
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD825963

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors;
Administrative/Operational Use; NOV 1967. Other
requests shall be referred to Office of the
Chief of Research and Development (Army),
Washington, DC 20310.

AROD ltr 4 Aug 1971

ARO-D Report 67-3

S 30

Q
<

PROCEEDINGS OF THE 1967 ARMY NUMERICAL
ANALYSIS CONFERENCE

This document is subject to special export controls and each transmittal
to foreign governments or foreign nationals may be made only with prior
approval of the U. S. Army Research Office—Durham, Durham, North
Carolina.

The findings in this report are not to be construed as an official Department
of the Army position, unless so designated by other authorized documents.

■ W

3
5

i

Sponsored by

The Army Mathematics Steering Committee
on Behalf of

[JAN 31 1968

THE OFFICE OF THE CHIEF OF RESEARCH AND DEVELOPMENT

-N

I

LI. S. AKMY RESEAICH OFFICE-DURHAM

Report No. 17-3

Novenbcr 1967

PROCEEDINGS OF THE 1967 ARMY NUMERICAL

ANALYSIS CONFERENCE

Sponsored by the Army Mathematics Steering Committee

Host

U.S. Army Mathematics Research Center
University of Wisconsin, Madison, Wisconsin

25-26 May 1967

This document is subject to special export controls and each transmlttal
to foreign governments or foreign nationals may be made only with
prior approval of the U. S. Army Research Office—Durham, Durham.
North Carolina.

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other
authorized documents.

S. Army Research Office-Durham
Box CM, Duke Station

Durham, North Carolina

FOREWORD

Several years ago the Office of Ordnance Research (now the Army
Research Office-Durham) organized an OOR Liaison Group on Computers.
Two meetings of this group were held, one in 1959 and the other in I960,
to exchange information of interest to managers of ordnance "other than
business" computers. The Army Mathematics Steering Committee asked
that these meetings be revived and placed on an army-wide basis. The
first two meetings in this new series were held, one in 1962 at ARO-D and
the other in 1964 at the Harry Diamond Laboratories and the National
Bureau of Standards, under the title "ARO Working Group on Computers".
The 1965 Conference was held at the Ballistic Research Laboratories
under the present title of this series; namely, "Army Numerical Analysis
Conference". The 1966 meeting was conducted at the U. S. Army Research
Personnel Office, Washington, D. C.

.

The U. S. Army Mathematics Research Center, University of Wis-
consin, served as the host for the 1967 Army Numerical Analysis Confer-
ence. It was held at the Wisconsin Center on 25-26 May 1967, and was
attended by over 58 scientists. The three invited addresses were delivered
by Professor W. Kahan, D. F. Kennedy, and Dr. Allen Reiter. They
treated respectively topics on numerical solutions of polynomial equations,
COSMIC, and interval arithmetic. Besides these talks there were nine
contributed papers.

Dr. Louis B. Rail served as Chairman on Local Arrangements. Those
in attendance were indebted to him, not only for excellent accommodations
at the meeting, but also for organizing a large portion of the program.

kl

The Chairman of the conference. Dr. John H. Giese, has asked that
the proceedings of this meeting be published and issued to interested
army scientists. He would like to thank, on behalf of the Army Mathe-
matics Steering Committee, the sponsor of these conferences, all the
speakers for their very interesting papers and the various chairmen for
their help in conducting this meeting. Thanks are also due to Professor
S. C. Kleene, Acting Director of MRC, for his interesting welcoming
remarks and for having his installation serve as host for this conference.

/

'

TABLE OF CONTENTS

Title Page

Foreword 1

Table of Contents ill

Program v

COSMIC: A Center f^r the Dissemination of Computer
Programs and Computer Information

by D. F. Kennedy 1

Machine Language Programming - How and Why
by J.M. Yohe 3

NEWTON: A General Purpose Program for Solving Nonlinear
Systems

by J.H. Gray and L.B. Rail 11

Experience with FORMAC at HDL
by D.S. Marsh 61

A Simple Electronic True Random Event Generator
by R.G. Polk, D.R. Kpehler, and J.T. Grissom 75

Programming Interval Arithmetic and Applications
by Allen Reiter 87

Homeostatic Organizations of Adaptive Parallel Processing
Systems

by R.M. Dunn 99

Logical Structure of an Automatically Sequenced Explosive
Control Device

by S.H. Eisman. Ill

Problem Solving Digital-Analogue Simulation
by H.W. Bloom* 141

A Shell Computer Program which Determines the Physical
Properties of an Artillery Shell and Represents Its Dimensions
Graphically

by Forrest McMains 143

Zerpol, A Zero Finding Algorithm for Polynomials Using Laguerre's
Method

by B.T. Smith 153

* This paper was presented at the Conference. It does not appear in the

Proceedings.
iii

«p-ww —— mmm-~m

The Numerical Solution of Polynomial Equations
by W. Kahan 175

Roundoff Errors
by Ben Noble 209

Attendance List 229

iv

'"

PROGRAM

Wednesday, 24 May 1967

2000-2200 Open House, Fourth Floor Lounge, Mathematics Research
Center

(All sessions held in the Auditorium of the Wisconsin Center, Lake and
Langdon Streets)

Thursday, 25 May 1967

0830-0900 Registration: First Floor, Wisconsin Center, Exhibit
Gallery

SESSION I

Chairman: Dr. John H. Giese, Ballistics Research Lab. ,
Aberdeen Proving Ground, Maryland

0900-0915 Welcoming Remarks

0915-1000 COSMIC: A Center for the Dissemination of Computer
Programs and Computer Information

Mr. D. F. Kennedy, University of Georgia Computing
Center, Athens, Georgia

1000-1030 Coffee Break - Exhibit Gallery

1030-1100 Machine Language Programming - How and Why
J. M. Yohe, Mathematics Research Center

1100-1130 NEWTON: A General Purpose Program for Solving Nonlinear
Systems

Julia H. Gray and L. B. Rail, Mathematics Research Center

1130-1215 Experience with FORMAC at HDL
D. S. Marsh, Harry Diamond Laboratories, Washington, DC

1215-1330 Lunch

SESSION II

Chairman: Dr. Donald Greenspan, Mathematics Research
Center

:

1330-1400 A Simple Electronic True Random Event Generator
R. G. Polk, D. R. Koehler, and J. T. Grissom,
Redstone Arsenal, Alabama

1400-1500 Programming Interval Arithmetic and Applications
Dr. Allen Reiter, Lockheed Missile and Space Company,
Palo Alto, California

1500-1530 Coffee Break

1530-1610 Homeostatic Organizations of Adaptive Parallel Processing
Systems

Robert M. Dunn, U. S. Army Electronics Command,
Fort Monmouth, New Jersey

1610-1700 Logical Structure of an Automatically Sequenced Explosive
Control Device

S. H. Eisman, Frankford Arsenal, Philadelphia,
Pennsylvania

Friday, 26 May 1967

SESSION III

Chairman; Dr. Roger A. MacGowan, Army Missile Command,
Redstone Arsenal, Alabama

08 30-0920 Problem Solving Digital-Analogue Simulation
Howard W. Bloom, Harry Diamond Laboratories,
Washington, D. C.

0920-1000 A Shell Computer Program which Detennines the Physical
Properties of an Artillery Shell and Represents Its Dimen-
sions Graphically

Forrest McMains, Picatinny Arsenal, Dover, New Jersey

1000-1030 Coffee Break

1030-1130 The Numerical Solution of Polynomial Equations
Professor W. Kahan, University of Toronto, Toronto^
Canada

1130-1230 Roundoff Errors
Professor Ben Noble, Mathematics Research Center and
the University of Wisconsin, Madison, Wisconsin

vi

■ ■■III! ^^^^^

COMPUTER SOFTWARE MANAGEMENT AND INFORMATION CENTER
COSMIC

Donald F. Kennedy
COSMIC, The University of Georgia Computer Center

Athens, Georgia

INTRODUCTION. In July 1966, The University of Georgia was awarded a
contract by the National Aeronautics and Space Administration to establish
and operate a center for the dissemination of computer programs and computer
information. This center, known as Computer Software Management and Informa-
tion Center (COSMIC), is working through the NASA Technology Utilization Office
at the Marshall Space Flight Center in conjunction with other NASA Centers and
NASA Headquarters. Through this joint effort, computer programs and computer
information developed by or for NASA are made available, at minimal costs, to
potential users in industry, business, education, and other sectorb of our
economy. In addition, computer programs developed by or for the Atomic Energy
Commission, which is participating in the NASA Technology Utilization Program,
are also made available through COSMIC.

PURPOSE. One of the primary functions of the NASA Technology Utilization
Program is to identify technological advances derived from the space effort
and to make them available for use by industry and business. One of the most
useful sources of technical aid and information to many organizations is a wide
range of well documented, operational computer programs and computer information.
By making these computer "programs, which are classified as new technology,
available to industry and business, NASA hopes to contribute directly to the
national industrial effort and offer companies the opportunity to avoid duplica-
tion and to shorten the task of developing computer programs.

EXPERIENCE. The Computer Center at the University of Georgia has had
extensive experience over the past four years in providing computer services and
assistance in computer applications to approximately sixty industrial and business
firms. The Center employs a professional staff of statisticians, mathematicians,
biologists, numerical analysts, engineers, chemists, physicists, and information
and computer scientists. The two major computer systems in the Center are the
IBM 360 Model 65 and the IBM 7094 with two IBM 1401 systems serving as input/
output peripheral units for the 7094. In addition, an IBM 1620 computer and
an EAI TR-20 analog computer are operated on an open-shop basis.

PROCEDURE. Under the original contract, NASA performed the evaluation of
computer programs and forwarded to COSMIC only those programs and documentations
which were to be included in the COSMIC library. However, under a modification
of the contract In December 1966, the University of Georgia was given the additional
responsibility of evaluating NASA computer programs. Documentation on each
program is forwarded to COSMIC for evaluation to determine its applicability to
a variety of uses for Industry, business, and education. If the program is
found applicable, a more in-depth evaluation is performed considering such factors
as soundness of logic, accuracy of output, and completeness of the documentation.
After the evaluation, a recommendation is made to NASA as to the inclusion or

J

rejection of the program. If the computer program is included in the COSMIC
library, it is announced to industry and business by both NASA and COSMIC.

In addition to the NASA computer programs, COSMIC has it in its library
computer programs obtained from business and educational firms.

The programs are disseminated on tape or in card form, depending upon
the requestor's preference. Each requestor is charged for the reproduction,
handling, and mailing of programs.

Documentation may be requested without a program, if desired. Originally,
documentation was disseminated at no charge to the requestor; however, in an
effort to become self-supporting, COSMIC has instituted a slidirg-scale charge
for documentation based on a fee of 6 cents per page.

A directory of abstracts of computer programs available from COSMIC is
disseminated periodically. Interested parties can receive a complimentary copy
by writing to:

COSMIC,
Computer Center,
University of Georgia
Athens, Georgia 30601

CONCLUSION. During the first twelve months of operation, COSMIC has
had great success and growth. It has received requests for programs and informa-
tion from every section of the nation and, in fact, from every part of the
world, even from countries behind the iron curtain.

Based on its present success and growth, COSMIC should become the largest
disseminator of computer programs and computer information in the nation and
should have one of the most complete libraries of computer programs in the nation.

MACHINE LANGUAGE PROGRAMMING
HOW AND WHY*

J. M. Yohe
Mathematics Research Center, U.

Madison, Wisconsin
S. Army

There seems to be a feeling in some quarters that Machine Language
programming is obsolete -- or at least, that it is no longer useful for
everyday applications. This feeling is largely due to the availability of
powerful problem-oriented languages such as FORTRAN, COBOL, ALGOL,
am' others. With these languages in common use, the argument goes, a
person needs no knowledge of Machine Language; the compiler does all of
the "dirty work".

This is evidenced by the increasing difficulty of using machine language
in programming. For example, when the CDC 1604 computer was first
installed here at the University of Wisconsin, the FORTRAN compiler allowed
a programmer to intermix machine language and FORTRAN statements.
However, when an improved FORTRAN compiler was released, this capa-
bility was missing. And in some installations, the use of machine language
programming is actively discouraged.

It is indeed tempting to believe that machine language programming is
obsolete, as anyone who has ever done any machine language programming
will attest. There is a considerable amount of boring detail connected with
writing a program in machine language, and I am the first to want to dispense
with it. However, I don't believe that machine language is dead yet, nor do
I believe that the need for it will disappear in the near future. I feel that
every programmer should know something about programming in machine
language, even if he never uses it. And I believe that, in most cases,
significant savings in computer time, man-hours, and dollars can result
from judicious use of machine language. There are two major reasons for
this contention: First, a programmer who knows machine language can
write more efficient programs than one who does not know machine language.
This is true whether he writes his programs in machine language or in one
of the problem oriented languages. Second, a knowledge of machine language
can be of great help in debugging programs, whether they are written in
machine language or not.

There are still other benefits to be derived from machine language pro-
gramming, as we shall see presently.

'^Sponsored by the Mathematics Research Center, U. S. Army, Madison,
Wisconsin under Contract No.: DA-31-124-ARO-D-462.

.

k.
*am—mmm

I do not intend to take anything away from those who conceive, imple-
ment, and use the problem oriented languages. On the contrary, I feel
that these languages are vital. I would even go so far as to say that perhaps
most computer programming should be done in these languages. I do want
to convince you that these languages are not yet the answer to all program-
ming problems.

Let us first make a few remark? about how a person can go about
acquiring a knowledge of machine language programming.

Perhaps the most important comment is that machine language pro-
gramming, like any other discipline, cannot be taught --a person must
learn it. In learning, motivation is an important factor; the best motiva-
tion for learning machine language programming is a need to know it. So
if you supervisors want machine language programming to be used in your
installation, I urge you to encourage your programmers to use it in those
situations where it would be of value.

The best way to learn machine language programming is from an
experienced programmer in a working situation. The person who is writing
a machine language program and has access to an experienced programmer
will learn programming quite rapidly. Barring that, some textbooks can
give a person a good grounding in the fundamentals of machine language
programming, and for certain computers, there are handbooks available
for learning -- for example. Machine Language Programming for the CDC
3600, MRC Technical Summary Report No. 721, which will appear shortly.
The computer reference manual is usually one of the least effective ways
of learning machine language, but it will do in the absence of any other
source.

The only really effective way of learning machine language programming,
however, is by doing it.

Why is machine language programming worth consideration?

There are several reasons. First and perhaps foremost, machine
language programs can be considerably more efficient than even the most
skillfully written programs in problem oriented languages. The compilers,
after all, are general purpose programs, designed to handle a wide variety
of cases with acceptable efficiency. They cannot, therefore, tailor programs
to specific situations; to do so would require additional logic in the compiler
program to the point that the compiler would be cumbersome and quite slow.
Consider, for example, the question of testing whether A = B. The usual
method of making this test is to subtract B from A and test the result for
zero, and this is quite an acceptable method. If, however, B happens to be

zero already, there is no need to do the subtraction; we need only test A
for zero. However, many compilers do not even recognize this particularly
simple special case; they will compile code to subtract zero from A and
test the result for zero. Clearly, a person writing a program in machine
language could easily eliminate the extra subtract instruction which the
compiler would generate. Far greater economies are usually possible in
more complex situations.

Another benefit derives from a programmer knowing machine language.
A programmer who knows machine language can often write more efficient
programs in a problem oriented language than a programmer who knows
only the problem oriented language. The programmer familiar with machine
language will know roughly how the compiler will translate the source state-
ments he writes, and he will be able to avoid situations which cause unneeded
instructions to be generated. He will understand, for example, exactly
what is involved in mixed-mode arithmetic (for example, dividing a floating-
point number by an integer) and will be able to make an educated decision
about what course of action will result in the most efficient object program.
Moreover, he will know when to use machine language and when to stick with
the problem-oriented language.

A third and very important argument for a programmer's knowing
machine language is that it will be of immeasurable value to him in debugging
his programs, whether written in machine language or in a problem oriented
language. He will be able, for example, to read core dumps, understand
what kinds of errors might cause a certain wierd symptom, and even track
down errors generated by library subroutines, the compiler or even the
computer itself (in the rare instances when they occur).

We turn to a simple example. A program to clear am array to zero was
written for the CDC 3600, first in FORTRAN using four different methods,
and then in machine language. Let us examine the source statements and
the code generated from them, and then the machine language code to do the
same thing.

Example 1

DO 10 1- = 1 , 10000
10 A(I) =

ENA
STA
LIL
ENI

0. 0

1
=SI
I. 1
9999, 2

WS00001. BSS 0
. 10 ENA

STA
INI

0
A-1, 1
1.1

UP WS00001. ,2

Example 1 is the traditional way of writing this program in FORTRAN,
and, it turns out, is also the most efficient way of doing it in this compiler.
Note, however, that the instruction ENA 0 (Enter A with zero) is executed on
every pass through the loop, eventhough the A-register is never changed in
the loop and thus always contains zero anyhow. Note also that two index
registers are used, whereas one would have been sufficient.

Example 2

1=1
10 A(I) =

1=1+1
: 0. 0

IF(I. LE. 10000) GO TO 10

ENA 1
STA =SI

.10 ENA 0
LIL 1,1
STA A-I, 1
LDA I
INA I
STA =SI
LAC I
INA 10000
AJP, ZR .100001
AIP, MI . 100002

.100001 SLJ . 10

.100002

In Example 2, the DO-loop logic was abandoned a.sA indexing was done
explicitly. This resulted in a far less efficient program, although a
sophisticated compiler could have improved it considerably. For example,
in this situation, the variable I could have been kept in an index register.
Moreover, the variable I is already in the A-register when LAC I is executed;
the compiler could have engineered matters so that I, rather than its com-
plement, was used in the subsequent instructions, and thus eliminated the
LAC I instruction. Note also that an extra jump instruction is executed at
the end of the loop; AJP, ZR . 100001 could equally well have read
AJP, ZR . 10-- or even been eliminated in this case.

^M^^^^W^M

Example 3

1=1
10 A(I) = 0 0

1=1+1
IF{I-10000) 10,10,20

ENA 1
STA =SI

10 ENA 0
LIL 1.1
STA A-1,1
LDA I
INA I
STA =SI
INA -10000
AIP, ZR .10
AIP, MI . 10

Example 3 differs from Example 2 only in the form of the IF statement.
This form of the IF statement gave a more efficient object code, although
many of the remarks concerning Example 2 apply equally well here.

Example 4

1=10000
10 A{I) = 0.

1=1-1
0

IF(I. NE 0) GO TO 10

ENA 10000
STA =SI

10 ENA 0
LIL 1.1
STA A-1,1
LDA I
INA -1
STA =SI
INA -0
AIP, ZR . 100002

100001 SLJ . 10
100002

i

In Example 4, "reverse" indexing was used (as will be the case with
Example 5, which is the machine language version of the program). Many
of the remarks concerning Example 2 also apply to Example 4. Note here
that the IF (I. NE. 0) statement generates an instruction which subtracts
zero from I and then tests the result for zero. Note also that the construct

I

■■I

.100001

AJP.ZR

SLJ

100002

10

could have been replaced by the single instruction

AJP.NZ .10

Example 5
ENI 9999,1
ENA 0
STA A.l
UP L.l

Example 5 is the machine language version of the program. Observe
that there are only two instructions in the loop, and that everything done in
the loop must be done in the loop, while everything which can be done outside
the loop is done outside the loop. This clearly results in a more efficient
program than even the most efficient program generated by the FORTRAN
compiler.

Comparing the most efficient FORTRAN program (Example 1) with the
machine language program, (Example 5) we see that two extra instructions
are executed on each pass through the loop. The execution time is about
2(i.s per pass. In 10,000 passes through the loop, this comes to about 30
milleseconds -- hardly worth considering. But if the procedure were to be
executed a hundred thousand times, those two instructions would take 2, 000
seconds on the 3600. At 11^ per second, those two innocuous-looking instruc-
tions would cost $220. 00.'

Let us now consider what types of programs should ordinarily be written
in problem oriented languages and what types of programs stand to benefit
from being written in machine language.

We first mention a few cases where machine language programming
should not ordinarily be used. Programs which only need a couple of minutes
of computer time can usually be written quite economically in one of the
problem-oriented languages. The reason for this is that, in many of these
cases, system overhead is responsible for a significant portion of the
running time. There simply is not that much to be gained by speeding up the
computation itself by a few seconds. Another case where machine language
programming might be a mistake is when answers are needed in a hurry --
that is, when total turnaround time, rather than computer time, is the over-
riding consideration. In these cases, the longer time usually required to
write and debug a machine language program might cause intolerable delays.

A third instance where machine language programming is not usually-
indicated is the case of the "one-shot" job, where the program will be
abandoned or significantly changed after it has run successfully. In this
case, the computer time necessary to debug a machine language program
could well cancel any saving effected by writing the program in machine
language.

Where, then, would machine language programming be worthwhile?
The most obvious place is in programs which are to be used over a long
period of time with no changes or only minor changes. If machine language
programming can save 10% on a program which will run for, say, 1000
hours during a year's time, the total saving will be 100 hours. If the com-
puter cost is $200. 00 per hour, this would result in a dollar saving of
$20,000.00. This is a realistic figure.

There are two other places where machine language programming can
be of definite value. The first is the case where a problem can be handled
far more efficiently by use of machine language programming than by the
use of one of the problem oriented languages due to special circumstances.
In this case, problems which were not economically feasible when program-
med is one of the problem oriented languages can become quite reasonable
when written in machine language. The second is the case where it is
necessary to have complete control over the exact machine operations used
as well as the sequence in which they are used. Such would be the case, for
example, when the problem required strict control of round-off error. The
program written here at MRC for Professor Lowell Schoenfeld to Locate
roots of the Riemann Zeta function falls into both of these categories.

Looking at the program for this Conference, the Newton program, to
be described next, and Interval arithmetic, to be described this afternoon,
both use machine language programming to good advantage; and in the analysis
of round-off errors, which will be covered tomorrow, a knowledge of machine
language for the computer in question is almost essential.

In summary, then, we have seen that knowledge of machine language
can not only allow a programmer to write machine language programs when
necessary, but it can also help him to write more efficient programs in any
language, and help him debug programs more efficiently. This can result
in significant savings in both time and money. This is why I claim that
machine language programming is still very much alive.

^

r—p. ^' '" u^mmn^mmt^mntu in

'***mmm***^*mm

NEWTON: A GENERAL PURPOSE PROGRAM

FOR SOLVING NONLINEAR SYSTEMS

Julia H. Gray and L. B. Rail

1. Introduction. A number of important problems which arise In practice

may be reduced to the computational problem of solving a system of equations

of the form

tftltiy •••^n) = 0 . i = 1, 2, ...,n . (1.1)

In (1.1), the functions f are assumed to be known, and the ^. are the un-

knowns, i = 1, 2,..., n . It may be supposed that all values are real, since

in the case of complex values, (1.1) may be written as a system of 2n real

equations for the real and imaginary parts of the £ by setting the real and

imaginary parts of the f equal to zero, i = 1, 2,..., n .

THs repct describes an automatic computer program for solving systems

:>: the; fcrrr, (1.1) which was developed at the Mathematics Research Center for

the CDC 3600 computer operated by the University of Wisconsin Computing

Center. The program is iterative in character; it starts from a given initial

approximation and generates successive approximations to the solution of (1.1),

x* = (e1*,e2*,...,en*) , (1.2)

until pre-assigned criteria of accuracy are met, or until divergence is indicated.

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract DA-31-124-ARO-D-462. This is MRC Technical

Summary Report No. 790 July 1967.

11

i ■.,.. i

BBaMwHaBBBMaanaa mmamm ■MMBHMHi^^^^^

In the latter case, the program prints an appropriate message. The convergence

and error analyses are integral parts of the program. The program is general pur-

pose in that it will handle any system of the form (1. 1), up to the limits set

by available core storage, in which the functions f. can be written in terms of

ordinary FORTRAN statements.

?.. Theory. The system (1. 1) can be considered to be an equation of

the form

F(x) = 0

in the space R of n-dimensional real vectors

•* = 'bi» bo» • • • > 6n' •

(2.1)

(2.2)

Here F is the vector function, or operator, defined by

F(x)= (f j (x), f 2 (x),..., fn(x)) , (2.3)

which maps the vector x into some other vector in R . A vector x will be a

solution of equation (2.1) if it is mapped into the zero vector 0 = (0, 0,..., 0)

in R by the operator F .

The (Frechet) derivative of the operator F is the nXn matrix

F'fc) =
^1 *h

• • • - • •

or, for brevity.

8f df
 n n

F'tx) =

(2.4)

(2.5)

12

•m^^**~

i, j = 1, 2,..., n [1]. FMx) is sometimes called the Tacoblan matrix of the

system (1.1). The second derivative of F is the nXnXn array shown in

Figure 1, or

(2.6) F-flc) = I ^_i ü^1 '

1, J, k = 1, 2,..., n in condensed notation. For operational reasons, the con-

vention
2 r \

(2.7)
Vek

/
. 8

is adopted.

The second derivative is a special type of bilinear operator

B ■ (v) (2.8)

l,J,k = 1, 2, ...,n in . Rn [1,2] .

In R , the norm ||x|| of a vector x will be defined to be

ii ii max
(1) 'V ' (2.9)

Similarly, the norm ||A|| of an nXn matrix A = (d) is taken to be

!A!i - ":rr 2 la
J=I

max
(i) ij' '

(2.10)

and the norm ||B|| of an nXnXn bilinear operator B = (b) is given by
1JK

max n n

*' j=l k=l 1}K

In (2. 9) - (2.11), the index 1 runs over the integers 1, 2,..., n .

If F is differentiable at

x = (6 ^ i ^ £ mi x0 ,sl ,62 ''"'^n ' '

(2.11)

(2.12)

13

^m^mm^ • i ^^mm^^rr -^m

'-■■:■ * ■ ^ •./,-- ■ ■ .. ,. , .

(M c IH ■
«JJ> M *JJ>
CO CO CO

(M

M

co

to

(M
CO

(VJ

(M (M
<JJ> (VI «Ol
CO tM CO c (M c
*lfl CO u/>
CO CO

_
^H

*JJ> <M UP
CO IM CD c PO C
UJ> CO u/i
CO CO

(M
CO

(VJ
CO

(M
Ui)
CO

C

CO

UP
CO

UP
CO

(VJ
CO

c
UP

(VJ
UP
CO

fVJ

(VI

(VI

CO

(VI IM (VI
UP (VJ UP
CO CO CO

^
UP (VI UP
CO

(VI
UP

(VJ
CO

CO
(VI

UP
CO CO

0)
u
3
0>

.£,

0) >
■M
to >
u
0)
Q
•a c
o
Ü
a)

0)
x:
H

UP
CO

UJ>
CO

(VI
CO

(VI
CO

(VI (VI
UP (M

M-l
(M

UP
CO CO

UP UP
CO CO

(VI (VI (VI
.—t IM

UP N UP
CO CO CO

14

M*

■ I ■ !■ 11 m^^m^^m^^^^'^^^w^^^^m^^^^fm
—: • ■ ■ mm

then equation (2.1) may be written in the form

F(x0) + Fl(x0)(x-x0)+y0=0 (2.13)

in matrix-vector notation. F'{x0) is obtained by evaluating the partial deri-

vatives in (2.4) at x = x . The vector y is small relative to x-x in

the sense that

lim
|x-x0ll-0 ||x-x0l

= .0 . (2.14)

If a solution of equation (2.1) is close to x , one may feel Justified in drop-

ping y to obtain the approximate linear equation

F(x0)+ F'(x0)(x-x0)= 0 , (2.15)

the solution x = x of v/hich will be

-1
VVCrvi F(xo,

providpd that [F'^)]' exists. Set

G0 = (giJ
(0,)=[F'(x0)r1

(2.16)

(2.17)

In terms of the original system (1.1),

xl = ^1 '^2 ' **•**» ' (2.18)

may be written

(1) . (0) (0)* tt (0) . (0) (0).
V'^i"'- Z 9iJ"'fJ<

el,"''e2^''•••'en"", ' (2•19,

i — ij £f • • ■ y n *

On the assumption that x is a better approximation than x to a solution

x = x* of (2.1), the same process may be repeated with x replaced by x.

to obtain a further approximation x , and so on.

15

The generation of the sequence {x } of successive approximations

by means of the relationship

,-1
Xm+i

=Xm-fF,<X
mH 'V ' (2.20)

m i 0,1, 2,... is called Newton's method for solving equation (2.1). In order

for the application of Newton's method to make sense from a computational stand-

point, it Is necessary to have affirmative answers to the following questions:

(1) Does equation (2.1) have a solution x = x* ?

(2) Does the sequence generated by (2.20) exist and converge

to x* ?

(3) Is it possible to obtain an estimate (that Is, an upper bound)

for the error ||x -x*|| of approximation of x* by x ,
m m

m = 0,1, 2, ... ?

At a given x , it Is possible to settle these questions on the basis

A a theorem due to L. V. KantoroviC [1, 2].

-1
Theorem. At x = x , suppose that G. = [F'(x)] exists,

llxj-xj

lG0ll<B0 .

G0F(x0)|| < ^ ,

(2.21)

(2.22)

and

lF"(x)|| < K (2.23)

tor x In the set

If

V(x0,r)= (x : ||x-x0ll < r} . (2.24)

VoK^F (2.25)

16

wmmm^mmm'

and

r^ro =
1 - N/1 - 2hf

(2.26)

Then:

(1) Equation (2. 21) has a solution x* in V(x ,r);

(2) The Newton sequence (x } defined by (2. 20) exists and

converges to x* ;

(3) The error estimate

2m-l
I II (2h0)
|x* - x || < —2 m ,m-l

(2.27)

is valid, in particular,

M-XjH < 2h0T1o . (2.28)

Proofs of this theorem may be found elsewhere [1, 2]. It is used as the

basis for the optional automatic convergence and error analysis features of the

computer program described in this report.

3. Generation of the Newton sequence. In order to generate the Newton

sequence (x } defined by (2.20), subroutines are needed to perform the

following operations:

(1) Evaluate F(x), that is, the n functions Ml, »|« •,.••»t«^i

i = 1, 2,..., n .

2
(2) Evaluate F'(x), which consists of the n functions

O.l)
J

M = 1»2»'"»n •

17

(3) Invert the matrix F'(x), If possible, and form the vector x

defined by (2.16) .

In addition, It Is necessary to evaluate various norms In order to deter-

mine whether the iterative process should be continued with

x0 : = x1 (3.2)

or not.

In the operation of NEWTON, the user supplies the functions f ,

i = l,2,...,n , written in a form suitable for compilation by the CODEX program

[3], which is essentially the same as for the FORTRAN compiler [4]. The CODEX

program, which was developed at the Mathematics Research Center, prepares

nd the subroutines for the evaluation of the n functions f , i = 1, 2,..., n , a

2
the n derivatives Bf./dt, , 1, J = 1, 2,..., n . This relieves the user of a

tedious chore, and removes a possible source of error. This takes care of (1)

and (2).

During the operation of CODEX, one of the following error messages may

oe printed if the corresponding restriction is violated,

1. "PARENTHESIS ERROR IN DEFINITION OF name of function. " Check

the parentheses in the function named, correct the error and resubmit.

2, "STORAGE INSUFFICIENT FOR COMPILING. " This message signifies

that the system of equations is too large for the program to handle. At present,

the program will handle a system of 24 equations in 24 unknowns. The equations

are relatively sparse, however, and there is no guarantee that another system

~)f that size could be handled. Unfortunately, the program occupies most of the

storage available in the CDC 3600, so little can be done outside of rewriting the

18

entire program when this message is received.

3. "Name of storage area STORAGE INSUFFICIENT FOR DIFFERENTIA-

TION. " This message occurs when storage is exceeded during differentiation

of the equations. As above, there is not much that can be done.

4. "Name NOT DIFFERENTIABLE. " This is caused by attempting to

differentiate an operator whose derivative has not been defined. Check the

equations.

5. "ILLEGAL VARIABLE DETECTED. " This occurs when the evaluating

portion of the program comes across an improperly named variable. Check for

a variable whose name has more than 3 characters.

The matrix operations (3) are standard, and the user may employ any

matrix inversion program he chooses, provided that it gives the indication of

failure

ISING * 0 (3.3)

on return to the main program. The routine used here (INVERT) is a slow but

accurate program which uses double pivoting. For large nonlinear systems,

such as arise in the solution of nonlinear elliptic boundary value problems [5],

an iterative subroutine may be required.

If the matrix inversion falls, the program terminates by printing the

message

"DIVERGENCE INDICATED AT ITERATION NUMBER DUE TO

FAILURE OF MATRIX INVERSION. "

The matrix which the inversion subroutine failed to invert will be printed If the

user desires. A new value of x may be taken by the program at this point.

19

mm

The following constants are calculated by NEWTON for comparison with

tolerances provided by the user;

(1) l|F(x)|| is compared to the given numbers F and FF . If

lF{x0)ll < F , (3.4)

then x* = x (the current value of x) is taken to be a solution of (2.1).

Following the message

"SUCCESSFUL CONVERGENCE AT ITERATION NUMBER WITH

NORMF = LESS THAN OR EQUAL TO

revalues of IJMJ ,...»!„* and f^*^* in*),

fjltj*! I2*. • • •, enn • • •, ySj*, e2* en*) are printed.

If

|F{x0)|| > FF , (3.5)

.nen it is assumed that the method is divergent, and the program is stopped

tor given another value of x). This feature prevents generation of a sequence

of useless values. The message printed in this case is

"DIVERGENCE INDICATED AT ITERATION NUMBER

IS GREATER THAN . "

AS NORMF

(2) The number

IGII = ll[F'(x0)] -1

«s compared to the given number BB . If

lol > BB ,

then the program terminates the Iteration and print? the message

"DIVERGENCE INDICATED AT ITERATION NUMBER AS

BOUND G = IS GREATER THAN . "

(3.6)

(3.7)

If the user desires, the matrix G = [F'lx)]" will also be printed. Condition

(3. 7) Is used for a divergence criterion for two reasons: A large value for IIGil

indicates that ^'(x) may be singular or nearly singular, hence the components

of G may be In error by large amounts; also, th* value of x. will be in-

accurate even If F(x) Is kn vn fairly exactly.

(3) The quantity

iix1-x0ii = i-jn^jt"1?*^! ,

is compared to the given numbers C and CC . If

(3.8)

llxj-xj < C , (3.9)

tnen x* - x. is taken to be a solution of (2.1). The message,

"SUCCESSFUL CONVERGENCE AT ITERATION NUMBER WITH

NORMCX = LESS THAN OR EQUAL TO , "

Is printed, followed by the values of x* and F(x*). If

|x1-x0ll > CC , (3.10)

divergence Is assumed, and the program terminates the Iteration and prints the

message:

"DIVERGENCE INDICATED AT ITERATION NUMBER

NORMCX = IS GREATER THAN

AS

ii

(4) The total number of Iterations m Is compared with the given number

LIMIT . If

m > LIMIT , (3.11)

21

divergence is assumed, the Iteration terminates, and the message,

"DIVERGENCE INDICATED AT ITERATION NUMBER AS THE

NUMBER OF ITERATIONS HAS EXCEEDED , "

. printed. This control prevents the computer from generating a sequence

wnich flounders aimlessly.

(5) Finally, each Iteration Is timed, and the total elapsed time plus

the time for the previous Iteration is compared to TLIM , the number of milli-

seconds allowed for the total iteration by the user. If this estimate for total time

at the end of the next iteration exceeds TLIM , the program prints the message:

"NOT ENOUGH TIME REMAINS FOR THE NEXT ITERATION, "

and the current values of x , F(x) , and other parameters. This feature of the

program prevents loss of Information due to a time limit interrupt.

4. Error Estimation. An optional feature of NEWTON is automatic error

estimation, using (2.28), which may be written

Ixf-xJI < 2B0Tlo
t'K . (4.1)

The quantities

B0= ll[F'(x0)] -li
, ^0= IXj-X0l (4.2)

are available immediately from the computation of x by the process described

in Section 3. The only remaining quantity is the bound

K> ||F"(x)|l

in a ball V(x ,r) ,

V(xn,r) = {x: Hx-xJ < r}

(4.3)

(4.4)

22

•»■-—•I™»-"—1^™»—«^

of sufficiently large radius r so that (2.26) will be satisfied if h-<-2 .

Two options are available to the user:

(1) If a value of K , or a special method for computing K is known,

then this value, or a subroutine for computing K , may be inserted into the

program. The value of K is called BNORM in the program.

(2) The program will form the second derivatives required for F"(x) as

given by (2.6), and estimate K by the use of interval arithmetic [6,7]. This

estimation makes use of the program INTERVAL [8], which was developed at

the Mathematics Research Center to add interval arithmetic to the modes of com-

putation available on the CDC 1604 and CDC 3600.

To perform this estimation, subroutines for the evaluation of the n(n-l)/2

distinct second derivatives (2.6) in interval arithmetic are compiled by CODEX

and INTERVAL. (Recall that

82f. A
HiBij " njHi •

>t],k = lt 2,..., n .) Each derivative

9
2f

is evaluated as an interval-valued function of the interval vector

(0) _ ._, (0) - (0) ,-; (0).

(4.5)

(4.6)

(4.7)

with components which are the intervals

ai ■ »i 2V6i + 2T,OJ ' (4.8)

23

Thus, the vectors x = (£ , 1-,..., I) belonging to X lie in the ball

V(x0,2t1o) , in fact, by (2.9) and (4.4),

X(0, = v(x0,2V . (4.9)
2

(0) 8 fi will be called
H^

G^(X^1) , and for
■■'

GiJk(X(0,)= (a,b] , (4.10)

one has that

min . . max , ,
8 " x.X<0' 9^<X, ' x.x'»' 9^<X,

<b , (4.11)

by the fundamental theorem of interval arithmetic [6,7], and thus

li. 1 max 1 i \\ ^ r 1 1 'V" JO) 'V^1 - max{lal
Xc A

,|b|} . (4.12)

Tnerefore, by (2.11),

^~Uv • (4.13)

The quantity on the right is a rigorous, but usually gross , upper bound for K

in the ball V(x , 2TI) . If the INTERVAL program is unable to compute finite

real values of [a,b] for any function or derivative, then it will print the appro-

oriate error messaae fSl. The NEWTON comoutation is aborted in this case.

Using the value for K resulting from either option described above,

the number

h0 = B^K (4.14)

1
is calculated, and compared to — and the given number HH . If

h0 > HH , (4.15)

24

—^—"»— ■"■ w^^^

The Iteration is assumed to be divergent, and is terminated. This situation is

indicated by the message

"DIVERGENCE INDICATED AT ITERATION NUMBER AS

HO = IS GREATER THAN . "

If

then the error bound (2. 28),

h0< HH

Ix*-V ^ 2Vo

is calculated, and compared to preassigned number E . If

11**-*!II > E ,

then the program performs another iteration with x : = x

llxf-xjl < E ,

If

(4.16)

(4.17)

(4.18)

(4.19)

then x. is regarded as being a sufficiently accurate approximation to the
k

solution of F(x) = 0 ,. and the program prints the message:

"SUCCESSFUL CONVERGENCE AT ITERATION NUMBER WITH

ERROR = LESS THAN , "

followed by the values of x. and F(x) .

During the operation of the program while using the error estimation

option, all of the controls described in Section 3 remain in effect. The auto-

.natic error estimation feature, using INTERVAL, lengthens the computation time

for each iteration considerably. In the case of a simple system of three equations

in three unknowns to be presented later as an example, this amounts to a factor

of ten. Consequently, unless an error estimate is of great moment, one of the

other parameters could be taken as an accuracy control, perhaps after a test run

25

mmm,^ammtttm

1 '■■l^^^'

I

on d typical case with error estimation snows tnat some otner criterion is re-

liable. Because of the rapid convergence of Newton's method, as shown by

(2. 27), the price of an extra iteration or two to obtain a value of llxj -XQII

or ||F(x)|| which is smaller than necessary for the required accuracy Is prob-

ably less than that of the automatic error estimation procedure.

It is, of course, possible to become fanatical about rigorous error esti-

mation. One may note that the computation of F(x0), F'IXQ) , [F'IXQ)] ,

and thus x , are subject to round-off error, so that one obtains some x^

instead of the x called for by the theory in Section 2. If one can estimate

||x -xjll by interval methods [6,7] or by other procedures [9,10], then

Hx*-^« < llxj-^ll + ixf-xjl < 2h0rlo+ lltj-Sjll (4.20)

is a rigorous oound, as long as B0,r|o, K , and thus h0 , are upper bounds

for the corresponding exact quantities. (In using automatic error analysis, the

factor of overestimation of K usually dominates the much smaller errors in

the calculation of x, , so that (4.17) gives a correct, if pessimistic, result.)

In addition, there can be errors in the coefficients of the system to be

solved, or limitation on the accuracy with which they are known. This gives

rise to an uncertainty error in the numerical solution. Also, if the system to

De solved is a finite approximation to a differential or integral equation, there

.s a discretization error due to the method of approximation used. Analysis of

these errors is completely outside the scope of this paper.

5. Flow chart. The structure of the program, which was described above

in narrative fashion, is shown geometrically by the flow-chart in figures 2, 3,

and 4.

>
26

!«■

Read control
tolerances,

other parameters.

Initialize
differentiation

K* Read V
independent \

variables and)
starting values/

Find first
partial

derivatives
of functions <

Read
functions

To iteration and
error analysis
(Figs. 3, 4)

Figure 2. Initialization

27 I
■kAMMBMM

From initialization
(Fig. 2)

Y e s y Indicate >
> ' A Divergence Iter = limit

Evaluate the
functions using
"current values

independent
variables

->From error
C Janalysis
- ^ (F i g . 4)

Calculate
new value

x : = x + Ax

To error
B janalysis

(Fig. 4)
Indicate
onvergenci error analysis

\ d e sired

(Indicate
Lconvergenc

' Indicate \
l
Ndivergencey

Give standard
printout of

current values
if d e s i r e d ^

Evaluate and
invert the

matrix F'(x)

Yes / Indicate
"" \d iverge nee

Calculate
Ax || =[F'(x)]"1F(x) Indicate __Yes

divergence j

Figure 3. Iteration

28

^mm^^^mmmm^

From iteration
(Fig. 3)

0
Calculate

K

Calculate

Indicate
divergence

^/indicate A
^convergence

Fig. 4. Error Analysis

29

■■M

mt^^amamimmmma

••w^im ~~ » .«

6. Input. Explanations of format designations may be found in [4].

The first input card contains, in I 5 format, the number of systems of equations

to be read in and solved during the run. The second input card, which is read

in under 3E20. 8 format, contains in columns 01-20, F , the value of the toler-

ance to be allowed on ||F(X)ll . Columns 21-40 of the second card contain
n

FF the upper bound for ||F(X)|| . Columns 41-60 of the second input card con-
n

tain BB , the upper bound on the norm of the inverse of the partial equations

matrix.

The third input card, also read in under 3E20. 8 format, contains in the

»rst 20 columns C , the tolerance on the norm of the increment vector. Columns

21-40 of the third input card contain CC , the upper bound on the norm of the

increment vector. Columns 41-60 of the third inpul caro contair the time In

milliseconds allowed for the iteration section of the program

The next input card supplies the program with parameters which will

determine what options are to be used as well as several iteration limits. The

card is read in under a 1515 format. If columns 1-5 are zero, the error analysis

subroutine will not be used, otherwise, the subroutine will be called. Columns

6-10 indicate whether or not the matrix of the partial derivatives is to be printed-

out in case the inversion of this matrix fails. If columns 6-10 are zero, the

matrix will not be printed out, otherwise, a printout will be given. If columns

11-15 are not zero, a printout of the inverse of the Jacobian matrix will

be given when the norm of this matrix exceeds the given upper bound and diver-

gence of the system is thus indicated. If columns 11-15 are zero, no printout

will be given. Columns 16-20 indicate how often a printout of the intermediate

values of the Newton sequence is desired. If this printout Is desired every

time, then there should be a 1 in column 20, If every other time, column 20

should be 2, etc. Columns 21-25 give the number of iterations to be allowed

in searching for a solution. This number must be right adjusted in the field.

Columns 26-30 give the number of sets of starting values which are to be used

with the system of equations. If columns 36-40 are zero, there will be a print-

out of the formulas which CODEX makes up for the given equations, the partial

derivatives, and the second partial derivatives. If columns 36-40 are not zero,

no printout will be given. Columns 41 -45 need be used only if the error routine

is being used. If so, then column 45 Is 1 if the norm of the matrix of the second

partial derivatives is not known and must be computed. If the norm is known,

then column 45 is 2 .

The next input card is supplied only if the error analysis routine Is to be

used. Otherwise, It should not be present. This card is read in under 3E20. 8

format. Columns 1-20 of this card contain the allowed tolerance E on the error

nound. Columns 21-40 contain the upper bound HH on the convergence constant.

Columns 41-60 need be supplied only when the norm K of the second derivative

is known. These columns then contain this norm.

The next data cards contain the names of the independent variables and

their starting values. The names of the variables are limited to three non-blank

alphanumeric characters, the first of which must be an alphabetic character.

The first name may be punched in any of the first 72 columns of the card. It is

followed by at least one blank and the starting value corresponding to the variable.

The starting value must be followed by at least one blank, and then the name of

31

the next independent variable and its starting value are given. When all of the

independent variables and their starting values have been given, the last entry

is followed by at least one blank and a $. The starting values may be given

as a fixed point integer, a floating-point number with a decimal point, or a

FORTRAN E-format number. The numbers may be signed or unsigned.

The last group of data cards contain the equations for which a solution

is to be found. These must be in the form F(x) = 0 where F(x) is an arith-

metic expression using any of the operations +, -, *, 1, ** and/or any of

the transcendental functions sine(x) , SINF{x) , cosine(x), COSF(x), (natural)

iog{x), LOGF(x), exp(x), EXPF(x), and arctangent(x), ATAN(x) . F(x) is

men given to the program in the form

variable name = F(x) .

Tne above formula must be punched with at least one blank between consecutive

symools. As with the independent variables, only the first 72 columns of a

card are significant. The formula may be continued on any number of consecutive

cards and is terminated by a blank and a $ following the last symbol of F(x) .

The program reads in the independent variables until it encounters a $.

Then it expects to read in as many equations as independent variables, and it

separates and counts these by the $ at the end. If a $ is misplaced, any of

error returns 1, 4, and 5 from CODEX, as well as an unchecked EOF are equally

likely to occur.

7.. An example. The results of computation of the solution of the system

32

"I" ' <

4 4 4
16x + I6y + z - 16 = 0

2 2 2 x + y + z - 3 =0 (6.1)

3
x - y = 0

in the first octant are shown in Appendix I with and without automatic error

estimation. The initial approximation was taken to be

x0 = (1,1,1) . (6.2)

Other applications of this program have been made to finding character-

istic values and vectors of matrices [11,12], and solutions of systems arising

in magnetohydrodynamic problems [13], Its performance in every case has been

satisfactory.

8. Warning. The complete program, except for unmodified subroutines

of CODEX [3] and INTERVAL [8] is listed in Appendix II. Many subroutines

are in CDC 3600 machine language [14], or use constants peculiar to the

CDC 3600. Consequently, it is doubtful that the program as listed will work

at any other installation, or survive future changes in the operating systems

program at the University of Wisconsin Computing Center. However, the listing

given, together with the description given above, should be a reliable guide for

the adaptation of this program for use elsewhere.

33

wm^m

REFERENCES

1. Kantorovlt, L. V. (Kantorovich, L. V.]. Functional analysis and applied
mathematics. Tr. by C. D. Benster. National Bur. Standards Report No.
1509, Los Angeles, 1952.

2. Rail, L. B. Computational solution of nonlinear operator equations. To be
published by John Wiley & Sons, New York, 1968.

