbon 17	Agile 18	Nash 16	Commodore 15	Piranha	Scotch
2009.5 3528.1 1823.8 2021.8 3524.2 5522.0 5022.7 1740.2 1938.0 3515.0 4711.4 5708.1 5208.8 0708.1 2003.5 2231.2 3729.2 4734.6 5730.8 5231.0 4130.7 3408.5 4908.7 0408.4 1729.5 1928.4 5539.8 5039.4 05539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 3 5 6 6 4 4	TATION								27	*
1823.8 2021.8 3524.2 5522.0 5022.7 1823.8 2021.8 3524.2 5522.0 5022.7 1740.2 1938.0 3515.0 4711.4 5708.1 5208.8 0708.1 3401.7 3401.7 3408.5 5730.8 5231.0 4130.7 3403.6 5730.8 5231.0 4130.7 3403.6 5730.8 5033.4 0539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 3 5 6 6 4 4	D-IS	2113.9	2312.5							
1823.8 2021.8 3524.2 5522.0 5022.7 1823.8 2021.8 3524.2 5522.0 5022.7 1740.2 1938.0 3515.0 4711.4 5708.1 5208.8 0708.1 3401.7 3401.7 3401.7 3403.8 5231.0 4130.7 3403.6 5730.8 5231.0 4130.7 3403.6 5730.8 5231.0 6406.4 5739.8 5231.0 3403.7 3403.6 5730.8 5231.0 3403.7 3403.6 5730.8 5231.0 3536.8 5336.8 5339.8 5039.4 05539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 3 6 6 6 4	X2AL			3528.1					3535 7	
A 1823.8 2021.8 3524.2 5522.0 5022.7 I 1740.2 1938.0 3515.0 4711.4 5708.1 5208.8 0708.1 2009.6 2207.8 3709.0 4711.4 5708.1 5208.8 0708.1 2032.5 2231.2 3729.2 4734.6 5730.8 5231.0 4130.7 3403.6 5730.8 5231.0 6.4 906.7 0406.4 1729.5 1928.4 2018.0 2216.5 3716.3 3716.3 5539.8 5033.4 0539.4 1747.1 1345.7 3445.8 4449.1 5445.7 4946.2 0445.7 5 6 6 4 4	E-FL	1909.5		3610.0					2.0300	
2009.6 2207.8 3524.2 5522.0 5022.7 1740.2 1938.0 4721.2 2009.6 2207.8 3709.0 4711.4 5708.1 5208.8 0708.1 2032.5 2231.2 3729.2 4734.6 5730.8 5231.0 4130.7 3403.6 5406.5 4906.7 0406.4 1729.5 1928.4 1729.5 1928.4 1747.1 1945.7 3445.8 5339.8 5039.4 0539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 3	L-WV								0.7000	
1823.8 2021.8 3524.2 5522.0 5022.7 1740.2 1938.0 3515.0 4711.4 5708.1 5208.8 0708.1 3401.7 4734.6 5730.8 5231.0 4706.4 1729.5 1928.4 1729.5 1928.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	R-PA									
2009.6 2207.8 3709.0 4711.4 5708.1 5208.8 0708.1 3401.7 3403.5 2231.2 3729.2 4734.6 5730.8 5231.0 4130.7 3403.6 5406.5 4906.7 0406.4 1729.5 1928.4 2716.3 3726.8 5039.4 5539.8 5039.4 5539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 3 3 5 6 6 4 4	PO	1823.8	2021.8	3524.2		5522.0	5022.7		6 1030	
2009.6 2207.8 3709.0 4711.4 5708.1 5208.8 0708.1 3401.7 3401.7 4734.6 5730.8 5231.0 4130.7 3403.7 4734.6 5730.8 5231.0 4130.7 3403.6 5406.5 4906.7 0406.4 1729.5 1928.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 345.8 3 7 12 3 6 6 6 4	YN-H								8.T700	
2009.6 2207.8 3709.0 4711.4 5708.1 5208.8 0708.1 3401.7 3401.7 3729.2 4734.6 5730.8 5231.0 4130.7 3403.6 5406.5 4906.7 0408.4 1729.5 1928.4 174.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 345.7 34	B-MT									
3515.0 4221.2 2009.6 2207.8 3709.0 4711.4 5708.1 5208.8 0708.1 3401.7 2032.5 2231.2 3729.2 4734.6 5730.8 5231.0 4130.7 3403.6 5406.5 4906.7 0406.4 1729.5 1928.4 2018.0 2216.5 3716.3 4719.9 5716.5 5216.7 0716.3 3536.8 6 6 4 4	V-MO	1740.2	1938.0							
2009.6 2207.8 3709.0 4711.4 5708.1 5208.8 0708.1 3401.7 3401.7 5730.8 5231.0 4734.6 5730.8 5231.0 4130.7 3403.6 5730.8 5231.0 5406.4 5729.5 1928.4 4734.8 5539.8 5039.4 0539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 3 5 6 6 6 4	J-AL			3515.0						
2032.5 2207.8 3709.0 4711.4 5708.1 5208.8 0708.1 3401.7 3401.7 4734.6 5730.8 5231.0 4130.7 4130.7 4906.5 4906.7 0406.4 1729.5 1928.4 2018.0 2216.5 3716.3 4719.9 5716.5 5239.4 0539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 3 5 6 6 4 4	-GR			4221.2						
2032.5 2231.2 3729.2 4734.6 5730.8 5231.0 4130.7 3403.6 5406.5 4906.7 0406.4 1729.5 1928.4 2018.0 2216.5 3716.3 4719.9 5716.5 5216.7 0716.3 3536.8 5539.8 5039.4 0539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 8	I-ME	2009.6	2207.8	3709.0	4711.4	5708.1	5208.8	. 8020	0000	
2032.5 2231.2 3729.2 4734.6 5730.8 5231.0 4130.7 3403.6 5406.5 4906.7 0406.4 1729.5 1928.4 2018.0 2216.5 3716.3 4719.9 5716.5 5216.7 0716.3 3536.8 5539.8 5039.4 0539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7	-жо			3401.7				1	2.007	0/09.2
2032.5 2231.2 3729.2 4734.6 5730.8 5231.0 4130.7 3403.6 1729.5 1928.4 2018.0 2216.5 3716.3 4719.9 5716.5 5216.7 0716.3 3536.8 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 8 7 12 3 6 6 4	-LA									۵
2032.5 2231.2 3729.2 4734.6 5730.8 5231.0 4130.7 3403.6 1729.5 1928.4 2018.0 2216.5 3716.3 4719.9 5716.5 5216.7 0716.3 3536.8 3536.8 3 7 12 3 6 6 6 4	-BV									
4130.7 3403.6 5406.5 4906.7 0406.4 1729.5 1928.4 2018.0 2216.5 3716.3 4719.9 5716.5 5216.7 0716.3 3536.8 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 8 7 12 3 6 6 4	-NT	2032.5	2231.2	3729.2	4734.6	5730.8	5231.0		6 1676	
3403.6 5406.5 4906.7 0406.4 1729.5 1928.4 2018.0 2216.5 3716.3 4719.9 5716.5 5216.7 0716.3 3536.8 5539.4 0539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 3	-NW			4130.7					6.46	
1729.5 1928.4 2018.0 2216.5 3716.3 4719.9 5716.5 5216.7 0716.3 3536.8 5539.8 5039.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 8 7 12 3 6 6 4	-BC			3403.6		5406.5	4906.7	חשטחט	3407 5	0
2018.0 2216.5 3716.3 4719.9 5716.5 5216.7 0716.3 3536.8 5539.8 5039.4 0539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 8 7 12 3 6 6 6	F. P.								•	0.404.0
2018.0 2216.5 3716.3 4719.9 5716.5 5216.7 0716.3 3536.8 5639.4 0539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 3	-BC	1729.5	1928.4						0 0 0 0	
2018.0 2216.5 3716.3 4719.9 5716.5 5216.7 0716.3 3536.8 5539.8 5039.4 0539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 8 6 6 4	2QB								0 7 1 7	
3536.8 5539.8 5039.4 0539.4 1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7	3QB	2018.0	2216.5	3716.3	4719.9	5716.5	5216.7	0716.3	3716.5	2 8170
1747.1 1945.7 3445.8 4449.1 5445.7 4946.2 0445.7 8 7 12 3 6 6 4	2YK			3536.8		5539.8	5039.4	0539.4		0537 7
7 12 3 6 6 4	NO-	1747.1	1945.7	3445.8	1.6444	5445.7	4946.2	0445 7	3445.8	0.446
		დ	7	12	ო	9	9	.	œ	4

TABLE IV

Location Errors when Neither Residuals nor Anomalies are Used

EVENT	NO. OF STATIONS	LOCATE-H61	SHIFT-H61	SHIFT-H66	SHIFT-JB
Buff	8	9.1	8.6	10.9	5.7
Turf	10	14.5	15.0	8.0	18.3
Corduroy	9 .	11.6	10.8	5.2	6.3
Nash	7	17.2	18.1	13.4	23.1
Bourbon	4	48.0	49.0	17.6	42.6
Piledriver	7 .	39.6	39.3	37.7	41.9
Bronze	9	13.3	13.1	8.5	12.3
Auk	6	7.1	7.2	3.7	4.8
Piranha	9	41.1	40.4	45.5	46.3
Fore	12	38.1	38.5	20.0	36.6
Greeley	13	10.1	12.3	11.6	25.5
Dumont	8	43.0	43.6	44.9	47.1
Chartreuse	7	60.0	59.8	48.5	62.8
Commodore	5	11.1	10.9	23.3	12.6
Agile	7	23.4	23.0	15.0	27.7
Scotch	5	17.4	17.8	26.6	. 19.6
Klickitat	9	33.5	33.7	12.8	38.2
Σ		438.1	441.1	353.2	471.4
Mean error, km		25.8	25.9	20.8	27.7

