
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

AD825963

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors;
Administrative/Operational Use; NOV 1967. Other
requests shall be referred to Office of the
Chief of Research and Development (Army),
Washington, DC 20310.

AROD ltr 4 Aug 1971



ARO-D Report 67-3 

S 30 

Q 
< 

PROCEEDINGS OF THE 1967 ARMY NUMERICAL 
ANALYSIS CONFERENCE 

This document is subject to special export controls and each transmittal 
to foreign governments or foreign nationals may be made only with prior 
approval of the U. S. Army Research Office—Durham, Durham, North 
Carolina. 

The findings in this report are not to be construed as an official Department 
of the Army position, unless so designated by other authorized documents. 

■ W 

3 
5 

i 

Sponsored by 

The Army Mathematics Steering Committee 
on Behalf of 

[ JAN 31 1968 

THE OFFICE OF THE CHIEF OF RESEARCH AND DEVELOPMENT 



-N 

I 

LI.   S.   AKMY   RESEAICH OFFICE-DURHAM 

Report   No.   17-3 

Novenbcr 1967 

PROCEEDINGS OF THE 1967 ARMY NUMERICAL 

ANALYSIS CONFERENCE 

Sponsored by the Army Mathematics Steering Committee 

Host 

U.S. Army Mathematics Research Center 
University of Wisconsin, Madison, Wisconsin 

25-26 May 1967 

This document is subject to special export controls and each transmlttal 
to foreign governments or foreign nationals may be made only with 
prior approval of the U. S. Army Research Office—Durham, Durham. 
North Carolina. 

The findings in this report are not to be construed as an official 
Department of the Army position, unless so designated by other 
authorized documents. 

S. Army Research Office-Durham 
Box CM, Duke Station 

Durham, North Carolina 



FOREWORD 

Several years ago the Office of Ordnance Research (now the Army 
Research Office-Durham) organized an OOR Liaison Group on Computers. 
Two meetings of this group were held, one in 1959 and the other in I960, 
to exchange information of interest to managers of ordnance "other than 
business" computers.    The Army Mathematics Steering Committee asked 
that these meetings be revived and placed on an army-wide basis.    The 
first two meetings in this new series were held, one in 1962 at ARO-D and 
the other in 1964 at the Harry Diamond Laboratories and the National 
Bureau of Standards,  under the title "ARO Working Group on Computers". 
The 1965 Conference was held at the Ballistic Research Laboratories 
under the present title of this series; namely,   "Army Numerical Analysis 
Conference".   The 1966 meeting was conducted at the U. S. Army Research 
Personnel Office, Washington, D.  C. 

. 

The U.   S.  Army Mathematics Research Center, University of Wis- 
consin,   served as the host for the 1967 Army Numerical Analysis Confer- 
ence.    It was held at the Wisconsin Center on 25-26 May 1967, and was 
attended by over 58 scientists.   The three invited addresses were delivered 
by Professor W.  Kahan, D. F.  Kennedy, and Dr. Allen Reiter.    They 
treated respectively topics on numerical solutions of polynomial equations, 
COSMIC,  and interval arithmetic.    Besides these talks there were nine 
contributed papers. 

Dr. Louis B. Rail served as Chairman on Local Arrangements. Those 
in attendance were indebted to him, not only for excellent accommodations 
at the meeting, but also for organizing a large portion of the program. 

kl 

The Chairman of the conference. Dr.  John H. Giese,  has asked that 
the proceedings of this meeting be published and issued to interested 
army scientists.   He would like to thank, on behalf of the Army Mathe- 
matics Steering Committee, the sponsor of these conferences,  all the 
speakers for their very interesting papers and the various chairmen for 
their help in conducting this meeting.    Thanks are also due to Professor 
S. C. Kleene, Acting Director of MRC, for his interesting welcoming 
remarks and for having his installation serve as host for this conference. 
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COMPUTER SOFTWARE MANAGEMENT AND INFORMATION CENTER 
COSMIC 

Donald F. Kennedy 
COSMIC, The University of Georgia Computer Center 

Athens, Georgia 

INTRODUCTION. In July 1966, The University of Georgia was awarded a 
contract by the National Aeronautics and Space Administration to establish 
and operate a center for the dissemination of computer programs and computer 
information. This center, known as Computer Software Management and Informa- 
tion Center (COSMIC), is working through the NASA Technology Utilization Office 
at the Marshall Space Flight Center in conjunction with other NASA Centers and 
NASA Headquarters.  Through this joint effort, computer programs and computer 
information developed by or for NASA are made available, at minimal costs, to 
potential users in industry, business, education, and other sectorb of our 
economy.  In addition, computer programs developed by or for the Atomic Energy 
Commission, which is participating in the NASA Technology Utilization Program, 
are also made available through COSMIC. 

PURPOSE. One of the primary functions of the NASA Technology Utilization 
Program is to identify technological advances derived from the space effort 
and to make them available for use by industry and business. One of the most 
useful sources of technical aid and information to many organizations is a wide 
range of well documented, operational computer programs and computer information. 
By making these computer "programs, which are classified as new technology, 
available to industry and business, NASA hopes to contribute directly to the 
national industrial effort and offer companies the opportunity to avoid duplica- 
tion and to shorten the task of developing computer programs. 

EXPERIENCE. The Computer Center at the University of Georgia has had 
extensive experience over the past four years in providing computer services and 
assistance in computer applications to approximately sixty industrial and business 
firms. The Center employs a professional staff of statisticians, mathematicians, 
biologists, numerical analysts, engineers, chemists, physicists, and information 
and computer scientists. The two major computer systems in the Center are the 
IBM 360 Model 65 and the IBM 7094 with two IBM 1401 systems serving as input/ 
output peripheral units for the 7094. In addition, an IBM 1620 computer and 
an EAI TR-20 analog computer are operated on an open-shop basis. 

PROCEDURE. Under the original contract, NASA performed the evaluation of 
computer programs and forwarded to COSMIC only those programs and documentations 
which were to be included in the COSMIC library. However, under a modification 
of the contract In December 1966, the University of Georgia was given the additional 
responsibility of evaluating NASA computer programs. Documentation on each 
program is forwarded to COSMIC for evaluation to determine its applicability to 
a variety of uses for Industry, business, and education. If the program is 
found applicable, a more in-depth evaluation is performed considering such factors 
as soundness of logic, accuracy of output, and completeness of the documentation. 
After the evaluation, a recommendation is made to NASA as to the inclusion or 
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rejection of the program.  If the computer program is included in the COSMIC 
library, it is announced to industry and business by both NASA and COSMIC. 

In addition to the NASA computer programs, COSMIC has it in its library 
computer programs obtained from business and educational firms. 

The programs are disseminated on tape or in card form, depending upon 
the requestor's preference. Each requestor is charged for the reproduction, 
handling, and mailing of programs. 

Documentation may be requested without a program, if desired.  Originally, 
documentation was disseminated at no charge to the requestor; however, in an 
effort to become self-supporting, COSMIC has instituted a slidirg-scale charge 
for documentation based on a fee of 6 cents per page. 

A directory of abstracts of computer programs available from COSMIC is 
disseminated periodically.  Interested parties can receive a complimentary copy 
by writing to: 

COSMIC, 
Computer Center, 
University of Georgia 
Athens, Georgia 30601 

CONCLUSION.  During the first twelve months of operation, COSMIC has 
had great success and growth.  It has received requests for programs and informa- 
tion from every section of the nation and, in fact, from every part of the 
world, even from countries behind the iron curtain. 

Based on its present success and growth, COSMIC should become the largest 
disseminator of computer programs and computer information in the nation and 
should have one of the most complete libraries of computer programs in the nation. 



MACHINE LANGUAGE PROGRAMMING 
HOW AND WHY* 

J.   M.   Yohe 
Mathematics Research Center,   U. 

Madison, Wisconsin 
S.  Army 

There seems to be a feeling in some quarters that Machine Language 
programming is obsolete -- or at least, that it is no longer useful for 
everyday applications.    This feeling is largely due to the availability of 
powerful problem-oriented languages such as FORTRAN, COBOL, ALGOL, 
am' others.    With these languages in common use,  the argument goes, a 
person needs no knowledge of Machine Language;   the compiler does all of 
the "dirty work". 

This is evidenced by the increasing difficulty of using machine language 
in programming.    For example, when the CDC 1604 computer was first 
installed here at the University of Wisconsin, the FORTRAN compiler allowed 
a programmer to intermix machine language and FORTRAN statements. 
However, when an improved FORTRAN compiler was released, this capa- 
bility was missing.    And in some installations,  the use of machine language 
programming is actively discouraged. 

It is indeed tempting to believe that machine language programming is 
obsolete, as anyone who has ever done any machine language programming 
will attest.    There is a considerable amount of boring detail connected with 
writing a program in machine language,  and I am the first to want to dispense 
with it.    However, I don't believe that machine language is dead yet, nor do 
I believe that the need for it will disappear in the near future.    I feel that 
every programmer should know something about programming in machine 
language, even if he never uses it.    And I believe that, in most cases, 
significant savings in computer time,  man-hours,  and dollars can result 
from judicious use of machine language.    There are two major reasons for 
this contention:    First, a programmer who knows machine language can 
write more efficient programs than one who does not know machine language. 
This is true whether he writes his programs in machine language or in one 
of the problem oriented languages.    Second, a knowledge of machine language 
can be of great help in debugging programs, whether they are written in 
machine language or not. 

There are still other benefits to be derived from machine language pro- 
gramming, as we shall see presently. 

'^Sponsored by the Mathematics Research Center, U. S. Army, Madison, 
Wisconsin under Contract No.:    DA-31-124-ARO-D-462. 
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I do not intend to take anything away from those who conceive,  imple- 
ment, and use the problem oriented languages.    On the contrary, I feel 
that these languages are vital.    I would even go so far as to say that perhaps 
most computer programming should be done in these languages.    I do want 
to convince you that these languages are not yet the answer to all program- 
ming problems. 

Let us first make a few remark? about how a person can go about 
acquiring a knowledge of machine language programming. 

Perhaps the most important comment is that machine language pro- 
gramming, like any other discipline,  cannot be taught --a person must 
learn it.     In learning, motivation is an important factor;  the best motiva- 
tion for learning machine language programming is a need to know it.      So 
if you supervisors want machine language programming to be used in your 
installation,  I urge you to encourage your programmers to use it in those 
situations where it would be of value. 

The best way to learn machine language programming is from an 
experienced programmer in a working situation.    The person who is writing 
a machine language program and has access to an experienced programmer 
will learn programming quite rapidly.    Barring that,   some textbooks can 
give a person a good grounding in the fundamentals of machine language 
programming,  and for certain computers, there are handbooks available 
for learning -- for example. Machine Language Programming for the CDC 
3600, MRC Technical Summary Report No.   721, which will appear shortly. 
The computer reference manual is usually one of the least effective ways 
of learning machine language,  but it will do in the absence of any other 
source. 

The only really effective way of learning machine language programming, 
however,  is by doing it. 

Why is machine language programming worth consideration? 

There are several reasons.    First and perhaps foremost, machine 
language programs can be considerably more efficient than even    the most 
skillfully written programs in problem oriented languages.    The compilers, 
after all, are general purpose programs, designed to handle a wide variety 
of cases with acceptable efficiency.    They cannot, therefore, tailor programs 
to specific situations;  to do so would require additional logic in the compiler 
program to the point that the compiler would be cumbersome and quite slow. 
Consider, for example, the question of testing whether A = B.    The usual 
method of making this test is to subtract B from A and test the result for 
zero, and this is quite an acceptable method.    If, however,  B happens to be 



zero already,  there is no need to do the subtraction;  we need only test A 
for zero.    However, many compilers do not even recognize this particularly 
simple special case;  they will compile code to subtract zero from A and 
test the result for zero.    Clearly,  a person writing a program in machine 
language could easily eliminate the extra subtract instruction which the 
compiler would generate.    Far greater economies are usually possible in 
more complex situations. 

Another benefit derives from a programmer knowing machine language. 
A programmer who knows machine language can often write more efficient 
programs in a problem oriented language than a programmer who knows 
only the problem oriented language.    The programmer familiar with machine 
language will know roughly how the compiler will translate the source state- 
ments he writes,  and he will be able to avoid situations which cause unneeded 
instructions to be generated.    He will understand, for example,  exactly 
what is involved in mixed-mode arithmetic (for example, dividing a floating- 
point number by an integer) and will be able to make an educated decision 
about what course of action will result in the most efficient object program. 
Moreover, he will know when to use machine language and when to stick with 
the problem-oriented language. 

A third and very important argument for a programmer's knowing 
machine language is that it will be of immeasurable value to him in debugging 
his programs, whether written in machine language or in a problem oriented 
language.    He will be able, for example, to read core dumps,  understand 
what kinds of errors might cause a certain wierd symptom,  and even track 
down errors generated by library subroutines, the compiler or even the 
computer itself (in the rare instances when they occur). 

We turn to a simple example.    A program to clear am array to zero was 
written for the CDC 3600, first in FORTRAN using four different methods, 
and then in machine language.    Let us examine the source statements and 
the code generated from them,  and then the machine language code to do the 
same thing. 

Example 1 

DO 10 1- = 1 ,   10000 
10 A(I) = 

ENA 
STA 
LIL 
ENI 

0. 0 

1 
=SI 
I. 1 
9999,  2 

WS00001. BSS 0 
. 10 ENA 

STA 
INI 

0 
A-1, 1 
1.1 

UP WS00001. ,2 



Example 1 is the traditional way of writing this program in FORTRAN, 
and,  it turns out, is also the most efficient way of doing it in this compiler. 
Note,  however, that the instruction ENA 0 (Enter A with zero) is executed on 
every pass through the loop,  eventhough the A-register is never changed in 
the loop and thus always contains zero anyhow.    Note also that two index 
registers are used, whereas one would have been sufficient. 

Example 2 

1=1 
10 A(I) = 

1=1+1 
: 0. 0 

IF(I. LE. 10000) GO TO 10 

ENA 1 
STA =SI 

.10 ENA 0 
LIL 1,1 
STA A-I, 1 
LDA I 
INA I 
STA =SI 
LAC I 
INA 10000 
AJP, ZR .100001 
AIP, MI . 100002 

.100001 SLJ . 10 

.100002 

In Example 2, the DO-loop logic was abandoned a.sA indexing was done 
explicitly.    This resulted in a far less efficient program, although a 
sophisticated compiler could have improved it considerably.    For example, 
in this situation, the variable I could have been kept in an index register. 
Moreover, the variable I is already in the A-register when LAC I is executed; 
the compiler could have engineered matters so that I,  rather than its com- 
plement, was used in the subsequent instructions, and thus eliminated the 
LAC I instruction.    Note also that an extra jump instruction is executed at 
the end of the loop;    AJP, ZR   . 100001   could equally well have read 
AJP, ZR   . 10--   or even been eliminated in this case. 
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Example 3 

1=1 
10 A(I) = 0 0 

1=1+1 
IF{I-10000) 10,10,20 

ENA 1 
STA =SI 

10       ENA 0 
LIL 1.1 
STA A-1,1 
LDA I 
INA I 
STA =SI 
INA -10000 
AIP, ZR .10 
AIP, MI . 10 

Example 3 differs from Example 2 only in the form of the IF statement. 
This form of the IF statement gave a more efficient object code, although 
many of the remarks concerning Example 2 apply equally well here. 

Example 4 

1=10000 
10 A{I) = 0. 

1=1-1 
0 

IF(I. NE 0) GO TO 10 

ENA 10000 
STA =SI 

10 ENA 0 
LIL 1.1 
STA A-1,1 
LDA I 
INA -1 
STA =SI 
INA -0 
AIP, ZR . 100002 

100001 SLJ . 10 
100002 

i 

In Example 4,  "reverse" indexing was used (as will be the case with 
Example 5, which is the machine language version of the program).    Many 
of the remarks concerning Example 2 also apply to Example 4.    Note here 
that the IF (I.  NE.  0) statement generates an instruction which subtracts 
zero from I and then tests the result for zero.    Note also that the construct 

I 
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.100001 

AJP.ZR 

SLJ 

100002 

10 

could have been replaced by the single instruction 

AJP.NZ .10 

Example 5 
ENI 9999,1 
ENA 0 
STA A.l 
UP L.l 

Example 5 is the machine language version of the program.    Observe 
that there are only two instructions in the loop, and that everything done in 
the loop must be done in the loop, while everything which can be done outside 
the loop is done outside the loop.    This clearly results in a more efficient 
program than even the most efficient program generated by the FORTRAN 
compiler. 

Comparing the most efficient FORTRAN program (Example 1) with the 
machine language program, (Example 5) we see that two extra instructions 
are executed on each pass through the loop.    The execution time is about 
2(i.s   per pass.    In 10,000 passes through the loop, this comes to about 30 
milleseconds -- hardly worth considering.    But if the procedure were to be 
executed a hundred thousand times, those two instructions would take 2, 000 
seconds on the 3600.    At 11^ per second, those two innocuous-looking instruc- 
tions would cost $220. 00.' 

Let us now consider what types of programs should ordinarily be written 
in problem oriented languages and what types of programs stand to benefit 
from being written in machine language. 

We first mention a few cases where machine language programming 
should not ordinarily be used.    Programs which only need a couple of minutes 
of computer time can usually be written quite economically in one of the 
problem-oriented languages.    The reason for this is that,  in many of these 
cases,  system overhead is responsible for a significant portion of the 
running time.    There simply is not that much to be gained by speeding up the 
computation itself by a few seconds.    Another case where machine language 
programming might be a mistake is when answers are needed in a hurry -- 
that is,  when total turnaround time,  rather than computer time,  is the over- 
riding consideration.    In these cases, the longer time usually required to 
write and debug a machine language program might cause intolerable delays. 



A third instance where machine language programming is not usually- 
indicated is the case of the "one-shot" job, where the program will be 
abandoned or significantly changed after it has run successfully.    In this 
case, the computer time necessary to debug a machine language program 
could well cancel any saving effected by writing the program in machine 
language. 

Where, then, would machine language programming be worthwhile? 
The most obvious place is in programs which are to be used over a long 
period of time with no changes or only minor changes.    If machine language 
programming can save 10% on a program which will run for,  say,   1000 
hours during a year's time,  the total saving will be 100 hours.    If the com- 
puter cost is $200. 00 per hour, this would result in a dollar saving of 
$20,000.00.    This is a realistic figure. 

There are two other places where machine language programming can 
be of definite value.    The first is the case where a problem can be handled 
far more efficiently by use of machine language programming than by the 
use of one of the problem oriented languages due to special circumstances. 
In this case, problems which were not economically feasible when program- 
med is one of the problem oriented languages can become quite reasonable 
when written in machine language.    The second is the case where it is 
necessary to have complete control over the exact machine operations used 
as well as the sequence in which they are used.    Such would be the case, for 
example, when the problem required strict control of round-off error.    The 
program written here at MRC for Professor Lowell Schoenfeld to Locate 
roots of the Riemann Zeta function falls into both of these categories. 

Looking at the program for this Conference, the Newton program, to 
be described next, and Interval arithmetic, to be described this afternoon, 
both use machine language programming to good advantage; and in the analysis 
of round-off errors, which will be covered tomorrow,  a knowledge of machine 
language for the computer in question is almost essential. 

In summary, then, we have seen that knowledge of machine language 
can not only allow a programmer to write machine language programs when 
necessary, but it can also help him to write more efficient programs in any 
language, and help him debug programs more efficiently.    This can result 
in significant savings in both time and money.    This is why I claim that 
machine language programming is still very much alive. 

^ 
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NEWTON:   A GENERAL PURPOSE PROGRAM 

FOR SOLVING NONLINEAR SYSTEMS 

Julia H. Gray and L. B. Rail 

1.   Introduction.   A number of important problems which arise In practice 

may be reduced to the computational problem of solving a system of equations 

of the form 

tftltiy •••^n) = 0 .    i = 1, 2, ...,n   . (1.1) 

In  (1.1),  the functions   f    are assumed to be known, and the ^.   are the un- 

knowns,     i = 1, 2,..., n   .     It may be supposed that all values are real, since 

in the case of complex values,   (1.1) may be written as a system of   2n    real 

equations for the real and imaginary parts of the   £    by setting the real and 

imaginary parts of the   f    equal to zero,     i = 1, 2,..., n   . 

THs repct describes an automatic computer program for solving systems 

:>: the; fcrrr, (1.1) which was developed at the Mathematics Research Center for 

the CDC 3600 computer operated by the University of Wisconsin Computing 

Center.    The program is iterative in character;  it starts from a given initial 

approximation and generates successive approximations to the solution of (1.1), 

x* = (e1*,e2*,...,en*) , (1.2) 

until pre-assigned criteria of accuracy are met, or until divergence is indicated. 

Sponsored by the Mathematics Research Center, United States Army,   Madison, 
Wisconsin, under Contract DA-31-124-ARO-D-462. This is MRC Technical 

Summary Report No.  790 July 1967. 
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In the latter case, the program prints an appropriate message.   The convergence 

and error analyses are integral parts of the program.   The program is general pur- 

pose in that it will handle any system of the form   (1. 1),   up to the limits set 

by available core storage, in which the functions f.   can be written in terms of 

ordinary FORTRAN statements. 

?..   Theory.   The system   (1. 1) can be considered to be an equation of 

the form 

F(x) = 0 

in the space  R    of n-dimensional real vectors 

•* =  'bi» bo» • • • > 6n'    • 

(2.1) 

(2.2) 

Here   F   is the vector function, or operator, defined by 

F(x)= (f j (x), f 2 (x),..., fn(x)) , (2.3) 

which maps the vector  x   into some other vector in  R    .   A vector x will be a 

solution of equation (2.1) if it is mapped into the zero vector   0 = (0, 0,..., 0) 

in  R    by the operator  F . 

The  (Frechet) derivative of the operator  F  is the    nXn    matrix 

F'fc) = 
^1       *h 

•  •  • -  •   • 

or, for brevity. 

8f         df 
 n       n 

F'tx) = 

(2.4) 

(2.5) 

12 
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i, j = 1, 2,..., n [1].     FMx)   is sometimes called the Tacoblan matrix of the 

system (1.1).     The second derivative of    F    is the    nXnXn    array shown in 

Figure 1, or 

(2.6) F-flc) = I ^_i ü^1    ' 

1, J, k = 1, 2,..., n    in condensed notation.   For operational reasons, the con- 

vention 
2 r   \ 

(2.7) 
Vek 

/ 
.     8 

is adopted. 

The second derivative is a special type of bilinear operator 

B ■ (v) (2.8) 

l,J,k = 1, 2, ...,n    in . Rn    [1,2] . 

In    R   ,   the norm    ||x||    of a vector   x   will be defined to be 

ii   ii      max 
(1)   'V   ' (2.9) 

Similarly, the norm    ||A||    of an    nXn    matrix   A = (d   )   is taken to be 

!A!i - ":rr 2 la 
J=I 

max 
(i) ij'   ' 

(2.10) 

and the norm    ||B||    of an    nXnXn   bilinear operator    B = (b     )   is given by 
1JK 

max n      n 

*'     j=l   k=l     1}K 

In    (2. 9) - (2.11),   the index    1    runs over the integers    1, 2,..., n   . 

If   F    is differentiable at 

x    = (6 ^ i ^ £  mi x0      ,sl    ,62    ''"'^n     ' ' 

(2.11) 

(2.12) 
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then equation  (2.1) may be written in the form 

F(x0) +  Fl(x0)(x-x0)+y0=0 (2.13) 

in matrix-vector notation.     F'{x0)    is obtained by evaluating the partial deri- 

vatives in  (2.4) at    x = x    .     The vector   y     is small relative to  x-x     in 

the sense that 

lim 
|x-x0ll-0     ||x-x0l 

= .0 . (2.14) 

If a solution of equation (2.1) is close to   x    ,   one may feel Justified in drop- 

ping  y     to obtain the approximate linear equation 

F(x0)+ F'(x0)(x-x0)= 0  , (2.15) 

the solution    x = x     of v/hich will be 

-1 
VVCrvi   F(xo, 

providpd that    [F'^ )]'     exists.     Set 

G0 = (giJ
(0,)=[F'(x0)r1 

(2.16) 

(2.17) 

In terms of the original system (1.1), 

xl = ^1    '^2    ' **•**»    ' (2.18) 

may be written 

(1)     . (0) (0)* tt (0) .   (0) (0). 
V'^i"'- Z   9iJ"'fJ<

el,"''e2^''•••'en"",   ' (2•19, 

i — ij £f • • ■ y n   * 

On the assumption that   x     is a better approximation than   x      to a solution 

x = x*    of (2.1),   the same process may be repeated with   x      replaced by   x. 

to obtain a further approximation   x   ,   and so on. 

15 



The generation of the sequence    {x   }    of successive approximations 

by means of the relationship 

,-1 
Xm+i

=Xm-fF,<X
mH    'V    ' (2.20) 

m  i 0,1, 2,...     is called Newton's method for solving equation (2.1).    In order 

for the application of Newton's method to make sense from a computational stand- 

point, it Is necessary to have affirmative answers to the following questions: 

(1) Does equation (2.1) have a solution    x = x* ? 

(2) Does the sequence generated by (2.20) exist and converge 

to x* ? 

(3) Is it possible to obtain an estimate  (that Is, an upper bound) 

for the error     ||x   -x*||    of approximation of   x*   by    x    , 
m m 

m = 0,1, 2, ...   ? 

At a given    x   ,    it Is possible to settle these questions on the basis 

A a theorem due to L. V. KantoroviC [1, 2]. 

-1 
Theorem.    At    x = x   ,   suppose that    G. = [F'(x  )]        exists, 

llxj-xj 

lG0ll<B0   . 

G0F(x0)||   <  ^   , 

(2.21) 

(2.22) 

and 

lF"(x)||   < K (2.23) 

tor    x   In the set 

If 

V(x0,r)= (x :   ||x-x0ll < r}   . (2.24) 

VoK^F (2.25) 

16 
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and 

r^ro = 
1 - N/1 - 2hf 

(2.26) 

Then: 

(1) Equation (2. 21) has a solution   x*    in    V(x ,r  ); 

(2) The Newton sequence    (x   }    defined by (2. 20) exists and 

converges to   x* ; 

(3) The error estimate 

2m-l 
I               II        (2h0) 
|x* - x   || <   —2  m ,m-l 

(2.27) 

is valid, in particular, 

M-XjH  < 2h0T1o    . (2.28) 

Proofs of this theorem may be found elsewhere [1, 2].     It is used as the 

basis for the optional automatic convergence and error analysis features of the 

computer program described in this report. 

3.   Generation of the Newton sequence.   In order to generate the Newton 

sequence    (x   }    defined by (2.20),   subroutines are needed to perform the 

following operations: 

(1) Evaluate    F(x ),    that is, the    n    functions    Ml,    »|« •,.••»t«^i 

i = 1, 2,..., n  . 

2 
(2) Evaluate    F'(x ),   which consists of the  n    functions 

O.l) 
J 

M = 1»2»'"»n • 

17 



(3)   Invert the matrix    F'(x ),   If possible, and form the vector x 

defined by (2.16) . 

In addition, It Is necessary to evaluate various norms In order to deter- 

mine whether the iterative process should be continued with 

x0 : = x1 (3.2) 

or not. 

In the operation of NEWTON, the user supplies the functions    f  , 

i = l,2,...,n ,   written in a form suitable for compilation by the CODEX program 

[3], which is essentially the same as for the FORTRAN compiler [4].   The CODEX 

program, which was developed at the Mathematics Research Center, prepares 

nd the subroutines for the evaluation of the   n  functions    f  ,   i = 1, 2,..., n , a 

2 
the    n      derivatives    Bf./dt,   ,    1, J = 1, 2,..., n   .   This relieves the user of a 

tedious chore, and removes a possible source of error.   This takes care of (1) 

and  (2). 

During the operation of CODEX, one of the following error messages may 

oe printed if the corresponding restriction is violated, 

1. "PARENTHESIS ERROR IN DEFINITION OF name of function. "   Check 

the parentheses in the function named, correct the error and resubmit. 

2, "STORAGE INSUFFICIENT FOR COMPILING. "   This message signifies 

that the system of equations is too large for the program to handle.   At present, 

the program will handle a system of 24 equations in 24 unknowns.   The equations 

are relatively sparse, however, and there is no guarantee that another system 

~)f that size could be handled.   Unfortunately, the program occupies most of the 

storage available in the CDC 3600, so little can be done outside of rewriting the 

18 



entire program when this message is received. 

3. "Name of storage area STORAGE INSUFFICIENT FOR DIFFERENTIA- 

TION. "   This message occurs when storage is exceeded during differentiation 

of the equations.   As above, there is not much that can be done. 

4. "Name NOT DIFFERENTIABLE. "   This is caused by attempting to 

differentiate an operator whose derivative has not been defined.   Check the 

equations. 

5. "ILLEGAL VARIABLE DETECTED. " This occurs when the evaluating 

portion of the program comes across an improperly named variable. Check for 

a variable whose name has more than 3 characters. 

The matrix operations (3) are standard, and the user may employ any 

matrix inversion program he chooses, provided that it gives the indication of 

failure 

ISING * 0 (3.3) 

on return to the main program.   The routine used here (INVERT) is a slow but 

accurate program which uses double pivoting.   For large nonlinear systems, 

such as arise in the solution of nonlinear elliptic boundary value problems [5], 

an iterative subroutine may be required. 

If the matrix inversion falls, the program terminates by printing the 

message 

"DIVERGENCE INDICATED AT ITERATION NUMBER   DUE TO 

FAILURE OF MATRIX INVERSION. " 

The matrix which the inversion subroutine failed to invert will be printed If the 

user desires.   A new value of   x      may be taken by the program at this point. 

# 
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The following constants are calculated by NEWTON for comparison with 

tolerances provided by the user; 

(1)    l|F(x  )||     is compared to the given numbers    F  and  FF .   If 

lF{x0)ll < F    , (3.4) 

then   x* = x      (the current value of x) is taken to be a solution of (2.1). 

Following the message 

"SUCCESSFUL CONVERGENCE AT ITERATION NUMBER WITH 

NORMF = LESS THAN OR EQUAL TO 

revalues of    IJMJ ,...»!„*   and    f^*^* in*), 

fjltj*! I2*. • • •, enn • • •, ySj*, e2* en*)    are printed. 

If 

|F{x0)||  > FF    , (3.5) 

.nen it is assumed that the method is divergent, and the program is stopped 

tor given another value of  x    ).     This feature prevents generation of a sequence 

of useless values.    The message printed in this case is 

"DIVERGENCE INDICATED AT ITERATION NUMBER 

IS GREATER THAN  . " 

AS NORMF 

(2)   The number 

IGII = ll[F'(x0)] -1 

«s compared to the given number BB .   If 

lol > BB    , 

then the program terminates the Iteration and print? the message 

"DIVERGENCE INDICATED AT ITERATION NUMBER  AS 

BOUND G =   IS GREATER THAN  . " 

(3.6) 

(3.7) 



If the user desires, the matrix    G = [F'lx )]"      will also be printed.   Condition 

(3. 7 ) Is used for a divergence criterion for two reasons:   A large value for   IIGil 

indicates that    ^'(x )   may be singular or nearly singular, hence the components 

of  G   may be In error by large amounts; also, th* value of   x.    will be in- 

accurate even If   F(x )   Is kn   vn fairly exactly. 

(3)   The quantity 

iix1-x0ii = i-jn^jt"1?*^!   , 

is compared to the given numbers    C and  CC .    If 

(3.8) 

llxj-xj <   C    , (3.9) 

tnen    x* - x.    is taken to be a solution of (2.1).   The message, 

"SUCCESSFUL CONVERGENCE AT ITERATION NUMBER WITH 

NORMCX  =    LESS THAN OR EQUAL TO  , " 

Is printed, followed by the values of   x*   and   F(x*).    If 

|x1-x0ll >   CC   , (3.10) 

divergence Is assumed, and the program terminates the Iteration and prints the 

message: 

"DIVERGENCE INDICATED AT ITERATION NUMBER 

NORMCX  =    IS GREATER THAN 

AS 

ii 

(4)  The total number of Iterations  m Is compared with the given number 

LIMIT .   If 

m > LIMIT   , (3.11) 
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divergence is assumed, the Iteration terminates, and the message, 

"DIVERGENCE INDICATED AT ITERATION NUMBER AS THE 

NUMBER OF ITERATIONS HAS EXCEEDED , " 

.   printed.   This control prevents the computer from generating a sequence 

wnich flounders aimlessly. 

(5)   Finally, each Iteration Is timed, and the total elapsed time plus 

the time for the previous Iteration is compared to    TLIM ,   the number of milli- 

seconds allowed for the total iteration by the user.   If this estimate for total time 

at the end of the next iteration exceeds    TLIM ,   the program prints the message: 

"NOT ENOUGH TIME REMAINS FOR THE NEXT ITERATION, " 

and the current values of   x ,   F(x) ,   and other parameters.   This feature of the 

program prevents loss of Information due to a time limit interrupt. 

4. Error Estimation.   An optional feature of NEWTON is automatic error 

estimation, using  (2.28),   which may be written 

Ixf-xJI < 2B0Tlo
t'K    . (4.1) 

The quantities 

B0= ll[F'(x0)] -li 
,    ^0=  IXj-X0l (4.2) 

are available immediately from the computation of x   by the process described 

in Section 3.   The only remaining quantity is the bound 

K>  ||F"(x)|l 

in a ball   V(x ,r) , 

V(xn,r) = {x:  Hx-xJ  < r} 

(4.3) 

(4.4) 
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of sufficiently large radius    r    so that (2.26) will be satisfied if    h-<-2    . 

Two options are available to the user: 

(1) If a value of    K ,   or a special method for computing  K  is known, 

then this value, or a subroutine for computing  K ,   may be inserted into the 

program.   The value of  K  is called BNORM in the program. 

(2) The program will form the second derivatives required for    F"(x) as 

given by (2.6),  and estimate  K by the use of interval arithmetic [6,7].   This 

estimation makes use of the program INTERVAL [8],   which was developed at 

the Mathematics Research Center to add interval arithmetic to the modes of com- 

putation available on the CDC 1604 and CDC 3600. 

To perform this estimation, subroutines for the evaluation of the    n(n-l)/2 

distinct second derivatives  (2.6) in interval arithmetic are compiled by CODEX 

and INTERVAL.     (Recall that 

82f. A 
HiBij " njHi    • 

>t],k = lt 2,..., n  .)   Each derivative 

9
2f 

is evaluated as an interval-valued function of the interval vector 

(0) _   ._,  (0) -   (0) ,-;   (0). 

(4.5) 

(4.6) 

(4.7) 

with components which are the intervals 

ai    ■ »i      2V6i    + 2T,OJ   ' (4.8) 
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Thus, the vectors    x = (£ , 1-,..., I   )   belonging to   X        lie in the ball 

V(x0,2t1o) ,    in fact, by (2.9) and  (4.4), 

X(0, = v(x0,2V    . (4.9) 
2 

(0)                                                        8 fi will be called 
H^ 

G^(X^1)  ,   and for 
■■' 

GiJk(X(0,)= (a,b]     , (4.10) 

one has that 

min             .   .        max             ,  , 
8 " x.X<0' 9^<X, '  x.x'»' 9^<X, 

<b     ,                     (4.11) 

by the fundamental theorem of interval arithmetic [6,7], and thus 

li.     1       max     1        i  \\   ^         r 1   1 'V"  JO) 'V^1 - max{lal 
Xc A 

,|b|}      .             (4.12) 

Tnerefore, by (2.11), 

^~Uv • (4.13) 

The quantity on the right is a rigorous, but usually gross , upper bound for   K 

in the ball    V(x , 2TI  )   .     If the INTERVAL program is unable to compute finite 

real values of  [a,b]  for any function or derivative, then it will print the appro- 

oriate error messaae fSl.    The NEWTON comoutation is aborted in this case. 

Using the value for    K   resulting from either option described above, 

the number 

h0 =  B^K (4.14) 

1 
is calculated, and compared to   —   and the given number    HH .     If 

h0 > HH      , (4.15) 
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The Iteration is assumed to be divergent, and is terminated.   This situation is 

indicated by the message 

"DIVERGENCE INDICATED AT ITERATION NUMBER AS 

HO   =   IS GREATER THAN  . " 

If 

then the error bound (2. 28), 

h0<  HH 

Ix*-V ^ 2Vo 

is calculated, and compared to preassigned number    E .     If 

11**-*!II  > E      , 

then the program performs another iteration with   x   :  = x 

llxf-xjl   <  E      , 

If 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

then   x.    is regarded as being a sufficiently accurate approximation to the 
k 

solution of    F(x) = 0  ,.   and the program prints the message: 

"SUCCESSFUL CONVERGENCE AT ITERATION NUMBER WITH 

ERROR   =     LESS THAN  , " 

followed by the values of   x.    and    F(x )  . 

During the operation of the program while using the error estimation 

option, all of the controls described in Section 3 remain in effect.   The auto- 

.natic error estimation feature, using INTERVAL, lengthens the computation time 

for each iteration considerably.   In the case of a simple system of three equations 

in three unknowns to be presented later as an example, this amounts to a factor 

of ten.   Consequently, unless an error estimate is of great moment, one of the 

other parameters could be taken as an accuracy control, perhaps after a test run 

25 
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on d typical case with error estimation snows tnat some otner criterion is re- 

liable.   Because of the rapid convergence of Newton's method, as shown by 

(2. 27 ),   the price of an extra iteration or two to obtain a value of    llxj -XQII 

or     ||F(x )||    which is smaller than necessary for the required accuracy Is prob- 

ably less than that of the automatic error estimation procedure. 

It is, of course, possible to become fanatical about rigorous error esti- 

mation.   One may note that the computation of    F(x0), F'IXQ) , [F'IXQ)]      , 

and thus    x   ,   are subject to round-off error, so that one obtains some    x^ 

instead of the    x     called for by the theory in Section 2.   If one can estimate 

||x -xjll    by interval methods [6,7] or by other procedures [9,10],   then 

Hx*-^« <  llxj-^ll  +   ixf-xjl   < 2h0rlo+ lltj-Sjll (4.20) 

is a rigorous oound, as long as    B0,r|o, K ,   and thus    h0 ,   are upper bounds 

for the corresponding exact quantities.     (In using automatic error analysis, the 

factor of overestimation of    K    usually dominates the much smaller errors in 

the calculation of    x,  ,   so that (4.17) gives a correct, if pessimistic, result. ) 

In addition, there can be errors in the coefficients of the system to be 

solved, or limitation on the accuracy with which they are known.   This gives 

rise to an uncertainty error in the numerical solution.    Also,  if the system to 

De solved is a finite approximation to a differential or integral equation, there 

.s a discretization error due to the method of approximation used.   Analysis of 

these errors is completely outside the scope of this paper. 

5.   Flow chart.   The structure of the program, which was described above 

in narrative fashion, is shown geometrically by the flow-chart in figures 2, 3, 

and 4. 

> 
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Read control 
tolerances, 

other parameters. 

Initialize 
differentiation 

K* Read        V 
independent \ 

variables and  ) 
starting values/ 

Find first 
partial 

derivatives 
of functions < 

Read 
functions 

To iteration and 
error analysis 
(Figs. 3, 4) 

Figure 2.    Initialization 
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From initialization 
(Fig. 2) 
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(Fig. 4) 
Indicate 
onvergenci error analysis 
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Figure 3. Iteration 
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From iteration 
(Fig.   3) 

0 
Calculate 

K 

Calculate 

Indicate 
divergence 

^/indicate A 
^convergence 

Fig.   4.   Error Analysis 
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6.     Input.   Explanations of format designations may be found in [4]. 

The first input card contains,  in I 5 format, the number of systems of equations 

to be read in and solved during the run.   The second input card, which is read 

in under 3E20. 8 format, contains in columns 01-20,    F , the value of the toler- 

ance to be allowed on     ||F(X   )ll .    Columns 21-40 of the second card contain 
n 

FF   the upper bound for   ||F(X  )|| .   Columns 41-60 of the second input card con- 
n 

tain   BB ,   the upper bound on the norm of the inverse of the partial equations 

matrix. 