3. Gray, Julia H., and Reiter, Allen. CODEX: Compiler of differentiable
functions. Mathematics Research Center, U. S. Army, Technical Summary
Report No. 791. Madison, 1967.

4. CDC 3600 FORTRAN/Reference Manual Preliminary. Control Data Corp.,
Minneapolis, 1964.

5. Greenspan, D. Introductory numerical analysis of elliptic boundary value
problems. Harper and Row, New York, 1965.

6. Moore, R. E. The automatic analysis and control of error in digital com-
puting based on the use of interval numbers. Error in Digital Computation,
Vol. 1, pp. 61-130. L. B. Rail, editor. John Wiley k Sons, New York, 1965.

7. Moore, R. E. Interval analysis. Prentice-Hall, Englewood Cliffs, N.J.,
1966.

8. Reiter, Allen. Interval arithmetic package (INTERVAL) for the CDC 1604
and the CDC 3600. Mathematics Research Center, U. S. Army, Technical
Summary Report No. 7 94. Madison, 1967.

9. Albasiny, E. L. Error in digital solution of linear problems. Error in Digital
Computation, Vol. 1, pp. 131-184. L. B. Rail, editor, John Wiley & Sons,
New York, 1965.

10. Wilkinson, J. H. Rounding errors in algebraic processes, Prentice-Hall,
New York, 1963.

11. Rail, L. B. Newton's method fa the characteristic value problem Ax = Xx .
J. Soc. Indust. Appl. Math. 9 (1961), 288-293. Errata 10 (1962), 228.

12. Anselone, P.M., and Rail, L. B. Newton's method for characteristic
value-vector problems. Mathematics Research Center, U. S. Army, Tech-
nical Summary Report No. 492, Madison, 1964.

13. Pack, D. C., and Swan, G. W. Magneto-gasdynamic flow over a wedge.
J. Fluid Mech. 25 (1966), 165-178.

14. CDC 3600 Reference Manual. Control Data Corporation, Minneapolis, 1964.

» ■»'■

I

APPENDIX I

(1) Example without automatic error estimation.

f ■ i.oooooooo-oo«» '
FF 3_ 1,00000000*006

"BB * TVüöolsoöüo+onb
C ■ l.oouooooo-ooy
CC s U00000U0(»*Ui)b
TLIM * 1.20000000*005
IE»R ■ 0 IMAT a 1 IÜMP ■ 1
NITOIS ■ 1 LIMIT ■ 25 lAGAlN a 1
NOF a 1 HPHj . 0 1AVL « 1

_ ■ _ ,, ..,

NCwlONS MEthOÜ
XI. Y 1. Z 1. $
Tl 1 16. ■ Tj~»inn ib, • Y •♦ 4 ♦ Z •• ♦ - 16. S

COUe LIST FVH Fl—
OOOIT ax •*

 oöoar^nroreü
OOOiF a Y
DDÜ4T'
ooosr

oon^c

*•

00Ü2T ♦
0U06T
0007T^

" Fl s 0007T -
F2 a x •• 2 ♦ Y **

OOOff
_oon*»c
oooT1"
00O1»!

z
0005T

OOO^C
oonör
oouc

♦ z ** 2 - 3. «

COOt LIST
"OOIOT a
•Olli ■
0012T

0014T
F2

FO« F2
««
«•

OOIOT
Z

♦

0012T *
0014T -

F3 ■ 0015T -

ooo^c
0002C
OOUT
ooo^c
OOl^T
QQO-iC

F3 a X •• 3 - Y $

~CÖ0E LIST FOR F3
"OÜ15T ■ X " #» OOOJC

35

Wi

■Mi

coüt LIST ro«—rrm
OülbT ■ x ••__ nooJC
ooi7r « oooVc V ooiof
0U20T ■ 0Ü12C • 001/T
Oil > « f)0?wT

CÖÜF. LIST FOR

0021? « Y
1 00221 * 00Ö4C

002JT a 0Ü12C

Ti 2.
«•
•
•

0

..ooo ■?(;.
Ü021T
0Q2^r

012 a ♦ 002JT

> CUUb LIST KUR
*002H1 = Z

1« 3«
••

Ö
OOOJC

0Ü25T a 0004C
013 a

• 002«»T
002bT

COÜt LIST FÜR 2. 1. 0
0026T a 0002C
021 a

• X
002bT

CODE. LIST FUR 2« 2« 0
0027T a 0002C

! 022 a
« Y

002/T

COOt LIST FÜR 2, 3« 0
003üT a 0002C 1 z
023 s 0Q3UT_

COÜE LIST FOR 3» 1« 0
0031T s X •• 000<iC
0032T a 0003C » 0031T
031 = ♦ 003«iT

COUL LIST FOR 3, 2, 0 ""

-032—^ OOOIC

COOt LIST FOR—3» J« 0
"033 NOT ON F-LIST.

36

IT£RATIÜW NUMHt* I

NÜKM ¥ « 1.7UUO00nU»OOl
X a l.OOOUOOOOtÜOü
r ■ Tf~ ~T."öQO'ö'öoö\r*uTji5—
Z s 1.oouuonoo*üOo

TIME PEk ITERAflON

Fl

F3

1.7Q000ÜO0*O'Ql
O.OOUOOOOO^OOO
U,00000000*000

70.00 MjLLlStCONOS

ITERAfrON NÜMbt«

NORK-r-ff
NORM CX s
"BOUND f-RHIME

iTttn iTr^* o öo
2.d33333J3-0nA

ä.äOOOOOOÜ. INVERSE =
9.29166667-001

mv
T.mrsooöoo-ooi
1.28333333*000

TIME PER ITERATION

Fl

F3

4.79i917U*000
1,304b1389-001
1.46966669-002

125.00 MlLLlStCONQS

ITERATION NUMBER

NOmüTTä-- ^7493o9S22-TdT
NORM CX « 9.»32M»Q7-oo2
dOUNÜ FPR1ME INVERSE »
X ■ 8.870 74529-01.1
Y ■ 6.93175859-001
Z _■ 1.32086464*000

TIME PEK ITERATION s

b.56439198-001
Ix
F2
Z3_

.6. 453.Q9b ^2^MJ1
1.20773905-002

480.00 MILLISECONDS

ITERATION NUMBER

NORM-p w-
NORM CX s

"T7Btr509452-ÜQ2
1.59811520-00«:

BUUNÜ FPHIME INVERbE =
X ■ 8.78244398-001

"Y »" 6.77194707-001
Z * 1.33060980*000

'.3425<»33«>-001

—fi-;
F3 .

1.84509452-002
4.28336556-004
2,06810364-004

TIME PER ITERATION 132.00 MILLISECONDS

IURATION NUMBER

NORw-f l»»Tf778»4"005
NORM CX » 4.37403606-004
-80ÜMJ FPR1ME iNVERbt
X ■ 8.77965993-001

-T s—6. TöTsnoTi^irr
l ■ 1.33085521*000

b.61437Bd2-001

F3

l.»79778»»-005
J.2904T9Ö7-007
2.04207026-007

TIME PER ITERATION ■ 127.00 MILLISECONDS

37

dMkHMMMMMHIMÜMi

SUCCeSSFÜL CÜNVERtoFNCt AT iTC^ATION NUMtlrT

WTTH MOUMF ■ ♦tbb6bU87-ÜlO LESS THAN OR EQUAL TO 1.00000000-009

X ■ B«779b5760-ÜUl
T s rrnmffTTSfin
2 ■ l*330aSSM*ÜÜO

TWVEffSE-« '6.621Ö57Ö7-ÜÖT'
Fl ■ ».65661287-010

Tg i 5.B2076609-011
F3 ■ 0,00000000*000

38

mmm

(2) Example with automatic orror estimation.

F ■ 1.00000000-009
FF « 1.00000000*006
88 ■ 1.00000000*006

—C J L«JL00000ü0-009
CC * 1.00000000*006
TLI^ ■ l«20000000*005
IERR ■ 1 IMAT * 1 IOMP ■ I
NITCIS ■ 1 LIMIT ■ 25 UQAIN ■
NCF ■ I NPWT ■ 0 lAVU ■ 1

_£ « l^il0000000-0_0ft
HH ■ 1,00000000*006
aNCRH -0,00000000*000

NEWTONS METHOD
XI. Y 1. Z \. $
Fl » 16. • X •• 4 ♦ 16, • Y •• 4 ♦ Z •• 4 - 16, i

CCCE LIST FOR Fl
OOOlT ■ X if ooo4r
0002T «00120 •
0003T ■ Y ♦•

OOOlT
ft004r

ooo4T ■ oni?c •
000ST ■ 0002T *

0003T
0004T

0006T ■ Z ••
0007T ■ 0005T *

0004C
0006T

Fl a 0007T -
F2 ■ X tf. i_.t y.,:*»_

CODE LIST FOR F2

0012C
2 * Z «• 2 - 3. S

OOlOT «X ••
0011T ■ Y_ ••

0002C
0002C

0012T ■ 0010T *
0013T ■ Z ••
0014T ■ 0012T *
F2 ■ OOUT -

OOllT
0002C
0013T
0003C

F3 ■ X •• 3 • Y S

CODE LIST FOR F3
. 0015T ■ X ••. 0D03C

I

F3 001ST

39

m^mm MM

COOE ÜST fOR "
. 0016T ■ X
0017T ■ 0004C

. 0020T « 0012C.
011 >

It 1t 0
•• 0003C _
• 0016T
• 0017T
♦ 0020T

OCOt LIST FOR If 2« 0
_ 0021T ■ Y __•• . 00C3C
0022T ■ OOOAC ♦ 0021T
0023T - 0012CU_« 0022T

012 ■ ♦ 0023T

COOE LIST FOR
0024T ■ Z

lf 3f
••

0
0003C

002ST ■ 0004C
013 ■

CODE LIST FOR
5671T ■ X
S672T ■ 00030

•
_ ♦

••
-•

002*1
0025T ._

A _
0002C
5671T

5673T ■ 000AC
567*1 • 0012C

• 5672T
5673X_

111 ■ ♦ 567*T

COOE UST ^OR It !•
.112 NOT ON F-LIST,_

2

CODE LIST FOR If It 3
113 NOT ON F-LIST.

CODE "LIST FOR If 2i 2
5671T ■ Y PI 0002C
5672T ■ 0003C • 5671T
.5673T » 000*(L • 5672t_
5674T ■ 0012C • 5673T

122 • ♦ 5674T

CODE LIST FOR ~l7~¥f~3"
—123—NOT ON F^LIST.

QOCE LlSX F0H._lf_J^J.
5671T »2 •• 0002C

_ 5672T- ■ 0003C_» S67lT_
5673T ■ 0004C • 5672T
 133 ■ S6T3T

40

i^^- —^^^^» ■■■^^^•"■■^^^■■■■■■■l

[I

CODE LIST FOR 2
0026T a 0002C
C21 ■

CCCE LIST FOR 2
0027T ■ 0002C
022_ ■_

CCCE JJSt _F0R__2
0030T > 0002C
OM ^

CCCE UST £Oi_J
211 >

CCCE LIST"F0R~_2
112 NOT ON F«L

CCHE LIST FOR. 2
213 NOT ON F-L

CORE LIST F0R~2
222 ■

CCCE .UST_ FOR. 2
223 NOT ON F-L

CCCE LIST FOR
233 ■

If 0
X

0026T

■it J-

0027I_

_U_5_
Z

QQ3QT

l.__l
0002C

If 2

11_ 3_
ST.

2f 2
noo2c

2i_3-
ST.

3,3
00fl2C

CODE LIST FOR
003lT ■ X

_ 0032T ■ 0003C
031 ■

3« It 0
•• 0002C

0031T-
0032T

CODE LIST FOR 3« It
__ 032 ■ - -

XOOE LiSl FOR_ .3» 2t
033 NOT ON F-LIST.

0
_ OOOIC—

0 . -

COOE LIST FOR 3f If
.5671T a 0002C»
5672T a 0003C •

- 311 ■ ♦

CODE LIST FOR 3f 1L

1
X _

5671T
5672T

9

312 NOT ON F-UST,

COOE LIST FOR 3» It 3
3l3—NaT ON -f»LlST.

COOE
322

LIST FOR 3t 2f 2
NOT ON F-LIST. _

COOE LIST FOR 3f It 3
323 NOT ON F-LIST,

COOE LIST FOR 3. 3t 3
^332 tiOl-Qh F-LLSXi

41

lUfUTlON NUMBER 1

NORK F a 1,70000000*001
X a 1.00000000*000 Fl a 1.70000000*001
Y a 1,00000000*000 F2 a
Z a 1.00000000*000 F3 a

0,00000000*000
0.00000000*000

Tlvt ptR ITERATION a 64,00 HlLLlSECONOS
-

ITERATION NUMBER 2

NCRN F a 4.79191714*000
NOR»* CX a 2.83333333-001
BOUND FPRIME INVERSE " 5.50000000-001
BOUND F ORL PRIME a 9.71960000*002
HC ■ 1.51463767*002

X a 9.29166667-001 Fl ■
Y ■ 7.87500000-001 F2 •
2 a 1.28333333*000 F3 a

4.7919).714*000 .
1.30451389-001
1.46966869-002

TIKE PtR ITERATION a 1928,00 MILLISECONDS

ITERATION NUMBER 3

NORK F a 6,45309b22-001
KORK CA « 9.43241407-002
BCUNO FPRIME INVERSE a 5.56439198-001
BOUND F ORL PRIME a 4.43856898*002
HO ■ 2.35585457*001

X 1 8.87074529-001 Fl a 6.4530^522-001
Y m 6.93175859-001 F2 ■
7 a l.l?OHÄ4ft4*000 F3 a

1,20773905-002
4.8*417094-003

TlyE PtR 1TEHATION a 1843.00 MILLISECONDS

ITERATION NUMBER 4

NCRK F a 1,84509452-002
NORK CX a 1.59811520-002
BOUND FPRIME INVERSE > 6,34254336-001
BOUND F ORL PRIME ■ 2.85088868*002
HO " 2,88969353*000

X :a 8.78244398-001 Fl ■
Y m 6.77194707-001 F2 ■
Z m 1.33060980*000 F3 a

1.84509452-002
4.28336556-004
2.06810364-004

TIME PtR ITERATION a 1767.00 MILLISECONDS

42

ITERATION NUMRER «5

NCRK F ■ 1.47977fl44-005
NCRH CA ■ ♦,17403606-004
BCl^D KPRIME INVERSE » 6.6l437802r-001
aOU^O K_DBL PRIME « ?.57938553*_002_

HO ■ 7.46256805-002
ERROR ■ 6,52fl30835-O0ä.
X

_Y
8.77965993-001
6.76757304-001
1.330nS52U000

Fl
F2
F3

1.47977844-005
3.29047907-007
2.04207026-007

TIKE PtR ITERATION m 1853.00 MILLISECONDS"

SUCCESSFUL CONVERGENCE AT ITERATION NUMBER

iITM ERROR » 3,79255563-011 LESS THAN 1.00Ö00000-008"

Jk * _ 8.77965760-001-
Y >■ 6.76756971-001

-2 H umuiAUiii

FL
F2

.4.65661287-01 fl_
5.82076609-011
o.QnnQOOQO»ono

i

43

J

Hpp^HMVI

APPENDIX II

Listing of NEWTON and Relevant Subroutines (July, 1967), not including

CODEX and INTERVAL.

44

n; »
• lf>

»c IM
<->
(Ll II •

• II u. —

u a II
r—' ^H y-
_J X -i >-■ \- •-'
> iTi •> T: K a-
<f V < Q •
*— — x - vf
» |i •• c r-

(- cr »- r-< T 1.
*-> cr • or ^. oo
c Q \r a II w~
»—• c i-i z • • u.
— p U.I * in in sr _>
^ l/J u >- •- _i
~: > li. II C c <i
u Ifl o 2 II n 2 >
cr Al SB (T » £J
►—t r r (T ^: a '■D
_j o T" — 5 lL T zr
^ ft •—i X <i a O c »-»
•— 'a.1 < >c o *- ?: i-
_i r 0 sv < »v Or
v c < — X X <
** T i—i p • no oo • I-
Ü" • # or -~ t- o «/;
0 ;> K • oc ^- » V •
c CC »—» vC • n: ir* «f a

— 4 c ^, ri vO «—11— • r-> z:
<t — — 8 . N« UJ •- _J IT. ll <
P c jp cr _J Ü • 11 H-
w r > •• » II LC II to
V t- L T IT, II — 1- II u
*.. — ^ — I t— u O <r X -1
» i/ » i" #> C u s- 1-52' X en

—. _J p» c u: f- 5 »—1 t—(I—I •—« <
vt «> ir ^ r — ir

•—t »-H T. _l Z < X »—i

fV •« c — T" Ii »— i' _J vf 1- * X O vC fv
*0 *^ c c K X c-r _J • K V Q. 00 < ^ <
n c c 4 <. c C 1- 0 •■ I > >- >
• c- r- w V- »~ > II h •• ? L •■ or O * r- »

•~ c— — > ^. r XT 2- i/ L c t. a v >- ir X 2" oc K
4 oc h C •> c V > h- 1/ — v.. ^-, r • » ►-< o t- 0' • Z" •z
\ — j L 2 1» » Jjjf •« hi >- * • U «£ •■ 1- M > c vC — »—« UJ
• ll » _, r7 — 1— *■ »—• V tr > <y 1- * r- or <J II — cy ^:

r- ► < c
4 0 ii * k. ^ >/ c n X <• 5 i — <i or u • r~ * c n u LL JE C z \ r V t s V 1— c Q _l L.

-- rr a T or vO •-H or ir ir J» « c 3 < LL
— t- ^ s S 1/ V c "V — LT ■* iT C a • >-• » II l-< • or •-' "—■ a 3 II T H- a

- i/ t' V t- L V IT ^v Ü <S^ » tm •> c * LL L.1 or LD c. # T 9- 5 » UJ
K 9 C '/• ^ t- w r^ tu IT ►— H lL |J r ß L. u Q- •- II II r-> j # 1. r- r-l S

<-. i ^ ^ (/ > Q. ^ < ir II Ü ü ü Q » 1- II U. % i u II II zr
i. s 7-' C c < 1- X ty ?■ r- ^ »—* O ? •■ C LL, LL I — X H- _J M » 1 u K- X ►—•

c c U L v.. > ^ _J UJ U1 -* z- — ?• •—i k •■ •-H » u- U » CO •-• > ~~ u » u 2- •—« r
% •— f— V S ■>, V V v -1 » K » » »c »- u r- — ?■ < a. » or »^ r z f
<■ W 1/ 5 ? i: -z f Z" z < c <— »- C II r 1- r-* i- !_»-►- cr n (- c IP •-• c •*-
c- I' r c c c. c c c o > 1 < c U < 1- < I K < _) LL' i- <J c n c 1-
c u u > ' 5 s p > 5 •—• •—i c ^ ir 5 c >" O z 5 vO Z 5 X ►—* C 9t S If u. _i IT c c 2E
c TT i 5 s: >. ? ?. 5^ 5- D 3 < a •—• < D- < .-i a v •- tr x oo w < •—i a t-^ _l < II
Q •—i ^- C c C c c c c o UJ ÜJ o C 1- Ü. C uj a C a o o^ U. u cr c C C < o U: LL o
Q O c ^ c <~ u c L, U UJ a or u. c tr a u a a u * a üL i—* 0: a u C ^- ^ c or * D

•-H «\J

CC C

Lv U

45

in

I
IT

<
?
a
c
ti.

: u,
~ •
V u.
C u.
o r

<;
_ C
_l -
4 LL

cr
c
c
c
c
c
c
c
c
r«

r-
p»
r-
^

•
L

U

7
•- II

u u
V V
II ■•
u u.
^ _l

a
c

_) •-
_;
< c

10

c

IN LT

u >
^ <
n ^<

ii
ü-
> > O
U" < Z
2 - tr.

c
z
en
n

a

r

«/ r
U. C II
V »- u
II •-
u c c
V C »-

u.
Ü

>- ^•

- a

ii <r
►- Ü.

«\
r _J

c —

or
Q

ü
D

>
_i
<
z
<

Of
c
a
u.

a,

or
ü. •■
Z -I t-
~ _J 2"

C <r ii- < C
c v- «- ^ »-

o

<
5"

2
<

o
u
<

(I
c
c
c
c

c —
C "5
c •-

♦ li
" _l
rr ►
c •»
^ —
+ •-
-> +
•- i/
* >-
a i/

i/

>- y
IT 2
Z »
» «-1

f- II
II
I--J

IT IT

CC
cc

LL

Q

<
Z

o
u

o

^ u. ^ ^-
— »- I- Q

0 C D-
0

_J z
_J >-
< u
c. -

o
ir

pi

>*
tr

u —
r or
z or
— U-
i- •-
z —
C ü.

*
a
c
c

+
►- 1/

»/■•->

> * »/
^ 1/ c ^
(\, z c •
• • r —,

C ^ c >-
u II c II r
• i- -) .-■ v ''

_j tr _>-_.-
> i- V II f
<r v i< «D 0. a. n
•-II II IT ll. If i-
— in w; 5 i/
u. K L/ c < C i-
•-' v v c z c v

C C c IT c ft fM
l(u

^ If,

C u i„ o

46

O
o
O
o
o
o
o
o

CD
o

JS
o
o

-> -

CO H
o —
o u
O _J o •
-i a
f- LU
- £
— <

CÜ -
o a
O fN
o i.
OX o <
o ?

O H «
O C Q
o w
(«1 u _
ii 2; _i
u < <
^: z o

I
u _J
v •
2 -

v c
— u
a _J

vf K -
m z a
^ H- N
h- a IU
a a 5.
a <
T -i Z
— _l —
ü. < u.
^- v^ ►-

c
c
c
c
I

II
«.J •-■ l-H

^ or or
Z » 3

lit LL
Z ir
•- II
I- I-
z u?
C K
C V

>■

i
u.
UJ

►- II

^ I-
O ft
I- <
3- l-
LL 1/5

o a
^ o z
i* n »-
II >- 3
^ X u.
v v ty

M
I-
H- O
? II

Ü.
C

>
o
o
a

IT m
U I-

1^ _l •- •»
H- I- O <
^. ^. ^- 2.

n
01

o
IT

O

a:
o
z

Q 0

C C

LU
>
I a • o
5*
< Qi
I- O
(D Z
C OL

4
(/■

ifl >
>- 1/
i/) Z z - » u
I- .J

II —
Q
•- _l

<
o u

O -J
o <

U O

cr c rn

r » O
> (M O
r> c -*
C <-"-
r: ^ u
o a u.
w I •
Ü K I-
^ k.r c
y • •
« ? i.
s: et tu
II c c
E 2 Z
CKQ Q
o--
Z u. U.
Q — l-

r- (V "
• LL CO

op tr •

'-1 _ »-
' 7 UJ

i/ y
c

c - ü

n
t-i
f-i

"D <— <• i Z.
c z
I- •
Z 0-
*-• IX
or K
a —

a o.
a u

<
C z
<

•- Q

c x ^
c a c
r ^ c

Q
O
z
o
1 •

<-»

0
I- I- «M UJ

f- <I !-• < II »-
Z ? Z 5 >"-
— ft •- Q- < —

i-uttca c>u.
ir;t-Quaui--f

«o c r»-
ir \0 IT

if

oc
ir

a
if

c C c
r-4 fM
c c

c >- c
i- f-i c
l-i 1-4 C

c
c

u u c «- c u

47

i

i o
on

J

in a
7
O
U
UJ
\T)

uL
C-

O
JQ

UJ

a.'
vT)

UJ

I I

T —*

:i

CVi C
r—• i—>
u -4

II c

l l .

D"
n

rr
c
c
r
c
c
c
c
r

<* I I • f \ j 1 *
r > dl »— a * O
V Li #• <r C: •— — c
• J • • - V X C! Z-

a •— X 1 - U c —
• cr < > (Y NT — r i "

Q w r - < 0 »—» K •f
v

V z.
r - 4 a IL » U 1— < <*. *—
UJ - J

a
c 0 c

•
sC
r—

_J •> a: •
vT

1-»— - f
l i

?
*
c

*
1. «/

in

•
7- • >1 l l r—• D • - • 0 — c- a.

X a r~
l l

u IJ It h • - 0 c t L-
0 »- r- II > u -— 7» a <s a r - G •

£• 1. • II >- 1 + #• c /
s: r U D *•' h - ii . u. v_. u i T •— r. •- > fN if

c~ a 3 Ii t— C a X V r I i 5" <•* > > 1 1 r r >
• 0 c c f> O > c — I > •—« »— -) 1/ if * > l i ~2' u

23 ? ' cr c C f> 0 u u. u r. c •— »— h - 2 ' a <1 «• w
• *

> • 0 T X r~ u Ll JT - J > 1 K c Li' •» #• c z •— r *
__ # X • • • • • <3 »— 11. Li • X • X »— r — c •— 0 I - c\ r—

» r— r - r— c- 0 1 r— c •> U ' K i j *• >J cv h - h - II II c 0 C II

r - t— c r\ c X u c O II xT X > *' C c\ C »—« c - j 1 • U • -

— c —- r r- • c ¥—• + r~* • - II »— 1 - c w • UJ ") f—1 < i i a O > c
c- r — c—< *— —J tr . r — w » - U - >- r - < 7? h - > r I I

r - r - c K- y- H sC > I— J 11 II »-• *— *— < r— r — II u 2 V z •- >1 •
r ~ u K < K < < •- < i r 1 - < v •— u V 1 - < - J II c\ (\ a »— > a. 0 0

Z *• > • - !? f— z 2 . ? O H- > U : 1— >- - J r—< r- lx _J H «.* Z - 1 »-• f - I I
- w Q: •—• c a 11 •—4 a u. 0 •—« •—« or W < < _J 2 H - • 1 - J

w r*
•.1 0 c Cf L a c or c X - J K - •— Cr C U- > c c < < C a CL < u. 0 o

Z— LA •— c u. Q U »— 0 a 0 •—« a b_ u c 1— a L L •—• *—* u. c c -Z C Q - U Q tO

rr <t * c C IT
-- U~ r - C < >J c f -
- C — C c r - C r ~

C r - # - r - f -

>o r .
r - c (

c
fN

rv
r

L v.

48

■I I- I M W I I

•
if

• —
1-

V. o
Ü
p r~.

1-

K • i in
*

*1

£ C o

1- o

■

S * Ui
Q Ui
ll o
1- *
-. ui

1- 10
»- < <
8 a: .

jr ui in
QC • h- (- z
o ■z < o i
2. '—

c _J
•—•
a.

1

c _J •» ÜJ > a ii ^ » — a <
« ta-f ^ ^- I—» l >— JJJ .-> i »^ i^ # K «re Q- '■ _l Lw ^- c Ui — 1^

r- ^ n c >— o o LL) u r i

">»/) — 1- f X in C 1- z u. f
^ • ► u U o u. •d c LL' M Uf O \C

• 2 c LU - - o <t ^-' » 2: vC U' ZO pa ir
Miff > -) LL .-' (—1 O c ~ Cv, L. -f o: oi (^ c. ■■
ÜZ ^t _) lO ro • IT, fV *—< t—t p X _i UJ UJ >- n i—»

«^ •«— M -~ *- iA irt w Q3 » o ^- r- 1- 10 ? c \r * > (O W> cc «/; ;•
> a a cr 5;' >- >- a < f vf 10 o ^ » r > - h 0 H X- a5 z -t >- »-
ifl a a c Ui in i/) + • r<- # >- IT' _J O _l (/) X «V1 Ü. Ü *i^ r- VJ X z ^ • X Z. z: - z- - -~ _) >- > ir C 2U — K •NZ r> Z U
• - lL K Ul » • •- X — u < i <- IT • | rv t~t r~ •— X t- o: I*» • 1

— 1/ r+e; a. t—i •- _l u u u 1 f—< ►—. » <-(— • K + r (V U/ z Ui c rH "
next v.» H 11 — — • • >* w o J II •-< C 1- C *! «-» H. <* II •-
-> < <r z ? •- • -1 X li. 1- 1- H in L. -I? u. Z •- r N or O ,-, •—i •H ? O ^ + > > #—■ -J o _/o •- C o K -~ Q r- ^Z- UJ • O 2 c w^ a O II II t — o

s: ii z ll II X • • O a- «>/ — > 3 -J *-M I— CSJ V) r- m i- i- > —t
m r ? •- s • r. — ^ - < ?■ 2 Q- Or co ^ iH II ?• > t- _J t < i/>«f or — —« II
(M vr, > Q. ►—. o r ^— tn ^ 5 x X Ct UJ O •- IT» ~ •—• < < II 1- < n 0< 5 ^ -^ c •-< II z: a <? II »" _l •-• _j ii v-; u U l-(_J t- < ^- ►- »- »—1 a Or Z fi _!>►-»-•- IV>- 1- J 1-1 w »— z — «-?■«- ^- ~- _i i- 5: z «- ai ui »—• _JM ifl _i 5
o 3 a, LL a. X O X O X X li. LL C U. < o ODC - C li- H- 1- CK o -a- <ao »- i- o — c
aioa - o ^ Q U Q^ O — ^M O »—• u o o c > u 1-4 •-M H« a u. <JM (J ^. ►_ a > c

C 4' C >- t\ (t^ o m O l-H C C c
»x rv I«1 r r P" •* 4 ir IT tr «c c
^* rH p— OX f— rl <-• i-i •-< ^' fM »V c

c c p«- u c u u

49

c
i^

I

u
■

• r
ir — .
*--

cr
< i

a
ii
n

• i.

• u IS
—- a
2* c UJ

»- >

0
11.

t>:
O

r.

IT ->
H- a

•
(Y «C
li ^
cr- u
ar
r o

y _)
r <

K a

n
u r>
^ O

D
UJ

J

ü CO 1: •
*-—■ r~

UJ

-
—.

re
UJ
CO
> —^ ^,
z

ai
2 •
C vO
MH n-.

1- Il
<
a. .:
LU *lJ
k- "'

c

or
u

X
li

Li
T.

•• <
I

i' u «a
ß _' r
u •
-> 1 tl
,» p <

o

Q

\J

>
v.-

n
Q

z
UJ

O

o u

UJ
\J
\J — Cf

><

•
c
c
c

K «3

^ >- ct
<- Q C

0 U

II

o
a

r or
«» c

r

rv
C
f vr.
— er
— UJ

c »
r a
— O
Q O-
Ö P
U

U i/

II i/
s

or ••
C
o-

LC Z

»- C 0

<
X

Ij

CO

ÜI

I
m
rv;

— _J (N) —
K > K
< < t- <

— S V »i

•- D

re
r
LL

U. o:
M a

a: o
Ü. o

in
c

<o

o

_J
u r?
» ii

> ifl
O' UJ
» u

Q U
U I
t- ^
•— N
• T

r- st
c <r
c

h-
I- <
2 >

a c

n \j)
>

u

Z
u
ir
(>
u
>
y
c

<
X

IT)
U)

00

1/1
>-

F

-f

>-

> y
i/, —
?• u

•> _i

i II
l C ♦"
L C 5
- ir

C rv
I _i K rr

li
0

«C C u o c

U li
» (/

C- 1/
P Ll
ll KJ

» u
D r
u t/,

— X
- -i

rv *
c
c —
f-

\- <
z. St «-. a
a o
Q u.

vC

t'
>

x o: o
t- a, o
^- t- UN
? IT

O
r _J f-
.* _J
- < o

c
Ü.

Q ■ • </■

Ul l. ir
t- 0. »—•
< 1' <
U '.
■— i/ U
o - ft
z
— 1 li

u h "
L ÜJ r- •—
» <) • t-
£ ;.-• er
(V UJ • 1

1/ O O >r <■ L'

c z Cr r-1 1/

^ Q- U, ll > i ,
•—. r > IT ,'
r o >-4 ll € - ;,
r u o -^
u t- N li h

►- X JL (- r
_) » f\ ft ^ y
i o < o ^- i3\ -i
u o 2 cr c: O vf
(T O w a c O 4
IT ^ tr t- IT 4 —
U \~ <r iA 1-
U H- <r c H <
_ ÄL > X _i 1- * *'
cr •— a. r. _J i— rr-
z o- c - <i c P r~
X Q u «^ c c u

r 0 r ff (\ r- r C p- c -'. fV ^
c r o r. c C 0 c PH C rv rv1

fV c
c c o f o r o r c c jn (^ r c

r fV <v: fv r ff
W V c

c c
c c
J c

50

<t c

Ul
"3

f

^ -
>

- 1/
O 7
o -
IP t-
► z

fS •-
.- D

r

or

c

u.

u z
- c

u.

r

a.
LLl

>

<s
X >
^- 1/
tv Z C
I c
< IT

- Q >:

c
c
IT

in

o <c

H 2

C a ■*
a '-

iu t- i-
or IT <r

2

x

o

u

f—•

0

c
T
ir

CD
O
o
o
o
o
o
o
o

a
O '-

+ -)

*
a
c
c

1/
>
1/

I- <

D
Q

+ *
— C
-> u
* r

■z ■? a: *>
- - c z
.- .- o —
ii n C

tm —> C' Ji

— >

>
IT —

» •—
i—or
II •
-)vC

-)x

a tr

no-.
»

ox
C vC

•- 2

< < b.
L. U -

-I

LO

rv
u.
tr — %
b o

r •-
a u'

csr x
UJ i-
•—
— D:

IJI
i— i-
<r «J

UJ
C o:
Ui O
(-

u —

Q

tr —

z UJ
> «^
2 Z"
I- U
a c
» UJ

a- >
Lu ►-
I- C
—• fM

•> X
IT t\
C 4
c —

u.

II IT

C —

X
t—«

o

a

u
c

Uu
u
D
li

c
c

i- <iCN-^<
z:5 i- z 5"
H-Q' - a
a:c C er C
a u. c Q u.

o

c
cr

IT

im p
or ^

I -J -
^ < u.
r-< VJ ►-

11

e
c

<: X
c c
c r

I- <
2 >
— cr
a. C
a u

Q

>- -

Z -

IT.

K
u

3 CO

vT-
"■' r—i

C a.

i- jr
< <
Cc X
UJ I"

>- or
ix.

i- h"
< <.

LL;
a cr
iu c
K
< U"
u —

a x

rr
u.

U or;
<.. •

U. r-
C LU
a

n <J
►- o
— o

r

•* z

C a
C Q

o
O
IT

c
t-

c
o

»
if

0
Ü
n

^ —
c
.— 00
1- •
c vD
0 t—•

L LU
1-

t- I

c 0-
ll LJ
t- H <; <C
1-. UJ
t— or
c O

X

o
i

a
u

r
•■ IA

00 >
• 1/

C UJ
(N 1-

X II Z
r •-•
<» o o
- X Q UJ

K.lT
< <
1
C X
c r
u <-<

C I-
_j i- z

f tf tr s
< < ►■*

I -J •- a
a x _J z- C c
c o A o K z:
u KJ^J v\ui

C r>;
fV C
4 o

4-
^ r

^ r-4" O IT
»^ f\jC r C

r-H vC
r r
^ c ^ ' 4 c

c oc
if c
•* c

c
c
tr

51

p

S
_J

>

o
o

>
V

-tin
< o>
> o
N. *

c z
o >

— _l
./) •
• If)

o o

o
o
(Mtf)
— >
Mtf)
CD Z
< •
US
• UJ

z-. •
O C
^ z
■v •
t- z
vi a
zo
O 2
O X
M »
V z
~ z
o •
OUJ

z
z
o

— ZQ. O1

4 O > (V •!

n i a.
< UJ >
i- ' i/i i a
u I >- — UJ

A
T

O

♦

>-
(A
Z

in-I
V)
2»-
• Z

(Am
>■ >■
vttn
z z

«• »m ^ »-• zl ouj
-« i-l »-i(NI<i-t • • •

CT H|^ NCMMI
«1 oi

(JUJO> > zj o

m

it N

c

3

o

♦

a
♦

♦I
od
c
o
o
o

•

2.
z
3
D

z
z

3J
O
o
o
o
o
o
o
o

CE
£-.

♦
a.
o I
o
r-«

♦
3J
O
o
o
o

I/)
>-
z

< Ui
> 3
UJ Z

39

in

N

->

|£
o
o

in v) c
>- ^o
in üio
z zo

a

a
IV
UJ

<(V
z ^
• •

u. <o

I

51

in IT
mm
^ Hu:

z
O C1 <
O 02

u. ••
y e
z a * »IM
4 Ui oo —
U • II II
m z^ —o
2 SC^CM I-
»*--» —
3U.IVi(M C •a >

q

52

o
«
u.
o

<
Ui
I-
V)
z
ft

o

o
u.

«I

*

o
♦

UI
a.

IT

vu

< o
a:
o
a
cr
Ui c

I N
a

W
a
m
in

>ac rt zn) z
I K H K n ac
UJ-ID -I 3^

i —
X

<M
O
O
1-4
»

or iMl— —^
O "I — - o
Z X:-4 (MO

K X —
—• »-KV IM -^
U. U X X Mi
tfl tfl I N Z N
co tn«-» x: a x
< 4x as a
N ■;«- o^- o o
^ c\iu. zu) ^ z
X *,— U.K u. ui

53

oo c o c- o c J, !
croococoo dcooocöooooooc cooocoo

<r o -H (v m<« x» >£> r»- or o>o -«(V n >* HI <Oh>coo> o«-«ry »n ■* »n «or>co o» o •-< ru m •*■
fvir»(»>'^nr»n»nr>r>r)'*--#^-<»-<t'***-«^»-minininintfiifnnir»m4j «c <o

a
o
o

o a a a a a a aaaoaaaaa, aaaaaaao. aaa
uuuuuuuuouuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuucuuuOu

o

T
aJ -»
>■ ^
Z. OJ

•^ «•
— X o
o ►— •
? < ~
•-* X •♦

■>« ac »
• o ■•

M

2

I-
ct
UJ

z

3 o
at
gp

« •
X —
«3 ♦
O (\i
X »
a. •»■

H- ■-»
O <
>
a o

»-<
Ui I/)
-JZ
IB UJ
3 Z
O t-i
o o

o

I
u)

• I •

o n u ii

e> vt i/)
z ui i/xn
«a uj
</) x -to

(\j

1

i I

i o o
• •

o o
r II II

»-•->-> o

ta. — —
»-•a c a

IM

V»
1/1
UJ
-i
z

a •
•^ UJ H
U =3)£
-HZ

•4z
-♦o d

^5

<-• Z
♦ »

O * K
• MM

o»-< •-•
II (/)
< 3«
(9 -I
•- a o
CD y O

in
i •
in

0*

Z -
• "l

II •-•

on -'

c •-•

4 -O
I
II o
< K

(tC

<
tf) I
00
4
I <
« V»

o«

l\J

IT

a a a a aaa u uo u o o u
o uuu uuu

-~ UJ ^ UJ
! "> a -iix.
o o o o
ct H- a »-

— «t in — «i in
* -J 4 kT _l O

Z • • II Z • • II

IT

UI O II 440 IIOOO
o a •-• II u a »i II II cr
24 UJ —• 4 UI '- 4 4

33 II -)M»-i_jo:x:)£_i>*aK_i-i'*
4 •-• 4 N N
II
4
M
CC
4

v: z
i •
►- *

u> II
IX T

*

*3 a ac
4 4

z
C Ui

«* »^ O • • f^ O • »w»-*

O 4 4 4 OO O
u. o
»-«a

23

54

:

oocac>cc-oc-r"coc cca

•o yc >c "Oor-p-r-r-r-h-^-r-f-r'-ao
■«■«■♦■*■*-•-*•*>* <«■«<«-> 4 ■* ■«

aaaaaaaaaaaaaaaa
UUUUOUUUOUUUUUUCJ
uuuOuuuouuuuuuuu

I I

i. I

~ Ul
->cr
• o

^ UJ

• o

«-. o a» «o (/>
-) rr < -> a a
• 4 H Z •«! N

- — -5 ^ —— ->
< < • n a. a •
ii ■ M n N H M
tu ~. o uj «< u>
x ->ac in a ->a
o •<•-<' o • «
I-^_I »- « _J
Ui — — O Ifl *» —
« < < pa. a a

(V
»

it —

ICUJ
— or

u. •
ec < < z
•i <

<
Zli.

it

*
>-
a.

*» s:
^ ct
• i

«

i

C docs oooöc oc oc c^era

flu 00*0000 S>0O0D(S'COC^9 (^ 0* O» ff1 <?*,
i ■♦■*•■*•■♦•♦■■*•«■♦,•♦•♦•*■ •*'i'4 •*'4 *,

aaaaaa. aoo o a a
uuuu uuuouuuu
uuuuuuuuiuuuu

i

a Oia oJ
uuuu
u uu

i ' i

^ i
5C

«
V
a
z
u
i

ir<<> ^

in N, -• — ♦
UJ ».(/) ♦ »H
_i ir 3 •-• oz —
Z • -l" • • x
• p-t a < o ^ n
^ « st II n H ^
n ►-• ii ~ — _» _j
t-»-■ j _i ic _i _J

1 < • • •
tr II OP ^ •-« o> ^
•4 >-«-» ♦ « •-<

a ►-••-•
ö x o^ -* o-
ciao« < oa

i

i n

O II
PJ >

a
o z
o (J

o
• Z
o »
II •-•

♦
"J o
»(V

— cv

i • w
ZUJ

<i
i — i-
u. •

Id) 4
i

N <
♦ «

z ■• z

H! II
7*-

Q.
*

♦

a N

Z z • I
• O Jl-«

no H| < in

o c
CD»

a a uu uu

»H -* it _i n

*. ^
o
o

<•-• a o
u. c

CM

ru
(V

-J «n rr -> «»i
• CM«V ■ n

M o c
doc

" c
< c

> n
z

CM

ui

CM

z

MO
UJ z
a ui

^ m

Ul

Z. -1

■

>-• •

> <

^2
U- CO
_l •

> n

sc </)

u < •
»-I U. II ♦

3 o •-<

_i <

O X
O "*

3
o
T

«A Oi-t

»- <
Z X
•-♦ at o a a z a u. u

: o o
-3

56

?

•» IT
- (T
•- <r
t ^

J (J

- n
h* CT

U.' Sf
r -
t 5:

1- 2 c
z !_; c
_)L .
<i L' u
-> N <:
U Lk. S,

jr ? D

c o o
2 f 5
T. Z X

u u

T
J
h-
O
•
2
C
u

c
u
V
2

T
r
o
u

a
>

=>

2
U.1

CJ

_)
<r

bJ

T

»- r
o <*
> <

rr c

(T,

• IT
T to
> C
> o

-I
■> IT
• ^
> Ul

(\. (V

n n
2 2

a a

r»
11
j

o x-
o ■?
c •

r»
r^
f» u.

11 «-
T 2

— O
< IT
»- 2
«3 II
O -)

o
o

o

_1 <=

C c.
UJ II

-5 r*

a. 8
•-* rsl

1
<;
»-
'/1

II

o

X _1

> u
_l
II
_l
■>

o

C T

* 2
O •—•
—> _J
— <f
rvi 2
~ «
•» 11

c

n ~-

T 2
c •--
— rr
— a
tv
■) _i
— _i

HI o

in
o

C
_)

a 11
0 a
»- 3
W 2

a
o

IT

c

Q •♦

• c
2 "1

*1 c

2 •-

o c
CT K
z
II C

x r>
> o
♦ (V
_J
> c
II *-
Si

a: a

ar o
> o
I cv

_)
5» o
II t-

m
k4l O
a: o
o

II
in

a
c

I 57

^

"1

fVI

a
T
->

jrv ♦

:— o
• c

'— c
f> •

C. u.' 3"
rv _ a

• >
IM-

ii
— T
U. > O

mm

cr
>

♦ o
« rv-
_i
> o
II »-

UJ o
(X (9

a
»

>
II

a

(V
in

or
>

m o
? «v

II »-

uj c
cr o
o

a
->

<s\

o
iu

II
\r\
Mi
a

m o
a (v
wo
II K
^)
UJO
rx o
o
loo

a
>

iün'

o
_i
II

(/>
UJ
a
o

-i
y>

a
>

im
2
<J
»—

II
IT)
M
a ^M
IT O
^ o

(M

c

lip
(V

il •

IS

v

S
o
u
-I
II
o

»4
o
M

r^ a
• n

e -i
■Z Q

C U'
^ a
n Ol
3 I-
X m

o

4 ♦-
r
n o
r o

tn
UJ
a
II
X
>
n
~ x
"1 >
«- n
> IS

o
m

o

58

«■■"I" ^w

•

■'\

o

cc;

a
-J;

tM

4
Z
«

o
ö ^ »-

1 d
iy
N
M
M
M
M

«M r» ca
^ oc^
1° 7% ui
•-I -J
• oo Q o i>jr» 3

>
z
• f\

UJ *■
T •-
<

ui u. -
aj —
< z c
>-t< b.
ado

v> z
a u

uc

or»
N H

'HCM JH JH <
z c
< e

IM
I' (M
^-
Z

z c

2.

>^
II Ml

Z

(XI

oo

59

^

BLANK PAGE

■

Li

r mmmmm

EXPERIENCE WITH FORMAC AT
HARRY DIAMOND LABORATORIES

David S. Marsh
Harry Diamond Laboratories

Washington, D. C.

[ABSTRACT. FORMAC is an experimental language and compiler,
written by IBM, which allows the manipulation of algebraic symbols in •
much the same way that FORTRAN manipulates numerical values. It
incorporates such FORTRAN features as subscripting and the DO loop
capability. FORTRAN statements can be included in a FORMAC program
so that results can be derived symbolically £ind evaluated numerically in
the same program. FORMAC is particularly useful in those long, tedious
algebraic problems which are so subject to copying and other errors when
done with pencil and paper.

The paper describes several small practice problems with which
programmers became familiar with the language, its operation, and some
of the commands. One larger problem is included, that of forming the
determinant of a matrix, the elements of which are algebraic expressions.]

FORMAC (FOrmular MAnipulation Compiler) is a combination of a
compiler and a language which makes possible the manipulation of algebraic
symbols as symbols, according to the rules of algebra, in the computer.
FORTRAN, in comparison, performs in much the same manner with
numbe r s.

FORMAC was written by IBM's Boston Advanced Programming depart-
ment at Cambridge, Massachusetts. It is still an experimental system
and was released unofficially for tests under actual operating conditions
and to find out just what capabilities the computing community thought such
a system should have.

Actually, FORMAC for the IBM 709C/7094 is no longer being developed
by IBM since they are working on software (including an improved FORMAC)
for the 360 series computers. Under the auspices of SHARE, however, a
group at Wright-Patterson Air Force Base is taking over the further
development cf this system .

FORMAC has been available at Harry Diamond Laboratories since
early in 1966. Some of our uses of it will be presented here.

1 Proceedings of SHARE XXV1U, p 4-93.

61

This paper is not a detailed tutorial discourse on FORMAC. It is,
rather, a brief dt «-ription, with some simple examples, of the language
and its use. Hopefully, with this information you may be able to judge
for yourselves whether FORMAC would be of value to you in your own
operations.

FORMAC was written as an addition to and extension of FORTRAN.
FORTRAN and FORMAC statements may be intermixed in a program. A
FORMAC program goes through a pre-processor which translates FORMAC
statements into FORTRAN "CALL" statements. The program then goes
to the FORTRAN compiler. During execution as a FORTRAN program,
the former FORMAC statements call special subroutines (added to the
FORTRAN library) to accomplish their purposes.