TABLE V

Location Errors When Residuals

or Anomalies are Used

EVENT	NO. OF STATIONS	LOCATE-H61	SHIFT-H61	SHIFT-H66	SHIFT-JB
Buff	8	2.4	0.1	0.3	0.2
Turf	10	0.5	9.1	J. 2	
Corduroy	- 9	1.6	1.0	0.9	0.1
Nash	7	5.8	1.7	1.4	0.9
Bourbon	4	2.8	1.9		1.8
Piledriver	7	2.0	2.9	2.1	1.9
Bronze	9	4.2		1.5	3.3
Auk	6		3.0	2.7	2.9
		3.1	3.0	2.9	3.0
Piranha	9	0.8	3.1	2.7	3.2
Fore	12	3.3	3.2	2.9	3.1
Greeley	13	1.0	3.3	3.8	3.3
Dumont	8	2.2	3.4	3.0	3.4
Chartreuse	7	5.7	3.6	3.7	
Commodore	5	4.1	3.7	3.2	4.2
Agile	7	1.5	3.9		3.3
Scotch	5	3.€	5.0	2.4	3.1
Klickitat	9	6.1	,	4.8	5.7
Σ		50.7	6.0	5.6	6.2
			48.9	44.1	49.6
Mean error, k	m	2.98	2.86	2.59	2.92

Actual Time Errors (Zero Mean) and Standard Deviations for all Events, With and Without Travel-Time Anomalies

Event		Time	Time Errors	νI								
Buff	e e		9.0+	2 -6.9	6 -0.0	6 .0+	4 +0.8	7 -0.5	+0.15 +0.62 -6.96 -0.04 +0.94 +0.87 -0.59 -0.99			
	40		+0.1	+0.01 +0.15 -0.11	1 -0.16	5 -0.0	2 +0.6	4 +0.1	-0.02 +0.64 +0.11 -0.03			
Turf	rd	+0.03	+0.0+	+0.08 +0.78	8 -0.30		8 +1.17	7 +0.24	1 -0.56 +0.94		08.01	
	Q	+0.05	+0.0%	+0.05 +0.02 -0.03		9 -0.0	1 +0.7	9 -0.2	+0.29 -0.01 +0.79 -0.25 -0.27 -(-0.25	
Corduroy	rd	+0.11	+0.25	+0.11 +0.22 +0.50		0.0-	9.0÷ (9 +0.98				
	Д	-0.05	+0.11	+0.03	10.0-	0-14	.0.0+	-0.14 +0.01 +0.17		0		
Agile	ď	+0.23	-0.09	+0.58		+1.05 +0.21	-0.81	1 -1.15		,		
	Q	+0.00	+0.00 +0.03	-0.09	-0.31		+0.17 +0.13					0
Commodore	ď	+0.25	+1.25	+0.25 +1.25 +0.10	-0.72							
	Q	+0.15		-0.28 -0.11	+0.05	+0.19						
Bourbon	ď	+0.29	+0.98	44.0-	-0.82							
	Д	+0.00	-0.10	-0.10 +0.88	+0.01							
Piranha	ซ	+0.0+	-0.10	-0.10 ⊹0.06		+0.47	+1.34	-0.20 +0.47 +1.14 +0.35 -1.17		94,6		
	Q	+0.14 +0.18	+0.18	-0.04	+0.11	-0.07	-0.04	-0.07 -0.04 -0.06		-0.11		
Greeley	ซ	+1.06 +0.09	+0.09	+0.31	+1.35	-0.49	-0.21	-0.49 -0.21 +0.14	+0.76	-1.64 +1.48	20 1	t
	۵	+0.17 +0.27	+0.27	+0.14	-0.01	-0.18	+0.05	-0.18 +0.05 -0.21	+0.18 -0.	25 +		200
Nash	rd	+0.26 +0.03 +0.68	10.03		+1.38	-0.06	-1.00	פר נ- 100 נ-				٥ د

0.917

-0.04 +0.17 +0.03 +0.04 -0.13 -0.14 +0.08

Д

0.111

Event		Time Errors	
Piledriver	rd	+0.76 -0.08 +0.18 -0.33 +0.43 +0.49 -1.45	р
	Д	0.17	0.735
Bronze	ď	+0.36	0.101
	Q	-0.16 -0.00	0.650
Dumont	ď	πε. Γ – 66.0-	0.116
	Д		0.797
Chartreuse	Ø	-1.40	0.132
	Q	+0.09 +0.00 +0.21 +0.02 -0.11 -0.07 -0.14	0.891
Auk	ø	+0.90 -0.73 +0.17 -0.58 +1.00 -0.77	0.123
	Д	+0.23 +0.20 -0.10 -0.13 -0.06 +0.04	0.812
Fore	* €	-0.05 +0.51 +0 %	0.131
	Q	-0.13 +0.01 0.05 -0.05	1.144
Scotch	ซ		0.318
	Q	+0.07 +0.18 +0.26 -0.38 -0.12	1.225
Klickitat	ซ	-0.06 +0.51 +1 +0.00	0.256
	Д	-0.41 +0.11 -0.17 -0.19	0.792
		61.0	0.200

"a Errors computed without travel-time anomalies; Herrin 61 table

^{*}b Errors computed with travel-time anomalies; Herrin 61 table.

TABLE VII

Confidence Regions SHIFT-61

Ellipse Areas km²
Without anomalies With anomalies Improvement No. of Event b Factor, a/b Stations Fore 2059* Buff Chartreuse 1041* Auk Bourbon Dumont Agile Nash Commodore 5 . Greeley Klickitat Turf Piranha Scotch Corduroy Bronze Piledriver

^{*}Confidence ellipse does not contain true epicenter.

) 400mm	U 5 3 6 A 1 C C T		IME Tevia	(3) INCL	NOTHE EFF				ATION A	M = AW		
• ANDHALY HEGIUN •	DISTANCE HE	3) (3)	31 TO 2	340 KM (6) HIDHIST	INGE -	237.A TU	210.0	r GAEF 4			
	O DISTANCE	A71-UTH	11) 49-1	ANPAL	#E=FL	8 F-40		CPOAB	DH-NA	ER-#1	EN-H0	Eu-
82 JUNGS PILEUMIVE 63 DECSS CORPURGY 20 FERS4 KLICKITAT	A 2331.2V 2336.1V 2336.A3	23#.16 23#.83 237.69	.110	0,.52,	1 • 200 1 • 27 A	.607	9	.0A0			.0,1	
SS MATSS CHART 24 APRES TURE	2337.46	250 67	(12) g	1.060		.A75	1.005	1 - 007	. 25 A	.515		
16 JAMB4 FORF	2337.6u 2337.9u 2334.6/	217.00	u u	u U	-	.031	.00A	1:024	.544	.103		2.05
20 MAYO7 COMMODON	2339.78	237,80	Ü	0	0	0	0					
23 JULOS FRONCE	2340.12 2340.50	237.68			0	.000	46	.784	-102	Å	•	
02 OCTOA MUN 10 MAYOO DUMONT	2340.7/	237.AU 237.AA	9	1.221	1 - 30 7	0	0	1.030	-812			- 9
11 MAYON PINANHA 18 DECAS BUFF	2341,53	237,86	.037	1.771	1.347	:	0	943	A	4	0	
19 JANET NASH	2342.60	234.13	Ų		0	0	0	.0An		A 0	.482	
13 SERBS PILEY 03 JUNES TAN	2345.15	237.83		1.010	1.110	-687	.750	.077	·n 32	.003		1.03
23 MATOT SCOTCH 20 DECSA GREELEY	2346,39 2346,39	23A.7A 23A.A7	U	1.895		0			6	0		- 1
	AUERAU	_	·-	-	1.417	0	•	1.110	•	0	A	1.87
	(14) CLUMA		. 0 % 4 . U % . 3	1,745	1.3010	.791+ -145	.930	.018*	. 7 7 4	.294	.50 8	1.000
	10		3	•	•	,	•	10	5		***	. 0 3
EVENT NAME	UISTANCE	4784UTH	66=4R	HN-HF	AC MO	F 5-40	NP-N1	0 4- 5-M	A6-40	41-PC	WH? YA	003
02 JUNOS PILEJOIVER 03 00005 COROUROY	2331.20 2330.1V	258.16 258.85	Ų	.884			.877	1.6	0	2.802		
20 FERBA ALICHITAT	2338,63 2337,46	237.89	.751	.773	0		1 . 450	n	0	1.04R		20
24 APUBA TURF	2337.00	234.41	2.008	.525	0	.002	1.124			ALD. C	4	• . 72
14 JANGA FORF	2337.00	237.5V 237.83	.314	,450 ,510	8	:	1 - 818	• 9 7 5	0		A	- 7
JU MAYO7 COMMODONE	2340.17	237.09	Ů,	,540 ,510	0	0		0	2.520	1	APA.	321
23 JUI 05 800NZE	2340.5A	237.40	i	180.		0	.865		2.024	0	1.24	31
19 MAUSS SUMONT	2340.77	237.00 237.84	0	.670	:	.755				2.84	0	342
L3 MA788 F18ANHA LA BBEBS BUFF	2342,30	237.88 237.82	0	,713 ,300			1.001		3.492	2.805		365
IO JANS7 NASH IJ GENGJ BILBY	2342,60	234.13	0	.030			.855	0	2.046	9.A1A	.086	780
3 JUNGO TAN	2343,12 2348,30	237.78 237.43	.000	.512	0	.03A	1-170	****	2	2.007		374
23 MA797 SCOTCH	2345.37	234,76 234,87	.671	.00n	1.685	A	1.216	.,,1	3.170		1.486	689
	AVE#461		. 489.	,5770	1.685	.854+	.040.	000		2.660*	1.193	
	REMA		. 454	1129	•	-004	.130	+110	5.403.	.086	1 -1 350	425
	•		•	19	1	3	17	3	•	,	5	12
PVENT NAME JUNSO PILEURIVER 3 DECOS COROUNOS	UISTANCE 2831,29	A7 HUTH 23a . 10	57208	PZ-88	LV-LA							
3 DEGES COROUNDY	2736.63	230.03 237.89	0		A							
6 MAYOR CHART A APROA TURF	2337.68	23m.01	ŭ	Ü	ů							
5 JANES FORF	2337.90	237.09	0	1,055	1.010							
MAY67 CONHODUME	2138,6/	237.03 237.00		0	0							
FERRY AGILE	2340.12	237.88 237.80	501		ŏ							
2 OCTO4 AUK V MATOS OUNONT	2340.7/	237.40			0							
1 HAVES PIRANHA	2341.53	237,84		:	0							
A DEC65 HUFF 9 JANET NASH	2342,0A	237.42 234,13		0	•							
3 SERGS BILDY 3 JUNES TAN	2342,05	237.70 237.83		1.167	1.002							
3 MAYO7 SCOTCH	2346,38	230,78	0	0	:							
" Atuan mustres		23A, A7		0								
	AUERAGE		-,>51	1.511	1.010-							