The third input card, also read in under 3E20. 8 format, contains in the 

»rst 20 columns   C ,   the tolerance on the norm of the increment vector.    Columns 

21-40 of the third input card contain   CC ,   the upper bound on the norm of the 

increment vector.    Columns 41-60 of the third inpul caro contair the time In 

milliseconds allowed for the iteration section of the program 

The next input card supplies the program with parameters which will 

determine what options are to be used as well as several iteration limits.    The 

card is read in under a 1515 format.   If columns 1-5 are zero, the error analysis 

subroutine will not be used, otherwise, the subroutine will be called.    Columns 

6-10 indicate whether or not the matrix of the partial derivatives is to be printed- 

out in case the inversion of this matrix fails.   If columns 6-10 are zero, the 

matrix will not be printed out,  otherwise, a printout will be given.    If columns 

11-15 are not zero, a printout of the inverse of the Jacobian matrix will 

be given when the norm of this matrix exceeds the given upper bound and diver- 

gence of the system is thus indicated.   If columns 11-15 are zero, no printout 

will be given.   Columns 16-20 indicate how often a printout of the intermediate 



values of the Newton sequence is desired.   If this printout Is desired every 

time, then there should be a 1   in column 20,   If every other time, column 20 

should be 2, etc.    Columns 21-25 give the number of iterations to be allowed 

in searching for a solution.   This number must be right adjusted in the field. 

Columns 26-30 give the number of sets of starting values which are to be used 

with the system of equations.   If columns 36-40 are zero, there will be a print- 

out of the formulas which CODEX makes up for the given equations, the partial 

derivatives, and the second partial derivatives.    If columns 36-40 are not zero, 

no printout will be given.   Columns 41 -45 need be used only if the error routine 

is being used.   If so, then column 45 Is 1  if the norm of the matrix of the second 

partial derivatives is not known and must be computed.   If the norm is known, 

then column 45 is 2 . 

The next input card is supplied only if the error analysis routine Is to be 

used.    Otherwise, It should not be present.   This card is read in under 3E20. 8 

format.    Columns 1-20 of this card contain the allowed tolerance E on the error 

nound.    Columns 21-40 contain the upper bound HH on the convergence constant. 

Columns 41-60 need be supplied only when the norm K of the second derivative 

is known.   These columns then contain this norm. 

The next data cards contain the names of the independent variables and 

their starting values.    The names of the variables are limited to three non-blank 

alphanumeric characters, the first of which must be an alphabetic character. 

The first name may be punched in any of the first 72 columns of the card.   It is 

followed by at least one blank and the starting value corresponding to the variable. 

The starting value must be followed by at least one blank, and then the name of 
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the next independent variable and its starting value are given.   When all of the 

independent variables and their starting values have been given, the last entry 

is followed by at least one blank and a   $ .   The starting values may be given 

as a fixed point integer, a floating-point number with a decimal point, or a 

FORTRAN E-format number.   The numbers may be signed or unsigned. 

The last group of data cards contain the equations for which a solution 

is to be found.   These must be in the form  F(x) = 0 where   F(x)  is an arith- 

metic expression using any of the operations    +, -, *, 1, **  and/or any of 

the transcendental functions    sine(x) , SINF{x) , cosine(x), COSF(x),  (natural) 

iog{x), LOGF(x), exp(x), EXPF(x),   and  arctangent(x), ATAN(x) .     F(x)    is 

men given to the program in the form 

variable name = F(x)    . 

Tne above formula must be punched with at least one blank between consecutive 

symools.   As with the independent variables, only the first 72 columns of a 

card are significant.   The formula may be continued on any number of consecutive 

cards and is terminated by a blank and a   $  following the last symbol of  F(x) . 

The program reads in the independent variables until it encounters a  $ . 

Then it expects to read in as many equations as independent variables, and it 

separates and counts these by the  $  at the end.   If a   $  is misplaced, any of 

error returns 1, 4, and 5 from CODEX, as well as an unchecked EOF are equally 

likely to occur. 

7..  An example.    The results of computation of the solution of the system 
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4 4        4 
16x    + I6y   + z    - 16 =  0 

2 2       2 x    +      y   + z    - 3     =0 (6.1) 

3 
x     - y =   0 

in the first octant are shown in Appendix I with and without automatic error 

estimation.   The initial approximation was taken to be 

x0 = (1,1,1)      . (6.2) 

Other applications of this program have been made to finding character- 

istic values and vectors of matrices [11,12],   and solutions of systems arising 

in magnetohydrodynamic problems [13],     Its performance in every case has been 

satisfactory. 

8.   Warning.   The complete program, except for unmodified subroutines 

of CODEX [3] and INTERVAL [8] is listed in Appendix II.     Many subroutines 

are in CDC 3600 machine language [14], or use constants peculiar to the 

CDC 3600.   Consequently,  it is doubtful that the program as listed will work 

at any other installation, or survive future changes in the operating systems 

program at the University of Wisconsin Computing Center.   However, the listing 

given, together with the description given above, should be a reliable guide for 

the adaptation of this program for use elsewhere. 
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APPENDIX I 

(1)   Example without automatic error estimation. 

f ■ i.oooooooo-oo«» ' 
FF   3_ 1,00000000*006 

"BB * TVüöolsoöüo+onb 
C ■ l.oouooooo-ooy 
CC s   U00000U0(»*Ui)b 
TLIM *   1.20000000*005 
IE»R ■     0 IMAT a     1 IÜMP ■     1 
NITOIS ■     1 LIMIT ■    25 lAGAlN a 1 
NOF  a     1 HPHj   .     0 1AVL «     1 

_ ■  _   ,, ..,  

NCwlONS  MEthOÜ 
XI.      Y   1.      Z   1.   $ 
Tl 1 16. ■ Tj~»inn ib,   •   Y   •♦   4 ♦   Z  ••  ♦  -   16.   S 

COUe LIST FVH  Fl— 
OOOIT ax     •* 

 oöoar^nroreü 
OOOiF a  Y 
DDÜ4T' 
ooosr 

oon^c 

*• 

00Ü2T  ♦ 
0U06T 
0007T^ 

" Fl   s 0007T  - 
F2 a x •• 2 ♦ Y ** 

OOOff 
_oon*»c 
oooT1" 
00O1»! 

z 
0005T 

OOO^C 
oonör 
oouc 

♦ z ** 2 - 3. « 

COOt LIST 
"OOIOT a 
•Olli ■ 
0012T 

0014T 
F2 

FO« F2 
«« 
«• 

OOIOT 
Z 

♦ 

0012T  * 
0014T  - 

F3  ■ 0015T - 

ooo^c 
0002C 
OOUT 
ooo^c 
OOl^T 
QQO-iC 

F3 a X •• 3 - Y $ 

~CÖ0E LIST FOR F3  
"OÜ15T ■ X  " #»   OOOJC 
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coüt LIST ro«—rrm  
OülbT ■    x    ••__  nooJC 
ooi7r « oooVc  V        ooiof 
0U20T ■ 0Ü12C • 001/T 
Oil  > « f)0?wT 

CÖÜF. LIST FOR 

0021? «  Y 
1  00221 * 00Ö4C 

002JT a 0Ü12C 

Ti 2. 
«• 
• 
• 

0 

_..ooo ■?(;._ 
Ü021T 
0Q2^r 

012  a ♦ 002JT 

> CUUb LIST KUR 
*002H1 =  Z 

1« 3« 
•• 

Ö 
OOOJC 

0Ü25T a 0004C 
013  a 

• 002«»T 
002bT 

COÜt LIST FÜR 2. 1. 0 
0026T a 0002C 
021  a 

• X 
002bT 

CODE. LIST FUR 2« 2« 0 
0027T a 0002C 

!   022  a 
« Y 

002/T 

COOt LIST FÜR 2, 3« 0 
003üT a 0002C 1 z 
023  s  0Q3UT_ 

COÜE LIST FOR 3» 1« 0 
0031T s  X •• 000<iC 
0032T a 0003C » 0031T 
031  = ♦ 003«iT 

COUL LIST FOR 3, 2, 0 "" 

-032—^ OOOIC 

COOt LIST FOR—3» J« 0 
"033  NOT ON F-LIST. 

36 



IT£RATIÜW NUMHt* I 

NÜKM ¥   «   1.7UUO00nU»OOl 
X     a   l.OOOUOOOOtÜOü 
r ■ Tf~ ~T."öQO'ö'öoö\r*uTji5— 
Z   s  1.oouuonoo*üOo 

TIME PEk ITERAflON 

Fl 

F3 

1.7Q000ÜO0*O'Ql 
O.OOUOOOOO^OOO 
U,00000000*000 

70.00 MjLLlStCONOS 

ITERAfrON NÜMbt« 

NORK-r-ff 
NORM CX s 
"BOUND f-RHIME 

iTttn iTr^* o öo  
2.d33333J3-0nA  

ä.äOOOOOOÜ. INVERSE  = 
9.29166667-001 

mv 
T.mrsooöoo-ooi 
1.28333333*000 

TIME PER ITERATION 

Fl 

F3 

4.79i917U*000 
1,304b1389-001 
1.46966669-002 

125.00   MlLLlStCONQS 

ITERATION  NUMBER 

NOmüTTä-- ^7493o9S22-TdT 
NORM CX « 9.»32M»Q7-oo2 
dOUNÜ FPR1ME INVERSE » 
X ■   8.870 74529-01.1 
Y    ■   6.93175859-001 
Z _■ 1.32086464*000 

TIME PEK ITERATION s 

b.56439198-001 
Ix 
F2 
Z3_ 

.6. 453.Q9b ^2^MJ1  
1.20773905-002 

480.00 MILLISECONDS 

ITERATION NUMBER 

NORM-p w- 
NORM CX s 

"T7Btr509452-ÜQ2 
1.59811520-00«: 

BUUNÜ FPHIME INVERbE = 
X  ■   8.78244398-001 

"Y   »"  6.77194707-001 
Z    *   1.33060980*000 

'.3425<»33«>-001 

—fi-; 
F3  . 

1.84509452-002 
4.28336556-004 
2,06810364-004 

TIME PER ITERATION 132.00 MILLISECONDS 

IURATION NUMBER 

NORw-f l»»Tf778»4"005 
NORM CX »   4.37403606-004 
-80ÜMJ FPR1ME iNVERbt 
X    ■   8.77965993-001 

-T s—6. TöTsnoTi^irr 
l ■   1.33085521*000 

b.61437Bd2-001 

F3 

l.»79778»»-005 
J.2904T9Ö7-007 
2.04207026-007 

TIME PER ITERATION ■ 127.00 MILLISECONDS 
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SUCCeSSFÜL  CÜNVERtoFNCt   AT   iTC^ATION  NUMtlrT 

WTTH MOUMF  ■       ♦tbb6bU87-ÜlO  LESS  THAN OR  EQUAL  TO       1.00000000-009 

X ■       B«779b5760-ÜUl 
T     s    rrnmffTTSfin 
2 ■       l*330aSSM*ÜÜO 

TWVEffSE-« '6.621Ö57Ö7-ÜÖT' 
Fl       ■       ».65661287-010  

Tg       i       5.B2076609-011 
F3       ■        0,00000000*000  
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(2)   Example with automatic orror estimation. 

F   ■        1.00000000-009 
FF   «        1.00000000*006 
88   ■        1.00000000*006 

—C J L«JL00000ü0-009  
CC  *        1.00000000*006 
TLI^   ■       l«20000000*005     
IERR   ■ 1   IMAT  * 1   IOMP ■ I 
NITCIS ■ 1  LIMIT  ■ 25  UQAIN ■ 
NCF     ■ I   NPWT   ■ 0   lAVU  ■ 1 

_£  « l^il0000000-0_0ft  
HH   ■        1,00000000*006 
aNCRH -0,00000000*000 

NEWTONS METHOD 
XI.  Y 1.  Z \. $ 
Fl » 16. • X •• 4 ♦ 16, • Y •• 4 ♦ Z •• 4 - 16, i 

CCCE LIST FOR Fl 
OOOlT ■  X    if ooo4r 
0002T «00120 • 
0003T ■ Y    ♦• 

OOOlT 
ft004r 

ooo4T ■ oni?c • 
000ST ■ 0002T  * 

0003T 
0004T 

0006T ■ Z    •• 
0007T ■ 0005T * 

0004C 
0006T 

Fl   a 0007T - 
F2 ■ X tf. i_.t y.,:*»_ 

CODE LIST FOR F2 

0012C 
2 * Z «• 2 - 3. S 

OOlOT «X    •• 
0011T ■ Y_   •• 

0002C 
0002C 

0012T ■ 0010T  * 
0013T ■ Z    •• 
0014T ■ 0012T  * 
F2   ■ OOUT - 

OOllT 
0002C 
0013T 
0003C 

F3 ■ X •• 3 • Y S 

CODE LIST FOR F3 
. 0015T ■ X    ••. 0D03C 

I 

F3 001ST 
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COOE ÜST fOR " 
. 0016T ■  X 
0017T ■ 0004C 

. 0020T « 0012C. 
011  > 

It 1t 0 
•• 0003C _ 
• 0016T 
• 0017T 
♦ 0020T 

OCOt LIST FOR  If 2« 0 
_ 0021T ■  Y   __•• .  00C3C 
0022T ■ OOOAC  ♦     0021T 
0023T - 0012CU_« 0022T 

012  ■       ♦     0023T 

COOE LIST FOR 
0024T ■  Z 

lf 3f 
•• 

0 
0003C 

002ST ■ 0004C 
013 ■ 

CODE LIST FOR 
5671T ■  X 
S672T ■ 00030 

• 
_ ♦  

•• 
-• 

002*1 
0025T ._ 

A _ 
0002C 
5671T 

5673T ■ 000AC 
567*1 • 0012C 

• 5672T 
5673X_ 

111  ■ ♦ 567*T 

COOE UST ^OR  It !• 
.112 NOT ON F-LIST,_ 

2 

CODE LIST FOR  If It 3 
113  NOT ON F-LIST. 

CODE "LIST FOR If 2i 2 
5671T ■ Y   PI 0002C 
5672T ■ 0003C •    5671T 
.5673T » 000*(L • 5672t_ 
5674T ■ 0012C •    5673T 

122  •       ♦    5674T 

CODE LIST FOR ~l7~¥f~3" 
—123—NOT ON F^LIST.  

QOCE LlSX F0H._lf_J^J.  
5671T »2    ••   0002C 

_ 5672T- ■ 0003C_» S67lT_ 
5673T ■ 0004C •    5672T 
 133 ■ S6T3T 
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[ I 

CODE LIST FOR  2 
0026T a 0002C 
C21  ■      

CCCE LIST FOR  2 
0027T ■ 0002C 
022_ ■_ 

CCCE JJSt _F0R__2 
0030T > 0002C 
OM ^  

CCCE  UST £Oi_J 
211     > 

CCCE  LIST"F0R~_2 
112 NOT  ON  F«L 

CCHE  LIST FOR. 2 
213     NOT  ON  F-L 

CORE   LIST  F0R~2 
222    ■  

CCCE .UST_ FOR. 2 
223     NOT  ON  F-L 

CCCE LIST FOR 
233 ■  

If 0 
X 

0026T 

■it J- 

0027I_ 

_U_5_ 
Z 

QQ3QT 

l.__l 
0002C 

If 2 

11_ 3_ 
ST. 

2f 2 
noo2c 

2i_3- 
ST. 

3,3 
00fl2C 

CODE LIST FOR 
003lT ■ X 

_ 0032T ■ 0003C 
031  ■ 

3« It 0 
•• 0002C 

0031T- 
0032T 

CODE LIST FOR  3« It 
__ 032  ■       -  - 

XOOE LiSl FOR_ .3» 2t 
033  NOT ON F-LIST. 

0 
_ OOOIC— 

0   .  - 

COOE LIST FOR  3f If 
_.5671T a 0002C_»  
5672T a 0003C  • 

- 311  ■       ♦ 

CODE LIST FOR  3f 1L 

1 
X  _ 

5671T 
5672T 

9 

312  NOT ON F-UST, 

COOE LIST FOR  3» It 3 
3l3—NaT ON -f»LlST.  

COOE 
322 

LIST FOR  3t 2f 2 
NOT ON F-LIST. _ 

COOE LIST FOR  3f It 3 
323 NOT ON F-LIST, 

COOE LIST FOR  3. 3t 3 
^332 tiOl-Qh  F-LLSXi  
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lUfUTlON NUMBER     1 

NORK F a   1,70000000*001 
X    a   1.00000000*000          Fl   a 1.70000000*001 
Y    a   1,00000000*000           F2   a 
Z    a   1.00000000*000          F3   a 

0,00000000*000 
0.00000000*000 

Tlvt ptR ITERATION a       64,00 HlLLlSECONOS 
- 

ITERATION NUMBER    2 

NCRN F a   4.79191714*000 
NOR»* CX a  2.83333333-001 
BOUND FPRIME INVERSE "  5.50000000-001 
BOUND F ORL PRIME a   9.71960000*002 
HC ■   1.51463767*002 

X   a   9.29166667-001          Fl   ■ 
Y   ■   7.87500000-001          F2   • 
2   a   1.28333333*000          F3   a 

4.7919).714*000 . 
1.30451389-001 
1.46966869-002 

TIKE PtR ITERATION a     1928,00 MILLISECONDS 

ITERATION NUMBER    3 

NORK F a  6,45309b22-001 
KORK CA «   9.43241407-002 
BCUNO FPRIME INVERSE a  5.56439198-001 
BOUND F ORL PRIME a  4.43856898*002 
HO ■   2.35585457*001 

X   1   8.87074529-001          Fl   a 6.4530^522-001 
Y   m       6.93175859-001          F2   ■ 
7    a   l.l?OHÄ4ft4*000            F3   a 

1,20773905-002 
4.8*417094-003 

TlyE PtR 1TEHATION a      1843.00 MILLISECONDS 

ITERATION NUMBER     4 

NCRK F a   1,84509452-002 
NORK CX a   1.59811520-002 
BOUND FPRIME INVERSE >  6,34254336-001 
BOUND F ORL PRIME ■  2.85088868*002 
HO "   2,88969353*000 

X   :a   8.78244398-001          Fl   ■ 
Y   m       6.77194707-001          F2   ■ 
Z   m       1.33060980*000         F3  a 

1.84509452-002 
4.28336556-004 
2.06810364-004 

TIME PtR ITERATION a     1767.00 MILLISECONDS 
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ITERATION NUMRER «5 

NCRK   F   ■       1.47977fl44-005 
NCRH   CA   ■        ♦,17403606-004  
BCl^D  KPRIME   INVERSE   »       6.6l437802r-001 
aOU^O  K_DBL  PRIME  «       ?.57938553*_002_ 

HO   ■       7.46256805-002 
ERROR ■ 6,52fl30835-O0ä. 
X 

_Y  
8.77965993-001 
6.76757304-001 
1.330nS52U000 

Fl 
F2 
F3 

1.47977844-005 
3.29047907-007 
2.04207026-007 

TIKE   PtR   ITERATION  m 1853.00  MILLISECONDS" 

SUCCESSFUL CONVERGENCE  AT   ITERATION  NUMBER 

iITM  ERROR  »       3,79255563-011  LESS  THAN        1.00Ö00000-008" 

Jk * _ 8.77965760-001- 
Y >■       6.76756971-001 

-2 H umuiAUiii 

FL 
F2 

.4.65661287-01 fl_ 
5.82076609-011 
o.QnnQOOQO»ono 

i 
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APPENDIX II 

Listing of NEWTON and Relevant Subroutines  (July, 1967),   not including 

CODEX and  INTERVAL. 
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EXPERIENCE WITH FORMAC AT 
HARRY DIAMOND LABORATORIES 

David S.  Marsh 
Harry Diamond Laboratories 

Washington,  D.  C. 

[ABSTRACT.    FORMAC is an experimental language and compiler, 
written by IBM,  which allows the manipulation of algebraic symbols in • 
much the same way that FORTRAN manipulates numerical values.    It 
incorporates such FORTRAN features as subscripting and the DO loop 
capability.    FORTRAN statements can be included in a FORMAC program 
so that results can be derived symbolically £ind evaluated numerically in 
the same program.    FORMAC is particularly useful in those long, tedious 
algebraic problems which are so subject to copying and other errors when 
done with pencil and paper. 

The paper describes several small practice problems with which 
programmers became familiar with the language, its operation,  and some 
of the commands.    One larger problem is included, that of forming the 
determinant of a matrix, the elements of which are algebraic expressions. ] 

FORMAC (FOrmular MAnipulation Compiler) is a combination of a 
compiler and a language which makes possible the manipulation of algebraic 
symbols as symbols,    according to the rules of algebra,  in the computer. 
FORTRAN,  in comparison, performs in much the same manner with 
numbe r s. 

FORMAC was written by IBM's Boston Advanced Programming depart- 
ment at Cambridge, Massachusetts.    It is still an experimental system 
and was released unofficially for tests under actual operating conditions 
and to find out just what capabilities the computing community thought such 
a system should have. 

Actually,  FORMAC for the IBM 709C/7094 is no longer being developed 
by IBM since they are working on software (including an improved FORMAC) 
for the 360 series computers.    Under the auspices of SHARE, however, a 
group at Wright-Patterson Air   Force Base is taking over the further 
development cf this system . 

FORMAC has been available at Harry Diamond Laboratories since 
early in 1966.    Some of our uses of it will be presented here. 

1 Proceedings of SHARE XXV1U, p 4-93. 
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This paper is not a detailed tutorial discourse on FORMAC.    It is, 
rather,  a brief dt   «-ription, with some simple examples,  of the language 
and its use.    Hopefully,  with this information you may be able to judge 
for yourselves whether FORMAC would be of value to you in your own 
operations. 

FORMAC was written as an addition to and extension of FORTRAN. 
FORTRAN and FORMAC statements may be intermixed in a program.    A 
FORMAC program goes through a pre-processor which translates FORMAC 
statements into FORTRAN "CALL" statements.    The program then goes 
to the FORTRAN compiler.    During execution as a FORTRAN program, 
the former FORMAC statements call special subroutines (added to the 
FORTRAN library) to accomplish their purposes. 

LET 
+ SUBST 

EXPAND 
COEFF 

/ PART 
** ORDER 
FMCEXP EVAL 
FMCLOG FIND 

MATCH 
FMCSIN CENSUS 
FMCCOS BCDCON 
FMCATN ALGCON 
FMCHTN ERASE 

AUTSIM 
FMCFAC FMCDMP 
FMCDFC ATOMIC 
FMCOMB DEPEND 

PARAM 
FMCDIF SYMARG 

Figure 1.    FORMAC Commands 

Figure 1 shows a list of available commands which gives a fair idea 
of FORMAC's capabilities.    There are fifteen operators, which perform 
the purely mathematical functions, and nineteen declarative and executable 
statements used to define terms at the beginning of the program,    mani- 
pulation expressions in various ways,  and for various "housekeeping" 
purposes during the run.    The mathematical operators are largely self- 
explanatory;   most have direct FORTRAN counterparts.    Among those 
which don't are FMCFAC and FMCDFC which perform the factorial and 
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double factorial functions,   respectively.    Similarly,  FMCOMB performs 
the combinatorial function.    FMCDIF performs differentiation. 

The use of many of the declarative and executable statements is 
illustrated in program listings later in the paper. 

Two obvious omissions from the mathematical operator list are 
commands for integrating and factoring.    There exist no general algorithms 
for these processes. 

In general,  FORMAC seems best suited to performing relatively 
simple mathematical operations on relatively large and complicated 
algebraic expressions.    The sample problems will illustrate this and 
show how some of the commands are used. 

The first two problems are the generation and differentiation of the 
Lagrange interpolation formula.    During the application of the Method of 
Steep Descent,  it is desirable to find the value of X corresponding to the 
minimum point on a parabola passed through three known points.    Given 
three points, the Lagrange formula (Fig.   2) yields the value of Y, lying 
on the parabola which passes through the known points,  for any value of 
X.    Differentiating the formula,   setting the results equal to zero, and 
solving for X gives an expression which locates,  in X, the minimum 
point of the parabola. 

Y = Yt 
X-XZ)(X-X3) 

L(vx^V9] + Y. 
(X-Xi) (X-X3) 

|_(x2-x1)(x2-x3) + Y. 
(X-Xi) (x-x2) 

{x3-x2)(x3-x1) 

Figure 2.    Lagrange Interpolation Formula 

The pattern of the subscripts in the formula suggests the operation 
of two nested DO loops.    The inner loop would manipulate the subscripts 
within a term while the outer loop would multiply in an appropriately 
subscripted Y and sum up the expression.    These loops formed the basis 
of the program to generate the formula.    (See Figure 3.) 

Figure 3 also shows intermediate results at the end of the first and 
second executions of the inner loop, the first execution of the outer loop, 
and the complete expression at the end of the third and last execution of 
the outer loop.    These results show XX for the subscripted X of the 
formula and W for the subscripted Y terms.    Figure 4 shows the final 
form of the results with X substituted for XX and Y for W.    It also shows 
the effect of a special output subroutine,   supplied by IBM, which yields 
a format closer to normal algebra than the standard FORMAC output. 
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Y = AX      +   BX    +   C 

^   =    2AX   +   B   =   0 
dX 

X 2A 

Figure 5.    Operations Performed on Lagrange Formula 

The second problem is to perform on the generated Lagrange formula 
the operations shown in Figure 5.    Figure 6 shows the program, and 
Figure 7 shows the results before and after substituting Y for W and X 
for XX.    Notice that the division of the coefficients in the answer is only 
implied by enclosing the denominator in parentheses and raising it to the 
-1 power. 

The third problem is an example of the type of simple mathematics 
mentioned earlier:    forming the determinant of a 3x3 matrix  .    Figure 8 
shows the elements of the matrix;   each is an algebraic expression.    Not 
only that, but each of the 42 underlined terms represents another 
algebraic expression which must be substituted.    Before the substitution 
expressions are put into the matrix elements,  however, there are substi- 
tutions to be made among themselves. 

The sequence of operations to be accomplished is; 

1. Make the substitutions among the substitution terms. 
2. Put the new substitution terms into the matrix elements. 
3. Set B equal to zero,  a condition of the original problem. 
4. Form, the determinant. 

This is exactly the type of "dog-work" which is so subject to error 
and thus so frustrating when done by hand.    If N people do such a job, 
with a requirement for accurate final results,  there are usually at least 
N different results to be reconciled.    This is also just the type of problem 
for which FORMAC was created. 

Figure 9 shows the factors before and after their internal substi- 
tutions.    Only eight of the original nine terms are of further interest since 
the Fl term appears only in the others and not in the matrix elements, 
but the remaining eight are larger. 

Generation of the matrix is described in HDL TR-1316,   "An Equation 
for Phase Velocities in a Partially Ionized Gas", H.  D.  Curchack and 
F.   T.  Harris,  Harry Diamond Laboratories,  Washington, D.  C.   20438. 
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Figure 10 shows the matrix elements after the substitution of the 
enlarged factors.    Where they could originally be printed on 19 lines, 
they now cover 99 lines.    Three of the matrix elements go to zero when 
B is set to zero (Figure 11) and they are so located in the matrix (Figure 
12) that a fourth element A 

11 
A

2r
0 

'31 

A12=0 

22 

32 

13 

A23=0 

33 

Figure 12.    Location of Zero Elements 

is eliminated from the determinant.    The determinant is now the differ- 
ence between the products along the two major diagonals (Figure 13). 
It is unquestionably messy,  but cleaning it up by hand is certainly far 
easier than obtaining it from the original matrix by hand. 

This has been a brief description of some of the capabilities of 
FORMAC.    In areas for which it is suitable,   it can be a very useful tool. 
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A SIMPLE ELECTRONIC TRUE RANDOM EVENT GENERATOR 

D.R. Koehler, J.T. Grissom, and R.G. Polk 
U.S. Army Missile Command, Redstone Arsenal, Alabama 

■ 

ABSTRACT.  A device is proposed which will generate a uniform series 
of random binary digits.  This device could be considered an electronic 
equivalent of a coin-flipping machine in that its output is a continuous 
series of binary digits with successive digits having exactly equal proba- 
bilities of being "1" or ;'0".  Such a device would be ideally suited to 
the on-line production of random numbers for use in Monte Carlo calculations 
by digital computers. With suitable combinatorial logic, generation of 
random pulses or random analog signals could easily be accomolished. The 
device as presently conceived is small, compact, uncritical, and requires 
little power.  Using the space-randomness of particle emission from a 
radioactive source and two small semi-conductor detectors as a signal 
generator, plus a few readily available integrated micro-circuit packages, 
the device could be packaged on a medium-sized circuit board.  Interfacing 
to any of the present generation of digital or hybrid computers would 
present no problems, and the bit generation rate could be adjusted to 
satisfy the demand rate of the fastest of today's computers. 

Computer technology presently has reached such a state of development 
that today computer systems are being built which are so large that seemingly 
the necessary software and programs to utilize them cannot be produced. The 
burgaoning field of computer systems application is working overtime searching 
for ways and means to fully occupy the vast capabilities of the very large 
computer systems, and problems which seemed impossible of solution by any 
computer technique a few years ago are beginning to yield to new approaches 
made possible by these large new machines.  In particular, one long-popular 
but computationally expensive numerical technique known as the "Monte Carlo 
calculation ' is seeing a period of rapid development as a line of attack on 
problems which would not yield to ordinary analytical and numerical tech- 
niques. The long-standing problem with most Monte Carlo programs is their 
requirement fur random numbers in large quantities. 

Computer-users in the areas of statistical sampling and simulation, 
Monte Carlo calculations, and the promising new field of "stochastic" 
computation so far have been steadily handicapped by the difficulty of 
obtaining high-quality random numbers for their programs.  In particular, 
the stochastic computer requires numbers in great quantity and of high 
quality, and speed of computation is directly dependent on the rate at which 
random numbers can be provided to the computer.  Computer designers so 
far seem to have virtually ignored this problem altogether, leaving it up 
to the programmers to somehow devise a technique of getting numbers. 

The common techniques, up to this time, have been the Insertion of tables 
of random numbers in the computer memory, or the calculation of "pseudo-random" 
numbers arithmetically via a short in-computer program using any one of quite 
a number of possible algorithms.  Both of these approaches suffer from requiring 

1 

75 

i 



■^^w 

memory space, and both are limited in the quantity and quality of numbers 
which can be supplied.  Furthermore, algorithmic solutions require non- 
negligible amounts of computer time. The real solution to the problem 
will come when a good random number generator can be built which will pro- 
duce all manner of random numbers any program or computer may require and 
which can be hooked up to the computer directly. 

Attempts have been made to construct random number devices, and their 
history makes interesting reading.  But the end product of most of these 
attempts seems generally to have been slow in speed, cumbersome, unwieldy, 
and unsuited for direct connection to the computer; or else complicated, 
sophisticated, lacking stability, and requiring much careful adjustment 
and attention. We shall not take time to discuss any of these devices 
here.  The interested reader will find references on some of these devices 
in the bibliography. 

We propose, as have many others interested in this problem, a device 
based upon the random nature of the decay of radioactive substances. How- 
ever, instead of mixing radioactivity detectors with clock-pulse generators 
and observing the time-randomness of emission of nuclear particles, as has 
been the traditional approach, we would like to combine two reasonably 
identical and independent nuclear detector systems whose average count rates 
are exactly equal.  The time-and-space randomness of the decay of the 
radionuclide then requires that at any given instant of time there be 
exactly equal probabilities that either detector will receive the next 
particle.  If one detector were labeled ''heads" and the other "tails", the 
output pulses of the two detectors would be just as good for decision making 
as the ubiquitous coin, and much, much faster. 

The proposed device is shown schematically in Figure 1. The "sandwich" 
of detectors and radioactive source can be made quite compact.  It could be 
fitted on one corner of a single printed-circuit board, or even on a single 
chip of silicon which at the same time could carry some of the necessary 
active electronics.  The source strength even for very high count rates 
could be relatively weak and quite harmless - less damaging than an ordinary 
radium watch dial. Using ordinary silicon semiconductor radiation detectors, 
the device could be made to pump out random binary bits at a rate fast 
enough even for the "stochastic" computers: and as computer technology 
advances, the permissible bit generation rate can advance with it, since 
virtually all the associated electronics can be digital and will benefit 
from improvements in digital techniques. 

The "sandwich" of Figure 1 is not exactly a proper configuration for 
direct connection to any user device, such as a computer.  First of all, 
the detector signals are small and must be amplified.  Then some means- 
must be incorporated to convert the amplified detector pulses to the 
necessary logic levels for feeding the user device.  In Figure 2 we see 
a possible realization of a generator of serial binary bits. The "conversion" 
flip-flop is triggered by the detector pulses into "1" or "0" states and 
thus provides logic levels representing the two binary digits. These digits 
are produced one after the other in serial fashion by "inspecting" the logic 

76 



levels every time a detector pulse appears at the "clock' output and 
delivering to the user device the proper binary bit as determined by the 
state of the flip-flop. 

For a random pulse generator, or some sort of special noise generator, 
this configuration might serve admirably. But a computer likes its input 
to be more regular, the time-randomness of binary output of this serial 
generator would be unacceptable to the computer systems designer. There- 
fore some sort of buffer memory must be incorporated. Possibly the 
easiest solution to this problem is the addition of a shift register which 
is driven by the outputs of the serial binary generator.  This is shown 
in Figure 3.  Any time the computer desired a new random number, it could 
sample the state of the shift register and transfer its contents via 
parallel-access lines to the processor, or else the transfer of digits 
from the generator to the register could be temporarily halted while the 
number contained in the register is clocked cut at the computer clock rate 
and fed to the computer serially from the back of the shift register. 

The ultimate choice of means of converting the detector ''sandwich11 

pulses into numbers in the computer will be up to the computer designer. 
Our suggestions are only for illustrating the possibilities.  For the 
sake of simplicity, we have so far ignored one veiy important additional 
element of the total generator. That element consists of the means by 
which the generator is stabilized so as to maintain the exactly equal count 
rates we presupposed as the necessary condition for true randomness. For 
certain types of radioactive sources and preamplifiers, this "stabilization'' 
can be so simple as a micrometer adjustment of the position of the source 
between the detectors - the inherent counting stability of the remainder 
of the system will be high enough that over periods of perhaps a year or 
more between maintenance checks the drift and count rate inequality will 
be quite negligible. 

Unfortunately, the type of source presupposed above could be rather 
"hot1, as radioactive sources go, and might prove something of a problem 
around a computer. Also the adjustment mechanism would be somewhat bulky 
relative to the size of the rest of the system. A better approach probably 
would be the use of feedback stabilization. For example, in Figure 4 we 
have added an up-down sealer which continually measures the difference in 
the number of 'I's ' and the number of 'O's,' and if the difference exceeds 
a certain value, to be determined by statistical considerations, then an 
adjustment of the count rate in the one channel would be made via the second 
up-down sealer, DAC, and discriminator. This sort of stabilization scheme 
is basically digital, with a step-wise adjustment of the relative count 
rates, which should, after a stabilization period, lead to a steady-state 
condition in which the statistical probabilities of the two binary states 
fluctuate very slightly about the exact 50% level. 

Having conceived the device, we naturally are curious as to just how 
good it might be. Unfortunately, it is not within our mission to do device 
development such as this, so we have not been able to obtain and patch-up 
the necessary logical elements to test it. However, some spare detectors, 
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amplifiers, and a paper tape punch were temporarily rigged to punch random 
bits in paper tape.  The system had no provision for stabilization, and 
count rates were crudely adjusted to something near equality in both channels 
simply by adjusting channel gains.  Something over 1(P bits were punched 
out, which we converted to card and then gave to our Computation Center for 
testing. Considering the small sample we had to work with and the consequent 
rather large variance to be expected on any given test, no real conclusions 
could be developed as to the quality of the numbers. All results of all 
tests, however, were within statistical expectations based upon the known 
relative numbers of ones and zeros and otherwise assuming complete random- 
ness. 
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BIBLIOGRAPHY 

This list of references is just a small "random" sampling of the large 
body of literature available on the subject of random numbers.    Most 
of the articles listed give additional references, and several have 
quite extensive bibliographies covering both arithmetic generators 
and random number devices. 

EARLY DAYS.    Before computers and in the early days of computers, 
statisticians and mathematicians resorted to tables of digits compiled 
from hopefully uncorrelated batches of numbers.    The first three 
references tell an interesting story of the days B. F. C.   (Before Fast 
Computers). 

1. Kendall and Smith,   "Randomness and Random Sampling Num- 
bers, " Jou£nal_ofJJieJl£^al^ The 
classic treatise on tests for randomness.    Herein were proposed for 
the first time the four basic tests - frequency,   serial, poker, and 
gap - which for so many years were the foundation of random number 
testing. 

2. H.   B.  Horton,  "A Method for Obtaining Random Numbers, " 
Annals of Mathematical Statistics XIX (1948) 81-85.    Mr.  Horton of 
the Interstate Commerce Commission compiled a small table of num- 
bers from presumably uncorrelated railway freight car waybill num- 
bers and subjected them to Kendall and Smith's elementary tests. 

3. The Rand Corporation, A Million Random Digits with 100,000 
Normal Deviates.    The Free Press, Glencoe, Illinois.    1955.    The 
table of digits is prefaced with a short dissertation on the "electronic 
roulette wheel" which the Rand group used to make up the table, as 
well as the tests they performed and the re-randomization technique 
they found necessary in order that the table test "random. " 

ARITHMETIC COMPUTER METHODS.    Faster computers naturally 
attracted programmers more and more to the use of Monte Carlo 
techniques.    The poor performance of random number devices led to 
the expenditure of considerable effort to devise ways of generating 
numbers in the computer itself. 

4.     Hull and Dobell,   "Random Number Generators," SIAM Review 
4 (1962) 230-254.    An extensive discussion of the state of the art in 1962 
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of arithmetic generators,  with some comments on random number  • 
devices.    With extensive references and bibliography. 

5. G.  Marsaglia, "Random Variables and Computers, " Boeing 
Scientific Reaearch Laboratories Report Number Dl-82-0182 (ASTIA 
278, 358),   1962.    One of many,  many treatises in the literature on 
arithmetic generators and linear transforms as component parts of 
the computer program.    References. 

6. Marsaglia and Bray,  "A Small Procedure for Generating 
Normal Random Variables," Boeing Scientific Research Laboratories 
Report Number Dl-82-0221 (ASTIA 294, 455),  1962.    Another example 
of the many papers published in this area.    Here a method of converting 
a uniform distribution to a special one (the normal distribution) is 
presented. 

7. McLaren and Marsaglia, "Uniform Random Number Generators, " 
Journal ACM 12 (1965) 83-89.    Here members of the Boeing group re- 
examine some of their numerical methods in the light of newer develop- 
ments in testing, indicate some of their failings, and suggest some new 
techniques, including a return to the old standby, the random number 
tables. 

8. R.  P.  Chambers,  "Random-Number Generation on Digital 
Computers," IEEE Spectrum 4, No.  2 (Feb 1967) 48-56.    Chambers 
discusses the old standby arithmetic methods plus some new ones and 
touches briefly on random number devices.    Includes extensive references 
and bibliography. 

9. Coveyou and MacPherson,    "Fourier Analysis of Uniform 
Random Number Generators," Jour. ACM U. (1967) 100-119.    A new 
technique of testing is presented which points up the failure of many 
of the arithmetic techniques,  particularly when used on small machines. 

RANDOM NUMBER DEVICES.    There is a considerable body of informa- 
tion on random number devices, but unfortunately much of it is buried 
in articles not specifically directed towards the treatment of devices 
and hardware.    Many articles mention devices in passing, with the 
seeming implication that hardware has never progressed beyond the 
electronic "roulette wheel" of Kendall and Smith and the Rand group. 
The following three short papers are an indication that device development 
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has not been totally neglected,  even though overall results to date 
may have been small. 