LET
+ SUBST

EXPAND
COEFF

/ PART
** ORDER
FMCEXP EVAL
FMCLOG FIND

MATCH
FMCSIN CENSUS
FMCCOS BCDCON
FMCATN ALGCON
FMCHTN ERASE

AUTSIM
FMCFAC FMCDMP
FMCDFC ATOMIC
FMCOMB DEPEND

PARAM
FMCDIF SYMARG

Figure 1. FORMAC Commands

Figure 1 shows a list of available commands which gives a fair idea
of FORMAC's capabilities. There are fifteen operators, which perform
the purely mathematical functions, and nineteen declarative and executable
statements used to define terms at the beginning of the program, mani-
pulation expressions in various ways, and for various "housekeeping"
purposes during the run. The mathematical operators are largely self-
explanatory; most have direct FORTRAN counterparts. Among those
which don't are FMCFAC and FMCDFC which perform the factorial and

62

double factorial functions, respectively. Similarly, FMCOMB performs
the combinatorial function. FMCDIF performs differentiation.

The use of many of the declarative and executable statements is
illustrated in program listings later in the paper.

Two obvious omissions from the mathematical operator list are
commands for integrating and factoring. There exist no general algorithms
for these processes.

In general, FORMAC seems best suited to performing relatively
simple mathematical operations on relatively large and complicated
algebraic expressions. The sample problems will illustrate this and
show how some of the commands are used.

The first two problems are the generation and differentiation of the
Lagrange interpolation formula. During the application of the Method of
Steep Descent, it is desirable to find the value of X corresponding to the
minimum point on a parabola passed through three known points. Given
three points, the Lagrange formula (Fig. 2) yields the value of Y, lying
on the parabola which passes through the known points, for any value of
X. Differentiating the formula, setting the results equal to zero, and
solving for X gives an expression which locates, in X, the minimum
point of the parabola.

Y = Yt
X-XZ)(X-X3)

L(vx^V9] + Y.
(X-Xi) (X-X3)

|_(x2-x1)(x2-x3) + Y.
(X-Xi) (x-x2)

{x3-x2)(x3-x1)

Figure 2. Lagrange Interpolation Formula

The pattern of the subscripts in the formula suggests the operation
of two nested DO loops. The inner loop would manipulate the subscripts
within a term while the outer loop would multiply in an appropriately
subscripted Y and sum up the expression. These loops formed the basis
of the program to generate the formula. (See Figure 3.)

Figure 3 also shows intermediate results at the end of the first and
second executions of the inner loop, the first execution of the outer loop,
and the complete expression at the end of the third and last execution of
the outer loop. These results show XX for the subscripted X of the
formula and W for the subscripted Y terms. Figure 4 shows the final
form of the results with X substituted for XX and Y for W. It also shows
the effect of a special output subroutine, supplied by IBM, which yields
a format closer to normal algebra than the standard FORMAC output.

63

Y = AX + BX + C

^ = 2AX + B = 0
dX

X 2A

Figure 5. Operations Performed on Lagrange Formula

The second problem is to perform on the generated Lagrange formula
the operations shown in Figure 5. Figure 6 shows the program, and
Figure 7 shows the results before and after substituting Y for W and X
for XX. Notice that the division of the coefficients in the answer is only
implied by enclosing the denominator in parentheses and raising it to the
-1 power.

The third problem is an example of the type of simple mathematics
mentioned earlier: forming the determinant of a 3x3 matrix . Figure 8
shows the elements of the matrix; each is an algebraic expression. Not
only that, but each of the 42 underlined terms represents another
algebraic expression which must be substituted. Before the substitution
expressions are put into the matrix elements, however, there are substi-
tutions to be made among themselves.

The sequence of operations to be accomplished is;

1. Make the substitutions among the substitution terms.
2. Put the new substitution terms into the matrix elements.
3. Set B equal to zero, a condition of the original problem.
4. Form, the determinant.

This is exactly the type of "dog-work" which is so subject to error
and thus so frustrating when done by hand. If N people do such a job,
with a requirement for accurate final results, there are usually at least
N different results to be reconciled. This is also just the type of problem
for which FORMAC was created.

Figure 9 shows the factors before and after their internal substi-
tutions. Only eight of the original nine terms are of further interest since
the Fl term appears only in the others and not in the matrix elements,
but the remaining eight are larger.

Generation of the matrix is described in HDL TR-1316, "An Equation
for Phase Velocities in a Partially Ionized Gas", H. D. Curchack and
F. T. Harris, Harry Diamond Laboratories, Washington, D. C. 20438.

64

Figure 10 shows the matrix elements after the substitution of the
enlarged factors. Where they could originally be printed on 19 lines,
they now cover 99 lines. Three of the matrix elements go to zero when
B is set to zero (Figure 11) and they are so located in the matrix (Figure
12) that a fourth element A

11
A

2r
0

'31

A12=0

22

32

13

A23=0

33

Figure 12. Location of Zero Elements

is eliminated from the determinant. The determinant is now the differ-
ence between the products along the two major diagonals (Figure 13).
It is unquestionably messy, but cleaning it up by hand is certainly far
easier than obtaining it from the original matrix by hand.

This has been a brief description of some of the capabilities of
FORMAC. In areas for which it is suitable, it can be a very useful tool.

65

j .
f
1 K*
1 ^ K« 1 •* "■^ *■

« -
X — •*
X O-
• • X -**

11

66

— I •

X I

a)

§
•I I

O

&
0)

I

67

Kl
3 3

o I
U- I

3

« a c

li

o
u

«I

s «

6 r i
M

■
ui —

5 * i

s^ «>. •
■ z
19 "
< S
J X W

u. 13 1-
3 • Z m «r

) « -O •- » <
: iu »rKc

: < i cj -v u.
i J*~** m

-J i—« —-
«n o. K o ^- ^
Z Z « U. « 4
UIO z z z
Z US Z K ■
— z o oo a
O U.U. —u. i

in

K K K
K K K
I I I

M K K
K K K

M KK
K MlK

xNim

K M1K
K K M

K:K

* >
«Ml W

31
I* -«^

X
— K
« I
« K

MM
M M
' ■ MI M

• •
•< M "^ IM 1« —

. >. » « 3
•-*•♦<
• M» ;
I «> ;

1-1 1% —
e
IM IkN
• 3 •

IM
u.

— >
' U. O

19ib

O M

; iu u/M i/i o
U.O
» o
K ■
O -•
m M
o u

u>o
U/M

K •
•AVI

M
M

Z

tu uj ui u/ Ui u I • UI
i au

• •

u. zik
30 03

z 5z
— •« —
IA O fl •
• •(* » * Ui 1A —
«O « ^ 3 • » iWm
— UI I —
ui> .tu o — >• » «

i/> • > e
es -
am •

0 3003

u-i —u —

aciLuiatooui>u
»-• -I» ou ^

«I m

« ui •

»- O»- — — ►-< —
UI ■ Ui S U. UlK I
_i a>_i z ~ _i 11

■

68

"■

K m
M -
ij_ K
— K
O •

•I *■
•4! e

B S i

«" i
K -

•

M
M

M
M

X
X
I

X1

i

r

Sri -

2

X x:
ii a

x
X
♦

3
•I x>

X
X

o

x
x
♦

X
X
I

*
o > • •
I

— •
X
X -
t -

— X
X M
X

e x
• M •* T
i -
• «
• o

m I
x •
x •
I -

»< w

X X
X X
— ♦

— x
X M
• I
O m

l

X
: ■

M Q
f^ M
«v ♦ 1
X N
X X

i
* ! •

IM • •
X i** • «1 i
o

K

!
m x

| i
H
X

•
o

m »,
X IM # K »^ ♦
X ^

1 X
1 •

^4
X .4

1 >-
nl •
>■ m • X

Ti I»

I* 1

.x
I

IM s
o •
I

• •
IM

IT

T
~t >• *
IM

1

•
Q

m
K U
-* O
X 1
Wi CQ

-P
o • ^
*4 W to

1 ■ *i OJ
* o 1 • K
• Pi

fM
K

1
« • t*-

o —
o

0 5

69

u.
•

•

• «*

4

•

yc = II. M
• a.
a •
x <
o z
a z

a* • >
* o

- o
- 4 • .

a

UJ M <
u. U. Z
• * Z

M ** •
a. < • * z M H
A z u. < • * • z • OJ

4 * z — • • * «« H •-4
M • 1M • • •
IL o 4 U. (M M •
• w • • u. H
• * CM ~4 •

(V) (\ l • • < •
• • *-• • z K
u. • * * z »
• • • K
CO U. • • 1
• u. * X H «»
• * < *

•+ < Z x * UL
• z Z I , X •
• z • >1 •

^4 • • "4 X <
w — H • <* 1 Z
* u. w M z

• • M M •—« •
M X u. u. u. • u. u. • * * * m4

* X — < . • w
«r • — I , < z alfsi z 0 — >lz z £) • • —' z IT UJ U . I Z • • ' a . fM —
• V. u . • • • >1 • • «
• • • — • l - l u.lco XL. UL

r-4 O I L H > 4 v • •
• • I t - • —• • CO

* •— «M • • > «"4 * • •«"• u . • • *"«
O C CO N Ik » • fM +
• • a • • • • H • «
X X tA a. u. • ru — • U.
a • 1 * * r g • . •
* X • 00 co • gsi <
00
m 1 - « » H — • • u-| gsi ̂1

• » . U l i u i • N N • » w * I U T
-* o | »M • oJ— • • • x o l — •
— U. • Q. I uJ—i • • OJ O H * - 4

* * >- U . I * I L w -
a
R

o
R

*1
CM «*> f*

^ M
— Ol — — —
< LLl < 4 <

CD
I I UJ

- — '£i
CD • — — • r x
— OJ • » a

. H H H x fM u.|u.lu4o
• • « < • x x co

34 • • *
H- U J X X CO
iu V I I •

* <

CO — u .
N * •
— x m J • « > • • •
• x • eo

«M • «M •
— X • —
< o o l —
t - co U.ILL
UJ • I •

2

a

?l oJ >

m a x

a4 n R R

to

G

0)
I—I
w
*
•H

-P

OO
CD

70

71

I»U* 11 A URBAL lit -QVIl/it ' tft lUlfl*

*00«t i sraeoc

rotfKAC » « - U B a b
AW*l> >».»•%

9JBU h

- S J M K H 1 P I * ? W VALUE

- i I h t A L - L t l 2 4 0 0 o o 2 i 4 . - i i

IA»*M Jlfif j

OJf lA l A . KtAt-U.! ^-tfWvOOtOi*
1 . 0) . 5 0 0 M ») * | F I * I N N A . 1 . 0) * 1 . 0) »

' i r i ' i ' h B i i . n _
• < t » * < F . F C) * 2 . 0 * 1 . 0) * F I * 2 . 0) * I P | * I N N A * 1 . 0) * 1 . 0) - U » M * 4 . 0 *

1* i • i f i * tasA?i*ftt?a«fl*«jr_u9i «*.o» t y i ' i w u ' f i O - i . f l t ' i r i ' i M M
• 2 . 0 * 1 . 0 > * 2 . 0) * 1 . 0) . I B * I > . F l) * I F 1 * I N N A * 2 . 0 * 1 . 0) * 1 . 0 1 * 2 . 0 « F I *

^ . Q » n « « y ^ . o » » . Q r i r r i n - i , n r

2 4 0 0 J O 2 6 ^ 5 f f

1 . 0 1 * 5 . 0 * * (- 1 . 0) * 4 . 0 . 1 . 0 > * 2 . 0 . H) * * * » 4 . 0) * I F I * N N A * 1 . 0) * O * * O T
I

• • ' • « , 0 « I , 0 l * l M * W U i 2 . 0 « l . 0 l * I M r M E) * 2 . 0 * l t e i * r i * 2 (e i
• t f l « I H H A * i « 0 > * l t 9 l - I I > f M « 0 * l . P) * l f l * l H W A * 1 . 0 l * » . Q — l - l . P l
* 4 . 0 * I F I >-HMA*2 . 0 * 1 . 0) * I F I * I M N A * 2 . 0 * 1 . 0) . 2 . 0) * 1 . 0) . (B * (F . F I > *

m A L » t t i
t l t ' C C T

(I B * F * 4 . 0 * l . o) • IF I * I M U i] . O M . 0) * 5 . 0 * * < - 1 . 0) * 4 . 0 . t * 0 > * 2 . 0 * F I

2 4 0 0 0 0 2 5 4 2 * 4 t > * ^ C * * * * 2 . 0 - l ' o) * I F 7 * N N A » I « 0) * O M * O f f t ° '
i «oooo2 5 ^ 0 6 1 o < i » * F « » . o . M * 2 . o * i . o > * < F . F t - > o o w . i . o) * i F i * () « * A . i . o) . i . o)

I F . F I) * 5 . 0 * * i - i . O) * 4 . 0 * F £ * F 1 * « N A « 1 . 0) < > 5 . 0 * * | - 1 . 0 > * 4 . 0 . F I *

i * 2 . 0 1 • IP i • I N I I A * u o) * i . o i - 1 i a * r * * . o » i . o j « t i ' i * m _ -
L i f i l l - l * f i l £ * * f l . t l £ i y K I A * l « 4 l l A 8 1 * < F l * t N m * a , o * i . o » « a . . o i
. l . o) . < 0 * I F . F C > * (F l « I N N A * 2 . 0 * 1 . 0) * 1 . 0 ; * 2 . 0 * F I * I N N A * 2 . 0 * 1 . 0) *
2 . 0) * F | J * » * * 2 t 0 M « 8 * F * 4 . O . 1 . 0) * | F I * I N N A * 2 . 0 « 1 . 0) * 5 . Q * * l - 1 . 0 >
• 6 . 0 . t . 0) * 2 . 0 . F I > * I * * 4 . 0) - I » * I I F . F C) * F | * I F i * (N « A * 1 . 0 > * | . 0) *
> « 9 * * l - l t 9 1 * l - » . 0) * t - f t » H J * l F l * I N N A * l . O > * l . O * 5 . O * * t - l . O) *

I A * 1 . 0) * 1 . 0) * 2 . 0) * 5 . 0 * * 1 - 1 * 0) * (

2400o0264O65

v . O)) • i B * i f » F i) • i - F i • i F f *
- 4 . 0) * l t t * F * 4 . 0 * 1 . 0) « 1 . 0 t
I < B * F * 2 . 3 * F 1 * I N N A * 1 . 0) * 2 * 0 * 1 . 0) * (F I * I N N A * 1 . 0) * 1 . 0) - I F 1 * I N N A «

. !_*yi . 0 » * 4 , 0 * 1 . 0) * « * * 2 . 0) * K * * » . 0 - M f F * 2 » 0 * F l * 2 . 0 *
I . 0) • I F 1 • I M M A . l . 0) » 1 . 0) - (F I * N N A « F 1 * 5 . 0 * * 1 - 1 . 0) * 4 . 0 * 1 . 0)
^ . a) * (- i H * (F » F £) * n * 5 . o * * i - i . o) * < - i i . o) » i B * F * 4 . o « i . o) * i F i * i
N N A . i . o) * 5 . 0 * * I - 1 . 0) * 4 . Q . 1 . 0) i » * « » 2 . o . i i j i f M . r - 1 . n t 5 i r i - n m

* <0* (F * F t) * 2 . 0 * 1 . 0) * F 1 * 2 . 0) * IF 1 * I N | I A * 1 . 0 1 • l . Q)) * « * *
2 . 0 « B * * ; . 0 * l d * F * 4 . 0 * F ! * 2 * 0 * 1 . 0) * < I I B * F * 4 . 0 « \ . 0) • I F I * N N A * 2 * 0 *
I . 0) * 1 8 * (f « F t > * 2 . O » l » 0 > * H * 2 . 0) * l F l * I N N A * 1 . 0) * 1 . 0) - H > * F * 4 . 0
• 1 . 0) * I F I * I N N A * 1 . 0) * 4 . 0 * * 1 — 1 . 0) * 4 . 0 * i F T ' N M A ' a . O * ! . 0) * (F | * (

• 1 . 0) * 5 . 0 * * 1 - 1 . 0) * 4 . 0 * 1 . 0) * 2 * 0 * F 1) * 1 * * 4 . 0) * | F 1 * N M A * 1 . 0) * 0 » * *
2 . 0 k

; i • 0 > • » • © • • « - u o m - t ^ o i * i - f t * r i»
* T ? i » i » i x . r . f f » « 2 . o . ? . o » » r - T . o i * r . e i r - n » < E * « i H i M . W M * o
> * l - 1 2 . o) * m * F * 4 . 0 * 1 . 0) * I F I * I W W * . 1 . 0) * 5 . 0 * * l - 1 . 0) * 4 . 0 * 1 . 0)) *

. 0) • 1 . 0) * 2 . 0) * 5 . 1
• 4 . O * . { 0 * F * 4 . O * 1 . O) * 1 . O C - 1 - F I * I N N A * 1 . O) - 1 . O) * F I * X * * 2 . O * 2 . O * <
(« • • * * . 0 * i . o) * < n » W i X * i . o . 1 . 6) . J 4 * t f . F E) * 2 . 5 * 1 . 8) * F 1 * 2 . 5 7 * I
>• 1 * l * H A . 1 . 0) * l . Q) * | - I B * IF * F E) * F 1 * 5 . 0 * * 1 - 1 . 0) * 1 - 1 2 . 0) * 1 » * F *
* . o . i . o) * IF i * i N h A » i . f f r * r . o * * i - r . i ! T i * . o * i . 6 i > * i * * 2 . o * i i i * f *
» « 0 » 1 , 0) * | F 1 * W N A * 2 . 0 . 1 . 0) » I B * l F . F t) * 2 . Q . 1 . 0) * F l * 2 . 0) * I F l * l

O i o r o A
q j o n *

N N A . l . Q l « 1 . Q)) * F 1 * N M A I * I C * « * * 2 . Q - 1 . 0) * Q M * M * * 1 . B » I I l » * F 4 4 . Q *
I • O) * I F 1 * H N A * 2 . 0 . 1 . 0) • I B * I F * F t) * 2 . 0 * 1 . 0) * F 1 * 2 . 0) * IF I * (N N A .

- 1 . 0) » 1 . Q) - I 1 B * F * 4 . Q . 1 . 0 1 * I F 1 * I W W A . 1 . 0) * 5 . 0 * * 1 - 1 . 0) * 4 . 0 . I F I *
N N A * 2 . 0 * I . 0) * I F 1 * INNA* 2 . 0 * 1 . 0) * 2 . 0) * 1 . 0) * I B * (F « F E) * IF I * I N N A *
^ . 0 * l . Q l * l « U) * 2 . 0 * F l * i m i A * 2 . 0 . 1 . 0 1 « ? . Q H H I * 1 * * 2 . 0 . 1 I N * F * 4 . Q
* 1 . 0) * (F I * l * M A * 2 . 0 * 1 . 0) * 5 . 0 * * 1 - 1 . 0) * 4 . 0 * 1 . 0) * 2 . 0 « F 1) * l * * 4 . 0)

— — * l C * « * * v . O - l . Q) * l F I * m * A * > . O l « l . f l i * w » « _ _ _
rttAL-Lt! 2 4 0 0 0 0 2 5 6) 4 5 I C * A * * 2 . 0 - 1 . 0) * IF 1 * I N N A * 1 . 0) • 1 . 0) * 0 T »
HLAkrkLT 2 4 Q Q o 0 2 4 2) * l _ - P * t g * l P * t F » F E) * F l * 2 . 0 * B * F £ * I F l * I N N A * 1 . 0) « 1 . 0) * l - 4 . 0) * I B * F *

4 . 0 * l . 0) * l - F I * (U N A . 1 . 0) - • . 9 9 9 9 9 9 9 4 E - 1)) * I I S * F * 2 . 0 « F I * I N N A .

1 . 0) • (• • 2 . 0) * F I * 1 - 2 . 0) * 8 * 1 I I B * F * 4 . 0 * 1 . 0) * I F 1 * N N A * 2 . 0 . 1 . 0
fll*l.Ql-Hl*FM.O*

1 . 0) * I F 1 * 1 H M A . 1 . 0) * 5 . 0 * * 1 - 1 . 0 1 * 4 . 0 * (F I * N N A * 2 . 0 * 1 . 0 1 * I F I * I N N A
* 2 t Q l * l * U j * I B * I F * F £) * I f 1* (N N A * 2 . 0 « 1 . 0) • 1 . 0) * 2 . 0 * F 1 *

' N N A * 2 . 0 * 1 . 0) * 2 . 0) * F 1) « I * * 2 . 0 * I I B * F * 4 . 0 * 1 . 0) * I F I * < N N A * 2 . 0 *
1 .QJ « a . U » * 1 - 1 . O J « 4 . Q « 1 . Q 1 « 2 . Q * F I l . l » « 4 . n i » I f " * * - " * • '

RUt-L.LT 2400u02A44-»7

- 1 . 0) * 4 . 0 . 1 . 0) . I l » * F * 2 . 0 * F l * 2 . 0 * 1 . 0) * I F l * I N N A * 1 . 0) * 1 . 0) - I F l *
A h A * f 1 * 5 . 0 * * 1 - 1 . 0 1 * 4 . 0 * 1 . 0) * 1 * * 2 . 0) * 1 - 1 l i * F * 4 . 0 . 1 . 0 l * I F l * » M t A
• 2 . 0 * l . o) . I B * ' F * F t) * 2 . 0 * 1 . 0) * F I * 2 . 0) * l - F l * I F I * I N N A * 1 . 0) * 1 . 0)

« M) * * * * 2 . 0 * 2 . 0)) * 0 * * * * * 2 . 0 . B * I B * F * 4 . 0 . F I * 2 . 0 . 1 . 0) * I 1 I B * F *
^ . Q t l . Q l ' i f l *NNA*2 . 0 * 1 . 0) « t > * l f » F t l * 2 . Q « l . Q l * H » ? . Q | « i y | > ,
' • N A * I . 0) • 1 . 0 1 - I I B * F * 4 . 0 * 1 . 0) * | F | * I N N A * 1 . 0) * 5 . 0 * * I — 1 * 0) * 4 * 0 * I

N N A « 2 . 0 * 1 . 0) * 1 . 0) * 2 . 0 * F I * I N N A * 2 . 0 * 1 . 0) * 2 . 0) * F I) * 1 * * 2 * 0 * ((9 *
* » a f i * l « W] * i H * 1 W W A * 2 . 0 * 1 . 0) * 5 . 0 * * I - I . 0) * 4 . 0 * 1 . 0) * 2 . 0 * F H * 1 * *
4 . 0) * I F l * I R M A * 1 . 0) * 1 . 0) * O X t

I . 9 9 V 9 9 9 9 I E - 1)) * F I * 1 - 2 . 0) - l I B * F * 4 . 0 * 1 . 0)
, . 0) * 11 * l F « F t) * 2 . 0 » l « 0) * F l * 2 . 0) * | — F 1 * I F 1 * I I IHA*

1 . 0) * 1 . 0) * 2 . 0) * I l l » * F * 4 . 0 » 1 . 0) * I F 1 * I N N A * 2 . 0 . 1 . 0) * 1 0 . 0 * * I - 1 . 0)
IktM* 1 « 9) t m < L A ? * r f » P * 2 t 0 < ! • < < B * f 4 t 0 * l « P) * IF l * N N A * 2 . 0 * 1 . 0) • i
H * I F * F C) * 2 . 0 * 1 . 0) * F I * 2 . 0) * l - F I * I F I * I N N A * 1 . 0) * 1 . 0) * 2 . 0) * l (S « F
* 4 . W * 1 . U) * 1 F 1 * 1 N N A * 2 . 0 * 1 . 0) * 1 0 . 0 * * 1 - 1 . 0) * 4 . 0 * 1 . 0) » F I » * » * * 3 . 0
• 2 . 0) « F I * H H A) • (C * X * * 2 . 0 - 1 . 0) * 0 X * * 2 « 0 * I * * 2 . 0 - B * 1 1 (B * F * 4 . 0 * 1 . 0
• * ^ I * N N * * 2 « 0 * 1 . 0) * I B * I F « F t) * 2 . 0 * l « 0) * F 1 * 2 . 0) * I F 1 * I N N A * 1 . 0) *
1 . 0) - I I B * F * 4 . 0 * 1 . 0 1 * I F 1 * I N N A * 1 . 0) * 9 . 0 * * 1 - 1 . 0) * 4 . 0 * I F I * N N A *
2 . 0 * 1 . 0) * I F 1 * I N N A * 2 . 0 * 1 . 0) * 2 . 0) * 1 . 0) * I B * I F * F C) * I F 1 * I N N A * 2 . Q «
1 . 0) * 1 . 0) * 2 . 0 * F 1 * I N N A * 2 * 0 * 1 . 0) * 2 . 0) * F 1) * * * * 2 . 0 * I I B * F * 4 * 0 * 1 . 6

1 . 0) * IF I * I N N A * 2 . 0 * 1 . 0) * 2 * 0) * 1 * 0) * I B * I F * F t) * I F 1 * | N N A * 2 * 0 * 1 . 0)
• 1 . 0) * 2 . 0 * F I * | N N A * 2 . 0 * 1 . 0) * 2 . 0) * F]) * K * * 2 * 0 * ((f t W 4 . 0 * 1 . 0 i * T ^
F1 * (N M A * 2 . 0 * 1 . 0) * 5 . 0 * * 1 - 1 . 0) * 4 * 0 * 1 * 0) * 2 . 0 * F 1) * K * * 4 . 0) • I I C * K L!S-5-

Figure 10. Matrix Elements After Substitution

72

■ ! ■ •i^m^mmippi^mimMMPBpi

I

a
x c a

2
O

jj
■z a

M «
3 U

* ■»

t*> o

o o
o o
o o -» *
>J (N

UJ UJ
-I J
i T
-I -t < <
UJ Ul

■o

/) J

_l O
a z
< >■
— in
x
t Jt
• Ul
1

U 3
< Q
X <
(X
o

< <

o a
o o

o
o o •

♦ • <
-- < z

* «
o — ♦
• UJO

« •
« — i r o •
z

« •
" %. u. z
- z
I *

O -"
• u. * -

« ■

• o

IM • • •>
— I
O — • • — • • o
o • •/>
■e • « —
— o
o

I
— ie. • z « —
o « • —
in a.

• m ->
x • *
U. • O — >« •
• • IM -" — «
O O «|
• • x
♦ ♦ i
-400
o

I « —
I •
-o

=. • *
- I -
- -o « • _. • -<
- O I

• «
•* — o

o
• lf>
-•
<u. 2 T
z < — z
« z — *

« — Ut
II I
<• • I
a^o -

I

* o
: o

• (M
N I - • -

HO o
I -< *
■H ♦

• t *
Hi K

z «

m *
^ j^
*M W

in ii^
IM pg
O O
3 3
O O
o o
(M N

M ill
-I -I
I I

O 3

• 1 — o • « m _
— • o o • ** • •• U. ♦ — * •
u. • t • IM O • ou. • — « o-
* X «i — • • « • ■* o Ik •« • o
o • « ♦ —I IM J ni • • — Ik IM • • ** O <u. • i • - IM « —
IMO I X — • S < o • • • < * * • IM z « M • i^ — z~
— IM • • " Ik O Ik zo
U. * • « o — u. — ♦ •* • — * • - • K •- • o - « o « — 1 M «4
• < - « • u. -•

— ♦
• *

#4 P* U. IN O
* o — • u. *

o - «4 • ~ * u - • • o •» 4 2
• o 1 — o o - • < «* • * o z — « Ul o » • — d ♦ — • • — • • •-• ■o • * X ■e •

m ♦ » — ♦ • - -• o < * • -4
oo » * < -o • z~ — u • • » oz o o u. •4 zo o-
-•o l> • z • •■ • ~* ♦ •* • • ♦ * « » CM — — ♦ ■r * < « IM -40 < - c- « « 1 - * o z -• « 1 •
zo » < "■ -o • • z M Ik •* — IM
z • ZU. « X < >■ -o • «
• I m z — • x « • • O • • • « • ^ I • * o * M • -» -4 o x -•< oo Ik • •
u. * o U.Z ■n z • « O z o m » - < 1 * z ru •• ♦ • o • « o
- a — o « M • • ^ o — O -o 4* • • ♦ • -» o « ■ ♦ <n « 0-4 — « CMO 3« <M M ♦ M • ♦ — • « • ■1 u. • • « O — o «4 4«
3 - — IM 4 •- — o « • o • * o
• O a. « < « ♦ • X «4 • — < •

-4 « — • z - o ir • ♦ — • Z IM *
♦ — • K za • « a« ^ ♦ '- z ♦
O * u. — « ■• ■c - O UJ • • < I O - • • • o • ^ Ik • • o o
ryll • O — i -. • —« w * o •
• 1 • — • u. o o - * « Ik • Ik "4 .4

♦ * — • * -> « — tt\ ♦ ♦ ♦
li. < u- ~ ♦ 1 IM — < O X ik • • -> o o

o o — « 1 z • o o • •
• U. • • • O • -z IM • « S o • IM IM

- -o • X • — ♦ « • • IM * •
S i o • • — • • * «» «« s «4 — * < <
• m • < ~ * J 3 -" 3 O • 1 * - z z

-• 3 z o 3 - • u. • • ■4 OO oz z
♦ 1 z • • ♦ in ♦ -4 — 1 • • • — •

o IM O « — ♦ ♦ o rg rg -4«

Ö ♦ • « 1 « - 3 3 3 • « « ♦ "4 Ik
• O l\ <N O • • • IM • < ou. ♦ -^ • u. * Z.« • IN IM M • X z • ** o
♦ IM • — • Z « — ♦ « * • « z IM • • < • «X - 3 • X ♦ — < < X 41 o — « - >j
Z < o • « • — • O O z z • o — « < O *
Z 2 • u — in X. X • • z z u • V M z • M

- Z (M —

If*
IM
■0
IM
O
3
O
o

UJ
-J
1

<
UJ
ÜC

rg

<

O
*1
o

u. • ♦ 3 IM -• — « — o

* n
o a
IM o
•o r-
•n m
IM IN
O C
3 O
o o
o o
* -t
IM IN

U ill

4 3 ■ I
-> -A < «
Ck. UJ

M iJ

< <
3 —
i- H
o o
o o

1 Ik

in
a
3

•
IM
3
3
O
o *
IM

1»
UJ

1

<
UJ
(T

m

<
IM
Iw
o
1**

o

Z -4 k

PH

73

r

« 1 • • • • i * r • ik i Ik
10* « Ik •
10* lb • ♦ e •
|0I 4k o M ■ • • jo» • « • o M IM e o
l* O IM • Ik • • •
I"- • lb ♦ ■4 • < IM P4

1 • * < ♦ » i ♦
I""* 7 z Ui » • MN

1 w «P X Ik » • M Ik
1 • • • • » tk •

o Ik » Ik o s «% ■ Ik 9 • • •
1 • o IM • • » o IM "* • • o • Ik *
♦ mm • • o • IM <

♦ IM • 1 1 p ■• o — w «V

1 • lb • ♦ 1 1 • • •
l«4 • *4 o e Mb ■« 5 rm
♦ O ♦ • • o • Ik

1 • -« IM IM • D IM • «* o • • wm • « O • • • • ■• • • • ■« X K M> * a« IM • a» • • • o R« O 9
1** o < U m Ik • •
»■

• z o w* • M4 e • -4 I • IP i a ♦ •
P ♦ ■M i « • ■M IM
1 • ._ • « o z IM o •
N o M A • z •M • ■ • Ik o Ml • — K

* ' ■« • • • ♦ •
♦ • IM • ■• s <

O 4 • V ik • z O
1 • 1 s A 3 « rt 1 • ^ • o • o • art

1» IM • • • • • • *« O IM o 1° • ♦ • • ik s
1 • Ik K < f « wm • -* « z • * • IM
♦ ♦ 1 • o < * < o o • « • Z o 0m

z • • o « Z • O
Lc IM IM- • ♦ -n • * « « IM m A • « 0m • « • w O o M • ♦ O

1" K
*

« • • • Ik K <
■9

•
|-*» ^ Ik • ♦ ♦ * i • |^ o o < o O • • • • • • s z % • o X -- -* a« • 1 IM IM • «
1-4 * « 3 -4 • • IM

1 ■« • ♦ « « « n
h" tk o ■rt < ■4 K K m 3 0 « • ♦ * k « « —4 •
P y «4 < 2 tm. M ik -4

I» 1* * • « O 3 *
"■ » < ^ 3 « • • • m
O- » £ « • a
3- » (M IM —I ♦ ♦ 3 • » * 3 Ik w 1 —• . 0m • -4

* » • • • Ai Ik 3 ■ ♦ • -« o s « • ♦ < « • ik • Ik ^ * ■M < z
1 -4 « IM « ^ » ♦ Z z

♦ » » B ^ « z •
Ö 4 » ♦ » P » ^ • 3

1 • 2 y » » » » • 1«« z 0> 5 p ^ * w Ik IM • • » • » a> »• • • m < » m* » « p« M o «
X »■ ♦ » « • k • ■« IJ «4 < -^ i —• • IM Ik • Z • • » « • w ■* Z «4 o < » * »
1 w ■ • z o- 0m » w o 1 • « P4 z a- o O"

1 • -^ O ♦ • o- • 9
i o Ik • < » 9 « • • • IM z k » ♦ 3- « — » ♦ £ w* < >>

h*- N ♦ » M 1 • z -^
1« « M » U. • •M wm z ■
p o » 1 • 3 • » ♦ Ik o | • —
M • » 2_ • •

IM ♦ o- o * o Ik O
■ *' m « • * « • • • • « z • MM M « — » IM
p X z ♦ Ik X ♦ » ♦
I • « • • « H p —■
rx « «« o o M o 7 b • s ■ o • • o • ^
* -4

Ik
IM ♦ "J1

IM ♦ »■ Ä
p ♦ • ♦ < «M * « O • «* z • « 1 • •
-4 5 3 O z o •* 1 — --

1 • • • • • ♦ ♦
P — «4 • IM 1 • * ♦ ♦ . • o 3 3
k« « * Ik • • k • • • z ik z m ^* IM m • I • z • X * • • ♦
x o • 5 «» < • • • o a o o 3 z

IM • • S • • • z - u. ♦ M
—

■ -4 00 ■

i
L1

r

r

on

7U

*m

A SIMPLE ELECTRONIC TRUE RANDOM EVENT GENERATOR

D.R. Koehler, J.T. Grissom, and R.G. Polk
U.S. Army Missile Command, Redstone Arsenal, Alabama

■

ABSTRACT. A device is proposed which will generate a uniform series
of random binary digits. This device could be considered an electronic
equivalent of a coin-flipping machine in that its output is a continuous
series of binary digits with successive digits having exactly equal proba-
bilities of being "1" or ;'0". Such a device would be ideally suited to
the on-line production of random numbers for use in Monte Carlo calculations
by digital computers. With suitable combinatorial logic, generation of
random pulses or random analog signals could easily be accomolished. The
device as presently conceived is small, compact, uncritical, and requires
little power. Using the space-randomness of particle emission from a
radioactive source and two small semi-conductor detectors as a signal
generator, plus a few readily available integrated micro-circuit packages,
the device could be packaged on a medium-sized circuit board. Interfacing
to any of the present generation of digital or hybrid computers would
present no problems, and the bit generation rate could be adjusted to
satisfy the demand rate of the fastest of today's computers.

Computer technology presently has reached such a state of development
that today computer systems are being built which are so large that seemingly
the necessary software and programs to utilize them cannot be produced. The
burgaoning field of computer systems application is working overtime searching
for ways and means to fully occupy the vast capabilities of the very large
computer systems, and problems which seemed impossible of solution by any
computer technique a few years ago are beginning to yield to new approaches
made possible by these large new machines. In particular, one long-popular
but computationally expensive numerical technique known as the "Monte Carlo
calculation ' is seeing a period of rapid development as a line of attack on
problems which would not yield to ordinary analytical and numerical tech-
niques. The long-standing problem with most Monte Carlo programs is their
requirement fur random numbers in large quantities.

Computer-users in the areas of statistical sampling and simulation,
Monte Carlo calculations, and the promising new field of "stochastic"
computation so far have been steadily handicapped by the difficulty of
obtaining high-quality random numbers for their programs. In particular,
the stochastic computer requires numbers in great quantity and of high
quality, and speed of computation is directly dependent on the rate at which
random numbers can be provided to the computer. Computer designers so
far seem to have virtually ignored this problem altogether, leaving it up
to the programmers to somehow devise a technique of getting numbers.

The common techniques, up to this time, have been the Insertion of tables
of random numbers in the computer memory, or the calculation of "pseudo-random"
numbers arithmetically via a short in-computer program using any one of quite
a number of possible algorithms. Both of these approaches suffer from requiring

1

75

i

■^^w

memory space, and both are limited in the quantity and quality of numbers
which can be supplied. Furthermore, algorithmic solutions require non-
negligible amounts of computer time. The real solution to the problem
will come when a good random number generator can be built which will pro-
duce all manner of random numbers any program or computer may require and
which can be hooked up to the computer directly.

Attempts have been made to construct random number devices, and their
history makes interesting reading. But the end product of most of these
attempts seems generally to have been slow in speed, cumbersome, unwieldy,
and unsuited for direct connection to the computer; or else complicated,
sophisticated, lacking stability, and requiring much careful adjustment
and attention. We shall not take time to discuss any of these devices
here. The interested reader will find references on some of these devices
in the bibliography.

We propose, as have many others interested in this problem, a device
based upon the random nature of the decay of radioactive substances. How-
ever, instead of mixing radioactivity detectors with clock-pulse generators
and observing the time-randomness of emission of nuclear particles, as has
been the traditional approach, we would like to combine two reasonably
identical and independent nuclear detector systems whose average count rates
are exactly equal. The time-and-space randomness of the decay of the
radionuclide then requires that at any given instant of time there be
exactly equal probabilities that either detector will receive the next
particle. If one detector were labeled ''heads" and the other "tails", the
output pulses of the two detectors would be just as good for decision making
as the ubiquitous coin, and much, much faster.

The proposed device is shown schematically in Figure 1. The "sandwich"
of detectors and radioactive source can be made quite compact. It could be
fitted on one corner of a single printed-circuit board, or even on a single
chip of silicon which at the same time could carry some of the necessary
active electronics. The source strength even for very high count rates
could be relatively weak and quite harmless - less damaging than an ordinary
radium watch dial. Using ordinary silicon semiconductor radiation detectors,
the device could be made to pump out random binary bits at a rate fast
enough even for the "stochastic" computers: and as computer technology
advances, the permissible bit generation rate can advance with it, since
virtually all the associated electronics can be digital and will benefit
from improvements in digital techniques.

The "sandwich" of Figure 1 is not exactly a proper configuration for
direct connection to any user device, such as a computer. First of all,
the detector signals are small and must be amplified. Then some means-
must be incorporated to convert the amplified detector pulses to the
necessary logic levels for feeding the user device. In Figure 2 we see
a possible realization of a generator of serial binary bits. The "conversion"
flip-flop is triggered by the detector pulses into "1" or "0" states and
thus provides logic levels representing the two binary digits. These digits
are produced one after the other in serial fashion by "inspecting" the logic

76

levels every time a detector pulse appears at the "clock' output and
delivering to the user device the proper binary bit as determined by the
state of the flip-flop.

For a random pulse generator, or some sort of special noise generator,
this configuration might serve admirably. But a computer likes its input
to be more regular, the time-randomness of binary output of this serial
generator would be unacceptable to the computer systems designer. There-
fore some sort of buffer memory must be incorporated. Possibly the
easiest solution to this problem is the addition of a shift register which
is driven by the outputs of the serial binary generator. This is shown
in Figure 3. Any time the computer desired a new random number, it could
sample the state of the shift register and transfer its contents via
parallel-access lines to the processor, or else the transfer of digits
from the generator to the register could be temporarily halted while the
number contained in the register is clocked cut at the computer clock rate
and fed to the computer serially from the back of the shift register.

The ultimate choice of means of converting the detector ''sandwich11

pulses into numbers in the computer will be up to the computer designer.
Our suggestions are only for illustrating the possibilities. For the
sake of simplicity, we have so far ignored one veiy important additional
element of the total generator. That element consists of the means by
which the generator is stabilized so as to maintain the exactly equal count
rates we presupposed as the necessary condition for true randomness. For
certain types of radioactive sources and preamplifiers, this "stabilization''
can be so simple as a micrometer adjustment of the position of the source
between the detectors - the inherent counting stability of the remainder
of the system will be high enough that over periods of perhaps a year or
more between maintenance checks the drift and count rate inequality will
be quite negligible.

Unfortunately, the type of source presupposed above could be rather
"hot1, as radioactive sources go, and might prove something of a problem
around a computer. Also the adjustment mechanism would be somewhat bulky
relative to the size of the rest of the system. A better approach probably
would be the use of feedback stabilization. For example, in Figure 4 we
have added an up-down sealer which continually measures the difference in
the number of 'I's ' and the number of 'O's,' and if the difference exceeds
a certain value, to be determined by statistical considerations, then an
adjustment of the count rate in the one channel would be made via the second
up-down sealer, DAC, and discriminator. This sort of stabilization scheme
is basically digital, with a step-wise adjustment of the relative count
rates, which should, after a stabilization period, lead to a steady-state
condition in which the statistical probabilities of the two binary states
fluctuate very slightly about the exact 50% level.

Having conceived the device, we naturally are curious as to just how
good it might be. Unfortunately, it is not within our mission to do device
development such as this, so we have not been able to obtain and patch-up
the necessary logical elements to test it. However, some spare detectors,

77

amplifiers, and a paper tape punch were temporarily rigged to punch random
bits in paper tape. The system had no provision for stabilization, and
count rates were crudely adjusted to something near equality in both channels
simply by adjusting channel gains. Something over 1(P bits were punched
out, which we converted to card and then gave to our Computation Center for
testing. Considering the small sample we had to work with and the consequent
rather large variance to be expected on any given test, no real conclusions
could be developed as to the quality of the numbers. All results of all
tests, however, were within statistical expectations based upon the known
relative numbers of ones and zeros and otherwise assuming complete random-
ness.

78

BIBLIOGRAPHY

This list of references is just a small "random" sampling of the large
body of literature available on the subject of random numbers. Most
of the articles listed give additional references, and several have
quite extensive bibliographies covering both arithmetic generators
and random number devices.

EARLY DAYS. Before computers and in the early days of computers,
statisticians and mathematicians resorted to tables of digits compiled
from hopefully uncorrelated batches of numbers. The first three
references tell an interesting story of the days B. F. C. (Before Fast
Computers).

1. Kendall and Smith, "Randomness and Random Sampling Num-
bers, " Jou£nal_ofJJieJl£^al^ The
classic treatise on tests for randomness. Herein were proposed for
the first time the four basic tests - frequency, serial, poker, and
gap - which for so many years were the foundation of random number
testing.

2. H. B. Horton, "A Method for Obtaining Random Numbers, "
Annals of Mathematical Statistics XIX (1948) 81-85. Mr. Horton of
the Interstate Commerce Commission compiled a small table of num-
bers from presumably uncorrelated railway freight car waybill num-
bers and subjected them to Kendall and Smith's elementary tests.

3. The Rand Corporation, A Million Random Digits with 100,000
Normal Deviates. The Free Press, Glencoe, Illinois. 1955. The
table of digits is prefaced with a short dissertation on the "electronic
roulette wheel" which the Rand group used to make up the table, as
well as the tests they performed and the re-randomization technique
they found necessary in order that the table test "random. "

ARITHMETIC COMPUTER METHODS. Faster computers naturally
attracted programmers more and more to the use of Monte Carlo
techniques. The poor performance of random number devices led to
the expenditure of considerable effort to devise ways of generating
numbers in the computer itself.

4. Hull and Dobell, "Random Number Generators," SIAM Review
4 (1962) 230-254. An extensive discussion of the state of the art in 1962

[79

of arithmetic generators, with some comments on random number •
devices. With extensive references and bibliography.

5. G. Marsaglia, "Random Variables and Computers, " Boeing
Scientific Reaearch Laboratories Report Number Dl-82-0182 (ASTIA
278, 358), 1962. One of many, many treatises in the literature on
arithmetic generators and linear transforms as component parts of
the computer program. References.

6. Marsaglia and Bray, "A Small Procedure for Generating
Normal Random Variables," Boeing Scientific Research Laboratories
Report Number Dl-82-0221 (ASTIA 294, 455), 1962. Another example
of the many papers published in this area. Here a method of converting
a uniform distribution to a special one (the normal distribution) is
presented.

7. McLaren and Marsaglia, "Uniform Random Number Generators, "
Journal ACM 12 (1965) 83-89. Here members of the Boeing group re-
examine some of their numerical methods in the light of newer develop-
ments in testing, indicate some of their failings, and suggest some new
techniques, including a return to the old standby, the random number
tables.

8. R. P. Chambers, "Random-Number Generation on Digital
Computers," IEEE Spectrum 4, No. 2 (Feb 1967) 48-56. Chambers
discusses the old standby arithmetic methods plus some new ones and
touches briefly on random number devices. Includes extensive references
and bibliography.

9. Coveyou and MacPherson, "Fourier Analysis of Uniform
Random Number Generators," Jour. ACM U. (1967) 100-119. A new
technique of testing is presented which points up the failure of many
of the arithmetic techniques, particularly when used on small machines.

RANDOM NUMBER DEVICES. There is a considerable body of informa-
tion on random number devices, but unfortunately much of it is buried
in articles not specifically directed towards the treatment of devices
and hardware. Many articles mention devices in passing, with the
seeming implication that hardware has never progressed beyond the
electronic "roulette wheel" of Kendall and Smith and the Rand group.
The following three short papers are an indication that device development

80 I

■

has not been totally neglected, even though overall results to date
may have been small.

10. F. Sterzer, "Random Number Generator Using Subhar-
monic Oscillators," Rev. Sei. Instr. 30 (1959) 241-243. Sterzer
utilizes some microwave devices and techniques to obtain high pro-
duction rates and reportedly better randomness than the Rand tables.
The technology however likely will be a little foreign to the computer
designer.

11. Dillard and Simmons, "An Electronic Generator of Random
Numbers, " IRE Transactions on Electronic Computers EC-11 (Apr
62) 284. A traditional approach using noisy thyratrons and considerable
associated digital circuitry. Production rates of about 15-20 kbits per
second.

12. Tait and Skinner, "A Random Signal Generator," Elec. En;
38 (1966) 2-7. A rather specialized device, but with an interesting
method of obtaining random digits.

£•

NEW VISTAS

13. B. R. Gaines, "Stochastic Computer Thrives on Noise, "
Electronics 40, No. 14 (10 Jul 67) 72-76. An introduction to the sto-
chastic computer and its applications and promise for the future.

14. Koehler, Grissom, and Polk, A Random Pulse Generator.
Patent Application #518,733, filed 4 Jan 66.
the material of this paper.

The basic reference for

81

^i

"•"^^

u

o
0)

l' I
[

u i
J c

(9

o 0)
*« tf)

4rt w
£ a o
1 S
3 VT w I o 0) c
^ 0)

2. o
+0
3 u o w

«

82

"■^"^■i^""^"

u
0

—I
Ü

u
«

I*
■o

« «
in «
3 C

a. %
I w

C U « .=
•o at

O

o

>

J

•H

•• e

(A

U

a o
■ a

(A

IK
o

0)
c
0)
O
**

a

E
o

■o
c

>»
w

c

0)

u
» £

a *
• c o «

83

L

u

1 5
a •
0 • _ •

ä{5

o
«8

e

O

1 w

CO

4

1Ä I. 1Ä
15
e

«A

U U 84

mm

w^^^-^mmim'^w

I
JC
u

_0
of

w

* •
•o

•I «

11

n
O

o

• 5
• *
1 «•

(A

a o

tf)

o
o

u
I/)

i I
it
2
3

ii n n

y

O J
■ -9

c
»

3 a
3
o
I

N

I
n

85

BLANK PAGE

PROGRAMMING INTERVAL ARITHMETIC AND APPLICATIONS

Allen Reiter
Lockheed Missiles and Space Company

Palo Alto, California

INTRODUCTION. This paper discusses the current state-of-the-art in
interval arithmetic, both from the programming point of view and from the
point of view of applications to date.