. INDICATES ANOMALY AVERAGE 15 STORIFFCANTLY NON-ZERO AT 45 PONCENT

10	16 EPILENTERS	() t	V E N T	19 0EPTH	A R A M E	T & A	5 (2) AEF 51AB	O PAS	@ NO.
0.7						318	3180	41848	STA
0.5		37.227	-110.055		15 35 50 .1	-1100	.000	2	
03		37.165	+110.052	0	15 13 57+1	.1113	007		
20		37.151	*11A . 040		15 35 00 1	.1733	086		- 2
0.6	MATOS CHART	37,340	-110.322		15 00 80 1			.147	,
24	APNEA TURE	37.150	-110.055			1001	120	-104	•
10	JAN64 FURF	37.142	-115,040		23 10 00.5	3.7	171	.343	•
50	JANA? BOTHBON	37.100	-110.00A		10 00 50 03	.0027		.208	11
25		37.130	-110.064		17 40 0411	+1505	.025	-11A	3
23	FERST AGILE				15 00 50 1	.2051	*50¥	.100	4
		37.127	-110,000	0	1# 50 00+0	. 1732	.070	.155	•
23	JULAS BHOHZE	37.000	-110.033		17 68 80 48	.0731	.030		
0.2		37.078	-110,000		ZA 03 00.0	1547	1005	114	-
10	HAYRS DUMONT	37.111	-110.000		13 56 20+1		020		
13		37.007	-110,034		13 30 50 00	.0805	054	.AAn	4
10	DECAS BUFF	37.073	*11A.028		10 15 0010	.1111		.004	
10	JANO7 NASM	37,144	-110,135		10 45 50.1		.023	.108	,
13	SEPAJ BILAY	37.001	+110.023		17 00 00:1	.7144	.054	.097	
03	JUNES TAN	37.000	-110,035			.1500	. 00 3	.140	13
- 33	HAYO7 SCOTCH	37.27A	•110 ,J7a		14 00 00+0	.1354	. 485	.005	7
20	DECOS SHEFLEY	37.302			14 68 58 78	13920	11A	.271	4
-0		2,1205	-110.400		15 Je 00+1	.1514		50	4.0

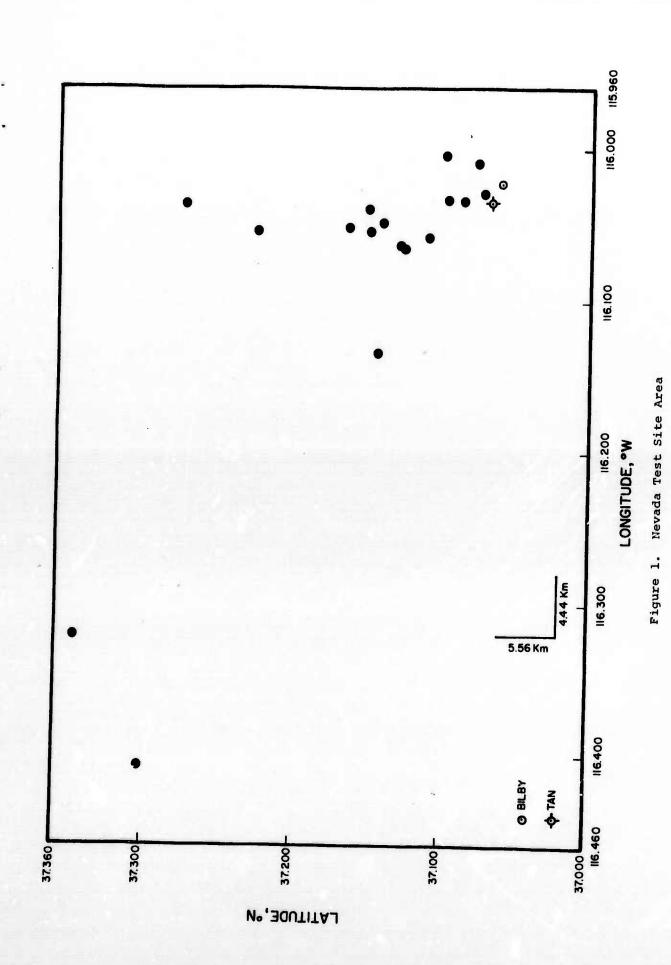
TADLE IX

1-8 INTALE-LIM- ITALES INCENDING EFFICIALISTA

AMORAL + FGT IN . NEVADA TEST STIE

EVENT NAME	DISTANCE 421HUT	4 AU-10	47246	06.7L	BL - 48	8R-P4	effa.	BH-NT	E	84-H6	
2 JUNGO PILEJUIVES	2331.29 23+.1		2.207	1.363			1.400				
3 DECAS COMBURGY	2134.19 73+.g.			1.342			1.700			.173	
71064 HLICHITAT	2330.63 237.9				1-153	1.122	1 . 700	.3A2	216		
94 MAY66 CHAU!	2137.40 230.8		7.492				1 .477				
ZA APUGA TUUF LA JANGA IDUE	2337.88 25A.8				1-134	1 -106	1.742	.651	A3g		_
POHPHOS TAPAL OF	2337.98 237.98 2354.87 237.80				1.105	11	1.420	•	455	•	7.40
C 44401 COMMODINE	2354.70 237.A.								•	•	
S FERST AGILE	2140.15 237.01					•			•	•	
3 JUL 65 PROMES	2140.15 737.81 2140.50 727.81				.013		1.400		•		
2 OCTA4 AUN	2340.7/ 237.0					1 -8 A2	1.740	.193			
T HAYGE DUMPAT	2348.8V 257.9		2.59>	1.442			1.663	1140		:	
3 MAYGG PIRANHA	2341,93 237,80		2,432	1.206			1.624				
0 DOC65 PUF7	2142.34 237.80	,548					1.678			035	
19 JAN67 NASH 13 SEP63 FILBY	2342,00 2JA.1.				1 () ()		1.515				
	2342.99 237.79				.aag	.425	1.572	.111	603		2.70
3 JUNGS TAN 23 MAYG7 GENTCH	2143.15 237.8		2.220	1-146		•	1.027	•			
TO DOCOG GREELE?	2340.JR 234.70 2348.JY 234.40		2.431					•		•	
in parent marretti	\$34m'as \$9w'd			1-400	•	•	1.726	•	•	•	2.75
	446446	.502+	3.250+	1.340+	1-040-	1.025.	1.430 -	.204	-,400+		2.72
	31044	.075	.111	.105	.150	-114	.104	.230	.213	.147	. 8 4
		•	•	•	7	- 9	10	,	•		5
-	UISTANCE AFINUTE	D4-60	Миния	NC #0	F3-04	NP-NT	9D-4W	P8-80	01*RC	UH27N	243
2 JUNGS BILOUSTVER	2321.27 234.16		.967			1.501			2.109		
J Denes Compuest	2330 .17 230 .43		.978			4.412			1325	•	.30
B FORGA HLICALTAL	2330,03 227,00	1.044	1.221			1.094					
6 MAYGG CHART	2337.40 528.82		1.323		-	1.747			2.100		+23
4 4PR64 TUB7	233/:00 237:00	3.007	.074		1 -177	1.430					,
D JANAT BOUNDON	233/.56 237.50	1.464		•		1.590	.935	•	•	•	
MA767 COMMODUNO	213A.0/ 227.83 2330.70 237.99		.704	•	•	1.413	•	9			.53
2 7EAG7 ADILE	2340.17 227.90		,544	•	•	1.302	•	2.164		1.515	.024
3 JUL 65 600421	2340.50 237.00		1.053		c	1.424		2.245	•	1.625	.23
2 DCTEA 4UN	2340.// 23,.80		.027		1 -024	1.425					
B M4766 DUMONT	23An.9V 237.84		14101		1000	1.379			2.007		.20
S MAYGG BIRANHA	2541.53 237.86		1 - 148			1.572		2.484	2.050		.17
. DEC65 HUF7	2342.30 237.02		,705			1.933			2:064		.25
8 J6467 NASH	2347,00 238,1		1.004			1.404		2,975		1.393	
3 48063 81604	2342,05 037,70	2.060	1935	•	1-103	1.725	,516				
3 JUN66 T4N 13 H4Y67 2ColCH	2343,17 237,03	•	1.004	•	•	1.213	•	. 0	2.246		
o Dende DREGLET	2340,20 238,76 2340,39 234,07		1.103	1.302	•	1.727	.207	2,769	:	1.050	.13
	4989468				150				_	1.40*	170
	91044	7.0674	1.013.	1.302	1 -1 55 .	1.526*	.447 ·	2,532*	2.135.	1:31	-12
	N	•	10	1	3	17	3		.192	,	15
BVONT NAME	U1074HC& A71=UTR	AvaDe	.22-PR	LOoke							
2 JUNES PILEDRIVES	3321.27 220.16		0	Cast 4							
3 Deces Compusur	2230,19 2Jm.03		•								
B 700GA PLICATTAL	2730.63 237.00	•		•							
4 MAYAA CHART	2337.A6 238.A8			•							
4 JANA4 FDRE	2137.00 030.01		7 743	1.542							
B JANG? BOUNDN	2137,07 227,03		2.243	1.548							
8 M6767 CDMMDDUHE	2337,70 237,00										
3 78467 AGILE	2348.17 237.98										
3 JUL69 000420	#3A0.56 B27.88	.047									
P DCTOA JUN	23As.77 227.8s		0	•							
WATER BUMDAT	2340.57 637.5A										
3 MAYOF BIRSHMA 6 DOCAS BUF7	2341.53 737.86										
	2342,38 227.02										
9 JANG7 M404 3 50003 RILAY	23A2.00 03+.13 23A2.00 227.79			. 470							
3 JUNES TAM	2143,1> 237,03		1,933	4.479							
J HAYA7 GCDTCH	2346,30 230,76										
Denes GeteLev	2140,37 730,87										
		.047	1,004	1.>10.							