10. F.   Sterzer,  "Random Number Generator Using Subhar- 
monic Oscillators," Rev.  Sei.  Instr.   30 (1959) 241-243.    Sterzer 
utilizes some microwave devices and techniques to obtain high pro- 
duction rates and reportedly better randomness than the Rand tables. 
The technology however likely will be a little foreign to the computer 
designer. 

11. Dillard and Simmons,  "An Electronic Generator of Random 
Numbers, " IRE Transactions on Electronic Computers EC-11 (Apr 
62) 284.    A traditional approach using noisy thyratrons and considerable 
associated digital circuitry.    Production rates of about 15-20 kbits per 
second. 

12.   Tait and Skinner, "A Random Signal Generator," Elec.  En; 
38 (1966) 2-7.    A rather specialized device, but with an interesting 
method of obtaining random digits. 
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NEW VISTAS 

13.   B.  R.  Gaines,  "Stochastic Computer Thrives on Noise, " 
Electronics 40, No.   14 (10 Jul 67) 72-76.    An introduction to the sto- 
chastic computer and its applications and promise for the future. 

14.   Koehler, Grissom, and Polk, A Random Pulse Generator. 
Patent Application #518,733, filed 4 Jan 66. 
the material of this paper. 

The basic reference for 
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PROGRAMMING INTERVAL ARITHMETIC AND APPLICATIONS 

Allen Reiter 
Lockheed Missiles and Space Company 

Palo Alto, California 

INTRODUCTION.  This paper discusses the current state-of-the-art in 
interval arithmetic, both from the programming point of view and from the 
point of view of applications to date. 

Interval arithmetic was first developed formally by R.E. Moore around 
1960, although there is essentially nothing new in the concepts involved. 
Moore originally envisioned interval arithmetic as a means of completely 
rigorous automatic error control for computational processes using a digital 
computer. More recently, people have begun to appreciate the potential of 
interval arithmetic for control theory, and also as a tool in experimental 
designing on-line, with both a man and a computer as parts of the feedback 
loop. 

There are basically three different sources of error associated with 
numerical computations.  The first, which we may call the data problem, is 
due to the fact that the value of some given parameter may not be known 
exactly (this is for example true for physically-determined parameter 
values), or else may not be exactly represented in a computer (for example, 
the number TT). A second type of error, usually called truncation error, 
is caused by the necessity to terminate after a finite number of steps 
some infinite converging process, or (eqüivalently) by the requirement 
that some well-defined expression be evaluated at some point whose location 
is known only approximately (for example, the remainder term of the Taylor 
series with remainder). The third type of error is round-off error, caused 
by the necessity to restrict computational processes to operate on numbers 
which do not exceed some predetermined number of digits in length. Round- 
off error has traditionally been the most troublesome, primarily because 
of its non-analyticity. Attempts at rigorous "pencil-and-paper" bounding 
of round-off either are too difficult or lead to hopelessly pessimistic 
"bounds". 

Interval arithmetic keeps track of the accumulation of error by 
continually producing an interval, guaranteed to contain the "true" result, 
and performing the indicated arithmetic operations on the entire interval. 
Since the implementation of interval arithmetic necessarily involves ordi- 
nary arithmetic operations on the end-points of the interval, which in turn 
involw rounding, care must be taken to perform the rounding properly: "down" 
for the left-hand end point, and "up" at the right-hand one. Thus, when 
in the sequel we shall speak of interval arithmetic, it shall be understood 
that In the implementation of ehe  operations on a computer rounded interval 
arithmetic is used. However, in the formal discussion of Interval arithmetic 
we shall ignore this fact, and define the formal operations Independently 
of their implementation. 

ARITHMETIC RULES. An interval is simply a closed Interval on the real 
line, of the form [a,b] . We can also think of an interval as a fuzzy number 
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x of the form [x-e , x+e ]j although t  is certainly not restricted to being 
small in any sense. The arithmetic operations are defined in a natural 
fashion, and in fact reduce to ordinary arithmetic when e=0.  (When the 
occasion arises, we shall speak of ordinary real numbers as degenerate 
intervals.) 

Elementary operations are defined as follows.  Let [a,b] and [c,d] 
be a pair of intervals.  Then 

[a,b] + [c,d] = [a+c,b+d] ; 

[a,b] - [c,d] = [a-d,b-c] ; 

[a,b] * [c,d] = [min(ac,ad,bc,bd), max(ac,ad,bc,bd)] ; 

[a,b] / [c,d] = [a,b] *[l/d,l/c 1} (division is defined 
only if the interval [c,d] does not contain the point zero). 

It can be seen that these operations are defined in such a way that 
the result is precisely the set of all possible values of the operation 
as the operands range over the argument intervals. 

Interval arithmetic is associative, and addition and multiplication 
are commutative. Unfortunately, the distributive law does not hold; instead 
we have the "subdistributive" law (I, J, and K being intervals): 

I * (J + K)C I * J + I * K. 

That the inclusion can indeed be proper can be seen from the example 

[-3,3] * [0,2] + [-3,3] * [-1,0] = [-6,6] + [-3,3] = [-9,9] , 

whereas 

[-3,3] * ([0,2] + [-1,0]) '  [-3,3]* [-1,2] = [-6,6] 

The example also illustrates that a given interval number may have 
many multiplicative units: if y is any real number in (-1,1), then all 
interval numbers of the form [-l,y] or of the form [y,l] are multiplicative 
units for the interval number [-3,3] . 

More disruptive is the fact that although an additive unit is unique 
( [0,0] ), interval numbers do not in general possess additive inverses. 
(This reflects the fact that once uncertainty or error has been introduced 
into a computational process, it cannot be cancelled out, but must be carried 
along till the end.) This last property is responsible for almost all of 
the difficulties in interval arithmetic, and frequently necessitates very 
delicate handling of the specification of a computational algorithm - some- 
thing that the current state-of-the-art is not quite up to.  (In spite of 
this handicap, useful areas of application have already been found.) 
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The  usefulness of  interval arithmetic  for error bounding  comes from 
the fact  that 

1)  The elementary arithmetic operations are continuous mappings 
from I, x I„ onto I- (the I's are arbitrary intervals); 

2) Since the elementary operations are defined in such a manner 
that the range of the operator as the operands range over the argument 
intervals is contained in the result interval, the same is true for any 
well-defined grouping of such operations on argument intervals; in other 
words, for all rational functions.  Of course, rational operations is all 
computers are capable of executing; thus, any computable function can be 
bounded by the use of interval arithmetic. 

Let f(x. ,...x ) be a given formal rational function in the indeter- 

minates x. ....x . When the indeterminates take on real values, f denotes 
In 

a real-valued function.  There may be many different ways of representing 
this function, which are all algebraically equivalent; we will fix a 
representation f^x^.-.x ).  If we let the indeterminates take on interval 

values X^.-.X , then the function f. is still well-defined (we can regard 
In 1 

f, as a computer program, with a sequence of arithmetic operations to be 

carried out in a certain order); we however choose to call this interval- 
valued function F, (X.,..^ ). Note that the fact that ^ and f. may be 

algebraically equivalent to f (and to each other) certainly does not imply 
that F1 and F„ are equivalent (this is primarily due to the failure of 

the cancellation law for interval arithmetic). The basic theorem of 
interval arithmetic however states that for the purposes of error bounding 
any representation will do: 

Theorem. Let f be a given rational function, f = f(x..,...x ), and 

let F be any representation of f, F to be evaluated in interval arithmetic. 
Let X..,...X be a collection of closed intervals on the real line. 

1    n 
Then the range of f as each variable x. ranges over X. is contained in 

r^A.,...A )* 

The theorem assures us that interval arithmetic is sufficient to 
compute bounds on the range of a rational function over a compact rectangle 
in E .  Note that since the evaluation of F can be done using rounded 

interval arithmetic, the round-off error is included in the final bounds 
produced by F.  (It is worth while stressing though that nothing is said 
about bounding the round-off that might occur in evaluating f.  The round- 
off process is not a continuous operation. On some computers, in particular 
on the IBM SYSTEM/360, it is easy to cook up examples where f evaluated 
at some point p inside the rectangle turns out to be outside the interval 
obtained by evaluating F. This is but another aspect of "dirty" floating- 
point hardware. The true range of f is however always contained in F.) 

As already noted, the width of the interval obtained by evaluating 
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F may be considerably greater than the width of  the  true range of f;   it  is 
also generally quite sensitive to the choice for the particular representation 
F.     This shall be discussed below. 

SOME APPLICATIONS OF  INTERVAL ARITHMETIC.     Aside from the obvious 
advantage of providing error bounds,  interval arithmetic can be used by a 
computer to control the growth of error.    While  potentially the realm of 
applications is unlimited,   the author knows only of the following contexts 
in which interval arithmetic has been studied: 

a) The initial-value problem for ordinary differential equations; 
b) Finding roots of polynomials; 
c) Matrix inversion,  and the eigen-value problem for matrices; 
d) Solution of  systems of simultaneous   (non-linear)  equations; 
e) The two-point boundary-value problem. 

In these areas, analytic techniques are being developed which make use of 
interval arithmetic evaluations, and which also address themselves to the 
peculiar problems which arise in using interval arithmetic. 

THE INITIAL VALUE PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS.    Let 
dy/dx ■ f(x,y) denote a system of n first-order ordinary differential 
equations, and let yn = y(xn)  be given.    The application of interval arith- 

metic to the automatic generation of solutions to this problem was the first 
application suggested by Moore.    He designed a computer program using 
interval arithmetic which gave solutions with automatic error bounds. 

His method is described in  [7]  .     Briefly stated,  the solution is 
expanded in a Taylor series with remainder  (up to a specified number of 
terms)  at a given point.     To bound the remainder term,  the required deriva- 
tive is evaluated over a whole rectangle  (using interval arithmetic) which 
is guaranteed to contain the point at which the derivative should be 
evaluated.     Iterative procedures can be specified which limit the growth 
of  the width of  the resulting interval. 

Since this method depends on the ability of  the computer to evaluate 
higher-order derivatives of f,  it is handy to have a computer program which 
can do analytic differentiation.     Such computer programs have indeed been 
written,  either tailored  for the purpose at hand  [9],  or in more general 
settings,  such as the FORMAC capability for the FORTRAN IV compiler on the 
IBM 7094. 

The success of interval arithmetic in this setting is somewhat diffi- 
cult to evaluate.    The problem is that for reasonably complex systems of 
equations and for long ranges of integration with respect to the independent 
variable,  the resulting  interval tends to be too wide to be of much practical 
value.    Attempts at elaborate transformations to reduce the error growth 
due to the remainder term evaluation being too crude have in general been 
defeated by the fact that  the structure of interval arithmetic  (lack of 
additive inverses)  causes growth of widths of intervals due to too many 
operations.    Also, on some computers  (such as the CDC 1604)  the floating- 

90 



^•^mm^^^mm 

point hardware structure of the computer is so unfriendly that interval 
arithmetic operations are rather time-consuming.  For short integrations, 
and for qualitative estimates, interval arithmetic may be very valuable. 

ROOTS OF POLYNOMIALS. Moore suggested that a simple procedure for 
localizing zeroes of rational functions can be developed using interval 
arithmetic. Such a procedure was indeed programmed [3]. The method is 
based on the simple fact that if P is given rational form in n variables, 
R a rectangle in En, and P(R) evaluated in interval arithmetic does not 
contain the point 0, then P (as a function of real variables) cannot 
possibly have any zeroes in R. 

1 

P. 
an 

An iterative procedure can be implemented based on the fact that If 

ana R_ are two rectangles in E each of which contains a given zero of 

th»'.n their intersection must necessarily also contain that zero. Thus, 
extension of Newton's method is possible, as long as care is taken at 

each iteration to intersect the new interval (which may not be contained 
in the one obtained at the previous iteration) with the old one, thus 
guarding against divergence.  This is called by Moore "the method of 
interval contractions".  Clearly any such procedure must converge, but 
the limit will in general be an interval, rather than a point. If the 
limit interval is too wide, the process may be repeated by subdividing 
the original rectangle R into smaller ones. 

Similar results were obtained for the complex domain (Boche [2] 
having extended the concept of interval arithmetic to the complex plane) 
by Hansen [6] and Bennett [1] . 

For this problem, interval arithmetic may well be the best (compu- 
tationally speaking) method of obtaining results, especially if it Is 
desirable to find regions guaranteed not to contain any zeroes of some 
given function. 

MATRIX INVERSION AND THE EIGENVALUE PROBLEM. The problem of Inverting 
matrices in the context of interval arithmetic comes from two distinct 
sources.  Problem one: given a matrix with real elements, obtain a (real) 
inverse with automatic error bounding of round-off. Problem two: given 
a method of obtaining solutions of some problem in ordinary arithmetic 
(for example, Newton's method in n variables) which calls for inverting 
matrices, extend this method to the case where interval arithmetic will 
be used for the solution (possibly because the coefficients are only 
approximately known). That is, in problem two we are asked to Invert a 
matrix with interval elements. 

Since it is not a priori clear what we mean by an "inverse" of an 
interval-valued matrix, we define this inverse to be the set of inverses 
of all of the real matrices contained in the given interval matrix. It is 
understood that the inverse is defined only if the interval matrix does not 
contain any singular real matrices. 
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Hansen ( [4] and[5]) has worked extensively en this problem.  He shows 
that a direct extension of the standard methods for matrix inversion (such 
as modifications of Gauss - Seidel) to interval arithmetic is not very 
useful, because of the many arithmetic operations involved, and (again) 
because of the lack of additive inverses.  Instead, he develops several 
methods, all based on essentially the same principle. What he does is to 
compute an (approximate) real inverse of the real center of the interval 
matrix, and then (using some iterative procedure) compute in interval 
arithmetic bounds for the width of each element of the true inverse of the 
interval matrix.  The variations in the iterative procedures consist of 
trying to represent things in such a way as to have as many terms as possible 
be non-interval. 

Similar considerations apply to the problem of finding eigenvalues 
and associated eigenvectors of real-valued or interval-valued matrices. 
Again, direct extensions of the standard techniques used for real arith- 
metic are not satisfactory. Hansen [6] suggests iterative procedures 
using interval arithmetic once approximate solutions are obtained using 
real arithmetic. 

The numerical results quoted by Hansen suggest that very good accuracy 
can be obtained using interval arithmetic.  His methods do converge, although 
he does not discuss the rate of convergence.  Note that in Hansen*s methods 
it frequently pays to carry out the real computations involved using ex- 
tended-precision arithmetic, since in general multiple-precision arithmetic 
is much faster than the interval arithmetic procedures required, and it is 
worthwhile to go to great lengths to save an iterative step. 

SYSTEMS OF SIMULTANEOUS EQUATIONS.  Let f(x) denote the set of n 
rational forms f,(x) in the n formal variables x , and let it be desirable 

n 
to find a solution to f(x) = 0 in the vicinity of some point xn in E . A l0 
method proposed by Moore goes as follows. 

Let y be a solution near x0; i.e. let f(y) = 0.  (Of course, we do not 

know y explicitly.)  Expanding f(x) as a Taylor series with remainder about 
y, we have f(xn) = f(y) + (x0 - y)J(z), where z is some point "between" 

x» and y, and J is the Jacobian matrix evaluated at z. Expressing z as 

y + e(xn - y), where 9 is a vector with elements between 0 and 1, it can 

be seen that if R is a rectangle which contains both x» and y, then R 

also contains z.  Hence, we can try to solve (x0-y)J(R) = f(x0) for y. 

This will yield a new rectangle R' which contains y, and which can then be 
intersected with R to yield a (hopefully) smaller rectangle R". We now 
solve (R"-y)J(R") for y, etc; this will eventually converge to (we hope) a 
small interval containing the real solution y. 

Hansen gives a slight improvement in the method [6]; this is essentially 
a slightly better way of writing things down for computation. 
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It can be seen that this is a variant of Newton's method, adapted 
for interval arithmetic.  It requires that f contain no other zeroes near 
the point in question, for otherwise the Jacobian J becomes singular.  Again 
it pays to obtain as precise an initial guess as possible, using ordinary 
(possibly extended-precision) arithmetic. 

The author knows of no numerical experimentation with solving large 
systems of equations using interval arithmetic. 

THE TWO-POINT BOUNDARY-VALUE PROBLEM. This problem is currently 
He has devised a general method for under investigation by Hansen 

tackling the solution of 

.(n) 
= f(x,y,.. .y*-1') 

with a total of n conditions prescribed at the end points x = 0 and x= 1. 
His method, based on an adaptation of a finite-difference method, gives 
sharp bounds at the mesh points and less sharp bounds throughout the 
interval.  It will be described in a forthcoming paper. 

OTHER POSSIBLE APPLICATIONS.  Interval arithmetic may have potentially 
many uses.  It has been suggested that it can be used in control theory, 
where it is desirable to let parameters in differential equations range 
over certain restricted domains. Another potential arpa of utility is 
in design, where it can be used in conjunction with an on-line computer 
system. A designer, seated in front of a terminal in communication with 
a computer, can experiment with various possible designs by letting some 
variables range over a set of interval values. With instant feedback from 
the computer, the designer can begin to get a feel for the effects of 
perturbations in the design parameters. Using interval arithmetic in this 
setting is particularly attractive because sharp bounds are not required - 
the qualitative estimates would be produced in relatively little time, and 
would at the same time be completely rigorous, covering all possible cases. 

THE REPRESENTATION PROBLEM. The major trouble with interval arith- 
metic is that due to the lack of inverses forms normally considered 
algebraically equivalent are computationally quite different.  It is always 
advisable when using interval arithmetic to eliminate entirely expressions 
of the form x - x. Other reductions of this type suggest themselves. 

The general problem can be stated as follows.  Suppose that f is a 
given function (from En into the reals) and suppose that it is desired to 
obtain bounds on the range of values of f over some rectangle R using 
interval arithmetic. What is the "best" way of representing f from the 
point of view of obtaining the narrowest bound? 

There are three different approaches to this problem. One can try 
to obtain an optimal representation for f.  (The author strongly suspects 
that this approach is not in general workable; that is, given a general 
function f, there is no algorithmic procedure that would allow the selection 
of a "best" form.) A second approach can be based on the following: if 
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f. and f? are two different representations for f, and f,(R) = I,, f-CR)*!., 

then I1A I_ also contains the range of f over R.  It may be possible by 

judiciously choosing among different representations for f to obtain 
successively better approximations to the range of f. Although there Is 
probably no algorithmic procedure guaranteed to converge for an arbitrary 
function f. It may be possible to find some programmable heuristics which 
greatly reduce growth of Interval widths. The third approach consists of 
subdividing the original rectangle R into smaller rectangles and performing 
the required evaluations on each of the small pieces. This process will 
generally result in narrower bounds, and is In fact guaranteed to converge 
to the exact range of f regardless of the representation chosen.  The 
convergence is however so slow compared to the overhead for repeating the 
computations for each one of the smaller Intervals that this approach is 
not very practical. 

Moore has noticed that a certain representation, which he calls the 
centered form, will frequently yield good results.  Briefly, this scheme 
goes as follows:  Given a formal function f of (say) one variable x, and 
assuming that we are interested in evaluating f over the interval [a,b]= 
[m - ^(b-a), m + ij (b-a)] , we represent f as expanded about the midpoint 
m.  That is, we obtain a form g by the relation g(x-m) = f(x) - f(m), so 
that g(y) = f(y +m) - f(m).  g has to be represented in the most "economical" 
way possible, so that the number of occurences of the term y cannot further 
be reduced.  Since f([a,b]) = gÜ-^Cb-a), ^(b-a)]) we have moved the required 
Interval evaluation to be centered about zero. 

2 
For an example, let f(x) = x - x , and let the interval in question 

be [0,1] .  The actual range of values of f is of course [0,^] .  Evaluation 
of f as written yields [0,1] - [0,1] * [0,1] = [0,1]-[0,1]= [-1,1] . 
Writing f in "nested" form as x*(l-x) yields [0,1] * [0,1] = [0,1]; an 
Improvement, but still not very good.  Writing f in centered form, we have 
(with y = x-h)   g(y) = -y^ + k,  so that f(x) is represented as -(x-h)    + hi 
Interval evaluation of this form yields - [-4*^] * [-^j^] + k -  [0,h]   • 
This turns out the best that can be done for any given representation with 
the evaluation of only one Interval.  If however we are willing to evaluate 
separately the range of f on [0,^] and also on [%»1], then by using the 
centered form it turns out that we can bound the rauge of f by [0,3/8].  In 
fact, if we keep halving the width of the (equal) Intervals, it can be 
shown that Interval evaluations approach the upper bound h  linearly with 
the width. 

Lest the reader conclude that the centered form is always the best 
representation, consider the function f(x) = x + x , and let the interval 
in question be \2-s,2+s Jwhere 0 < s < 2.  Then both straightforward Interval 
evaluation and the nested form give [s2-5s+6,s2+5s+6], which is the exact 
range of values.  In centered form, however, we represent f as (x-2)(x+3)+6; 
evaluation of this yields [-s2-5s,s +5s] +6, which exceeds the actual width 
by 2s2. 

It is possible (and desirable) to modify the rules of Interval arith- 
metic in order to reduce spurious growth of Intervals. One obvious and 
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easily programmable change is to define, for all intervals I, 

ln = {xn  : x t 1] 

This in general yields smaller intervals than the computation of I *I_*...*I 

I. Other modifications of this sort, which take for I = I9 = = I = 
n 

into account known and easily computable exact ranges of values of a set of 
elementary common forms, may improve the performance (and possibly even speed 
up the operation of the system, as generally fewer multiplications will have 
to be performed during the computations). 

Note that with changes of this sort, some of.the properties of interval 
operations no longer hold. For example, with the change indicated above 
for raising to powers, subdistributivity no longer holds in its original 
form; the interval I*(I+1) need no longer be contained in the interval 

I + I (whether it is or not depends on I).  If I = [-1,1], then 

while 

I*(I+1) = [-1,1] * [0,2] = [-2,2]; 

r  + I + [0,1] + [-1,1] = [-1,2]. 

This tends to complicate the representation problem even further, since 
it becomes desirable to have a representation contain as many (in some sense) 
as possible of the forms whose ranges of values are exactly computable. 
The changes are all for the better, however; the complications result because 
we now have better ways of representing functions than formerly. 

SYSTEMS PROGRAMMING FOR INTERVAL ARITHMETIC.  Programming for interval 
arithmetic is somewhat similar to writing (general real) computational 
routines in the early days of computing, before the hardware Implamentation 
of floating-point arithmetic.  At level 1, the systems programmer has to 
build the basic tools for performing interval computations: an adder, a 
multiplier, an inverter for producing an incerval (l/d,l/c) given the 
interval (c,d), and (if exponentiation is desired) functions that compute 
good bounds on the range of values of the EXP and LOG operators.  (Similarly, 
other elementary transcendental functions such as SIN should be incorporated.) 

At level 2, tools must be provided for convenient interfacing with the 
user. For a simple example: subtraction can obviously be implemented very 
simply using the adder of level 1; at the same time, it is clearly not 
desirable to have the user perform this implementation every time he wishes 
to execute subtraction. Thus, a set of subroutines must be provided for 
the user which he can conveniently call. There are likely to be a large 
number of such subroutines, for the following reason.  It is generally 
desirable to allow the user to mix the mode of the variables freely; he 
should be allowed to add a integer-valued variable or constant to an 
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integer-valued one.  By the time all possible combinations of modes for 
operands are accounted for, the number of different subroutines provided 
is staggering.  (Actually, there are typically about eight different 
routines, each of which has many entry points.) 

It is clear that any such package of subroutines should be FORTRAN 
compatible.  While the level 1 subroutines usually have to be written in 
machine language, there is usually no reason why the level 2 routines 
themselves cannot be written in the FORTRAN language. 

The representation of interval numbers within a computer for FORTRAN 
might have been quite awkward were it not for the fact that formally an 
interval number looks just like a complex number. Any FORTRAN language 
compiler equipped to handle complex numbers can be tricked into handling 
interval numbers by the appropriate TYPE declarations.  This is very handy 
for getting interval numbers in a decent format into and out of the computer, 
and also for defining interval-valued constants.  (Arrays of interval 
numbers are also easier to handle if they are defined as being of TYPE 
COMPLEX.) 

The arithmetic operations have to be performed by calls to the 
appropriate routines.  Some computers (for example, the CDC 1604 and 3600) 
have a feature in their FORTRAN compilers which allow the definition of 
other (non-standard) variable types. What this means is that the compiler, 
when it encounters a variable of non-standard type, generates a call 
automatically to the appropriate arithmetic routine.  This simplifies 
usage of interval arithmetic greatly, since the user, once he defines a 
variable as being of TYPE INTERVAL, can use it in statements as if it were 
any other type (integer or real).  In fact, should this prove desirable, 
it is possible to define variables as being of type "double-precision 
interval" (the appropriate routines would have to be provided).  For an 
example of an interval-arithmetic package of the sort just described, 
see [8]. 

The level 2 routines will depend to some extent on the exact working 
of the FORTRAN compiler.  The level 1 routines are essentially compiler- 
independent ; they are however heavily dependent on the way the given computer 
performs floating-point operations.  (For convenience of interfacing with 
FORTRAN, the interval endpoints should usually be represented as floating- 
point numbers.) The (real) operations have to be performed at each end 
point in roughly the sequence:  1) perform the operation in a double length 
accumulator by using both the A and the Q registers without rounding;  2) 
normalize the result;  3) round to a single-precision floating-point number 
by adding (or subtracting) a 1 in the last place, unless the result was 
exact.  If the computer does not allow this sequence of operations to be' 
performed using the hardware floating-point instructions, then these opera- 
tions have to be simulated by software, using fixed-point instructions. 

Similar considerations apply to the computation of the transcendental 
functions. The functions should be computed in such a way that the result 
is off by at most one in the least significant bit of the single-precision 
answer. 
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Exponentiation can be  implemented using the LOG and EXP routines.     The 
system should however first  determine  if  the exponent  is an integer  (even 
if  represented as  a floating-point number).     As  indicated,  a substantial 
reduction in the growth of the widths of intervals can be effected If integer 
exponentiation is computed  by repeated multiplications,  using the true-range- 
of-values for raising to powers. 

REFERENCES.     The first  place any  interested  reader should look is 
Moore  [7];  aside from its definitive nature,  it contains a rather complete 
bibliography of  relevant  literature.     For a more up-to-date list,  see 
Bennett  [l]. 
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HOMEOSTATIC ORGANIZATIONS FOR ADAPTIVE 

PARALLEL PROCESSING SYSTEMS 

Robert M.  Dunn 
U.  S.   Army Electronics Command 

Fort Monmouth,  New Jersey 

An effective Army is not possible without the effective performance 
of tactical communications and information processing functions.    An 
intriguing possible realization for the future is one which considers an 
integrated system providing service for both the communications and 
information processing functions.    Within the realm of such a possibility, 
one may visualize a utility-like availability to these services for any 
qualified and authorized user. 

At least three distinct approaches to such a military system are 
apparent.    The first approach would provide each tactical element with 
a separate facility for the integrated services.    The second approach 
would be to have many tactical elements time share a central facility. 
And the third approach would be to provide an Army-wide,  common-user 
network for the integrated services.    This network would be designed to 
tolerate losses of parts of itself without serious degradation of service 
from the remaining balance. 

From a technological point of view, the separate facility approach is 
clearly the most near term and expedient.    However,  in the long term,  this 
approach suffers from two weaknesses.    First, either each facility is tailored 
to each tactical element or a single type of overly general,  excessively 
capable facility is designed for all needs.    Neither alternative is very 
desirable.    The second weakness is that the set of separate facilities must 
be embedded in a superfacility to provide the basis for interchange of infor- 
mation between functionally distinct,  but organizationally unified tactical 
elements. 

The centralized,  time-sharing approach implies minimal equipment 
costs and simplified logistics.    This approach also provides ample oppor- 
tunity for the just cited information interchange.    However, this centralized 
approach guarantees chaos, not to mention severe losses and possible defeat, 
in the event of the destruction of such a facility.    The mere hint of its 
existence would assure that such a facility became a prime target. 

The merits and demerits of the network approach are not as readily 
compared and balanced against each other.    Technologically, the network 
approach is the least certain.    Economically,  it is possibly as expensive 
or more expensive than the most costly already considered.      Technological 
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turns will establish the degree of the logistics problems it presents, and 
so on.    But, all of the real or anticipated uncertainties or drawbacks are 
potentially balanced or surpassed by the potential advantages of this 
approach.    It could increase operational flexibility.    It could enhance 
tactical survivability.    The quality of service would be greatly improved. 
Such an approach could even foster a design that permits dynamic system 
growth and/or adaptation to changing requirements and/or applications 
and/or environments. 

However, a great deal of knowledge is not available on network 
processor systems.    This scarcity is the cause of our uncertainty about 
the network approach to the integrated system.    Therefore, the objective 
of this discussion is to enlarge our generalized understanding of a network 
which is primarily composed of digital processors,  information storage 
sub-systems,  and other special or limited purpose sub-systems.    For 
example,  analog processor, hybid processors,  communications equip- 
ments, weapons systems,  etc.    This integrated tactical utility is considered 
to be geographically dispersed and offers the following features: 

- Each subscriber approaches the system, uniformly,  as a 
common-user, whether it be for communications or information 
processing services. 

- Automatic control of the system is operationally distributed 
across the nodes of the network. 

- The system automatically determines which aspects of 
itself are necessary to satisfy each user's service request by 
analyzing each service request.    The system then automatically 
allocates and interconnects the necessary resources if, and 
from wherever, they are available within the network. 

- Multiple users may simultaneously access the system 
without incurring mutual interferrence to the limit of the 
systems' capacity. 

- Lastly,  arbitrary subsets of the users of the system may 
cooperate via the system, using it as their means of inter- 
connection and basis for cooperation. 

The most important implication of these features is the set of items 
that must be considered as separately allocatable resources within the 
system.    Such usual things as computer programs,   storage capacity, 
information, communications,   sensors,  and processors are within this 
set.    But, atypically, this set includes the control function or even other 
users.' 
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Our formulation of the system relies on two assumptions.    The first 
is that for any system of the type under consideration,  there exists a 
positive integer N such that the system is said to be an Nth level organiza- 
tion.    This implies that there are N hierarchical levels of structure 
where lower level functional elements are combined to form higher level 
functional elements.    These combinations may either be permanent or 
temporary for some transient functional purpose. 

The second assumption is that every output of every functional element 
is an input to some other functional element.    Therefore,  the inputs and 
the outputs are members of the same set of symbols. 

In addition to these assumptions, there are a number of constraints 
upon the formulation of the system. 

First, the behavior of the system must be able to be characterized 
such that all functional elements of a given type have identical physical 
realizations.    The interests of economics and logistics are the motivation. 

Second,  the control function must imply neither a centralized organiza- 
tion,  nor an omniscient attitude towards the system's status nor a large 
amount of status information or transmission thereof.    Otherwise, the 
survivability objective would be immediately obviated.    Next,  the control 
function must allow for a non-deterministic allocation of resources.    When 
resources are probablistically allocated as the result of a search, the 
degree of omniscience and the amount of status information necessary to 
the control function may be drastically diminished. 

Another constraint upon the formulation is that the notion of a control 
function must be limited to explicit control only of a node over itself.    Each 
node of the system must neither require direction from nor be required to 
give direction to other nodes in the system.    Implicitly,  nodes may affect 
the behavior of each other by generating undirected service requests. 
Enhanced survival is the principal motivation for vhis constraint. 

The final restruction is of a slightly different type.    System effective- 
ness requires that there is a careful delineation of the operational and 
information environments along with the actual functional sequences to be 
performed.    System efficiency requires that these delineators not be 
overly specific.    The implication here is that such systems as we are 
discussing ought not to be programmed in the usual sense.    That is, the 
development of a step-by-step sequence of directions is not the role of the 
user.    The user, instead,   specifies two things.    On the one hand he declares 
the name or sequence of names of the function or functions to be performed. 
And on the other , he denotes the environmental and data references 
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germaine to these functions.    The user then accepts whatever imple- • 
mentation is open to the system which will both satisfy these specifications 
and adhere to whatever priorities or time requirements that may be in 
effect.    This ^functional programming" approach is feasible because of 
the limited category of functional classes to which the military user is 
usually constrained.    Therefore, although the digital processors within 
the system may be capable of emulating a Universal Turing machine, 
their actual pragmatic use will be limited to a well-defined set of inter- 
pretations.    For example, they may be microprogrammed in some very 
gross sense. 

Towards stating the model, consider, now,  that an arbitrary abstract 
entity known as an organization has two major components:    the structure 
and the behavior.    Also consider that control is another abstraction inter- 
woven into the fabric of the organization.    The purpose of control is to 
assure that the behavior is achieved within the confines of the structure 
according to conditions imposed by the environment in which the organiza- 
tion exists.    Finally,   consider that control,   structure, and behavior are 
further related in that the range of possible choices for any one of them is 
severely constrained by the previously chosen ranges for the other two. 
In fact, even after determining these three sets of possibilities,  it will 
usually be the case that just a few of the possible combinations will be 
reasonable to consider according to various criteria. 

If the term "system" is now considered to be the operational equiva- 
lent of "organization" then the set of primitive characteristics identifies 
the range of possible structures as that which also includes conventional 
telecommunications networks.    More precisely, the set of structures are 
those partially describable as three-dimensional,  coordinate arrays. 
These arrays are characterized by two properties.    First,  elements of 
the network need not exist at every coordinate intersection of the array. 
Second, interconnections only exist between elements of the network 
according to some appropriate functional, temporal, topological or 
metric definition of "nearness", i.e. , those which are close together in 
some well-defined sense. 

In turn, the set of possible behaviors is that which also includes the 
performance of arbitrary communications and information processing 
functions on a time-shared basis.    A more precise statement would be 
that the set of behaviors are those partially describable as arbitrary 
sequences of any of transmission/reception, modulation/demodulation, 
multiplexing/demultiplexing,  switching, data manipulation or computation 
functions.    For any sequence or element of a sequence two properties hold. 
First, the system may not be continuously active in the response to that 
sequence or one of its elements.    And second,  for any functional module 
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of the system and any two consecutive,  even contiguous,  periods of 
activity of that module,  the functional module needs not be active in 
response to the same sequence,  or element thereof,   in its successively 
active periods. 

Finally, the set of possible controls is that which also includes the 
ability of local sections of the network to be self-managing.    The 
definition of "local" is dynamically determined,  in time,  according to 
the magnitude of the response required by arbitrary service request. 
Again towards precision,  the set of controls are those partially describa- 
ble as mappings from the cross product set of the set of stimulators or 
inputs with the set of functional elements onto the set of sub-structures 
of the organization.    Each of these sets of structure,  behaviors,  and 
controls is very comprehensive. 

Via these notions of "organization, " "structure, " "behavior, " and 
"control, " there exists a precise context in which to formulate the model 
which hopefully will exhibit an ability to select some optimal combination 
of members of the three sets.    In so doing, the model must allow for a 
functionally modular system which degrades gracefully and which can 
dynamically alter its own active internal organization.    The model must, 
for the sake of generality,  also allow for a homeogeneous system as 
regards process,   structure,  and behavior.    By this we mean that the 
abstract characterizations of either gross purpose,  gross structure,  or 
gross behavior of any functional element at any Kth level of the system 
is isomorphic to the corresponding abstractions for arbitrary functional 
elements at the same or different levels of the system. 

We now make the following definitions: 

Definition 1.    Functional Element - an instance of a separately allocatable 
system. 

Definition 2.    Change Requirement - an input to some functional element 
of the system. 

Definition 3.    Configuration - a set of interconnected functional elements 
and a description of that interconnection. 

Definition 4.    Transformation Rule - an operator on the set of configura- 
tions. 

Definition 5.    Response - a change requirement generated by the activity 
of a functional element. 
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We now let 

th S    = an n     level organization; 

cij  = the i     type change requirement; 

M     J   = A functional element at level K of the system of type 
k 

A. .    j ranges over the set of element types which are 

possible at level K; 

Z^  = a type of configuration where the set of configurations 
is given by the set of graphs whose members are models 
for interconnection schema within the system; 

F      = a transformation rule induced by an i     type change 
1     requirement; 

F   = the control function; 

H  = the response function. 

Any system may then be defined as an ordered sextuple. 

S    =   (A,  C. G, D,  F,  H} 
n 

where A = {a    , o   ,  . . . , a   } .    The set of types of change requirements; 

C = {S ,.  Z    2   }   the set of types of configurations; 

G = {r     ,r     .....F     }   the set of types of transformation 
a        a a 
12 p 

rules corresponding to the set of types of change requirements; 

D = {A   , A   , ,.. , A    A    }   the set of sets of possible 
element types at each level of the system;    A w implies that 
the system may become a more complex system up to W levels 
deep. 

F;    {AxD} ►    {GxC} the control function; 

H:    (F     .  M       j) 
a.        r 

i 

(M    „       , a  ) the response function where 
*    r+P o' r 

1 < ß < 1   and is always an integer or zero. 
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It is seen that the control function is a mapping from the set of 
order pairs of change requirement types and element types into the set 
of order pairs of transformation rules and configuration types.    It is 
also seen that the response function is the result of the application of a 
change requirement induced transformation rule to a functional element; 
more strictly speaking to a configuration of that functional element.    The 
result is some new functional element and a generated change require- 
ment.    Here,  we can interpret (3 = O to mean that the new functional 
element is either the same as the old one or,  at most,  a reconfiguration 
of the components of the old functional element.    Similarily,  we may 
interpret ß = 1 to mean that the old functional element has been combined 
into a more complex element.    Finally, we may interpret p= -1 to mean 
that the new functional element is the result of some decomposition of the 
old functional element.    In addition,  the following is always true.    If M 
is a functional element at the K     level and is of type  A;     then we may 
say that 

Ak k-1 i 
M,   J      =        S   ^   M. 

k i=oh     1 

This states that,  in general, each functional element is an interconnection 
of lover level functional elements arranged in one of the possible configura- 
tions.    In particular, this is true of the system as a whole. 

s    = 
n-1 
2 „ M^ 

n 1=0* i 

Finally,  we note that the model is independent of concern for actual 
levels of system organization or echelons of users.    We also note that the 
nature of the functional elements or their manners of implementation did 
not enter into the model.    Therefore,   in systems such as this we expect 
to be able to dynamically juggle arrangements,   relationships,  or inter- 
connections between functional elements as diverse as trunk group frames 
in a time division multiplex system,  the multiplexors themselves,  operat- 
ing procedures, or even entire nodes.    At the same time, the forms of 
realization of these functional elements may be as varied as an informa- 
tion stream,  a message, wired logic,   stored logic, or even stored program. 

In practical terms,  a network such as depicted in Figure 1 may range 
over many hundreds of square miles.    The movement of users and equip- 
ment within this area appears to be best served by the class of systems 
discussed herein.      Such networks would necessarily employ random 
search techniques for locating individual users within its domain. 
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As a consequence, the typical node in such a network   may itself 

be a network of the same class as depicted in Figure 2.      Again random 
search techniques would be utilized for routing traffic within the node. 
In turn, possible depictions of typical processor and memory modules 
appear in Figure 3 and 4 respectively.    Further details on such practical 
considerations may be found in the brief bibliography at the end of the 
paper. 

In summary, we have been talking about a network of processors 
which controls its own active interconnection scheme,  dynamically 
regulates the distribution of load across itself in order to achieve an 
equilibrium state, and does all of this without a central scheduler or 
controller! 