Interval arithmetic was first developed formally by R.E. Moore around
1960, although there is essentially nothing new in the concepts involved.
Moore originally envisioned interval arithmetic as a means of completely
rigorous automatic error control for computational processes using a digital
computer. More recently, people have begun to appreciate the potential of
interval arithmetic for control theory, and also as a tool in experimental
designing on-line, with both a man and a computer as parts of the feedback
loop.

There are basically three different sources of error associated with
numerical computations. The first, which we may call the data problem, is
due to the fact that the value of some given parameter may not be known
exactly (this is for example true for physically-determined parameter
values), or else may not be exactly represented in a computer (for example,
the number TT). A second type of error, usually called truncation error,
is caused by the necessity to terminate after a finite number of steps
some infinite converging process, or (eqüivalently) by the requirement
that some well-defined expression be evaluated at some point whose location
is known only approximately (for example, the remainder term of the Taylor
series with remainder). The third type of error is round-off error, caused
by the necessity to restrict computational processes to operate on numbers
which do not exceed some predetermined number of digits in length. Round-
off error has traditionally been the most troublesome, primarily because
of its non-analyticity. Attempts at rigorous "pencil-and-paper" bounding
of round-off either are too difficult or lead to hopelessly pessimistic
"bounds".

Interval arithmetic keeps track of the accumulation of error by
continually producing an interval, guaranteed to contain the "true" result,
and performing the indicated arithmetic operations on the entire interval.
Since the implementation of interval arithmetic necessarily involves ordi-
nary arithmetic operations on the end-points of the interval, which in turn
involw rounding, care must be taken to perform the rounding properly: "down"
for the left-hand end point, and "up" at the right-hand one. Thus, when
in the sequel we shall speak of interval arithmetic, it shall be understood
that In the implementation of ehe operations on a computer rounded interval
arithmetic is used. However, in the formal discussion of Interval arithmetic
we shall ignore this fact, and define the formal operations Independently
of their implementation.

ARITHMETIC RULES. An interval is simply a closed Interval on the real
line, of the form [a,b] . We can also think of an interval as a fuzzy number

87

x of the form [x-e , x+e]j although t is certainly not restricted to being
small in any sense. The arithmetic operations are defined in a natural
fashion, and in fact reduce to ordinary arithmetic when e=0. (When the
occasion arises, we shall speak of ordinary real numbers as degenerate
intervals.)

Elementary operations are defined as follows. Let [a,b] and [c,d]
be a pair of intervals. Then

[a,b] + [c,d] = [a+c,b+d] ;

[a,b] - [c,d] = [a-d,b-c] ;

[a,b] * [c,d] = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)] ;

[a,b] / [c,d] = [a,b] *[l/d,l/c 1} (division is defined
only if the interval [c,d] does not contain the point zero).

It can be seen that these operations are defined in such a way that
the result is precisely the set of all possible values of the operation
as the operands range over the argument intervals.

Interval arithmetic is associative, and addition and multiplication
are commutative. Unfortunately, the distributive law does not hold; instead
we have the "subdistributive" law (I, J, and K being intervals):

I * (J + K)C I * J + I * K.

That the inclusion can indeed be proper can be seen from the example

[-3,3] * [0,2] + [-3,3] * [-1,0] = [-6,6] + [-3,3] = [-9,9] ,

whereas

[-3,3] * ([0,2] + [-1,0]) ' [-3,3]* [-1,2] = [-6,6]

The example also illustrates that a given interval number may have
many multiplicative units: if y is any real number in (-1,1), then all
interval numbers of the form [-l,y] or of the form [y,l] are multiplicative
units for the interval number [-3,3] .

More disruptive is the fact that although an additive unit is unique
([0,0]), interval numbers do not in general possess additive inverses.
(This reflects the fact that once uncertainty or error has been introduced
into a computational process, it cannot be cancelled out, but must be carried
along till the end.) This last property is responsible for almost all of
the difficulties in interval arithmetic, and frequently necessitates very
delicate handling of the specification of a computational algorithm - some-
thing that the current state-of-the-art is not quite up to. (In spite of
this handicap, useful areas of application have already been found.)

88

■■Vü

The usefulness of interval arithmetic for error bounding comes from
the fact that

1) The elementary arithmetic operations are continuous mappings
from I, x I„ onto I- (the I's are arbitrary intervals);

2) Since the elementary operations are defined in such a manner
that the range of the operator as the operands range over the argument
intervals is contained in the result interval, the same is true for any
well-defined grouping of such operations on argument intervals; in other
words, for all rational functions. Of course, rational operations is all
computers are capable of executing; thus, any computable function can be
bounded by the use of interval arithmetic.

Let f(x. ,...x) be a given formal rational function in the indeter-

minates x.x . When the indeterminates take on real values, f denotes
In

a real-valued function. There may be many different ways of representing
this function, which are all algebraically equivalent; we will fix a
representation f^x^.-.x). If we let the indeterminates take on interval

values X^.-.X , then the function f. is still well-defined (we can regard
In 1

f, as a computer program, with a sequence of arithmetic operations to be

carried out in a certain order); we however choose to call this interval-
valued function F, (X.,..^). Note that the fact that ^ and f. may be

algebraically equivalent to f (and to each other) certainly does not imply
that F1 and F„ are equivalent (this is primarily due to the failure of

the cancellation law for interval arithmetic). The basic theorem of
interval arithmetic however states that for the purposes of error bounding
any representation will do:

Theorem. Let f be a given rational function, f = f(x..,...x), and

let F be any representation of f, F to be evaluated in interval arithmetic.
Let X..,...X be a collection of closed intervals on the real line.

1 n
Then the range of f as each variable x. ranges over X. is contained in

r^A.,...A)*

The theorem assures us that interval arithmetic is sufficient to
compute bounds on the range of a rational function over a compact rectangle
in E . Note that since the evaluation of F can be done using rounded

interval arithmetic, the round-off error is included in the final bounds
produced by F. (It is worth while stressing though that nothing is said
about bounding the round-off that might occur in evaluating f. The round-
off process is not a continuous operation. On some computers, in particular
on the IBM SYSTEM/360, it is easy to cook up examples where f evaluated
at some point p inside the rectangle turns out to be outside the interval
obtained by evaluating F. This is but another aspect of "dirty" floating-
point hardware. The true range of f is however always contained in F.)

As already noted, the width of the interval obtained by evaluating

39

■^^fp

F may be considerably greater than the width of the true range of f; it is
also generally quite sensitive to the choice for the particular representation
F. This shall be discussed below.

SOME APPLICATIONS OF INTERVAL ARITHMETIC. Aside from the obvious
advantage of providing error bounds, interval arithmetic can be used by a
computer to control the growth of error. While potentially the realm of
applications is unlimited, the author knows only of the following contexts
in which interval arithmetic has been studied:

a) The initial-value problem for ordinary differential equations;
b) Finding roots of polynomials;
c) Matrix inversion, and the eigen-value problem for matrices;
d) Solution of systems of simultaneous (non-linear) equations;
e) The two-point boundary-value problem.

In these areas, analytic techniques are being developed which make use of
interval arithmetic evaluations, and which also address themselves to the
peculiar problems which arise in using interval arithmetic.

THE INITIAL VALUE PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS. Let
dy/dx ■ f(x,y) denote a system of n first-order ordinary differential
equations, and let yn = y(xn) be given. The application of interval arith-

metic to the automatic generation of solutions to this problem was the first
application suggested by Moore. He designed a computer program using
interval arithmetic which gave solutions with automatic error bounds.

His method is described in [7] . Briefly stated, the solution is
expanded in a Taylor series with remainder (up to a specified number of
terms) at a given point. To bound the remainder term, the required deriva-
tive is evaluated over a whole rectangle (using interval arithmetic) which
is guaranteed to contain the point at which the derivative should be
evaluated. Iterative procedures can be specified which limit the growth
of the width of the resulting interval.

Since this method depends on the ability of the computer to evaluate
higher-order derivatives of f, it is handy to have a computer program which
can do analytic differentiation. Such computer programs have indeed been
written, either tailored for the purpose at hand [9], or in more general
settings, such as the FORMAC capability for the FORTRAN IV compiler on the
IBM 7094.

The success of interval arithmetic in this setting is somewhat diffi-
cult to evaluate. The problem is that for reasonably complex systems of
equations and for long ranges of integration with respect to the independent
variable, the resulting interval tends to be too wide to be of much practical
value. Attempts at elaborate transformations to reduce the error growth
due to the remainder term evaluation being too crude have in general been
defeated by the fact that the structure of interval arithmetic (lack of
additive inverses) causes growth of widths of intervals due to too many
operations. Also, on some computers (such as the CDC 1604) the floating-

90

^•^mm^^^mm

point hardware structure of the computer is so unfriendly that interval
arithmetic operations are rather time-consuming. For short integrations,
and for qualitative estimates, interval arithmetic may be very valuable.

ROOTS OF POLYNOMIALS. Moore suggested that a simple procedure for
localizing zeroes of rational functions can be developed using interval
arithmetic. Such a procedure was indeed programmed [3]. The method is
based on the simple fact that if P is given rational form in n variables,
R a rectangle in En, and P(R) evaluated in interval arithmetic does not
contain the point 0, then P (as a function of real variables) cannot
possibly have any zeroes in R.

1

P.
an

An iterative procedure can be implemented based on the fact that If

ana R_ are two rectangles in E each of which contains a given zero of

th»'.n their intersection must necessarily also contain that zero. Thus,
extension of Newton's method is possible, as long as care is taken at

each iteration to intersect the new interval (which may not be contained
in the one obtained at the previous iteration) with the old one, thus
guarding against divergence. This is called by Moore "the method of
interval contractions". Clearly any such procedure must converge, but
the limit will in general be an interval, rather than a point. If the
limit interval is too wide, the process may be repeated by subdividing
the original rectangle R into smaller ones.

Similar results were obtained for the complex domain (Boche [2]
having extended the concept of interval arithmetic to the complex plane)
by Hansen [6] and Bennett [1] .

For this problem, interval arithmetic may well be the best (compu-
tationally speaking) method of obtaining results, especially if it Is
desirable to find regions guaranteed not to contain any zeroes of some
given function.

MATRIX INVERSION AND THE EIGENVALUE PROBLEM. The problem of Inverting
matrices in the context of interval arithmetic comes from two distinct
sources. Problem one: given a matrix with real elements, obtain a (real)
inverse with automatic error bounding of round-off. Problem two: given
a method of obtaining solutions of some problem in ordinary arithmetic
(for example, Newton's method in n variables) which calls for inverting
matrices, extend this method to the case where interval arithmetic will
be used for the solution (possibly because the coefficients are only
approximately known). That is, in problem two we are asked to Invert a
matrix with interval elements.

Since it is not a priori clear what we mean by an "inverse" of an
interval-valued matrix, we define this inverse to be the set of inverses
of all of the real matrices contained in the given interval matrix. It is
understood that the inverse is defined only if the interval matrix does not
contain any singular real matrices.

91

Hansen ([4] and[5]) has worked extensively en this problem. He shows
that a direct extension of the standard methods for matrix inversion (such
as modifications of Gauss - Seidel) to interval arithmetic is not very
useful, because of the many arithmetic operations involved, and (again)
because of the lack of additive inverses. Instead, he develops several
methods, all based on essentially the same principle. What he does is to
compute an (approximate) real inverse of the real center of the interval
matrix, and then (using some iterative procedure) compute in interval
arithmetic bounds for the width of each element of the true inverse of the
interval matrix. The variations in the iterative procedures consist of
trying to represent things in such a way as to have as many terms as possible
be non-interval.

Similar considerations apply to the problem of finding eigenvalues
and associated eigenvectors of real-valued or interval-valued matrices.
Again, direct extensions of the standard techniques used for real arith-
metic are not satisfactory. Hansen [6] suggests iterative procedures
using interval arithmetic once approximate solutions are obtained using
real arithmetic.

The numerical results quoted by Hansen suggest that very good accuracy
can be obtained using interval arithmetic. His methods do converge, although
he does not discuss the rate of convergence. Note that in Hansen*s methods
it frequently pays to carry out the real computations involved using ex-
tended-precision arithmetic, since in general multiple-precision arithmetic
is much faster than the interval arithmetic procedures required, and it is
worthwhile to go to great lengths to save an iterative step.

SYSTEMS OF SIMULTANEOUS EQUATIONS. Let f(x) denote the set of n
rational forms f,(x) in the n formal variables x , and let it be desirable

n
to find a solution to f(x) = 0 in the vicinity of some point xn in E . A l0
method proposed by Moore goes as follows.

Let y be a solution near x0; i.e. let f(y) = 0. (Of course, we do not

know y explicitly.) Expanding f(x) as a Taylor series with remainder about
y, we have f(xn) = f(y) + (x0 - y)J(z), where z is some point "between"

x» and y, and J is the Jacobian matrix evaluated at z. Expressing z as

y + e(xn - y), where 9 is a vector with elements between 0 and 1, it can

be seen that if R is a rectangle which contains both x» and y, then R

also contains z. Hence, we can try to solve (x0-y)J(R) = f(x0) for y.

This will yield a new rectangle R' which contains y, and which can then be
intersected with R to yield a (hopefully) smaller rectangle R". We now
solve (R"-y)J(R") for y, etc; this will eventually converge to (we hope) a
small interval containing the real solution y.

Hansen gives a slight improvement in the method [6]; this is essentially
a slightly better way of writing things down for computation.

92

iwvoaai mm^^

It can be seen that this is a variant of Newton's method, adapted
for interval arithmetic. It requires that f contain no other zeroes near
the point in question, for otherwise the Jacobian J becomes singular. Again
it pays to obtain as precise an initial guess as possible, using ordinary
(possibly extended-precision) arithmetic.

The author knows of no numerical experimentation with solving large
systems of equations using interval arithmetic.

THE TWO-POINT BOUNDARY-VALUE PROBLEM. This problem is currently
He has devised a general method for under investigation by Hansen

tackling the solution of

.(n)
= f(x,y,.. .y*-1')

with a total of n conditions prescribed at the end points x = 0 and x= 1.
His method, based on an adaptation of a finite-difference method, gives
sharp bounds at the mesh points and less sharp bounds throughout the
interval. It will be described in a forthcoming paper.

OTHER POSSIBLE APPLICATIONS. Interval arithmetic may have potentially
many uses. It has been suggested that it can be used in control theory,
where it is desirable to let parameters in differential equations range
over certain restricted domains. Another potential arpa of utility is
in design, where it can be used in conjunction with an on-line computer
system. A designer, seated in front of a terminal in communication with
a computer, can experiment with various possible designs by letting some
variables range over a set of interval values. With instant feedback from
the computer, the designer can begin to get a feel for the effects of
perturbations in the design parameters. Using interval arithmetic in this
setting is particularly attractive because sharp bounds are not required -
the qualitative estimates would be produced in relatively little time, and
would at the same time be completely rigorous, covering all possible cases.

THE REPRESENTATION PROBLEM. The major trouble with interval arith-
metic is that due to the lack of inverses forms normally considered
algebraically equivalent are computationally quite different. It is always
advisable when using interval arithmetic to eliminate entirely expressions
of the form x - x. Other reductions of this type suggest themselves.

The general problem can be stated as follows. Suppose that f is a
given function (from En into the reals) and suppose that it is desired to
obtain bounds on the range of values of f over some rectangle R using
interval arithmetic. What is the "best" way of representing f from the
point of view of obtaining the narrowest bound?

There are three different approaches to this problem. One can try
to obtain an optimal representation for f. (The author strongly suspects
that this approach is not in general workable; that is, given a general
function f, there is no algorithmic procedure that would allow the selection
of a "best" form.) A second approach can be based on the following: if

93

■■

^^

f. and f? are two different representations for f, and f,(R) = I,, f-CR)*!.,

then I1A I_ also contains the range of f over R. It may be possible by

judiciously choosing among different representations for f to obtain
successively better approximations to the range of f. Although there Is
probably no algorithmic procedure guaranteed to converge for an arbitrary
function f. It may be possible to find some programmable heuristics which
greatly reduce growth of Interval widths. The third approach consists of
subdividing the original rectangle R into smaller rectangles and performing
the required evaluations on each of the small pieces. This process will
generally result in narrower bounds, and is In fact guaranteed to converge
to the exact range of f regardless of the representation chosen. The
convergence is however so slow compared to the overhead for repeating the
computations for each one of the smaller Intervals that this approach is
not very practical.

Moore has noticed that a certain representation, which he calls the
centered form, will frequently yield good results. Briefly, this scheme
goes as follows: Given a formal function f of (say) one variable x, and
assuming that we are interested in evaluating f over the interval [a,b]=
[m - ^(b-a), m + ij (b-a)] , we represent f as expanded about the midpoint
m. That is, we obtain a form g by the relation g(x-m) = f(x) - f(m), so
that g(y) = f(y +m) - f(m). g has to be represented in the most "economical"
way possible, so that the number of occurences of the term y cannot further
be reduced. Since f([a,b]) = gÜ-^Cb-a), ^(b-a)]) we have moved the required
Interval evaluation to be centered about zero.

2
For an example, let f(x) = x - x , and let the interval in question

be [0,1] . The actual range of values of f is of course [0,^] . Evaluation
of f as written yields [0,1] - [0,1] * [0,1] = [0,1]-[0,1]= [-1,1] .
Writing f in "nested" form as x*(l-x) yields [0,1] * [0,1] = [0,1]; an
Improvement, but still not very good. Writing f in centered form, we have
(with y = x-h) g(y) = -y^ + k, so that f(x) is represented as -(x-h) + hi
Interval evaluation of this form yields - [-4*^] * [-^j^] + k - [0,h] •
This turns out the best that can be done for any given representation with
the evaluation of only one Interval. If however we are willing to evaluate
separately the range of f on [0,^] and also on [%»1], then by using the
centered form it turns out that we can bound the rauge of f by [0,3/8]. In
fact, if we keep halving the width of the (equal) Intervals, it can be
shown that Interval evaluations approach the upper bound h linearly with
the width.

Lest the reader conclude that the centered form is always the best
representation, consider the function f(x) = x + x , and let the interval
in question be \2-s,2+s Jwhere 0 < s < 2. Then both straightforward Interval
evaluation and the nested form give [s2-5s+6,s2+5s+6], which is the exact
range of values. In centered form, however, we represent f as (x-2)(x+3)+6;
evaluation of this yields [-s2-5s,s +5s] +6, which exceeds the actual width
by 2s2.

It is possible (and desirable) to modify the rules of Interval arith-
metic in order to reduce spurious growth of Intervals. One obvious and

94

easily programmable change is to define, for all intervals I,

ln = {xn : x t 1]

This in general yields smaller intervals than the computation of I *I_*...*I

I. Other modifications of this sort, which take for I = I9 = = I =
n

into account known and easily computable exact ranges of values of a set of
elementary common forms, may improve the performance (and possibly even speed
up the operation of the system, as generally fewer multiplications will have
to be performed during the computations).

Note that with changes of this sort, some of.the properties of interval
operations no longer hold. For example, with the change indicated above
for raising to powers, subdistributivity no longer holds in its original
form; the interval I*(I+1) need no longer be contained in the interval

I + I (whether it is or not depends on I). If I = [-1,1], then

while

I*(I+1) = [-1,1] * [0,2] = [-2,2];

r + I + [0,1] + [-1,1] = [-1,2].

This tends to complicate the representation problem even further, since
it becomes desirable to have a representation contain as many (in some sense)
as possible of the forms whose ranges of values are exactly computable.
The changes are all for the better, however; the complications result because
we now have better ways of representing functions than formerly.

SYSTEMS PROGRAMMING FOR INTERVAL ARITHMETIC. Programming for interval
arithmetic is somewhat similar to writing (general real) computational
routines in the early days of computing, before the hardware Implamentation
of floating-point arithmetic. At level 1, the systems programmer has to
build the basic tools for performing interval computations: an adder, a
multiplier, an inverter for producing an incerval (l/d,l/c) given the
interval (c,d), and (if exponentiation is desired) functions that compute
good bounds on the range of values of the EXP and LOG operators. (Similarly,
other elementary transcendental functions such as SIN should be incorporated.)

At level 2, tools must be provided for convenient interfacing with the
user. For a simple example: subtraction can obviously be implemented very
simply using the adder of level 1; at the same time, it is clearly not
desirable to have the user perform this implementation every time he wishes
to execute subtraction. Thus, a set of subroutines must be provided for
the user which he can conveniently call. There are likely to be a large
number of such subroutines, for the following reason. It is generally
desirable to allow the user to mix the mode of the variables freely; he
should be allowed to add a integer-valued variable or constant to an

95

integer-valued one. By the time all possible combinations of modes for
operands are accounted for, the number of different subroutines provided
is staggering. (Actually, there are typically about eight different
routines, each of which has many entry points.)

It is clear that any such package of subroutines should be FORTRAN
compatible. While the level 1 subroutines usually have to be written in
machine language, there is usually no reason why the level 2 routines
themselves cannot be written in the FORTRAN language.

The representation of interval numbers within a computer for FORTRAN
might have been quite awkward were it not for the fact that formally an
interval number looks just like a complex number. Any FORTRAN language
compiler equipped to handle complex numbers can be tricked into handling
interval numbers by the appropriate TYPE declarations. This is very handy
for getting interval numbers in a decent format into and out of the computer,
and also for defining interval-valued constants. (Arrays of interval
numbers are also easier to handle if they are defined as being of TYPE
COMPLEX.)

The arithmetic operations have to be performed by calls to the
appropriate routines. Some computers (for example, the CDC 1604 and 3600)
have a feature in their FORTRAN compilers which allow the definition of
other (non-standard) variable types. What this means is that the compiler,
when it encounters a variable of non-standard type, generates a call
automatically to the appropriate arithmetic routine. This simplifies
usage of interval arithmetic greatly, since the user, once he defines a
variable as being of TYPE INTERVAL, can use it in statements as if it were
any other type (integer or real). In fact, should this prove desirable,
it is possible to define variables as being of type "double-precision
interval" (the appropriate routines would have to be provided). For an
example of an interval-arithmetic package of the sort just described,
see [8].

The level 2 routines will depend to some extent on the exact working
of the FORTRAN compiler. The level 1 routines are essentially compiler-
independent ; they are however heavily dependent on the way the given computer
performs floating-point operations. (For convenience of interfacing with
FORTRAN, the interval endpoints should usually be represented as floating-
point numbers.) The (real) operations have to be performed at each end
point in roughly the sequence: 1) perform the operation in a double length
accumulator by using both the A and the Q registers without rounding; 2)
normalize the result; 3) round to a single-precision floating-point number
by adding (or subtracting) a 1 in the last place, unless the result was
exact. If the computer does not allow this sequence of operations to be'
performed using the hardware floating-point instructions, then these opera-
tions have to be simulated by software, using fixed-point instructions.

Similar considerations apply to the computation of the transcendental
functions. The functions should be computed in such a way that the result
is off by at most one in the least significant bit of the single-precision
answer.

96

M

Exponentiation can be implemented using the LOG and EXP routines. The
system should however first determine if the exponent is an integer (even
if represented as a floating-point number). As indicated, a substantial
reduction in the growth of the widths of intervals can be effected If integer
exponentiation is computed by repeated multiplications, using the true-range-
of-values for raising to powers.

REFERENCES. The first place any interested reader should look is
Moore [7]; aside from its definitive nature, it contains a rather complete
bibliography of relevant literature. For a more up-to-date list, see
Bennett [l].

97

.J
k^

^■^^

[1] G.K. Bennett, Jr. "A Method for Locating the Zeros of a Polynomial using
Interval Arithmetic." Report published by the Computer Center, Texas
Technological College, June 1967.

[2] R.E. Boche, "Complex Interval Arithmetic with same Applications"
Unpublished Master's Thesis, San Jose State College, 1966.

i^] R.H. Dargel, F.R. Loscalzo, and T.H. Witt. "Automatic Error Bounds
on Real Zeros of Rational Functions." Coimrn.nications of the ACM,
Vol. 9, Number 11, Nov. 1966.

[4] E.R. Hansen, "Interval Arithmetic in Matrix Computations, Part I."
SIAM Journal on Numerical Analysis, Series B. Vol. 2, Number 2 (1965).

[5] E.R. Hansen and R. Smith, "Interval Arithmetic in Matrix Computations,
Part II." SIAM Journal on Numerical Analysis. Series B (to appear).

[6] E.R. Hansen, "On Solving Systems of Equations Using Interval Arithmetic."
Mathematics of Computation (to appear).

[7j R.E. Moore, Interval Analysis. Prentice-Hall, Inc. 1966.

[8] A. Reiter, "Interval Arithmetic Package: INTERVAL". MRC Library
Program Ifl, Mathematics Research Center, University of Wisconsin.

[9] A. Reiter, "Automatic Generation of Taylor Coefficients: TAYLOR".
MRC Library Program //3, Mathematics Research Center, University of
Wisconsin.

98

I
HOMEOSTATIC ORGANIZATIONS FOR ADAPTIVE

PARALLEL PROCESSING SYSTEMS

Robert M. Dunn
U. S. Army Electronics Command

Fort Monmouth, New Jersey

An effective Army is not possible without the effective performance
of tactical communications and information processing functions. An
intriguing possible realization for the future is one which considers an
integrated system providing service for both the communications and
information processing functions. Within the realm of such a possibility,
one may visualize a utility-like availability to these services for any
qualified and authorized user.

At least three distinct approaches to such a military system are
apparent. The first approach would provide each tactical element with
a separate facility for the integrated services. The second approach
would be to have many tactical elements time share a central facility.
And the third approach would be to provide an Army-wide, common-user
network for the integrated services. This network would be designed to
tolerate losses of parts of itself without serious degradation of service
from the remaining balance.

From a technological point of view, the separate facility approach is
clearly the most near term and expedient. However, in the long term, this
approach suffers from two weaknesses. First, either each facility is tailored
to each tactical element or a single type of overly general, excessively
capable facility is designed for all needs. Neither alternative is very
desirable. The second weakness is that the set of separate facilities must
be embedded in a superfacility to provide the basis for interchange of infor-
mation between functionally distinct, but organizationally unified tactical
elements.

The centralized, time-sharing approach implies minimal equipment
costs and simplified logistics. This approach also provides ample oppor-
tunity for the just cited information interchange. However, this centralized
approach guarantees chaos, not to mention severe losses and possible defeat,
in the event of the destruction of such a facility. The mere hint of its
existence would assure that such a facility became a prime target.

The merits and demerits of the network approach are not as readily
compared and balanced against each other. Technologically, the network
approach is the least certain. Economically, it is possibly as expensive
or more expensive than the most costly already considered. Technological

99

turns will establish the degree of the logistics problems it presents, and
so on. But, all of the real or anticipated uncertainties or drawbacks are
potentially balanced or surpassed by the potential advantages of this
approach. It could increase operational flexibility. It could enhance
tactical survivability. The quality of service would be greatly improved.
Such an approach could even foster a design that permits dynamic system
growth and/or adaptation to changing requirements and/or applications
and/or environments.

However, a great deal of knowledge is not available on network
processor systems. This scarcity is the cause of our uncertainty about
the network approach to the integrated system. Therefore, the objective
of this discussion is to enlarge our generalized understanding of a network
which is primarily composed of digital processors, information storage
sub-systems, and other special or limited purpose sub-systems. For
example, analog processor, hybid processors, communications equip-
ments, weapons systems, etc. This integrated tactical utility is considered
to be geographically dispersed and offers the following features:

- Each subscriber approaches the system, uniformly, as a
common-user, whether it be for communications or information
processing services.

- Automatic control of the system is operationally distributed
across the nodes of the network.

- The system automatically determines which aspects of
itself are necessary to satisfy each user's service request by
analyzing each service request. The system then automatically
allocates and interconnects the necessary resources if, and
from wherever, they are available within the network.

- Multiple users may simultaneously access the system
without incurring mutual interferrence to the limit of the
systems' capacity.

- Lastly, arbitrary subsets of the users of the system may
cooperate via the system, using it as their means of inter-
connection and basis for cooperation.

The most important implication of these features is the set of items
that must be considered as separately allocatable resources within the
system. Such usual things as computer programs, storage capacity,
information, communications, sensors, and processors are within this
set. But, atypically, this set includes the control function or even other
users.'

100

j

m^mmm^mm^mjm

Our formulation of the system relies on two assumptions. The first
is that for any system of the type under consideration, there exists a
positive integer N such that the system is said to be an Nth level organiza-
tion. This implies that there are N hierarchical levels of structure
where lower level functional elements are combined to form higher level
functional elements. These combinations may either be permanent or
temporary for some transient functional purpose.

The second assumption is that every output of every functional element
is an input to some other functional element. Therefore, the inputs and
the outputs are members of the same set of symbols.

In addition to these assumptions, there are a number of constraints
upon the formulation of the system.

First, the behavior of the system must be able to be characterized
such that all functional elements of a given type have identical physical
realizations. The interests of economics and logistics are the motivation.

Second, the control function must imply neither a centralized organiza-
tion, nor an omniscient attitude towards the system's status nor a large
amount of status information or transmission thereof. Otherwise, the
survivability objective would be immediately obviated. Next, the control
function must allow for a non-deterministic allocation of resources. When
resources are probablistically allocated as the result of a search, the
degree of omniscience and the amount of status information necessary to
the control function may be drastically diminished.

Another constraint upon the formulation is that the notion of a control
function must be limited to explicit control only of a node over itself. Each
node of the system must neither require direction from nor be required to
give direction to other nodes in the system. Implicitly, nodes may affect
the behavior of each other by generating undirected service requests.
Enhanced survival is the principal motivation for vhis constraint.

The final restruction is of a slightly different type. System effective-
ness requires that there is a careful delineation of the operational and
information environments along with the actual functional sequences to be
performed. System efficiency requires that these delineators not be
overly specific. The implication here is that such systems as we are
discussing ought not to be programmed in the usual sense. That is, the
development of a step-by-step sequence of directions is not the role of the
user. The user, instead, specifies two things. On the one hand he declares
the name or sequence of names of the function or functions to be performed.
And on the other , he denotes the environmental and data references

101

germaine to these functions. The user then accepts whatever imple- •
mentation is open to the system which will both satisfy these specifications
and adhere to whatever priorities or time requirements that may be in
effect. This ^functional programming" approach is feasible because of
the limited category of functional classes to which the military user is
usually constrained. Therefore, although the digital processors within
the system may be capable of emulating a Universal Turing machine,
their actual pragmatic use will be limited to a well-defined set of inter-
pretations. For example, they may be microprogrammed in some very
gross sense.

Towards stating the model, consider, now, that an arbitrary abstract
entity known as an organization has two major components: the structure
and the behavior. Also consider that control is another abstraction inter-
woven into the fabric of the organization. The purpose of control is to
assure that the behavior is achieved within the confines of the structure
according to conditions imposed by the environment in which the organiza-
tion exists. Finally, consider that control, structure, and behavior are
further related in that the range of possible choices for any one of them is
severely constrained by the previously chosen ranges for the other two.
In fact, even after determining these three sets of possibilities, it will
usually be the case that just a few of the possible combinations will be
reasonable to consider according to various criteria.

If the term "system" is now considered to be the operational equiva-
lent of "organization" then the set of primitive characteristics identifies
the range of possible structures as that which also includes conventional
telecommunications networks. More precisely, the set of structures are
those partially describable as three-dimensional, coordinate arrays.
These arrays are characterized by two properties. First, elements of
the network need not exist at every coordinate intersection of the array.
Second, interconnections only exist between elements of the network
according to some appropriate functional, temporal, topological or
metric definition of "nearness", i.e. , those which are close together in
some well-defined sense.

In turn, the set of possible behaviors is that which also includes the
performance of arbitrary communications and information processing
functions on a time-shared basis. A more precise statement would be
that the set of behaviors are those partially describable as arbitrary
sequences of any of transmission/reception, modulation/demodulation,
multiplexing/demultiplexing, switching, data manipulation or computation
functions. For any sequence or element of a sequence two properties hold.
First, the system may not be continuously active in the response to that
sequence or one of its elements. And second, for any functional module

102

of the system and any two consecutive, even contiguous, periods of
activity of that module, the functional module needs not be active in
response to the same sequence, or element thereof, in its successively
active periods.

Finally, the set of possible controls is that which also includes the
ability of local sections of the network to be self-managing. The
definition of "local" is dynamically determined, in time, according to
the magnitude of the response required by arbitrary service request.
Again towards precision, the set of controls are those partially describa-
ble as mappings from the cross product set of the set of stimulators or
inputs with the set of functional elements onto the set of sub-structures
of the organization. Each of these sets of structure, behaviors, and
controls is very comprehensive.

Via these notions of "organization, " "structure, " "behavior, " and
"control, " there exists a precise context in which to formulate the model
which hopefully will exhibit an ability to select some optimal combination
of members of the three sets. In so doing, the model must allow for a
functionally modular system which degrades gracefully and which can
dynamically alter its own active internal organization. The model must,
for the sake of generality, also allow for a homeogeneous system as
regards process, structure, and behavior. By this we mean that the
abstract characterizations of either gross purpose, gross structure, or
gross behavior of any functional element at any Kth level of the system
is isomorphic to the corresponding abstractions for arbitrary functional
elements at the same or different levels of the system.

We now make the following definitions:

Definition 1. Functional Element - an instance of a separately allocatable
system.

Definition 2. Change Requirement - an input to some functional element
of the system.

Definition 3. Configuration - a set of interconnected functional elements
and a description of that interconnection.

Definition 4. Transformation Rule - an operator on the set of configura-
tions.

Definition 5. Response - a change requirement generated by the activity
of a functional element.

103

We now let

th S = an n level organization;

cij = the i type change requirement;

M J = A functional element at level K of the system of type
k

A. . j ranges over the set of element types which are

possible at level K;

Z^ = a type of configuration where the set of configurations
is given by the set of graphs whose members are models
for interconnection schema within the system;

F = a transformation rule induced by an i type change
1 requirement;

F = the control function;

H = the response function.

Any system may then be defined as an ordered sextuple.

S = (A, C. G, D, F, H}
n

where A = {a , o , . . . , a } . The set of types of change requirements;

C = {S ,. Z 2 } the set of types of configurations;

G = {r ,r F } the set of types of transformation
a a a
12 p

rules corresponding to the set of types of change requirements;

D = {A , A , ,.. , A A } the set of sets of possible
element types at each level of the system; A w implies that
the system may become a more complex system up to W levels
deep.

F; {AxD} ► {GxC} the control function;

H: (F . M j)
a. r

i

(M „ , a) the response function where
* r+P o' r

1 < ß < 1 and is always an integer or zero.

10 A

It is seen that the control function is a mapping from the set of
order pairs of change requirement types and element types into the set
of order pairs of transformation rules and configuration types. It is
also seen that the response function is the result of the application of a
change requirement induced transformation rule to a functional element;
more strictly speaking to a configuration of that functional element. The
result is some new functional element and a generated change require-
ment. Here, we can interpret (3 = O to mean that the new functional
element is either the same as the old one or, at most, a reconfiguration
of the components of the old functional element. Similarily, we may
interpret ß = 1 to mean that the old functional element has been combined
into a more complex element. Finally, we may interpret p= -1 to mean
that the new functional element is the result of some decomposition of the
old functional element. In addition, the following is always true. If M
is a functional element at the K level and is of type A; then we may
say that

Ak k-1 i
M, J = S ^ M.

k i=oh 1

This states that, in general, each functional element is an interconnection
of lover level functional elements arranged in one of the possible configura-
tions. In particular, this is true of the system as a whole.

s =
n-1
2 „ M^

n 1=0* i

Finally, we note that the model is independent of concern for actual
levels of system organization or echelons of users. We also note that the
nature of the functional elements or their manners of implementation did
not enter into the model. Therefore, in systems such as this we expect
to be able to dynamically juggle arrangements, relationships, or inter-
connections between functional elements as diverse as trunk group frames
in a time division multiplex system, the multiplexors themselves, operat-
ing procedures, or even entire nodes. At the same time, the forms of
realization of these functional elements may be as varied as an informa-
tion stream, a message, wired logic, stored logic, or even stored program.

In practical terms, a network such as depicted in Figure 1 may range
over many hundreds of square miles. The movement of users and equip-
ment within this area appears to be best served by the class of systems
discussed herein. Such networks would necessarily employ random
search techniques for locating individual users within its domain.

105

r
As a consequence, the typical node in such a network may itself

be a network of the same class as depicted in Figure 2. Again random
search techniques would be utilized for routing traffic within the node.
In turn, possible depictions of typical processor and memory modules
appear in Figure 3 and 4 respectively. Further details on such practical
considerations may be found in the brief bibliography at the end of the
paper.

In summary, we have been talking about a network of processors
which controls its own active interconnection scheme, dynamically
regulates the distribution of load across itself in order to achieve an
equilibrium state, and does all of this without a central scheduler or
controller!

Borrowing from the physiologist, we shall label the drive towards
an equilibrium state, the "homeostatic" aspect of our system and claim
that its realization is a function of the organization which characterizes
the system. The alteration of temporal and functional relationships
between nodes in the network in response to new functions or service
requests we take as an ability to alter behavior and so label the system
"adaptive. " The parallelism in the system is readily apparent. There-
fore, in general, we have been talking about homeostatic organizations
for adaptive parallel processing systems.

BIBLIOGRAPHY

1. Hambrock, H. Svaia, G. G. and Prince, L. J. , "Saturation Signalling -
Toward Optimum Alternate Routing", 9th National Communication
Symposium, Utica, N. Y. , October 1963.

2. Cave, W. C. and Dunn, R. M. , "Saturation Processing: An Optimized
Approach to a Modular Computing System", Tech. Report 2636,
USAECOM, Fort Monmouth, New Jersey, November 1965.

3. Dunn, R. M. , "Modular Organization for Nodes in an Adaptive
Homeostatic Process - Oriented System", Tech. Report 2722, USAECOM,
Fort Monmouth, N. J. , June 1966.

4. Dunn, R. M. , "Extended Time-Sharing Systems", Tech. Report 2806,
USAECOM, Fort Monmouth, N. J. , January 1967.

106

!

.

ik m. M
11

im si Iii'ics

I ' z O

^ - ^
•3 < 3
< 5 V)

o o o
»/) trt to

> > >
n c. Q

; l
; 2 v/i

Q O Q

X

X
X

n _ uJ z

J 5 h <
UJ < ^
cc S < -

(/I to
< > a a
ui S or a:
cr a: c o
< < o u
till

^ < u o

H

Q
Z

UJ

»-
* <
Z 2

^ -■ UJ

- i^
< 2 >
UJ 5 5
a: O^
< o <

i i

1<
i <

FIGURE I THEORETICAL FIELD ARMY NETWORK

107

R

R.-

(M
R

R.

2 1 2

FIGURE 2. Typical Node for about 300 Channels

108

R.

-R

R.

^—mm

CB 1

Ö
ADJACENT
PM
CONNECTION

Processing Module Boundary

CM
PROCESSOR

COMPARATOR DES 1 DES 2

SWR

CT 1 CT 2 CT 3 CT h CT 5 CT 6 CT T PT

CB 2 CB 3

FIFO

CB I» CB 5

Ö
MM
CONNECTION

FIFO

FRAMER

KG

CB 6

FIFO

KG

CB 7

Ö
ADJACENT
PM
CONNECTION

FIFO

FRAMER

KG

MODEM

RCVR

"T

KG

MODEM

XMTR RCVR XMTR

] f
FIGURE 3: Typical Processor Module & Related Modules

109

.. ^.-.....^ mmmm^mmmm

BORAM

COMPARATOR

11 <

DES I DES 2

SWR

CT I CT2 CT 3 CT4 CT9 CT6 CT7 MT

CB I CB 2 CB3 CB4 CB5 CB6 CB7

Figure 4 TYPICAL MEMORY MODULE

110

mm

LOGICAL STRUCTURE OF AN AUTOMATICALLY SEQUENCED
EXPLOSIVE CONTROL DEVICE

Sylvan H. Eisman
Pitman-Dunn Research Laboratories

U. S. Army Frankford Arsenal

ABSTRACT. The question to be considered here concerns the
interconnection of a set of one-shot devices which are to be activated in
one of several predetermined sequences. Selection of the first device
is made externally. In addition to performing its own action, each device
initiates a pulse which travels along an explosive cord or MDC line to
activate the next device in the sequence or to break another linking explo-
sive cord. The essence of the problem is to define a procedure for
interconnecting all required sequences so that one and only one will
operate correctly when properly initiated. This is done by setting up a
connection matrix representing all the sequences and then, by various
operations on it, determining which links are to be broken and by what
devices. This gives a solution but not an optimal one. Suggestions are
made for improving individual solutions. An example is carried through
the entire discussion and a computer program which mechanizes the
procedure is exhibited as an appendix.

INTRODUCTION. The question to be considered here concerns the
interconnection of a set of one-shot devices which are to be activated in
one of several predetermined sequences. Selection of the first device is
made externally. In addition to performing its own action, each device
initiates a pulse which travels along an explosive cord or MDC line to
activate the next device in the sequence or to break another linking explo-
sive cord. The essence of the problem is to define a procedure for intercon-
necting all required sequences so that one and only one will operate
correctly when properly initiated. *

STATEMENT AND DISCUSSION OF PROBLEM. Given a set of n
, , d , it is required to interconnect them by explosive

cords so that various preselected sequences of these devices will be
devices, d., d_

actuated. Explosive cords for all sequences must be present at the initial
installation of the devices and the final choice of sequence is made at the
time of operation by selecting the starting point for the required chain of
events.

^'Properties of MDC lines, methods for construction of the devices;
possible application and other questions concerned with the physical
realization of the system will be discussed elsewhere [l] .

ill

Example: Given devices a, b, c, d and e, it is required
to be able to actuate them in any one of the four sequences
abcde, cbade, bdac or d, upon external command. The
first sequence will require MDC lines to carry a pulse
from a to b, * from b to c, etc; the third will need MDC
lines from b to d, from d to a, and a to c. For the last
sequence, only d is to operate and no other MDC lines
are needed (or permitted).

e \

Figure 1

Figures 1A and IB diagram the first and third sequences
of the example. Figure 1C combines the connections for
the two cases.

However, combining all the sequences does away with the definition
of a unique successor to each device and special precautions must be
taken to eliminate unwanted paths in the explosive chain. This can be done
by destroying (negating) certain pathways by means of other exploding cords.

Example: In Figure 1C, if device a is chosen as the start-
ing point, implying ::::;'sequence abcde, the explosive pulse
will travel to c as well as to b and interfere with proper
operation of the system. To assure correct sequencing,
MDC lines (a, c) and (b, d) would have to be cut. MDC
line (d, a) can remain intact since element a has already
functioned by the time element d is activated.

s;<In this discussion the MDC lines or explosive cords will be treated as
being unidirectional. The bidirectional case will be considered in a later
section.

♦♦It should be noted that each sequence must start with a different element.
For if two started with the same element, abed and acd, for example, some
external action must take place to indicate which of the two has been selected.
This external event is then actually part of the system and should be
labeled as the first device.

112

1 ■' ■■■■■ i""W^^^TWiW—P"^ "^

Example: Logically, it is relatively simple to cut (b, d)
in the first case by having a initiate the cutting action
(by means of another exploding cord, for example). It
is not so simple to remove (a, c) because the pulse to c
may get thru before the pulse to destroy the connection
line does since both emanate from a. To obviate this,
we make the

Assumption: It is possible to construct the equipment so that
MDC destroyers (negators) act before all other MDC lines emanating
from the same device.

Even though several devices might be available for breaking a MDC
line, the strategy here will be to cut it as early as possible in the sequence.
That is, activation of the first device will cut away all MDC lines which
will interfere with the operation of its particular sequence.

It may happen that a negator which is essential to correct operation
of one sequence interfers with proper operation of another. The negator
must itself be broken by another explosive cord (second negation) during
operation of the other sequence.

Example; Figure 2A shows the diagram of 1C with the
addition of the two negators to permit sequence abode to
function properly. For sequence bdac, line (b, d) will
function properly (Line (b,c) is to be ignored for the
purpose of this particular explanation) since the negator
from a * has not yet been activitated. However, line (a,c)
will be broken by the negator from a before it performs
its function since, by the assumption, the pulse travels
faster along a negator than along a connecting line. That
negator must be

b

i

Figure 2

*The negators from a to break (a,c) and (b,d) are shown as crosses on the
lines. The point of origin of a negator (and, later, second negator) is shown
close to the cutting point to avoid excessive lines in the diagram.

■

113

HSMPP«M^BRiPm^MNBaaBmBS*vn

broken before it can function in sequence bdac. This
can be done, as shown in Figure 2B, by a second
negation from either b or d and the first element is
chosen to simplify the procedure.

Will negations of an order higher than the second be required? That
is, will there be occasions where it is necessary to break a second
negation? The answer is no, as the following informal argument shows.
Doing away with a second negation implies that the negator which it breaks
has become necessary in some third sequence or that its original purpose
has been interfered with. The latter case is impossible since negators
are chosen to act from the first element in a sequence and the other prob-
lem can be bypassed by having a separate negator for each different
sequence requiring it. If a different strategy were chosen for the origin
of negators it is quite possible that a higher order negator would be needed.

SOLUTION. Let n be the number of devices which have been denoted
as dq, 1 < q < n, and which are to be arranged into m < n operating
sequences. To simplify the notation we shall drop the symbol d and use
the index q as the label. Thus each operative sequence is represented
as a sequence of integers. We now form an m x n sequence matrix, S,
as follows: each of the m sequences of integers will form a row of S,
where the order of the rows is arbitrary; if any row has less than n integers,
sufficient O's are added on the right to bring the number up to n.

Example: given six devices labelled 1, 2, ... 6, with the
following required sequences: 316524, 4312, 54321,
654 321. 12 34 56, the following 5X6 sequence matrix
can be formed:

S =

Associated with each S matrix is an n x n connection matrix C whose
entries c t are 1 if for some sequence there is an MDC line from device
r to device t and 0 otherwise. These lines will also be referred to as major
connectors to differentiate them from first and second negators.

114

;

Example: associated with S above is the 6x6 matrix:

C =

Each sequence will be identified by its first element. For any
sequence k of length p, the rows and columns of C can be permuted
until the first p rows and columns are in the same order as in the
sequence. Label this permuted matrix C. . The last n-p rows will
not be needed but the last n-p columns will, although their order is
irrelevant. Note that the row labels represent the required devices
and that the column labels represent all the existing devices

Example:

3 16 5 2 4

5

4

3

2

1

3 1 1 1

1 1 1

6 1

5 1 1 1

2 1 1 1

4 1 1

5 4 3 2 1 6

1 1 1

1 1

1 1 1

1 1

1

1

1

The following observations can be made on the C. . The first p-1
elements on the first superdiagonal represent the major connectors
required for the proper functioning of sequence k. There are no I's on
the main diagonal since no device is connected to itself.

For each required device, the corresponding row contains a 1 in a
column where ever there is a connection from it to another device. The I's
below the main diagonal represent connections to device already activated
and will be of no interest here. Those above the first superdiagonal
represent connections to devices which can still be activated but which
must be prevented from operating at this time.

115

Finally, if p < n, there must be no connection remaining from device p
to any other still active device. This leads to the formulation of

Rule 1: A sufficient set of negations for each sequence k
is determined by all the I's above the first superdiagonal
in Cjc as well as the pth 1 on that diagonal if it exists. In
each case, the source of the negator is device k.

A more formal proof that this rule produces the desired negations will
be found in Appendix I.