[.] INDICATES ANOMALY AVERAGE IS SIGNIFICANTLY NON-ZORD AT BS PERCONT


		V & # T			₩ €	T 1				
10 OFFICENTERS	LATITUDE	L DNG! TUDO	-	091610	T140	SHDCH OIDMA	#67 4140	#148 \$16#4	NU:	
ez Juhee Pilfphiyem eg DECes Chimiumoz Ze zeuch niicoltaf es mates Cadant za Aresa Tuaz de Jamez Tuaz za mates Tuaz za Teses Asile za Julee Bromaz ez Ditee Aum le mates Dummi	37.22/ 27.169 37.191 37.340 37.199 37.108 37.12/ 37.090 37.090 37.011 37.00/	-110.023 -116.032 -116.032 -116.039 -116.039 -116.064 -116.064 -116.033 -116.009 -116.009		15 12 15 30 15 00 20 10 16 00 17 40 17 00 17 00 17 00 20 03	20.1	.0002 .1253 .1020 .1703 .3035 .2680 .1217 .2790 .1704 .0703 .1971 .0901	.B17 097 102 128 102 103 010 190 030 030 030 030 030	.0/0 .004 .1A0 .1A3 .3A3 .290 .160 .102 .154 .004	113	
16 DECOS BUTF 15 JANOT MARM 13 20POS BILEV 02 JUNOS TAN 22 MATOT SCATCH 26 DOCOS EMBRLEV	37.073 37.144 37.061 37.069 27.279 37.302	*116.029 *116.13> *116.022 *116.039 *173.376 *A16.468		10 15	***** ***** ****	.1103 .1220 .1001 .1442 .3039	.027 .007 .077 .101 105	112 140 140 270 147	13 7	

		HE 841 MOT	IRAUFL-TIN	t 146LES				ROFOE	HHCE STA	TIDN N	- ON		
					INCFO	INC OFFI	PTICITY			-			
A	NOMALT REDION . HE	V4DA TEST	SITE										
	01	STANCE HA	HOE . 572	1 10 534	IO KN I	ISTHUTH R	WHOE - 3	37.8 TO	220.0 OF	DROFS			
		UISTANCE	AZIMUTN	+0-10	4 ³ 20L	HE-FL	BF-AA	08-P4	CPOOR	DHENT	08-HT		9U-0
	JUNGS PILEBOIVER	2331,24	234.10		2:100	1.320			1.656				
	DECAS CORDUNOY	2336,14	234.03	1.200		1.300			1.001			.204	
	FRRS4 KLICTITAT	2336.63	237.80	0	2,439		-868	1.425	1.748	.339	206	•	0
	APRO4 TURF	2337.00			0		.950	1.811	1.704	. 6.0			
	JANGS FORG	237.00	237.98		ŏ		1-005	.056	1.386		798		2.755
	J4N67 80U-80N	2330.07		Ŏ	0	0	0			0	0		
	NAVO7 CDH4000HB	2334.70			0		0				0	•	Ò
	F0807 451L0	2340.17	237.98		0				1.452	0	•	•	
	JULOS BRONZE	2348.50 2348.77	237.40	1.075			-730	,647	1.015	·172	0		
0.5	NAVAS DUMONT	2340.04	237.04		2.375	1.400		9	1.025	- 17 - 1			
	NAYOS PIRANHA	2341.53		ŏ	2.410	1.350		ě	1.585		48		3
10	DECOS PUFF	2142,30	237.A2	1.096	0	0	0	i	1.434	0		3	
	J4487 N45M	2344,00		U	9	0			1.402		. 0		0
	SE403 GIFBA	2147,65		0			.657	.744	1.533	. # *0	02A	0	2.650
	JUNES TAN HAVET SCOTCH	2343,17 9340,30			2.011	1.115			1,440		0		
	Deres DREELEY	2340.34		ő	2,416	1.414		ő	1.700	0	0		2.007
		AUER4U		1.126.	2,341.	1.320 -	.062.	.037-	1.6020	.242	.,655.	.100	2,090
		BIGHA		.070	.112	-111	-150	.113	-105	.236	.20R	.147	. 050
		N		3	•	•	•	9	14	5	4	•	
	#VONT N4"E	UISTANCE	47 I HUTH	66+6N	MM-HE	NC HO	LZ-84	NP-NT	0D-NN	P0-BC	41*ec	WNo Ye	90206
	Money Blackstyle												
	JUNES PILEORIVER	2331.27	230.10	Ü	1-107		:	1.081	0		2.120	•	.494
	FORMA HLICKITAT	2330.63	237.00	.03/	1.363			2.003			× . 1 . 0		
	MAYDS CHAST	2137,46	234,42	В	1.464			2.042			1.000		. 415
	APRO4 TUOF	2337.04	23K-01	2.000	1.112	0	.874	1.787				ŏ	
	J4M84 FORS	5437.50	237.00	.305	1::53			1.048	.011	0		0	.4, 9
	J4N67 BOU480h H4Y87 CONHOOD E	2730.67	227.83 227.00		1.544			1.766					.413
20	F0007 401L0	9330,76 2369.15			1-127			1.734	0	0.100	0	1 -004	.205
	JULOS SEDNIS	2340.56	237.00		1.190			1.778		0.200		1/	.412
	OCT64 4UR	2340.77	237.00		.972		.731	1.780	- 0				
	NAVOS OUNDRY	2140.90	237.04		1.245	i		1.790	0		1:331	ě	.305
	N4099 P186HH4	0341.54	227.06	•	1.264			1.027			1.071	0	.340
	Deces Burr	2342.30	237.A2	0	.935			1.480		0	1.503		.431
	JANOT HASH SOPOJ BILGT	2342,99	237,79	1.054	1:235	:	.***	1:436	010	0.624		1.20	• 1 35
	JUNGS TAN		237.02		1-147	- :		5.470	-1010	-	1,410		. 048
	Never SCOTCH	2140,20	724.76		1.244					2.050	0	1.734	.020
50	Deces sussisk	\$34A,3V	224,87	.910	1-144	1.525		2,405	-,231	2.003	•	1.278	.011
		475444		1.050.	1 -105 -	1.525	.835+	1.474	*1977	2.6114	1.0314	1.2720	.202
		SIGHA		.626	.106		*0*1	-133	.123	.211	.092	. 257	.165
	The second secon				7.0			17	J		7	1	12

	BYONT HAME	UISTANCE		# n5n8	. PZ-88	LY-Le
		2731,29		0		
		2320.10	924.03			
20	FOAD4 PLICRITAT	5230.01	237.89	0		
	N4Y68 CHART	2327,46	23A.82	0	0	
24	APRO4 TURF	2337,00	238.61	u		
10	Jene4 Fore	2337.99		, i	2.004	1.570
20		2330.07				
2		2337.70				
23		0340.15				
23		2340.50		.220		
0.2				.550		
		2348.77		0	0	
- 15		2240.99				
13		2341,53		0	0	0
- 41		2342,30				0
14		2342,60		0	. 0	0
13	30P42 BILBT	2340.05	227.70	0	2.201	1.500
0.3	JUNES TAN	2343,10	237.03		0	
.23	M4YA7 SCOLCH	0340.30	23R.76			
20		2306.3V	239.87			
		1,,00,10	20-1			
		446046		.226	2.036	1.530 .
		AMOLO			.504	.044
		H				