Borrowing from the physiologist,  we shall label the drive towards 
an equilibrium state, the "homeostatic" aspect of our system and claim 
that its realization is a function of the organization which characterizes 
the system.    The alteration of temporal and functional relationships 
between nodes in the network in response to new functions or service 
requests we take as an ability to alter behavior and so label the system 
"adaptive. "   The parallelism in the system is readily apparent.    There- 
fore,   in general, we have been talking about homeostatic organizations 
for adaptive parallel processing systems. 
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LOGICAL STRUCTURE OF AN AUTOMATICALLY SEQUENCED 
EXPLOSIVE CONTROL DEVICE 

Sylvan H.  Eisman 
Pitman-Dunn Research Laboratories 

U.  S.  Army Frankford Arsenal 

ABSTRACT.      The question to be considered here concerns the 
interconnection of a set of one-shot devices which are to be activated in 
one of several predetermined sequences.    Selection of the first device 
is made externally.    In addition to performing its own action,  each device 
initiates a pulse which travels along an explosive cord or MDC line to 
activate the next device in the sequence or to break another linking explo- 
sive cord.    The essence of the problem is to define a procedure for 
interconnecting all required sequences so that one and only one will 
operate correctly when properly initiated.    This is done by setting up a 
connection matrix representing all the sequences and then,  by various 
operations on it, determining which links are to be broken and by what 
devices.    This gives a solution but not an optimal one.    Suggestions are 
made for improving individual solutions.    An example is carried through 
the entire discussion and a computer program which mechanizes the 
procedure is exhibited as an appendix. 

INTRODUCTION.     The question to be considered here concerns the 
interconnection of a set of one-shot devices which are to be activated in 
one of several predetermined sequences.    Selection of the first device is 
made externally.    In addition to performing its own action,  each device 
initiates a pulse which travels along an explosive cord or MDC line to 
activate the next device in the sequence or to break another linking explo- 
sive cord.   The essence of the problem is to define a procedure for intercon- 
necting all required sequences so that one and only one will operate 
correctly when properly initiated. * 

STATEMENT AND DISCUSSION OF PROBLEM.    Given a set of n 
, , d   ,  it is required to interconnect them by explosive 

cords so that various preselected sequences of these devices will be 
devices, d.,  d_ 

actuated.    Explosive cords for all sequences must be present at the initial 
installation of the devices and the final choice of sequence is made at the 
time of operation by selecting the starting point for the required chain of 
events. 

^'Properties of MDC lines,  methods for construction of the devices; 
possible application and other questions concerned with the physical 
realization of the system will be discussed elsewhere  [l] . 
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Example:    Given devices a,  b,  c, d and e,  it is required 
to be able to actuate them in any one of the four sequences 
abcde, cbade,  bdac or d,  upon external command.    The 
first sequence will require MDC lines to carry a pulse 
from a to b,   * from b to c,  etc;  the third will need MDC 
lines from b to d,  from d to a, and a to c.    For the last 
sequence, only d is to operate and no other MDC lines 
are needed (or permitted). 

e        \ 

Figure 1 

Figures 1A and IB diagram the first and third sequences 
of the example. Figure 1C combines the connections for 
the two cases. 

However,  combining all the sequences does away with the definition 
of a unique successor to each device and special precautions must be 
taken to eliminate unwanted paths in the explosive chain.    This can be done 
by destroying (negating) certain pathways by means of other exploding cords. 

Example:    In Figure 1C,  if device a is chosen as the start- 
ing point,  implying ::::;'sequence abcde,  the explosive pulse 
will travel to c as well as to b and interfere with proper 
operation of the system.    To assure correct sequencing, 
MDC lines (a,  c) and (b,  d) would have to be cut.    MDC 
line (d, a) can remain intact since element a has already 
functioned by the time element d is activated. 

s;<In this discussion the MDC lines or explosive cords will be treated as 
being unidirectional.    The bidirectional case will be considered in a later 
section. 

♦♦It should be noted that each sequence must start with a different element. 
For if two started with the same element, abed and acd,  for example,   some 
external action must take place to indicate which of the two has been selected. 
This external event is then actually part of the system and should be 
labeled as the first device. 
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Example:    Logically,  it is relatively simple to cut (b, d) 
in the first case by having a initiate the cutting action 
(by means of another exploding cord,  for example).    It 
is not so simple to remove (a, c) because the pulse to c 
may get thru before the pulse to destroy the connection 
line does since both emanate from a.    To obviate this, 
we make the 

Assumption:    It is possible to construct the equipment so that 
MDC destroyers (negators) act before all other MDC lines emanating 
from the same device. 

Even though several devices might be available for breaking a MDC 
line,  the strategy here will be to cut it as early as possible in the sequence. 
That is,   activation of the first device will cut away all MDC lines which 
will interfere with the operation of its particular sequence. 

It may happen that a negator which is essential to correct operation 
of one sequence interfers with proper operation of another.    The negator 
must itself be broken by another explosive cord (second negation) during 
operation of the other sequence. 

Example;    Figure 2A shows the diagram of 1C with the 
addition of the two negators to permit sequence abode to 
function properly.    For sequence bdac, line (b,   d) will 
function properly (Line (b,c) is to be ignored for the 
purpose of this particular explanation) since the negator 
from a * has not yet been activitated.    However,  line (a,c) 
will be broken by the negator from a before it performs 
its function since, by the assumption, the pulse travels 
faster along a negator than along a connecting line.    That 
negator must be 

b 

i 

Figure 2 

*The negators from a to break (a,c) and (b,d) are shown as crosses on the 
lines.    The point of origin of a negator (and,  later,  second negator) is shown 
close to the cutting point to avoid excessive lines in the diagram. 

■ 
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broken before it can function in sequence bdac.    This 
can be done,  as shown in Figure 2B,  by a second 
negation from either b or d and the first element is 
chosen to simplify the procedure. 

Will negations of an order higher than the second be required?    That 
is, will there be occasions where it is necessary to break a second 
negation?   The answer is no, as the following informal argument shows. 
Doing away with a second negation implies that the negator which it breaks 
has become necessary in some third sequence or that its original purpose 
has been interfered with.    The latter case is impossible since negators 
are chosen to act from the first element in a sequence and the other prob- 
lem can be bypassed by having a separate negator for each different 
sequence requiring it.    If a different strategy were chosen for the origin 
of negators it is quite possible that a higher order negator would be needed. 

SOLUTION.     Let n be the number of devices which have been denoted 
as   dq, 1 < q < n, and which are to be arranged into m < n operating 
sequences.    To simplify the notation we shall drop the symbol d and use 
the index q as the label.    Thus each operative sequence is represented 
as a sequence of integers.    We now form an m x n sequence matrix,  S, 
as follows:    each of the m sequences of integers will form a row of S, 
where the order of the rows is arbitrary;   if any row has less than n integers, 
sufficient O's are added on the right to bring the number up to n. 

Example:    given six devices labelled 1,  2,  ...   6, with the 
following required sequences:    316524,  4312,  54321, 
654 321. 12 34 56,  the following 5X6 sequence matrix 
can be formed: 

S = 

Associated with each S matrix is an n x n connection matrix C whose 
entries c     t are 1 if for some sequence there is an MDC line from device 
r to device t and 0 otherwise.    These lines will also be referred to as major 
connectors to differentiate them from first and second negators. 
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Example:    associated with S above is the 6x6 matrix: 

C = 

Each sequence will be identified by its first element. For any 
sequence k of length p, the rows and columns of C can be permuted 
until the first p rows and columns are in the same order as in the 
sequence. Label this permuted matrix C. . The last n-p rows will 
not be needed but the last n-p columns will, although their order is 
irrelevant. Note that the row labels represent the required devices 
and that the column labels represent all the existing devices 

Example: 

3     16     5     2     4 

5 

4 

3 

2 

1 

3 1 1 1 

1 1 1 

6 1 

5 1 1 1 

2 1 1 1 

4 1 1 

5 4 3 2 1 6 

1 1 1 

1 1 

1 1 1 

1 1 

1 

1 

1 

The following observations can be made on the C. .    The first p-1 
elements on the first superdiagonal represent the major connectors 
required for the proper functioning of sequence k.    There are no I's on 
the main diagonal since no device is connected to itself. 

For each required device, the corresponding row contains a 1 in a 
column where ever there is a connection from it to another device.    The I's 
below the main diagonal represent connections to device already activated 
and will be of no interest here.    Those above the first superdiagonal 
represent connections to devices which can still be activated but which 
must be prevented from operating at this time. 
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Finally,  if p < n, there must be no connection remaining from device p 
to any other still active device.    This leads to the formulation of 

Rule 1: A sufficient set of negations for each sequence k 
is determined by all the I's above the first superdiagonal 
in Cjc as well as the pth 1 on that diagonal if it exists. In 
each case,  the source of the negator is device k. 

A more formal proof that this rule produces the desired negations will 
be found in Appendix I. 

It will be convenient to record the negations in the Ck by encircling 
the I's identified in Rule 1. 

Example: 

3     16    5    2    4 

3 

1 

6 

5 

2 

®0 
•    0 

1 

1          1   © 

1                            1 

4 1     1          1 

c. 

4    3    12    5     6 

4 

3 

1 

2 

® 

1     1     1 

5 

4 

3 

2 

1 

5    4 3    2 1    6 

I ® ® 
1 1 

1 1 © 
1 1 1 

1 ® 

6    5    4     3    2     1 

6 1 

5 i      i     © 
4 1            1 

3 i      i © 
2 1     1            1 

1 1                         1 
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12     3    4     5    6 

1 

2 

3 

© 

1     1            1 

4 1            1 

5 1            1            1 

6 1 

The five permutations of C of the example are shown 
and the negators for each sequence have been encircled 
in their respective matrices.    In C5 line (1,6) requires 
negations (even though on the first superdiagonal) to 
prevent 6 from being activated when it is not required 
in the sequence.    Similarly,  if an MDC line had existed 
from 2 to 5 (and/jr 6), C4 would have shown the need 
for its negation.    For each sequence k, the first device 
will be taken as the source for the negators. 

Once the negations are determined for all the sequences, they can be 
combined and exhibited in the matrix C by encircling the I's involved and 
labeling each circle with the index of the devices from which the negators 
must come.    Call the matrix with this extra labeling C 

Example; 

12        3       4        5        6 IV 
0" ® 

2 1 1   ©'' 

3 ®   ©'     ® 
4 1 © 

6 1 
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Line (1,6) is shown to need negations in sequences 1, 4, 
and 5 by the matrices Cj, C4 and C5 respectively.    There- 
fore,   since the negation will come from the first device in 
each sequence the device names 1, 4 and 5 are appended as 
shown. 

The information on negators can also be condensed into tabular form 
as is actually done, but in slightly different format,  in the computei 
procedure. 

Example: 

MDC LINE NEGATOR FROM DEVICE 

(1.2) 3 

(1.6) 1.4.5 

(2.4) 1 

(3.1) 5,6 

(3.2) 3,4 

(3,4) 3 

(4.5) 4 

(5.2) 5.6 

(5.4) 3 

(5.6) 5 

C'.  which now incorporated information on negators as well as major 
connectors,  can be used to determine a set of second negators.    This 
matrix can be permuted, as was C to form C'^ with the first p-1 elements 
in the first superdiagonal indicating not only the major connectors required 
for sequence k but also those negators capable of interfering with its 
proper operation. 

Example: 
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3 

1 

6 

5 

2 

4 

1 6 5 2 4 

(LT 
c 

1 1 

©' 
1 

1 

1 0 1 

(0-' 

Since only negators involving required major connectors 
for sequence k are of interest here,  the others are not 
shown. 

Let Nw (j denote the negator of major connector w from device d.    If 
d appears in sequence k after the origin of w, the negator will not inter- 
fere with the proper functioning of the system.    If d is the origin of w or 
appears before it in sequence k, then the negator will cut the required 
major connector before it can operate.    This leads to 

Rule II:    To find a sufficient set of second negations for each 
sequence k,  consider C'j^.    Provide second negations for all 
those negators Nw ^ which affect the first p-1 elements on the 
first superdiagonal and for which the row labeled d does not 
follow tha row in which the negator in question appears.    In 
each case, the origin of the second negator is device k. 

A more formal proof that this rule actually provides the necessary control 
over the negations is also contained in Appendix I. 

Example:    Consider C'-j.    w = (3,1) is negated by both devices 
5 and 6.    Since columns labeled 5 and 6 follow column 3, no 
second negation is required.    On the other hand w=(5,2) 
required second negations for the negators from 5 and 6 since 
neither of these two columns follows column 2.    The second 
negation, discovered in C'3,  comes from device 3,    For 
w = (l, 6) a second negation is required for the negator from 
1 while none is required for those from 4 and 5. 
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The following list is an extension of the previous 
one to show second negations.    They are in parentheses 
behind the negators they affect. 

MDC LINES NEGATORS AND SECOND NEGi 

(1.2) 3(4) 

(1.6) 1(3). 4,   5 

(2.4) 1(3) 

(3.1) 5.6 

(3.2) 3(5,6). 4(5.6) 

(3.4) 3(1) 

(4.5) 4(1) 

(5.2) 5(3).  6(3) 

(5.4) 3 

(5.6) 5(1) 

SIMPLIFICATIONS. It is possible for redundancies to exist 
the negators and second negators.    That is,  since negating devices have 
been chosen as the first in the sequence,  it is conceivable that another 
device after the first is already acting satisfactorily as a negator.    In 
this case, the number of negators and/or second negators is reducible. 

Example:    Consider the negators from devices 5 and 6 for 
line (3, 1).    In sequence 6, device 5 precedes device 3. 
Therefore,   5 can provide the negation and the one from 6 
can be eliminated.    The same idea justifies the removal 
of two second negations in (3,2), the ones from device 6 to 
the negators from 3 and 4.    The connections to the affected 
MDC lines now appear as; 

(3.1) 

(3,2) 

5 

3(5) 4(5) 

Another possibility for reducing the number of negating lines is to 
delay the action until the last possible moment.    That is,  if line (a, b) is 
negated by a, c, d,   ...  i, device a might serve in all cases and c, d. . . .  i 
could be eliminated since,  by the assumption on page 2, negating pulses 
always travel faster than pulses along regular MDC lines.    The procedure 
will not always VWJ rk if the negator from i has a second negation on it. 
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Example:    Consider the negators from devices 1, 4 and 5 
to line (l, 6) and ignore for the moment,  the second 
negator from 3 to 1.    Then device 1 is sufficient to 
negate (1,6) in the sequences beginning with 4 and 5 and 
those two negators would be eliminated.    However, as 
is actually the case,  the second negation from 3 in both 
sequences 4 and 5 would reach the negating line from 1 
before 1 itself is activated.    This would prevent proper 
negation of (1, 6) in these two sequences. 

Example;    MDC line (3,2) is now negated by devices 3 
and 4.    In this case, the negation from 4 can be eliminated 
since device 5, which causes a second negation of 3 does 
not occur (at all) in sequence 4 intime to prevent proper 
negation. 

These two simplification rules can be incorporated in the procedure 
to reduce the number of MDC lines. 

Example:    The present example can be simplified to provide 
a smaller number of connections. 

MDC LINES NEGATORS AND SECOND NEGATORS 

(1.2) 3(4) 

(1.6) 1(3), 4,  5 

(2.4) 1(3) 

(3,1) 5 

(3.2) 3(5) 

(3.4) 3(1) 

(4.5) 4(1) 

(5.2) 5(3) 

(5.4) 3 

(5.6) 5(1) 

BIDIRECTIONAL CASE In the Bidirectional case, a pulse may 
travel in either direction along an MDC line.    Therefore,  it sequence 
d^ d2 ...  dn_i dn is construi 
exist along the path d    d e         ^          n    n-1 

:ted with bidirectional lines, connections also 
. . .  d    d  .    These connections must be shown i 

in the connectionmatrix C and, in practice this can be accomplished 
quite simply by deriving C from S as before and forming a new C equal 
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to C VJ C    ,♦   Since the procedures in Rules I and II involve only operations 
on C no further changes have to be made to solve the problem for this case. 

Example:    Using the same sequences as in the previous 
example, we have 

C = 

0 1 0 0 0 1 0 1 1 0 0 0 

1 0 1 1 0 0 1 0 1 0 1 0 

1 I 0 1 0 0 c T_0 1 0 1 0 0 

0 0 I 0 1 0 0 1 1 0 1 0 

0 1 0 1 0 1 0 0 0 I 0 1 

0 0 0 0 1 0 

0 

1 

1 

1 

0 

1 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

1 

0 

0 

0 0 0 1 0 

T cue    = 0 1 1 0 1 0 

0 1 0 1 0 1 

1 0 0 0 1 0 

The two rules can now be applied to this new connection 
matrix to give a list of negators and second negators. 

MDC LINES NEGATORS AND SECOND NEGATORS 

(1.2) 3(4,  5,  6) 

(1.3) 1,  5.  6 

(1.6) 1(3), 4.  5.  6 

(2.3) 3(5,6), 4(5,6) 

(2,4) 1(3), 4(3),   5(3),  6(3) 

(2,5) 1(3), 4,  5(3),   6(3) 

(3,4) 3(1) 

(4.5) 3(1), 4(1) 

(5,6) 5(1) 

"'"C^" is the transpose of C.    CUC    means the new matrix has a 1 in position 
i, j if C and/or C^ have a 1 in position i, J and 0 elsewhere. 
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Several redundancies can be removed as in the unidirectional case. 
More care must be taken, however, since a line indicated for example, 
as (2,4) now means a connection from 4 to 2 as well as one from 2 to 4. 

Example:    The above negators and second negators can 
be reduced to the following: 

MDC LINES 

(1.2) 

(1,3) 

(1,6) 

(2.3) 

(2.5) 

(3,4) 

(4.5) 

(5,6) 

NEGATORS AND SECOND NEGATORS 

3(4) 

1,5 

3,(5) 

1(3). 4 

1(3), 4,   5(3) 

3(1) 

3(1),  4(1) 

5(1) 

VALIDATION PROCEDURE.     The above solution guarantees proper 
operation of the sequences barring, of course, blunders in the application 
of the rules.    A FORTRAN program,   supposedly doing away with this 
latter possibility,  is used to generate the first and second negators and 
its listing appears in Appendix II. 

The introduction of simplification procedures which have been neither 
formalized nor mechanized raises the possibility of introducing logical 
errors as well as blunders into the solution.    It is therefore advisable to 
check that these changes still produce the required sequences.    This can 
be done by considering the revised list of major connectors and first and 
second negators and following the sequence of actions after the required 
initial devices are activated.    The procedure is straightforward:    for each 
device,  activate the second negators it controls, then the still active first 
negators and then the still active major connectors.    If more than one 
major connector is left from the activated device, there is an error.    If 
only one major connector is left, the next element in the sequence is 
identified,  and the procedure repeated for it.    If no connectors are left, 
the sequence is ended.    A FORTRAN program (also appearing in Appendix 
11)   has been written to mechanize this procedure and print out the valid 
sequences.    Ambiguities which result in improper functioning are also 
indicated. 

123 



SUMMARY.     A procedure has been demonstrated for generating a 
set of negators and second negators which is sufficient for proper 
functioning of the required sequences.    It does not produce an optimal 
solution in the sense of minimizing the total number of connections 
although, in individual cases, redundancies can be eliminated.    Whether 
or not an effective general procedure for minimizing the connections 
(short of enumerating all possible combinations and selecting the smallest) 
exists is unknown at this time. 
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APPENDIX I 

The following shows that Rule I produces a sufficient set of negators. 

PROOF: 

We have to show that the negators given by the rule prevent operation 
of any device out of  sequence. 

Consider the required sequence k of length p:    le ,  k   ,   . . . k .    C    has 
been derived from C by means of the permutation 

pk = 1   2 

1 < p< n 

where n is the number of devices.    There is a connection from device 
k. to k. (1 < i, j < n) if and only if c  (i, j) = 1 in C, . 

1 J K K 

The rule calls for negation of all major connectors represented by 
those c   (i, j) for which j >i-i-1 (1 < i < p < n-2) as well as those for which 
i = p and j = i+1.    This is to be done by negators originating from device 
k = k^.    Since negators act before major connectors emanating from the 
same device the connectors described above are effectively non-existent 
for this sequence and we may replace their representations c  (i,j) by 0, 
forming the new matrix C"  . 

Now consider any required device k^ (l < i0 < n) and remember that 
it can initiate another device j if and only if   c"^ (i0, j) = 1. 

If j < i   , k, has functioned before k:    and the presence of a major J       o      j ^o r J 

connector is of no consequence. 

The case j = i0 does not occur since no device is ever connected to 
itself. 

Since for all j>i    +1 C'^^Q.J) has been set to 0 (negated) by the rule, 

none of these k: can be activated by k:   . 
J '    1o 

We are therefore concerned only with j = i  +1, the first super diagonal. 

From the construction of C,, and C", ,  c'l (i   , i +1) = 1 for 1 < i    < p-1. 
K RKOO —    O — 
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If p=n, only the first n-1 major connectors of the sequence remain 
and the sequence functions properly. 

If p<nI  c", (i   ,  i  +1) = 0 for i    = p since the rule calls for negation in 
k   o      o o 

this case.    Therefore, there is no connection from k   to any other device 
and the sequence terminates as it should. 

The following shows that Rule II provides second negators which 
prevent unwanted first negators from interfering with the required major 
connectors.    It also demonstrates that the required sequence functions 
properly. 

PROOF; 

For this rule,  we must show: 

A. that no extraneous device functions out of sequence since the 
second negators might conceivably destroy first negators given by Rule I. 

B. that the second negators do,  in fact, prevent first negators from 
interfering with the required major connectors. 

1. For any required sequence k, consider C'j^ which shows 
all the system negators found by repeated application of 
Rule I. 

2. All first negations that are required in sequence k are 
initiated by device k (the first element in the sequence), 
and these are all off the first superdiagonal of C', . 

3. By Rule II,  second negators from device k affect only 
the first p-1 elements which lie on the first superdiagonal 
ofC'k. 

4. When sequence k is called for all first and second negators 
from the initial device, k,  function before anything else. 
However, by (2) and (3) it can be seen that none of the 
first negators used in the sequence are destroyed by second 
negators from k.    By a verbatim repetition of the proof 
used for Rule I,  it is now seen that no extraneous device 
functions out of sequence. 

5. The first p-1 elements on the first superdiagonal of C 
represent the major connectors which must function for 
sequence k to operate properly.    Consider any one of these 
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elements,   say c'    (i   , i  +1), which has negators on it. 

Let d be the origin of one of its negators.    If d follows 
Iq    in the sequence, the major connector functions 
properly before the negator is initiated.    If d precedes 
k^    in the sequence or is k^   ,  the second negator from 
device k (provided by Rule El) eliminates the first 
negator before it can destroy the required major 
connector. 

6.    Since the quantities d, i    and k in the abo  e were all 

arbitrary, the argument holds for all the sequences. 
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APPENDIX II 

The Program for the mechanization of the solution was written in 
FORTRAN II and run on a UNIVAC SS - 90 card system.    Several comments 
concerning the procedures and conventions are necessary. 

1. The FORTRAN listing can serve as its own flow chart.    It 
contains several main, non-overlapping parts (the prefix N 
is used to identify integer arrays): 

a. Set up sequence matrix NS 
b. Set up connection matrix NC 
c. Determine first negators 
d. Determine second negators 

2. It was found convenient to include all existing devices (not only the 
required ones) in NS.    The non required ones follow the sequence 
and each identifier is preceded by a minus sign.    Thus, the 
sequence 4 3 1 2 of our example is actually entered as 4 312-5-6. 
The order of the added devices is unimportant.    This turned out 
to be a convenient way to signal the routine that,  even though the 
sequence had ended, negators might still be required. 

3. Rather than rearrange matrix NC to conform with each permuta- 
tion,   subscripted subscripts were used.    That is, to select 
elements of NC for testing,  we have to look at individuals NC 
(I, J) in a specified order.    These orders are given by the rows 
of NS which contain the required sequences.    I and J are both 
functions of the elements in NS;    1= NS (a ,  p)  J = NS (y, 5) for 
arbitrary a , ß , y,   6.    Therefore, given  a , ß , y,   6 , we can 
find NC (I,J) as 

NC(NS(a,  ß) NS(y,6) ) 

4. Information on each negator is stored in an array indexed by the 
symbol NO.   For each NO,  as this array is being formed, 
another 5-position sector is cleared for use in storing the origins 
of at most 5 second negators.    Should the number of negators 
and associated second negators exceed the arbitrary numbers 
of 50 and 5, respectively, one "DO" statement will have to be 
changed in addition to the 'Dimension' statement. 

5. Throughout the program,  several array elements which are used 
more than once have been renamed without subscripts.    This was 
done to speed up the processor at the cost of, what is hoped to 
be,   small decrease in readability. 
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C     FORTHAN PROGHAM a   5tti 

C     XPLOSIVC COMPUTER  SCHLACK/E1SMAN 

DIMENSION NS(2Ut20)lNC(20i2O)tNPEG 

COMMON NS•NC »NoEG.NEND.M.NUM•NS£C 

C     SET UP SEQUEi^Ct MATRIX NS 

C     ONE SEQUENCE HLR CARD» EVERY U SPA 

C     NUMBERS STARTING 3i 7»ll»15tl9» 

C 23»27iJlf35.39iFTC 

REAU lOOiMtNflNO 

C     MftNO.SEOJENCESi NONO. OFVICES 

C     IND»!  IP UNIDIREC.  «2 IF BIDIREC 

DO 1< IMltM 

REAU 1UO» (NS(iiK)iK»li2U) 

PRINT 101. (NS(IiK) »Kt(lt20) 

1 CONTINUE 

C     CLEAR CONNECTlUN MATRIX 

DO 19tj«l,N 

DO 19« I«1»N 

NC( IiJIMO 

19 CONTINUE 

100 FORMAT (2014) 

101 FORMAT (5X«20IS) 

C     PRINT HEADINGS 

PRINT 303f 

PRINT 304. 

PRINT 305. 

C     SET UP CONNECTION MATRIX NC 

Nl*N-l 

LdtÜO 

(50).N£ NO(SO I.NI(50)t NUM(50)»NSEC(50•5) 

CtS. REMEMBER LEADING ZERO FOR 0H1   DIGIT 

129 
f\ä.l 



DO   2i   ItfliM 

DO  3i   JMltNl 

IF   (NSdiJD)   itttti 

6 NC(NS(i;j)iNS<I«JinNi 

IF   <l-INO)    37.J.995 

37  NC(NS(I«Jl)«NS(IijnRl 

3  CONTINUE 

2  CONTINUE 

UETCRMINE   FlKST   NEGATIONS 

NMt 

DO   30«   I«liM 

iSAVEMNSdill 

DEPENDING ON COLUMN H*l   BEING 0 

DO 31. J«l.Ni 

JARJ 

NJ»NS(i;j) 

IF   <NJ)   30.946.10 

10   IF   (NS|I.J+1)>   9.997.8 

9  JAIIJ-1 

8  DO   32.   K«JA42IN 

NNSMNSII.K) 

IF   (NNS)   ttOli* 

1   NNSI»-NN$ 

5   IF   (NC(NJ.NNSI)   998.32.7 

7 NBEG(NG»<(NJ 

NENO<NG)«NNS 

NI<NG>«ISAVE 

NUM(NG)«1 

DO 99. IJK*l.S 

NSEC(NG.IJK)(tO 

99 CONTINUE 

NGKNG4-1 

FOR EACH SEQUENCE 

FOR EACH DEVICE 

- 

IF A OCVICE FOLLOWS 

INSERT 1 INTO NC 

UNI OR 61   DIRECTIONAL 

ALSO IN XPOSE IF BIDIRECTIONAL 

130 

INITIALIZE NEGATOR COUNTER 

FOR EACH SEQUENCE 

FIRST ELEMENT OF SEQ I 

FOR EACH LINE 

CHECK IF ELEMENT NEG OR POS. 

IF OTHEK END NEG.. EXTRA NEGATION 

SET BESIN'G OF SEARCH BACK 1 

LOOK FOK NEGATIONS ABOVE SUPERDIAGONAL 

REVtRSE SIGN NON-RQRD ELEM. 

IF 1. RcOUIRES NEGATION 

BEGINNING NEGATED LINE 

END NEGATED LINE 

NEGATED BY DEVICE NUMBER 

CLEAR StCOND NEGATOR VECTOR FOR 

THIS NEGATOR 

At 



3^ CONTINUE 

31 CONTINUE 

30 CONTINUE 

DETtRMINE SECOND NEGATIONS 

ULONQ-1 

00 I5i IWltM 

00 I5t JMtNi 

NBPDNSdiJ) 

NEP»NS(ltJ*n 

00 13« UfiiLL 

IF (NBP-NBEG(L)) 96I12IQ6 

96 IF tl-INQ) 97ti3i995 

12 IF (NEPiNEND(L)) li.lUilS 

97 IF (NBP-NENO(L)) I3i98.l3 

98 IF (NEP-NBEG(L> ) I3il4il3 

14 00 21» KXliJ 

IF (NKU-NSdiK)) 2liil2i2l 

22 NSE.C(LiNUM(L) »»NSd.D 

NUM(L)MNUM(L)>1 

GO TO 13 

21 CONTINUE 

13 CONTINUE 

15 CONTINUE 

DO 5U0f IflliLL 

PRINT 300i     I .NBEGm.NENDd). 

500  CONTINUE 

300  FORMAT   (5X»I5täXf2I5«5X.I5i5Xt5I5) 

305  FORMAT   d6Xi9HFR0M       T0ieXi2HBYi 5X 

304  FORMAT   (32Xi3HNEG) 

303  FORMAT   12/) 

STOP 

99d  PAUSE  998 

997  PAUSE  997 

LIMIT  NON NEGATORS  SCANNtD 

FOR  EACH  SEQUENCE 

FOR  EACH  LINE 

FOR  EACH  NEGATOR 

CHECK  BbGINNING 

UNI-  OR   BI-  DIRECTIONAL 

CHECK  END 

CHECK  CONNECTOR   IN 

OTHEK  DIRECTION 

FOR   ALL   ELEMENTS  BEFORE 

DOES NEGATING   INDEX   APPEAR 

SAVt  SECOND NEGATOR 

NId)dNSECdtJ)<J01t5) 

,lUHStCONO     NEC'S./> 
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996  MUSE  996 

995  PAUK  99S 

me 
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f»fwf      (»«»«««i**/ 

3 
u 
5 
6 
1 

1 
3 

5 
2 

6 
1 
3 
a 
3 

5 
2 
2 
3 
4 

? 
-5 

1 
2 
5 

1 
2 
3 
u 
5 
6 
7 
8 
9 

10 
11 
12 
13 
1« 
15 

FROM TO 

2 

NEG 
BY 

3 
3 
3 
3 
a 
a 
4 
5 
5 
I 
5 
6 
6 
1 
1 

SECOND     NEä':>. 

3 6 0 0         C 
10 0 0         0 
4 0 0 0         0 
0 0 0 0         C 
1 O 0 0         0 
»     « o e     e 
c       n o o       o 
3          0 0 0         0 
10 0 0         0 
ooooo 
0          0 0 0b 
3          0 0 0         0 
ooooo 
3          0 0 0          0 
i         0 0 0         0 

OiJ.n^c*. I     f^pit      Cl^D   0 

133 
f\u. S 



5 
2 
2 
> 
4 

FROM       TO 
NEG 

BY SECOND     NES'S. 

I 
2 
3 
tt 
S 
6 
7 
8 
» 

10 
U 
12 
13 
1« 
15 
16 
17 
IB 
19 
20 
21 
22 

5 6 0 0 0 

1 0 0 0 0 
4 9 6 0 0 
1 0 0 0 0 
0 0 0 0 0 
1 0 0 0 0 

5 6 0 0 0 
0 0 0 0 0 
0 ft 0 0 0 
3 0 0 0 0 
1 ft 0 0 0 
i 0 0 0 0 
0 0 0 0 0 
0 ft 0 0 0 
0 0 0 0 0 
3 ft 0 0 0 
3 0 0 0 0 
0 0 0 0 0 

0 0 0 0 0 

3 0 0 0 0 
3 0 0 0 0 
3 0 0 0 0 

B^r*c/-.c-H« /      £~*<.~f>le      (x^l>-2.J 
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C     USS FORTRAN II *** VERSION 9000   22 JAN 63 

C    COMPILED  7/28/67 

C     FORTRAN PROGRAM tt  509 

C     4-26-67  SHE   1-8500 

C XPLOSIVE  COMPUTER-  UNIDIRECTIONAL  - VALIDATION  PROCEDURE 

C ACCEPTS   MAJOR  CONNECTORSi   NEGATORSAND  SECOND NtGATORS   IN 

C FORMAT  OF   OUTPUT  F^OM  SOLUTION PROGRAM  (   bUl) 

C ALL MAJOR  CONNECTORS PRESENTt   WHETHER  NEGATEO   OR  NOTi 

C MUST  8E   INCLUDED 

C PROGRAM  ACCEPTS  DEVICE  NO.   AND  PRODUCES  EITHER 

C It   THE   UNIQUE  SEQUENCE OR 

C 2t      INDICATION  OF  AMBIGUITY 

DIMENSION  NBEG(50)(NEND(50)fNI(50) iNSEC(50f9)iiMS(20) 

COMMON NBEGINENDINIINSECINS 

B105HTOO L 

B205HONG 

C1M5HAMBIG 

C205HUOUS 

READ 900fNGM 

00 1*I01«NGM 

READ 901tNBEä(nfNEND(I)iNI(I)t(NSEC(I«J)*J*lt3) 

1     CONTINUE 

101 READ 900»K 

A1»9H 

A2»5H 
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11 

12 

112 

13 

1U 

15 

16 

NS(1)«K 

DO  2tl*2t20 

NS(I)«0 

CONTINUE 

DO  3»I»ltNGM 

NBEG(l)ttABS(N8tG(in 

Nni)«ABS(NI(I)) 

CONTINUE 

DO 20»KK«2»20 

NAUO 

DO 14fI«liNQM 

DO IJtJKliS 

IF (NSECd'J))  9l0(14ill 

IF (NSEC(I*J)-K) I3tl2il3 

IF (NKD) 14i910fH2 

NKDM-NKI) 

GO TO Itt 

CONTINUE 

CONTINUE 

DO 16«INlfNGrt 

IF (Nl(l)-K) 16tl5tl6 

NBEGtDM-NBEvid) 

CONTINUE 

DO   l9«I«ltNGrt 

IF   (NBEO(I)-K)   19il7»l9 
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17 NZONENDUJ 

DO   li7tL*liKK-l 

IF   JNZ-NS(L))   117tl9»H7 

117       CONTINUE 

DO  317f imtNGh 

IF   (NBEGdU+K)   317I217I317 

217 IF   (NENO(in-Ni)   3i7il9»3l7 

317       CONTINUE 

16 IF   (NA)   9lO*21Stll8 

118       IF   (NA-NZ)   24tl9t24 

218 NA0NZ 

19 CONTINUE 

IF (NA) 9l0i3üt21 

21    NS(KK)»NA 

K»NA 

20 CONTINUE 

AlftBl 

A20B2 

SO TO 30 

24    Al«Cl 

A2MC2 

30    PRINT 902tAl(A2i(NS(I),It»l»KK) 

GO TO 101 

900 FORMAT (14) 

901 FORMAT <5X»8I5) 
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902 FORMAT (10Xf2A5*20U) 

910 PAUSE 910 

STOP • 

END 
YYYOYOYYYY 
YYYOYOYYYY 
YYYOYOYYYY 
YYYOYOYYYY 
YYYOYOYYYY 

211224195Y 
4004200954 
7100010400 
112225472Y 
I2222637*Y 

(HEADERS) 
(HEADERS) 
(HEADERS) 
(HEADERS) 
(HEADERS) 
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PROBLEM SOLVING BY DIGITAL-ANALOG SIMULATION* 

Howard M.  Bloom 
Computation and Analysis Branch 

Harry Diamond Laboratories 
Washington, D.  C. 

ABSTRACT.     An evaluation of four simulation languages, MIDAS, 
APACHE,  MIMIC, and DSL/90,  is made to determine their relative 
merits.    The application of analog computer techniques to digital-analog 
simulation is considered.    The problems discussed are as follows;    solution 
to a set of linear algebraic equations, linear programming, hybrid simula- 
tion, partial differential equations, boundary value problems, parameter 
optimization using a least-squares error criteria, and roots of polynomial 
equations.    A mathematical outline of the technique or problem is given 
as well as the digital program, written in DSL/90, which is used to 
represent the problem.    Possible improvements in the simulation language 
are shown.    Some of the suggestions presented include the ability to 
dimension variables, and a means of using an iteration technique. 

^This report will be published in full 1 January 1968 as TR-1357 of the 
Harry Diamond Laboratories. 
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A SHELL COMPUTER PROGRAM WHICH DETERMINES THE 
PHYSICAL PROPERTIES OF AN ARTILLERY SHELL AND 

REPRESENTS ITS DIMENSIONS GRAPHICALLY 

Forrest McMains 
Picatinny Arsenal,  Dover,  Nev/ Jersey 

The purpose of this presentation is to describe a digital computer 
program which determines the physical properties of artillery shells and 
related items. 

I have chosen to speak on this program for two main reasons; 

First,  the program is used daily at Picatinny Arsenal both in 
experimental design work and in the analysis of end items.    Since it is 
used primarily by people who are not computer oriented extreme care 
had to be taken in writing the input-output operations.    The input data had 
to be clear and concise.    The output information had not only to be com- 
plete,  including as many helpful and meaningful results as possible,  but 
it also had to be kept brief. 

Secondly, the reason for choosing this program concerns the manner 
in which it is able to handle large amounts of data in an almost error free 
manner.    Special care has been taken so that every dimension of the shell 
(the input data to the program) can be enumerated logically and quickly. 
The resulting graph (which is nothing more than a picture of these 
dimensions) serves as an excellent check on the input values.    A mere 
glance at the picture of the shell is usually sufficient to detect any input 
error.    Further,  and in most cases a final check for errors,  consists in 
comparing this picture to the original blueprint of the shell. 

An artillery shell is formally defined as a hollow projectile,  designed 
to be given an explosive, a chemical or other filler and fired from a 
weapon.    It is composed of body pieces (which are frustums of right 
circular cones and cylinders);  ogive pieces (the curved, forward part of 
the projectile,  including its pointed end) and fins (a fixed or adjustable 
airfoil attached to the projectile and parallel to the plane of symmetry 
which affords directional stability). 

Each card of input to the program consists of the four to six dimen- 
sions of each piece plus an identification of this piece. 

Figure 1 defines a body piece.    Each body piece has four dimensions; 

AB, the radius of the end closest to the reference axis; 
BB, the radius of the opposite end; 
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HB, the length;  and 
RB, the reference. 

A reference axis must be chosen before any data is collected, 
this axis is selected, every shell piece must be referenced to it. 

Once 

Two other parameters appear on the body item card of input:    the 
density of the material used,  and the identification of the item. 

Figure 2 defines a fin item.    Its dimensions are analogous to those 
comprising the body item:    AF and BF are radii;  RF is the reference; 
and HF is the length.    Besides density and an identification, a third 
parameter,  its thickness is also needed. 

Figure 3 defines an ogival item.    The parameters AV and BV are the 
X and Y coordinates of the origin of the ogival system of the system of 
the (circular) arc.    RD is the radius of the arc;  RV and HV are the refer- 
ence and length values. 

The three examples shown here illustrate how the arc is suspended 
when AV and BV vary in sign. 

As well as these three items:   body, fin and ogive, the program will 
also accept a fourth item:    a known piece.    That is, a piece, or any group 
of pieces,  for which the weight, moments of inertia and center of gravity 
to the reference is known.    This item will be included in the analysis 
with the other (unknown) pieces. 

Output to the program is divided into five parts. 

The first part is the graph of the shell.    It is a true representation of 
all the input data and should compare exactly to the blueprint. 

Figure 4 shows an example of the graphic output.    This particular shell 
is composed of 76 body pieces and 4 fins:    a total of 80 cards of input. 