It will be convenient to record the negations in the Ck by encircling
the I's identified in Rule 1.

Example:

3 16 5 2 4

3

1

6

5

2

®0
• 0

1

1 1 ©

1 1

4 1 1 1

c.

4 3 12 5 6

4

3

1

2

®

1 1 1

5

4

3

2

1

5 4 3 2 1 6

I ® ®
1 1

1 1 ©
1 1 1

1 ®

6 5 4 3 2 1

6 1

5 i i ©
4 1 1

3 i i ©
2 1 1 1

1 1 1

116

12 3 4 5 6

1

2

3

©

1 1 1

4 1 1

5 1 1 1

6 1

The five permutations of C of the example are shown
and the negators for each sequence have been encircled
in their respective matrices. In C5 line (1,6) requires
negations (even though on the first superdiagonal) to
prevent 6 from being activated when it is not required
in the sequence. Similarly, if an MDC line had existed
from 2 to 5 (and/jr 6), C4 would have shown the need
for its negation. For each sequence k, the first device
will be taken as the source for the negators.

Once the negations are determined for all the sequences, they can be
combined and exhibited in the matrix C by encircling the I's involved and
labeling each circle with the index of the devices from which the negators
must come. Call the matrix with this extra labeling C

Example;

12 3 4 5 6 IV
0" ®

2 1 1 ©''

3 ® ©' ®
4 1 ©

6 1

117

Line (1,6) is shown to need negations in sequences 1, 4,
and 5 by the matrices Cj, C4 and C5 respectively. There-
fore, since the negation will come from the first device in
each sequence the device names 1, 4 and 5 are appended as
shown.

The information on negators can also be condensed into tabular form
as is actually done, but in slightly different format, in the computei
procedure.

Example:

MDC LINE NEGATOR FROM DEVICE

(1.2) 3

(1.6) 1.4.5

(2.4) 1

(3.1) 5,6

(3.2) 3,4

(3,4) 3

(4.5) 4

(5.2) 5.6

(5.4) 3

(5.6) 5

C'. which now incorporated information on negators as well as major
connectors, can be used to determine a set of second negators. This
matrix can be permuted, as was C to form C'^ with the first p-1 elements
in the first superdiagonal indicating not only the major connectors required
for sequence k but also those negators capable of interfering with its
proper operation.

Example:

118

•»•—•vw ■w^ff^

•

3

1

6

5

2

4

1 6 5 2 4

(LT
c

1 1

©'
1

1

1 0 1

(0-'

Since only negators involving required major connectors
for sequence k are of interest here, the others are not
shown.

Let Nw (j denote the negator of major connector w from device d. If
d appears in sequence k after the origin of w, the negator will not inter-
fere with the proper functioning of the system. If d is the origin of w or
appears before it in sequence k, then the negator will cut the required
major connector before it can operate. This leads to

Rule II: To find a sufficient set of second negations for each
sequence k, consider C'j^. Provide second negations for all
those negators Nw ^ which affect the first p-1 elements on the
first superdiagonal and for which the row labeled d does not
follow tha row in which the negator in question appears. In
each case, the origin of the second negator is device k.

A more formal proof that this rule actually provides the necessary control
over the negations is also contained in Appendix I.

Example: Consider C'-j. w = (3,1) is negated by both devices
5 and 6. Since columns labeled 5 and 6 follow column 3, no
second negation is required. On the other hand w=(5,2)
required second negations for the negators from 5 and 6 since
neither of these two columns follows column 2. The second
negation, discovered in C'3, comes from device 3, For
w = (l, 6) a second negation is required for the negator from
1 while none is required for those from 4 and 5.

1.19 I

"*"■■*—

1

The following list is an extension of the previous
one to show second negations. They are in parentheses
behind the negators they affect.

MDC LINES NEGATORS AND SECOND NEGi

(1.2) 3(4)

(1.6) 1(3). 4, 5

(2.4) 1(3)

(3.1) 5.6

(3.2) 3(5,6). 4(5.6)

(3.4) 3(1)

(4.5) 4(1)

(5.2) 5(3). 6(3)

(5.4) 3

(5.6) 5(1)

SIMPLIFICATIONS. It is possible for redundancies to exist
the negators and second negators. That is, since negating devices have
been chosen as the first in the sequence, it is conceivable that another
device after the first is already acting satisfactorily as a negator. In
this case, the number of negators and/or second negators is reducible.

Example: Consider the negators from devices 5 and 6 for
line (3, 1). In sequence 6, device 5 precedes device 3.
Therefore, 5 can provide the negation and the one from 6
can be eliminated. The same idea justifies the removal
of two second negations in (3,2), the ones from device 6 to
the negators from 3 and 4. The connections to the affected
MDC lines now appear as;

(3.1)

(3,2)

5

3(5) 4(5)

Another possibility for reducing the number of negating lines is to
delay the action until the last possible moment. That is, if line (a, b) is
negated by a, c, d, ... i, device a might serve in all cases and c, d. . . . i
could be eliminated since, by the assumption on page 2, negating pulses
always travel faster than pulses along regular MDC lines. The procedure
will not always VWJ rk if the negator from i has a second negation on it.

120

■ 'II' J Ill ■"^""""»■■"•B mmmmm

•

Example: Consider the negators from devices 1, 4 and 5
to line (l, 6) and ignore for the moment, the second
negator from 3 to 1. Then device 1 is sufficient to
negate (1,6) in the sequences beginning with 4 and 5 and
those two negators would be eliminated. However, as
is actually the case, the second negation from 3 in both
sequences 4 and 5 would reach the negating line from 1
before 1 itself is activated. This would prevent proper
negation of (1, 6) in these two sequences.

Example; MDC line (3,2) is now negated by devices 3
and 4. In this case, the negation from 4 can be eliminated
since device 5, which causes a second negation of 3 does
not occur (at all) in sequence 4 intime to prevent proper
negation.

These two simplification rules can be incorporated in the procedure
to reduce the number of MDC lines.

Example: The present example can be simplified to provide
a smaller number of connections.

MDC LINES NEGATORS AND SECOND NEGATORS

(1.2) 3(4)

(1.6) 1(3), 4, 5

(2.4) 1(3)

(3,1) 5

(3.2) 3(5)

(3.4) 3(1)

(4.5) 4(1)

(5.2) 5(3)

(5.4) 3

(5.6) 5(1)

BIDIRECTIONAL CASE In the Bidirectional case, a pulse may
travel in either direction along an MDC line. Therefore, it sequence
d^ d2 ... dn_i dn is construi
exist along the path d d e ^ n n-1

:ted with bidirectional lines, connections also
. . . d d . These connections must be shown i

in the connectionmatrix C and, in practice this can be accomplished
quite simply by deriving C from S as before and forming a new C equal

121

mma ■Ml ^

to C VJ C ,♦ Since the procedures in Rules I and II involve only operations
on C no further changes have to be made to solve the problem for this case.

Example: Using the same sequences as in the previous
example, we have

C =

0 1 0 0 0 1 0 1 1 0 0 0

1 0 1 1 0 0 1 0 1 0 1 0

1 I 0 1 0 0 c T_0 1 0 1 0 0

0 0 I 0 1 0 0 1 1 0 1 0

0 1 0 1 0 1 0 0 0 I 0 1

0 0 0 0 1 0

0

1

1

1

0

1

1

1

0

0

1

1

0

1

0

1

1

0

0

0 0 0 1 0

T cue = 0 1 1 0 1 0

0 1 0 1 0 1

1 0 0 0 1 0

The two rules can now be applied to this new connection
matrix to give a list of negators and second negators.

MDC LINES NEGATORS AND SECOND NEGATORS

(1.2) 3(4, 5, 6)

(1.3) 1, 5. 6

(1.6) 1(3), 4. 5. 6

(2.3) 3(5,6), 4(5,6)

(2,4) 1(3), 4(3), 5(3), 6(3)

(2,5) 1(3), 4, 5(3), 6(3)

(3,4) 3(1)

(4.5) 3(1), 4(1)

(5,6) 5(1)

"'"C^" is the transpose of C. CUC means the new matrix has a 1 in position
i, j if C and/or C^ have a 1 in position i, J and 0 elsewhere.

122

•

Several redundancies can be removed as in the unidirectional case.
More care must be taken, however, since a line indicated for example,
as (2,4) now means a connection from 4 to 2 as well as one from 2 to 4.

Example: The above negators and second negators can
be reduced to the following:

MDC LINES

(1.2)

(1,3)

(1,6)

(2.3)

(2.5)

(3,4)

(4.5)

(5,6)

NEGATORS AND SECOND NEGATORS

3(4)

1,5

3,(5)

1(3). 4

1(3), 4, 5(3)

3(1)

3(1), 4(1)

5(1)

VALIDATION PROCEDURE. The above solution guarantees proper
operation of the sequences barring, of course, blunders in the application
of the rules. A FORTRAN program, supposedly doing away with this
latter possibility, is used to generate the first and second negators and
its listing appears in Appendix II.

The introduction of simplification procedures which have been neither
formalized nor mechanized raises the possibility of introducing logical
errors as well as blunders into the solution. It is therefore advisable to
check that these changes still produce the required sequences. This can
be done by considering the revised list of major connectors and first and
second negators and following the sequence of actions after the required
initial devices are activated. The procedure is straightforward: for each
device, activate the second negators it controls, then the still active first
negators and then the still active major connectors. If more than one
major connector is left from the activated device, there is an error. If
only one major connector is left, the next element in the sequence is
identified, and the procedure repeated for it. If no connectors are left,
the sequence is ended. A FORTRAN program (also appearing in Appendix
11) has been written to mechanize this procedure and print out the valid
sequences. Ambiguities which result in improper functioning are also
indicated.

123

SUMMARY. A procedure has been demonstrated for generating a
set of negators and second negators which is sufficient for proper
functioning of the required sequences. It does not produce an optimal
solution in the sense of minimizing the total number of connections
although, in individual cases, redundancies can be eliminated. Whether
or not an effective general procedure for minimizing the connections
(short of enumerating all possible combinations and selecting the smallest)
exists is unknown at this time.

124

APPENDIX I

The following shows that Rule I produces a sufficient set of negators.

PROOF:

We have to show that the negators given by the rule prevent operation
of any device out of sequence.

Consider the required sequence k of length p: le , k , . . . k . C has
been derived from C by means of the permutation

pk = 1 2

1 < p< n

where n is the number of devices. There is a connection from device
k. to k. (1 < i, j < n) if and only if c (i, j) = 1 in C, .

1 J K K

The rule calls for negation of all major connectors represented by
those c (i, j) for which j >i-i-1 (1 < i < p < n-2) as well as those for which
i = p and j = i+1. This is to be done by negators originating from device
k = k^. Since negators act before major connectors emanating from the
same device the connectors described above are effectively non-existent
for this sequence and we may replace their representations c (i,j) by 0,
forming the new matrix C" .

Now consider any required device k^ (l < i0 < n) and remember that
it can initiate another device j if and only if c"^ (i0, j) = 1.

If j < i , k, has functioned before k: and the presence of a major J o j ^o r J

connector is of no consequence.

The case j = i0 does not occur since no device is ever connected to
itself.

Since for all j>i +1 C'^^Q.J) has been set to 0 (negated) by the rule,

none of these k: can be activated by k: .
J ' 1o

We are therefore concerned only with j = i +1, the first super diagonal.

From the construction of C,, and C", , c'l (i , i +1) = 1 for 1 < i < p-1.
K RKOO — O —

125

wmmm

If p=n, only the first n-1 major connectors of the sequence remain
and the sequence functions properly.

If p<nI c", (i , i +1) = 0 for i = p since the rule calls for negation in
k o o o

this case. Therefore, there is no connection from k to any other device
and the sequence terminates as it should.

The following shows that Rule II provides second negators which
prevent unwanted first negators from interfering with the required major
connectors. It also demonstrates that the required sequence functions
properly.

PROOF;

For this rule, we must show:

A. that no extraneous device functions out of sequence since the
second negators might conceivably destroy first negators given by Rule I.

B. that the second negators do, in fact, prevent first negators from
interfering with the required major connectors.

1. For any required sequence k, consider C'j^ which shows
all the system negators found by repeated application of
Rule I.

2. All first negations that are required in sequence k are
initiated by device k (the first element in the sequence),
and these are all off the first superdiagonal of C', .

3. By Rule II, second negators from device k affect only
the first p-1 elements which lie on the first superdiagonal
ofC'k.

4. When sequence k is called for all first and second negators
from the initial device, k, function before anything else.
However, by (2) and (3) it can be seen that none of the
first negators used in the sequence are destroyed by second
negators from k. By a verbatim repetition of the proof
used for Rule I, it is now seen that no extraneous device
functions out of sequence.

5. The first p-1 elements on the first superdiagonal of C
represent the major connectors which must function for
sequence k to operate properly. Consider any one of these

126

mmm^^^mmm
^

elements, say c' (i , i +1), which has negators on it.

Let d be the origin of one of its negators. If d follows
Iq in the sequence, the major connector functions
properly before the negator is initiated. If d precedes
k^ in the sequence or is k^ , the second negator from
device k (provided by Rule El) eliminates the first
negator before it can destroy the required major
connector.

6. Since the quantities d, i and k in the abo e were all

arbitrary, the argument holds for all the sequences.

127

APPENDIX II

The Program for the mechanization of the solution was written in
FORTRAN II and run on a UNIVAC SS - 90 card system. Several comments
concerning the procedures and conventions are necessary.

1. The FORTRAN listing can serve as its own flow chart. It
contains several main, non-overlapping parts (the prefix N
is used to identify integer arrays):

a. Set up sequence matrix NS
b. Set up connection matrix NC
c. Determine first negators
d. Determine second negators

2. It was found convenient to include all existing devices (not only the
required ones) in NS. The non required ones follow the sequence
and each identifier is preceded by a minus sign. Thus, the
sequence 4 3 1 2 of our example is actually entered as 4 312-5-6.
The order of the added devices is unimportant. This turned out
to be a convenient way to signal the routine that, even though the
sequence had ended, negators might still be required.

3. Rather than rearrange matrix NC to conform with each permuta-
tion, subscripted subscripts were used. That is, to select
elements of NC for testing, we have to look at individuals NC
(I, J) in a specified order. These orders are given by the rows
of NS which contain the required sequences. I and J are both
functions of the elements in NS; 1= NS (a , p) J = NS (y, 5) for
arbitrary a , ß , y, 6. Therefore, given a , ß , y, 6 , we can
find NC (I,J) as

NC(NS(a, ß) NS(y,6))

4. Information on each negator is stored in an array indexed by the
symbol NO. For each NO, as this array is being formed,
another 5-position sector is cleared for use in storing the origins
of at most 5 second negators. Should the number of negators
and associated second negators exceed the arbitrary numbers
of 50 and 5, respectively, one "DO" statement will have to be
changed in addition to the 'Dimension' statement.

5. Throughout the program, several array elements which are used
more than once have been renamed without subscripts. This was
done to speed up the processor at the cost of, what is hoped to
be, small decrease in readability.

128

"^•"■■■■■^■"■•■w

C FORTHAN PROGHAM a 5tti

C XPLOSIVC COMPUTER SCHLACK/E1SMAN

DIMENSION NS(2Ut20)lNC(20i2O)tNPEG

COMMON NS•NC »NoEG.NEND.M.NUM•NS£C

C SET UP SEQUEi^Ct MATRIX NS

C ONE SEQUENCE HLR CARD» EVERY U SPA

C NUMBERS STARTING 3i 7»ll»15tl9»

C 23»27iJlf35.39iFTC

REAU lOOiMtNflNO

C MftNO.SEOJENCESi NONO. OFVICES

C IND»! IP UNIDIREC. «2 IF BIDIREC

DO 1< IMltM

REAU 1UO» (NS(iiK)iK»li2U)

PRINT 101. (NS(IiK) »Kt(lt20)

1 CONTINUE

C CLEAR CONNECTlUN MATRIX

DO 19tj«l,N

DO 19« I«1»N

NC(IiJIMO

19 CONTINUE

100 FORMAT (2014)

101 FORMAT (5X«20IS)

C PRINT HEADINGS

PRINT 303f

PRINT 304.

PRINT 305.

C SET UP CONNECTION MATRIX NC

Nl*N-l

LdtÜO

(50).N£ NO(SO I.NI(50)t NUM(50)»NSEC(50•5)

CtS. REMEMBER LEADING ZERO FOR 0H1 DIGIT

129
f\ä.l

DO 2i ItfliM

DO 3i JMltNl

IF (NSdiJD) itttti

6 NC(NS(i;j)iNS<I«JinNi

IF <l-INO) 37.J.995

37 NC(NS(I«Jl)«NS(IijnRl

3 CONTINUE

2 CONTINUE

UETCRMINE FlKST NEGATIONS

NMt

DO 30« I«liM

iSAVEMNSdill

DEPENDING ON COLUMN H*l BEING 0

DO 31. J«l.Ni

JARJ

NJ»NS(i;j)

IF <NJ) 30.946.10

10 IF (NS|I.J+1)> 9.997.8

9 JAIIJ-1

8 DO 32. K«JA42IN

NNSMNSII.K)

IF (NNS) ttOli*

1 NNSI»-NN$

5 IF (NC(NJ.NNSI) 998.32.7

7 NBEG(NG»<(NJ

NENO<NG)«NNS

NI<NG>«ISAVE

NUM(NG)«1

DO 99. IJK*l.S

NSEC(NG.IJK)(tO

99 CONTINUE

NGKNG4-1

FOR EACH SEQUENCE

FOR EACH DEVICE

-

IF A OCVICE FOLLOWS

INSERT 1 INTO NC

UNI OR 61 DIRECTIONAL

ALSO IN XPOSE IF BIDIRECTIONAL

130

INITIALIZE NEGATOR COUNTER

FOR EACH SEQUENCE

FIRST ELEMENT OF SEQ I

FOR EACH LINE

CHECK IF ELEMENT NEG OR POS.

IF OTHEK END NEG.. EXTRA NEGATION

SET BESIN'G OF SEARCH BACK 1

LOOK FOK NEGATIONS ABOVE SUPERDIAGONAL

REVtRSE SIGN NON-RQRD ELEM.

IF 1. RcOUIRES NEGATION

BEGINNING NEGATED LINE

END NEGATED LINE

NEGATED BY DEVICE NUMBER

CLEAR StCOND NEGATOR VECTOR FOR

THIS NEGATOR

At

3^ CONTINUE

31 CONTINUE

30 CONTINUE

DETtRMINE SECOND NEGATIONS

ULONQ-1

00 I5i IWltM

00 I5t JMtNi

NBPDNSdiJ)

NEP»NS(ltJ*n

00 13« UfiiLL

IF (NBP-NBEG(L)) 96I12IQ6

96 IF tl-INQ) 97ti3i995

12 IF (NEPiNEND(L)) li.lUilS

97 IF (NBP-NENO(L)) I3i98.l3

98 IF (NEP-NBEG(L>) I3il4il3

14 00 21» KXliJ

IF (NKU-NSdiK)) 2liil2i2l

22 NSE.C(LiNUM(L) »»NSd.D

NUM(L)MNUM(L)>1

GO TO 13

21 CONTINUE

13 CONTINUE

15 CONTINUE

DO 5U0f IflliLL

PRINT 300i I .NBEGm.NENDd).

500 CONTINUE

300 FORMAT (5X»I5täXf2I5«5X.I5i5Xt5I5)

305 FORMAT d6Xi9HFR0M T0ieXi2HBYi 5X

304 FORMAT (32Xi3HNEG)

303 FORMAT 12/)

STOP

99d PAUSE 998

997 PAUSE 997

LIMIT NON NEGATORS SCANNtD

FOR EACH SEQUENCE

FOR EACH LINE

FOR EACH NEGATOR

CHECK BbGINNING

UNI- OR BI- DIRECTIONAL

CHECK END

CHECK CONNECTOR IN

OTHEK DIRECTION

FOR ALL ELEMENTS BEFORE

DOES NEGATING INDEX APPEAR

SAVt SECOND NEGATOR

NId)dNSECdtJ)<J01t5)

,lUHStCONO NEC'S./>

131
M-»

996 MUSE 996

995 PAUK 99S

me

132
**-*

f»fwf (»«»«««i**/

3
u
5
6
1

1
3

5
2

6
1
3
a
3

5
2
2
3
4

?
-5

1
2
5

1
2
3
u
5
6
7
8
9

10
11
12
13
1«
15

FROM TO

2

NEG
BY

3
3
3
3
a
a
4
5
5
I
5
6
6
1
1

SECOND NEä':>.

3 6 0 0 C
10 0 0 0
4 0 0 0 0
0 0 0 0 C
1 O 0 0 0
» « o e e
c n o o o
3 0 0 0 0
10 0 0 0
ooooo
0 0 0 0b
3 0 0 0 0
ooooo
3 0 0 0 0
i 0 0 0 0

OiJ.n^c*. I f^pit Cl^D 0

133
f\u. S

5
2
2
>
4

FROM TO
NEG

BY SECOND NES'S.

I
2
3
tt
S
6
7
8
»

10
U
12
13
1«
15
16
17
IB
19
20
21
22

5 6 0 0 0

1 0 0 0 0
4 9 6 0 0
1 0 0 0 0
0 0 0 0 0
1 0 0 0 0

5 6 0 0 0
0 0 0 0 0
0 ft 0 0 0
3 0 0 0 0
1 ft 0 0 0
i 0 0 0 0
0 0 0 0 0
0 ft 0 0 0
0 0 0 0 0
3 ft 0 0 0
3 0 0 0 0
0 0 0 0 0

0 0 0 0 0

3 0 0 0 0
3 0 0 0 0
3 0 0 0 0

B^r*c/-.c-H« / £~*<.~f>le (x^l>-2.J

134
ft! -<-

C USS FORTRAN II *** VERSION 9000 22 JAN 63

C COMPILED 7/28/67

C FORTRAN PROGRAM tt 509

C 4-26-67 SHE 1-8500

C XPLOSIVE COMPUTER- UNIDIRECTIONAL - VALIDATION PROCEDURE

C ACCEPTS MAJOR CONNECTORSi NEGATORSAND SECOND NtGATORS IN

C FORMAT OF OUTPUT F^OM SOLUTION PROGRAM (bUl)

C ALL MAJOR CONNECTORS PRESENTt WHETHER NEGATEO OR NOTi

C MUST 8E INCLUDED

C PROGRAM ACCEPTS DEVICE NO. AND PRODUCES EITHER

C It THE UNIQUE SEQUENCE OR

C 2t INDICATION OF AMBIGUITY

DIMENSION NBEG(50)(NEND(50)fNI(50) iNSEC(50f9)iiMS(20)

COMMON NBEGINENDINIINSECINS

B105HTOO L

B205HONG

C1M5HAMBIG

C205HUOUS

READ 900fNGM

00 1*I01«NGM

READ 901tNBEä(nfNEND(I)iNI(I)t(NSEC(I«J)*J*lt3)

1 CONTINUE

101 READ 900»K

A1»9H

A2»5H

135
/"»I 7

mmm

11

12

112

13

1U

15

16

NS(1)«K

DO 2tl*2t20

NS(I)«0

CONTINUE

DO 3»I»ltNGM

NBEG(l)ttABS(N8tG(in

Nni)«ABS(NI(I))

CONTINUE

DO 20»KK«2»20

NAUO

DO 14fI«liNQM

DO IJtJKliS

IF (NSECd'J)) 9l0(14ill

IF (NSEC(I*J)-K) I3tl2il3

IF (NKD) 14i910fH2

NKDM-NKI)

GO TO Itt

CONTINUE

CONTINUE

DO 16«INlfNGrt

IF (Nl(l)-K) 16tl5tl6

NBEGtDM-NBEvid)

CONTINUE

DO l9«I«ltNGrt

IF (NBEO(I)-K) 19il7»l9

136
AK fr

m^mmmm
^

17 NZONENDUJ

DO li7tL*liKK-l

IF JNZ-NS(L)) 117tl9»H7

117 CONTINUE

DO 317f imtNGh

IF (NBEGdU+K) 317I217I317

217 IF (NENO(in-Ni) 3i7il9»3l7

317 CONTINUE

16 IF (NA) 9lO*21Stll8

118 IF (NA-NZ) 24tl9t24

218 NA0NZ

19 CONTINUE

IF (NA) 9l0i3üt21

21 NS(KK)»NA

K»NA

20 CONTINUE

AlftBl

A20B2

SO TO 30

24 Al«Cl

A2MC2

30 PRINT 902tAl(A2i(NS(I),It»l»KK)

GO TO 101

900 FORMAT (14)

901 FORMAT <5X»8I5)

137
AT?

I

mi' ' —■■

i i

902 FORMAT (10Xf2A5*20U)

910 PAUSE 910

STOP •

END
YYYOYOYYYY
YYYOYOYYYY
YYYOYOYYYY
YYYOYOYYYY
YYYOYOYYYY

211224195Y
4004200954
7100010400
112225472Y
I2222637*Y

(HEADERS)
(HEADERS)
(HEADERS)
(HEADERS)
(HEADERS)

138
frtl*

REFERENCES

1. Schlack, A. F., Eisman, S. H., and Kowalick, J. F., "Explosive Control

Devices" - Frankford Arsenal Report, in preparation

Additional information on these devices may be obtained in:

1. "Investigation of Propellant Actuated Devices for Use in Emergency Crew

Escape Systems for Advanced Aerospace Vehicles," Phase III - Design Study,

by T. H. Bleikamp, E. R. Lake, and D. R. McGovem of McDonnell Aircraft

Corporation, Technical Report AFFDL-TR-65-26, Part II, April 1965, pages 149-53

AD 6U6 738

2. "Mild Detonating Coid" Journal of the JANAF Fuze Committee, Serial Vkk.O,

3 May 1967.

139

_—
—»—' —

PROBLEM SOLVING BY DIGITAL-ANALOG SIMULATION*

Howard M. Bloom
Computation and Analysis Branch

Harry Diamond Laboratories
Washington, D. C.

ABSTRACT. An evaluation of four simulation languages, MIDAS,
APACHE, MIMIC, and DSL/90, is made to determine their relative
merits. The application of analog computer techniques to digital-analog
simulation is considered. The problems discussed are as follows; solution
to a set of linear algebraic equations, linear programming, hybrid simula-
tion, partial differential equations, boundary value problems, parameter
optimization using a least-squares error criteria, and roots of polynomial
equations. A mathematical outline of the technique or problem is given
as well as the digital program, written in DSL/90, which is used to
represent the problem. Possible improvements in the simulation language
are shown. Some of the suggestions presented include the ability to
dimension variables, and a means of using an iteration technique.

^This report will be published in full 1 January 1968 as TR-1357 of the
Harry Diamond Laboratories.

141

PRECEDING
PAGE BLANK

v

m^mr^^mmmi^t

m

A SHELL COMPUTER PROGRAM WHICH DETERMINES THE
PHYSICAL PROPERTIES OF AN ARTILLERY SHELL AND

REPRESENTS ITS DIMENSIONS GRAPHICALLY

Forrest McMains
Picatinny Arsenal, Dover, Nev/ Jersey

The purpose of this presentation is to describe a digital computer
program which determines the physical properties of artillery shells and
related items.

I have chosen to speak on this program for two main reasons;

First, the program is used daily at Picatinny Arsenal both in
experimental design work and in the analysis of end items. Since it is
used primarily by people who are not computer oriented extreme care
had to be taken in writing the input-output operations. The input data had
to be clear and concise. The output information had not only to be com-
plete, including as many helpful and meaningful results as possible, but
it also had to be kept brief.

Secondly, the reason for choosing this program concerns the manner
in which it is able to handle large amounts of data in an almost error free
manner. Special care has been taken so that every dimension of the shell
(the input data to the program) can be enumerated logically and quickly.
The resulting graph (which is nothing more than a picture of these
dimensions) serves as an excellent check on the input values. A mere
glance at the picture of the shell is usually sufficient to detect any input
error. Further, and in most cases a final check for errors, consists in
comparing this picture to the original blueprint of the shell.

An artillery shell is formally defined as a hollow projectile, designed
to be given an explosive, a chemical or other filler and fired from a
weapon. It is composed of body pieces (which are frustums of right
circular cones and cylinders); ogive pieces (the curved, forward part of
the projectile, including its pointed end) and fins (a fixed or adjustable
airfoil attached to the projectile and parallel to the plane of symmetry
which affords directional stability).

Each card of input to the program consists of the four to six dimen-
sions of each piece plus an identification of this piece.

Figure 1 defines a body piece. Each body piece has four dimensions;

AB, the radius of the end closest to the reference axis;
BB, the radius of the opposite end;

PRECEDING
PAGE BLANK

143

HB, the length; and
RB, the reference.

A reference axis must be chosen before any data is collected,
this axis is selected, every shell piece must be referenced to it.

Once

Two other parameters appear on the body item card of input: the
density of the material used, and the identification of the item.

Figure 2 defines a fin item. Its dimensions are analogous to those
comprising the body item: AF and BF are radii; RF is the reference;
and HF is the length. Besides density and an identification, a third
parameter, its thickness is also needed.

Figure 3 defines an ogival item. The parameters AV and BV are the
X and Y coordinates of the origin of the ogival system of the system of
the (circular) arc. RD is the radius of the arc; RV and HV are the refer-
ence and length values.

The three examples shown here illustrate how the arc is suspended
when AV and BV vary in sign.

As well as these three items: body, fin and ogive, the program will
also accept a fourth item: a known piece. That is, a piece, or any group
of pieces, for which the weight, moments of inertia and center of gravity
to the reference is known. This item will be included in the analysis
with the other (unknown) pieces.

Output to the program is divided into five parts.

The first part is the graph of the shell. It is a true representation of
all the input data and should compare exactly to the blueprint.

Figure 4 shows an example of the graphic output. This particular shell
is composed of 76 body pieces and 4 fins: a total of 80 cards of input.

The scaling used in this case is l/2 unit to the inch. Scaling is at
the discretion of the user. If no scaling is specified, the best possible
scaling will be used; that is, scaling which will produce a reasonably
sized graph; height to diameter (X to Y direction) in the ratio of 1 to 1 and
the units per inch in some workable amount as 1 unit to the inch, 2 units,
l/2 units, l/4 units, etc.

The second part of output consists in listing all the input data,
by card, with a brief explanation of the options requested.

:ard

144

The third part gives the corresponding properties of each item
considered independently. These properties include weight, "transfer
effect" moments of inertia, center of gravity to the reference and volume.
"Transfer effect" is the sum of the products of the weight and distance
squared of each weight element of the item from its own center of gravity.
The transfer effect is an intermediate quantity required to determine the
total moment of inertia of the shell. This quantity is useful to know if
revisions by hand are to be made on a shell after the computer has
calculated its properties.

The fourth part of output gives the properties of the entire shell: the
total weight, moments of inertia, and the center of gravity. The center
of gravity, besides being printed, is also indicated on the graph of the
shell, as can be seen on Figure 4.

The fifth part of output is the "Subtotal Sheet. " For any piece on
the subtotal sheet, the properties given are the sum of all those proper-
ties for all the preceding pieces. This feature is very useful if revisions
are to be made on the shell. It enables the user to perform a sectional
analysis so that alterations to any piece or group of pieces to achieve a
certain total weight, moment or volume is greatly simplified.

Figure 5 is an illustration of a shell which contains ogive pieces.
The data for ogive pieces is particularly error prone. Very often the
center or direction, of the arc has been incorrectly determined. The
graph of the ogive is usually sufficient to point out these errors.

Figure 6 is an illustration of a shell which contains an input data error.
This error, occurring between heights 16 and 17, is clearly visible and
eliminates the necessity of checking the almost 200 input cards needed
for this run.

In order to run this program, three input cards are needed, followed
by the body, fin, ogive and known items (one card per item).

The first card is used for a title. The information written on this
card will appear on the output sheets and, if desired, on the graph as well.

The second card is the option control card. Here are given options
governing five general areas.

1. Graph or no graph output;

2. Scaling on the graph, which has already been described;

145

3. Size of the graph. This option, if specified/ will cause an
11 by 11 inch graph to be produced. Of course, in this case,
reasonable scaling must be forsaken for size;

4. A format option. Normally, the field width for each dimension
is 10. However, with this option it is possible to punch the
dimensions using no field width, but instead by separating each
number by a comma. Also, whole numbers need not have
decimals and E-type numbers are acceptable; and

5. The last option concerns dimension change in subsequent runs.

Often, especially when a shell is in the design stage, it is important
to know what happens when certain dimensions are varied, deleted or
added. This option will cause the computer to hold all input values after
the first run and then to pick up any deletions, changes or additions on the
second, third, fourth, etc. , runs.

If the option control card is left blank, the field width format is set
at 10, a one unit to the inch graph will be produced and the program will
consider each run independent.

The third card of input is the Index Card. Here is given the number
of body, fin, known and ogive items. Also, the number of pieces each
fin is sectioned into is given, as well as the total number of copies of
output and subtotal sheets desired. Certain values on this card may be
left blank, if desired.

For example, if the number of body pieces is not specified, the pro-
gram will scan the next card for a "B" which means that the following
cards are body items. The body items, in this case, will be terminated
with a blank card.

If no "B" is found, the program will assume that there are no body
items in the run. The same holds true for ogive, fin and known items.
This feature eliminates the necessity of counting the number of pieces
(and hence cards) in any one group.

In conclusion: this shell program is not particularly new to Picatinny
Arsenal. It has been in use since 1964 and seems to be very useful in both
designing and evaluating artillery shells. Its output is readily acceptable
by other computer programs on the Arsenal such as trajectory and stability
programs.

146

f

It was written in FORTRAN IV for the IBM 7090, originally, and has
since been converted for use on the IBM 360, Models '^O" and "65". The
plotter used is CALCOMP, Model 570/563, magnetic tape. The program
is fully described in a Picatinny Arsenal Technical Report, Number 3327.

147

BODY ITEMS

REFERENCE RB

REFERENCE AXIS

FIGURE 1

148
I i

mmm

FIN ITEMS

REFERENCE
RF

i

FIGURE 2

148-a

^

■ftto

BLANK PAGE

ft

Ham

rä
£

n

\.-

n
>

>
<

co

kl
H

o

LÜ UJ
> >

ES
(0 o
O UJ
Q. ^

> >
< CD

UJ

|>

uj o
Z 0.

> B: < 03

>
CD

UJ
O >
Z »-
< 55

o
I0-

00

CD

UJ
ü
z
rr 1
UJ x
u. <
ui

149

l

' ^ ■ ,l11 ■• ■

i
i- +'

...I

1 - - ■

zirr
-r-T

5_i__.

U4-4i

U.

ir

i —

—L,.

I

fr-

■ i-. i

yi-

i

, 4-HK

-Mt- -bi"+
ti "n

:JU
f

J__ &4
150

. I

-4--

mm^^^^^^m

151

1 i 1 1 1" ;- .;: il: IjJJ t^ ififi

1 H
1
1

j

I ! ' m'
J— ü

In
T

■• ■ 1-
i

r^
....j.._ t" j,:

j []■ :

» 1
 t 1-

/
\

'

i J

—

A .._ fftf /I
~t [/ / 11 r~ ^i

/ / I \1 |:T llfl f "P 4 1 a-
1: ::!:i

J J ..
t

f ■■ L l

j

//

J

\i\ J i
/'

j V : •;
1 ■

-4-
IlITTT 1

1 1 / 1
\

1
1

1

t 1 /
i / 4- - J

\\

(

!
i j— —

"
— . i

8 / / 1-.j. _ . '■d
1)

f : /

1—
IS : 1 -J- ---f-- - --■
1 1

L* .11
1 •

—t

1 I 1

Is "
mr; en

■ m—
0-1
mx <n

11 . .
1

..... I
1 ..

1« '..
i

i 1 ■ I
1

, Nil! | | 1
i

ii-UU- 1. - (■-'--■ 'J - .._ 1

—1 _J_Lii i : 44
CO

S -1 ^H
1 1 J~ f r

1 1

1—1—F~i— "rf ■ -

i .i. ;

4- ■] - j-;- f- - J-H -- —

PIE

1

—
1

t ;' ;*'

1 j
I t-t _. 1 1

1
1 -I . "I

f T
1 ~t

1

J _ 4- 1 : —I 1 -+ 1 1

i

Li_ i
i j i

*S be .L. gjg - -1 .u.J f'1'- T 1

ufi I .j 1-. :
\ L —h— / ^—
*

.IN m „Ej /1 m. .ii'

rr '
i —— —i—
1

— -J

:'- :"' rS — _.. !
:i- ::: :::.

■

- -r -;-;-
:::

■ hliü! ;;l: kll :: Ini ;:, ■ :: .;:i ill .!:'■

'^■ältiigtfjtfjjl

W—i m i ■!

T

i-t- -4-Vf-M--

•) I-.-4

I ; !

iii i
TT-l-t

r T

J.
I !

\ T

I I

i -

152

- II I

m

ZERPOL, A ZERO FINDING ALGORITHM FOR POLYNOMIALS USING
LAGUERRE'S METHOD*

Brian T. Smith
Department of Computer Science

University of Toronto

ABSTRACT. ZERPOL is a subroutine which computes the N zeros of the
polynomial P(z) when given just its real coefficients A(I) :

P(z) = A(l)zN + A(2)zN"1 + + A(N)z + A(N+1)

The zeros are stored in the complex array Z with the complex zeros appearing
in complex conjugate pairs. Except for polynomials of degrees one and two,
ZERPOL iterates towards a zero using Laguerre's method, which is cubically
convergent for isolated zeros and linearly convergent for multiple zeros.
The maximum length of the step between successive iterates is restricted
so that the iterate XJ+2 lies inside a certain region about the iterate xj
proved to contain a zero of the polynomial. An iterate is accepted as a ~
zero when the polynomial value at that iterate is smaller than a computed
bound for the rounding error in the polynomial value at that iterate. The
original polynomial is deflated after each real zero or pair of complex
zeros is found, and subsequent zeros are found using the deflated polynomial.

INTRODUCTION. The problem is to find the N zeros Zj of the given
polynomial N

that satisfy

P(z) =

P(z) =

.1 u,z
J

N-j

N
UO
JSI (z-zj)

The algorithm ZERPOL is intended to solve this problem. The algorithm is
described under two sections. Section one gives a summary of the strategy
used and section two describes some of the pertinent details about the
implementation of this strategy in FORTRAN IV on an IBM 7094-11.

Laguerre's method is defined now: Starting with an arbitrary complex
point x0, Laguerre's method generates a sequence of Iterates (XJ) for the
polynomial P(z) given by

lJ+l
= x. + ^(xj)

I

'

*"The program Zerpol discussed in this article was developed under the
direction of Professor William M. Kahan, University of Toronto, Toronto,
Canada. This material was presented at the Conference by Professor Kahan
who described the rationale for the program Zerpol described here by Mr.
Smith." The next article in these Proceedings was submitted by Dr. Kahan
and is intended to support the material in this article.

153

MMttüm

1

where <(x.) is the Laguerre step at x and equals

-N P(x)

P'CXj) +Y(N" I)
2 P'CXj)2 - N(N-l) P(x) P"(x)

the + sign being chosen so as to maximize the denominator's magnitude. (See
Wilkinson (1965) for a development of Laguerre's method.)

SUMMARY OF THE STRATEGY USED IN ZERPOL. The overall strategy of ZERPOL
is described now. Polynomials of degree N < 2 and polynomials whose leading
or trailing coefficients vanish are treated separately. The coefficients
of the polynomial are scaled upward as far as possible so that spurious
underflow does not occur when the polynomial is evaluated near a zero. ZERPOL
first attempts to start the iterative procedure at the origin. If the origin
is not an acceptable initial iterate, trial initial points in a certain annu-
lar region around the origin are tested until a suitable initial iterate is
found. Subsequent iterates are restricted in order that the modulus of the
polynomial decreases from one iterate to the next iterate and that the
distance between successive iterates is not too large. The sequence of
iterates terminates when the modulus of the polynomial becomes negligible.
The polynomial is deflated by the final iterate and the iteration procedure
is repeated using the deflated polynomial.

Specific details of the strategy are described now. The zeros of poly-
nomials of degree N < 2 are computed using the standard closed formulas. The
quadratic equation solver subroutine QDRTC (A,B,C,ZS,ZL) is used to compute
the complex roots ZS and ZL of any real quadratic equations

Az2 + Bz + C = 0

that must be solved by ZERPOL. Unless over/underflow occurs, the real and
complex components of ZS and ZL are computed within an accuracy of 2.25
units in their last place, and |zs| < |ZL| within the specified accuracy of
these roots. Overflow and underflow occurs only when the exact roots over-
flow or underflow.

For the remainder of this description we assume that the N + 1 real
coefficients u. are given for the polynomial

P(z) = ^uj:
N-j

so that u
•i

and N > 3

(Whenever u =0, the zero z is set to the largest number in the machine,
an overflow message is enabled and the polynomial P(z) is treated as a
polynomial of degree N-l. If u = 0, z is set to zero and the polynomial N N
P(z) is treated as a polynomial of degree 8-1.)n

154

mm

101
First, the coefficients u. are scaled so that max |u. | > 2

2 c < j < N J "

Scaling the coefficients in this manner reduces the possibility of underflow
of P(z) near a zero. However the underflow condition cannot be completely
eliminated as shown by the following example:

2-128 ^l^eOj + 2126(z31_z30) + ,-128^ >

This polynomial cannot be evaluated near any of its zeros, namely 1 and

„+127/15 (2k+l)Tri/30 - , , „ z"?7
e for k=l,2,...30, without using numbers that overfl

21Z/ or underflow 2-129 j the limits on the 7094-11.
ow

Next, an annular region about the origin known to contain the smallest
zero of the polynomial is computed. The radius of the inner circle is the
Cauchy lower bound R, namely the positive zero of the polynomial.

The radius of the outer circle is the minimum of the geometric mean G=

luN/
u
0l

of the magnitude of the zeros, the Fejer bound |F| , the Laguerre

bound /N |X| and the Cauchy upper bound. Details concerning the computation
of these bounds will be given later.

This annular region known to contain a zero of the polynomial is used to
find an acceptable initial iterate for the iterations procedure. The strategy
is first to attempt to start the Iteration procedure at the origin. The
origin is accepted as an initial iterate whenever the Laguerre step from the
origin lies within the outer circle of the annulus. Otherwise the origin is
unacceptable as an initial iterate and a search of this annular region for
an initial iterate is started. A trial point x in this annular region is
accepted as, an initial iterate whenever the nex? iterate x = x +2^,(x)
roughly lies within the annulus. The trial points lie on Four equiangular
spirals about the origin starting on the inner circle of this annular region.

Once a suitable initial iterate has been found, subsequent iterates are
determined by the following conditions: for j=0, 1,...

(1) X.+1
= xi

+ L(x.) , and

IPCX^I >|P(xj+1)|

where L(x) may be a modified Laguerre step, and

^ xi+l +^xj+l^ roughly lies inside a circular region about the

iterate x of radius |F| known to contain a zero of P(2) (i.e.

155

rmm. ~d~t

r
UTCx .)I < IF'), and the modified Laguerre step

L(xj+1) .I4xj+1) when |JGCxj+1)| < |F|/2

|F|/2).^xj+1)/|ÄSxj+1)|

when |F|/2 <|Äxj+1) |< |F| .

The modified Laguerre step may be further modified when condition (1) is not
satisfied. If |P(x + L(x))]>|P(x) | then L(x) is replaced by L(x)/2 and

the condition (1) is retested. This process is repeated until condition (1)
"x)|>|F|) then Lix^ 1J satisfied.

i repea
If^(x j^) is too large (that Is, (]£(

is again replaced by L(x)/2 and conditions (1) and (2) are retested. The

process is repeated until both condition (1) and (2) are satisfied. (These
conditions are based on theorems due to W. Kahan. See also B.T. Smith (1967).)

The iteration procedure stops whenever the polynomial value at an iterate
becomes smaller than a bound on the rounding error in the polynomial value
computed at that Iterate. For a real point X , we can show that a bound for
the rounding error in the computed value QN of P(X) using the Newton-Homer
recurrence is given by

|P(X) - QN|< o c E

where

(1) The numbers Q for J * 0,...N are the computed values for q. obtained

from the Newton-Horner recurrence;
J

q > u and no o

for j - 1,...N

(2) E- jEo JQjl |X|N-J ,

UJ + qJ-l '

(3) a equals a unit in the last place in the arithmetic used to compute
QN t and

(4) c is machine constant of the order of 10 for IBM-7094-II representing
the roundoff errors in the arithmetic used to compute QN .

Since a zero of P(z) need not be representable in the machine, we really
want a bound for |P(x)-Q | where x is in the neighborhood of X , that is

|x-X| < |x| a. We can show that whenever |x-x| < o|x| then |p(x)-P(X)|< aE

80 that |F(x)-QNl < a(c+l)E

156

We summarize the results of this error analysis by saying that we cannot
distinguish any point X for which |Q | < a (c+1) E from a zero of the poly-

nomial P(z), and that the machine representable numbers which are immediate
neighbours of a zero x of P(z) satisfy |QN| < o (c+1) E.

The numbers q are the coefficients of the quotient polynomial Q(z) in
division of P(z) ■' by the factor z-X. That is,

N M •
P(z) ■ r u. z J

J 0 J «-I ,_,_.
= (2-X) jI0 q. Z

1 J + q,

= (z-X) Q(z) + qN .

Therefore the first derivative of P(z) at X can be obtained by applying the
Newton-Horner recurrence to coefficients q. .

j

Thus
Q(z) = (z-X) W(z) + wN_1 and

P'W = w, N-l
Similarly for the second derivative P"(x) ,

W(z) ■ (z-X) V(z) + vN_2 and

P"(Z) " vN-2 •

Notice that the error bound E, the polynomial value and its derivatives can
all be computed within the same loop.

The evaluation of the polynomial value, its derivatives and the error
bound E at a complex iterate Z is obtained in a similar manner to the real
iterate X by replacing each occurrence of the linear factor (z-X) by the
real quadratic factor (z-Z) (z-Z) where Z is the complex conjugate of Z.
(This evaluation procedure for complex points appears in Wilkinson (1965),
page 447-449.)

Once an iterate is accepted as a zero, the coefficients q.. of the
quotient polynomial Q(z) replace the coefficients u and the iteration

process is repeated on the deflated polynomial,
is not attempted by ZERPOL.

Purification of the zeros

PROGRAMMING DETAILS FOR ZERPOL STORAGE ALLOCATION. The coefficients of the
polynomial are transferred to the double precision array DU. This array DU
is placed in COMMON with library workspace L1BWSP so that the workspace need
not be supplied by the user. This places a restriction N < 79 on the maximum
degree of the polynomial handled by ZERPOL. However, the restriction can
readily be eliminated by increasing the dimension of library workspace in the

157

■^^i

calling program to at least 2N + 2 where N is the degree of polynomial. Notice
that the double precision leading coefficient DUO can be referenced DU(IO)
where 10 « 0 .

The complex array Z of zeros is treated inside ZERPOL as a double precision
array so that those elements of the array Z which do not contain zeros of the
polynomial may be used to store temporarily the coefficients of the quotient
polynomial. The coefficients of the quotient polynomial are transferred to
to DU array whenever an iterate is accepted as a zero.

All diagnostic messages Initiated from ZERPOL appear in DATA statements
and are issued through the subroutine UNCLE.

INITIALIZATION. The function subroutine CI12(N) converts the integer
N from its binary representation to its binary coded data (BCD) representation
in order to appear in the diagnostic messages given by UNCLE.

A warning message is generated when N > 79. However this message is
suppressed for all subsequent calls of ZERPOL in the same job.