. INDICATES AMASSLY AVERAGE IN SIGNIFICANILY HON-2000 41 85 POSCONT

P- 1		V & H T		A	н .	1 .			
10 SPICENTERS	LATITUDE	LDNG1TUDE	DOPTH	001010 T	lua	9H0C9	90F	91A0	NO.
JUNGS PILEORIVEN.	27.22/	10				-			
		*110.055		15 30 0		.4793	.925	.974	•
. DECOS COONUNOT	37.105	E110.002				-1220	04		
00 FEB64 BLICOTAL	27,151	-119.040		15 50 0	0.1	.1002		.149	
NATOS CHAST	37.340	-110.322		15 00 0	8 *1	.1725	* . 117		
64 APOS4 TURF	37.150	-110.055				.3933	181	:115	•
10 JANG4 FORF	37.142	-110.040	0		0 • 1	. 9615	23	250	11
Za JANG7 VOUDOON	37.100			17 40.0		.1100		- 937	**
20 N4T67 COMMODURE	37.130	-116.064				1142	.012	180	7
03 F0007 461L6	37.127	-110.000				.1802	. 077	104	- 1
22 JULOS BNONZE	37.090	-110.033				792			
02 DCT64 4U8	37.070	-110.049			***			.0.5	
19 NATOS DUNGNT					***	.1000	.094	.114	
	27.111	*116.006	0		8 . 1		051		7
- 13- MAYOS - PJBANH4	37.4BZ	-119.034	*	12 30-0		+#741		, 54	
16 DOCGO BUFF	27.073	*114.029	0	10 15 0	0.0	41100	.032	.112	7
19 JAN67 H49H	27.144	-116.135		16 40 0	0+1	.1022	+072		
12 05003 01694	37.001	-110.022			0 41	1070	.078	140	12
93 JUN69 T4N	37.000	-119,035				.1429			
22 NATO7 OCDTON	27.275	-116,370				3241		290	4
- 20 DOCOL GREELEY	17,302			11.14		.1401	-,131		