The scaling used in this case is l/2 unit to the inch.    Scaling is at 
the discretion of the user.    If no scaling is specified, the best possible 
scaling will be used;  that is,  scaling which will produce a reasonably 
sized graph; height to diameter (X to Y direction) in the ratio of 1 to 1 and 
the units per inch in some workable amount as 1 unit to the inch, 2 units, 
l/2 units,   l/4 units, etc. 

The second part of output consists in listing all the input data, 
by card, with a brief explanation of the options requested. 

:ard 
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The third part gives the corresponding properties of each item 
considered independently.    These properties include weight,  "transfer 
effect" moments of inertia,  center of gravity to the reference and volume. 
"Transfer effect" is the sum of the products of the weight and distance 
squared of each weight element of the item from its own center of gravity. 
The transfer effect is an intermediate quantity required to determine the 
total moment of inertia of the shell.    This quantity is useful to know if 
revisions by hand are to be made on a shell after the computer has 
calculated its properties. 

The fourth part of output gives the properties of the entire shell:    the 
total weight, moments of inertia, and the center of gravity.    The center 
of gravity, besides being printed, is also indicated on the graph of the 
shell,  as can be seen on Figure 4. 

The fifth part of output is the "Subtotal Sheet. "   For any piece on 
the subtotal sheet, the properties given are the sum of all those proper- 
ties for all the preceding pieces.    This feature is very useful if revisions 
are to be made on the shell.    It enables the user to perform a sectional 
analysis so that alterations to any piece or group of pieces to achieve a 
certain total weight, moment or volume is greatly simplified. 

Figure 5 is an illustration of a shell which contains ogive pieces. 
The data for ogive pieces is particularly error prone.    Very often the 
center or direction, of the arc has been incorrectly determined.     The 
graph of the ogive is usually sufficient to point out these errors. 

Figure 6 is an illustration of a shell which contains an input data error. 
This error, occurring between heights 16 and 17, is clearly visible and 
eliminates the necessity of checking the almost 200 input cards needed 
for this run. 

In order to run this program, three input cards are needed, followed 
by the body, fin, ogive and known items (one card per item). 

The first card is used for a title.    The information written on this 
card will appear on the output sheets  and, if desired, on the graph as well. 

The second card is the option control card.    Here are given options 
governing five general areas. 

1. Graph or no graph output; 

2. Scaling on the graph, which has already been described; 
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3. Size of the graph.    This option, if specified/ will cause an 
11 by 11 inch graph to be produced.    Of course, in this case, 
reasonable scaling must be forsaken for size; 

4. A format option.    Normally, the field width for each dimension 
is 10.    However, with this option it is possible to punch the 
dimensions using no field width, but instead by separating each 
number by a comma.    Also, whole numbers need not have 
decimals and E-type numbers are acceptable;  and 

5. The last option concerns dimension change in subsequent runs. 

Often,  especially when a shell is in the design stage,  it is important 
to know what happens when certain dimensions are varied, deleted or 
added.    This option will cause the computer to hold all input values after 
the first run and then to pick up any deletions,  changes or additions on the 
second, third, fourth, etc. ,  runs. 

If the option control card is left blank, the field width format is set 
at 10, a one unit to the inch graph will be produced and the program will 
consider each run independent. 

The third card of input is the Index Card.    Here is given the number 
of body, fin, known and ogive items.    Also, the number of pieces each 
fin is sectioned into is given, as well as the total number of copies of 
output and subtotal sheets desired.    Certain values on this card may be 
left blank,  if desired. 

For example, if the number of body pieces is not specified, the pro- 
gram will scan the next card for a "B" which means that the following 
cards are body items.    The body items,  in this case,  will be terminated 
with a blank card. 

If no "B" is found, the program will assume that there are no body 
items in the run.    The same holds true for ogive,  fin and known items. 
This feature eliminates the necessity of counting the number of pieces 
(and hence cards) in any one group. 

In conclusion:    this shell program is not particularly new to Picatinny 
Arsenal.    It has been in use since 1964 and seems to be very useful in both 
designing and evaluating artillery shells.    Its output is readily acceptable 
by other computer programs on the Arsenal such as trajectory and stability 
programs. 
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It was written in FORTRAN IV for the IBM 7090,  originally,  and has 
since been converted for use on the IBM 360,  Models '^O" and "65".    The 
plotter used is CALCOMP, Model 570/563, magnetic tape.    The program 
is fully described in a Picatinny Arsenal Technical Report, Number 3327. 
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BODY     ITEMS 

REFERENCE     RB 

REFERENCE     AXIS 

FIGURE 1 
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FIGURE 2 
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ZERPOL, A ZERO FINDING ALGORITHM FOR POLYNOMIALS USING 
LAGUERRE'S METHOD* 

Brian T. Smith 
Department of Computer Science 

University of Toronto 

ABSTRACT.  ZERPOL is a subroutine which computes the N zeros of the 
polynomial P(z) when given just its real coefficients A(I) : 

P(z) = A(l)zN + A(2)zN"1 + + A(N)z + A(N+1) 

The zeros are stored in the complex array Z with the complex zeros appearing 
in complex conjugate pairs.  Except for polynomials of degrees one and two, 
ZERPOL iterates towards a zero using Laguerre's method, which is cubically 
convergent for isolated zeros and linearly convergent for multiple zeros. 
The maximum length of the step between successive iterates is restricted 
so that the iterate XJ+2 lies inside a certain region about the iterate xj 
proved to contain a zero of the polynomial. An iterate is accepted as a ~ 
zero when the polynomial value at that iterate is smaller than a computed 
bound for the rounding error in the polynomial value at that iterate. The 
original polynomial is deflated after each real zero or pair of complex 
zeros is found, and subsequent zeros are found using the deflated polynomial. 

INTRODUCTION. The problem is to find the N zeros Zj of the given 
polynomial N 

that satisfy 

P(z) = 

P(z) = 

.1 u,z 
J 

N-j 

N 
UO
JSI (z-zj) 

The algorithm ZERPOL is intended to solve this problem. The algorithm is 
described under two sections.  Section one gives a summary of the strategy 
used and section two describes some of the pertinent details about the 
implementation of this strategy in FORTRAN IV on an IBM 7094-11. 

Laguerre's method is defined now: Starting with an arbitrary complex 
point x0, Laguerre's method generates a sequence of Iterates (XJ) for the 
polynomial P(z) given by 

lJ+l 
= x. + ^(xj) 

I 

' 

*"The program Zerpol discussed in this article was developed under the 
direction of Professor William M. Kahan, University of Toronto, Toronto, 
Canada. This material was presented at the Conference by Professor Kahan 
who described the rationale for the program Zerpol described here by Mr. 
Smith." The next article in these Proceedings was submitted by Dr. Kahan 
and is intended to support the material in this article. 
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1 

where <(x.) is the Laguerre step at x and equals 

-N P(x ) 

P'CXj) +Y(N" I)
2 P'CXj)2 - N(N-l) P(x ) P"(x ) 

the + sign being chosen so as to maximize the denominator's magnitude. (See 
Wilkinson (1965) for a development of Laguerre's method.) 

SUMMARY OF THE STRATEGY USED IN ZERPOL.  The overall strategy of ZERPOL 
is described now.  Polynomials of degree N < 2 and polynomials whose leading 
or trailing coefficients vanish are treated separately.  The coefficients 
of the polynomial are scaled upward as far as possible so that spurious 
underflow does not occur when the polynomial is evaluated near a zero. ZERPOL 
first attempts to start the iterative procedure at the origin.  If the origin 
is not an acceptable initial iterate, trial initial points in a certain annu- 
lar region around the origin are tested until a suitable initial iterate is 
found.  Subsequent iterates are restricted in order that the modulus of the 
polynomial decreases from one iterate to the next iterate and that the 
distance between successive iterates is not too large.  The sequence of 
iterates terminates when the modulus of the polynomial becomes negligible. 
The polynomial is deflated by the final iterate and the iteration procedure 
is repeated using the deflated polynomial. 

Specific details of the strategy are described now.  The zeros of poly- 
nomials of degree N < 2 are computed using the standard closed formulas. The 
quadratic equation solver subroutine QDRTC (A,B,C,ZS,ZL) is used to compute 
the complex roots ZS and ZL of any real quadratic equations 

Az2 + Bz + C = 0 

that must be solved by ZERPOL.  Unless over/underflow occurs, the real and 
complex components of ZS and ZL are computed within an accuracy of 2.25 
units in their last place, and |zs| < |ZL| within the specified accuracy of 
these roots.  Overflow and underflow occurs only when the exact roots over- 
flow or underflow. 

For the remainder of this description we assume that the N + 1 real 
coefficients u. are given for the polynomial 

P(z) = ^uj: 
N-j 

so that u 
•i 

and N > 3 

(Whenever u =0, the zero z is set to the largest number in the machine, 
an overflow message is enabled and the polynomial P(z) is treated as a 
polynomial of degree N-l.  If u = 0, z is set to zero and the polynomial N N 
P(z) is treated as a polynomial of degree 8-1.)n 
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First, the coefficients u. are scaled so that  max   |u. | > 2 

2 c  < j  < N    J " 

Scaling the coefficients in this manner reduces the possibility of underflow 
of P(z) near a zero.     However the underflow condition cannot be completely 
eliminated as  shown by  the following example: 

2-128  ^l^eOj + 2126(z31_z30) + ,-128^   > 

This polynomial  cannot be evaluated near  any of  its zeros,  namely 1  and 

„+127/15     (2k+l)Tri/30  -      ,   ,   „ z"?7 
e for k=l,2,...30,  without  using numbers  that  overfl 

21Z/ or underflow 2-129   j   the limits on the 7094-11. 
ow 

Next, an annular region about the origin known to contain the smallest 
zero of the polynomial is computed. The radius of the inner circle is the 
Cauchy lower bound R, namely the positive zero of the polynomial. 

The radius of the outer circle is the minimum of the geometric mean G= 

luN/
u
0l   

of the magnitude of the zeros, the Fejer bound |F| , the Laguerre 

bound /N  |X| and the Cauchy upper bound.  Details concerning the computation 
of these bounds will be given later. 

This annular region known to contain a zero of the polynomial is used to 
find an acceptable initial iterate for the iterations procedure. The strategy 
is first to attempt to start the Iteration procedure at the origin.  The 
origin is accepted as an initial iterate whenever the Laguerre step from the 
origin lies within the outer circle of the annulus. Otherwise the origin is 
unacceptable as an initial iterate and a search of this annular region for 
an initial iterate is started. A trial point x in this annular region is 
accepted as, an initial iterate whenever the nex? iterate x = x +2^,(x ) 
roughly lies within the annulus. The trial points lie on Four equiangular 
spirals about the origin starting on the inner circle of this annular region. 

Once a suitable initial iterate has been found, subsequent iterates are 
determined by the following conditions:  for j=0, 1,... 

(1) X.+1 
= xi 

+ L(x.) , and 

IPCX^I >|P(xj+1)| 

where L(x )  may be a modified Laguerre step,  and 

^    xi+l +^xj+l^  roughly lies inside a circular region about  the 

iterate x    of radius   |F|  known to contain a zero of P(2)   (i.e. 
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UTCx  .)I < IF'), and the modified Laguerre step 

L(xj+1) .I4xj+1) when |JGCxj+1)| < |F|/2 

|F|/2).^xj+1)/|ÄSxj+1)| 

when |F|/2 <|Äxj+1) |< |F| . 

The modified Laguerre step may be further modified when condition (1) is not 
satisfied.  If |P(x + L(x ))]>|P(x ) | then L(x ) is replaced by L(x )/2 and 

the condition (1) is retested.  This process is repeated until condition (1) 
"x  )|>|F|) then Lix^ 1J satisfied. 

i repea 
If^(x j^) is too large (that Is, (]£( 

is again replaced by L(x )/2 and conditions (1) and (2) are retested. The 

process is repeated until both condition (1) and (2) are satisfied.  (These 
conditions are based on theorems due to W. Kahan.  See also B.T. Smith (1967).) 

The iteration procedure stops whenever the polynomial value at an iterate 
becomes smaller than a bound on the rounding error in the polynomial value 
computed at that Iterate.  For a real point X , we can show that a bound for 
the rounding error in the computed value QN of P(X) using the Newton-Homer 
recurrence is given by 

|P(X) - QN|< o c E 

where 

(1) The numbers Q for J * 0,...N are the computed values for q. obtained 

from the Newton-Horner recurrence; 
J 

q    > u    and no        o 

for j  - 1,...N 

(2)   E-    jEo   JQjl   |X|N-J     , 

UJ + qJ-l ' 

(3) a equals a unit in the last place in the arithmetic used to compute 
QN t and 

(4) c is machine constant of the order of 10 for IBM-7094-II representing 
the roundoff errors in the arithmetic used to compute QN . 

Since a zero of P(z) need not be representable in the machine, we really 
want a bound for |P(x)-Q | where x is in the neighborhood of X , that is 

|x-X| < |x| a. We can show that whenever |x-x| < o|x| then |p(x)-P(X)|< aE 

80 that |F(x)-QNl < a(c+l)E 
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We summarize the results of this error analysis by saying that we cannot 
distinguish any point X for which |Q | < a (c+1) E from a zero of the poly- 

nomial P(z), and that the machine representable numbers which are immediate 
neighbours of a zero x of P(z) satisfy |QN| < o (c+1) E. 

The numbers q are the coefficients of the quotient polynomial Q(z) in 
division of P(z) ■' by the factor z-X.  That is, 

N        M  • 
P(z) ■ r u. z J 

J 0 J «-I    ,_,_. 
= (2-X)  jI0 q. Z  

1 J + q, 

= (z-X) Q(z) + qN . 

Therefore the first derivative of P(z) at X can be obtained by applying the 
Newton-Horner recurrence to coefficients q. . 

j 

Thus 
Q(z) = (z-X) W(z) + wN_1 and 

P'W = w, N-l 
Similarly for the second derivative P"(x) , 

W(z) ■ (z-X) V(z) + vN_2 and 

P"(Z) " vN-2 • 

Notice that the error bound E, the polynomial value and its derivatives can 
all be computed within the same loop. 

The evaluation of the polynomial value, its derivatives and the error 
bound E at a complex iterate Z is obtained in a similar manner to the real 
iterate X by replacing each occurrence of the linear factor (z-X) by the 
real quadratic factor (z-Z) (z-Z) where Z is the complex conjugate of Z. 
(This evaluation procedure for complex points appears in Wilkinson (1965), 
page 447-449.) 

Once an iterate is accepted as a zero, the coefficients q.. of the 
quotient polynomial Q(z) replace the coefficients u and the iteration 

process is repeated on the deflated polynomial, 
is not attempted by ZERPOL. 

Purification of the zeros 

PROGRAMMING DETAILS FOR ZERPOL STORAGE ALLOCATION.  The coefficients of the 
polynomial are transferred to the double precision array DU. This array DU 
is placed in COMMON with library workspace L1BWSP so that the workspace need 
not be supplied by the user. This places a restriction N < 79 on the maximum 
degree of the polynomial handled by ZERPOL.  However, the restriction can 
readily be eliminated by increasing the dimension of library workspace in the 
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calling program to at least 2N + 2 where N is the degree of polynomial. Notice 
that the double precision leading coefficient DUO can be referenced DU(IO) 
where 10 « 0 . 

The complex array Z of zeros is treated inside ZERPOL as a double precision 
array so that those elements of the array Z which do not contain zeros of the 
polynomial may be used to store temporarily the coefficients of the quotient 
polynomial. The coefficients of the quotient polynomial are transferred to 
to DU array whenever an iterate is accepted as a zero. 

All diagnostic messages Initiated from ZERPOL appear in DATA statements 
and are issued through the subroutine UNCLE. 

INITIALIZATION.  The function subroutine CI12(N) converts the integer 
N from its binary representation to its binary coded data (BCD) representation 
in order to appear in the diagnostic messages given by UNCLE. 

A warning message is generated when N > 79. However this message is 
suppressed for all subsequent calls of ZERPOL in the same job. 

Over/underflow variables OVFLOW and UNFLOW are saved from the user's 
program.  The statement NSAV=NFPTST(0) suppresses any messages fir the over/ 
underflow occurring in ZERPOL.  (See Programmer's Reference Mannual (PRM), 
(1964).) 

SCALING.  If N < 2, or max 
o<J<N 

,101 |DU(J)|> 2   the coefficients are not 

scaled.  Otherwise the coefficients are scaled by the scale factor DSC so 
that the max  |DU(J) | = 2101.  The scaling procedure i executed in the 

o<J<N 

unnormalized mode (CALL FPTUN) in order to extend the allowed lower limit 
to the magnitude of the coefficients. As a result, ZERPOL can confidently 
ignore underflow except when underflow occurs in the first and last coef- 
ficients. The standard mode is re-instated with CALL FPTST. 

Overflow may occur in the evaluation of the polynomial and it- derivatives. 
When overflow does occur, we attempt to remove the overflow condition by 
scaling down the coefficients by 2~27. 

. If the leading coefficient becomes unnormalized in the process of scaling 
down the coefficients, a message is given stating that the polynomial cannot 
be evaluated near some of its zeros without over/underflow. 

THE ANNULUS CONTAINING THE SMALLEST ZERO. R^lzkC  The geometric mean G 
of the magnitudes of the zeros is computed using logarithms in order to prevent 
over/underflow of the intermediate results. 

The reciprocal of the Newton step at the origin is checked for overflow. 
If it overflows, a zero is close enough to the origin to be considered as 
zero.  Also IP'(0)/P(0) |< 2*Ü' ensures that the Cauchy lower bound R doesn't 
underflow. 
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The Fejer bound at the point X is the magnitude of the zero F of 
smaller magnitude of the quadratic equation 

(P"(X)/(2N(N-1)))F2 + (P,(X)/N)F + P(X)/2 = 0. 

The Laguerre  step df(X)  is  simply related  to the zero F by the formula 

^(X)  = F/((N-2)  P'CX)   F/   (N P(X))  + N-l)   . 

The values of the polynomial and  its  two derivatives at the origin 
are given by  the coefficients  (DU(N)   ,   DU(N-l)  and DU(N-2).2   .     The Fejer 
bound is computed using the  subroutine QDRTC and the Laguerre step and 
Laguerre bound  at  the origin are computed  immediately.    Thus 

B =  1.0001 min  (   /"N«äf(o),   |F|   ,  G) 

is an upper bound for the magnitude of  the smallest  zero of  the polynomial. 

Next,  the Cauchy lower bound R for  the smallest  zero is computed where 
R is  the positive zero of  the polynomial 

N-l N-I 
S(z)  =  TE       |DÜ(I)|   ZL -   |DU(N)|   . I=o 

This zero R can readily be computed using  the Newton-Raphson method with 
x    = B because all the o 
Notice that  for X > R 

x    = B because all the derivatives of  S(z)  are positive for z positive 

so 
x s'cx) > |DU(N) I  , 

S'CX)   > 2"129   . 

Therefore we do not expect  S'CX)  to underflow.    The sequence of  Iterates 
(x.)   terminates when x,.,   >  x.  for the  first  time.     If overflow has occurred 

J j+l -    J 
in the computation of the last  iterate,   that  iterate is probably  incorrect 
and  can be corrected easily only by scaling down the coefficients  of  the 
polynomial.     If no overflow occurs,  0.99999 x    is accepted as a  lower bound 

J ,1/N 
for the magnitude of the smallest zero of the polynomial. Since R/(2  -1) 
is an upper bound for the smallest zero of P(z) and R/(2^'N-1)< N(1.445) R, 

then G* = min (B, N(1.445)R) is accepted as an upper bound for the magnitude 
of the smallest zero of the polynomial P(z). 

THE ITERATION PROCEDURE.  The strategy of this section of the algorithm 
has been described previously in section one. To assist the reader in follow- 
ing the FORTRAN code, STARTD and SPIRAL are logical variables indicating 
whether or not the iteration procedure has started successfully and whether 
or not a spiral search for an initial iterate has started. 

Laguerre's method may be exact for zeros of multiplicity N-l and N 

159 

1 



so that the initial iterate from the origin is allowed to reach the outer 
circle of the annulus R <   |z|   < G' whenever this annulus is relatively 
narrow (i.e. R >G,/2  . 

The time required to compute the value of the polynomial and its 
derivatives at a real point  is less than the time at a complex point so 
that an iterate is forced to be real whenever the imaginary part of the 
iterate x    is less than one-fifth of the step x    - x        to that iterate. 

POLYNOMIAL EVALUATIONS.    The polynomial value and its first derivative 
are computed using double precision arithmetic while the second derivative 
is computed with single precision arithmetic.    We felt that the improved 
convergence to rare multiple zeros was not worth the cost in extra time 
of computing the second derivative with double precision arithmetic.    The 
unnormalized mode is used  for the above computation. 

The evaluations of the polynomial and its derivatives at a real iterate 
and at a complex iterate are done in separate blocks.    The computation in 
the case of a real Iterate is straightforward.    However, precautions need 
be taken when the magnitude of a complex iterate is extremely large or 
small. 

In the case of a compxex iterate X ,  the squared modulus of the complex 
iterate appears in the quadratic factor and so may over/underflow.    Thus 
whenever 

,63.5 

or 

|X| > 2"~ ' '  ,   (square root of overflow) 

J     5 x <r ,   (square root of underflow) 

then the coefficients of the quadratic factor (z-X)(z-X) are carefully 
scaled so that the possibility of overflow or underflow in the evaluation 
loop is minimized. 

If overflow cannot be avoided in the evaluation loops the coefficients 
are scaled down by 2~^   . 

If the modulus of the polynomial is greater than the error bound in 
the computed value of the polynomial, and the modulus of the polynomial 
underflows, then a message is given declaring that over/underflow occurs 
in. the evaluation of the polynomial near one of its zeros. The last iterate 
is accepted as a zero of the polynomial. 

If the reciprocal of the Newton step at the last iterate overflows, 
then the last iterate is within a distance of N 2-**' of a zero of the 
polynomial.  The last iterate is accepted as a zero of the polynomial but 
underflow is signalled. 

SEARCHING THE ANNULAR REGION FOR AN INITIAL ITERATE. The search for 
an acceptable starting point for the Iteration procedure starts with a 
point on the inner circle of the annulus in the direction of 'the Laguerre 
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step from the origin.  Subsequent trial points lie on the spirals traced 
out by R (i - 1.25N)^ for k = U,!,... where the angle between successive 
trial points is -tan--'- (N/1.25) or just more than - 90°.  If every fourth 
trial point is examined, the locus is a spiral progressing in a counter- 
clockwise direction. The constant 1.25 is chosen in the hope that the 
distribution of the trial points is dense enough in the annular region to 
find an initial iterate but not so dense that a great deal of time is spent 
searching for a suitable initial iterate. 

TEST RESULTS. ZERPOL was tested with polynomials given in papers by 
P. Henrici and B.O. Watkins (1964) and E.H. Bareiss (1965).  In all cases 
ZERPOL satisfied our criteria, for the accuracy of the zeros, namely that 
the coefficients of the polynomial reconstructed from the zeros given by 
ZERPOL closely resemble the original coefficients. 

2 
ZERPOL computes all zeros of a polynomial of degree N in roughly N 

milliseconds on our IBM-7094-II and consists of approximately 550 cards. 
We compared ZERPOL with the package of subroutines catalogued in 1965 
as SDA-3332 in the SHARE library.  This routine found the zeros of the 
test polynomials taking from two to five times longer than ZERPOL. We 
also compared results from ZERPOL with the subroutine POLRT from the IBM 
System/360 Scientific Subroutine Package (1966). This subroutine is about 
as fast as ZERPOL, but sometimes gives wrong answers. 

The following table gives some statistics on the number of steps 
required to find all the zeros of polynomials of varying degrees. The 
coefficients of these polynomials are random numbers taken from a normal 
distribution with mean 0 and variance 1 . 

Laguerre steps    Search steps 
No. of    per iterated zero per iterated zero 

Degree Polynomials Average Maximum   Average Maximum 

Half steps 
per iterated zero 
Average Maximum 

3 100 3.9 6.0 0.3 2.0 0.02 5.0 

6 28 4.5 6.0 0.54 3.7 0.14 4.0 

12 7 4.7 5.2 0.55 4.3 0.25 1.7 

18 4 5.0 5.5 1.20 4.3 0.46 2.0 

This version of ZERPOL was produced during the author's work for an 
M.Sc degree at the University of Toronto under the supervision of W. Kahan, 
with the support of a Province of Ontario Fellowship. 
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AP/MDIj(   -  ZER?OL LISTING 

CUciHLtX     £(   AT   LtAST     N   ) 
IMU^HALLY,      IM      SHÜULO   NU I    tXCttÜ   79.   UTMEHrtlSt   Iht   PKÜÜKAMMt-K   SHUULU 

IWCLUDt   CUi'ii'iU^   /LlrttvSP/   LlHkySf'i   AT   LtA^T     2*w+2     ) 

C 
C 
c 

JL 
C 
C 
C 
c 
c 

X- 
c 
c 
c 
c 
c 

JL 
C 
C 

C 

SUöKüUlIiNfc   ZtKPUL    (A,iMütbiZ) 
CALL   2tKHUL(A,^,Z I       TU   itT      Z(I)    =   I-IH   ZtKU   üh   THt   KÜLYiMürtlAL 

A(l )vZ:::-i\i   +   A{2 ^Z^'dM-l)   +   ...   +   A(N)=;=Z   +   A(N+U 

i\UTt   THAI       H   =   DcGKtt   Ur    IHt   PUL Yi^Un I AL i    A,\iU   iHtkt   AKC      iN)+l      KtAL 
ClIrrH I.r.IhiMlS—ft-LI ). l.U i'iü'iS IiJMS   -   ■ itfeAL At   AT   LtASI a til 0.+ !    ) 

USt   HULi-iY   i'U  CHhCK   ACCUKACY   . 

CUhPLtX   CUiMJÜÜArc   ZcKüS     2(1)      UCCUK   CÜiMicCul I \/tLY   , I.t. 
Irl   Z(I)    IS   CUMPLtX   )        clfHtK     Z(I + 1)   =   CLJI\IJG(Z( I ) ) 

ÜK   bLSt Z(I-l)   =   CU(V(JG(Z( 1) ) . 
Ir   ALL   CUtHrlCIfiNfS      A(I)=Ü   ,    THb   Ü.U/Ü.U   ülAGiMUSTIC IS   h'KUüUCtü. 

^ y V ^S ^ ff ij-  V  #  V V V ^ V  'f- g M Sj1  :!* 'j'  ^* i|*  'j' *,* *,*  >Ii ijl jji ijC ii- ijC ?|i ^- i'A -|t  fe 'j-  il« iji  l|S  jji  ^!   iji y ^i ;|::,: ;,s y ^t;]; :;t ij;:,: g ;;t ;;i ij: ; 

OÜO   CUHTIIMUE 

KtAL      A(bO) 
CunHLtX 
UÜUÖLt   ►'«CCISIUIM 

Z(7y) 
Z(7y) 

UUIU    IS   THt   Cutl-rlCIcMI    Uh      Z**(n-I)       It^   THt   CUKKtNl    PULYiMUrtl AL 
ÜÜIHLc   HKtCISiUiM UUO, ÜtJ(79) 
CU«MU«I /LlrtrtSP/LltlrtStM 16U) 
tüUlVALtwCt (LlörtSP   ,   ÜUU    ),    {   LlttWS^O),   IJU   ) 

LUGICm.      UVr»   LLJLi    SMib    SAVUt   STAKTU.   S^lKAL 
LOGICAL      UVrLUwl t      LMi-LlH , 
CUfi'-liJis      /UV^LiJ^/uVrLuw,   /Ur-irLU^/U^rLUVi 
UA I A 

TuubIG 

TUUöl(,/,TKUt./ 

Uli-lfc.MSIÜiM 
CliwPLhX 

AChl(2) t 
££Li  

ACh2(2)    , 

Cr2t  
ACH(2) 

 CJL_ 
CüUlVALt^Cc      (ChltACcl ) ,*   (Ct:2,aCr2).    (Ch»ACr-) 

CUi'iHLtX CUIKU        ,      CSPU 
ÜlrtfewSIUiN ACiJlK(2), AC(2),     ACL(2) 
CUnPLtX CUlKf C, CL 

OüU^Lc   i'KtCISIUiM        l)ZN^,   üZMI»   UZOKt   UZOI 
iJUUHLt   fKtCISIUN   UX,               UKt               USC,                  UY,               UX2,                  ÜV 
t'JUWALt'iCt              (UX,X),    (UK,K),    (USCtSC),    (üYtY),    (l)X2,X2),    (ÜV,V) 
Uüürtl.t   PHfeCISlUN           Ul            ♦      ÜT1 

j^ihA^ALtAiCt: 11) T t I )    i   IIJ f 1 t T 1 1  
UA I A 0SC/Ü.ÜO/ 
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DlcltiMSUliM      HtSSHllU) 
ÜATA     NtSSH(l)/   34HÜA   PüLYi\JUi'1IAL   UF   UtG><tt 

StKUS.        /,        MtSSH(lU)   /   0777777777777/ 
CUMPLtX C«bSSH 
fcmiTVAi twc.ir Lüa£S&a< a£lSjdlaJ \  

HAS   IMU   Z 

ÜIrtei\SIUiM        MtSH(22) 
ÜATA MtSHIl) /126riO(HlfKe IS SUM6 KtASUN Tu ÖcLItVt iHAT THh HIKST 

» ZtKUS   AKt    iNCUKKtCT.      QUICKLY   CALL      W.   KAHAlN      UK   Ö. 
*T.   SMITH. /,   MtSHl22)/   Ü777777777777   / 

GJiflgJJÜi CMtSH  
tUUlVALEi'JCb (CwbSHti-itSH(y) ) 

UIMEIMSIUIM     .-ItSSdb) 
DATA     ilbSS(18)   /   077777/777777   /,             MESS(l)   / 

»1Ü2H0YUUK     N   =                                         tXCEtUS     79   ,   AiML)   KEOUIKES   THE   DlhtN 
SSIÜN   Uh      L1BWSP      TU   HE   Af   LEAST      2«ivH-2   .   /  

CÜMPLEX CMESS 
EÜUlVALti\jCt (Ci'iESStMESSli) ) ♦      IFIiMlTY,   MßSSdÖ)) 

OlMtNSlU^      UV/FUiMH 16) 
DATA     UVFUIMFI16)/Ü77777/777777/,      UVHUiMFd)/ 

S9OH0ZER^UL   CAiVi^Ur   bVALUalE    THe   GLDÜ^   PHI YrJUw I Al.   iMFAK   $UU£   [\h    ITS   7 
$EKUS   WHHUUT   UVEK/UNOE.-tHLUri / 

C 

ÜATA     HIT   /U4ÜUÜÜÜÜ00/»      Ti'127   /Ul^b^OÜOÜÜOÜU/,       IU/U/t 
$        T63b/U3üÜbi2Ü23623/,        T101   /U3^6^ÜÜUUUUÜÜ/, 
S        TM64i)/ülOÜ55202362t)/ 

BIT = 2.*«-12V=Si'iALLtSr   Hui TlUl=2.»«lÜl Ti*l27 = 2,**-27 
FII>JITY = -2.**127 = -LAKGESI   .^lU. Ti-I643 = 2';'* I-64. i ) 
T63s=2**l63.b) 

SHtCIAL   HUNCFIUNS- 

ALÜG2(X)    =    LUr,AKlTh^   L)F   X   TU   THb   HA St:   ?. ,  
TWUXH(X)    =    2,*** 
CI12IJ)   =   ALPHAdtTIC   KtKKESt'MTAT IUIM   UH     J      IiM      112      rUkwAT   (CIMHLX) 

ANL'(X,Y)       LOGICALLY    »ANUS1       X      AlMU      Y      HIT   bY   HIT    . 
AA4XA(Tf I »J«KtL)      flHOS   THE   rtAXImUfl   UF     AöS(T(I))      r-OK   I   F^üi'i   J   UP 

TU  K   IiM   STEPS   UF   L. 
A,-IIAII(X.Y.....Z)    riNos ine dLfiLLama UF ITS gaßuhthlÄ XtYt...tZ . 

GAMA, ThfcTA» A(M1) PHI AKC TEST PAKAWETtKS rUK ZtKPUL . 
UA1A   GAi-lA/Ü.i/, THETA/l.O/t PHl/U.2/ 
tJiM^Ü = 40.*2**(-53 )   Ü*ilü=lO,v?.**(-b'i) 
"bATA  UN4ü/Ul2l&ÜÜüOÜÜOü/i  U^lÜ/Ull7iOÜÜUUUUÜ/ 
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f 

C 
c 

J3D _LU iVl.LmUt;, ,,,  

CMtSSH   =   C112('M) 
Ir(    iM   .Lt.   0    )      CALL     UivlCLtfl   Ü,   HtSSH    ) 
It    (    .NUT.IÜUÖIG   .UK.   IM   .LE.   79   )      GU   FU     Si 

TUUrtKi   =   .FALSt. 
 ÜflüSJS   =  CiäES^Jd  

CALL   UiMCLtl   -75»   MlrSS   ) 
SAVE   UVeKFLÜW/UNUEKFLüW   INüICATUKS  Uh   THt   CALLING   PKUGKAM   , 

bl   SAVÜ   =   ÜVfLUW 
SAVU   =   UNrLUW 
IMSAVc   =   i^FPTSriO) 
II\/H   =   .hül SJLi  
UNr   =   .FALSt. 

HÜV6   THt   CUbrhlCIbnTS   A(I)    TU   UU(I-l) 
UU t)2 I   =    IO,iM    . 

b2 ÜU(Ii   =   A( 1 + 1 ) 

C            SCALING       (   uiviLY ^HtN     iM   ,GT.   2     ) 
100   CONTINUE 

If    (    i\l   .Lt.   2    ) Gü   TU     204 
ASSIGN     400      TU LSW 

C              (      Stt   SIAIcHtNT iOO      . ) 
 SC   =   Ai-iAXA(    LMb    I.    1 .?*I\J + 1 .   ?    1  

Ir   (    SC   .tö.   0.    )   GO   TU     206 
IH    (    SC   .GH.   T101    )   GU   IU      105 
SC   =   T101/SC 
SCALfc   BY     SC      TU   HAVE      MAX ( ULM I), I«Ü»N )      APHftUACH     2.,i'*100 
GU   TU      103 

C (   Kt-SCALING   iMtCESSITAftO   BY   UVtKFLUW   UStS      SC = 2.**(-27)    .) 
102 SC   =   TM27 

C 
103 CUviTIiMUt 

CALL  hpruivi 
 uu     l()4      I   =   IO.M ; \  

104 ÜU( I )    =   USC*UU( I ) 
CALL   rPTST 

C FIIMÜ   iMUMÖtK   I   OF   Cu^StCuflVE   LEAUlNG   CUEFFICIEIMTS   EUUAL   Til   £tK(J   . 
105 UU      106        I   =   10,IM 

IF    (    AMLM    UU(I),    KIT     )    ,Ng,   0,    )      GÜ   TU   107 
£ EACH VAi'iiSHrn LEAOI.MC; COEFFre.IFIMT YFFLUS A.vi  LcüiJLilLLE IMJU  - 

J    =    N-I 
li)6        Z(J)    =   FIIMITY 

lt7    IF    (     I    .tU.   0    )   GU   TU      204 

bLlUF   rtACK CutFFIC IEIMI S   A.MIJ   UECLAKE      ÜVJSKHLUW   . 
 ÜU      1ÜH K   =    I.iM  

J   =   K-I 
LO-i ÜU(J)   = UU('<) 

C 
C 
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c 

IM   =   N-I 
.   If    (   SC   .tg.   Trt27   I     CALL     UiMCLtt   73,   UVrUiMh 

UVh   =    .IKUt. 

GÜ   TU      2U3 

BusliaXuItS tüä  ciJKkriMT   üUüMJüü   ULLlMMUü   - 
201 .>J   =   .Ml 
202 IM    =    N-l 
2Ü3   ASSIGiM     40Ü     TU 

(   Stt   STATt-'ifcNT 
204  uvhLü'-i   =   .FALSe. 
 ili\'rLu-<    =    .rüLSr. 

LS.v 
300 .) 

Ir    (    iM-2    )      20D»   206,   300 
2oi) z(i)  = IJSIC( O.HLXI  KWOI  -i)u(n/ouo 

Ou   TO     20/ 
0.    )    ) 

c 
c 

c 
c 

206 CALL      OOKTCI    KVLHOUO),    K.MIJ{ UU I 1 ) )+U. ,    K Jü( Ou ( 2 ) )+0. ,    Z(2),    Z(l)    ) 
207 OVr   =   uVr .ii^ .Ov/hLU1"  

UiMr   =   LHr.UK .(..MhLüw 
KcSTOKc   UvtKr-LDw   AWIJ   UHütKFLiJ.-;   IIMUICA'IUKS   AIMU   cMAriLt:   "'rSSAÜb   . 
UVrLü'«/   =   SAVU 
UwrLÜ'-/   =   SAVU 
tMSAVt   =   IMFFTSHIMSAVE) 
\>:<ü\lli)c   U'-'LY   T^c   Ktrv/bLA^T   HV^K/DIMUI-KI-L (lw   i^hSSaaeS. ,  
IrJUVr)       SC   =   hliMll Y«rI.Ml iY 
1^(0 .^ )      SC   =   r>I 1*6 11 
KtfTu^.j 

ChcCn;   KM      Zt-^uS   =   (0.,ü.) (pitwCtrOKTH iM   .01".      2    ) 
300 Ir    (    a-oi    om;v)    ,   hIT    )       ."'b,      0.    )      '^U   TU      LSvi,(   <tüO,    70')    )  

(fcNMY   f-KÜ.'i   KLUCK   500    Ir   KtCI^KüCAL   Ui-   iMtfwTUiv   STen   UVfc«HLU.«S   .    ) 
301 Ir    (    SivÜL(UU(i\l) )    .rtt.    0.    )      U'MH   =    .TKut. 
302 Zt^vi)    =0.^0 

Gu   fu     202 

 M cuCrt-uKlrt      iV    .GT.    ?.,      OOP   »Mt:.   0.    ,    ü.vU      OU (iv)    .^t:.   0.  

I'MlTULIZc   iürit   USbFUL   CONS »'AiMfS. 
400   CUIMT II-OC 

X^   =   is 
X.Ml     =     Xvl     -     1 . 

Xw2   =   XIMI   -   1. 
X?.\J    =   2./Xis  

X2INI   =   X2KJ/Xrtl 
XIM2<M   ■  XW2/XIM 
is 1   =  i'i-1 
KT.s   =   S'iKT(Xis) 

4Wt R+Dl-^) rc-'ni/'.*        oiaidl-f -prrci^cor)    1>      4i>      SHUQ'?     f>rCC(*t'OK 

ITMTC M,(6;^ 2s, 21  ) !./<^>   /^ivftr*^ ■*.•■ I'S   .i.v<   ZL 
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CALCULATt G f AN UPPER ÜÜUND FOR THE NEAREST ZERU . 
START WITH G = CABS( Gt'JMETKIC HEAN OF THE ZEROS ) 
G = TWÜXP( (ALOG2(ABS(DU(N)) ) - AL0G2 ( ABS ( DUO ) ) )/XiM 

C 
C 

C 
C 
JL 
C 
C 
C 

500 

CALCULATE LAGUERRE-STEP  COIR  AND  FEJER-bUUND  FOR 
r.Ar.cm ATHLM HF  THF IA^HFRKF  5;TFP   iN\/ni \/F<; THF  ?;QHARF 

♦ l.E-5  ) 

c  . 
RECIPROCAL OF NEWTON'S STEP. SINCE IT CAN EASILY OVERFLOW, THE 
FtJER B0UNÜ IS CALCULATtO WITH NO SUCH OVERFLOWS ANÜ THE 
LAGUERRE STFP IS CALCULATED FROM IT. 
OVFLOw = .FALSE. 
R = SNGL( UU(N-l) )/SNGL( DO(N) ) 

IF   OVFLOW.   A   kClOT   fli-   PÜI Y.    IS   WITHIN N*?»«l-1?7> Q.E CL. . 