Over/underflow variables OVFLOW and UNFLOW are saved from the user's
program. The statement NSAV=NFPTST(0) suppresses any messages fir the over/
underflow occurring in ZERPOL. (See Programmer's Reference Mannual (PRM),
(1964).)

SCALING. If N < 2, or max
o<J<N

,101 |DU(J)|> 2 the coefficients are not

scaled. Otherwise the coefficients are scaled by the scale factor DSC so
that the max |DU(J) | = 2101. The scaling procedure i executed in the

o<J<N

unnormalized mode (CALL FPTUN) in order to extend the allowed lower limit
to the magnitude of the coefficients. As a result, ZERPOL can confidently
ignore underflow except when underflow occurs in the first and last coef-
ficients. The standard mode is re-instated with CALL FPTST.

Overflow may occur in the evaluation of the polynomial and it- derivatives.
When overflow does occur, we attempt to remove the overflow condition by
scaling down the coefficients by 2~27.

. If the leading coefficient becomes unnormalized in the process of scaling
down the coefficients, a message is given stating that the polynomial cannot
be evaluated near some of its zeros without over/underflow.

THE ANNULUS CONTAINING THE SMALLEST ZERO. R^lzkC The geometric mean G
of the magnitudes of the zeros is computed using logarithms in order to prevent
over/underflow of the intermediate results.

The reciprocal of the Newton step at the origin is checked for overflow.
If it overflows, a zero is close enough to the origin to be considered as
zero. Also IP'(0)/P(0) |< 2*Ü' ensures that the Cauchy lower bound R doesn't
underflow.

158

^p^^^ww-^

The Fejer bound at the point X is the magnitude of the zero F of
smaller magnitude of the quadratic equation

(P"(X)/(2N(N-1)))F2 + (P,(X)/N)F + P(X)/2 = 0.

The Laguerre step df(X) is simply related to the zero F by the formula

^(X) = F/((N-2) P'CX) F/ (N P(X)) + N-l) .

The values of the polynomial and its two derivatives at the origin
are given by the coefficients (DU(N) , DU(N-l) and DU(N-2).2 . The Fejer
bound is computed using the subroutine QDRTC and the Laguerre step and
Laguerre bound at the origin are computed immediately. Thus

B = 1.0001 min (/"N«äf(o), |F| , G)

is an upper bound for the magnitude of the smallest zero of the polynomial.

Next, the Cauchy lower bound R for the smallest zero is computed where
R is the positive zero of the polynomial

N-l N-I
S(z) = TE |DÜ(I)| ZL - |DU(N)| . I=o

This zero R can readily be computed using the Newton-Raphson method with
x = B because all the o
Notice that for X > R

x = B because all the derivatives of S(z) are positive for z positive

so
x s'cx) > |DU(N) I ,

S'CX) > 2"129 .

Therefore we do not expect S'CX) to underflow. The sequence of Iterates
(x.) terminates when x,., > x. for the first time. If overflow has occurred

J j+l - J
in the computation of the last iterate, that iterate is probably incorrect
and can be corrected easily only by scaling down the coefficients of the
polynomial. If no overflow occurs, 0.99999 x is accepted as a lower bound

J ,1/N
for the magnitude of the smallest zero of the polynomial. Since R/(2 -1)
is an upper bound for the smallest zero of P(z) and R/(2^'N-1)< N(1.445) R,

then G* = min (B, N(1.445)R) is accepted as an upper bound for the magnitude
of the smallest zero of the polynomial P(z).

THE ITERATION PROCEDURE. The strategy of this section of the algorithm
has been described previously in section one. To assist the reader in follow-
ing the FORTRAN code, STARTD and SPIRAL are logical variables indicating
whether or not the iteration procedure has started successfully and whether
or not a spiral search for an initial iterate has started.

Laguerre's method may be exact for zeros of multiplicity N-l and N

159

1

so that the initial iterate from the origin is allowed to reach the outer
circle of the annulus R < |z| < G' whenever this annulus is relatively
narrow (i.e. R >G,/2 .

The time required to compute the value of the polynomial and its
derivatives at a real point is less than the time at a complex point so
that an iterate is forced to be real whenever the imaginary part of the
iterate x is less than one-fifth of the step x - x to that iterate.

POLYNOMIAL EVALUATIONS. The polynomial value and its first derivative
are computed using double precision arithmetic while the second derivative
is computed with single precision arithmetic. We felt that the improved
convergence to rare multiple zeros was not worth the cost in extra time
of computing the second derivative with double precision arithmetic. The
unnormalized mode is used for the above computation.

The evaluations of the polynomial and its derivatives at a real iterate
and at a complex iterate are done in separate blocks. The computation in
the case of a real Iterate is straightforward. However, precautions need
be taken when the magnitude of a complex iterate is extremely large or
small.

In the case of a compxex iterate X , the squared modulus of the complex
iterate appears in the quadratic factor and so may over/underflow. Thus
whenever

,63.5

or

|X| > 2"~ ' ' , (square root of overflow)

J 5 x <r , (square root of underflow)

then the coefficients of the quadratic factor (z-X)(z-X) are carefully
scaled so that the possibility of overflow or underflow in the evaluation
loop is minimized.

If overflow cannot be avoided in the evaluation loops the coefficients
are scaled down by 2~^ .

If the modulus of the polynomial is greater than the error bound in
the computed value of the polynomial, and the modulus of the polynomial
underflows, then a message is given declaring that over/underflow occurs
in. the evaluation of the polynomial near one of its zeros. The last iterate
is accepted as a zero of the polynomial.

If the reciprocal of the Newton step at the last iterate overflows,
then the last iterate is within a distance of N 2-**' of a zero of the
polynomial. The last iterate is accepted as a zero of the polynomial but
underflow is signalled.

SEARCHING THE ANNULAR REGION FOR AN INITIAL ITERATE. The search for
an acceptable starting point for the Iteration procedure starts with a
point on the inner circle of the annulus in the direction of 'the Laguerre

160

mmmmmt ^■■wH^vvq

step from the origin. Subsequent trial points lie on the spirals traced
out by R (i - 1.25N)^ for k = U,!,... where the angle between successive
trial points is -tan--'- (N/1.25) or just more than - 90°. If every fourth
trial point is examined, the locus is a spiral progressing in a counter-
clockwise direction. The constant 1.25 is chosen in the hope that the
distribution of the trial points is dense enough in the annular region to
find an initial iterate but not so dense that a great deal of time is spent
searching for a suitable initial iterate.

TEST RESULTS. ZERPOL was tested with polynomials given in papers by
P. Henrici and B.O. Watkins (1964) and E.H. Bareiss (1965). In all cases
ZERPOL satisfied our criteria, for the accuracy of the zeros, namely that
the coefficients of the polynomial reconstructed from the zeros given by
ZERPOL closely resemble the original coefficients.

2
ZERPOL computes all zeros of a polynomial of degree N in roughly N

milliseconds on our IBM-7094-II and consists of approximately 550 cards.
We compared ZERPOL with the package of subroutines catalogued in 1965
as SDA-3332 in the SHARE library. This routine found the zeros of the
test polynomials taking from two to five times longer than ZERPOL. We
also compared results from ZERPOL with the subroutine POLRT from the IBM
System/360 Scientific Subroutine Package (1966). This subroutine is about
as fast as ZERPOL, but sometimes gives wrong answers.

The following table gives some statistics on the number of steps
required to find all the zeros of polynomials of varying degrees. The
coefficients of these polynomials are random numbers taken from a normal
distribution with mean 0 and variance 1 .

Laguerre steps Search steps
No. of per iterated zero per iterated zero

Degree Polynomials Average Maximum Average Maximum

Half steps
per iterated zero
Average Maximum

3 100 3.9 6.0 0.3 2.0 0.02 5.0

6 28 4.5 6.0 0.54 3.7 0.14 4.0

12 7 4.7 5.2 0.55 4.3 0.25 1.7

18 4 5.0 5.5 1.20 4.3 0.46 2.0

This version of ZERPOL was produced during the author's work for an
M.Sc degree at the University of Toronto under the supervision of W. Kahan,
with the support of a Province of Ontario Fellowship.

161

REFERENCES

1. Barelss, E.H. (1965), RSSR Routine, A Root-Squaring and Subresultant
Procedure for Finding Zeros of Real Polynomials, ANL-6987, AEC
Research and Development Report Program Material Laboratory,
Illinois.

2. Henrici, P. and Watkins, B.O. (1965), Finding Zeros of a Polynomial by
the Q-D algorithm. Communications of the Association for Computing
Machinery, Volume 8, Number 9 (1965), pp 370-574.

3. IBM System/360 Scientific Subroutine Package (1966) Programmer's
Manual, 360 A-CM-03X.

4. Programmer's Reference Manual (1964) for the IBM-7094-II Computer
(2nd edition) by the staff of the Institute of Computer Science,
The University of Toronto, Toronto, Canada.

5. Smith, B.T. (1967), A Zero Finding Algorithm Using Laguerre's Method,
M.Sc. Thesis, University of Toronto, Toronto, Canada.

6. Wilkinson, J.H. (1963), Rounding Errors in Algebraic Processes, Her
Majesty's Stationery Office, London, Chapter 2.

7. (1965), The Algebraic Eigenvalue Problem Clarendon Press, Oxford,
pp 443-445, 447-449.

162

Mta

mmi^^— wmm

AP/MDIj(- ZER?OL LISTING

CUciHLtX £(AT LtAST N)
IMU^HALLY, IM SHÜULO NU I tXCttÜ 79. UTMEHrtlSt Iht PKÜÜKAMMt-K SHUULU

IWCLUDt CUi'ii'iU^ /LlrttvSP/ LlHkySf'i AT LtA^T 2*w+2)

C
C
c

JL
C
C
C
c
c

X-
c
c
c
c
c

JL
C
C

C

SUöKüUlIiNfc ZtKPUL (A,iMütbiZ)
CALL 2tKHUL(A,^,Z I TU itT Z(I) = I-IH ZtKU üh THt KÜLYiMürtlAL

A(l)vZ:::-i\i + A{2 ^Z^'dM-l) + ... + A(N)=;=Z + A(N+U

i\UTt THAI H = DcGKtt Ur IHt PUL Yi^Un I AL i A,\iU iHtkt AKC iN)+l KtAL
ClIrrH I.r.IhiMlS—ft-LI). l.U i'iü'iS IiJMS - ■ itfeAL At AT LtASI a til 0.+ !)

USt HULi-iY i'U CHhCK ACCUKACY .

CUhPLtX CUiMJÜÜArc ZcKüS 2(1) UCCUK CÜiMicCul I \/tLY , I.t.
Irl Z(I) IS CUMPLtX) clfHtK Z(I + 1) = CLJI\IJG(Z(I))

ÜK bLSt Z(I-l) = CU(V(JG(Z(1)) .
Ir ALL CUtHrlCIfiNfS A(I)=Ü , THb Ü.U/Ü.U ülAGiMUSTIC IS h'KUüUCtü.

^ y V ^S ^ ff ij- V # V V V ^ V 'f- g M Sj1 :!* 'j' ^* i|* 'j' *,* *,* >Ii ijl jji ijC ii- ijC ?|i ^- i'A -|t fe 'j- il« iji l|S jji ^! iji y ^i ;|::,: ;,s y ^t;]; :;t ij;:,: g ;;t ;;i ij: ;

OÜO CUHTIIMUE

KtAL A(bO)
CunHLtX
UÜUÖLt ►'«CCISIUIM

Z(7y)
Z(7y)

UUIU IS THt Cutl-rlCIcMI Uh Z**(n-I) It^ THt CUKKtNl PULYiMUrtl AL
ÜÜIHLc HKtCISiUiM UUO, ÜtJ(79)
CU«MU«I /LlrtrtSP/LltlrtStM 16U)
tüUlVALtwCt (LlörtSP , ÜUU), { LlttWS^O), IJU)

LUGICm. UVr» LLJLi SMib SAVUt STAKTU. S^lKAL
LOGICAL UVrLUwl t LMi-LlH ,
CUfi'-liJis /UV^LiJ^/uVrLuw, /Ur-irLU^/U^rLUVi
UA I A

TuubIG

TUUöl(,/,TKUt./

Uli-lfc.MSIÜiM
CliwPLhX

AChl(2) t
££Li

ACh2(2) ,

Cr2t
ACH(2)

 CJL_
CüUlVALt^Cc (ChltACcl) ,* (Ct:2,aCr2). (Ch»ACr-)

CUi'iHLtX CUIKU , CSPU
ÜlrtfewSIUiN ACiJlK(2), AC(2), ACL(2)
CUnPLtX CUlKf C, CL

OüU^Lc i'KtCISIUiM l)ZN^, üZMI» UZOKt UZOI
iJUUHLt fKtCISIUN UX, UKt USC, UY, UX2, ÜV
t'JUWALt'iCt (UX,X), (UK,K), (USCtSC), (üYtY), (l)X2,X2), (ÜV,V)
Uüürtl.t PHfeCISlUN Ul ♦ ÜT1

j^ihA^ALtAiCt: 11) T t I) i IIJ f 1 t T 1 1
UA I A 0SC/Ü.ÜO/

163

■m mm

DlcltiMSUliM HtSSHllU)
ÜATA NtSSH(l)/ 34HÜA PüLYi\JUi'1IAL UF UtG><tt

StKUS. /, MtSSH(lU) / 0777777777777/
CUMPLtX C«bSSH
fcmiTVAi twc.ir Lüa£S&a< a£lSjdlaJ \

HAS IMU Z

ÜIrtei\SIUiM MtSH(22)
ÜATA MtSHIl) /126riO(HlfKe IS SUM6 KtASUN Tu ÖcLItVt iHAT THh HIKST

» ZtKUS AKt iNCUKKtCT. QUICKLY CALL W. KAHAlN UK Ö.
*T. SMITH. /, MtSHl22)/ Ü777777777777 /

GJiflgJJÜi CMtSH
tUUlVALEi'JCb (CwbSHti-itSH(y))

UIMEIMSIUIM .-ItSSdb)
DATA ilbSS(18) / 077777/777777 /, MESS(l) /

»1Ü2H0YUUK N = tXCEtUS 79 , AiML) KEOUIKES THE DlhtN
SSIÜN Uh L1BWSP TU HE Af LEAST 2«ivH-2 . /

CÜMPLEX CMESS
EÜUlVALti\jCt (Ci'iESStMESSli)) ♦ IFIiMlTY, MßSSdÖ))

OlMtNSlU^ UV/FUiMH 16)
DATA UVFUIMFI16)/Ü77777/777777/, UVHUiMFd)/

S9OH0ZER^UL CAiVi^Ur bVALUalE THe GLDÜ^ PHI YrJUw I Al. iMFAK $UU£ [\h ITS 7
$EKUS WHHUUT UVEK/UNOE.-tHLUri /

C

ÜATA HIT /U4ÜUÜÜÜÜ00/» Ti'127 /Ul^b^OÜOÜÜOÜU/, IU/U/t
$ T63b/U3üÜbi2Ü23623/, T101 /U3^6^ÜÜUUUUÜÜ/,
S TM64i)/ülOÜ55202362t)/

BIT = 2.*«-12V=Si'iALLtSr Hui TlUl=2.»«lÜl Ti*l27 = 2,**-27
FII>JITY = -2.**127 = -LAKGESI .^lU. Ti-I643 = 2';'* I-64. i)
T63s=2**l63.b)

SHtCIAL HUNCFIUNS-

ALÜG2(X) = LUr,AKlTh^ L)F X TU THb HA St: ?. ,
TWUXH(X) = 2,***
CI12IJ) = ALPHAdtTIC KtKKESt'MTAT IUIM UH J IiM 112 rUkwAT (CIMHLX)

ANL'(X,Y) LOGICALLY »ANUS1 X AlMU Y HIT bY HIT .
AA4XA(Tf I »J«KtL) flHOS THE rtAXImUfl UF AöS(T(I)) r-OK I F^üi'i J UP

TU K IiM STEPS UF L.
A,-IIAII(X.Y.....Z) riNos ine dLfiLLama UF ITS gaßuhthlÄ XtYt...tZ .

GAMA, ThfcTA» A(M1) PHI AKC TEST PAKAWETtKS rUK ZtKPUL .
UA1A GAi-lA/Ü.i/, THETA/l.O/t PHl/U.2/
tJiM^Ü = 40.*2**(-53) Ü*ilü=lO,v?.**(-b'i)
"bATA UN4ü/Ul2l&ÜÜüOÜÜOü/i U^lÜ/Ull7iOÜÜUUUUÜ/

164

"'— i ■' i^'^^mmm^mmmmmmmmmim'^^

f

C
c

J3D _LU iVl.LmUt;, ,,,

CMtSSH = C112('M)
Ir(iM .Lt. 0) CALL UivlCLtfl Ü, HtSSH)
It (.NUT.IÜUÖIG .UK. IM .LE. 79) GU FU Si

TUUrtKi = .FALSt.
 ÜflüSJS = CiäES^Jd

CALL UiMCLtl -75» MlrSS)
SAVE UVeKFLÜW/UNUEKFLüW INüICATUKS Uh THt CALLING PKUGKAM ,

bl SAVÜ = ÜVfLUW
SAVU = UNrLUW
IMSAVc = i^FPTSriO)
II\/H = .hül SJLi
UNr = .FALSt.

HÜV6 THt CUbrhlCIbnTS A(I) TU UU(I-l)
UU t)2 I = IO,iM .

b2 ÜU(Ii = A(1 + 1)

C SCALING (uiviLY ^HtN iM ,GT. 2)
100 CONTINUE

If (i\l .Lt. 2) Gü TU 204
ASSIGN 400 TU LSW

C (Stt SIAIcHtNT iOO .)
 SC = Ai-iAXA(LMb I. 1 .?*I\J + 1 . ? 1

Ir (SC .tö. 0.) GO TU 206
IH (SC .GH. T101) GU IU 105
SC = T101/SC
SCALfc BY SC TU HAVE MAX (ULM I), I«Ü»N) APHftUACH 2.,i'*100
GU TU 103

C (Kt-SCALING iMtCESSITAftO BY UVtKFLUW UStS SC = 2.**(-27) .)
102 SC = TM27

C
103 CUviTIiMUt

CALL hpruivi
 uu l()4 I = IO.M ; \

104 ÜU(I) = USC*UU(I)
CALL rPTST

C FIIMÜ iMUMÖtK I OF Cu^StCuflVE LEAUlNG CUEFFICIEIMTS EUUAL Til £tK(J .
105 UU 106 I = 10,IM

IF (AMLM UU(I), KIT) ,Ng, 0,) GÜ TU 107
£ EACH VAi'iiSHrn LEAOI.MC; COEFFre.IFIMT YFFLUS A.vi LcüiJLilLLE IMJU -

J = N-I
li)6 Z(J) = FIIMITY

lt7 IF (I .tU. 0) GU TU 204

bLlUF rtACK CutFFIC IEIMI S A.MIJ UECLAKE ÜVJSKHLUW .
 ÜU 1ÜH K = I.iM

J = K-I
LO-i ÜU(J) = UU('<)

C
C

165

■ -

c

IM = N-I
. If (SC .tg. Trt27 I CALL UiMCLtt 73, UVrUiMh

UVh = .IKUt.

GÜ TU 2U3

BusliaXuItS tüä ciJKkriMT üUüMJüü ULLlMMUü -
201 .>J = .Ml
202 IM = N-l
2Ü3 ASSIGiM 40Ü TU

(Stt STATt-'ifcNT
204 uvhLü'-i = .FALSe.
 ili\'rLu-< = .rüLSr.

LS.v
300 .)

Ir (iM-2) 20D» 206, 300
2oi) z(i) = IJSIC(O.HLXI KWOI -i)u(n/ouo

Ou TO 20/
0.))

c
c

c
c

206 CALL OOKTCI KVLHOUO), K.MIJ{ UU I 1))+U. , K Jü(Ou (2))+0. , Z(2), Z(l))
207 OVr = uVr .ii^ .Ov/hLU1"

UiMr = LHr.UK .(..MhLüw
KcSTOKc UvtKr-LDw AWIJ UHütKFLiJ.-; IIMUICA'IUKS AIMU cMAriLt: "'rSSAÜb .
UVrLü'«/ = SAVU
UwrLÜ'-/ = SAVU
tMSAVt = IMFFTSHIMSAVE)
\>:<ü\lli)c U'-'LY T^c Ktrv/bLA^T HV^K/DIMUI-KI-L (lw i^hSSaaeS. ,
IrJUVr) SC = hliMll Y«rI.Ml iY
1^(0 .^) SC = r>I 1*6 11
KtfTu^.j

ChcCn; KM Zt-^uS = (0.,ü.) (pitwCtrOKTH iM .01". 2)
300 Ir (a-oi om;v) , hIT) ."'b, 0.) '^U TU LSvi,(<tüO, 70'))

(fcNMY f-KÜ.'i KLUCK 500 Ir KtCI^KüCAL Ui- iMtfwTUiv STen UVfc«HLU.«S .)
301 Ir (SivÜL(UU(i\l)) .rtt. 0.) U'MH = .TKut.
302 Zt^vi) =0.^0

Gu fu 202

 M cuCrt-uKlrt iV .GT. ?., OOP »Mt:. 0. , ü.vU OU (iv) .^t:. 0.

I'MlTULIZc iürit USbFUL CONS »'AiMfS.
400 CUIMT II-OC

X^ = is
X.Ml = Xvl - 1 .

Xw2 = XIMI - 1.
X?.\J = 2./Xis

X2INI = X2KJ/Xrtl
XIM2<M ■ XW2/XIM
is 1 = i'i-1
KT.s = S'iKT(Xis)

4Wt R+Dl-^) rc-'ni/'.* oiaidl-f -prrci^cor) 1> 4i> SHUQ'? f>rCC(*t'OK

ITMTC M,(6;^ 2s, 21) !./<^> /^ivftr*^ ■*.•■ I'S .i.v< ZL

166

'!■ ■.■ ■■ I ■ i nwian

CALCULATt G f AN UPPER ÜÜUND FOR THE NEAREST ZERU .
START WITH G = CABS(Gt'JMETKIC HEAN OF THE ZEROS)
G = TWÜXP((ALOG2(ABS(DU(N))) - AL0G2 (ABS (DUO)))/XiM

C
C

C
C
JL
C
C
C

500

CALCULATE LAGUERRE-STEP COIR AND FEJER-bUUND FOR
r.Ar.cm ATHLM HF THF IA^HFRKF 5;TFP iN\/ni \/F<; THF ?;QHARF

♦ l.E-5)

c .
RECIPROCAL OF NEWTON'S STEP. SINCE IT CAN EASILY OVERFLOW, THE
FtJER B0UNÜ IS CALCULATtO WITH NO SUCH OVERFLOWS ANÜ THE
LAGUERRE STFP IS CALCULATED FROM IT.
OVFLOw = .FALSE.
R = SNGL(UU(N-l))/SNGL(DO(N))

IF OVFLOW. A kClOT fli- PÜI Y. IS WITHIN N*?»«l-1?7> Q.E CL. .

X2N«SNGL(ÜU(N-1))
IF (OVFLOW) GO TO 301

CALL QÜRTC(X2iMl*SNGL { DU (N-2))
$ C ♦ CF1)

R = XN2N*R
CDIRO = C/CMPLX(R*ACm + XN1 , R«AC(2))
ABDIRO ; ftBS(REAL(COIRO)) •*• ABS (A IwAG(CDIRO))

SNGL(DU(N))

C
C
C
C

G = AMINK G, 1.0001*ArtlNllABS(AC(l)) + ABS(AC(2)) , RTN*AllDIRO)»

CALCULATt THE CAUCHY-LOWER BOUND R FUR THE SMALLEST ZERO BY
SOLVING ABS(OU(N)) = SU^(ABS(DU(I))*K**(N-I) , I » 0, N-l)
USING NEWTON'S METHOD .
R = G
CALL FPTUN

601 T = ABSIDUO)
5 = 0.
OVFLOW = .FALSE.
DO 602 I ■ 2»N
 S = R»S •*• T
602

C
C

C
c
C
C

T = R«T + ABS(DU(1-1))
S = R*S + T
IT CAN BE PROVED THAT S CANNOT ONDtRFLOW
T = (R*T - ABS(UU(N)))/S

S = R
R = RND(R - T)
IF (R.LT. S)
IF (OVFLOW)

60 TO 601
GO TO 102

R/(2*»(l/N) - 1) .LT. l,4*J»N*R
GO = AMINK 1,*^!>»XN*H t G)
RÜ = 0.99999*S '

IS ANOTHER UPPEK BOUND , SO SET

ASSIGN 700 TO LSw
(SEE STATEMENT 300

NOW RO .LT. CABS(

, UNLESS DEGREt OF PULY. IS REDUCED, RO, GO
AND ABDIRO ARE UNCHANGED .

SMALLEST ZERO) ,LT. GO

167

,*rS***i »/ -

LNlTlALlZt: igt ITcKATIihM Til at&ia ^T lilt Uklf^TiM .
70Ü C(Jiv.TI\'Ut

FfcJdK = ÜU
G = GU
CUIK = C'.HKU
AöUIK ■ üriülKü
 l)7Nrt = n.Oi)

701

UZM = O.DO
FIN = AöS(üU(iN)) .
SPIRAL = .FALSt.
STARTü = .FALSt. .

Kb-bNTKY eUlAl Hi ACCcPf . i>lüüIFY. Uk k^irr.i THP l AanFKKh MfS .
GAHA, TMbTA, J»Hl Akt AköITKARY FAKA.'itTtKS . ZtKHUL IS TU Öt TESTtÜ
FüK SPfctü AiML) KdLIAöILl/t WMtN TritY Akfc VAKltl). PüSSIdLF
VALUcS Akt GA>A=ü.5t THtTAsl.ü, PMI=0,2 .
V = AöUlk/G
ACCtPT CülK Ir CAdS(CuIk) .Lt. GAiiA*G .
IF(V .Lt. GAi'iA) GU TU 800

RtJfeCT CUlk IF CAöS(CUIK) .GT. TMtTAOG
IF (V .GT. THtTA) GU fü 1100
«OOIFY CUIK SU TMAI' CA8S(Cl)IR) = GA1«iA*G .
IF(,NnT.(STAkTJ .UK. SFIKAL) .AND. kU .GT. GANIA«G) GU TU

► 8Ü0
V = GAilA/V
CUIK = O^LXI VVACUIKI 1)
AöUIK • AöÜlk*V

V*ACÜIk(2))

c
c

c

c
c

ACCEPT PKtVlUUS ITtkATE. SAVE ÜATA ASSUCIATtU WITH CUkRtiMT ITERAT
BOG CUixTIiMUt

G « FEJtk
CL = CUIK
AttSCL = AÖülK
Fü » FN
ÜZÜR = IJZ">4K
OZOI = ÜZNI
CUIK AT 1Mb Ukl IN IS IiM THt UIRECTIüiM Üt üECKEASI.MG FUMCTIüIM

h0\

VALUE Sü
STARTU = .TKÜt.
Tht iMfcXT irtKATt IS ZIM=CMFLX(UZNK t 01*1)»
(cNTKY HüINT WHt^i CUIK IS NUT ACCtPTbi).)
\)lt\R m ülöK + ACL(I)
UZixI = UZüI f ACL(2)

rtriEKE

IS ZiN CLUSE TU THE KbAL AXIS RELATIVE Tu STEP SIZt
(cNTKY PUI'MT FHO« THE SHIKAL BLUCK.)

602 Ir (AdS(U2NI) .LE. PHI«AriSCL) GU TU 930

168

c
c
c
c
c

'00 CUNTIiMUb
ZN IS COMPLEX .
MCTUKIZATIUN ÜF PULYNÜrtIAL BY UUAOKATIC FACTUK (Z*v2-X2*Z+R)

SUM(OU(I)«Z**(N-in =

 mt VALUE OF THF

(Z*»2-X2«Z+R)*SUrt(Z(I)»Z*«(N-I-2)) +
Z{N-1)«(Z-X) ♦ Z(N) hü« ALL

 g.QL.YNÜMlAL AT (XtY) IS CF .
C
C
C
c
c

JL

c

c

c

c

£L

FIRST DtRlVlTIVE UF PULYNÜMlAL AT (X,Y) IS
SECUNU DERIVATIVE UF POLYNOMIAL AT (X,Y) IS

WHERE (XtY) IS A ZERU UF Z»*2-X2*Z+R .
E IS ERROR 60UIMÜ FÜK THE VALUE OF POLYNOMIAL ANÜ
Z(I) ARE THE COEFFICIENTS OF QOOTIcNT POLYNOMIAL
SURE THAT THE OVEKFLüW IhüICATUR IS TiJKNtfl OFF.

CF1 « ANÜ
2.»CF2 t

OVFLOW = .FALSE.
CALL FPTON TO REDUCE ERRORS CAüSEü bY INTERMEDIATE UNDERFLOWS .
CALL FPTUN
INITIALIZATIONS FOR THE EVALUATION LOOPS .

901 S = 0.
SI - 0.
Tl = 0.
ÜT » DUO
INDEX J IS USED TO CHANGE DX ON THE LAST ITERATION
J « 3
SET Z(X,Y) TO ZN(ZNK,ZNI) .
OX = DZNR

c
c

UY
SC
SC
IF
IF
IF(

= DZNI
IS ESTIMATED IN CASE SCALING IS NEEDED IN BLOCK 900

■ CAbS(CMPLX(DX,DY))
CABS(ZN) .LE. SORT(SMALLEST NO,
CABS(ZN) .GE. SORTi LAKGEST NO.
SC .GE. T63b .OR. SC .LE. TM6^i>

)
)

i SCALE UP X AND
I SCALE DOWN X AND
GO TO 90i>

IS UNNECESSARY. SCALING OF X2 AND
DX2 = OX ♦ DX
OR = ()X**2 + DY»*2
Z(l) = DU(I) + 0X2*0U0
Z(2) = DU(2) + (DX2*Z(1) - DR«DUO)
IF (J ,LT. N) GO TO 903

902 DX2 = DX
J = N

903 DO 90^ I = J,N1
V = S1*R
SI » S
S « Tl ♦ (X2»S - V)

90^

OV = DT1*DR
0T1 = DT
DT = (DX2*DT -
Z(I) = D0(I) +

IF (J .LT. N)
GO TO 909

DV) + zn-2)
(DX2#Z(I-1) -
GO TO 902

DR«Z(I-2))

169

.

1

C
905

SCALE X AND
OX - DX/USC
ÜY s UY/ÜSC

Y LEST R OVERFLOWS ÜK UNUtKhLUWS

ÜR CANiMUT ÜVEKFLJW, hURTUi^ATtLY
OR = (ÜX**2 ♦ ÜY*«2.)*0SC
0X2 = OX + ÜX
Z(ll = oud) +
ZJ2) = ÜU(2) +
Itj J tLT, IN)

(0X2«ÜUU)«USC
(UX2*Z(1) - ÜK*OUÜ)»ÜSC

QfJ TQ 9Q7
906

907

ÜX2 ■ OX
J a N

OU 908 I ■ J»iMl
V = S1*R
SI = S
S » Tl ♦ (X2»S - V)»USC

908

OV a ÜT1*UK
on = or
ov = üX2«ür - ov
ÜT = 2(1-2) + UV«üSC
Z(I) = ÜUII) + (ÜX2*Z(1-1)

IF(J .LT. N) GU TO 906
- ÜK«Z(I-2))*USC

C
C)

c

(tNTKY PJIiMT MUrt THE NUN-SCALING BLUCK
909 Cr s CNPLX(Z(N) » ÜZN1*2(N-l))

FN « CA8S(Ci-)
IF ÜVFLÜW, THE CUkrFICItNTS MUST BE SCALfcO ÜOwiM.
IF(OVFLUw) GO TU 1U2
E « ABSfOUU)
OU 910 I ■ UN

910 E « ABS(Z(I)) + SC*£
£ « UNAÜ^E
IF(UvFLUw) E = XiM*t
CHECK TU SEE If ZN IS A ZEKU.
IF(FIM .Lfc. E) GU TU 10Ü1
IF FN HAS U^üEÄFLUwcÜt GIVE THE wESSAGt
IF(ANÜ(BIT , FN) .N£. 0.) GÜ TU 911

CALL UW' c(.73, ÜVFUNF)
GU TU 1000

911 CALL FPTST

OVFUNF

C

c

HAS THE FUNCTION VALUE ücCktASEü .
IF(FN .GE. FO ,ANU, STAKTü) GU TU 11ÜÜ

OV « 2.ÜÜ*ÜZNI
CF1 » CMFLX(t<i\ü(Z(N-l) - (ÜV«(0T1*üZIMI))) f KiMÜ(V*T))
 CF2 a CHHLX(T - V»(V»S) t SiMGL(0Z)Ml)*(3.'i'Tl - V»(V^S1)))
C FlnO THE LAGUtKKE STt.-» AT IN,

ÜVFLÜrt a .FALSE.
C » CF1/CF

C IF UVFLUW, THt^E IS A ZcKU WITHIN A UISTANCC UF N*2**(-127) UF ZN
IF(UVFLUW) Gü TU lüüO

170

^■1

CUM^UTfc Trit LAGUtrKKF
CALL CODKTCI CMPLX(

i CMPLX(
FEJEK = AöSlACülKd))
C = CMPLX(XI>I2IM»AC(1)
C = OCUIK
C = CMPLXt ACdl t- Ml

STdH CÜIK AMI THF rtntJjNif) t-H.l»
XZiMl^'ACFZi 1) , X2N1*ACF2(2)) ,
X2**ACF1(1) , X2N*ACt:l(2)) , CF,

-ZN.^.._

CDIK, Cl-l)
AöS(ACüIR(2))
XN2^*AC(2))

. AC(?1 1
CUIR = CüIK/C
ABÜIK = AÖS(ACÜIK(1)) + ABS(ACl/IR(2))
FejEK = ArtINK RTN*AÖL)IK , FEJtR)
IS THE STEP SIZE NtGLIGIbLE . (THIS TEST
DX s DABS(UZ^K) + UAHS(ÜZiMl)
IF(DX t- AHHIrt .FQ. OX 1 Gtl TO 1002

ilAY BE REDUNDANT)

C

C

C
JL

C
c
c
c
c

JL
c
c

NÜW DETEKilINt
GÜ TÜ 701

950 CUNTIMUE
FACTORIZATION

WHETHER CUIR IS ACCEPTABLE .

UF POLYIMUiiIAL BY LINEAR FACTOR (Z-X) AS FOLLOWS

SUM(UU(I)*Z**(N-I)) = JZ-X)*SUM(Z<I)*Z*«(N-I-1)) + Z(N)
FÜR ALL Z t

SO Z(N) IS VALUE OF PULYNUHIAL AT Z=X ,
FIRST UEKIVATIVE OF PULYiMO^UL AT Z = X IS V , AND
SECUNU UEKIVATIVE UF PÜLYNÜHIAL AT Z=X IS 2»W .
6 IS ERRUR
Z(I) ARE T
OVFLOW = .F

BE SURE THAT T
OX = OZNR
OZNI = 0.00

8ÜUNU FUR THE VALUE UF POLYNUMlAL AiNO
HE CUEFFICIENTS UF QUUTIENT POLYNOMIAL .
ALSE.
HE OVERFLOW INDICATOR IS TORNtO OFF,

ABX = AöS(X)
DV = DUO
M ■ 0«
CALL i-PTUN TO
CALL FPTUN
Z(l) = DU(1) -t-

REDUCE ERRURS CAUSED BY INTERMEDIATE UNDERFLOWS

DX'i'UUO

951

E •
DO

FN

ABS(Z(1))
951 I =

W = V + x*w
DV = Z(I-l)
Z(I) = DU(I
= ABSizum

♦ ABX*AöS(DUO)
2fN

+ DX*DV
) + UX*Z(1-1)

952

F = SNGL(Z(N))
IF(OVFLOw) GO TO 102
E = ABS(DUO)
DO 9t>2 I = 1,N

E = AdS(Z(I)) + ABX-E
E = UNIQUE
IF(OVFLOw) XN*E

1 i'C r O -k'i

171

C CHtCK WHtTHE« AN ACCtPTAbLE ZbKO HAS BEEN I-ÜUNÜ .
IH FN .LE. E) GO TU 1051

C It FN MAS UNÜEKFLOWEÜ, GIVE THE MESSAGE UVFUNF
IF(ANO(ÖIT , FN) .NE. 0.) Gü TU 953

CALL UNCLb(73, ÜVFUNF)
 r,n TU in^o

953 CALL FPTST
C HAS THE FUNCTION VALUE UECREASED .

IF(FN .GE. FO .AND. STAKTÜ) GÜ TÜ 1100

OVFLUW = .FALSE.
FIND THE LAGUErtkE STEP AT Q7NH .
R « V/F

C IF OVFLÜW, A KÜQT ÜF PULY. IS, WITHIN 4«N»(SMALLEST NO.) OF ZN.
IF(ÜVFLÜW) GU TO 1050
CALL OUKTC« XZNl^W , X2N«V , F , C » CF1)

C CALCULATE THE FEJEK BOUNU FÜÄ SMALLEST ZERO .
FEJEK = ABS(AC(1)) + ABS(AC(2))
R » XN2N*R
CDIR = C/CMPLX(R«AC(1) + XN1 , R«AC(2))
ABUIR ■ ABSUCOlRd)) + ABS(ACUIR(2))
FEJER = AMINK RTN*ABDIK , FEJER)

C IS THE STEP SIZE NEGLIGIÖLE .
 PX ' PABSIU^NK)

IF(DX ♦ ABDIR .EO. DX) GO TO 1052
C NOW DETERMINE WHETHER COIR IS ACCEPTABLE .

GU TU 701

ACCEPT CZN AS A COMPLEX ZERO .
IQQO CONTINUE ;

C
C

C SET UNUERFLOW INOICAFUR TO .TRUE. WHEN FN UNUtRFLOwS
UNF = .TRUE.

C PUT COEFFICIbNTS UF OUUTIENT POLYNOMIAL IN DU ARRAY .
C ENTRY POINT WHEN FN . HAS NOT UNDERFLOWED .
1001 CALL FPTST

C ENTRY POINT WHEN STEP SIZE IS NEGLIGIBLE .
1002 Ü0 1003 I = 3,iM
1003 DU(1-2) = Z{1-2)

C OUO IS UNCHANGED FUR THc DEFLATED POLYNOMIAL.
Z(N) = DSIC(CMPLXI RND(DZNR) , RND(UZNI)))
Z(N-l) = ÜSIC(CONJG(Z(N)))
GO TO 201

C
C

c

ACCEPT ZN AS A REAL ZERO .
1050 CONTINUE

SET UNDERFLOW INDICAIUR TO .TRUE. WHEN FN UNDERFLOWS
UNF = .TRUE.

PUT COEFFICIENTS OF OUUTIENT PQLYNUMIAL IN' DU ARKAY .

172
10

!

tENTrtY PLHMT WHUM PIN HA<; IMIIT UMQlüL£Lüa£i3
1051 CALL FPTST

ENTRY HÜINT WHEN STEP SIZE IS NEGLlGIöLE .
1052 ÜU 1053 1 = 2fivi
1053 DUC1-1) = Z(1-1)

0U0 IS UiMCHA^GEü FUK THE DEFLATEÜ "ULYNUWIAL.
 Z(N) = K'NP(UZNK)

GU TU 202

CURRENT LAGUEKKE STEP IS NOT ACCEPTAbLE ,
1100 CUNTINUE

If STARTOi KEDUCE PRfcVlUUS LAGUERRE STEP ÜY HALF.
Ifi .NUT. SIA&IU > SU "1 1700 ;

C

A8SCL = 0.5*ABSCL
CL = CMPLX(0.5*ACL(1) » 0.5*ACL(2))
HAS THE STEP ÖECUHE NtGLIGIbLE .
OX ■ UAbS(OZNR) ♦ UAbS(UZNl)
IF (ÜX + AöSCL .NE. ÜX) GU TU 801
 OTHERWISE. ZFRPni- HAS riUNC-UP.

1103

1200 CONTINUE

IF(FN .LT. E«XN*«2) GU TU 1103
CMESH » CI12(N)
CALL UNCLE(75, MESH)
IF(OZNI) IU02» 1052, 1002

C IF .NUT. STAKTO, HAS CZiM BEEN UN THE INNER CAUCHY RAUIUS.
IF<SPIKAL) GO TU 1201

C SET SPIRAL TU .TRUE.. PUT ZN UN THE INNER CIRCLE UF THE
C ANNUf.US CONTAINING THE SMALLEST ZERU IN ThE ÜIRECTIUN UF THE
C LAGUERRt STEP .
 SPIRAL = .TKUE.

CSPIR = CMPLX(-1.25/XN , 1.)
ABSCL = RU/XN**2
C » CMPLXI UCÜIR(1)/ABUIR)*RU
GO TO 1202

, (ACUIR(2)/ABUIR)*RÜ)

C
C SET ZN TU ANOTHER PUINT UN THE SPIRAL

1201 C = CSPIR*CMPLX(
1202 ÜZNR = AC(1)

ÜZNI = AC(2)
GU TU 802
ENO

UZNR , ÜZNI)

173
I

FLOV CHART 3.1

i*«4*<«iM'k% vw»'1»v-'" irr« | Ös4»c» v ./

/

S««WMI 12

s Ov«r((>»>

S«cf/.n III

®

Xocr« «irj

pfl.WMC«,'»' t^S «/if W«^ WCJ^

r..

»(M i"<«f«ic

At«l I1«r«ic. Ca^fitr t<'<■«♦<,

Con iVi^

fMV 1747)

I

174

7094-11 SYSTEM SUPPORT FOR NUMERICAL ANALYSIS-5

W. Kahan
Department of Computer Science

University of Toronto

ABSTRACT. This is the first half of a progress report on the author's
efforts to improve the performance of IBSYS in the following areas of
FORTRAN IV programming:

1. Error-traces and diagnostic messages to locate and explain
flaws found while executing FORTRAN programs.

2. Post-mortem facilities via the FORTRAN IV statement

IF (KICKED{OFF)). . .

3. A consistent, sane and flexible treatment of over/underflow and
related phenomena.

4. Digit manipulation (like rounding) via FORTRAN built-in functions.

5. The eradication of anomalies in the compiler (IBFTC) and
the FORTRAN library (IBLIB).

6. The expansion of the FORTRAN library to include reliable and
convenient subprograms for the solution of standard numerical
problems like systems of linear equations,

polynomial equations,
eigenproblems,
minimax approximation,
fitting data by least squares,

v systems of ordinary differential equations,
etc.

Items 1 to 5 are herein regarded as essential prerequisites to the
accomplishment of item 6 in such a way that users of these subprograms
need not supplement their own competency in mathematics, science,
engineering or the humanities by a hyperfine proficiency at both numerical
analysis and the debugging of systems programs. Each of the six areas will

-■:tThis article previously appeared in SHARE SSD No. 159. We wish to
thank the editors of SHARE for permission to publish it in these Proceedings,

175

be discussed in a correspondingly numbered section of this report, which
begins by introducing the motivations for and the constraints upon the
author's efforts. Sections 1 to 3 follow; section 4 to 6 will be issued
separately later.

INTRODUCTION. For as long as electronic computers have been
in use (since 1949 at the University of Toronto), there has existed a stead-
fast policy to widen the range of intellectual disciplines that might benefit
from the machine. That policy is partly responsible for a decline in the
numberical sophistication of users which has yet to be compensated by an
increased sophistication in the programs they can use. Despite intensive
attempts to educate them in the arts of computation, too many new users
attribute to the numerical library subprograms the infallibility of a mathe-
matical proof. They shall be disillusioned. To what extent can their
disillusionment be written off as part of their education? To what extent
can their dissatisfaction be traced to shoddy computing systems? There is
room for improvement in both the quality of education and the quality of
computer performance. But you cannot teach an old dog new tricks, and
you cannot teach a new dog very much. Therefore the bulk of the improve-
ment must and can come in the performance of computer systems.

The performance of IBM's IBSYS on the 7094-11 has left a lot of room
for improvement. The improvements listed here were motivated almost
entirely by the inadequacies uncovered during the author's researches into
numerical methods. The object of the researches was to produce working
programs about which might be proved something simple and useful to a
numerically unsophisticated but otherwise intelligent and educated user.
As a by-product of these researches, the following vague generalities have
emerged:

-Computation costs most when its result is not known to be right
nor wrong, because it costs so much to find out what is wrong
and why. Costs can be cut by a small amount of self-doubt applied
early.

■ -Whether or not the purpose of computing be "insight", its most
dependable benefit is hindsight. Programmers dislike forgoing
this benefit through lack of foresight.

-Errors, anomalies and arbitrary restrictions hurt most when
they are too rare to remember but not rare enough to ignore.

These generalities have influenced the many decisions on questions of
detail which arose during the work on the system. A more decisive influence
was exerted by three constraints:

176

^

fm

First, it was deemed essential that programs be capable of conversion
to whatever machine might replace the 7094-11, and so it was decided that
all numerical subprograms be written in a language like FORTRAN or
ALGOL, except where efficient coding was so obviously machine dependent
that the assembly language MAP was used. I chose FORTRAN IV in
preference to ALGOL, I would rather fight than switch. I am still fighting
with the latest version (13) of the IBFTC compiler to incorporate all the
modifications which I had introduced into the previous version, and further
modifications to correct newly discovered deficiencies.

Second, since no one had anticipated a need to rewrite IBSYS or IBFTC
in its entirety, no recources were allocated for such a task. Therefore,
IBSYS and IBFTC have been modified as little as possible, instead of being
replaced. The modifications have cost about three man-years of work all
told, much of which has been dissipated in the transfer of the modifications
from version 12 to version 13 of IBSYS.

Third, but most important, is our decision that the Toronto version of
IBSYS remain compatible with the standard IBM IBSYS. Consequently,
any FORTRAN IV program, even if it be in the form of a binary object-
program deck, which has been designed for and runs correctly on a 7094
under standard IBM IBSYS with a hundred or so storage locations to spare
runs at least as well under our modified system. If the program be recom-
piled with no other modification then the user may benefit from our improved
diagnostics, especially where division by zero is concerned. Most of the
users of our 7094-11 are unaware of any departure from standard. But
programs which run well on our system sometimes fail mysteriously at
other 7094 installations.

In this report an attempt will be made to discriminate between IBM's
standard IBSYS and our modified IBSYS by referring to theirs in the past
tense whenever it differs from ours. Further details about IBM's IBSYS
can be obtained from their manuals;

C28-6248
C28-6389
C28-6390

(IBSYS monitor)
(IBJOB; loader and library)
(IBFTC FORTRAN compiler)

Further details about our modified system can be found in "The Program-
mers' Reference Manual" 2nd ed. obtainable from

The Secretary, Institute of Computer Science,
University of Toronto,
Toronto 5, Ontario,
Canada.

177

and henceforth referred to as the PRM.
too if requested by name.

Program listings are obtainable

I. ERROR-TRACES AND DIAGNOSTIC MESSAGES. It may seem
peculiar that a Numerical Analyst be preoccupied with the Systam Pro-
grammer's traditional responsibility for error-traces, diagnostics and
post-mortem information. But let us watch the Numerical Analyst at work.
Much of his computer time is dissipated by the diagnostics and post-mortems
which he receives while trying to discover why his algorithms do not work
as well as he had hoped. From time to time he hands one of his subpro-
grams on to some other user numerically less sophisticated than himself,
and in so doing he tacitly shares with the Systems Programmers some
responsibility for issuing diagnostics. His program may produce diagnostic
messages for different reasons than merely to signal its own collapse.
Diagnostics may be the only "correct" answers that the program can deliver
in response to problems outside the intended domain of its applicability,
especially when the program's domain cannot easily be defined other than
by attempting to execute the program. For example, a hopelessly ill
conditioned linear system

A x = b

is most easily identified when a sound linear-equation-solver fails to solve
the system for x but exhibits instead a near linear dependence d in the
left hand side A; i.e.