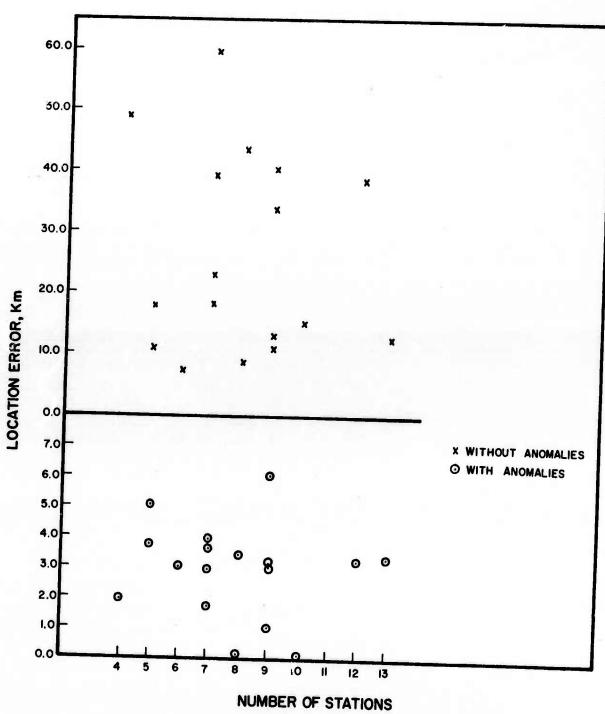


Figure 2. Location error vs number of recording stations

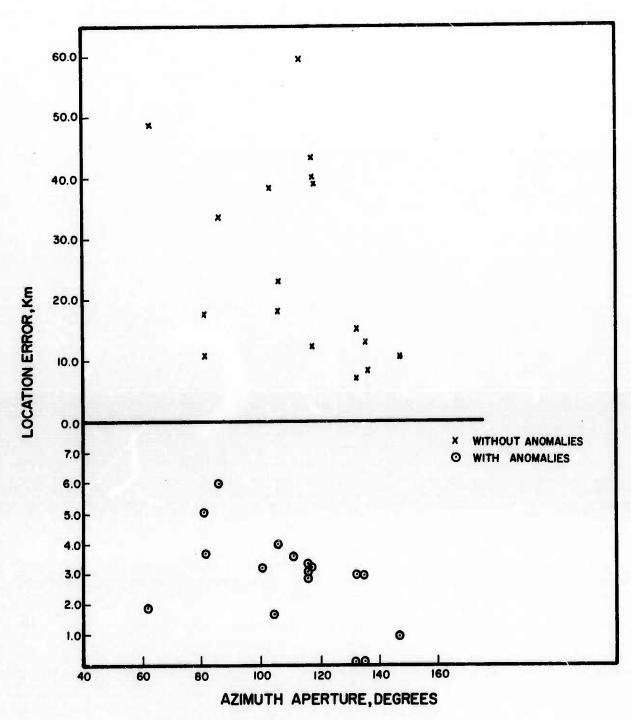


Figure 3. Location error vs azimuth aperture

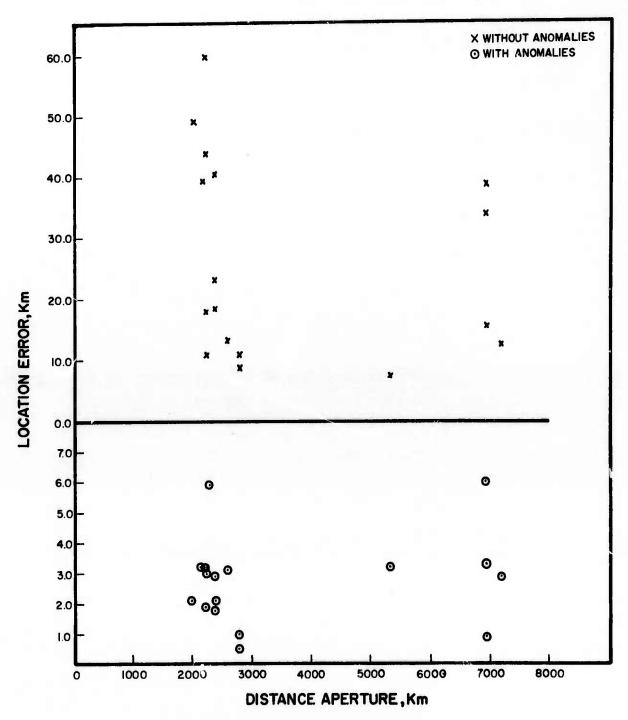


Figure 4. Location error vs distance aperture

20 JAN67 BOUMBON MAXIMUM RELATIVE ERROM + 100.

	50000000000000000000000000000000000000	
	200 000 000 00000 0000 0000 0000 0000	279
	+0000000000000000000000000000000000000	
	40 E 000 0 E F F F C C C F B C C C C F C C C C C C C	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	4 W W W W W W W W W W W W W W W W W W W	
4 4 4 4 4 4 4 4 4 4		-
माननन न न न न न न		S.Y
ने	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	19
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	्र सन्तननन्ननन्नन	-
	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	-
4 6 5 5 4 6 6 6 6 6 6 6 6	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	117
	24440000000000000000000000000000000000	
25.00.00.00.00	4 W R W 6 6 C C C 6 6 C C C 6 C C C C C C C C	4
2 55 78 N Nº 53	11 - 12 40 22 22 2 2 2 0 4 7 4 4 6 6 4 7 4 4 4 4 4 4 4 4 4 4 4 4	68
	2220 222222222222222222222222222222222	
	25220027232222222	+3
9 80 K C 0 0 0 K K C 4	20 1 00 2 8 8 1 8 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0	45
	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 45
20 0 0 B B B D V V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NO N 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 +1 +5
1115 1115 1115 1115 1115 1115 1115 111	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50
135 119 102 127 111 95 127 111 95 127 111 95 117 101 84 117 101 84 117 101 84 102 86 103 65 106 69	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5c 90
151 135 119 102 147 131 115 99 146 127 111 95 136 120 104 91 173 116 109 84 173 116 109 84 175 109 93 77 172 105 89 73 77 116 108 86 69	11.0 10.0	R3 08 23
107 151 135 119 102 103 147 131 115 99 100 144 127 111 95 125 140 124 100 91 122 136 120 100 91 149 173 116 100 84 145 129 113 197 84 141 125 109 93 77 134 116 102 86 09 127 44 98 82 06	115 117 91 15 18 18 18 18 18 18 18 18 18 18 18 18 18	76 A3 OB 23
1d3 1o7 151 135 119 1u2 176 1o3 147 131 115 99 176 100 144 127 111 95 100 103 147 131 115 99 100 103 147 111 110 91 100 105 109 113 110 100 101 105 109 113 100 101 101 105 109 93 77 101 104 116 102 86 09 103 107 107 108 86 09 107 107 116 102 86 09	139 143 117 91 /5 28 132 116 119 115 116 119 115 116 119 115 116 119 119 119 119 119 119 119 119 119	133 78 A3 08 53 T
1/9 1d3 1e7 151 135 119 1u2 1/2 176 1e3 147 131 115 99 1/2 176 1e0 144 127 111 95 1/2 176 110 144 127 111 95 1/2 176 110 124 1u6 91 1/4 105 149 173 116 10µ 84 1/4 126 141 125 1u3 97 4 1/4 126 141 125 1u3 97 4 1/6 120 141 125 1u3 97 7 1/6 120 141 125 1u3 97 7 1/6 120 141 125 1u3 97 7 1/4 120 141 125 1u3 97 7 1/4 120 141 125 1u3 97 7 1/4 120 141 1u3 1u3 97 7 1/4 120 144 1u3 1u3 96 00	172 139 143 117 91 /5 28 144 126 115 116 110 83 77 15 58 144 126 112 06 80 64 48 157 121 106 80 75 90 44 155 120 105 80 75 99 44 154 118 103 88 73 98 43 154 118 103 88 73 98 44 152 116 101 85 70 95 150 115 100 85 70 95 150 115 100 85 70 95 116 101 85 70 95 116 101 85 70 95 116 101 85 70 95 116 101 85 70 95 116 101 85 70 95 116 101 85 70 95 116 115 100 85 70 95 116 115 100 85 70 95 116 115 120 85 95 85 116 115 120 85 95 95 116 116 116 85 95 95 116 116 116 85 95 95 116 116 116 85 95 95 116 116 116 85 95 95 116 116 116 116 116 116 116 116 116 11	146 113 78 A3 08 53 T
1/9 1d3 1e7 151 135 119 1u2 1/2 176 1e3 147 131 115 99 1/2 176 1e0 144 127 111 95 1/2 176 110 144 127 111 95 1/2 176 110 124 1u6 91 1/4 105 149 173 116 10µ 84 1/4 126 141 125 1u3 97 4 1/4 126 141 125 1u3 97 4 1/6 120 141 125 1u3 97 7 1/6 120 141 125 1u3 97 7 1/6 120 141 125 1u3 97 7 1/4 120 141 125 1u3 97 7 1/4 120 141 125 1u3 97 7 1/4 120 141 1u3 1u3 97 7 1/4 120 144 1u3 1u3 96 00	172 139 143 117 91 /5 28 144 126 115 116 110 83 77 15 58 144 126 112 06 80 64 48 157 121 106 80 75 90 44 155 120 105 80 75 99 44 154 118 103 88 73 98 43 154 118 103 88 73 98 44 152 116 101 85 70 95 150 115 100 85 70 95 150 115 100 85 70 95 116 101 85 70 95 116 101 85 70 95 116 101 85 70 95 116 101 85 70 95 116 101 85 70 95 116 101 85 70 95 116 115 100 85 70 95 116 115 100 85 70 95 116 115 120 85 95 85 116 115 120 85 95 95 116 116 116 85 95 95 116 116 116 85 95 95 116 116 116 85 95 95 116 116 116 85 95 95 116 116 116 116 116 116 116 116 116 11	146 113 78 A3 08 53 T
2.2. 215 1/9 1d3 1o7 151 135 119 182 228 218 219 143 107 151 135 119 182 224 218 219 142 17 131 115 99 224 218 219 172 172 18 19 173 17 20 173 17 20 173 17 10 19 18 210 19 3 17 10 19 19 19 19 19 19 19 19 19 19 19 19 19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	127 144 166 113 78 A3 68 23 A
2.2. 215 1/9 1d3 1o7 151 135 119 182 228 218 219 143 107 151 135 119 182 224 218 219 142 17 131 115 99 224 218 219 172 172 18 19 173 17 20 173 17 20 173 17 10 19 18 210 19 3 17 10 19 19 19 19 19 19 19 19 19 19 19 19 19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	127 144 166 113 78 A3 68 23 A
248 242 215 179 143 167 151 135 119 102 244 228 212 746 140 163 147 131 115 99 237 224 268 212 746 140 163 147 131 115 99 237 224 268 212 746 149 173 116 149 142 225 213 177 24 149 143 116 149 143 116 149 143 116 149 149 149 149 149 149 149 149 149 149	204 104 171 172 139 143 173 173 175 175 175 175 175 175 175 175 175 175	1/4 1/7 144 166 113 76 A3 08 73 A
254.248.242.215.179.143.167.151.135.119.102.256.244.228.215.176.140.163.147.131.115.999.255.244.228.215.176.140.164.127.111.95.256.237.217.204.148.172.196.140.124.104.91.247.233.217.204.148.172.196.149.173.116.104.184.245.226.210.193.177.101.149.113.191.193.177.101.149.113.191.193.177.191.191.191.193.177.191.193.179.193.193.193.193.193.193.193.193.193.19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	167 1/4 1/7 144 166 113 '76 A3 08 73 T

O Final location from SHIFT-H61

X Actual epicenter of Bourbon

---Contour of actual maximum relative error
---Contour of estimated maximum relative error

-Standard confidence ellipse

Figure 5. Maximum-relative-error output from SIGRID; event Bourbon

23 MAY67 SCOTCH MAXIMUM RELATIVE ERROR + 100.

800 000 000 000 000 000 000 000 000 000
00 000 00 11 11 10 10 10 10 10 10 10 10
00000000000000000000000000000000000000
20 0 10 10 10 10 10 10 10 10 10 10 10 10
000 000 000 000 000 000 000 000 000 00
54 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
24444444444444444444444444444444444444
20 0 - W 4 R 0 F - W 0 2 L - U 0 C R D + O L 4 N 0 0 R A 4
37 80 0 14 44 17 40 44 8 14 14 14 14 14 14 14 14 14 14 14 14 14
40 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
24 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
assure and a second second
STATES OF THE TOWN WE WE SEE THE STATES
12 8 22 2 Cos & Car 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
27 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
000 0 4 4 4 2 4 4 4 5 4 8 4 8 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
225 40 020 040 40 20 40 20 74 40 00 60 40
2128 228 25 25 25 25 25 25 25 25 25 25 25 25 25
222222222222222222222222222222222222222
200000000000000000000000000000000000000
20.000 000 000 000 000 000 000 000 000 0
200 000 000 000 000 000 000 000 000 000
200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80 80 80 90 90 90 90 90 90 90 90 90 90 90 90 90
24 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30 00 00 00 00 00 00 00 00 00 00 00 00 0
004-00 004-0 04 00-0 1 44 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

X Actual epicenter of Scotch

Contour of actual maximum relative error

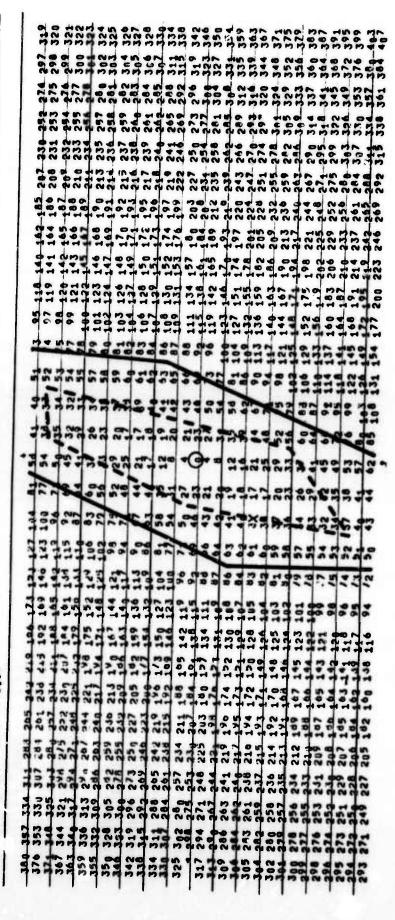
Contour of estimated maximum relative error

Standard confidence ellipse

Figure 6. Maximum-relative-error output from SIGRID; event Scotch

20 JANS/ 30UMBON MAXIMIM RELATIVE EHROK + 198*

257 2		243 2	275 2	228 2	22.3 2	213 1	200 1	50	105 1	103	102 1	10.1	1 49 1	
25. 25	34 21	27 21	19 20	12 1	1 50	97 13	50 1/	63 10	00 10	78 10	77 10	76 10	74 12	
2 5	8	1 17	3 10	6 19	10	1 103	4 120	121		144	2 147	15.5	3	-
1,43	100	1/6	1,1	104	120	147	142	135	123	155	151	133	35	
177	100	102	55		113	135	169	149	110	117	611	3	1	
101	125	9 ;	27	27	164	711	3	1.5	3	1.12	17.	33	2;	1
145	(2)	200	125	11.5	10.4	101	20	0 0	D :	11	9 1	· .	2:	1
124	173	1	001	2 2	200	8.	1,	.:		10,		739	8 1	
15	60	77	5.0		23		5.	77.7	1 7 7	2	55	7 7	2	
	NO. 11	-		10.2	1.	25	-	_	200		Ĺ	00		
			58		-	1~	333	1-	1	92	1		Z	
	000		2			-	-	1	1"	200		1	-	2
2	120	100			-	5	2.5		7			33	93:	1
1		1		27	22	3.9	365		1	L	15	72		-
1	30				44		-		57	7.2	91		40	
53	54	55	57	5.8	59	61	0.00	75	70	90 1	1	105 1	112 1	
			72	-	4 4 (17	20	0 N	00	26	24	217	25 14	ď
9 10	4 10	10	87 1	OC 30	00	0 4	N +1	4 00	15 132	0 0	1 0	41-1	I	•
4 -	##	##	2 11 2	-	05 12	12	213	7	44	15	10	1517	57 17	a
5 -	140	90	7 1	8 0	13	20	344	1	8 164	-1	440 -	4 44 44	7 193	•
1					.5.		I		1	1	9	2		
100				9.0	10	- 1	1	1				1	1	
175	176	HE	178	1 2 2		191	9 6	24.5	10 E	224	100	24.5	242	
	-	4 3	193	410	-	4 ~	-14	100	444	200	4:	2 -	254 2	
2 0	200	0 6	9 6		200	N N	NM	PO PO	44	4 10	10 4	900	24	


O Final location from SHIFT-H61

X Actual epicenter of Bourbon
---Contour of actual maximum relative error
---Contour of estimated maximum relative error