X2N«SNGL(ÜU(N-1)) 
IF   (   OVFLOW   )     GO  TO     301 

CALL   QÜRTC(    X2iMl*SNGL { DU ( N-2 ) ) 
$ C        ♦        CF1      ) 

R   =   XN2N*R 
CDIRO   =   C/CMPLX(   R*ACm    +   XN1   ,   R«AC(2)    ) 
ABDIRO   ;    ftBS(REAL(COIRO) )   •*•   ABS ( A IwAG( CDIRO ) ) 

SNGL(DU(N)) 

C 
C 
C 
C 

G = AMINK G, 1.0001*ArtlNllABS(AC(l ) ) + ABS(AC(2)) , RTN*AllDIRO )» 

CALCULATt THE CAUCHY-LOWER BOUND  R  FUR THE SMALLEST ZERO BY 
SOLVING   ABS(OU(N)) = SU^(  ABS(DU(I))*K**(N-I)  ,  I » 0, N-l  ) 
USING    NEWTON'S METHOD . 
R = G  
CALL FPTUN 

601  T = ABSIDUO) 
5 = 0. 
OVFLOW = .FALSE. 
DO  602   I ■ 2»N 
 S = R»S •*• T  
602 

C 
C 

C 
c 
C 
C 

T = R«T + ABS( DU(1-1) ) 
S = R*S + T 
IT CAN BE PROVED THAT S CANNOT ONDtRFLOW 
T = (R*T - ABS( UU(N) ) )/S 

S = R 
R = RND( R - T )  
IF ( R.LT. S ) 
IF ( OVFLOW ) 

60 TO  601 
GO TO  102 

R/(2*»(l/N) - 1 ) .LT. l,4*J»N*R 
GO = AMINK 1,*^!>»XN*H t G ) 
RÜ = 0.99999*S  '  

IS ANOTHER UPPEK BOUND , SO SET 

ASSIGN  700  TO  LSw 
( SEE STATEMENT  300 

NOW RO .LT.   CABS( 

, UNLESS DEGREt OF PULY. IS REDUCED,  RO, GO 
AND  ABDIRO  ARE UNCHANGED . 

SMALLEST ZERO )  ,LT.  GO 
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LNlTlALlZt:   igt   ITcKATIihM   Til   at&ia   ^T   lilt   Uklf^TiM   . 
70Ü C(Jiv.TI\'Ut 

FfcJdK = ÜU 
G = GU 
CUIK = C'.HKU 
AöUIK    ■    üriülKü 
 l)7Nrt    =   n.Oi) 

701 

UZM   =   O.DO 
FIN   =   AöS(üU(iN)) .   
SPIRAL   =   .FALSt. 
STARTü   =   .FALSt. .   

Kb-bNTKY   eUlAl   Hi   ACCcPf   .   i>lüüIFY.   Uk   k^irr.i   THP   l AanFKKh   MfS   .  
GAHA,    TMbTA,   J»Hl   Akt   AköITKARY   FAKA.'itTtKS   .   ZtKHUL   IS   TU  Öt   TESTtÜ 
FüK   SPfctü   AiML)  KdLIAöILl/t   WMtN   TritY   Akfc   VAKltl).      PüSSIdLF 
VALUcS Akt  GA>A=ü.5t  THtTAsl.ü,  PMI=0,2  . 
V = AöUlk/G 
ACCtPT     CülK      Ir     CAdS(CuIk)      .Lt.     GAiiA*G   . 
IF(    V    .Lt.   GAi'iA    )      GU   TU      800  

RtJfeCT  CUlk  IF  CAöS(CUIK)  .GT.  TMtTAOG 
IF ( V .GT. THtTA )  GU fü  1100 
«OOIFY  CUIK  SU TMAI'  CA8S(Cl)IR) = GA1«iA*G  . 
IF( ,NnT.( STAkTJ .UK. SFIKAL )  .AND.  kU .GT. GANIA«G )  GU TU 

► 8Ü0 
V = GAilA/V  
CUIK   =   O^LXI    VVACUIKI 1) 
AöUIK   •   AöÜlk*V 

V*ACÜIk(2)    ) 

c 
c 

c 

c 
c 

ACCEPT PKtVlUUS ITtkATE. SAVE ÜATA ASSUCIATtU WITH CUkRtiMT ITERAT 
BOG CUixTIiMUt 

G « FEJtk  
CL   =   CUIK 
AttSCL    =   AÖülK 
Fü   »   FN 
ÜZÜR   =   IJZ">4K 
OZOI   =   ÜZNI 
CUIK      AT   1Mb   Ukl IN   IS   IiM   THt   UIRECTIüiM   Üt   üECKEASI.MG   FUMCTIüIM 

h0\ 

VALUE  Sü 
STARTU = .TKÜt. 
Tht   iMfcXT   irtKATt   IS      ZIM=CMFLX(   UZNK   t   01*1    )» 
(cNTKY   HüINT   WHt^i     CUIK      IS   NUT   ACCtPTbi).    ) 
\)lt\R   m   ülöK   +   ACL( I ) 
UZixI    =   UZüI   f   ACL(2)  

rtriEKE 

IS        ZiN     CLUSE   TU   THE   KbAL   AXIS   RELATIVE   Tu   STEP   SIZt 
(cNTKY   PUI'MT   FHO«   THE   SHIKAL   BLUCK.) 

602   Ir   (      AdS(U2NI)   .LE.   PHI«AriSCL   )      GU   TU     930 
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c 
c 
c 
c 
c 

'00  CUNTIiMUb  
ZN      IS   COMPLEX   . 
MCTUKIZATIUN   ÜF   PULYNÜrtIAL   BY   UUAOKATIC   FACTUK      (Z*v2-X2*Z+R) 

SUM(OU( I )«Z**(N-in   = 

 mt VALUE   OF   THF 

(Z*»2-X2«Z+R)*SUrt(Z(I)»Z*«(N-I-2))   + 
Z{N-1)«(Z-X)   ♦   Z(N)        hü«   ALL 

 g.QL.YNÜMlAL   AT   (XtY)   IS  CF .  
C 
C 
C 
c 
c 

JL 

c 

c 

c 

c 

£L 

FIRST  DtRlVlTIVE UF PULYNÜMlAL AT (X,Y) IS 
SECUNU DERIVATIVE UF POLYNOMIAL AT (X,Y) IS 

WHERE (XtY) IS A ZERU UF  Z»*2-X2*Z+R  . 
E  IS ERROR 60UIMÜ FÜK THE VALUE OF POLYNOMIAL ANÜ 
Z(I)  ARE THE COEFFICIENTS OF QOOTIcNT POLYNOMIAL 
SURE THAT THE OVEKFLüW IhüICATUR IS TiJKNtfl OFF. 

CF1 «  ANÜ 
2.»CF2 t 

OVFLOW = .FALSE. 
CALL FPTON TO REDUCE ERRORS CAüSEü bY INTERMEDIATE UNDERFLOWS . 
CALL  FPTUN 
INITIALIZATIONS FOR THE EVALUATION LOOPS . 

901  S = 0. 
SI -   0.  
Tl = 0. 
ÜT » DUO 
INDEX  J  IS USED TO CHANGE DX ON THE LAST ITERATION 
J « 3 
SET  Z(X,Y)  TO  ZN(ZNK,ZNI)  . 
OX = DZNR  

c 
c 

UY 
SC 
SC 
IF 
IF 
IF( 

= DZNI 
IS ESTIMATED IN CASE SCALING IS NEEDED IN BLOCK 900 

■ CAbS( CMPLX(DX,DY) ) 
CABS(ZN) .LE. SORT( SMALLEST NO, 
CABS(ZN) .GE. SORTi LAKGEST NO. 
SC .GE. T63b .OR. SC .LE. TM6^i> 

) 
) 

i SCALE UP  X  AND 
I SCALE DOWN  X  AND 
GO TO  90i>  

IS UNNECESSARY. SCALING OF  X2  AND 
DX2 = OX ♦ DX 
OR = ()X**2 + DY»*2 
Z(l) = DU(I) + 0X2*0U0 
Z(2) = DU(2) + ( DX2*Z(1) - DR«DUO ) 
IF ( J ,LT. N )  GO TO  903  

902 DX2 = DX 
J = N 

903 DO  90^   I = J,N1 
V = S1*R 
SI » S 
S « Tl ♦ (X2»S - V ) 

90^ 

OV = DT1*DR 
0T1 = DT 
DT = (DX2*DT - 
Z(I) = D0(I ) + 

IF ( J .LT. N ) 
GO TO  909 

DV ) + zn-2) 
( DX2#Z(I-1) - 
GO TO  902 

DR«Z(I-2) ) 
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C 
905 

SCALE  X  AND 
OX -   DX/USC 
ÜY s UY/ÜSC 

Y  LEST  R  OVERFLOWS ÜK UNUtKhLUWS 

ÜR  CANiMUT ÜVEKFLJW, hURTUi^ATtLY 
OR = ( ÜX**2 ♦ ÜY*«2.)*0SC 
0X2 = OX + ÜX 
Z(ll  = oud) + 
ZJ2)   =   ÜU(2)   + 
Itj   J   tLT,   IN   ) 

(0X2«ÜUU)«USC 
(   UX2*Z(1)   -   ÜK*OUÜ   )»ÜSC 

QfJ TQ    9Q7  
906 

907 

ÜX2 ■ OX 
J a N 

OU  908  I ■ J»iMl 
V = S1*R 
SI = S 
S » Tl ♦ (X2»S - V)»USC 

908 

OV    a   ÜT1*UK 
on = or 
ov = üX2«ür - ov 
ÜT   =   2(1-2)   +   UV«üSC 
Z(I)   =   ÜUII)   +   (   ÜX2*Z(1-1) 

IF(   J   .LT.   N   )      GU   TO     906 
-   ÜK«Z(I-2)    )*USC 

C 
C ) 

c 

(tNTKY   PJIiMT   MUrt   THE   NUN-SCALING   BLUCK 
909 Cr   s   CNPLX(    Z(N)    »   ÜZN1*2(N-l)    ) 

FN   «   CA8S(Ci-) 
IF  ÜVFLÜW,   THE   CUkrFICItNTS   MUST   BE   SCALfcO   ÜOwiM. 
IF(OVFLUw)      GO   TU     1U2  
E   «   ABSfOUU) 
OU     910      I   ■   UN 

910 E   «   ABS(Z(I ))   +   SC*£ 
£   «   UNAÜ^E 
IF(UvFLUw)      E   =   XiM*t 
CHECK TU SEE If        ZN  IS A ZEKU.  
IF( FIM .Lfc. E )  GU TU  10Ü1 
IF  FN  HAS U^üEÄFLUwcÜt  GIVE THE wESSAGt 
IF( ANÜ( BIT , FN ) .N£. 0. )  GÜ TU  911 

CALL  UW' c( .73, ÜVFUNF ) 
GU TU  1000 

911 CALL  FPTST          

OVFUNF 

C 

c 

HAS THE FUNCTION VALUE ücCktASEü . 
IF( FN .GE. FO ,ANU, STAKTü )  GU TU  11ÜÜ 

OV   «   2.ÜÜ*ÜZNI 
CF1   »   CMFLX(   t<i\ü(   Z(N-l)   -   (ÜV«(0T1*üZIMI ) ) ) f   KiMÜ(   V*T   )    ) 
 CF2   a   CHHLX(   T   -   V»(V»S)      t   SiMGL(0Z)Ml)*(3.'i'Tl   -   V»(V^S1))   )  
C     FlnO THE LAGUtKKE STt.-» AT   IN, 

ÜVFLÜrt a .FALSE. 
C » CF1/CF 

C     IF UVFLUW, THt^E IS A ZcKU WITHIN A UISTANCC UF  N*2**(-127) UF ZN 
IF(UVFLUW)  Gü TU  lüüO 

170 



^■1 

CUM^UTfc    Trit   LAGUtrKKF 
CALL  CODKTCI CMPLX( 

i CMPLX( 
FEJEK   =   AöSlACülKd) ) 
C   =   CMPLX(   XI>I2IM»AC(1 ) 
C   =   OCUIK 
C   =   CMPLXt    ACdl   t-   Ml 

STdH CÜIK AMI  THF   rtntJjNif)     t-H.l» 
XZiMl^'ACFZi 1 )    ,   X2N1*ACF2(2)    )    , 
X2**ACF1(1)    ,   X2N*ACt:l(2)    )   ,   CF, 

-ZN.^.._ 

CDIK,   Cl-l    ) 
AöS(ACüIR(2)) 
XN2^*AC(2)    ) 

.   AC(?1    1 
CUIR   =   CüIK/C 
ABÜIK   =   AÖS(ACÜIK(1 ) )   +   ABS( ACl/IR(2) ) 
FejEK   =   ArtINK    RTN*AÖL)IK   ,   FEJtR    ) 
IS  THE   STEP   SIZE   NtGLIGIbLE   .   (THIS   TEST 
DX   s   DABS(UZ^K)   +   UAHS(ÜZiMl) 
IF(   DX   t-   AHHIrt   .FQ.   OX    1 Gtl   TO 1002  

ilAY   BE   REDUNDANT   ) 

C 

C 

C 
JL 

C 
c 
c 
c 
c 

JL 
c 
c 

NÜW   DETEKilINt 
GÜ   TÜ     701 

950 CUNTIMUE 
FACTORIZATION 

WHETHER  CUIR  IS ACCEPTABLE . 

UF POLYIMUiiIAL BY LINEAR FACTOR  (Z-X)  AS FOLLOWS 

SUM(UU(I)*Z**(N-I)) = JZ-X)*SUM(Z<I)*Z*«(N-I-1)) + Z(N) 
FÜR ALL Z  t 

SO  Z(N)  IS VALUE OF PULYNUHIAL AT  Z=X  , 
FIRST  UEKIVATIVE OF PULYiMO^UL AT  Z = X  IS  V ,  AND 
SECUNU UEKIVATIVE UF PÜLYNÜHIAL AT  Z=X  IS  2»W  .  
6  IS ERRUR 
Z(I)  ARE T 
OVFLOW = .F 

BE SURE THAT T 
OX = OZNR 
OZNI = 0.00 

8ÜUNU FUR THE VALUE UF POLYNUMlAL AiNO 
HE CUEFFICIENTS UF QUUTIENT POLYNOMIAL . 
ALSE. 
HE OVERFLOW INDICATOR IS TORNtO OFF, 

ABX = AöS(X) 
DV = DUO 
M ■ 0« 
CALL i-PTUN TO 
CALL FPTUN 
Z(l) = DU(1 ) -t- 

REDUCE ERRURS CAUSED BY INTERMEDIATE UNDERFLOWS 

DX'i'UUO  

951 

E • 
DO 

FN 

ABS(Z(1)) 
951   I = 

W = V + x*w 
DV = Z(I-l) 
Z(I) = DU(I 
= ABSizum 

♦ ABX*AöS(DUO) 
2fN 

+ DX*DV 
) + UX*Z(1-1) 

952 

F = SNGL(Z(N)) 
IF(OVFLOw)  GO TO  102 
E = ABS(DUO) 
DO  9t>2  I = 1,N 

E = AdS(Z(I)) + ABX-E 
E = UNIQUE 
IF(OVFLOw) XN*E 

1 i'C r O    -k'i 
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C     CHtCK WHtTHE« AN ACCtPTAbLE ZbKO HAS BEEN I-ÜUNÜ . 
IH FN .LE. E )  GO TU  1051 

C     It     FN  MAS UNÜEKFLOWEÜ, GIVE THE MESSAGE   UVFUNF 
IF( ANO( ÖIT , FN ) .NE. 0. )  Gü TU  953 

CALL  UNCLb(73, ÜVFUNF ) 
 r,n TU in^o  

953   CALL   FPTST 
C HAS   THE   FUNCTION   VALUE   UECREASED   . 

IF(   FN   .GE.   FO   .AND.   STAKTÜ   )      GÜ   TÜ     1100 

OVFLUW = .FALSE. 
FIND THE LAGUErtkE STEP AT  Q7NH . 
R « V/F 

C     IF OVFLÜW,  A KÜQT ÜF PULY. IS, WITHIN 4«N»( SMALLEST NO. ) OF  ZN. 
IF(ÜVFLÜW)  GU TO  1050 
CALL OUKTC« XZNl^W , X2N«V , F , C » CF1  ) 

C     CALCULATE THE FEJEK BOUNU FÜÄ SMALLEST ZERO . 
FEJEK = ABS(AC(1)) + ABS(AC(2))  
R » XN2N*R 
CDIR = C/CMPLX( R«AC(1) + XN1 , R«AC(2) ) 
ABUIR ■ ABSUCOlRd)) + ABS( ACUIR( 2 ) ) 
FEJER = AMINK RTN*ABDIK , FEJER ) 

C     IS THE STEP SIZE NEGLIGIÖLE . 
 PX ' PABSIU^NK)  

IF( DX ♦ ABDIR .EO. DX )  GO TO  1052 
C     NOW DETERMINE WHETHER  COIR  IS ACCEPTABLE . 

GU TU  701 

ACCEPT     CZN     AS   A   COMPLEX   ZERO   . 
IQQO  CONTINUE ;  

C 
C 

C SET   UNUERFLOW   INOICAFUR   TO      .TRUE.   WHEN     FN     UNUtRFLOwS 
UNF   =   .TRUE. 

C PUT   COEFFICIbNTS   UF   OUUTIENT   POLYNOMIAL   IN     DU     ARRAY   . 
C ENTRY   POINT   WHEN     FN  . HAS   NOT   UNDERFLOWED   . 
1001 CALL FPTST 

C     ENTRY POINT WHEN STEP SIZE IS NEGLIGIBLE .  
1002 Ü0  1003  I = 3,iM 
1003 DU(1-2) = Z{1-2) 

C     OUO IS UNCHANGED FUR THc DEFLATED POLYNOMIAL. 
Z(N) = DSIC( CMPLXI RND(DZNR) , RND(UZNI) ) ) 
Z(N-l) = ÜSIC( CONJG( Z(N) ) ) 
GO TO  201  

C 
C 

c 

ACCEPT   ZN  AS A REAL ZERO . 
1050 CONTINUE 

SET UNDERFLOW INDICAIUR TO  .TRUE. WHEN  FN  UNDERFLOWS 
UNF = .TRUE. 

PUT COEFFICIENTS OF OUUTIENT PQLYNUMIAL IN' DU  ARKAY .  
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tENTrtY   PLHMT WHUM    PIN    HA<;  IMIIT  UMQlüL£Lüa£i3 
1051 CALL   FPTST 

ENTRY HÜINT WHEN STEP SIZE IS NEGLlGIöLE . 
1052 ÜU  1053  1 = 2fivi 
1053 DUC1-1) = Z(1-1) 

0U0   IS   UiMCHA^GEü   FUK   THE   DEFLATEÜ   "ULYNUWIAL. 
 Z(N)   =   K'NP(UZNK)  

GU  TU     202 

CURRENT   LAGUEKKE   STEP   IS   NOT   ACCEPTAbLE      , 
1100  CUNTINUE 

If   STARTOi   KEDUCE   PRfcVlUUS   LAGUERRE   STEP   ÜY   HALF. 
Ifi    .NUT.   SIA&IU   >      SU   "1      1700 ;  

C 

A8SCL   =  0.5*ABSCL 
CL   =   CMPLX(   0.5*ACL(1)    »   0.5*ACL(2)    ) 
HAS   THE   STEP   ÖECUHE  NtGLIGIbLE   . 
OX   ■   UAbS(OZNR)   ♦   UAbS(UZNl) 
IF    (    ÜX   +   AöSCL   .NE.   ÜX   )      GU  TU     801 
 OTHERWISE.    ZFRPni-   HAS   riUNC-UP. 

1103 

1200 CONTINUE 

IF( FN .LT. E«XN*«2 )  GU TU  1103 
CMESH » CI12(N) 
CALL  UNCLE( 75, MESH ) 
IF(OZNI) IU02» 1052, 1002 

C     IF .NUT. STAKTO, HAS CZiM BEEN UN THE INNER CAUCHY RAUIUS. 
IF<SPIKAL)  GO TU  1201 

C        SET SPIRAL TU  .TRUE.. PUT  ZN  UN THE INNER CIRCLE UF THE 
C        ANNUf.US CONTAINING THE SMALLEST ZERU IN ThE ÜIRECTIUN UF THE 
C        LAGUERRt STEP . 
 SPIRAL = .TKUE.  

CSPIR = CMPLX( -1.25/XN , 1. ) 
ABSCL = RU/XN**2 
C » CMPLXI UCÜIR(1)/ABUIR)*RU 
GO TO  1202 

, (ACUIR(2)/ABUIR)*RÜ ) 

C 
C SET  ZN  TU ANOTHER PUINT UN THE SPIRAL 

1201 C   =   CSPIR*CMPLX( 
1202 ÜZNR   =   AC(1) 

ÜZNI    =   AC(2) 
GU   TU     802 
ENO 

UZNR   ,   ÜZNI    ) 
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7094-11 SYSTEM SUPPORT FOR NUMERICAL ANALYSIS-5 

W.  Kahan 
Department of Computer Science 

University of Toronto 

ABSTRACT.      This is the first half of a progress report on the author's 
efforts to improve the performance of IBSYS in the following areas of 
FORTRAN IV programming: 

1. Error-traces and diagnostic messages to locate and explain 
flaws found while executing FORTRAN programs. 

2. Post-mortem facilities via the FORTRAN IV statement 

IF (KICKED{OFF)). . . 

3. A consistent,   sane and flexible treatment of over/underflow and 
related phenomena. 

4. Digit manipulation (like rounding) via FORTRAN built-in functions. 

5. The eradication of anomalies in the compiler (IBFTC) and 
the FORTRAN library (IBLIB). 

6. The expansion of the FORTRAN library to include reliable and 
convenient subprograms for the solution of standard numerical 
problems like systems of linear equations, 

polynomial equations, 
eigenproblems, 
minimax approximation, 
fitting data by least squares, 

v       systems of ordinary differential equations, 
etc. 

Items 1 to 5 are herein regarded as essential prerequisites to the 
accomplishment of item 6 in such a way that users of these subprograms 
need not supplement their own competency in mathematics,  science, 
engineering or the humanities by a hyperfine proficiency at both numerical 
analysis and the debugging of systems programs.    Each of the six areas will 

-■:tThis article previously appeared in SHARE SSD No.   159.    We wish to 
thank the editors of SHARE for permission to publish it in these Proceedings, 
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be discussed in a correspondingly numbered section of this report, which 
begins by introducing the motivations for and the constraints upon the 
author's efforts.    Sections 1 to 3 follow;   section 4 to 6 will be issued 
separately later. 

INTRODUCTION.     For as long as electronic computers have been 
in use (since 1949 at the University of Toronto), there has existed a stead- 
fast policy to widen the range of intellectual disciplines that might benefit 
from the machine.    That policy is partly responsible for a decline in the 
numberical sophistication of users which has yet to be compensated by an 
increased sophistication in the programs they can use.    Despite intensive 
attempts to educate them in the arts of computation, too many new users 
attribute to the numerical library subprograms the infallibility of a mathe- 
matical proof.    They shall be disillusioned.    To what extent can their 
disillusionment be written off as part of their education?   To what extent 
can their dissatisfaction be traced to shoddy computing systems?   There is 
room for improvement in both the quality of education and the quality of 
computer performance.    But you cannot teach an old dog new tricks,  and 
you cannot teach a new dog very much.    Therefore the bulk of the improve- 
ment must and can come in the performance of computer systems. 

The performance of IBM's IBSYS on the 7094-11 has left a lot of room 
for improvement.    The improvements listed here were motivated almost 
entirely by the inadequacies uncovered during the author's researches into 
numerical methods.    The object of the researches was to produce working 
programs about which might be proved something simple and useful to a 
numerically unsophisticated but otherwise intelligent and educated user. 
As a by-product of these researches, the following vague generalities have 
emerged: 

-Computation costs most when its result is not known to be right 
nor wrong,  because it costs so much to find out what is wrong 
and why.    Costs can be cut by a small amount of self-doubt applied 
early. 

■ -Whether or not the purpose of computing be "insight", its most 
dependable benefit is hindsight. Programmers dislike forgoing 
this benefit through lack of foresight. 

-Errors,  anomalies and arbitrary restrictions hurt most when 
they are too rare to remember but not rare enough to ignore. 

These generalities have influenced the many decisions on questions of 
detail which arose during the work on the system.    A more decisive influence 
was exerted by three constraints: 
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First,  it was deemed essential that programs be capable of conversion 
to whatever machine might replace the 7094-11,  and so it was decided that 
all numerical subprograms be written in a language like FORTRAN or 
ALGOL,  except where efficient coding was so obviously machine dependent 
that the assembly language MAP was used.    I chose FORTRAN IV in 
preference to ALGOL,    I would rather fight than switch.    I am still fighting 
with the latest version (13) of the IBFTC compiler to incorporate all the 
modifications which I had introduced into the previous version,  and further 
modifications to correct newly discovered deficiencies. 

Second,   since no one had anticipated a need to rewrite IBSYS or IBFTC 
in its entirety, no recources were allocated for such a task.    Therefore, 
IBSYS and IBFTC have been modified as little as possible,  instead of being 
replaced.    The modifications have cost about three man-years of work all 
told, much of which has been dissipated in the transfer of the modifications 
from version 12 to version 13 of IBSYS. 

Third, but most important, is our decision that the Toronto version of 
IBSYS remain compatible with the standard IBM IBSYS.    Consequently, 
any FORTRAN IV program,  even if it be in the form of a binary object- 
program deck, which has been designed for and runs correctly on a 7094 
under standard IBM IBSYS with a hundred or so storage locations to spare 
runs at least as well under our modified system.    If the program be recom- 
piled with no other modification then the user may benefit from our improved 
diagnostics,  especially where division by zero is concerned.    Most of the 
users of our 7094-11 are unaware of any departure from standard.     But 
programs which run well on our system sometimes fail mysteriously at 
other 7094 installations. 

In this report an attempt will be made to discriminate between IBM's 
standard IBSYS and our modified IBSYS by referring to theirs in the past 
tense whenever it differs from ours.    Further details about IBM's IBSYS 
can be obtained from their manuals; 

C28-6248 
C28-6389 
C28-6390 

(IBSYS monitor) 
(IBJOB;  loader and library) 
(IBFTC FORTRAN compiler) 

Further details about our modified system can be found in "The Program- 
mers' Reference Manual" 2nd ed.  obtainable from 

The Secretary, Institute of Computer Science, 
University of Toronto, 
Toronto 5, Ontario, 
Canada. 
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and henceforth referred to as the PRM. 
too if requested by name. 

Program listings are obtainable 

I.    ERROR-TRACES AND DIAGNOSTIC MESSAGES.     It may seem 
peculiar that a Numerical Analyst be preoccupied with the Systam Pro- 
grammer's traditional responsibility for error-traces, diagnostics and 
post-mortem information.    But let us watch the Numerical Analyst at work. 
Much of his computer time is dissipated by the diagnostics and post-mortems 
which he receives while trying to discover why his algorithms do not work 
as well as he had hoped.    From time to time he hands one of his subpro- 
grams on to some other user numerically less sophisticated than himself, 
and in so doing he tacitly shares with the Systems Programmers some 
responsibility for issuing diagnostics.    His program may produce diagnostic 
messages for different reasons than merely to signal its own collapse. 
Diagnostics may be the only "correct" answers that the program can deliver 
in response to problems outside the intended domain of its applicability, 
especially when the program's domain cannot easily be defined other than 
by attempting to execute the program.     For example, a hopelessly ill 
conditioned linear system 

A x = b 

is most easily identified when a sound linear-equation-solver fails to solve 
the system for   x   but exhibits instead a near linear dependence   d   in the 
left hand side   A; i.e. 

KM ||   /(||   A  ||     I  d  ||)40   . 

The Numerical Analyst's subprogram ought to pass on this kind of diagnostic 
information in a form easily interpreted either by the user's calling pro- 
gram or by the user personally. 

The later form of diagnostic is usually a message printed amidst the 
user's output and is often the consequence of an error or oversight. The 
crucial question is 

"Where was this error committed?" 

but no computer program can answer this question.    The best that can be 
done automatically is to answer the question 

"Where did the program first encounter some 
anomalous consequence of the error?" 
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The answer takes the form of an Error-Trace.    Under IBM's IBJOB 
this would be provided by library subprogram . FXEM. , the FORTRAN 
execution Error Monitor.    Let us examine an error-trace typical of those 
produced by IBM's    . FXEM. .    For example,   suppose line 2 of the user's 
main program   MAIN   called a subprogram   SUB1    in whose line 2 5 was a 
call to   SUB2   in whose line 17 was a reference to   SQRT{-4.0).    When this 
reference was executed,  the   SQRT   program would detect the inappropri- 
ately negative argument and call   .FXEM.    (say in line 31)   to produce an 
error-trace and diagnostic message.    IBM's error-trace would look like 
this; 

ERROR TRACE CALLS IN REVERSE ORDER 

CALLING IFNOR ABSOLUTE 
ROUTINE LINE NO LOCATION 

SQRT 31 17621 
SUB2 17 14513 
SUB1 25 07762 
MAIN 2 05413 

The names in the first column are the deck-names assigned by the user 
to .his subprograms (or else, in our modified system, assigned by default 
by the system).    The line numbers or "Internal Formula Numbers" in the 
second column refer to numbers printed in the programs' source listings, 
and can be exploited by the FORTRAN IV programmer without recourse 
to storage maps.    For this reason, the third column of absolute octal core 
locations is of secondary value to the FORTRAN programmer.    It is a 
great convenience that he can ignore this column and dispense with storage 
maps most of the time. 

The completeness of the error-trace shown above is one of its most 
valuable features.    Complicated programs can contain several references 
to the SQRT subroutine,  and it is vital that the path of control to the invalid 
reference be laid out explicitly.    The complete error-trace is even more 
valuable when languages which permit recursive procedures are used. 
If a user were instead provided with only the reference to SQRT (or only to 
SQRT and SUB2) in the error-trace above,  he might waste a lot of time 
checking through all of his calls to SUB2 in an attempt to uncover the 
faulty one. 

i 

IBM's   .FXEM.    would print out a two-line diagnostic message and 
provide a means to exercise options regarding kick-off or continued 
execution following the diagnostic and error-trace.    But   .FXEM.    suffered 
from two defects. 
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One,  the easiest to remedy, was that   . FXEM.    could be called only 
from a   MAP   assembly language program.    We fixed this by providing 
a program called   UNCLE;    any programmer can kick himself off (and 
produce an error-trace plus post-mortem debugging output) by executing 

CALL UNCLE     . 

He can offer users of his program a limited range of kick-off-or-continue 
options by writing 

CALL UNCLE (N) 

with a suitably chosen integer expression N.    He can supply one or two 
diagnostic messages too by writing 

CALL UNCLE (N, Message) or 

CALL UNCLE (N, Message 1, Message 2)   . 

The messages can be inserted literally as Hollerith strings or they can be 
referenced as arrays of alphanumeric data.    In the latter case,  rudimentary 
binary-to-BCD conversion facilities are available to permit integer valued 
variables like indices or error-codes to be inserted into the diagnostic 
without first reserving core storage for the panoply of FORTRAN input/ 
output subprograms.    This last is an important consideration when program 
overlay is required during execution.    (For more details about UNCLE, 
consult the PRM. ) 

.FXEM's second defect was that it could cope only with what I call 
"scheduled errors";  these are errors each of which is discovered in a 
subprogram which,  when it calls    .FXEM.    to produce an error-trace, 
can supply whatever linking information is needed by   .FXEM.    to start 
the error-trace.    For example   SQRT(-4.0)   is a scheduled error because 
SQRT   is called in a standard way.    But when unscheduled errors like over/ 
underflow,   division by zero,   running overtime,  ...   , were detected they 
would "trap",  i.e.  cause interrupts which transferred control to appropriate 
subprograms without carrying the standard linking information that made an 
error-trace possible.    Consequently, the diagnostics for unscheduled 
errors answered the question "where?" with an absolute octal core loca- 
tion, but could not answer the question 

"How did I get there?" 

That IBSYS's standard linking sequence contained a partial answer to 
the last question was widely recognized.    The first effort to extract a full 
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answer was made by G.   Wiederhold and G.  D.  Johnson at Berkeley (Univ. 
of California) in 1963.    Their work has appeared in SHARE SSD 121 of 
May 21/64 and SDA's 3066-7.    A similar scheme was devised by J.   Leppik, 
G.  Howard and the author at Toronto in 1964.    Our scheme differs from 
theirs mainly in that ours is simpler to use,   slightly less flexible,  and 
fully compatible with the standard IBM system. 

The first step in both schemes is to revise the standard SAVE pseudo- 
operation by which subprograms are expected to save and restore index 
registers,   control linkages,  etc.    When IBM's   SAVE   was executed upon 
entry to a subprogram   SUB,    it used to save in a cell called   SYSLOC 
the pointer to the statement 

CALL SUB    , 

but no subsequent use was made of   SYSLOC.    We have added two instruc- 
tions to   SAVE   whose effect is to store the same pointer,  during the 
RETURN from   SUB   to the instructions following 

CALL SUB    , 

in such a way that the contents of SYSLOC show whether SUB has just 
been entered or has just returned. This modification has no effect upon 
the way IBM's    .FXEM.    behaves for scheduled errors. 

Next,  I rewrote    .FXEM.    so that it can be called from a trap- 
handling program.    Such a   CALL   is distinguished from other standard 
CALLS    by the absence of certain otherwise expected linking information, 
the lack of which forces    . FXEM.    into a new mode of action which examines 
SYSLOC to produce the first line of the error-trace. 

The behaviour of the new   . FXEM.    is best illustrated by an example. 
Suppose that   SUB2   in the example above contains,  besides SQRT(-4.0), 
a division which, when executed, turns out to be a division of zero by 
zero.    The result is the following diagnostic (in which the contents of the 
sec :ond line depend upon an option selected by the user); 
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0. 0/0. 0 ERROR AT 14506 

RESULTS IN 0.0 or EXECUTION TERMINATED 

ERROR-TRACE WITH CALLS IN REVERSE ORDER CODE 25 

CALL IS IN AT IFN OR ABSOLUTE 
DECK NAMED LINE NO. LOCATION 

SUB2 17 + 14513 
SUB1 25 07762 
MAIN 2 05413 

The important change shows up in the + sign after the line  no.   17. 
This means that the announced anomaly was detected during or after (in 
time) the execution of line no.   17 of   SUB2,  but before any subsequent 
CALL   was executed.    Since   SUB2   has a call to   SORT   in line 17 at 
location 14513 (cf. the previous error-trace),  and the 0. O/O. 0 occurred 
five words ahead of this location in the program,  it seems likely that the 
program was executing a loop,  perhaps a DO-loop, which contains the 
offending division just a line or two in the listing ahead of the square root; 
and this loop was executed at least once before the divisor vanished. 

The detective work in the last sentence is not typical;   usually the 
error can be located by the most superficial inspection.    But the need for 
any detective work at all is an unfortunate consequence of the way IBM's 
FORTRAN IV compiler works.    Instead of identifying every line in the 
symbolic listing with a line number that   . FXEM.    could deduce at 
execution time (for example, by locating a dummy instruction 

TDC ID, O, LKDR 

at the beginning of the coding emitted by the compiler for line no.  ID of 
the FORTRAN subprogram whose linkage information can be found at 
LKDR),  the compiler assigns a useable line number only when a CALL is 
generated.     Since an implicit CALL is generated for all references to 
FUNCTION subroutines,  as well as for most exponentiations of the form 
X'i'^J and X**Y,  for input/output,  for complex multiplication and division, 
and for a computed   GO TO(n],  n   ,   . . . , n    ),  I, there are few programs 

whose listed line numbers are too sparse for a successful interpretation 
of the error-trace.    Ar.d, at worst, the unscheduled error is located to 
within one subprogram. 

The CODE 25 at the head of the error-trace tells the programmer how 
to exercise his option to define 0. O/O. 0 in one of two ways;   either 
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0. O/O. 0 = 0.0 and continue execution,  or 

0. 0/0. 0 = EXECUTION TERMINATED. 

For example,  the first option is the result of executing 

CALL KIKOPT (25,   1) 

while the  second results from 

CALL KIKOPT (2 5,   0)     . 

The reader is referred to the PRM for precise details about available 
options and how to exercise them conveniently.    What follows is a conden- 
sation. 

The PRM contains a table of error codes and messages (cf.   Fig.   25 
and the section "Subroutine Library Error Messages" in IBM's IBJOB 
manual,  Form C28-6389-1) which describes for each code its error 
condition,   the options available,  and which option is assumed by the system 
in default of a request to the contrary.    The default option is usually to 
provide a message and then continue execution in some reasonable way. 

I believe that,  taken together with the other diagnostic facilities in our 
system,  our surprisingly simple set of options covers almost all circum- 
stances satisfactorily.    For serious errors we assign positive codes, like 
+25 for 0. O/O. 0,  to signify that the allowed options are 

+ 1) Give a message and error-trace,  and then continue reasonably, 
or 

+0) Give a message and error-trace,  and then terminate execution, 

(Some errors,  like 

GO TO (1,2,3), 4 

are so serious that option +1 is denied.)   For milder errors we assign 
negative codes, like -13 for SQRT (-4.0), which signify that the allowed 
options are 

-1) Give a message and error-trace,  and then continue reasonably, 
or 

-0) Give no message nor error-trace;  just continue reasonably. 

The meaning of "continue reasonably" is discussed later in this report. 
For now   it suffices to give a few exanples; 
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Error Condition and "Reasonable" Response Code 

SQRT{-X) = - SQRT{X) -13 
LGG(-A)    = LOG{ABS(A)) -10 
0.0**0        =1.0 -   3 

0**0        =1.0 -   1 
0.0**0.0   =1.0 + 6 
0.0/0.0      =0.0 +25 

*Footnote:    We allow programmers to write Lf©G{X) or 
ALiQG (X) interchangeably as they please 
rather than penalize them for the venial sin 
of omitting the   A. 

Programmers, particularly writers of library subprograms,  can 
easily provide other kinds of optional responses to error conditions 
detected by their own subprograms because the status of the option- 
indicator (a binary digit) associated with any error-code number can be 
sensed and stored as well as change via   KIK0PT.    A complicated program 
may have several error-codes assigned to it, but this causes no problems 
because 280 codes are available.    Programmers are free to use error- 
codes as flags or flip-flops in a way comparable to the use of sense-switches 
and sense-lights on the older slower machines. 

A comment is required to explain that last   . FXEM.    option -0 which, 
in effect, allows   .FXEM. 's   activity to be suppressed entirely when the 
error is a mild one with a negative code.    Some of these errors are better 
described as differences of opinion about the most apt definition of a func- 
tion or an expression,  as in the cases of   0**0 = 1 and 0.0**0 =1,0   (cf.  the 

00 r 

Taylor series     Sax    at x =0. 0).    In these cases the warning messages 
0     r 

serve only to remind users that my definitions are not universally accepted 
in the computing world.    If he is satisfied to do things my way, he can turn 
the message off.    If he prefers another way, he can easily change the 
relevant program to his own specifications with the aid of the documentation 
which we supply. 

Other errors with negative codes sometimes represent minor over- 
sights;  an example is 

L©G(-X) = L©G(ABS{X))     , Code - 10. 

For reasons discussed later, our policy is to try not to terminate execution 
because of such an oversight.    Rather, it seems better to continue and find 
out what else the programmer overlooked.    We do not encourage program- 
mers to exploit system side-effects to save the bother of a sign-test or 
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some such simple instruction.    We do not regard the -0 option as one 
which should be employed in production or library programs to correct 
oversights,  except possibly temporarily,  because this type of hidden 
coding is so difficult to remember when late-hatching bugs are being 
sought. 