KM || /(|| A || I d ||)40 .

The Numerical Analyst's subprogram ought to pass on this kind of diagnostic
information in a form easily interpreted either by the user's calling pro-
gram or by the user personally.

The later form of diagnostic is usually a message printed amidst the
user's output and is often the consequence of an error or oversight. The
crucial question is

"Where was this error committed?"

but no computer program can answer this question. The best that can be
done automatically is to answer the question

"Where did the program first encounter some
anomalous consequence of the error?"

178

I"l '•~rmmmmm~- ^^mmmmmm^mmmmmm

The answer takes the form of an Error-Trace. Under IBM's IBJOB
this would be provided by library subprogram . FXEM. , the FORTRAN
execution Error Monitor. Let us examine an error-trace typical of those
produced by IBM's . FXEM. . For example, suppose line 2 of the user's
main program MAIN called a subprogram SUB1 in whose line 2 5 was a
call to SUB2 in whose line 17 was a reference to SQRT{-4.0). When this
reference was executed, the SQRT program would detect the inappropri-
ately negative argument and call .FXEM. (say in line 31) to produce an
error-trace and diagnostic message. IBM's error-trace would look like
this;

ERROR TRACE CALLS IN REVERSE ORDER

CALLING IFNOR ABSOLUTE
ROUTINE LINE NO LOCATION

SQRT 31 17621
SUB2 17 14513
SUB1 25 07762
MAIN 2 05413

The names in the first column are the deck-names assigned by the user
to .his subprograms (or else, in our modified system, assigned by default
by the system). The line numbers or "Internal Formula Numbers" in the
second column refer to numbers printed in the programs' source listings,
and can be exploited by the FORTRAN IV programmer without recourse
to storage maps. For this reason, the third column of absolute octal core
locations is of secondary value to the FORTRAN programmer. It is a
great convenience that he can ignore this column and dispense with storage
maps most of the time.

The completeness of the error-trace shown above is one of its most
valuable features. Complicated programs can contain several references
to the SQRT subroutine, and it is vital that the path of control to the invalid
reference be laid out explicitly. The complete error-trace is even more
valuable when languages which permit recursive procedures are used.
If a user were instead provided with only the reference to SQRT (or only to
SQRT and SUB2) in the error-trace above, he might waste a lot of time
checking through all of his calls to SUB2 in an attempt to uncover the
faulty one.

i

IBM's .FXEM. would print out a two-line diagnostic message and
provide a means to exercise options regarding kick-off or continued
execution following the diagnostic and error-trace. But .FXEM. suffered
from two defects.

179

One, the easiest to remedy, was that . FXEM. could be called only
from a MAP assembly language program. We fixed this by providing
a program called UNCLE; any programmer can kick himself off (and
produce an error-trace plus post-mortem debugging output) by executing

CALL UNCLE .

He can offer users of his program a limited range of kick-off-or-continue
options by writing

CALL UNCLE (N)

with a suitably chosen integer expression N. He can supply one or two
diagnostic messages too by writing

CALL UNCLE (N, Message) or

CALL UNCLE (N, Message 1, Message 2) .

The messages can be inserted literally as Hollerith strings or they can be
referenced as arrays of alphanumeric data. In the latter case, rudimentary
binary-to-BCD conversion facilities are available to permit integer valued
variables like indices or error-codes to be inserted into the diagnostic
without first reserving core storage for the panoply of FORTRAN input/
output subprograms. This last is an important consideration when program
overlay is required during execution. (For more details about UNCLE,
consult the PRM.)

.FXEM's second defect was that it could cope only with what I call
"scheduled errors"; these are errors each of which is discovered in a
subprogram which, when it calls .FXEM. to produce an error-trace,
can supply whatever linking information is needed by .FXEM. to start
the error-trace. For example SQRT(-4.0) is a scheduled error because
SQRT is called in a standard way. But when unscheduled errors like over/
underflow, division by zero, running overtime, ... , were detected they
would "trap", i.e. cause interrupts which transferred control to appropriate
subprograms without carrying the standard linking information that made an
error-trace possible. Consequently, the diagnostics for unscheduled
errors answered the question "where?" with an absolute octal core loca-
tion, but could not answer the question

"How did I get there?"

That IBSYS's standard linking sequence contained a partial answer to
the last question was widely recognized. The first effort to extract a full

180

-

answer was made by G. Wiederhold and G. D. Johnson at Berkeley (Univ.
of California) in 1963. Their work has appeared in SHARE SSD 121 of
May 21/64 and SDA's 3066-7. A similar scheme was devised by J. Leppik,
G. Howard and the author at Toronto in 1964. Our scheme differs from
theirs mainly in that ours is simpler to use, slightly less flexible, and
fully compatible with the standard IBM system.

The first step in both schemes is to revise the standard SAVE pseudo-
operation by which subprograms are expected to save and restore index
registers, control linkages, etc. When IBM's SAVE was executed upon
entry to a subprogram SUB, it used to save in a cell called SYSLOC
the pointer to the statement

CALL SUB ,

but no subsequent use was made of SYSLOC. We have added two instruc-
tions to SAVE whose effect is to store the same pointer, during the
RETURN from SUB to the instructions following

CALL SUB ,

in such a way that the contents of SYSLOC show whether SUB has just
been entered or has just returned. This modification has no effect upon
the way IBM's .FXEM. behaves for scheduled errors.

Next, I rewrote .FXEM. so that it can be called from a trap-
handling program. Such a CALL is distinguished from other standard
CALLS by the absence of certain otherwise expected linking information,
the lack of which forces . FXEM. into a new mode of action which examines
SYSLOC to produce the first line of the error-trace.

The behaviour of the new . FXEM. is best illustrated by an example.
Suppose that SUB2 in the example above contains, besides SQRT(-4.0),
a division which, when executed, turns out to be a division of zero by
zero. The result is the following diagnostic (in which the contents of the
sec :ond line depend upon an option selected by the user);

181

0. 0/0. 0 ERROR AT 14506

RESULTS IN 0.0 or EXECUTION TERMINATED

ERROR-TRACE WITH CALLS IN REVERSE ORDER CODE 25

CALL IS IN AT IFN OR ABSOLUTE
DECK NAMED LINE NO. LOCATION

SUB2 17 + 14513
SUB1 25 07762
MAIN 2 05413

The important change shows up in the + sign after the line no. 17.
This means that the announced anomaly was detected during or after (in
time) the execution of line no. 17 of SUB2, but before any subsequent
CALL was executed. Since SUB2 has a call to SORT in line 17 at
location 14513 (cf. the previous error-trace), and the 0. O/O. 0 occurred
five words ahead of this location in the program, it seems likely that the
program was executing a loop, perhaps a DO-loop, which contains the
offending division just a line or two in the listing ahead of the square root;
and this loop was executed at least once before the divisor vanished.

The detective work in the last sentence is not typical; usually the
error can be located by the most superficial inspection. But the need for
any detective work at all is an unfortunate consequence of the way IBM's
FORTRAN IV compiler works. Instead of identifying every line in the
symbolic listing with a line number that . FXEM. could deduce at
execution time (for example, by locating a dummy instruction

TDC ID, O, LKDR

at the beginning of the coding emitted by the compiler for line no. ID of
the FORTRAN subprogram whose linkage information can be found at
LKDR), the compiler assigns a useable line number only when a CALL is
generated. Since an implicit CALL is generated for all references to
FUNCTION subroutines, as well as for most exponentiations of the form
X'i'^J and X**Y, for input/output, for complex multiplication and division,
and for a computed GO TO(n], n , . . . , n), I, there are few programs

whose listed line numbers are too sparse for a successful interpretation
of the error-trace. Ar.d, at worst, the unscheduled error is located to
within one subprogram.

The CODE 25 at the head of the error-trace tells the programmer how
to exercise his option to define 0. O/O. 0 in one of two ways; either

182

^■^RMMÜ^K^HB^B^

I
0. O/O. 0 = 0.0 and continue execution, or

0. 0/0. 0 = EXECUTION TERMINATED.

For example, the first option is the result of executing

CALL KIKOPT (25, 1)

while the second results from

CALL KIKOPT (2 5, 0) .

The reader is referred to the PRM for precise details about available
options and how to exercise them conveniently. What follows is a conden-
sation.

The PRM contains a table of error codes and messages (cf. Fig. 25
and the section "Subroutine Library Error Messages" in IBM's IBJOB
manual, Form C28-6389-1) which describes for each code its error
condition, the options available, and which option is assumed by the system
in default of a request to the contrary. The default option is usually to
provide a message and then continue execution in some reasonable way.

I believe that, taken together with the other diagnostic facilities in our
system, our surprisingly simple set of options covers almost all circum-
stances satisfactorily. For serious errors we assign positive codes, like
+25 for 0. O/O. 0, to signify that the allowed options are

+ 1) Give a message and error-trace, and then continue reasonably,
or

+0) Give a message and error-trace, and then terminate execution,

(Some errors, like

GO TO (1,2,3), 4

are so serious that option +1 is denied.) For milder errors we assign
negative codes, like -13 for SQRT (-4.0), which signify that the allowed
options are

-1) Give a message and error-trace, and then continue reasonably,
or

-0) Give no message nor error-trace; just continue reasonably.

The meaning of "continue reasonably" is discussed later in this report.
For now it suffices to give a few exanples;

183

Error Condition and "Reasonable" Response Code

SQRT{-X) = - SQRT{X) -13
LGG(-A) = LOG{ABS(A)) -10
0.0**0 =1.0 - 3

0**0 =1.0 - 1
0.0**0.0 =1.0 + 6
0.0/0.0 =0.0 +25

*Footnote: We allow programmers to write Lf©G{X) or
ALiQG (X) interchangeably as they please
rather than penalize them for the venial sin
of omitting the A.

Programmers, particularly writers of library subprograms, can
easily provide other kinds of optional responses to error conditions
detected by their own subprograms because the status of the option-
indicator (a binary digit) associated with any error-code number can be
sensed and stored as well as change via KIK0PT. A complicated program
may have several error-codes assigned to it, but this causes no problems
because 280 codes are available. Programmers are free to use error-
codes as flags or flip-flops in a way comparable to the use of sense-switches
and sense-lights on the older slower machines.

A comment is required to explain that last . FXEM. option -0 which,
in effect, allows .FXEM. 's activity to be suppressed entirely when the
error is a mild one with a negative code. Some of these errors are better
described as differences of opinion about the most apt definition of a func-
tion or an expression, as in the cases of 0**0 = 1 and 0.0**0 =1,0 (cf. the

00 r

Taylor series Sax at x =0. 0). In these cases the warning messages
0 r

serve only to remind users that my definitions are not universally accepted
in the computing world. If he is satisfied to do things my way, he can turn
the message off. If he prefers another way, he can easily change the
relevant program to his own specifications with the aid of the documentation
which we supply.

Other errors with negative codes sometimes represent minor over-
sights; an example is

L©G(-X) = L©G(ABS{X)) , Code - 10.

For reasons discussed later, our policy is to try not to terminate execution
because of such an oversight. Rather, it seems better to continue and find
out what else the programmer overlooked. We do not encourage program-
mers to exploit system side-effects to save the bother of a sign-test or

184

■■•■^"^"^^■■■■•^i

some such simple instruction. We do not regard the -0 option as one
which should be employed in production or library programs to correct
oversights, except possibly temporarily, because this type of hidden
coding is so difficult to remember when late-hatching bugs are being
sought.

To implement the new . FXEM. and error-trace required several
man-months of work, most of which was spent tracking down anomalies.
For example, several input/output programs supplied as part of ecrlier
versions of FORTRAN IV were found to use non-standard subprogram
linkages, and these had to be repaired to allow even the old .FXEM. to
produce meaningful error-traces before they were further modified to
work with the new .FXEM. . Every library program had to be examined;
here we reaped an unexpected reward when we discovered that the new
.FXEM. makes possible a shorter and faster subprogram linkage to
certain library programs like SQRT, SIN, COS, LOG, EXP, complex
multiply, complex divide, A-'-'J, and others.

But one large job remains. The FORTRAN compiler must be modified
to generate standard CALLs to Arithmetic Statement Functions which at
the present, as compiled by IBM's FORTRAN IV v. 13, use non-standard
CALLs in order to save about 7 microseconds per CALL. (One division
costs 8. 4 microseconds.) Consequently both IBM's .FXEM. and ours
produce error-traces which skip, sometimes confusingly, over references
to Arithmetic Statement Functions.

2. POST-MORTEM FACILITIES. We prefer to think of kick-off as
an act of desperation on the part of a subprogram, and therefore try not
to terminate execution unless it is overwhelmingly probable that continued
execution will be an utter waste. There is little risk that errors like
SQRT(-4. 0) will be repeated millions of times to no good purpose, because
the monitor imposes the user's own limit upon the total number of lines
of printed output, thereby protecting him from a million lines of SQRT's
diagnostic and error-trace. Furthermore, programmers who are
especially sensitive to a waste of their computer time allotment can use
statements like

IF (CLOCK (TSTART) .GT. TMAX) CALL UNCLE

to kick themselves off when the elapsed time since

TSTART = CLOCK (0. 0)

exceeds TMAX, at a cost of 70 microseconds per execution. (One square
root costs 64 microseconds.)

185

Mi

But sometimes kick-off is the only reasonable response to an error.
This response gives rise to a class of programmer who has only one
diagnostic and error-trace to show for his several seconds (or minutes)
of computer time. It is uncharitable to advise him that he should have
exercised enough foresight to provide intermediate output as insurance
against such an event. Besides, he may reply

"I thought 1 had debugged that program."

We doubt the wisdom of the widespread tendency to inundate every
user who is kicked off with a complete dump of storage willy-nilly. This
could drown him in octal data which he is unlikely to be able to read. It
is a costly way to educate students.

The ideal solution would be to display conveniently just those variables
which have figured in the events leading up to the debacle. Our solution
is not ideal, but it is simply and flexible. It is an improved version of our
PMORT described in Comm. A. CM. 7 (1964) p. 15. We allow the pro-
grammer to write into his FORTRAN IV program a statement of the form

IF (KICKED(OFF)) <any executable statement

< the next executable statement >

with the expectation that, because the value of the logical function KICKED
is always .TRUE. , his program will merely execute <the next executable
statement^ . But if and when his program is kicked off, the monitor will
give him the diagnostic and error-trace that he deserves and then, after
over-writing <the next executable statement> with CALL EXIT, will
execute <any executable statement> .

e.g. 1: IF(KICKED(OFF)) WRITE(. . .)

causes the desired information to be written out if and only after the program
has been kicked off. The programmer can choose a FORMAT to suit himself
or, if more convenient, he can use the simple unformatted output provided
by the NAMELIST feature of FORTRAN IV; or he can CALL DUMP and be
drowned.

e.g. 2: IF(KICKED(OFF)) CALL
GO TO

or

causes the desired transfer of control to take place after kick-off, and
thus permits a user to store valuable data on magnetic tapes and ask the
operator to save them. Or he can call a complicated diagnostic program of
his own, or he can try again to solve his problem by some method other

186

'^m^mrm^im

than the one which failed. The monitor will allow, say, 20 seconds and
300 printed lines of computer activity after the first kick off. Of course,
any second kick-off is final despite further IF (KICKED(OFF)). . . requests.
Because the user has recourse to KICKED, writers of library and systems
programs are under less pressure when they have to decide whether an
anomalous condition should terminate execution or just produce a warning.

Programmers are encouraged to use KICKED as often as they like
in both FORTRAN and MAP assembly language programs, and they can
leave these KICKED statements in production programs as insurance
against the remote possibility that an undiscovered bug may terminate
execution in a cloud of mystery. Each executed reference to KICKED
consumes less than 14 microseconds (less than two division times) so
KICKED can be used in fairly tight loops without seriously wasting time.
The monitor will respond at kick-off only to the last executed reference
to KICKED.

An important limitation upon KICKED was imposed by the absence of
any block structure in FORTRAN comparable to that in ALGOL, and by
the way that indexing is optimized in FORTRAN. This limitation exists
because, whenever kick-off occurs in some subprogram remote from the
one containing the KICKED statement and then control is passed to <any
executable statement> after the IF{KICKED(OFF)), no attempt is made to
restore index registers to the state they were in when KICKED was called
nor to re-set tapes to their former positions. More important, there is no
way to reproduce the effect of those instructions which may have been placed
in "optimum" positions ahead of the call to KICKED in order to initialize
index registers and addresses as efficiently as possible from the point of
view of the normal sequence of control. For example, if kick-off occurs
during the computation of FCN in the sequence

DO 3 J = 1, 10
A{1, J) = J - 1

DO 3 I = 1, J
IF (KICKED{OFF)) WRITE{. . .) I, J, B(I), B(j), (A{K,J), K=1,J)

3 A(I + 1, J) = FCN{B(I), B(J), A{I + 1,J)) + A (I, J)

there is no way at kick-off time to move the numbers I and J from
storage into the appropriate cells and index registers for the references
to B(I), B(J), A(K, J) and "K = 1, J" following the call to KICKED.

A second limitation shows up when program overlay takes place; there
is no simple way to detect whether <any executable statement> in the
IF (KICKED(0FF)) statement has been'partially overlaid, or whether it
refers to data which has been overlaid. Consequently we inserted an instruc-
tion in .L0VRY, the overlay handling subprogram, which causes the

187

Whenever the array Y is changed, indicate which element too;

Y (2) = .74131042 E - 18 .

Whenever the third column of array Z is changed, say so;

Z(13, 3) = 0.0 .

Whenever the subprogram PROG is called, write out its arguments;

CALL PROG (13, 27.421493, Y) WITH

Y{1) = 1.4012362
Y(2) = .74131042 E -18
Y(3) = 0.0 .

IF PROG is a function, write out its value too;

PROG (13, 27.421493, Y) = 1. 7014 E38 WITH

Y(l) = etc.

Whenever statement n is executed, say so. If this is a logical IF
statement, tell what happened.

The MONITOR facility as described above has been implemented
at least partially in several compilers; unfortunately, ours is not one
of them. The problem is to deal with the statement

IF (KICKED(OFF)) MONITOR

for which the nicest solution would be a retroactive display of, say, the
last 300 lines of output which would have been produced if that MONITOR
statement had not been bypassed. Some compilers already have a feature
of this kind; the author envies their users.

Now is a good time to compare the error-options needed by the
programmer with those available to him. He may want to assign to a
specified anomaly, like 0.0**0 , one of the following four consequences:

-0) Re-interpret the request in a way judged to be appropriate
for the majority of users (say 0. 0**0 =1.0) and continue
with no message nor error-trace.

1) Re-interpret the request as above, and put out a message and
error-trace to tell the programmer what happened and where,
and then continue execution.

188

•"—"■"—w^l«« ^mi^mmmmmmwmmmm m

+0) Put out a message and error-trace to explain where and
why execution was terminated, and then grant any post-
mortem request that may have been made via

IF (KICKED(©FF)

2) Transfer control to a location designated in advance by
the programmer where he may cope with the anomaly as
he pleases, provided the necessary information is easily
accessible to him.

Our system offers at least two of the first three options for most
error conditions. The last option is dangerous in FORTRAN for the
reasons cited while discussing the limitations of KICKED, unless it is
handled carefully. The following discussion explains how some of our
library programs offer option 2).

Consider for example our least squares library subroutine LSTSQ
which, given a rectangular M x N matrix X and a column vector y ,
attempts to find that coefficient vector c which minimizes the sum of
squares

S = (y - Xc)T(y - Xc) = 2. (y. - 2.x..c.)2 .
- - - - iv i j ij y

A solution c always exists and satisfies the normal equations

T T
X X c = X y

LSTSQ tries to solve these equations (in double precision, because that
is the fastest adequate method on a 7094) for c and the corresponding
minimum value of S and, if requested, the inverse matrix

V = (xTx) -1

But if the columns of X are nearly linearly dependent, in the sense that
there exists a perturbation AX of the order of a few units in the last
place of X such that the columns of (X+ AX) are linearly dependent, then
the solution £ is not well defined and LSTSQ produces one of two things
instead of c-

0) If the user wrote

CALL LSTSQ (X, M, N, Y, C, S) or

CALL LSTSQ (X, M, N, Y, C. S, V)

;

189

then he has made no provision for the possibility that X
be nearly singular, so he receives a suitable diagnostic
and error-trace and is kicked off.

1) If the user wrote

CALL LSTSQ (X, M, N, Y, C, S, in) or

CALL LSTSQ (X, M, N, Y, C, S, V, $n)

where n is an integer standing for a statement number,
LSTSQ returns control to statement number n in the user's
calling program, and diagnostic information is made available
in V (or elsewhere if V was not. requested) which permits
the calling program to identify the linear dependence rela-
tively easily and change X appropriately. (Usually the calling
program just decreases N.) LSTSQ does not put out any
messages in this case.

The foregoing description is somewhat simplified; details can be
found in the PRM. The interesting feature is not so much the use of a
FORTRAN IV error return $n as the fact that this error return is optional.
The option is available because one of the first statements executed within
LSTSQ is

CALL ARGCNT (I.J)

which counts the arguments supplied in the CALL to LSTSQ. I is the
number of arguments exclusive of error returns, and J is the number of
error returns. The error options described above are numbered 0 and 1
according to the value of J. Similarly, LSTSQ determines whether the
user wants V = (X X) or not according as I = 7 or 6 respectively. Any
other values of I or J indicate an error, like a period between the integers
M and N instead of a comma, which is serious enough to terminate
execution with an appropriate diagnostic.

The use of variable length argument lists lends a certain elegant
simplicity to several of our library programs, and we hope that this
feature will be incorporated in the programming languages of the future.
The simplicity with whicn the error return scheme can be implemented
makes it efficient and satisfactory for a wide range of applications, but
there are two important areas where the scheme is unsatisfactory. One
consists of those difficulties caused by a small lack of foresight and
recognized immediately with the slight assistance to hindsight provided
by a diagnostic. Many of the error conditions mentioned above, like
LO(J(X) when LOG(ABS(X)) was intended, fall into this category. So do

190

■-

,

many input/output problems. It suffices here to say that a lot more
could be said for the desirability and convenience of subprograms like
KIKOPT which allow the programmer to revise temporarily the execu-
tion of his program at each of several spots without having to insert a
small explicit change at each spot.

The second area where error returns have proved unsatisfactory
covers Over/Underflow, a ubiquitous phenomenon to which the next
section of this report is devoted.

3. OVER/UNDERFLOW. Overflow and Underflow are what take
place in the arithmetic registers of a computer whenever an attempt is
made to calculate numbers outside the normal range. On the 7094, over-
flow occurs whenever the magnitude of the result of a floating point
arithmetic operation equals or exceeds

127 38
2 = 1.70141183 x 10 ;

underflow occurs whenever the magnitude is not exactly zero and is
smaller than

ilM 146936794 x 10
-38

Special provision must be made to cope with over/underflow in a way
which does not produce misleading results,

It is sometimes argued that overflow is an error for which the penalty
should be

EXECUTION TERMINATED

but this penalty would place an intolerable burden upon even the most
expert numerical analyst. He is often unable to predict in advance what
the range of numbers will be in complicated calculations, especially
where exponentials, polynomials and rational functions of high degree,
or spaces of high dimensionality are concerned. For example, if P(x)y)
is a polynomial in x of degree 10 whose coefficients are wild functions
of y, then the desired solution x = X(y) of the equation P(x,y) = 0 may
be well-defined and reasonable even though it is inaccessible unless the
polynomial-zero-finding subprogram is allowed to pursue a flexible
scaling strategy in response to over/underflows, if any, which occur
during the computation of P(x,y). Overflows should not force kick-off;
if worst comes to wor^*., a program can kick itself off by executing, say,

IF(OVFLOW) CALL UNCLE{0,22H INESCAPABLE OVERFLOW.).

191

■■

An opposite attitude of laissez-faire is reflected in the designs of
those machines whose hardware automatically replace an overflowed
magnitude by a special digit pattern representing » and then plunge on.
Such a scheme might well include, say, Ö to replace an underflowed
magnitude and -ft to indicate an indeterminate value. These symbols
might obey rules like the following:

i) Whenever an arithmetic operation generates +00, 9 or -ft , a
corresponding flag is raised to indicate to the program that overflow,
underflow or lost significance respectively has occurred. If requested
by the programmer in advance, a message can be printed out for his
information.

11) Any arithmetic operation with •6- as an operand generates -8- as a
result. •% is also generated by the following expressions: 00-00,
■/•, o/o, o/e, e/o, e/e, oo • o, « ♦ e and x/e .

iii) If x > (l unit in the last place of the overflow threshold)

then 00 - x = ft ; otherwise 00 + x = 00

If (l unit in the last place of x) < (the underflow threshold)

then » - x = -fr ; otherwise x+0 =x + 0 = x.

If x > 1 then x * 0» = 00 * sign(x) ; otherwise xj;too=6- .
Similar rules hold for x/00, ao/x, x!;t9 and e/x .
x/0 = 00* sign(x) unless x = 0 or 9

iv) The number 0 can be generated only by direct assignment or as
the result of x-x with x ji Q nor 00 . The symbol 0 , which stands
for the set of all numbers smaller in magnitude than the underflow
threshold, can be generated only by direct assignment or by an
underflow as indicated above. During comparisons the symbol 9
simultaneously satisfies

0^0, e/0, O-frO, and

x > 9 if and only if x > 0 too.

Rules like the foregoing are formidable, and have not been implemented
in any hardware known to the author (who would not expect to find them in
any machine except possibly one with interval-arithmetic built into the

dware). Buc no other less elaborate rules are known to be foolproof.
r example, the CDC bbOO'a hardware follows similar rules whose most

öbvioui difference is the lack of any distinction whatever between under-
flow to 9 and the number 0. A comparable deficiency is to be found at

192

those IBM installations where, to excape a plethora of insignificant under-
flow messages, all underflow messages are suppressed by many users
most of the time. The following segment of FORTRAN coding shows what
can happen when this is done. Here A, B, C, D and X are all positive
normalized floating point numbers (not special symbols nor zero),

Y = (A;:;X+B)/(C:::X+D)
Z = (A+B/X)/(C+D/X)
W s Y/Z
WRITE (...) W

Output: W = 1.98

In the absence of any indications of over/underflow, how is this phenomenon
to be explained? The only thing unnatural about this example is the WRITE
statement; W is more likely to have remained "out of sight, out of mind"

The replacement of underflowed numbers by zero with no indication
to program nor programmer is a clearly unsatisfactory practice. And
even when an indication of over/underflow is given, there is ample reason
to protest against the destruction by hardware (as en the IBM 360 and
CDC 6600) rather than software of information which could otherwise be of
significance to the programmer; this is discussed in more detail below
in connection with the Unnormalized Mode and the Counting Mode of treat-
ing over/underflow. But, to be fair, it must be acknowledged that most
programmers would be satisfied most of the time by the provision of
representations for + <», - » , 6 and # obeying rules like i) to iv) above.

What more might a numerical analyst demand? From time to time he
will want to generate and use numbers which lie beyond the over/underflow
thresholds. And certainly no programmer wants to be forced to check for
over/underflow after (much less before) the execution of each arithmetic
instruction in his program, and to decide each time upon an appropriate
course of action. He will prefer to choose one of the several modes of
execution provided for him by the system, with the understanding that while
the program is being executed in his chosen mode each over/underflow
will be treated according to the rules tabulated for that mode. Rules i) to
iv) above could define one such mode. The programmer should be allowed
to change modes between one line of his program and the next. Ideally,
he should be allowed, if he wants, to define his own mode by specifying
in detail just what rules are to be obeyed for each type of arithmetic
operation. Finally, although the programmer who is ignorant of the prob-
lems of over/underflow must be warned when they occur, care must be
taken not to drown him in a cascade of over/underflow messages, especially
when they are obviously irrelevant. (An example of an obviously irrelevant
underflow is remainder underflow after a floating point division in a

193

FORTRAN program, which always discards the remainder.)

An attempt has been made to serve as many of these needs as can be
served in a FORTRAN context by means of a substantial extension of the
service supplied by IBM via their subprogram . FPTRP in IBJOB. This
program exploits the fact that whenever a floating point over/underflow
occurs the 7094 "traps"; it interrupts itself and transfers control to a
designated core location after setting up an indicator word (cell 0) to
describe what caused the trap and where. This floating point trap, FPT,
takes precedence over all others in the machine; and when it occurs the
registers in the machine contain the over/underflowed result unaltered,
so that no significant information is lost. A hardware option can be
purchased (RPQ 880291) which includes improper divisions like l/O in the
scope of the FPT.

I rewrote . FPTRP in a way which, while maintaining compatibility,
increased its speed and augmented its capabilities so that programs can
easily choose and change to any one of five modes of execution. The
Standard Modes treat over/underflow very much as IBM did, the main
difference being that now underflow sets up an indicator the same way as
does overflow. The Unnormalized Modes exploit unnormalized arithmetic
to permit underflow to occur "gently" without setting up distracting
indicators or messages. The Silent Modes set indicators to indicate over/
underflow to the program but put out almost no messages for the program-
mer; cascades of over/underflows in the Silent Modes do not slow programs
down appreciably. The Printing Modes set indicators for the program and
also report each indicated over/underflow, as it occurs, in a printed
message for the programmer, thus helping him to debug his program.
The Counting Mode allows certain kinds of computations to be carried out
with no risk of over/underflow because the allowed range of magnitudes
is extended to include numbers like

2(12) .

These five modes are discussed below in appropriately titled subsections
of this report. The last two subsections discuss improper divisions and
simulated over/underflows.

THE STANDARD SILENT MODE. This is the mode in which the
system operates by default in the absence of requests for some other mode.
Whenever a floating point arithmetic operation overflows, its result is
replaced by the largest possible magnitude (1.7014 x lO") with the same
sign, and this event is recorded by setting OVFLOW = .TRUE. . When-
ever a result underflows it is replaced by zero with the same sign, and
this event is recorded by setting UNFL.OW = .TRUE. . The indicators

194

"•■»•■■■•i

OVFLGW and UNFLOW are logical variables which can easily be
sensed, stored and/or reset to .FALSE, in several ways described
in the PRM. In particular, the declarations

LOGICAL OVFLOW
COMMON /GVFLOW/OVFLOW

permit statements like

IF (OVFLOW)
OVFLOW = .FALSE.

and

to be executed without wasting time on subprogram linkages in short
loops.

This mode is called Silent because each over/underflow sets its
indicator without disturbing the programmer's output with any diagnostic
message. However, just after his program's execution is terminated
(either normally or by kick-off) a message is produced to draw the
programmer's attention to any over/underflo.vs that escaped the atten-
tion of his program; more about this later. In the Standard Silent Mode,
each over/underflow costs 1 5 to 30 microseconds; i. e. two to four division
times.

THE STANDARD PRINTING MODE. This mode differs from the
previous mode only in that each over/underflow, as it occurs, inserts a
message into the programmer's output to answer the following questions;

What happened, overflow or underflow?

Which machine registers are involved; AG, MQ or both?

What arithmetic operation was attempted; + , - , :;: , / ,
double-prec'sion, . . . , ? (An octal operation-code is
given here.)

What change was made in the affected register(s)?

Where is the instruction whose execution caused this
over/underflow? (An octal core address is given
here.)

Where in the source-program did all this happen?
(An error-trace is given here by our version of
.FXEM. .)

We also considered writing out the operands whose sum, product or
quotient had over/underflowed, but the cost of doing so seemed more than

195

*J

the information was worth. This point deserves reconsideration. Anyway,
the error-trace usually points to within a few lines of the site of the over/
underflow in a FORTRAN program.

The over/underflow handling subprogram . FPTRP can be switched
in 40 microseconds from a Silent Mode to the corresponding Printing
Mode via the statement

CALL NFPTST{M)

with a positive integer expression M . When this statement is executed,
an internal counter N is set to M and .FPTRP is caused to operate
in a Printing Mode until M over/underflow messages have been put out.
N is decreased by 1 each time a message is put out, and when N becomes
O an extra message

NOW OVER/UNDERFLOW MESSAGES ARE IN ABEYANCE

is produced and the Mode is switched back to Silent.

CALL NFPTST{0)

switches the Mode back to Silent without any extra message.

In accordance with current good practice, the FORTRAN programmer
is allowed easily to sense, save, set and/or reset the message-counter
N as well as the indicators OVFLOW and UNFLOW. Details may be
found in the PRM. But programmers are advised not to sec the latter two
logical variables to .TRUE, directly in a FORTRAN program; instead
they are advised to force an over/underflow like

DUMMY = (1.7E38)**2

This is done because, whenever over/underflow occurs, .FPTRP stores
the current contents of SYSLOC into the appropriate indicator to make
it .TRUE. . Later, when the program's execution is finished, the
monitor looks at each indicator to see whether it is .TRUE. , and if so
then that indicator is interpreted as a pointer in roughly the same fashion
as .FXEM. interprets SYSLOC when providing the first line of the
error-trace immediately after an over/underflow in the Printing Mode.
Consequently, the programmer's output finishes, whenever appropriate
and possible, with a message like

LAST UNREQUITED OVERFLOW WAS IN OR AFTER
LINE 17 OF DECK SUB2 .

196

wtw^m^^^m^^mmmm wmm

LAST UNREQUITED UNDERFLOW WAS IN A SUBPROGRAM
CALLED IN LINE 24 OF DECK SUB1.

Often the programmer can deduce from the information given here that
the over/underflows did no harm; then, since the messages have not
tainted his formatted output, he is free to cut them off and publish the
rest.

If program overlay has intervened between the last unnoticed over/
underflow and program termination, or if the indicators OVFLOW and
UNFLOW were set to .TRUE, in a naive way, then the post-execution
message may describe the desired deck-name and line number as
UNKNOWN.

It is especially important to understand that the word "UNREQUITED1

means that the program did not respond to the over/underflows and then
reset the indicators to .FALSE. . The programmer may also have
received several printed messages to notify him of each over/under flow
that it ignored.

I see now that we could have supplied, at little extra cost, post-
execution warnings more like this;

3943 OVERFLOWS WENT UNREQUITED BY THE PROGRAM
BETWEEN LINE 17 OF DECK SUB2

AND A SUBPROGRAM CALLED IN LINE 64 OF DECK SUB1.

Such a message can be more useful in deciding whether or not to
ignore the over/underflows. Also, the counts of overflows and under-
flows could be used by any programmer who, for reasons unclear to me,
wished to terminate his program's execution after a specified number of
overflows had occurred. Another improvement would be to allow a
negative value for M in

CALL NFPTST(M)

to signify that -M overflow messages are to be allowed while all underflow
messages are to be suppressed. Most of these improvements have been
incorporated into the adaptation of our scheme for the Burroughs B550O
written by Mr. Michael D. Green at Stanford University in 1966, and I
expect to put them into our system soon.

THE TREATMENT OF UNDERFLOW. Some programmers have good
reasons to want to be informed about underflow. They may want to avoid
consequent loss of precision or subsequent division by zero. But most

197 i

^»p

programmers whom I asked said they preferred that underflowed numbers
be replaced by zero without their attention being distracted by the event.
This attitude was justified at a time when most over/underflow messages
reported "MQ UNDERFLOW" during an addition, subtraction, multiplica-
tion or double-precision division. This message signified that the double-
length result of those operations in the AC-MQ register was small
enough to cause the characteristic of the less significant word in the MQ
to underflow even though the more significant word was correct. Since the
less significant word is entirely ignored in single-precision FORTRAN
expressions, and since the double-precision hardware of the 7094 ignores
the characteristic of the less significant word in double-precision expres-
sions, I decided that . FPTRP should simply ignore MQ underflow after
those operations where it was obviously irrelevant.* This decision's first
consequence was a welcome reduction in the number of messages and
complaints, especially where iterative calculations with residuals tending
to zero were concerned. The second consequence was that certain old
7090 programs, which had performed double-precision arithmetic by
simulating the 7094^ double-precision hardware, ran into spurious over-
flow troubles and required revision so that they would use instead of
simulate our machine's hardware. Fortunately, any user who insists upon
running a 7090 program unchanged upon our 7094 can do so in safety by
merely changing two well-marked instructions in .FPTRP . The second
instruction is needed to force appropriate action when remainders under-
flow after division; otherwise they would be ignored too.

It is not good enough that the system ignores obviously irrelevant
underflows. Many irrelevant underflows are not obviously irrelevant.
Consider, for example, a segment of a typical matrix handling program
which computes

r = b - S. a.x.
ill

The usual rule, which replaces each underflowed sum or product by zero,
is satisfactory except when b and all the products a.x. are so close to

the underflow threshold that the usual rule produces a significantly wrong
value for r. If all underflows are reported, how can the rare significant
reports be distinguished from the common ignorable ones? If no under-
flows are reported, how can the rare incorrect values of r be distin-
guished from the common correct ones? The easiest way I know to cope
with these questions is to use our Unnormalized Modes:

!;:The 27 significant bits in the MQ are not ignored nor cleared when the
characteristic of the MQ underflows, so no accuracy is lost.

198

L-

^P^WW^^^rr-p wi» ■»■"■■»' W" ■■p^pumpw^

THE UNNORMALIZED SILENT MODE AND THE UNNORMALIZED
PRINTING MODE. These two modes differ from one another in just one
respect; the Printing Mode reports overflows in the way described under
the Standard Printing Mode above. The two Unnormalized Modes differ
from their corresponding Standard Modes only in the way they treat under-
flow. A number, which in a Standard Mode would have underflowed to
zero and set UNFLOW = .TRUE. , is in an Unnormalized Mode replaced
by its closest unnormalized approximation and UNFLOW is unchanged.
For example, consider a decimal machine whose underflow threshold is
. 10000000 x lO"38 . In a Standard Mode, . 15743219 x 10-40 would under-
flow to zero, but in an Unnormalized Mode it is replaced by
. 00157432 x lO-38 . A number must now drop below . 00000001 x IG-38

before it is silently replaced by zero. ,

In the Unnormalized Modes the range of non zer«? floating point
numbers reprc sentable in the 7094 is extended downward from 2" ^9 ^0

2-155 in single precision and 2"^8^ in double precisipn. This allows
underflow to take place more pently, and improves the\accuracy of certain
results. But these benefits are secondary; the primary justification for
the Unnormalized Modes is that they ease the task of deciding, in certain
cases, whether a result is right or wrong.

For example, consider the following FORTRAN program to compute

N
r = b - S a.x.

i ''

(In accordance with good computing practice, and because it costs almost
nothing extra to do so on our 7094-11, the products of the single-precision
numbers a. and x. are accumulated to double precision before r is i \
rounded (not truncated) to single precision.)

DOUBLE PRECISION D
DIMENSION A(. . .), X(. . .)
D = -B
ENTER THE UNNORMALIZED MODE,

CALL FPTUN
DO 1 1=1, N
D = A(I)=::X(I) + D

RESTORE THE STANDARD MODE.
CALL FPTST

R = 0.0 - RND(D)

(14 MICROSEC.)

(13 MICROSEC.)

199

 .,„.■-

The last statement rounds D to single precision, changes sign, and
adds zero before storing the result in R. If the rounded value of D is
a non zero unnormalized number, then the normalization that always
follows addition will cause an underflow which, in the Standard Mode, will
set R = 0. 0 and UNFLGW = . TRUE. . But if RND(D) is a normalized
number then adding zero will not change anything. Consequently, R is
correct as it stands, despite the possible underflows of intermediate results,
with the following exceptions:

- IF ©VFLOW OR UNFL0W is . TRUE. , R is wrong.

- If severe cancellation has taken place in statement 1, R may
be badly contaminated by double-precision truncation errors.
This possibility is independent of over/underflow, and is
irrelevant if B, A, and X are each uncertain by a unit in
their respective last places.

- If R = 0. 0 then it may be further contaminated by an error
of 2" , although this is irrelevant if B is non zero and
uncertain by a unit in its last place. But if B = 0. 0 then all
the products A(l)*X(l) might have underflowed to zero
silently.

There are very few applications where any but the first exception is rele-
vant, and that one is caught by the system. The absence of over/underflow
tests in the inner loop permits calculations in the normal range to proceed
with no noticeable loss of speed.

The Unnormalized Modes may be used in single precision, double
precision and complex arithmetic at the cost of 42 microseconds per
underflow. These modes would be much more useful on a 7094 but for a
quirk in the hardware which forces the "normalized" product of two non
zero unnormalized numbers to be zero on certain occasions. The Unnor-
malized Modes are best suited to those machines, like the Burroughs B 5500,
which handle normalized operands without serious anomalies. But, because
of the peculiar behaviour of our machine, the Unnormalized Modes are so
beset by restrictions (for which see the PRM) that the author and a few of
his students are perhaps the only programmers who use them. We find
them valuable for computations with matrices, power series, and numerical
quadrature.

THE COUNTING MODE. This mode deals with over/underflow in a
way which permits programmers to save all the significant digits which
are lost by the other modes, and is specially useful for evaluating expres-
sions like .j

q = IT (a. + b.)/(c. + d.) % i i ' i i

200

mmmmmmmmmmM

when q is likely to be a reasonable number even though its partial
products and quotients are afflicted with over/underflow. The execution
of

CALL FPTCT(J) ,

where J is the name of an integer variable, switches .FPTRP in 14
microseconds to the Counting Mode and designates cell J to act as a
leftward extension for the 8-bit characteristics of the AC and MQ registers,
Henceforth, over/under flows are counted in J . Whenever an arithmetic
operation overflows its result is divided by 2"° and J is increased by 1.
Whenever an arithmetic operation underflows its result is multiplied by
2"D ancj j is decreased by 1.

For example, the FORTRAN statements

CALL FPTCT(J)
J = 0
X = {A+B)*{C+DHE/F)/G

produce a pair (J,X) whose values really satisfy

(A+B) (C+D) (E/F)/G = 2256J X .

In effect, the missing binary digits in X's characteristic have been added
to J while X's other significant binary digits have remained unchanged.

FORTRAN programmers who use the Counting Mode must be reasonably
familiar with the workings of the compiler so that they will not try to
evaluate expressions like

A/(B+C) nor A*B+C nor A-^B

in one FORTRAN statement.

The following example shows how the Counting Mode is used to evaluate

N
q = TT (a.+b.)/(c.+d.)

for large N with no over/underflow tests inside the DO loops, although
each over/underflow does cost 35 microseconas.

201

"

3

4

5

J = 0
PAB = 1.
PCD = 1.
CALL FPTCT(J)

DO 1 1=1, N
PCD=RND(PCD::RND{C(I)+D(I)))

IF(PCD .EQ. 0. 0) GO TO 3
J = -J
DO 2 1=1 .N

PAB=RND(PAB«RND(A{I)+B{I)))

Initialize Over/Underflow Counter,
Numerator, and
Denominator.

Switch to Counting Mode.
Compute Denominator using
Rounded Arithmetic.

. . because Denominator vanished.
Reverse meaning of Counter.

Compute Numerator.
Q = PAB/PCD
CALL FPTST Switch back to Standard Mode.

IF (Q .EQ. 0.0) J=0 . . . because Numerator vanished.
IF (J) 4, 5, 3
. . . Q has Overflowed, because J > 0 or Denominator = 0.
. . . Q has Underflowed, because J < 0 .
... Q is correct as it stands, because J = 0

Whatever value J may have, and provided the denominator PCD is
non zero, the stored value Q is related to the desired value q by

-256J _
q = 2 Q .

The Counting Mode works for both single and double precision arithmetic,
and is indispensable for computing determinants and certain ratios of
factorials, but I have not yet figured out how to make a Complex Counting
Mode work with comparable elegance on our machine. However, the next
example is one where our Counting Mode is useful in a complex arithmetic
calculation.

Suppose the complex array Z(I) is given and we seek K such that

CABS(Z(K)) = max CABS{Z(I)) .
1<I<N

(Here CABS(Z) = [Z| in FORTRAN IV.) To avoid the square roots, we
may prefer to calculate only squared magnitudes, thereby exploiting the
equivalence between the statements

(0

and

(ü)

| a + ib [> [u + iv |

2 2 2 2
a + b > u + v

202

But the squared magnitudes may over/underflow despite that the magnitudes
| a + ib I and I u + iv I are well within the machine's range. The following
program exploits the equivalent between (ii) above and

(iii) (a-u) (a+u) > (v-b) (v+b)

and then copes with over/underflows via the Counting Mode. N is assumed
to exceed 1.

3

4

COMPLEX Z{. . .), C, W
DIMENSION ABC(2), UVW(2)
EQUIVALENCE (C , ABC , A), (B, ABC(2)), (W, UVW, U), (V, UVW(2))
This EQUIVALENCE makes c=a+ib and w=u+iv .

CALL FPTCT(J)
K=l Initialize current maximum.
C = Z(1)
DO 5 1=2^

J=0
W = Z{I)
XL = (A-UHA+U)
J= -J
XR= (V-B):;;(V+B)
IF(XR . EQ. 0. . OR. XL . EQ. O.) GO TO 3
IF(J) 2, 3, 1

J>0 means [XR | should exceed |XL[, so ignore XL .
IF(XR) 5, 5, 4
J<0 means I XL I should exceed I XR I , so ignore XR .
IF{XL) 4, 5, 5 .

J=0 means XL and XR are directly comparable.
IF(XL .GE. XR) GO TO 5

K=I Update current maximum whenever
C=W W >C .

CONTINUE
CALL FPTST

Now C = Z(K) is the largest in magnitude of the values Z{I) . Some
minor refinements can be introduced to reduce the influence of roundoff
in critical cases of near equality, but they do not change the relative speed
and simplicity exhibited by this program when compared with alternatives.
(For more details, see our library program CMAXA in the PRM.)

An attempt was made to extend the idea of FPTCT to cope with integer
overflows; i. e, we wanted to allow the FORTRAN programmer to designate

203

a cell which would act as a leftward extension of the integer accumulator
in the same way as J in FPTCT(j) acts as a leftward extension of the
floating point accumulator's characteristic. However, this scheme would
first have required certain modifications to the 7094 to permit trapping on
fixed point overflow, and then the FORTRAN IV compiler would have had
to be extensively rewritten. A frustrating feature of the present compiler
is that it renders certain integer overflows undetectable.' Consequently,
FORTRAN programs which manipulate large integers are very much
complicated by the need for frequent overflow tests in advance of arithmetic
operations. The same complication afflicts ALGOL and any other pro-
gramming language I know; it is the price we must pay for a lapse in
communication among the architects, implementors and users of a pro-
gramming language.

A similar lapse has frustrated attempts so far to implement the
Unnormalized and Counting Modes upon some other machines. The B5500
discards one of the digits in the characteristic of an over/underflowed
result, thereby preventing any analysis from determining whether the result
over/underflowed by a little or by a lot. The IBM 360 series wantonly
destroys everything, including the sign of an overflowed result*. The CDC
6600 has its own fixed ideas about over/underflow. The tendency of other
high-performance machines, like the IBM 360/91, to suffer from impre-
cise interrupts implies that those machines will have to deal with over/under-
flow entirely in their hardware. This in turn implies that their treatment of
over/underflow will be intolerable unless numerical analysts act soon to
lay down reasonable guidelines for machine designers to follow.

IMPROPER DIVISIONS. On a 7094 with divide-check-trap hardware,
improper divisions do not turn on the divide-check indicator. Instead they
trap to . FPTRP which, in our system, responds as illustrated below.

38
1. O/O. 0 = 1. 7014 x 10 and Overflow occurs.

Any floating point division (single precision, double precision,
or complex) of a non zero number by zero is treated as a
quotient overflow and sets OVFLOW = .TRUE. . No provision
has been made to distinguish such divisions by zero from other
quotient overflows (except in the Counting Mode, where a message
can be produced) because both events almost always have the

^This sentence was true when it was written; meanwhile IBM has promised
to remed/ the 360^ treatment of over/underflow in a way that may well
permit the schemes described here to be copied on the 360^ other than
360/91.