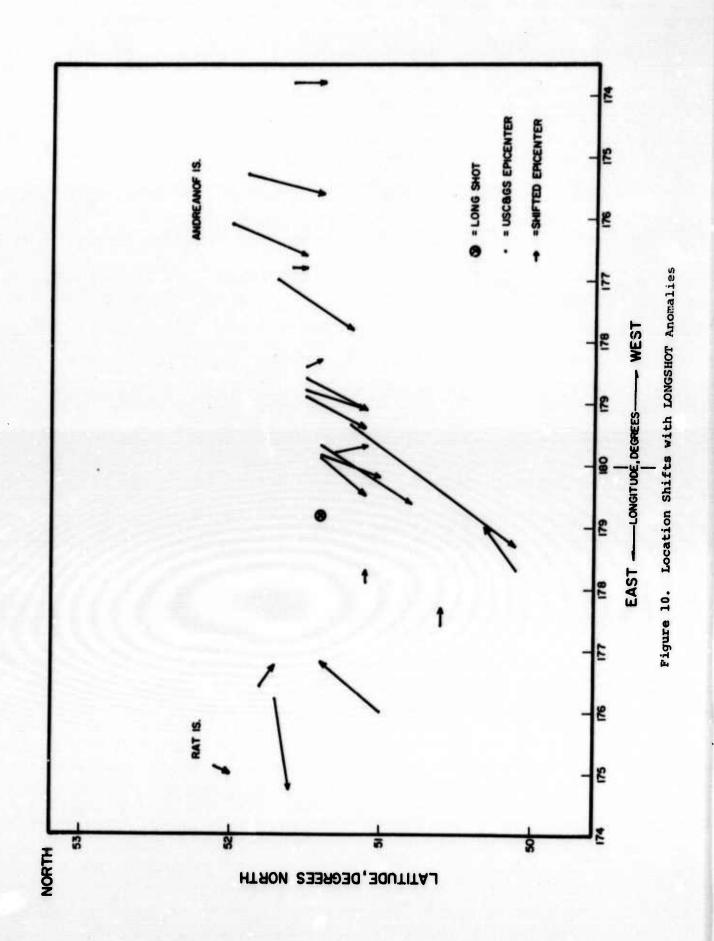
Maximum-relative-error output from SIGRID; event Bourbon with three stations Figure 7.

23 MAY67 SCOTCH

MAXINUM RELATIVE SHRON + 100.

OFinal location from SHIFT-H61 X Actual epicenter of Scotch

---Contour of actual maximum relative error
---Contour of estimated maximum relative error


Maximum-relative error output from SIGRID; event Scotch with three stations Figure 3.

		1.4	Ú.		1			1	1	1	1	_ ا	-1.	Ì	I	1	يه ا	Ŀ
	et m mi	* :	25	3	5				33	200	33	32	12		1	777	77	3
	100 S	92	46	96	97	3	22		12	33	7	417	3			127	123	7
		12	96	00	00	20	7	3	2 8	2 1	\$	35	9	2	ä	43	433	7
	\$ '	7.2	2 4	5	2:	3	:	8	9 5	90	45	22	99	3	3	13	43	4
		22	77.	22	2;	2	2	2	200	35	2	2 5	2	90	6.5	2	10	3
		25	33	35	53	5	27	12	72	78	40	40	8	6	3	2	200	*
		200	15	200	3:	3:	33	3	33	32	22	22	2	200	0	33	263	
	810H7	5 5	÷ ;	25	25	2	38	28	6.1	63.0	35	99	69	70	73	22	225	2
	1.54	40	42	::	\$:	5	\$ \$	25	52	55	58	9 50	4	33	50	3	2 7	4
TABLES	4 '	4 8		96			25			4 5			-	52	29	2 5.	23:	53
		9 9		505	1		7	200	300	9 =			- 1				28	1
TINE				23.			223						_1			4=		4
VEL		0.0		-				2	22							200	20	1
7	304		5	12 14	200	- COL	2012		9	-	0 4					1	35	
1461	N 2	0.0		2:		-	-	12	- K		27.7		1	2:	2			1
FRINGS TRAVEL	NCREMEN PROPERTY AND PROPERTY A	40				1.,	10:		-0	110	2		7	4.4			921	
					١.		1	-	30.		10	8		11 1	17	400	00	
		200		22					1.		+						9 ~ 1	1
		n n					77				77						7-1	1
	यक विदेश	**				1.112	2										7-1	1
	1 131	2.2					3						1				33	1
	ON LINE						133		75	1_		1.	7	66	2	3~	32]
	3.4	# 13.5	33	20	1		42.]7	1	1			30	700	T'm	1
200		- 58	8.5		2.0		727		12	7.	1:	-	•			1.	15.	1
900R80	20.00	20 %	25	22	28	3	20	3	95	38	32	75	3	22	7	1	-	1
	1 1254	2 22	200	82	2.5	2:	22	2	28	38	42	20	9	20	*	2	35:	1
20 JAN67	## 100 m	3 23	200	88	2:	2.	100	2	2	==	45	78	9	33	6	3	200	4
20	17 17 10 E 05 17 10 E 05 17 17 17 17 17 17 17 17 17 17 17 17 17	30		2.	20	2		9	= 2	95	20	120	2	2:	2	27.	33	2
	34	5 95	102	2:	38	2	5	20	25	2 2	28	:	=	25	0	78	2	4
99 6	REFERENCE LATITUDE LONGITUDE DEPTA LATITUDE S7: LONGITUDE S7:	STANDARD DEVLATION 123 115 100 100		===	2	2	12	:	22	2 2	42	20	4	21	:	22	22	2
02 07	LATI PASE	STAM 123			3	3	400	13 23	107	103	101	100	9.6	25	2	200	25	20

Standard-deviation output from SIGRID; event Bourbon Figure 9.

--- Contour of actual standard deviation

O'Final location from SHIFT-Hél X Actual epicenter of Bourbon

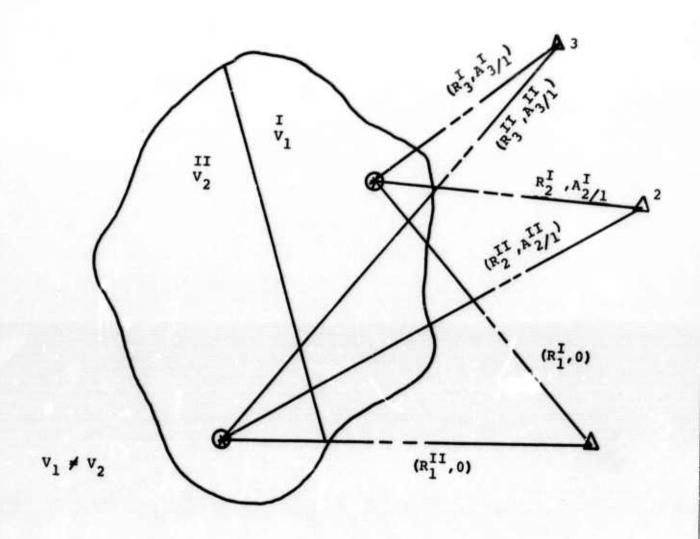


Figure 11. Faulted region illustrating difference when time-calibrating with residual R or anomolies A.

APPENDIX I INPUT SEQUENCE FOR PROGRAM SHIFT

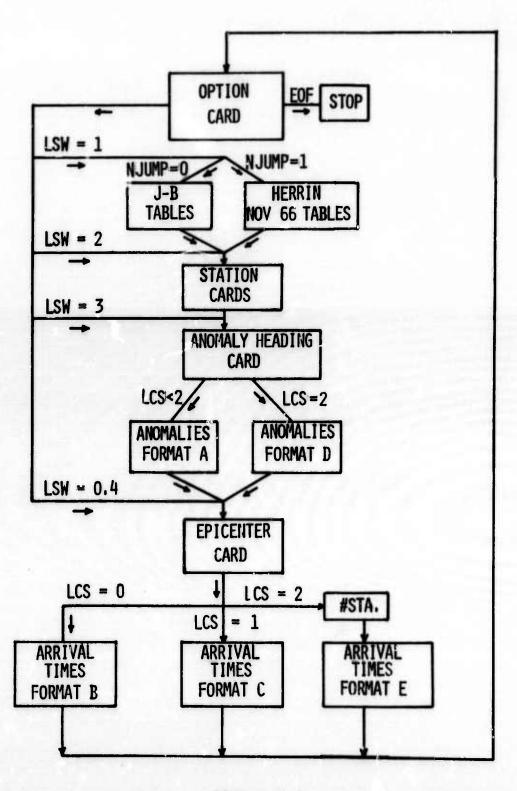


Figure A-1

INPUT CARD FORMATS AND PARAMETERS

OPTION CARD - FORMAT (712,4F5.0, 413)

- NATS = Number of stations and anomalies in entire run of several cases. (Maximum of 50)
 - = 0: set to 21 internally
 - LSW = 1: Read input data beginning with travel-time table (See Figure A).
 - = 2: Read input data beginning with station deck.
 - = 3: Read input data beginning with anomaly-heading card.
 - = 0 or 4: Read input data beginning with epicenter card.
- NJUMP = 0: Read J-B table (Tape 940, SDL)
 - = 1: Read Herrin 66 table (Tape 940, SDL).
 - LSC = 0: Read anomalies in Format A, arrival times in Format B.
 - = 1: Read anomalies in Format A, arrival times in Format C.
 - = 2: Read anomalies in Format D, arrival times in Format E.
 - IJK = 0: No SIGRID computation
 - ≠ 0: Compute SIGRID
- ISKIP = 0: Program locates epicenter
 - ≠ 0: Program does not locate epicenter; computes
 SIGRID (if IJK ≠ 0) using input location
 coordinates.
- NOUT = Flag requesting maximum-relative-error station subscripts in SIGRID
 - = 0: Do not print subscript matrix.