To implement the new   . FXEM.    and error-trace required several 
man-months of work,  most of which was spent tracking down anomalies. 
For example,   several input/output programs supplied as part of ecrlier 
versions of FORTRAN IV were found to use non-standard subprogram 
linkages,  and these had to be repaired to allow even the old   .FXEM.    to 
produce meaningful error-traces before they were further modified to 
work with the new   .FXEM.   .    Every library program had to be examined; 
here we reaped an unexpected reward when we discovered that the new 
.FXEM.    makes possible a shorter and faster subprogram linkage to 
certain library programs like SQRT,  SIN,  COS,  LOG,  EXP,  complex 
multiply,   complex divide,  A-'-'J,  and others. 

But one large job remains.    The FORTRAN compiler must be modified 
to generate standard CALLs to Arithmetic Statement Functions which at 
the present,  as compiled by IBM's FORTRAN IV v.   13,   use non-standard 
CALLs in order to save about 7 microseconds per CALL.    (One division 
costs 8. 4 microseconds.)   Consequently both IBM's   .FXEM.    and ours 
produce error-traces which skip,   sometimes confusingly,  over references 
to Arithmetic Statement Functions. 

2.    POST-MORTEM FACILITIES.     We prefer to think of kick-off as 
an act of desperation on the part of a subprogram,  and therefore try not 
to terminate execution unless it is overwhelmingly probable that continued 
execution will be an utter waste.    There is little risk that errors like 
SQRT(-4. 0) will be repeated millions of times to no good purpose, because 
the monitor imposes the user's own limit upon the total number of lines 
of printed output,  thereby protecting him from a million lines of SQRT's 
diagnostic and error-trace.    Furthermore,  programmers who are 
especially sensitive to a waste of their computer time allotment can use 
statements like 

IF (CLOCK (TSTART) .GT.    TMAX)        CALL UNCLE 

to kick themselves off when the elapsed time since 

TSTART = CLOCK (0. 0) 

exceeds   TMAX,    at a cost of 70 microseconds per execution.    (One square 
root costs 64 microseconds. ) 
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But sometimes kick-off is the only reasonable response to an error. 
This response gives rise to a class of programmer who has only one 
diagnostic and error-trace to show for his several seconds (or minutes) 
of computer time.    It is uncharitable to advise him that he should have 
exercised enough foresight to provide intermediate output as insurance 
against such an event.    Besides,  he may reply 

"I thought 1 had debugged that program." 

We doubt the wisdom of the widespread tendency to inundate every 
user who is kicked off with a complete dump of storage willy-nilly.    This 
could drown him in octal data which he is unlikely to be able to read.    It 
is a costly way to educate students. 

The ideal solution would be to display conveniently just those variables 
which have figured in the events leading up to the debacle.    Our solution 
is not ideal,   but it is simply and flexible.    It is an improved version of our 
PMORT   described in Comm.  A. CM.  7 (1964) p.   15.    We allow the pro- 
grammer to write into his FORTRAN IV program a statement of the form 

IF (KICKED(OFF)) <any executable statement 

< the next executable statement > 

with the expectation that,   because the value of the logical function KICKED 
is always   .TRUE. ,    his program will merely execute   <the next executable 
statement^ .    But if and when his program is kicked off,  the monitor will 
give him the diagnostic and error-trace that he deserves and then,  after 
over-writing   <the next executable statement> with CALL EXIT,  will 
execute   <any executable statement> . 

e.g.   1: IF(KICKED(OFF)) WRITE(. . . ) 

causes the desired information to be written out if and only after the program 
has been kicked off.    The programmer can choose a FORMAT to suit himself 
or,  if more convenient,  he can use the simple unformatted output provided 
by the NAMELIST feature of FORTRAN IV;   or he can   CALL DUMP   and be 
drowned. 

e.g.   2: IF(KICKED(OFF)) CALL 
GO TO 

or 

causes the desired transfer of control to take place after kick-off,  and 
thus permits a user to store valuable data on magnetic tapes and ask the 
operator to save them.    Or he can call a complicated diagnostic program of 
his own,  or he can try again to solve his problem by some method other 
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than the one which failed.    The monitor will allow,   say,  20 seconds and 
300 printed lines of computer activity after the first kick off.    Of course, 
any second kick-off is final despite further   IF (KICKED(OFF)). . .   requests. 
Because the user has recourse to KICKED, writers of library and systems 
programs are under less pressure when they have to decide whether an 
anomalous condition should terminate execution or just produce a warning. 

Programmers are encouraged to use   KICKED   as often as they like 
in both   FORTRAN   and   MAP   assembly language programs,  and they can 
leave these   KICKED   statements in production programs as insurance 
against the remote possibility that an undiscovered bug may terminate 
execution in a cloud of mystery.    Each executed reference to   KICKED 
consumes less than 14 microseconds (less than two division times) so 
KICKED   can be used in fairly tight loops without seriously wasting time. 
The monitor will respond at kick-off only to the last executed reference 
to KICKED. 

An important limitation upon   KICKED   was imposed by the absence of 
any block structure in   FORTRAN   comparable to that in   ALGOL,  and by 
the way that indexing is optimized in   FORTRAN.    This limitation exists 
because,  whenever kick-off occurs in some subprogram remote from the 
one containing the   KICKED    statement and then control is passed to   <any 
executable statement>   after the   IF{KICKED(OFF)),  no attempt is made to 
restore index registers to the state they were in when   KICKED   was called 
nor to re-set tapes to their former positions.    More important,  there is no 
way to reproduce the effect of those instructions which may have been placed 
in "optimum" positions ahead of the call to   KICKED   in order to initialize 
index registers and addresses as efficiently as possible from the point of 
view of the normal sequence of control.    For example,   if kick-off occurs 
during the computation of FCN in the sequence 

DO 3 J = 1,   10 
A{1,  J) = J - 1 

DO 3 I  =  1,  J 
IF (KICKED{OFF)) WRITE{. . . ) I,  J,  B(I),   B(j),  (A{K,J),  K=1,J) 

3 A(I + 1, J) = FCN{B(I),  B(J),  A{I + 1,J)) + A (I,  J) 

there is no way at kick-off time to move the numbers   I   and   J   from 
storage into the appropriate cells and index registers for the references 
to B(I),  B(J), A(K, J) and "K = 1, J" following the call to KICKED. 

A second limitation shows up when program overlay takes place;  there 
is no simple way to detect whether   <any executable statement>   in the 
IF (KICKED(0FF))   statement has been'partially overlaid,  or whether it 
refers to data which has been overlaid.    Consequently we inserted an instruc- 
tion in   .L0VRY,    the overlay handling subprogram, which causes the 
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Whenever the array Y is changed,  indicate which element too; 

Y (2) = .74131042 E - 18   . 

Whenever the third column of array Z is changed,   say so; 

Z(13, 3) = 0.0     . 

Whenever the subprogram   PROG   is called, write out its arguments; 

CALL PROG    (13,  27.421493,    Y)    WITH 

Y{1) = 1.4012362 
Y(2) = .74131042 E -18 
Y(3) = 0.0     . 

IF PROG   is a function,  write out its value too; 

PROG   (13,  27.421493,  Y) = 1. 7014 E38 WITH 

Y(l) = etc. 

Whenever statement   n   is executed,   say so.    If this is a logical   IF 
statement, tell what happened. 

The   MONITOR   facility as described above has been implemented 
at least partially in several compilers;   unfortunately, ours is not one 
of them.    The problem is to deal with the statement 

IF (KICKED(OFF))     MONITOR  

for which the nicest solution would be a retroactive display of,   say, the 
last 300 lines of output which would have been produced if that   MONITOR 
statement had not been bypassed.    Some compilers already have a feature 
of this kind; the author envies their users. 

Now is a good time to compare the error-options needed by the 
programmer with those available to him.    He may want to assign to a 
specified anomaly,  like 0.0**0     , one of the following four consequences: 

-0)   Re-interpret the request in a way judged to be appropriate 
for the majority of users (say 0. 0**0 =1.0) and continue 
with no message nor error-trace. 

1) Re-interpret the request as above, and put out a message and 
error-trace to tell the programmer what happened and where, 
and then continue execution. 
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+0)   Put out a message and error-trace to explain where and 
why execution was terminated,  and then grant any post- 
mortem request that may have been made via 

IF (KICKED(©FF) ...      . 

2)   Transfer control to a location designated in advance by 
the programmer where he may cope with the anomaly as 
he pleases,  provided the necessary information is easily 
accessible to him. 

Our system offers at least two of the first three options for most 
error conditions.    The last option is dangerous in FORTRAN for the 
reasons cited while discussing the limitations of   KICKED,    unless it is 
handled carefully.    The following discussion explains how some of our 
library programs offer option   2). 

Consider for example our least squares library subroutine LSTSQ 
which,  given a rectangular   M x N matrix X and a column vector y , 
attempts to find that coefficient vector    c   which minimizes the sum of 
squares 

S = (y - Xc)T(y - Xc) =   2. (y.  - 2.x..c.)2    . 
-     -   -     -        iv i      j ij y 

A solution   c   always exists and satisfies the normal equations 

T T 
X    X c = X   y 

LSTSQ tries to solve these equations (in double precision,  because that 
is the fastest adequate method on a 7094) for c   and the corresponding 
minimum value of S and,  if requested, the inverse matrix 

V = (xTx) -1 

But if the columns of   X   are nearly linearly dependent, in the sense that 
there exists a perturbation    AX   of the order of a few units in the last 
place of   X such that the columns of   (X+ AX) are linearly dependent,  then 
the solution   £   is not well defined and LSTSQ produces one of two things 
instead of c- 

0)   If the user wrote 

CALL LSTSQ (X,  M,  N,  Y,  C, S)        or 

CALL LSTSQ (X, M,  N,  Y, C. S,  V) 

; 
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then he has made no provision for the possibility that X 
be nearly singular, so he receives a suitable diagnostic 
and error-trace and is kicked off. 

1)   If the user wrote 

CALL LSTSQ (X,  M,  N,  Y, C,  S, in)        or 

CALL LSTSQ (X,  M,  N,   Y,  C,  S,   V,  $n) 

where   n   is an integer standing for a statement number, 
LSTSQ returns control to statement number   n   in the user's 
calling program,  and diagnostic information is made available 
in V (or elsewhere if   V   was not. requested) which permits 
the calling program to identify the linear dependence rela- 
tively easily and change X appropriately.    (Usually the calling 
program just decreases N. )   LSTSQ does not put out any 
messages in this case. 

The foregoing description is somewhat simplified;   details can be 
found in the PRM.    The interesting feature is not so much the use of a 
FORTRAN IV error return $n as the fact that this error return is optional. 
The option is available because one of the first statements executed within 
LSTSQ is 

CALL ARGCNT (I.J) 

which counts the arguments supplied in the CALL to LSTSQ.    I is the 
number of arguments exclusive of error returns,  and J is the number of 
error returns.    The error options described above are numbered 0 and 1 
according to the value of J.    Similarly,  LSTSQ determines whether the 
user wants V  = (X   X)       or not according as I = 7 or 6 respectively.    Any 
other values of I or J indicate an error,  like a period between the integers 
M and N instead of a comma,  which is serious enough to terminate 
execution with an appropriate diagnostic. 

The use of variable length argument lists lends a certain elegant 
simplicity to several of our library programs,  and we hope that this 
feature will be incorporated in the programming languages of the future. 
The simplicity with whicn the error return scheme can be implemented 
makes it efficient and satisfactory for a wide range of applications,  but 
there are two important areas where the scheme is unsatisfactory.    One 
consists of those difficulties caused by a small lack of foresight and 
recognized immediately with the slight assistance to hindsight provided 
by a diagnostic.    Many of the error conditions mentioned above,  like 
LO(J(X) when LOG(ABS(X)) was intended,  fall into this category.    So do 

190 

■- 



, 

many input/output problems.    It suffices here to say that a lot more 
could be said for the desirability and convenience of subprograms like 
KIKOPT which allow the programmer to revise temporarily the execu- 
tion of his program at each of several spots without having to insert a 
small explicit change at each spot. 

The second area where error returns have proved unsatisfactory 
covers Over/Underflow,  a ubiquitous phenomenon to which the next 
section of this report is devoted. 

3.    OVER/UNDERFLOW.      Overflow and Underflow are what take 
place in the arithmetic registers of a computer whenever an attempt is 
made to calculate numbers outside the normal range.    On the 7094,  over- 
flow occurs whenever the magnitude of the result of a floating point 
arithmetic operation equals or exceeds 

127 38 
2 =     1.70141183 x 10 ; 

underflow occurs whenever the magnitude is not exactly zero and is 
smaller than 

ilM 146936794 x 10 
-38 

Special provision must be made to cope with over/underflow in a way 
which does not produce misleading results, 

It is sometimes argued that overflow is an error for which the penalty 
should be 

EXECUTION TERMINATED 

but this penalty would place an intolerable burden upon even the most 
expert numerical analyst.    He is often unable to predict in advance what 
the range of numbers will be in complicated calculations,   especially 
where exponentials,  polynomials and rational functions of high degree, 
or spaces of high dimensionality are concerned.    For example,  if P(x)y) 
is a polynomial in   x   of degree  10   whose coefficients are wild functions 
of y,  then the desired solution x = X(y)   of the equation   P(x,y) = 0   may 
be well-defined and reasonable even though it is inaccessible unless the 
polynomial-zero-finding subprogram is allowed to pursue a flexible 
scaling strategy in response to over/underflows,  if any,  which occur 
during the computation of   P(x,y).    Overflows should not force kick-off; 
if worst comes to wor^*.,  a program can kick itself off by executing,   say, 

IF(OVFLOW)   CALL UNCLE{0,22H INESCAPABLE OVERFLOW. ). 
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An opposite attitude of laissez-faire is reflected in the designs of 
those machines whose hardware automatically replace an overflowed 
magnitude by a special digit pattern representing   »   and then plunge on. 
Such a scheme might well include,  say,    Ö    to replace an underflowed 
magnitude and  -ft   to indicate an indeterminate value.    These symbols 
might obey rules like the following: 

i)       Whenever an arithmetic operation generates   +00,    9    or  -ft ,  a 
corresponding flag is raised to indicate to the program that overflow, 
underflow or lost significance respectively has occurred.    If requested 
by the programmer in advance,  a message can be printed out for his 
information. 

11)    Any arithmetic operation with  •6-  as an operand generates -8-  as a 
result.   •%   is also generated by the following expressions:     00-00, 
■/•, o/o, o/e, e/o, e/e, oo • o, « ♦ e and x/e . 

iii)   If   x > (l unit in the last place of the overflow threshold) 

then   00  - x   =   ft ;    otherwise   00 + x   =   00 

If (l unit in the last place of    x ) < (the underflow threshold) 

then   » - x   =  -fr ;   otherwise   x+0    =x + 0   =   x. 

If   x > 1   then   x * 0»   =   00   *   sign(x)   ;    otherwise   xj;too=6- . 
Similar rules hold for   x/00,    ao/x,  x!;t9    and   e/x   . 
x/0 = 00* sign(x)   unless   x = 0   or  9 

iv)    The number   0   can be generated only by direct assignment or as 
the result of   x-x   with   x ji Q nor 00 .      The symbol   0   , which stands 
for the set of all numbers smaller in magnitude than the underflow 
threshold,  can be generated only by direct assignment or by an 
underflow as indicated above.    During comparisons the symbol   9 
simultaneously satisfies 

0^0,    e/0,     O-frO,    and 

x > 9   if and only if   x > 0   too. 

Rules like the foregoing are formidable,  and have not been implemented 
in any hardware known to the author (who would not expect to find them in 
any machine except possibly one with interval-arithmetic built into the 

dware).    Buc no other less elaborate rules are known to be foolproof. 
r example, the CDC bbOO'a hardware follows similar rules whose most 

öbvioui difference is the lack of any distinction whatever between under- 
flow to   9   and the number 0.    A comparable deficiency is to be found at 
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those IBM installations where,  to excape a plethora of insignificant under- 
flow messages,  all underflow messages are suppressed by many users 
most of the time.    The following segment of FORTRAN coding shows what 
can happen when this is done.    Here   A,  B,  C, D and X are all positive 
normalized floating point numbers (not special symbols nor zero), 

Y = (A;:;X+B)/(C:::X+D) 
Z = (A+B/X)/(C+D/X) 
W s Y/Z 
WRITE (...) W 

Output:     W = 1.98 

In the absence of any indications of over/underflow,  how is this phenomenon 
to be explained?   The only thing unnatural about this example is the   WRITE 
statement;    W   is more likely to have remained      "out of sight, out of mind" 

The replacement of underflowed numbers by zero with no indication 
to program nor programmer is a clearly unsatisfactory practice.    And 
even when an indication of over/underflow is given, there is ample reason 
to protest against the destruction by hardware (as en the IBM 360 and 
CDC  6600) rather than software of information which could otherwise be of 
significance to the programmer;   this is discussed in more detail below 
in connection with the Unnormalized Mode and the Counting Mode of treat- 
ing over/underflow.    But, to be fair,   it must be acknowledged that most 
programmers would be satisfied most of the time by the provision of 
representations for   +  <»,   - » ,   6   and   #   obeying rules like i) to iv) above. 

What more might a numerical analyst demand?   From time to time he 
will want to generate and use numbers which lie beyond the over/underflow 
thresholds.    And certainly no programmer wants to be forced to check for 
over/underflow after (much less before) the execution of each arithmetic 
instruction in his program, and to decide each time upon an appropriate 
course of action.    He will prefer to choose one of the several modes of 
execution provided for him by the system, with the understanding that while 
the program is being executed in his chosen mode each over/underflow 
will be treated according to the rules tabulated for that mode.    Rules i) to 
iv) above could define one such mode.    The programmer should be allowed 
to change modes between one line of his program and the next.    Ideally, 
he should be allowed,   if he wants,   to define his own mode by specifying 
in detail just what rules are to be obeyed for each type of arithmetic 
operation.    Finally,  although the programmer who is ignorant of the prob- 
lems of over/underflow must be warned when they occur,   care must be 
taken not to drown him in a cascade of over/underflow messages, especially 
when they are obviously irrelevant.    (An example of an obviously irrelevant 
underflow is remainder underflow after a floating point division in a 
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FORTRAN program, which always discards the remainder.) 

An attempt has been made to serve as many of these needs as can be 
served in a FORTRAN context by means of a substantial extension of the 
service supplied by IBM via their subprogram   . FPTRP   in IBJOB.    This 
program exploits the fact that whenever a floating point over/underflow 
occurs the 7094 "traps";  it interrupts itself and transfers control to a 
designated core location after setting up an indicator word (cell 0) to 
describe what caused the trap and where.    This floating point trap,  FPT, 
takes precedence over all others in the machine;  and when it occurs the 
registers in the machine contain the over/underflowed result unaltered, 
so that no significant information is lost.    A hardware option can be 
purchased (RPQ 880291) which includes improper divisions like l/O in the 
scope of the   FPT. 

I rewrote    . FPTRP   in a way which,  while maintaining compatibility, 
increased its speed and augmented its capabilities so that programs can 
easily choose and change to any one of five modes of execution.    The 
Standard Modes treat over/underflow very much as IBM did, the main 
difference being that now underflow sets up an indicator the same way as 
does overflow.    The Unnormalized Modes exploit unnormalized arithmetic 
to permit underflow to occur "gently" without setting up distracting 
indicators or messages.    The Silent Modes set indicators to indicate  over/ 
underflow to the program but put out almost no messages for the program- 
mer;   cascades of over/underflows in the Silent Modes do not slow programs 
down appreciably.    The Printing Modes set indicators for the program and 
also report each indicated over/underflow,  as it occurs, in a printed 
message for the programmer, thus helping him to debug his program. 
The Counting Mode allows certain kinds of computations to be carried out 
with no risk of over/underflow because the allowed range of magnitudes 
is extended to include numbers like 

2(12    )     . 

These five modes are discussed below in appropriately titled subsections 
of this report.    The last two subsections discuss improper divisions and 
simulated over/underflows. 

THE STANDARD SILENT MODE.       This is the mode in which the 
system operates by default in the absence of requests for some other mode. 
Whenever a floating point arithmetic operation overflows, its result is 
replaced by the largest possible magnitude (1.7014 x lO") with the same 
sign,  and this event is recorded by setting   OVFLOW = .TRUE.     .    When- 
ever a result underflows it is replaced by zero with the same sign,  and 
this event is recorded by setting   UNFL.OW = .TRUE.    .    The indicators 
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OVFLGW   and   UNFLOW   are logical variables which can easily be 
sensed,   stored and/or reset to    .FALSE,    in several ways described 
in the PRM.    In particular,   the declarations 

LOGICAL OVFLOW 
COMMON /GVFLOW/OVFLOW 

permit statements like 

IF (OVFLOW)  
OVFLOW = .FALSE. 

and 

to be executed without wasting time on subprogram linkages in short 
loops. 

This mode is called Silent because each over/underflow sets its 
indicator without disturbing the programmer's output with any diagnostic 
message.    However, just after his program's execution is terminated 
(either normally or by kick-off) a message is produced to draw the 
programmer's attention to any over/underflo.vs that escaped the atten- 
tion of his program;  more about this later.    In the Standard Silent Mode, 
each over/underflow costs  1 5 to 30 microseconds;   i. e.   two to four division 
times. 

THE STANDARD PRINTING MODE.    This mode differs from the 
previous mode only in that each over/underflow,  as it occurs,  inserts a 
message into the programmer's output to answer the following questions; 

What happened,  overflow or underflow? 

Which machine registers are involved;    AG,   MQ or both? 

What arithmetic operation was attempted; + , - , :;: , / , 
double-prec'sion, . . . , ? (An octal operation-code is 
given here.) 

What change was made in the affected register(s)? 

Where is the instruction whose execution caused this 
over/underflow?    (An octal core address is given 
here.) 

Where in the source-program did all this happen? 
(An error-trace is given here by our version of 
.FXEM.    .) 

We also considered writing out the operands whose  sum,  product or 
quotient had over/underflowed,  but the cost of doing so seemed more than 
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the information was worth.    This point deserves reconsideration.    Anyway, 
the error-trace usually points to within a few lines of the site of the over/ 
underflow in a FORTRAN program. 

The over/underflow handling subprogram   . FPTRP   can be switched 
in 40 microseconds from a Silent Mode to the corresponding Printing 
Mode via the statement 

CALL     NFPTST{M) 

with a positive integer expression   M .    When this statement is executed, 
an internal counter   N   is set to   M   and    .FPTRP   is caused to operate 
in a Printing Mode until   M   over/underflow messages have been put out. 
N   is decreased by   1   each time a message is put out, and when   N becomes 
O an extra message 

NOW OVER/UNDERFLOW MESSAGES ARE IN ABEYANCE 

is produced and the Mode is switched back to Silent. 

CALL   NFPTST{0) 

switches the Mode back to Silent without any extra message. 

In accordance with current good practice,  the FORTRAN programmer 
is allowed easily to sense,   save,   set and/or reset the message-counter 
N as well as the indicators   OVFLOW   and   UNFLOW.    Details may be 
found in the PRM.     But programmers are advised not to sec the latter two 
logical variables to   .TRUE,    directly in a FORTRAN program;   instead 
they are advised to force an over/underflow like 

DUMMY = (1.7E38)**2 

This is done because,  whenever over/underflow occurs,    .FPTRP   stores 
the current contents of   SYSLOC   into the appropriate indicator to make 
it   .TRUE.   .     Later, when the program's execution is finished,  the 
monitor looks at each indicator to see whether it is   .TRUE.   ,  and if so 
then that indicator is interpreted as a pointer in roughly the same fashion 
as    .FXEM.     interprets   SYSLOC   when providing the first line of the 
error-trace immediately after an over/underflow in the Printing Mode. 
Consequently,  the programmer's output finishes, whenever appropriate 
and possible,  with a message like 

LAST UNREQUITED OVERFLOW WAS IN OR AFTER 
LINE 17 OF DECK SUB2   . 
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LAST UNREQUITED UNDERFLOW WAS IN A SUBPROGRAM 
CALLED IN LINE 24 OF DECK SUB1. 

Often the programmer can deduce from the information given here that 
the over/underflows did no harm;   then,   since the messages have not 
tainted his formatted output,  he is free to cut them off and publish the 
rest. 

If program overlay has intervened between the last unnoticed over/ 
underflow and program termination,  or if the indicators   OVFLOW   and 
UNFLOW   were set to    .TRUE,    in a naive way,  then the post-execution 
message may describe the desired deck-name and line number as 
UNKNOWN. 

It is especially important to understand that the word "UNREQUITED1 

means that the program did not respond to the over/underflows and then 
reset the indicators to    .FALSE.    .    The programmer may also have 
received several printed messages to notify him of each over/under flow 
that it ignored. 

I see now that we could have supplied,  at little extra cost,  post- 
execution warnings more like this; 

3943 OVERFLOWS WENT UNREQUITED BY THE PROGRAM 
BETWEEN LINE 17 OF DECK SUB2 

AND A SUBPROGRAM CALLED IN LINE 64 OF DECK SUB1. 

Such a message can be more useful in deciding whether or not to 
ignore the over/underflows.    Also,  the counts of overflows and under- 
flows could be used by any programmer who,  for reasons unclear to me, 
wished to terminate his program's execution after a specified number of 
overflows had occurred.    Another improvement would be to allow a 
negative value for   M   in 

CALL NFPTST(M) 

to signify that   -M   overflow messages are to be allowed while all underflow 
messages are to be suppressed.    Most of these improvements have been 
incorporated into the adaptation of our scheme for the Burroughs B550O 
written by Mr.  Michael D.  Green at Stanford University in 1966, and I 
expect to put them into our system soon. 

THE TREATMENT OF UNDERFLOW.      Some programmers have good 
reasons to want to be informed about underflow.    They may want to avoid 
consequent loss of precision or subsequent division by zero.    But most 
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programmers whom I asked said they preferred that underflowed numbers 
be replaced by zero without their attention being distracted by the event. 
This attitude was justified at a time when most over/underflow messages 
reported "MQ UNDERFLOW" during an addition,  subtraction, multiplica- 
tion or double-precision division.    This message signified that the double- 
length result of those operations in the   AC-MQ   register was small 
enough to cause the characteristic of the less significant word in the   MQ 
to underflow even though the more significant word was correct.    Since the 
less significant word is entirely ignored in single-precision   FORTRAN 
expressions,  and since the double-precision hardware of the 7094 ignores 
the characteristic of the less significant word in double-precision expres- 
sions, I decided that    . FPTRP    should simply ignore   MQ   underflow after 
those operations where it was obviously irrelevant.*   This decision's first 
consequence was a welcome reduction in the number of messages and 
complaints,  especially where iterative calculations with residuals tending 
to zero were concerned.    The second consequence was that certain old 
7090 programs, which had performed double-precision arithmetic by 
simulating the 7094^ double-precision hardware,  ran into spurious over- 
flow troubles and required revision so that they would use instead of 
simulate our machine's hardware.    Fortunately, any user who insists upon 
running a 7090 program unchanged upon our 7094 can do so in safety by 
merely changing two well-marked instructions in   .FPTRP   .    The second 
instruction is needed to force appropriate action when remainders under- 
flow after division;   otherwise they would be ignored too. 

It is not good enough that the system ignores obviously irrelevant 
underflows.    Many irrelevant underflows are not obviously irrelevant. 
Consider,   for example, a segment of a typical matrix handling program 
which computes 

r = b -   S. a.x. 
ill 

The usual rule, which replaces each underflowed sum or product by zero, 
is satisfactory except when   b   and all the products   a.x.    are so close to 

the underflow threshold that the usual rule produces a significantly wrong 
value for   r.    If all underflows are reported, how can the rare significant 
reports be distinguished from the common ignorable ones?   If no under- 
flows are reported,  how can the rare incorrect values of   r   be distin- 
guished from the common correct ones?   The easiest way I know to cope 
with these questions is to use our Unnormalized Modes: 

!;:The 27 significant bits in the MQ are not ignored nor cleared when the 
characteristic of the MQ underflows,  so no accuracy is lost. 
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THE UNNORMALIZED SILENT MODE AND THE UNNORMALIZED 
PRINTING MODE.      These two modes differ from one another in just one 
respect; the Printing Mode reports overflows in the way described under 
the Standard Printing Mode above.      The two Unnormalized Modes differ 
from their corresponding Standard Modes only in the way they treat under- 
flow.    A number,  which in a Standard Mode would have underflowed to 
zero and set   UNFLOW = .TRUE.   ,  is in an Unnormalized Mode replaced 
by its closest unnormalized approximation and   UNFLOW is unchanged. 
For example,   consider a decimal machine whose underflow threshold is 
. 10000000 x lO"38 .    In a Standard Mode,   . 15743219 x 10-40   would under- 
flow to zero,   but in an Unnormalized Mode it is replaced by 
. 00157432 x lO-38  .      A number must now drop below    . 00000001 x IG-38 

before it is silently replaced by zero. , 

In the Unnormalized Modes the range of non zer«? floating point 
numbers reprc sentable in the 7094 is extended downward from   2" ^9 ^0 

2-155 in single precision and   2"^8^   in double precisipn.    This allows 
underflow to take place more pently,   and improves the\accuracy of certain 
results.    But these benefits are secondary; the primary justification for 
the Unnormalized Modes is that they ease the task of deciding,  in certain 
cases,  whether a result is right or wrong. 

For example,  consider the following FORTRAN program to compute 

N 
r =  b -   S   a.x. 

i   '' 

(In accordance with good computing practice,  and because it costs almost 
nothing extra to do so on our 7094-11,  the products of the single-precision 
numbers   a.   and   x.   are accumulated to double precision before   r   is i \ 
rounded (not truncated) to single precision. ) 

DOUBLE PRECISION   D 
DIMENSION   A(. . .),  X(. . .) 
D = -B 
ENTER THE UNNORMALIZED MODE, 

CALL   FPTUN 
DO   1    1=1, N 
D = A(I)=::X(I) + D 

RESTORE THE STANDARD MODE. 
CALL   FPTST 

R = 0.0 - RND(D) 

(14 MICROSEC.) 

(13 MICROSEC.) 
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The last statement rounds D to single precision,  changes sign,  and 
adds zero before storing the result in R.    If the rounded value of D is 
a non zero unnormalized number, then the normalization that always 
follows addition will cause an underflow which, in the Standard Mode, will 
set R = 0. 0 and UNFLGW = . TRUE.   .  But if RND(D) is a normalized 
number then adding zero will not change anything.    Consequently,  R is 
correct as it  stands,  despite the possible underflows of intermediate results, 
with the following exceptions: 

- IF ©VFLOW OR UNFL0W is  . TRUE. ,  R is wrong. 

- If severe cancellation has taken place in statement 1, R may 
be badly contaminated by double-precision truncation errors. 
This possibility is independent of over/underflow,  and is 
irrelevant if B, A, and X are each uncertain by a unit in 
their respective last places. 

- If R = 0. 0 then it may be further contaminated by an error 
of 2"      ,    although this is irrelevant if B is non zero and 
uncertain by a unit in its last place.    But if B = 0. 0 then all 
the products A(l)*X(l) might have underflowed to zero 
silently. 

There are very few applications where any but the first exception is rele- 
vant,  and that one is caught by the system.    The absence of over/underflow 
tests in the inner loop permits calculations in the normal range to proceed 
with no noticeable loss of speed. 

The  Unnormalized Modes may be used in single precision,  double 
precision and complex arithmetic at the cost of 42 microseconds per 
underflow.    These modes would be much more useful on a 7094 but for a 
quirk in the hardware which   forces the "normalized" product of two non 
zero unnormalized numbers to be zero on certain occasions.       The Unnor- 
malized Modes are best suited to those machines, like the Burroughs B 5500, 
which handle normalized operands without serious anomalies.    But, because 
of the peculiar behaviour of our machine, the Unnormalized Modes are so 
beset by restrictions (for which see the PRM) that the author and a few of 
his students are perhaps the only programmers who use them.    We find 
them valuable for computations with matrices, power series,  and numerical 
quadrature. 

THE COUNTING MODE.     This mode deals with over/underflow in a 
way which permits programmers to save all the significant digits which 
are lost by the other modes,  and is specially useful for evaluating expres- 
sions like .j 

q =    IT (a. + b.)/(c.   + d.) %  i        i '     i        i 
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when   q   is likely to be a reasonable number even though its partial 
products and quotients are afflicted with over/underflow.    The execution 
of 

CALL   FPTCT(J)    , 

where   J   is the name of an integer variable,   switches   .FPTRP   in 14 
microseconds to the Counting Mode and designates cell   J   to act as a 
leftward extension for the 8-bit characteristics of the AC and MQ registers, 
Henceforth,  over/under flows are counted in   J .    Whenever an arithmetic 
operation overflows its result is divided by 2"°   and   J   is increased by 1. 
Whenever an arithmetic operation underflows its result is multiplied by 
2"D   ancj   j   is decreased by   1. 

For example, the FORTRAN statements 

CALL   FPTCT(J) 
J = 0 
X = {A+B)*{C+DHE/F)/G 

produce a pair   (J,X)   whose values really satisfy 

(A+B) (C+D) (E/F)/G   =   2256J X   . 

In effect, the missing binary digits in   X's   characteristic have been added 
to   J   while   X's other significant binary digits have remained unchanged. 

FORTRAN programmers who use the Counting Mode must be reasonably 
familiar with the workings of the compiler so that they will not try to 
evaluate expressions like 

A/(B+C)       nor     A*B+C       nor      A-^B 

in one FORTRAN statement. 

The following example shows how the Counting Mode is used to evaluate 

N 
q   =   TT (a.+b.)/(c.+d.) 

for large   N   with no over/underflow tests inside the   DO   loops,  although 
each over/underflow does cost 35 microseconas. 
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J = 0 
PAB = 1. 
PCD = 1. 
CALL   FPTCT(J) 

DO 1   1=1, N 
PCD=RND(PCD::RND{C(I)+D(I))) 

IF(PCD .EQ.   0. 0) GO TO 3 
J = -J 
DO 2   1=1 .N 

PAB=RND(PAB«RND(A{I)+B{I))) 

Initialize Over/Underflow Counter, 
Numerator,  and 
Denominator. 

Switch to Counting Mode. 
Compute Denominator using 
Rounded Arithmetic. 

. .  because Denominator vanished. 
Reverse meaning of Counter. 

Compute Numerator. 
Q = PAB/PCD 
CALL   FPTST Switch back to Standard Mode. 

IF (Q .EQ.  0.0) J=0 . . .  because Numerator vanished. 
IF (J)   4,   5,   3 
. . .  Q has Overflowed,  because   J > 0   or Denominator = 0. 
. . .  Q has Underflowed,  because   J < 0 . 
...  Q is correct as it stands,  because   J = 0 

Whatever value   J   may have,  and provided the denominator   PCD   is 
non zero, the stored value   Q   is related to the desired value   q   by 

-256J _ 
q   =   2 Q   . 

The Counting Mode works for both single and double precision arithmetic, 
and is indispensable for computing determinants and certain ratios of 
factorials,  but I have not yet figured out how to make a Complex Counting 
Mode work with comparable elegance on our machine.    However,  the next 
example is one where our Counting Mode is useful in a complex arithmetic 
calculation. 

Suppose the complex array   Z(I)   is given and we seek   K   such that 

CABS(Z(K))     =    max        CABS{Z(I))     . 
1<I<N 

(Here   CABS(Z) =    [Z|    in FORTRAN IV. )   To avoid the square roots, we 
may prefer to calculate only squared magnitudes, thereby exploiting the 
equivalence between the statements 

(0 

and 

(ü) 

| a + ib [    >    [ u + iv | 

2 2 2 2 
a     +   b     >   u     +   v 
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But the squared magnitudes may over/underflow despite that the magnitudes 
| a + ib I    and    I u + iv I    are well within the machine's range.    The following 
program exploits the equivalent between (ii) above and 

(iii) (a-u) (a+u)   >   (v-b) (v+b) 

and then copes with over/underflows via the Counting Mode.    N   is assumed 
to exceed 1. 

3 

4 

COMPLEX   Z{. . .), C,  W 
DIMENSION   ABC(2),  UVW(2) 
EQUIVALENCE (C , ABC , A), (B, ABC(2)), (W, UVW, U), (V, UVW(2)) 
This   EQUIVALENCE   makes   c=a+ib   and   w=u+iv   . 

CALL FPTCT(J) 
K=l Initialize current maximum. 
C = Z(1) 
DO 5   1=2^ 

J=0 
W = Z{I) 
XL = (A-UHA+U) 
J= -J 
XR= (V-B):;;(V+B) 
IF(XR . EQ.   0.   . OR. XL . EQ.  O. )   GO TO 3 
IF(J) 2,   3,   1 

J>0 means   [ XR |   should  exceed   |XL[ ,   so ignore   XL . 
IF(XR) 5,   5, 4 
J<0 means   I XL I   should exceed  I XR I ,  so ignore   XR . 
IF{XL) 4,  5,  5  . 

J=0 means   XL   and   XR   are directly comparable. 
IF(XL .GE.  XR) GO TO 5 

K=I Update current maximum whenever 
C=W W >C   . 

CONTINUE 
CALL FPTST 

Now   C = Z(K)   is the largest in magnitude of the values   Z{I) .    Some 
minor refinements can be introduced to reduce the influence of roundoff 
in critical cases of near equality,  but they do not change the relative speed 
and simplicity exhibited by this program when compared with alternatives. 
(For more details,   see our library program   CMAXA   in the PRM. ) 

An attempt was made to extend the idea of FPTCT to cope with integer 
overflows;   i. e,    we wanted to allow the FORTRAN programmer to designate 
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a cell which would act as a leftward extension of the integer accumulator 
in the same way as   J   in   FPTCT(j)   acts as a leftward extension of the 
floating point accumulator's characteristic.    However, this scheme would 
first have required certain modifications to the 7094 to permit trapping on 
fixed point overflow, and then the FORTRAN IV compiler would have had 
to be extensively rewritten.    A frustrating feature of the present compiler 
is that it renders certain integer overflows undetectable.'    Consequently, 
FORTRAN programs which manipulate large integers are very much 
complicated by the need for frequent overflow tests in advance of arithmetic 
operations.    The same complication afflicts   ALGOL   and any other pro- 
gramming language I know;   it is the price we must pay for a lapse in 
communication among the architects, implementors and users of a pro- 
gramming language. 

A similar lapse has frustrated attempts so far to implement the 
Unnormalized and Counting Modes upon some other machines.    The   B5500 
discards one of the digits in the characteristic of an over/underflowed 
result,  thereby preventing any analysis from determining whether the result 
over/underflowed by a little or by a lot.    The IBM 360 series wantonly 
destroys everything, including the sign of an overflowed result*.    The CDC 
6600 has its own fixed ideas about over/underflow.    The tendency of other 
high-performance machines,  like the IBM 360/91,  to suffer from impre- 
cise interrupts implies that those machines will have to deal with over/under- 
flow entirely in their hardware.    This in turn implies that their treatment of 
over/underflow will be intolerable unless numerical analysts act soon to 
lay down reasonable guidelines for machine designers to follow. 

IMPROPER DIVISIONS.    On a 7094 with divide-check-trap hardware, 
improper divisions do not turn on the divide-check indicator.    Instead they 
trap to . FPTRP   which,  in our system,  responds as illustrated below. 

38 
1. O/O. 0 = 1. 7014 x 10       and Overflow occurs. 

Any floating point division (single precision, double precision, 
or complex) of a non zero number by zero is treated as a 
quotient overflow and sets   OVFLOW = .TRUE.    .    No provision 
has been made to distinguish such divisions by zero from other 
quotient overflows (except in the Counting Mode, where a message 
can be produced) because both events almost always have the 

^This sentence was true when it was written;  meanwhile IBM has promised 
to remed/ the 360^ treatment of over/underflow in a way that may well 
permit the schemes described here to be copied on the 360^ other than 
360/91. 