W.K. May 1967

204

mm—ummmmmm

same causes and consequences. Besides, the programmer can
easily (and should) test directly whether a divisor is zero or not.
Each division by zero consumes more than thrice as much time
as any other overflow.

1/0 = Kickoff unless otherwise has been requested.
Fixed point integer division by zero is almost certainly a drastic
error in a FORTRAN program. In ALGOL the issue might not
be so clear.

0. 0/0. 0 = Kickoff unless otherwise has been requested.
Floating point di dsion of zero by zero is a symptom of a serious
flaw in the analysis behind a program.

Unnormalized Division may kick off unless otherwise has been requested.
Floating point division by an unnormalized number causes a trap
(unless the quotient produced by the hardware happens to be correct).
This is a symptom of certain programming errors like

reference to a variable whose value has not previously

been set,

ALOG(3) instead of ALOG(3.0),

a forgotten EQUIVALENCE (A, I) ,

reference to A(13) when DIMENSION A(6) , or

a significant underflow in an Unnormalized Mode.

After the new . FPTRP was installed, failures began to show up in
programs which had previously been allowed to proceed silently with a
zero quotient for each improper division. A few programmers protested
that they liked the old ways better, but they seem to represent a lunatic
fringe among programmers as a whole. The author is under the impression
that the new . FPTRP's treatment of improper divisions is more widely
appreciated than all his other works put together; actually the credit should
be shared with R. Jones and J. Bell, who found a way to simulate the
divide-check-trap hardware on a 7094 without that equipment. (The equip-
ment is soon to be installed, and with it will come some system simplifica-
tion.)

However, the most important contribution made by the new .FPTRP is
that a programmer who has to cope with a complicated numerical problem
can still write whatever program first comes into his mind, just as he did
before. And now he will rest assured that, should his algorithm be

i 205

frustrated by over/underflow, he will find out what happened and, perhaps,
be able to cope with his difficulty by simply re-coding a small part of his
program instead of laboriously devising a deeper mathematical analysis
of his problem. The new . FPTRP strengthens the programmer's most
valuable tool, hindsight.

SIMULATED OVER/UNDERFLOW IN LIBRARY PROGRAMS. The
concept of over/underflow is normally associated with the elementary
arithmetic operations, but it takes no imagination to extend the concept
from simple functions of X like

A+X , A*X , A/X , X**2

to more complicated functions like

LOG(X) , EXP(X) , COT(X)

In general, it seems reasonable to associate overflow with the following
behaviour:

as x -► x (x may be + »), f(x) -♦+00 .
0*0 — —

e.g. as x -♦ 0+ , log(x) •* -» ;

as x -► +00 , exp(x) ■♦ +» .

And underflow might just as reasonably be associated with this behaviour:

as x -♦ +00 , f(x) — 0 .

as x -►-» , exp(x) -* 0 .
e.g.

But we should not like to associate underflow with the value log(l)=0. In
other words, underflow occurs only when the value of the function f(x)
is not zero though closer to zero than the underflow threshold.

Here are some examples to illustrate how our functions behave in
FORTRAN:

LOG(O.O)
COT(+0. 0)
EXP(3000.)
EXP(-3000.)
(+0.0)**(-3.0)
0.0**(-3.0)
(-100.)** (-25)

= -1.7014 E38
= +1.7014
? 1.7014 E38
= 0.0
= +1.7014 E38
? 1.7014 E38
= -0.0

and OVFLOW is set
OVFLOW
GVFLOW
UNFLOW
OVFLOW
OVFLOW
UNFLOW

206

■^■n

The last example is interesting because the IBM program signals
overflow during the computation; we avoid overflow by computing
(l./lOO)**25 instead of 1./(100-:::,;t25) • The previous two examples
should not be confused with

0**(-3) = Kickoff , code 25 ;

the distinction is consistent with the rules for improper divisions. Finally,
no underflows occur when LOG(l. 0) = 0. 0 or when SINPI(X) = simrX
vanishes for integer values of X,

J have rewritten several of the elementary function subprograms in the
IBLiB library to ensure that their over/underflow behaviour is consonant
with the foregoing. When necessary, over/underflow is simulated; this
merely means that a transfer to . FPTRP is forced in such a way that the
FPT indicator word (cell 0) contains just the informatior needed for the
desired message from .FPTRP . The simplest way to do this in a
FORTRAN program is to square a very large or very small number. Of
course, .FPTRP must be operating in one of its Standard Modes to allow
such simulated over/underflows to produce their intended effects. If the
Printing Mode is in use, as it should be while a program is being debugged,
then the error-trace points to the function which caused the apparent over/
underflow; otherwise the post-execution message may sometimes identify
that function. As far as I can see, no vital information is lost by thus
failing to discriminate between the simulated over/underflows and the others.
The user's view of the library programs becomes less cluttered by their
various demands for valid arguments. And the system gains several
storage locations vacated by superfluous messages.

However, some programmers claim that one desirable capability has
been lost. For example, they would prefer to be able to write

CALL KIKOPT (9,0)

in their main program whenever they want references to LOG(X) in all
their subprograms to cause kickoff when X = 0. 0 . My scheme requires
that each appearance of LOG(X) be preceded by something like

IF (X .EQ. 0. 0) CALL UNCLE (9, 18H LOG(X=0. 0) ERROR) .

I think that programs written the second way are easier to read and to debug;
but anyone who wants to live dangerously can easily change the library
programs to suit himself because their listings are usually amply supplied
with comments.

:

207

■"*"^"»p^«p»

A more penetrating criticism of my scheme is that it denies too many
users the valuable education obtained by reading certain IBM diagnostics.
For example, increasingly many of our users have too little familiarity
with the rate of growth of exp(x) to appreciate that exp(88.0297) exceeds
the overflow threshold. Our university used to include a professor whose
first assignment to freshman physics students was to plot a graph of
exp(x) for 0 < x < 10 . His attitude might well serve as an example for
the socially acceptable computer systems of the near future.

"he extension of a comprehensive treatment of over/underflow over
the entire library of numerical subprograms is an enormous task prodi-
giously demanding of attention to detail. Here is a simple example of a
typical detail. The CABS function computes the absolute value of a
complex variable using the formulae

a + ib h +(b/ a)' if bl

| b | VT+ (a/b)2 if |b| > [a|

For simplicity assume the former case. Then underflow will occur during
the computation of 1 + (b/a)^ whenever (b/a)^ is non zero but smaller
than the underflow threshold. This underflow is irrelevant, so our CABS
program suppresses it. Had the program been written in FORTRAN the
suppression would have been accomplished by computing 1 + (b/a)^ in
the Unnormalized Mode. Similar but more complicated considerations
affect the division of one complex number by another.

The task of taming ever/under flow in the library is not yet completed;
there are several relatively rarely used programs that remain to be revised.
Is this project worth its price? Who should say? Our users can no longer
offer a qualified opinion because so few of them are now aware of the issues,
and even those few hardly ever have trouble dealing with over/underflow
nowadays.

. AC KNOW LE DOE ME NT. The author is deeply grateful for the patient
assistance rendered by several IBM personnel, both in Toronto and else-
where, who went out of their way, and sometimes out on a limb, to help
with this work. Particular thanks go to J. Leppik, G. Howard and J. Bell
for their help with the monitor, the compiler and the revised SAVE pseudo-op.
Thanks go as well to colleagues in the Department and in the Institute of
Computer Science for their encouragement over several years, and for their
help with policy decisions about kick-off and diagnostic procedures.

Some of the work reported here was supported by the National Research
Council of Canada.

208

- ■"

'

'

ROUNDING ERROR, ILL-CONDITIONING, AND INSTABILITY*

Ben Noble
Mathematics Research Center, U.S. Army

University of Wisconsin, Madison, Wisconsin

1. INTRODUCTION. Modern digital computers perform so much arithmetic so
rapidly that we can print out only a minute fraction of the results generated
within the machine. One of the characteristics of digital computers is that
they give a definite answer to everything you ask them to do, whether the
answer is right or wrong. The challenge is to write programs in such a way
that confutations are in some sense self-checking. The more usual situation
is that we try as far as possible to incorporate checks, but the printout
makes us suspect that something is wrong — How do we locate the source of
the trouble?

The theme of this paper is that it is convenient to subdivide sources of
difficulty into three more or less distinct categories. (We go into detail
in connection with examples later.)

(a) Existence and uniqueness. It is pointless to look for a unique
solution to a problem if there is no solution or an infinity of solutions.
If there is an infinity of solutions we may be able to characterize the
multiplicity of solutions in a definite way. If there is no solution we may
have to look for some approximate solution, for example least-squares or
minimax.

(b) Ill-conditioning. Some problems are very sensitive to small changes
in the initial data. This is a characteristic of the problem itself, and
not of the method used to solve it.

(c) Instability. Some methods for computing the answer to a given
problem may be numerically unstable and give nonsensical results, whereas
other methods for the same problem may be stable and give accurate results.
Instability is a characteristic of the method used to solve the problem, not
of the problem itself.

The terms "ill-conditioned" and "unstable" are not always used in exactly
these senses in the literature - in particular they are often defined precisely
in connection with a particular problem or method. In our usage, the important
distinction is that "ill-conditioning" is a property of the problem and "insta-
bility" is a property of the method.

If a problem has a well-defined solution that is well-conditioned (i.e.,
not sensitive to small changes in the given data) we say it is well-posed.
Otherwise it is ill-posed. The property of being well-posed or ill-posed is
a characteristic of the problem itself, not of the method used to solve it.

* Work performed under Contract No.: DA-31-124-ARO-D-264

209

' im m ——

One of the reasons why the distinction between existence and uniqueness,
ill-conditioning, and instability is convenient is that it corresponds to
three stages in the analysis of any given problem:

(i) We cannot compute Intelligently until we understand what to look for -
a unique solution, a family of solutions, or some kind of an approximate solution.
Also a discussion of singular cases will tell us where we should expect diffi-
culties. In general we are likely to be in trouble in situations where we have
"nearly" multiple solutions or no solutions at all. If the mathematical theory
is inadequate we may be forced into arguments like 'the physical situation has
a unique solution so the equations are likely to have a unique solution'.
Unfortunately there is not necessarily a one-one correspondence between the
physical situation and the mathematical model.

(ii) Once we understand the existence-uniqueness question we can proceed
to an analysis of the condition or sensitivity of the problem. Ideally this
will tell us when to expect ill-conditioning, and how to recognize it in
practice. If a problem is ill-conditioned, the results of a computation are
likely to be inaccurate due to rounding errors. Many computers tend to accept
ill-conditioning as an act of God. A more satisfactory attitude is to regard
it as man-made, and try to develop some ingenious method for avoiding the ill-
conditioning, insofar as this is not inherent in the original situation that
gave rise to the equations we are trying to solve - for instance, it is some-
times possible to invent a purely mathematical trick as in the least-squares
example in §4, or sometimes the physical problem can be reformulated as in
the chemical experiment mentioned in §5. To quote J.W. Tukey, "If a job is
not worth doing, it is not worth doing well". The accurate solution of an
ill-conditioned problem may fall into the class of jobs that are not worth
doing, since the results may be meaningless if the initial data are not
accurately specified.

(ill) Having understood the problem from a theoretical point of view,
we should be in a position to decide which algorithm to use to compute the
solution. One of the important properties of an algorithm is that it should
be numerically stable. In particular it should not produce spurious solu-
tions and it should not be unduly Influenced by rounding errors. An unstable
method will he. sensitive to rounding errors even though the problem we are
trying to solve is itself well-conditioned.

It should not be necessary to remind the reader that, after all this
preliminary work has been done, no matter how satisfactory the theory, it
Is still essential to incorporate checks in programs. When solving differ-
ential equations by step-by-step methods, one can perform runs for various
-tep-lengths and check that these give consistent answers. When solving
simultaneous equations one can check pivots, and so on. Checks of this
type ought to be second nature. Unfortunately many programmers act like
the housekeeper who refuses to count up her housekeeping bills more than
once - because she always obtains a different answer the second time.

210

(N" «miBPfl ^^^mnmmm

y « f (x)

y « f (x) - c

FIGURE 1. Random fluctuations due to ^oundirw v^en evaluating f(x).

I

211

 ^ . —

^^H^BPHwwwpw^i i ——

2. THE "NOISE-LEVEL" OF A CALCULATION. One of the fundamental limitations
inherent in computing is that numbers are specified to a limited degree of
accuracy. It will suffice for our purposes to consider floating-point computa-
tions with numbers to the base 10, i.e., a number x is represented in the form

10 q, where p is the exponent and q is the fractional part. The number q is

normalized so that 0.1 i q < 1, and q is specified to a given number of
significant figures. The result of a calculation (e.g., an addition or a
multiplication) is first normalized and theii rounded so that q always has the
same number of digits to the right of the decimal point.

In most cases it is impractical to trace the rounding errors in detail
through a calculation. Fortunately the overall effect of rounding errors
can be summarized in a simple way. We illustrate by means of a simple example.
Suppose that we wish to evaluate

f(x) x - 1000 {(x + 0.1)1/2 - x1/2}. (1)

(We forestall a comment by the expert in numerical analysis, that this
particular calculation can be rearranged so that the rounding error is reduced.
This remark is irrelevant here since we wish to illustrate what can happen
when roundinf? effects are serious.) On evaluating f(x) to four significant
figures, we have, for example, using the rules for floating-point described
in the last paragraph but not floating point notation,

f(13.40) - 13.40 - 1000 (3.674 - 3.661} = 13.40 - 13.00 = 0.40

f(13.50) » 13.50 - 1000 (3.688 - 3.674} = 13.50 - 14.00 = -0.50

f(13.60) = 13.60 - 1000 (3.701 - 3.688} = 13.60 - 13.00 = 0.60

These results, together with similarly computed values of f(x) for x at
intervals of 0.1 from x ■ 11.0 to 16.0 are plotted in Figure 1. (The lines
joining the points are of course inserted only to help the eye.) A curve
representing the exact value of f(x), obtained by using a large number of
significant figures in the calculation, is also included. It is seen that
the results obtained by using four significant figures fluctuate in a more
or less random way about the true f(x). The reason why these fluctuations
are so large in this case is that there is a serious loss of accuracy because
of the subtraction of nearly equal numbers. The more or less random
fluctuations of the computed values around the exact curve, as illustrated
in Figure 1 is analogous to "noise" in electrical networks.

Mathematically, these results can be stated in a convenient form by
saying that if f(x) is the exact value of a function, and f*(x) is the value
obtained by evaluating the function on a computer, using a given number of
significant figures, then

|f*(x) - f(x)| < e (2)

212

wtm ■■—■
^m^mmm m^m

.

where the value of e cannot be taken smaller than a certain Irreducible
minimum, depending on the precise way in which the calculations have been
performed. Thus in the above example the value of f*(x) falls within the
two dotted lines, and the minimum permissible value of £ is, by estimation
from the graph, 0.85. This is an empirical estimate of e . The quantity
£ is loosely referred to as the noise-level of the calculation, by analogy
with fluctuations in electrical networks, for example.

3. POLYNOMIAL EQUATIONS. To illustrate some of the general remarks
made in §1, consider the problem of finding the roots of a polynomial
equation:

n , n-1 ,
a x + a-x +
o 1

+ a nx n-1
+ a 0.

where the coefficients a. are real. The mathematical theory for this equation

tells us that the following possibilities exist. We assume that n is an
integer greater than or equal to zero.

(K) n = 0, a =0. The equation then reads 0 = 0 and any z is a solution.

(ß) n = 0, a ^0. The equation is then contradictory, since it says that
a = 0. No solution exists,
o

(tf) n > 0, a ^0. The equation has exactly n roots. Complex roots

occur in conjugate pairs.

One of the important things here is that we would normally regard cases
(•<) and (ß) as trivial, but they will give trouble on a computer unless they
are allowed for in the computer program. In a general purpose program we
must allow for all possibilities, and an existence-uniqueness discussion helps
us to understand what these possibilities are.

It is difficult to deal with zero and infinity when using an automatic
computer. In place of infinity we have a finite upper limit to the numbers
that can be represented within the machine. In place of zero we usually find
some small number that has been introduced by rounding errors. We can tell
the machine that numbers below a certain limit should be regarded as zero,
but we have to be careful about scaling since, in floating point, numbers
always carry the same number of significant figures, and a number that is
small compared with unity can have a small relative error. Similarly the
mere fact that a number is large is no guarantee that it should be regarded
as infinite. These difficulties become acute when we try to produce sub-
routines that will cope automatically with all eventualities. For a
discussion in connection with the solution of quadratic equations (where the
problem is already by no means trivial) see [l].

To discuss condition, consider the general equation f(z) ■ 0. (This
covers transcendental as well as polynomial equations.) Suppose that there
is a repeated root of multiplicity k given by z = z

Taylor series expansion of f(z) exists near z = z ,

Suppose that a

so that we can write

213

mm»

f<.)-^ f(k)(0.

where ; Is a number that tends to z as z tends to z
o o

Consider the roots

of f(z)-f eg(z) ■ 0, where c Is a small parameter. Let Z be a root of this

new equation that tends to z as c tends to zero. For small e, equation (3)

gives, approximately,

k!
.00 r-(zo) + eg(Zo)teo,

or

Zaiz +
o

k! g(zo)

f(k)(z0)

1/k
.1/k

(3)

This expression tells us several things:

(1) It is clear that the multiple roots automatically tend to be 111-
1/2

conditioned. Thus if k ■ 2 and e - 10 , we have 10~5, which

is very much larger than e.

Then
(2) Consider the special case k ■ 1, i.e., z is a simple root of f(z)

Z« z - Ce, C - g(zo) / f^) (A)

The root will be ill-conditioned if g(z)/f,(z) is large. This commonly

occurs when there is another root close to z . (If there is a repeated root,

then of course f'(z) = 0 and k > 1.) We are tempted to say that roots that

are close together will be ill-conditioned. However the situation is more
subtle than this. (The following examples are taken from [7] pp. 41-47,
where further details can be found.) Consider the polynomial of degree 20
with roots z = 1,2, ... ,20, i.e. the expanded form of

(z-l)(z-2) ... (a-20).

If we work out the coefficient of e in (4) for the root z - 16 and
19 0

g(z) ■ z we find

214

.. -

0.24 ' 10
10

Hence the root z = 16 is very ill-conditioned even though we might think

that the roots of the polynomial equation are reasonably well separated.
(The smalJ roots of this polynomial equation are well-conditioned.) The

20
roots of z =1, namely the twentieth roots of unity, are equally spaced on
a circle of unit radius. We might think that these are very close together,
and therefore likely to be ill-conditioned. The reverse is the case. Using
(4) we find

|C| 1/20

for all the roots, so that all the roots are well-conditioned.

(3) Consider the case of a double root, k = 2. Equation (3) gives

(5)

If the quantity in the parenthesis is negative, Z may be complex even though
Zj, is real. As an example, suppose that we try to solve

1.4z2 - 2.8z + 1.4 = 0,

working to two significant figures in the usual formula:

2 2 1/2
z = {2.8 + [2.8 - (1.4)] }/ 2.8

= {2.8 + [7.8 - 4(2.0)]1/2}/ 2.8

= 1.0 + 0.16i.

The correct answer is that there is a double root z = 1. (In passing we
note that if we know there is a double root, equation (5) suggests that
if a numericsl procedure produces two roots that are close together and the
method is such that the errors are correlated - which is often the case - a
much better estimate of the root can be obtained by taking the mean of the
two results. In the above example this gives the exact repeated root z ■ 1!)

An explicit formula is not usually available for the roots of an
equation (f(z) ■ 0, and most metnods of solution will depend on the evaluation
of f(z) for various values of z. This is true of all iterative methods, for
instance - the bisection method, the secant method, straightforward iteration

r+1
here.

f(z), Newton's method, and so on. The idea of noise-level is useful

For a simple root, the situation is illustrated graphically in Figure

215

■

2(a). Whatever method is used. If the accuracy depends on the accuracy of
the evaluation of f(z), the best we will be able to do Is to say that the
root lies somewhere In the range PQ, Independent of the method used to
find the root. From this point of view, the reason^vhy the situation for a
double root Is more serious Is Illustrated In Figure 2(b). Although the
noise-level Is the same as In Figure 2(a), the range of uncertainty PQ
Is much greater, if we are unlucky

1* ?W

1'JW

(o.) (b)

Figure 2. Noise-level and the accuracy of the determination of roots.

and rounding errors cause the machine to produce values of f(z) that lie above
the exact curve in Figure 2(b), the machine may report that there is no root
in this region of z.

We now come to the question of the stability of the algorithm used.
Consider solution of the quadratic equation

az + bz + c

by means of the usual formula

0.

1
Consider

-b + (b2 - 4ae)1/2i , I I

z - 100z +1-0.

(6)

216

Working to three significant figures in floating point, formula (6) gives

z = {100 + (1002 - A)1/2} II = 100 or 0.

The smaller root has been lost altogether because of cancellation of equal
numbers. However if we solve the equation by means of the formulae

1/2, z1 =-sgnb-{|b| + (bz - 4ac)1/z} / (2a), (7)

z2 = c/(az1).

we obtain z.. = 100, z„ = 0.0100. The relative accuracy of z« is now good.

In our terminology, (6) is an unstable formula for the numerical solution of
a quadratic, whereas (7) is stable. (This type of example has been overworked,
but this does not affect its value.)

As a second example of the distinction between stable and unstable,
consider the straightforward iteration

It is well known that any given equation can be arranged in this form in many
different ways, some of which give iterations that may converge and some
diverge. In our terminology we say that the convergent arrangements are
stable, the divergent arrangements are unstable.

To conclude this section, consider solution of the quadratic equation

x2 - 2x - 1.6 = 0

by Newton's method for real roots. The iterative formula is

2

vr+l

x - 1.6
r

2(x - 1) r

which gives the following sequence of values, if we start with x =1.4;

1

0.45

2

1.27

3

0.00

4

0.80

5

2.40

6

1.49

Other starting values give similar results. It is easy to see why the
iterates oscillate. The quadratic has complex roots, and graphically (Figure
3) the x 1 given by Newton's method is the intersection with the x-axis of

the tangent to the curve at the point on the curve with abscissa x ... Although

a cursory examination of the numerical results might cause us to think that the

217

^^■^■^

Iteration is unstable, our trouble is in fact due to uniqueness-existence —
we are trying to find a real root that does not exist.

y=x -2X+1.6

->x

Figure 3. An oscillatory case of the Newton-Raphson procedure
The order of points is PQR...Z.

A. LEAST-SQUARES SOLUTION OF LINEAR EQUATIONS. We begin by briefly
summarizing the existence-uniqueness theory for a set of simultaneous linear
equations Ax = b, where A is m x n. There are three possibilities. The

equations may have

(i) No solution.
(ii) A unique solution.
(iii) An infinity of solutions.

If an infinity of solutions exist, the general solution can be written in
the form

218

■

n-r
x = x +

o X ^i yi' (8)
1=1

where r is the rank of A, and the y are solutions of the homogeneous

equations Ay = 0. If no solution exists, we often find a solution that
minimizes the sum of squares of residuals r = b - Ax. This least-squares
solution can be obtained by solving

T T
A Ax = A b. (9)

There are only two possibilities for the solution of these equations —
there may be a unique solution or an infinity of solutions.

The subject of ill-conditioning and linear equations is a long story
and this is not the place to go into detail. We content ourselves with the
statement that, if A is square and properly scaled, then a small value for
the determinant of A indicates that the equations AJ = b are ill-conditioned.
(The discerning reader will realize that we are trying to disguise the present
unsatisfactory state of the art by not defining what we mean by proper scaling.
It is not sufficient to arrange that the largest element in each row and
column of A be of order unity in magnitude.) The result that we wish to make
plausible, which is well attested by experience, is that if Ax = b is ill-
conditioned, then the condition of the equations A^Ax • ATb is much worse.
This follows when A is square, if we accept our previous criterion for ill-

T 2
conditioning since detA A = (detA)

2
(detA) is much smaller still.

If detA is small, say 10 , then

The main point we wish to illustrate in this section is that, instead
of simply accepting the fact that the condition of (9) may be much worse
than the condition of (8), we can do something about it. In the equations
Ax = b, where A is m x n (m > n) of rank n, partition A and b in the form

A = b = (10)

where A., is a nonsingular matrix of order n, the choice of which will be

discussed later, and b.. is n*l. Since A., is nonsingular, the last m - n

rows of A can be expressed as linear combinations of its first n rows. This
means that we can find a matrix P such that

A2 = PA1, (11)

219

i.e.

I

P
A1. (12)

On inserting this expression for A, together with b from (10), in the
least squares equations

we find

T T
A Ax »Ab,

A^ [I, PT] A^ - A^ [I,PT] (13)

i.e.

A^ [I + PTP] A^ - Vj1 [bj + PTb2] .

T.-l Since A1 is nonsingular, we can multiply through by (A..) :

[I + PTP] AjX - b^^ + PTb2.

(14)

(15)

This is the required form of the least-squares equations. We claim that if
the set of equations

T T
A Ax = A b

is very badly conditioned, the condition of the set (15) will be much better,
provided A is chosen properly. Before discussing how to choose A1 we remark

that (15) can be rearranged in the form

(16)
J?-i ~1 „T AjX ' i>1+ [I+PXP] PA [b2 - Pb1] . ,

If the last m-n equations in Ax = b are simply linear combinations of the first
n equations this means that if P is defined as in (11) then we must also have
b2 * Pb . This means that the second term on the right of (16) vanishes, and

we find the least-squares solution by simply solving A.x s b., as we should

expect. If the equations Ax = b arise In a physical situation then we should
expect that the last m-n equations would be nearly equal to linear combinations

220

mmmmmmmmmmmm

of the first n, i.e., b would be nearly equal to Pb.. and the last term in

(16) will be a small correction to b.. .

T T
The step that improved the condition of A Ax = A b was the multiplica-

T -1 T
tion of (14) by (A) to give (15). Since I + P P is positive definite,

with determinant greater than unity, the condition of (15) is determined
essentially by the condition of A How do we choose A.. ?

The result of 150 years work on the numerical solution of simultaneous
linear equations is that Gaussian elimination is still the best general
purpose method if precautions are taken to choose the pivots correctly In
the terminology of §1, Gaussian elimination is an unstable computing procedure
when rounding errors are present unless the pivots are chosen in a suitable
way. The usual rule is to use either partial or complete pivoting. We
illustrate by an example. Suppose that we are working in floating point to
two significant figures. Consider the equations

Xl ~ X2 = 0

10"^ + x2 = 1,

(17)

which have the exact solution x1 = x» = 100/101. To solve these numerically

we can use the first equation to eliminate x1 from the second. In more

technical language, we use the coefficient of x1 in the first equation as pivot.
-2

If we multiply the first equation by 10 and subtract from the second, we

obtain -1.01x„ = -1. However we are working to two significant figures, so
1.01 is rounded to 1.0, and this equation gives x. = 1, where a cap is used

to denote ''computed value." Back-substitution in the first equation gives
x = 1, and we have obtained a reasonable approximate solution of the equations.

Suppose however that we pivot on the coefficient of x1 in the second equation
in (17). We multiply the second equation by 10^ and subtract from the first.
As before on rounding this gives the computed result &. ■ 1, but back-substitu-
tion, now in the second equation, gives x. = 0. In this case the computed

solution is no longer a reasonable approximation to the exact solution. The
only difference has been in the choice of pivots, and this illustrates that
the choice of pivots is important. The reader may have gained the impression
that the reason why the first solution was satisfactory, whereas the second
was not, is connected with the fact that the piyot used in the first case (1)
is greater than the pivot used in the second (lO-^). This is the assumption
behind complete and partial pivoting. Partial pivoting tells us to pick the
largest coefficient of the variable we propose to eliminate, for instance.
It is easy to rescale the set of equations (17) so that partial or complete
pivoting is unsatisfactory. The nub of the matter is that we are working in

221

J

I^H« w

floating point so that it is only relative error that is important, whereas
pivotal strategies usually depend on criteria involving absolute magnitudes.
Suppose that we rescale (17) by multiplying the first equation by 10~2, the

2 2-2
second by 10 , and set x.. ■ 10 s., x2 " ^ zo' The equations become

z1 -10-
4z2

102B2 + 10
(18)

If we pivot on the "large" coefficient 10 we find, working to two significant
2

figures in floating point, z» = 10 , z. - 0, which gives x? = 1, x.. * 0, i.e.,

the same unsatisfactory solution found by pivoting on the corresponding
coefficient in (17). (It is easy to see that, for a given choice of pivots,
rescaling by powers of 10 will not affect the relative rounding errors.)

-4
However if we pivot on the 'small' coefficient 10 in (18) we obtain the

satisfactory approximate solution 2 10"2, i2 = 102, J^,- *2 = 1.

The moral of this discussion is that success of partial or complete
pivoting depends on proper scaling. Various arguments indicate that it is
reasonable to scale so as to minimize the condition number ||A|| ||A~^|[.

This can be done for the infinity-norm, for instance, by arranging that
the absolute row sums of A are the same, and those of A~l are the same
(F.L. Bauer). For further discussion and references to the work of Wilkinson,
Bauer, and others, see [2].

The question of pivotal strategy is relevant to the choice of A- in the

decomposition (10) used in the method suggested above for avoiding ill-
conditioned least-squares equations. If we use either partial or complete
pivoting to reduce A to row-echelon form this will single out n rows of A.
We choose A., to consist of these n rows. The value of detA is the product of
the pivots. By using partial or complete pivoting we are trying to choose an
hi whose determinant is as large as possible. This should be the submatrix
of order n from A that is as well-conditioned as possible.

5. ORDINARY DIFFERENTIAL EQUATIONS. A great deal is known about the
existence and uniqueness of solutions of ordinary differential equations.
Rather than go into detail we simply quote [3], pp. 15, 112, 347, for typical
theorems that are likely to be useful when computing. We also remind the
reader of some simple examples where the conditions for existence or unique-
ness of solutions of y* - f(x,y) are not satisfied. The equation

y1 - 1 + y

has the solution y - tan (x+c), where c is an arbitrary constant, and this
solution does not exist when x ■ (n + 1/2)» IT - c.

222

mm

ll+t
y' = |yr . y(0) = l, e>o,

-l/e
has the solution y(x) = (1 - ex) which ceases to exist at x = l/e.

If
y. = |y

1-e
y(0) = 0, e> 0,

we have an infinity of solutions:

y(x) =0, o ^ x < c, y(x) = [e(x-c)] e, e> 0,

for arbitrary c > 0.

Existence and uniqueness questions arise when resonance occurs in a
physical system. A simple example occurs in connection with

-r-J + X y = f(x), o ^ x ^ TT, y(o) = y(Tr) = 0.

If X= nTr , for integral n, the homogeneous equation has the solution y = sin nx.
The situation then is: Let

k = f(x) sin nx dx.

There are two possibilities:

(1) If k = 0 the equation has an infinity of solutions.

(ii) If k ^ 0 the equation has no solutions.

We next make some remarks about ill-conditioning. A typical situation
is that small changes in the initial conditions, in an initial-value problem,
produce large changes in the answer. We consider an example where this is
caused by the presence of exponential solutions. Consider

fix
y' = Ky + (0 - »<) eP , y = yo at x = 0.

The general solution is

. i x Vx . gx
y = (yo - l)e^ + e .

(19)

(20)

If y =1 then y = e , and if y = 1 + e we have y = ee + e . If «< >
ß

we will have e >> e for large enough x, and the first term on the right

of (20) will dominate the second for large x, no matter how smalle is. As

223

« l»1 —"-

an example, if ■< - 10, 3 x -1, we find

y * I Jo

y - 1.0001,

-x
y = e

y = e"X+ 0.0001e10x,

yd)** 0.37

y(l) 4*2.57.

-4
A change of 1 in 10 in the initial condition produces a change of 7 to 1 in
the solution at x = 1, and the difference is even more catastraphic for larger
x. The problem is obviously ill-conditioned. We have already said that if
a problem is ill-conditioned we should try to reformulate it in some way so
that the ill-conditioning is removed. It is possible to do this in the
present case if we know that the solution tends to zero as x tends to infinity.
We can use this to replace the initial condition. Thus

-x
y' - lOy + e

is an ill-conditioned problem, but

y' - lOy + e"X,

y(o) - l,

y ->• 0 as x->- oo ,

(21)

(22)

is well-conditioned. This last problem can be solved satisfactorily by
integrating back from large x towards the origin. The two formulations
(21) and (22) are mathematically equivalent.

We next turn our attention to computational difficulties, not present
in the original differential equation, but introduced by the difference
scheme used to solve the equation numerically. In this connection the word
"instability" is used in a technical sense, for details of which we refer
the reader to the literature [3], [4]. Roughly speaking, a difference scheme
is said to be unstable if it introduces spurious solutions that are not
present in the original problem, and these dominate the solution we want to
find, if we are integrating over a fixed range of x, and we let the step-size
in the difference scheme tend to zero. This type of difficulty is now well
understood and will not be considered further here.

A common source of trouble is illustrated by the example

y" + 101 y^ 100 y • 0, y = 0, y' = 99, at x = 0. (23)

The exact solution is

-x -lOOx
y - e - e

Two common difficulties when trying to compute this solution are:

(i) The programmer realizes that the solution e is negligible
—x

whenever x is greater than about 0.05, leaving only e ..'He therefore

22^

adjusts the step-length h to be suitable for this part of the solution taking,
perhaps, h = 0.02. However the step-length that must be used in the standard-
type difference formula is still controlled by the e'^-^x term, even though
this is negligible in the actual solution.

(ii) The programmer realizes that the e term controls the step-length,
so he takes h to be, say, 0.0001. Then he complains that the computation takes
an interminable length of time on a digital computer.

This is a typical boundary-layer problem. The highest order derivative
is important only over a small part of the range. In this example, one answer
would be to take short steps from x = 0 to x = x., say, where x.. is chosen

that the contribution from the e term is negligible so
find that y = y1 at x = x.

Suppose that we
If we did not know the exact situation, we might

then simply drop the y" term in (23), having check computationally that it
is small compared with the other two terms, and solve:

101 y' + 100 y = 0, y ■ Yi at x = x.

which would give a reasonable approximation to the correct solution quite
quickly. The calculation can be checked by varying the point x.. at which
the changeover occurs.

Boundary layer phenomena often occur in connection with boundary value
problems. A typical example is:

ey" + y = 0, e> 0, y(o) = 0, y(l) = 1.

For small e the solution is almost zero except near x ■
example is;

A more unusual

tiy"r + xy' 0, e> 0, y(l) = y(-l) = 1. (24)

Neglecting the second derivative we have xy' - y = 0, with solution y ■ Cx,
where C is an arbitrary constant. The solution must be symmetrical about the
y-axis, and the first possibility that suggests itself is that y » 0 over
most of the range, with boundary layers at the end-points. However this
would mean that near x = 1 the value of y1 would be large and positive, which
is not possible since (24) would then imply that F(y")2 is negative which is
impossible. It turns out that the solution is approximately y = x in most of
0 < x $ 1, y = -x in most of -1 ^ x < 0, and these solutions are joined by a
"corner layer" near x = 0. I am indepted to Carl Pearson for this example.
He has also made the sensible remark that in many of these problems an effective
computational procedure if e= lO"^, say, is to compute a series of solutions
with e = 10~2, 10" ,..., in turn. The computations with the larger e will
be less difficult, and they will provide successive guides that tell us where
boundary layers are developing, and how sharp they are.

To conclude this section we draw the reader's attention to a quite
different type of example considered in detail in [6], and in a simplified

225

form in [5], Chap. 12. A chemical reaction involving three species with con-
centrations a , i ■ 1,2,3, is governed by a system of three linear differential

equations in three unknowns:

da^dt - -(k2i+k3i)ai + ki2a2 + k13a3 (25)

with two similar equations for da„/dt, da_/dt. The solution of these equations

is known to be of the form

-yt . -vt
al = Cll + C12e + C13e '

(26)

with similar expressions for a. and a_. The concentrations a, can be measured

expsrimentally for various values of the time. It is required to find the rate
constants k that appear in (25). The most obvious procedure is to use curve

fitting with exponentials to deduce from (26) the values of y, u, and the c...

Then deduce the k from the fact that (26) is the solution of (25).

Unfortunately fitting of exponentials is an ill-conditioned procedure. It
turns out that if we perform a detailed analysis of the relation between (25)
and (26), a procedure can be devised that will enable the experimentalist to
design his experiment in such a way that he can find initial concentrations
such that either c.« or c..- is zero in (26). It is then possible to deduce

the rate constants by a well-conditioned procedure. Details can be found in
the references. From our point of view the moral is again that if one method
for performing a calculation is ill-conditioned we should look for an equivalent
well-conditioned procedure.

6. CONCLUDING REMARKS. We have illustrated the existence-uniqueness, ill-
conditioning, and instability classification of difficulties by discussing
various aspects of three types of problem-polynomial equations, least-squares
solution of linear equations, and ordinary differential equations. We could
equally well have illustrated the classification by discussing other standard
problems in numerical analysis - eigenvalues - eigenvectors, approximation
theory, partial differential equations, integration, integral equations.

In the lecture from which this paper originated, the three-way classifica-
tion was also characterized as follows:

(1) Ignorance — If we try to find a real root of a polynomial when all
the roots are complex, this is simply ignorance of the existence-uniqueness
situation.

(2) Cussedncss — Ill-conditioned problems are inherently troublesome
- the difficulty stems from the nature of the problem, and often there is
little we can do about the pioblem as it stands. The best remedy is to
circumvent our difficulties.

226

mm

(3) Stupidity — Instability troubles are usually due to the fact that
we are not clever enough to choose the correct computational method. Perhaps
this is rather a harsh term to apply to situations where foolproof computational
methods are not yet known - such as the choice of pivots in Gaussian elimination.

Briefly, if a problem gives trouble, we must first decide whether we are
simply ignorant of the existence-uniqueness theory. If we are sure that we
are looking for the correct type of solution, we must decide whether the
problem itself is cussed (in which case it is probably best to try to re-
formulate it) or whether we have simply been stupid in our choice of method.
My own experience is that this procedure has been useful when trying to
track down sources of trouble — But when all is said and done, and the
source of difficulty has been located the most appropriate comment is often
1 Corinthians, Chap. I, v.27 - "God hath chosen the foolish things of the
world to confound the wise."

227

REFERENCES

[l] G.E. Forsythe, What is a satisfactory quadratic equation solver?, Tech.
Rep. CS 74, Computer Sciences Dept., Stanford Univ. Aug 7, 1967.

[2] G.E. Forsythe and C.B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice-Hall (1967).

[3] P. Henricl, Discrete Variable Methods in Ordinary Differential Equations,
Wiley (1962).

[k] E. Isaacson and H.B. Keller, Analysis of Numerical Methods, Wiley (1966).

[5] B. Noble, Applications of Undergraduate Mathematics in Engineering,
Macmillan (1967).

[6] J.Wei and CD. Prater, The structure and analysis of complex reaction
systems. Advances in Catalysis, Vol. 13, Academic Press (1962), pp. 203-392.

[7J J. Wilkinson, Rounding Errors in Algebraic Processes, Prentice Hall (1963).

228

wmmm^—mmmmmm **

ATTENDANCE LIST

Gerald D. Adams, Edgewood Arsenal
Roy E. Barnette, ACIC, St. Louis, Missouri
Mary A. Biagioli, U. S. Army Aviation Materiel Command,

St. Louis, Missouri
Howard M. Bloom, Harry Diamond Laboratories
Colin Cryer, Mathematics Research Center
James R. Davis, Sierra Vista, Arizona
Don Define, ACIC, St. Louis, Missouri
F. G. Dressel, Army Research Office-Durham
R. M. Dunn, U. S. Army Electronics Command, Ft. Monmouth
Edmund A. Early, Army Map Service
S. H. Eisman, Frankford Arsenal
Dennis A. Flaherty, Aberdeen Proving Grouad
James E. Frese, Dugway Proving Ground
Charles A. Funn, U. S. Army Map Service
John H. Giese, BRL, Aberdeen Proving Ground
Joseph R. Gillis, White Sands Missile Range
William D. Googe, Army Map Service
B. C. Gray, Fort Detrick
Julia H. Gray, Mathematics Research Center
C. Maxson Greenland, Edgewood Arsenal
Donald Greenspan, Mathematics Research Center
James F. Jacobs, Fort Detrick
W. M. Kahan, University of Toronto
Donald F. Kennedy, University of Georgia, COSMIC
S. C. Kleene, Acting Director, Mathematics Research Center
Leon Leskowitz, U. S. Army Electronics Command, Ft. Monmouth
Bert Levy, Harry Diamond Laboratories
Ralph London, University of Wisconsin
Frank R. Loscalzo, University of Wisconsin
Roger A, MacGowan, U. S. Army Missile Command, Redstone Arsenal
David S. Marsh, Harry Diamond Laboratories
C. Masaitis, BRL, Aberdeen Proving Ground
Forrest McMains, Picatinny Arsenal
John F. Mescall, U. S. Army Materials Res Agency, Watertown, Mass.
Ramon Moore, University of Wisconsin
Mervin E. Müller, University of Wisconsin
Leonard F. Nichols, Picatinny Arsenal
Ben Noble, MRC and University of Wisconsin
Stuart Olson, Rock Island Arsenal
Victor Pereyra, Mathematics Research Center
Robert G. Polk, U. S. Army Missile Command, Redstone Arsenal
Mary Rita Powers, U. S. Navy Underwater Sound Lab. , Ft. Trumbull

229

L. B. Rail, Assistant Director, Mathematics Research Center
Allen Reiter, Lockheed Research Laboratory
W. E. Sanburn, GIMRADA, Fort Belvoir
James F. Smith, U. S. Army Engineer Waterways Experiment Station
B. T. Smith, University of Toronto
William B. Stelwagon, US Naval Ordnance Test Station, China Lake
T. D. Streeter, Rock Island Arsenal
Server Tasdemiroglu, AT AC, Warren, Michigan
Joseph S. Tyler, Edgewood Arsenal
Ronald P. Uhlig, U. S. Army Management Systems Support Agency,

The Pentagon
James W. Walker, Army Map Service
Randall K. Walters, Atmospheric Sciences Office, White Sands Missile

Range, New Mexico
Richard D. Whittaker, U. S. Navy Underwater Sound Lab, Ft. Trumbull
Joseph E. Wilson, Rock Island Arsenal
J. M. Yohe, Mathematics Research Center
D. E. Zilmer, U. S. Naval Ordnance Test Station, China Lake

230

^mmmm mmm

Unclassitled
Securit^Classification

DOCUMENT CONTROL DATA -R&D
(Stcutlly elmiallleallon ol till; body ol abttrmct mnd Indexlrj annolmllon muif b» »nltnd wh»n th» onrmll nport I» elm»mlllmd)

1. ORIGINATING ACTIVITY (Corpottf mulhor)

U.S. Army Research Office-Durham
Box CM, Duke Station
Durham. North Carolina 27706

U. REPORT SECURITY CLASSIFICATION

Unclassified
2b. CROUP

NA
3. REPORT TITLE

Proceedings of the 1967 Army Numerical Analysis Conference

4. DESCRIPTIVE NOTES (Typ* ot npott mnd Inclutlv daf)

Tni-pr-im Tprhniral Report
B. AUTHOR(S) (Flrml naaw, mlddl» Inlllml, la«< naam)

«. REPORT DATE

November 1967
7«. TOTAL NO. OF PAGES

230
7b. NO. OF RCFS

i«. CONTRACT OR GRANT NO.

b. PROJECT NO.

M. ORIGINATOR'S REPORT NUM«ER(SI

ARO-D Report 67-3

■b. OTHER REPORT NO(SI (Any othmr numbmn Uimt may bm aaalfiad
Oil» import)

d.

10. DISTRIBUTION STATEMENT
This document is subject to special export controls and each

transmittal to foreign nationals may be made only with prior approval of the U.S.
Army Research Office-Durham

II. SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY
Army Mathematics

Steering Committee on behalf of the Office
of the Chief of Research & Development

IS.

This is the technical report resulting from the 1967 Army Numerical Analysis
Conference. It contains 12 papers, which treat various computer and computational
problems of interest to the scientific world.

14. Key Words

computer programs
machine language programming
nonlinear systems
FORMAC
random event generator
internal arithmetic
homeostatic organizations
automatically sequenced events
digital-analogue simulation
shell computer program
numerical solution of polynomial equations

MMM « M «"f Ä ««PLACK« DO FONM I47S. 1 J
• wT«. 1473 0..0...T. worn «MY U«..

AM «4, •MICH I«
Unclassified
••curtly BSMOBSS

*mm

"**■**
AD 22 TV LZ

DEPARTMENT OF THE ARMY
U. S. ARMY RESEARCH OFFICE-DURHAM

BOX CM. DUKE STATION

DURHAM. NORTH CAROLINA 27706

IN REPI-Y REFER TO

CRDAKD-IPL 3 April 1968

Defense Documentation Center
Cameron Station
Alexandria, Va. 2231U

Gentlemen:

Previously we sent you twenty copies of ARO-D Report 67-3^
Proceedings of the 19^7 Army Numerical Analysis Conference,
Sponsored by the Army Mathematics Steering Committee on
Behalf of The Office of the Chief of Research and Development.

Page l87-a was inadvertently not printed with the report, so
I am inclosing twenty copies of that page so your copies of the
report will be complete.

We do not have the AE number of this report as our DDC Form 50
has not yet been returned with that information. I am inclosing
another copy of Form 50 with these pages.

Thank you for your cooperation.

.

incls
as

Sincerely yours,

CCHARD 0. ÜLSH, Chief
Information Processing Office

Reproduced by the
CLEARINGHOUSE

'ur federal Scientific & Technical
Information Springfield Va 2V15I

mam

ON

xm^

monitor to forget the last reference to KICKED whenever overlay occurs.
We take no pride in this expedient.

Any programmer who is aware of these two limitations can easily code
around them. Simple suggestions are contained in the PRM. Indeed, the
limitations are so easy to circumvent that programmers sometimes forget
to do so, and for this reason we have included a warning message like the
one in the following example;

0. 0/0. 0 ERROR AT 14506
EXECUTION TERMINATED.

ERROR-TRACE WITH CALLS IN REVERSE ORDER C0DE 25

CALL IS IN
DECK NAMED

SUB2
SUB1
MAIN

AT IFN OR
LINE NO.

17 +
25

2

ABSOLUTE
LOCATION

14513
07762
05413

EXECUTING IFN/LINE NO. 2 OF 'SUBl' AFTER PROGRAM
WAS KICKED OFF. FROM NOW ON IN 'SUBl', THE VALUE
OF A SUBSCRIPTED VARIABLE WITH VARIABLE SUBSCRIPT.
OR THE EXECUTION OF A COMPUTED GO TO' OR 'DO'
STATEMENT WITH VARIABLE PARAMETER, MAY BE
INCORRECT UNLESS THE RELEVANT INDEX IS RESET.
SEE THE PROGRAMMERS' REFERENCE MANUAL.

This message is more formidable than necessary. It would be
unnecessary altogether if the IF(KICKED{OFF)) statement were imple-
mented in a language, like ALGOL, with a block structure. Then kick-off
within a block would cause control to be transferred to the last KICKED
reference, if any, executed in the same block but not in a deeper sub-block.

One other complication would arise were the IF{KICKED(OFF)) state-
ment to be implemented within a compiler which contained a MONITOR
statement. Such a statement is exemplified by

MONITOR X, Y(*), Z{*, 3), PROG, n

which would cause output of the following kind to be generated:

Whenever the variable X is changed, write out its new value;

X = 14.271434 .

187-a