≠ 0: Print subscript matrix.

CT = Distance increment for computing time derivatives

= 0: Set to 0.01° arc internally.

SLOW = Factor to reduce the size of the iterative corrections to the event parameters

= 0: Set to 1 internally.

TEST = Incremental distance criterion for convergence

= 0: Set to 0.0001 internally.

CLAT = Grid increment, kilometers, for SIGRID computation

= 0: Set to 1.0 internally.

NCOL = Number of columns from SIGRID output grid

= 0: Set to 30 (maximum) internally.

KKEND = Number of lines from SIGRID output grid

= 0: Set to 30 (maximum of 100) internally.

ITER = Number of iterations allowed for location convergence

= 0: Set to 10 internally.

IMK = 0: Use input arrival times in SIGRID

≠ 0: Use predicted arrival times to grid center
in SIGRID.

STATION CARDS - FORMAT (A5, 3X, 2(FS.0, F3.0, F5.1, A1), 24X, F5.0)

Column	Parameter
1-5 9-13 14-16 17-21 22	Station name Station latitude, degrees Station latitude, minutes Station latitude, seconds N or S
23-27 28-30 31-35 36 61-65	Station longitude, degrees Station longitude, minutes Station longitude, seconds E or W Station elevation, meters (not necessary)

ANOMALY-HEADING CARD - FORMAT (10A8)

Description of anomalies, region name, etc. May be blank card.

ANOMALY CARDS

Format A (8F10.4)

Format D (10X, F10.3)

Anomalies must be punched in same order as the station cards and equal to the number of stations. May be blank cards if unknown.

EPICENTER CARD - Format (2A8, A4, 2(F9.3, A1), F5.0)

Column	Parameter
1-20	Arbitrary name of event
21-29	Estimated latitude, decimal degrees
30	N or S
31-39	Estimated longitude, decimal degrees
40	E or W
41-45	Estimated depth, kilometers

ARRIVAL-TIME CARDS - (Zero input arrival time indicates no reading for that station)

FORMAT B (8(2F2.0, F6.3))

Column	Parameter						
1-2	Arrival hour, station 1						
3-4	Arrival minute, station 1						
5-10	Arrival second, station 1						
11-12	Arrival hour, station 2						
13-14	Arrival minute, station 2						
15-20	Arrival second, station 2						

Repeat, eight/card, until no. of times = no. of stations
FORMAT C (7F10.4)

Fields of 10, seven/card. Arrival time in seconds only. FORMAT E (A5, 5X, 2F2.0, F6.3)

If this format is used, one card, Format (I5), indicating number of arrival times to be input, is required prior to time cards which follows:

Column	<u>Parameter</u>
1-5 11-12 13-14 15-20	Station name Arrival time, hour Arrival time, minute Arrival time, second

With this format, one card/station with an arrival time is required.

APPENDIX II

Description of TIMEANOM Output.

The following description explains the presentation of the results in the computer output of the TIMEANOM with these reference numbers appearing in Table VIII.

- 1. Source of expected travel times. For Table VIII, the Herrin table, November 1966 version, is used; for Table IX, the JB table; for Table X, the Herrin 61 table.
- 2. Reference station, R, selected for computing relative anomalies. In this report, all anomalies are relative to station RK-ON. The following relation may be used to change reference stations;

$$A_{i/j} = A_{i/r} - A_{j/r}$$

where $A_{i/j}$ is the anomaly at station i relative to a new reference station j.

- 3. All expected travel-times in this report have been corrected for the ellipticity of the earth such that the computed anomalies may be used in conjunction with other programs requiring these corrections.
 - 4. An arbitrary geographic name given to the event region.
 - 5. Range of epicentral distance in the event region.
 - 6. Range of epicentral azimuth in the event region.
 - 7. Date and arbitrary name given to each event.
- 8. Epicentral distance, in kilometers, from the reference station, R.
- 9. Epicentral azimuth, in degrees measured from north to east, from the reference station, R.
 - 10. Station designator, i.

11. Measured travel-time anomaly in seconds, at station i relative to station R for the kth event;

$$A_{i/r}^{k} = T_{i}^{k} - T_{r}^{k} - H_{i}^{k} + H_{r}^{k}$$

where T is the observed arrival time and H is the expected (Herrin 1966) travel time from the hypocenter of the kth event including correction for ellipticities but not for station elevations.

- 12. A fixed-point zero anomaly indicates that no reading was made at the station for that event.
 - 13. The average anomaly at station i of N recorded events;

$$\overline{A}_{i/r} = \begin{pmatrix} N & A_{i/r}^{k} \end{pmatrix} / N$$

for the defined region.

14. Standard deviation, or error of estimate, at the ith station for N observations:

$$\sigma_{i} = \left\{ \begin{bmatrix} N \\ \sum_{k=1}^{N} (A_{i/r}^{k} - \overline{A}_{i/r})^{2} \end{bmatrix} / (N-1) \right\}^{1/2}$$

for the defined region.

- 15. Number of observations, N, at station i for the defined region.
- 16. Total number of epicenters included in the defined region.
- 17. Epicenter latitude, degrees (USC&GS); plus north, minus south.
- 18. Epicenter longitude, degrees (USC&GS); plus east; minus west.
 - 19. Event depth, kilometers (USC&GS).
 - 20. Event origin time, hours, minutes, seconds (USC&GS).
 - 21. Standard deviation, or error of estimate, of the kth

event in the defined region;

$$\sigma_{k} = \left\{ \begin{bmatrix} L \\ \sum_{i=1}^{L} (A_{i/r}^{k} - A_{i/r})^{2} \end{bmatrix} / (L-1) \right\}^{1/2}$$

where L is the number of stations recording the kth event not including the reference station R.

22. Average error, or bias, of the kth event;

$$E_{k} = \sum_{i=1}^{L} (A_{i/r}^{k} - \overline{A}_{i/r})/L$$

where L is the number of stations recording the kth event not including the reference station R.

23. Standard deviation of the kth event in the defined region, with the reference-station bias $\mathbf{E}_{\mathbf{k}}$ removed:

$$\sigma_{k}^{\prime} = \left\{ \begin{bmatrix} L \\ \sum_{i=1}^{L} (A_{i/r}^{k} - E_{k} - \overline{A}_{i/r})^{2} \end{bmatrix} / (L-1) \right\}^{1/2}$$

24. Number of stations, L, recording the kth event, not including the reference station R.

The program TIMEANOM permits a rapid determination of traveltime anomalies for a network and for a set of events within a region, and it can be used to isolate spurious readings or blunders at the stations or, for earthquakes, possible mislocations. Security Classification

DOCUMENT (Beautity classification of title, body of abotract and ind	CONTROL DATA - RAD		the averall respect to alreadillad)				
TELEDYNE, INC.		Unclassified					
ALEXANDRIA, VIRGINIA							
PRECISION LOCATION OF UNDERGI TELESET PMIC NETWORKS AND PRE	ROUND NUCLEAR DETERMINED TRA	EXPLC	SIONS USING PIME ANOMALIES				
4 DESCRIPTIVE NOVES (Type of report and Inclusive detae) Scientific							
Chiburis, E.F.							
I. MEPONT DATE	TA TOTAL NO. OF PA	***	76. NO. OP BEPS				
1 March 1968	50		5				
EA CONTRACT OR GRANT NO. F 33657-67-C-1313	Se. ORIGINATOR'S REI	PORT NU	week(f)				
VELA T/6702	214						
ARPA Order No. 624	96. OTHER REPORT MO(8) (Any other numbers that may be seeigned this report)						
ARPA Program Code No. 5810							
This document is subject to spenittal to foreign governments with prior approval of Chief,	or foreign nat	ontro	ols and each trans- ls may be made only				
11 SUPPLEMENTARY NOTES	12. SPONSORING MILIT ADVANCED RES	EARCH DETE	PROJECTS AGENCY				
Using a series of 19 explosions deto Site, the effectiveness is demonstrated of a limited network of telessismic stations then 1900 km distance). Three different Herrin, 1961 version; and Herrin, Novembergrams: LOCATE and SHIFT, the former which the letter which minimizes the sum of equation obtained without time enomalies is regardless of trevei-time table and regardless of the series that the letter demonstrated that noith the first further demonstrated that noith the of the network has an effect on the series of the network has a series of the series of the series of the network has a series of the series of the network has a series of the series of	poneted within a 2500 of applying predeterm a (comprised of between travel-time tables were 1966 version; end a minimizes the sum of sares of reletive results about 26 km, and with a compression, when the number of second	km er mined to mined to men 4 en 4 en were use two did of square eidusle. The enome	ee of the Nevede Test revel-time enomaties to nd i3 etstione greeter ed: Jeffrey-Bullen; fferent computer pro- ree of reciduels end . The mean location slice is less than 3 km,				
Confidence estimates ere made in thre							

Confidence estimates are made in three ways: the standard confidence ellipses: meximum-relative-error polygons: and standard-deviation contours about the final colution. It is shown that by applying travel-time anomalies, the standard confidence ellipses can be reduced in eres by factors of i/5 to 1/152 and still contain the true apicenter.

A discussion is given of the stability of travel-time enomalies ecross the Nevada Test Site eras, and of some problems involved in determining usable enomalies from earthquekes.

14 KEY WORDS