W.K.    May 1967 
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same causes and consequences.    Besides, the programmer can 
easily (and should) test directly whether a divisor is zero or not. 
Each division by zero consumes more than thrice as much time 
as any other overflow. 

1/0 = Kickoff unless otherwise has been requested. 
Fixed point integer division by zero is almost certainly a drastic 
error in a FORTRAN program.    In ALGOL the issue might not 
be so clear. 

0. 0/0. 0 = Kickoff unless otherwise has been requested. 
Floating point di dsion of zero by zero is a symptom of a serious 
flaw in the analysis behind a program. 

Unnormalized Division may kick off unless otherwise has been requested. 
Floating point division by an unnormalized number causes a trap 
(unless the quotient produced by the hardware happens to be correct). 
This is a symptom of certain programming errors like 

reference to a variable whose value has not previously 

been set, 

ALOG(3)   instead of   ALOG(3.0), 

a forgotten   EQUIVALENCE (A, I) , 

reference to   A(13)   when   DIMENSION A(6) ,  or 

a significant underflow in an Unnormalized Mode. 

After the new   . FPTRP   was installed,  failures began to show up in 
programs which had previously been allowed to proceed silently with a 
zero quotient for each improper division.    A few programmers protested 
that they liked the old ways better,  but they seem to represent a lunatic 
fringe among programmers as a whole.    The author is under the impression 
that the new   . FPTRP's treatment of improper divisions is more widely 
appreciated than all his other works put together;   actually the credit should 
be shared with   R.   Jones and J.   Bell,  who found a way to simulate the 
divide-check-trap hardware on a 7094 without that equipment.    (The equip- 
ment is soon to be installed, and with it will come some system simplifica- 
tion. ) 

However,  the most important contribution made by the new    .FPTRP   is 
that a programmer who has to cope with a complicated numerical problem 
can still write whatever program first comes into his mind, just as he did 
before.    And now he will rest assured that,  should his algorithm be 
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frustrated by over/underflow, he will find out what happened and, perhaps, 
be able to cope with his difficulty by simply re-coding a small part of his 
program instead of laboriously devising a deeper mathematical analysis 
of his problem.    The new   . FPTRP   strengthens the programmer's most 
valuable tool,  hindsight. 

SIMULATED OVER/UNDERFLOW IN LIBRARY PROGRAMS.     The 
concept of over/underflow is normally associated with the elementary 
arithmetic operations,  but it takes no imagination to extend the concept 
from simple functions of   X   like 

A+X ,      A*X ,       A/X ,     X**2 

to more complicated functions like 

LOG(X) ,      EXP(X) ,      COT(X)  

In general,  it seems reasonable to associate overflow with the following 
behaviour: 

as   x -► x       (x    may be + »),     f(x) -♦+00    . 
0*0 — — 

e.g.     as   x -♦ 0+   ,    log(x) •* -»    ; 

as   x -► +00  ,    exp(x) ■♦ +»    . 

And underflow might just as reasonably be associated with this behaviour: 

as   x -♦ +00 , f(x) — 0 . 

as   x -►-»    ,     exp(x) -* 0 . 
e.g. 

But we should not like to associate underflow with the value log(l)=0.    In 
other words,  underflow occurs only when the value of the function   f(x) 
is not zero though closer to zero than the underflow threshold. 

Here are some examples to illustrate how our functions behave in 
FORTRAN: 

LOG(O.O) 
COT(+0. 0) 
EXP(3000.) 
EXP(-3000.) 
(+0.0)**(-3.0) 
0.0**(-3.0) 
(-100.)** (-25) 

= -1.7014 E38 
= +1.7014 
? 1.7014 E38 
= 0.0 
= +1.7014 E38 
? 1.7014 E38 
= -0.0 

and OVFLOW is set 
OVFLOW 
GVFLOW 
UNFLOW 
OVFLOW 
OVFLOW 
UNFLOW 
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The last example is interesting because the IBM program signals 
overflow during the computation; we avoid overflow by computing 
(l./lOO)**25   instead of   1./(100-:::,;t25) •    The previous two examples 
should not be confused with 

0**(-3) = Kickoff ,    code 25   ; 

the distinction is consistent with the rules for improper divisions.   Finally, 
no underflows occur when   LOG(l. 0) = 0. 0   or when   SINPI(X) = simrX 
vanishes for integer values of   X, 

J have rewritten several of the elementary function subprograms in the 
IBLiB   library to ensure that their over/underflow behaviour is consonant 
with the foregoing.      When necessary,  over/underflow is simulated;  this 
merely means that a transfer to   . FPTRP   is forced in such a way that the 
FPT   indicator word (cell 0) contains just the informatior needed for the 
desired message from   .FPTRP .    The simplest way to do this in a 
FORTRAN program is to square a very large or very small number.    Of 
course,    .FPTRP   must be operating in one of its Standard Modes to allow 
such simulated over/underflows to produce their intended effects.    If the 
Printing Mode is in use, as it should be while a program is being debugged, 
then the error-trace points to the function which caused the apparent over/ 
underflow;  otherwise the post-execution message may sometimes identify 
that function.    As far as I can see, no vital information is lost by thus 
failing to discriminate between the simulated over/underflows and the others. 
The user's view of the library programs becomes less cluttered by their 
various demands for valid arguments.      And the system gains several 
storage locations vacated by superfluous messages. 

However,  some programmers claim that one desirable capability has 
been lost.    For example, they would prefer to be able to write 

CALL   KIKOPT (9,0) 

in their main program whenever they want references to   LOG(X)   in all 
their subprograms to cause kickoff when   X = 0. 0 .    My scheme requires 
that each appearance of   LOG(X)   be preceded by something like 

IF (X .EQ.   0. 0)   CALL UNCLE (9, 18H LOG(X=0. 0) ERROR) . 

I think that programs written the second way are easier to read and to debug; 
but anyone who wants to live dangerously can easily change the library 
programs to suit himself because their listings are usually amply supplied 
with comments. 

: 
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A more penetrating criticism of my scheme is that it denies too many 
users the valuable education obtained by reading certain IBM diagnostics. 
For example,  increasingly many of our users have too little familiarity 
with the rate of growth of   exp(x)   to appreciate that   exp(88.0297)   exceeds 
the overflow threshold.    Our university used to include a professor whose 
first assignment to freshman physics students was to plot a graph of 
exp(x)   for   0 < x < 10 .    His attitude might well serve as an example for 
the socially acceptable computer systems of the near future. 

"he extension of a comprehensive treatment of over/underflow over 
the entire library of numerical subprograms is an enormous task prodi- 
giously demanding of attention to detail.    Here is a simple example of a 
typical detail.    The   CABS   function computes the absolute value of a 
complex variable using the formulae 

a + ib h +(b/ a)' if bl 

| b | VT+ (a/b)2      if     |b|  > [a| 

For simplicity assume the former case.    Then underflow will occur during 
the computation of   1 + (b/a)^   whenever   (b/a)^   is non zero but smaller 
than the underflow threshold.    This underflow is irrelevant,  so our   CABS 
program suppresses it.    Had the program been written in FORTRAN the 
suppression would have been accomplished by computing   1 + (b/a)^   in 
the Unnormalized Mode.    Similar but more complicated considerations 
affect the division of one complex number by another. 

The task of taming ever/under flow in the library is not yet completed; 
there are several relatively rarely used programs that remain to be revised. 
Is this project worth its price?   Who should say?   Our users can no longer 
offer a qualified opinion because so few of them are now aware of the issues, 
and even those few hardly ever have trouble dealing with over/underflow 
nowadays. 
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ROUNDING ERROR, ILL-CONDITIONING, AND INSTABILITY* 

Ben Noble 
Mathematics Research Center, U.S. Army 

University of Wisconsin, Madison, Wisconsin 

1. INTRODUCTION. Modern digital computers perform so much arithmetic so 
rapidly that we can print out only a minute fraction of the results generated 
within the machine. One of the characteristics of digital computers is that 
they give a definite answer to everything you ask them to do, whether the 
answer is right or wrong. The challenge is to write programs in such a way 
that confutations are in some sense self-checking. The more usual situation 
is that we try as far as possible to incorporate checks, but the printout 
makes us suspect that something is wrong — How do we locate the source of 
the trouble? 

The theme of this paper is that it is convenient to subdivide sources of 
difficulty into three more or less distinct categories.  (We go into detail 
in connection with examples later.) 

(a) Existence and uniqueness. It is pointless to look for a unique 
solution to a problem if there is no solution or an infinity of solutions. 
If there is an infinity of solutions we may be able to characterize the 
multiplicity of solutions in a definite way. If there is no solution we may 
have to look for some approximate solution, for example least-squares or 
minimax. 

(b) Ill-conditioning. Some problems are very sensitive to small changes 
in the initial data. This is a characteristic of the problem itself, and 
not of the method used to solve it. 

(c) Instability. Some methods for computing the answer to a given 
problem may be numerically unstable and give nonsensical results, whereas 
other methods for the same problem may be stable and give accurate results. 
Instability is a characteristic of the method used to solve the problem, not 
of the problem itself. 

The terms "ill-conditioned" and "unstable" are not always used in exactly 
these senses in the literature - in particular they are often defined precisely 
in connection with a particular problem or method.  In our usage, the important 
distinction is that "ill-conditioning" is a property of the problem and "insta- 
bility" is a property of the method. 

If a problem has a well-defined solution that is well-conditioned (i.e., 
not sensitive to small changes in the given data) we say it is well-posed. 
Otherwise it is ill-posed. The property of being well-posed or ill-posed is 
a characteristic of the problem itself, not of the method used to solve it. 

* Work performed under Contract No.: DA-31-124-ARO-D-264 
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One of the reasons why the distinction between existence and uniqueness, 
ill-conditioning, and instability is convenient is that it corresponds to 
three stages in the analysis of any given problem: 

(i) We cannot compute Intelligently until we understand what to look for - 
a unique solution, a family of solutions, or some kind of an approximate solution. 
Also a discussion of singular cases will tell us where we should expect diffi- 
culties.  In general we are likely to be in trouble in situations where we have 
"nearly" multiple solutions or no solutions at all.  If the mathematical theory 
is inadequate we may be forced into arguments like 'the physical situation has 
a unique solution so the equations are likely to have a unique solution'. 
Unfortunately there is not necessarily a one-one correspondence between the 
physical situation and the mathematical model. 

(ii) Once we understand the existence-uniqueness question we can proceed 
to an analysis of the condition or sensitivity of the problem.  Ideally this 
will tell us when to expect ill-conditioning, and how to recognize it in 
practice.  If a problem is ill-conditioned, the results of a computation are 
likely to be inaccurate due to rounding errors. Many computers tend to accept 
ill-conditioning as an act of God.  A more satisfactory attitude is to regard 
it as man-made, and try to develop some ingenious method for avoiding the ill- 
conditioning, insofar as this is not inherent in the original situation that 
gave rise to the equations we are trying to solve - for instance, it is some- 
times possible to invent a purely mathematical trick as in the least-squares 
example in §4, or sometimes the physical problem can be reformulated as in 
the chemical experiment mentioned in §5. To quote J.W. Tukey, "If a job is 
not worth doing, it is not worth doing well". The accurate solution of an 
ill-conditioned problem may fall into the class of jobs that are not worth 
doing, since the results may be meaningless if the initial data are not 
accurately specified. 

(ill) Having understood the problem from a theoretical point of view, 
we should be in a position to decide which algorithm to use to compute the 
solution. One of the important properties of an algorithm is that it should 
be numerically stable. In particular it should not produce spurious solu- 
tions and it should not be unduly Influenced by rounding errors. An unstable 
method will he. sensitive to rounding errors even though the problem we are 
trying to solve is itself well-conditioned. 

It should not be necessary to remind the reader that, after all this 
preliminary work has been done, no matter how satisfactory the theory, it 
Is still essential to incorporate checks in programs. When solving differ- 
ential equations by step-by-step methods, one can perform runs for various 
-tep-lengths and check that these give consistent answers. When solving 
simultaneous equations one can check pivots, and so on.  Checks of this 
type ought to be second nature. Unfortunately many programmers act like 
the housekeeper who refuses to count up her housekeeping bills more than 
once - because she always obtains a different answer the second time. 
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y « f (x) 

y « f (x) - c 

FIGURE 1.   Random fluctuations due to ^oundirw  v^en evaluating  f(x). 
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2.  THE "NOISE-LEVEL" OF A CALCULATION. One of the fundamental limitations 
inherent in computing is that numbers are specified to a limited degree of 
accuracy.  It will suffice for our purposes to consider floating-point computa- 
tions with numbers to the base 10, i.e., a number x is represented in the form 

10 q, where p is the exponent and q is the fractional part.  The number q is 

normalized so that 0.1 i q < 1, and q is specified to a given number of 
significant figures. The result of a calculation (e.g., an addition or a 
multiplication) is first normalized and theii rounded so that q always has the 
same number of digits to the right of the decimal point. 

In most cases it is impractical to trace the rounding errors in detail 
through a calculation.  Fortunately the overall effect of rounding errors 
can be summarized in a simple way.  We illustrate by means of a simple example. 
Suppose that we wish to evaluate 

f(x) x - 1000 {(x + 0.1)1/2 - x1/2}. (1) 

(We forestall a comment by the expert in numerical analysis, that this 
particular calculation can be rearranged so that the rounding error is reduced. 
This remark is irrelevant here since we wish to illustrate what can happen 
when roundinf? effects are serious.)  On evaluating f(x) to four significant 
figures, we have, for example, using the rules for floating-point described 
in the last paragraph but not floating point notation, 

f(13.40) - 13.40 - 1000  (3.674 - 3.661} = 13.40 - 13.00 = 0.40 

f(13.50) » 13.50 - 1000  (3.688 - 3.674} = 13.50 - 14.00 = -0.50 

f(13.60) = 13.60 - 1000  (3.701 - 3.688} = 13.60 - 13.00 = 0.60 

These results, together with similarly computed values of f(x) for x at 
intervals of 0.1 from x ■ 11.0 to 16.0 are plotted in Figure 1.  (The lines 
joining the points are of course inserted only to help the eye.) A curve 
representing the exact value of f(x), obtained by using a large number of 
significant figures in the calculation, is also included.  It is seen that 
the results obtained by using four significant figures fluctuate in a more 
or less random way about the true f(x). The reason why these fluctuations 
are so large in this case is that there is a serious loss of accuracy because 
of the subtraction of nearly equal numbers. The more or less random 
fluctuations of the computed values around the exact curve, as illustrated 
in Figure 1 is analogous to "noise" in electrical networks. 

Mathematically, these results can be stated in a convenient form by 
saying that if f(x) is the exact value of a function, and f*(x) is the value 
obtained by evaluating the function on a computer, using a given number of 
significant figures, then 

|f*(x) - f(x)| < e (2) 
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where the value of e cannot be taken smaller than a certain Irreducible 
minimum, depending on the precise way in which the calculations have been 
performed.  Thus in the above example the value of f*(x) falls within the 
two dotted lines, and the minimum permissible value of £ is, by estimation 
from the graph, 0.85. This is an empirical estimate of e . The quantity 
£ is loosely referred to as the noise-level of the calculation, by analogy 
with fluctuations in electrical networks, for example. 

3. POLYNOMIAL EQUATIONS. To illustrate some of the general remarks 
made in §1, consider the problem of finding the roots of a polynomial 
equation: 

n ,   n-1 , 
a x + a-x   + 
o     1 

+ a nx n-1 
+ a 0. 

where the coefficients a. are real.  The mathematical theory for this equation 

tells us that the following possibilities exist. We assume that n is an 
integer greater than or equal to zero. 

(K) n = 0, a =0.  The equation then reads 0 = 0 and any z is a solution. 

(ß) n = 0, a ^0.  The equation is then contradictory, since it says that 
a = 0.  No solution exists, 
o 

(tf) n > 0, a ^0.  The equation has exactly n roots.  Complex roots 

occur in conjugate pairs. 

One of the important things here is that we would normally regard cases 
(•<) and (ß) as trivial, but they will give trouble on a computer unless they 
are allowed for in the computer program.  In a general purpose program we 
must allow for all possibilities, and an existence-uniqueness discussion helps 
us to understand what these possibilities are. 

It is difficult to deal with zero and infinity when using an automatic 
computer.  In place of infinity we have a finite upper limit to the numbers 
that can be represented within the machine.  In place of zero we usually find 
some small number that has been introduced by rounding errors.  We can tell 
the machine that numbers below a certain limit should be regarded as zero, 
but we have to be careful about scaling since, in floating point, numbers 
always carry the same number of significant figures, and a number that is 
small compared with unity can have a small relative error.  Similarly the 
mere fact that a number is large is no guarantee that it should be regarded 
as infinite.  These difficulties become acute when we try to produce sub- 
routines that will cope automatically with all eventualities. For a 
discussion in connection with the solution of quadratic equations (where the 
problem is already by no means trivial) see [l]. 

To discuss condition, consider the general equation f(z) ■ 0.  (This 
covers transcendental as well as polynomial equations.) Suppose that there 
is a repeated root of multiplicity k given by z = z 

Taylor series expansion of f(z) exists near z = z , 

Suppose that a 

so that we can write 
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f<.)-^ f(k)(0. 

where ; Is a number that tends to z  as z tends to z 
o o 

Consider the roots 

of f(z)-f eg(z) ■ 0, where c Is a small parameter. Let Z be a root of this 

new equation that tends to z  as c tends to zero.  For small e, equation (3) 

gives, approximately, 

k! 
.00 r-(zo) + eg(Zo)teo, 

or 

Zaiz  + 
o 

k! g(zo) 

f(k)(z0) 

1/k 
.1/k 

(3) 

This expression tells us several things: 

(1)  It is clear that the multiple roots automatically tend to be 111- 
1/2 

conditioned.  Thus if k ■ 2 and  e - 10  , we have 10~5, which 

is very much larger than e. 

Then 
(2) Consider the special case k ■ 1, i.e., z is a simple root of f(z) 

Z« z  - Ce, C - g(zo) / f^) (A) 

The root will be ill-conditioned if g(z )/f,(z ) is large. This commonly 

occurs when there is another root close to z . (If there is a repeated root, 

then of course f'(z ) = 0 and k > 1.) We are tempted to say that roots that 

are close together will be ill-conditioned. However the situation is more 
subtle than this.  (The following examples are taken from [7] pp. 41-47, 
where further details can be found.) Consider the polynomial of degree 20 
with roots z = 1,2, ... ,20, i.e. the expanded form of 

(z-l)(z-2) ... (a-20). 

If we work out the coefficient of e in (4) for the root z  - 16 and 
19 0 

g(z) ■ z  we find 
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0.24 ' 10 
10 

Hence the root z  = 16 is very ill-conditioned even though we might think 

that the roots of the polynomial equation are reasonably well separated. 
(The smalJ roots of this polynomial equation are well-conditioned.) The 

20 
roots of z  =1, namely the twentieth roots of unity, are equally spaced on 
a circle of unit radius.  We might think that these are very close together, 
and therefore likely to be ill-conditioned. The reverse is the case. Using 
(4) we find 

|C| 1/20 

for all the roots, so that all the roots are well-conditioned. 

(3) Consider the case of a double root, k = 2.  Equation (3) gives 

(5) 

If the quantity in the parenthesis is negative, Z may be complex even though 
Zj, is real. As an example, suppose that we try to solve 

1.4z2 - 2.8z + 1.4 = 0, 

working to two significant figures in the usual formula: 

2       2 1/2 
z = {2.8 + [2.8 - (1.4) ]  }/ 2.8 

= {2.8 + [7.8 - 4(2.0)]1/2}/ 2.8 

= 1.0 + 0.16i. 

The correct answer is that there is a double root z = 1.  (In passing we 
note that if we know there is a double root, equation (5) suggests that 
if a numericsl procedure produces two roots that are close together and the 
method is such that the errors are correlated - which is often the case - a 
much better estimate of the root can be obtained by taking the mean of the 
two results.  In the above example this gives the exact repeated root z ■ 1!) 

An explicit formula is not usually available for the roots of an 
equation (f(z) ■ 0, and most metnods of solution will depend on the evaluation 
of f(z) for various values of z. This is true of all iterative methods, for 
instance - the bisection method, the secant method, straightforward iteration 

r+1 
here. 

f(z ), Newton's method, and so on. The idea of noise-level is useful 

For a simple root, the situation is illustrated graphically in Figure 
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2(a).  Whatever method is used. If the accuracy depends on the accuracy of 
the evaluation of f(z), the best we will be able to do Is to say that the 
root lies somewhere In the range PQ, Independent of the method used to 
find the root.  From this point of view, the reason^vhy the situation for a 
double root Is more serious Is Illustrated In Figure 2(b). Although the 
noise-level Is the same as In Figure 2(a), the range of uncertainty PQ 
Is much greater,  if we are unlucky 

1* ?W 

1'JW 

(o.) (b) 

Figure 2. Noise-level and the accuracy of the determination of roots. 

and rounding errors cause the machine to produce values of f(z) that lie above 
the exact curve in Figure 2(b), the machine may report that there is no root 
in this region of z. 

We now come to the question of the stability of the algorithm used. 
Consider solution of the quadratic equation 

az + bz + c 

by means of the usual formula 

0. 

1 
Consider 

-b + (b2 - 4ae)1/2i , I  I 

z - 100z +1-0. 

(6) 
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Working to three significant figures in floating point, formula (6) gives 

z = {100 + (1002 - A)1/2} II  = 100 or 0. 

The smaller root has been lost altogether because of cancellation of equal 
numbers.  However if we solve the equation by means of the formulae 

1/2, z1  =-sgnb-{|b| + (bz - 4ac)1/z} / (2a), (7) 

z2 = c/(az1). 

we obtain z.. = 100, z„ = 0.0100. The relative accuracy of z« is now good. 

In our terminology, (6) is an unstable formula for the numerical solution of 
a quadratic, whereas (7) is stable.  (This type of example has been overworked, 
but this does not affect its value.) 

As a second example of the distinction between stable and unstable, 
consider the straightforward iteration 

It is well known that any given equation can be arranged in this form in many 
different ways, some of which give iterations that may converge and some 
diverge.  In our terminology we say that the convergent arrangements are 
stable, the divergent arrangements are unstable. 

To conclude this section, consider solution of the quadratic equation 

x2 - 2x - 1.6 = 0 

by Newton's method for real roots.     The iterative formula is 

2 

vr+l 

x       -  1.6 
r  

2(x    -  1) r 

which gives  the following sequence of values,  if we start with x    =1.4; 

1 

0.45 

2 

1.27 

3 

0.00 

4 

0.80 

5 

2.40 

6 

1.49 

Other starting values give similar results. It is easy to see why the 
iterates oscillate. The quadratic has complex roots, and graphically (Figure 
3) the x 1 given by Newton's method is the intersection with the x-axis of 

the tangent to the curve at the point on the curve with abscissa x ... Although 

a cursory examination of the numerical results might cause us to think that the 
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Iteration is unstable,  our trouble is in fact due to uniqueness-existence — 
we are trying to find a real root that does not exist. 

y=x    -2X+1.6 

->x 

Figure 3.    An oscillatory case of the Newton-Raphson procedure 
The order of points is PQR...Z. 

A.     LEAST-SQUARES  SOLUTION OF LINEAR EQUATIONS.    We begin by briefly 
summarizing the existence-uniqueness theory for a set of simultaneous linear 
equations Ax = b,  where A is m x n.     There are  three possibilities.     The 

equations may have 

(i)      No solution. 
(ii)    A unique solution. 
(iii) An infinity of solutions. 

If an infinity of solutions exist,  the general solution can be written in 
the form 
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n-r 
x = x + 

o X ^i yi' (8) 
1=1 

where r is the rank of A, and the y are solutions of the homogeneous 

equations Ay = 0.  If no solution exists, we often find a solution that 
minimizes the sum of squares of residuals r = b - Ax. This least-squares 
solution can be obtained by solving 

T     T 
A Ax = A b. (9) 

There are only two possibilities for the solution of these equations — 
there may be a unique solution or an infinity of solutions. 

The subject of ill-conditioning and linear equations is a long story 
and this is not the place to go into detail. We content ourselves with the 
statement that, if A is square and properly scaled, then a small value for 
the determinant of A indicates that the equations AJ = b are ill-conditioned. 
(The discerning reader will realize that we are trying to disguise the present 
unsatisfactory state of the art by not defining what we mean by proper scaling. 
It is not sufficient to arrange that the largest element in each row and 
column of A be of order unity in magnitude.) The result that we wish to make 
plausible, which is well attested by experience, is that if Ax = b is ill- 
conditioned, then the condition of the equations A^Ax • ATb is much worse. 
This follows when A is square, if we accept our previous criterion for ill- 

T        2 
conditioning since detA A = (detA) 

2 
(detA)  is much smaller still. 

If detA is small, say 10 , then 

The main point we wish to illustrate in this section is that, instead 
of simply accepting the fact that the condition of (9) may be much worse 
than the condition of (8), we can do something about it.  In the equations 
Ax = b, where A is m x n (m > n) of rank n, partition A and b in the form 

A = b = (10) 

where A., is a nonsingular matrix of order n, the choice of which will be 

discussed later, and b.. is n*l.  Since A., is nonsingular, the last m - n 

rows of A can be expressed as linear combinations of its first n rows. This 
means that we can find a matrix P such that 

A2 = PA1, (11) 
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I 

P 
A1. (12) 

On inserting this expression for A, together with b from (10), in the 
least squares equations 

we find 

T      T 
A Ax »Ab, 

A^ [I, PT] A^ - A^  [I,PT] (13) 

i.e. 

A^    [I + PTP] A^ - Vj1  [bj + PTb2] . 

T.-l Since A1 is nonsingular, we can multiply through by (A..  )     : 

[I + PTP]    AjX - b^^ + PTb2. 

(14) 

(15) 

This is the required form of the least-squares equations. We claim that if 
the set of equations 

T     T 
A Ax = A b 

is very badly conditioned, the condition of the set (15) will be much better, 
provided A is chosen properly.  Before discussing how to choose A1 we remark 

that (15) can be rearranged in the form 

(16) 
J?-i   ~1 „T AjX ' i>1+    [I+PXP] PA    [b2 - Pb1]   . , 

If the last m-n equations in Ax = b are simply linear combinations of the first 
n equations this means that if P is defined as in (11)  then we must also have 
b2 * Pb  .    This means that the second term on the right of  (16) vanishes,  and 

we find the least-squares solution by simply solving A.x s b.,    as we should 

expect.     If the equations Ax = b arise In a physical situation then we should 
expect that the last m-n equations would be nearly equal to linear combinations 
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of the first n, i.e., b would be nearly equal to Pb.. and the last term in 

(16) will be a small correction to b.. . 

T     T 
The step that improved the condition of A Ax = A b was the multiplica- 

T -1 T 
tion of (14) by (A )   to give (15). Since I + P P is positive definite, 

with determinant greater than unity, the condition of (15) is determined 
essentially by the condition of A How do we choose A.. ? 

The result of 150 years work on the numerical solution of simultaneous 
linear equations is that Gaussian elimination is still the best general 
purpose method if precautions are taken to choose the pivots correctly In 
the terminology of §1, Gaussian elimination is an unstable computing procedure 
when rounding errors are present unless the pivots are chosen in a suitable 
way. The usual rule is to use either partial or complete pivoting. We 
illustrate by an example.  Suppose that we are working in floating point to 
two significant figures.  Consider the equations 

Xl ~ X2 = 0 

10"^ + x2 = 1, 

(17) 

which have the exact solution x1 = x» = 100/101. To solve these numerically 

we can use the first equation to eliminate x1 from the second.  In more 

technical language, we use the coefficient of x1 in the first equation as pivot. 
-2 

If we multiply the first equation by 10  and subtract from the second, we 

obtain -1.01x„ = -1. However we are working to two significant figures, so 
1.01 is rounded to 1.0, and this equation gives x. = 1, where a cap is used 

to denote ''computed value." Back-substitution in the first equation gives 
x = 1, and we have obtained a reasonable approximate solution of the equations. 

Suppose however that we pivot on the coefficient of x1 in the second equation 
in (17). We multiply the second equation by 10^ and subtract from the first. 
As before on rounding this gives the computed result &. ■ 1, but back-substitu- 
tion, now in the second equation, gives x. = 0. In this case the computed 

solution is no longer a reasonable approximation to the exact solution. The 
only difference has been in the choice of pivots, and this illustrates that 
the choice of pivots is important. The reader may have gained the impression 
that the reason why the first solution was satisfactory, whereas the second 
was not, is connected with the fact that the piyot used in the first case (1) 
is greater than the pivot used in the second (lO-^). This is the assumption 
behind complete and partial pivoting. Partial pivoting tells us to pick the 
largest coefficient of the variable we propose to eliminate, for instance. 
It is easy to rescale the set of equations (17) so that partial or complete 
pivoting is unsatisfactory. The nub of the matter is that we are working in 
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floating point so that it is only relative error that is important, whereas 
pivotal strategies usually depend on criteria involving absolute magnitudes. 
Suppose that we rescale (17) by multiplying the first equation by 10~2, the 

2 2-2 
second by 10 , and set x.. ■ 10 s., x2 " ^ zo' The equations become 

z1 -10-
4z2 

102B2 + 10 
(18) 

If we pivot on the "large" coefficient 10 we find, working to two significant 
2 

figures in floating point, z» = 10 , z. - 0, which gives x? = 1, x.. * 0, i.e., 

the same unsatisfactory solution found by pivoting on the corresponding 
coefficient in (17).  (It is easy to see that, for a given choice of pivots, 
rescaling by powers of 10 will not affect the relative rounding errors.) 

-4 
However if we pivot on the 'small' coefficient 10  in (18) we obtain the 

satisfactory approximate solution 2 10"2, i2  = 102, J^,- *2 = 1. 

The moral of this discussion is that success of partial or complete 
pivoting depends on proper scaling. Various arguments indicate that it is 
reasonable to scale so as to minimize the condition number ||A|| ||A~^|[ . 

This can be done for the infinity-norm, for instance, by arranging that 
the absolute row sums of A are the same, and those of A~l are the same 
(F.L. Bauer).  For further discussion and references to the work of Wilkinson, 
Bauer, and others, see [2]. 

The question of pivotal strategy is relevant to the choice of A- in the 

decomposition (10) used in the method suggested above for avoiding ill- 
conditioned least-squares equations.  If we use either partial or complete 
pivoting to reduce A to row-echelon form this will single out n rows of A. 
We choose A., to consist of these n rows. The value of detA is the product of 
the pivots.  By using partial or complete pivoting we are trying to choose an 
hi  whose determinant is as large as possible. This should be the submatrix 
of order n from A that is as well-conditioned as possible. 

5. ORDINARY DIFFERENTIAL EQUATIONS. A great deal is known about the 
existence and uniqueness of solutions of ordinary differential equations. 
Rather than go into detail we simply quote [3], pp. 15, 112, 347, for typical 
theorems that are likely to be useful when computing. We also remind the 
reader of some simple examples where the conditions for existence or unique- 
ness of solutions of y* - f(x,y) are not satisfied. The equation 

y1 - 1 + y 

has the solution y - tan (x+c), where c is an arbitrary constant, and this 
solution does not exist when x ■ (n + 1/2)» IT - c. 
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ll+t 
y' = |yr . y(0) = l, e>o, 

-l/e 
has the solution y(x) = (1 - ex)   which ceases to exist at x = l/e. 

If 
y. =  |y 

1-e 
y(0) = 0,    e> 0, 

we have an infinity of solutions: 

y(x) =0, o ^ x < c,   y(x) = [e(x-c)]  e,  e> 0, 

for arbitrary c > 0. 

Existence and uniqueness questions arise when resonance occurs in a 
physical system.  A simple example occurs in connection with 

-r-J + X y = f(x),  o ^ x ^ TT,  y(o) = y(Tr) = 0. 

If X= nTr , for integral n, the homogeneous equation has the solution y = sin nx. 
The situation then is: Let 

k = f(x) sin nx dx. 

There are two possibilities: 

(1) If k = 0 the equation has an infinity of solutions. 

(ii) If k ^ 0 the equation has no solutions. 

We next make some remarks about ill-conditioning. A typical situation 
is that small changes in the initial conditions, in an initial-value problem, 
produce large changes in the answer. We consider an example where this is 
caused by the presence of exponential solutions. Consider 

fix 
y' = Ky + (0 - »<) eP , y = yo at x = 0. 

The general solution is 

.    i x Vx .  gx 
y = (yo - l)e^ + e . 

(19) 

(20) 

If y =1 then y = e , and if y = 1 + e we have y = ee  + e . If «< > 
ß 

we will have e  >> e  for large enough x, and the first term on the right 

of (20) will dominate the second for large x, no matter how smalle is. As 
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an example, if ■< - 10, 3 x  -1, we find 

y    * I Jo 

y - 1.0001, 

-x 
y = e 

y = e"X+ 0.0001e10x, 

yd)** 0.37 

y(l) 4*2.57. 

-4 
A change of 1 in 10  in the initial condition produces a change of 7 to 1 in 
the solution at x = 1, and the difference is even more catastraphic for larger 
x. The problem is obviously ill-conditioned. We have already said that if 
a problem is ill-conditioned we should try to reformulate it in some way so 
that the ill-conditioning is removed. It is possible to do this in the 
present case if we know that the solution tends to zero as x tends to infinity. 
We can use this to replace the initial condition. Thus 

-x 
y' - lOy + e 

is an ill-conditioned problem, but 

y' - lOy + e"X, 

y(o) - l, 

y ->• 0 as x->- oo , 

(21) 

(22) 

is well-conditioned. This last problem can be solved satisfactorily by 
integrating back from large x towards the origin. The two formulations 
(21) and (22) are mathematically equivalent. 

We next turn our attention to computational difficulties, not present 
in the original differential equation, but introduced by the difference 
scheme used to solve the equation numerically. In this connection the word 
"instability" is used in a technical sense, for details of which we refer 
the reader to the literature [3], [4]. Roughly speaking, a difference scheme 
is said to be unstable if it introduces spurious solutions that are not 
present in the original problem, and these dominate the solution we want to 
find, if we are integrating over a fixed range of x, and we let the step-size 
in the difference scheme tend to zero. This type of difficulty is now well 
understood and will not be considered further here. 

A common source of trouble is illustrated by the example 

y" + 101 y^ 100 y • 0, y = 0, y' = 99, at x = 0.     (23) 

The exact solution is 

-x   -lOOx 
y - e  - e 

Two common difficulties when trying to compute this solution are: 

(i) The programmer realizes that the solution e     is negligible 
—x 

whenever x is greater than about 0.05, leaving only e  ..'He therefore 
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adjusts the step-length h to be suitable for this part of the solution taking, 
perhaps, h = 0.02. However the step-length that must be used in the standard- 
type difference formula is still controlled by the e'^-^x term, even though 
this is negligible in the actual solution. 

(ii) The programmer realizes that the e    term controls the step-length, 
so he takes h to be, say, 0.0001. Then he complains that the computation takes 
an interminable length of time on a digital computer. 

This is a typical boundary-layer problem. The highest order derivative 
is important only over a small part of the range. In this example, one answer 
would be to take short steps from x = 0 to x = x., say, where x.. is chosen 

that the contribution from the e    term is negligible so 
find that y = y1 at x = x. 

Suppose that we 
If we did not know the exact situation, we might 

then simply drop the y" term in (23), having check computationally that it 
is small compared with the other two terms, and solve: 

101 y' + 100 y = 0, y ■ Yi at x = x. 

which would give a reasonable approximation to the correct solution quite 
quickly. The calculation can be checked by varying the point x.. at which 
the changeover occurs. 

Boundary layer phenomena often occur in connection with boundary value 
problems. A typical example is: 

ey" + y = 0, e> 0, y(o) = 0, y(l) = 1. 

For small e the solution is almost zero except near x ■ 
example is; 

A more unusual 

tiy"r + xy' 0, e> 0, y(l) = y(-l) = 1. (24) 

Neglecting the second derivative we have xy' - y = 0, with solution y ■ Cx, 
where C is an arbitrary constant. The solution must be symmetrical about the 
y-axis, and the first possibility that suggests itself is that y » 0 over 
most of the range, with boundary layers at the end-points. However this 
would mean that near x = 1 the value of y1 would be large and positive, which 
is not possible since (24) would then imply that F(y")2 is negative which is 
impossible.  It turns out that the solution is approximately y = x in most of 
0 < x $ 1, y = -x in most of -1 ^ x < 0, and these solutions are joined by a 
"corner layer" near x = 0.  I am indepted to Carl Pearson for this example. 
He has also made the sensible remark that in many of these problems an effective 
computational procedure if e= lO"^, say, is to compute a series of solutions 
with e = 10~2, 10" ,..., in turn. The computations with the larger e will 
be less difficult, and they will provide successive guides that tell us where 
boundary layers are developing, and how sharp they are. 

To conclude this section we draw the reader's attention to a quite 
different type of example considered in detail in [6], and in a simplified 
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form in [5], Chap. 12. A chemical reaction involving three species with con- 
centrations a , i ■ 1,2,3, is governed by a system of three linear differential 

equations in three unknowns: 

da^dt - -(k2i+k3i)ai + ki2a2 + k13a3 (25) 

with two similar equations for da„/dt, da_/dt.  The solution of these equations 

is known to be of the form 

-yt .   -vt 
al = Cll + C12e   + C13e   ' 

(26) 

with similar expressions for a. and a_.  The concentrations a, can be measured 

expsrimentally for various values of the time.  It is required to find the rate 
constants k  that appear in (25).  The most obvious procedure is to use curve 

fitting with exponentials to deduce from (26) the values of y, u, and the c... 

Then deduce the k  from the fact that (26) is the solution of (25). 

Unfortunately fitting of exponentials is an ill-conditioned procedure.  It 
turns out that if we perform a detailed analysis of the relation between (25) 
and (26), a procedure can be devised that will enable the experimentalist to 
design his experiment in such a way that he can find initial concentrations 
such that either c.« or c..- is zero in (26).  It is then possible to deduce 

the rate constants by a well-conditioned procedure.  Details can be found in 
the references.  From our point of view the moral is again that if one method 
for performing a calculation is ill-conditioned we should look for an equivalent 
well-conditioned procedure. 

6. CONCLUDING REMARKS.  We have illustrated the existence-uniqueness, ill- 
conditioning, and instability classification of difficulties by discussing 
various aspects of three types of problem-polynomial equations, least-squares 
solution of linear equations, and ordinary differential equations.  We could 
equally well have illustrated the classification by discussing other standard 
problems in numerical analysis - eigenvalues - eigenvectors, approximation 
theory, partial differential equations, integration, integral equations. 

In the lecture from which this paper originated, the three-way classifica- 
tion was also characterized as follows: 

(1) Ignorance — If we try to find a real root of a polynomial when all 
the roots are complex, this is simply ignorance of the existence-uniqueness 
situation. 

(2) Cussedncss — Ill-conditioned problems are inherently troublesome 
- the difficulty stems from the nature of the problem, and often there is 
little we can do about the pioblem as it stands.  The best remedy is to 
circumvent our difficulties. 
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(3) Stupidity — Instability troubles are usually due to the fact that 
we are not clever enough to choose the correct computational method. Perhaps 
this is rather a harsh term to apply to situations where foolproof computational 
methods are not yet known - such as the choice of pivots in Gaussian elimination. 

Briefly, if a problem gives trouble, we must first decide whether we are 
simply ignorant of the existence-uniqueness theory. If we are sure that we 
are looking for the correct type of solution, we must decide whether the 
problem itself is cussed (in which case it is probably best to try to re- 
formulate it) or whether we have simply been stupid in our choice of method. 
My own experience is that this procedure has been useful when trying to 
track down sources of trouble — But when all is said and done, and the 
source of difficulty has been located the most appropriate comment is often 
1 Corinthians, Chap. I, v.27 - "God hath chosen the foolish things of the 
world to confound the wise." 
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monitor to forget the last reference to   KICKED   whenever overlay occurs. 
We take no pride in this expedient. 

Any programmer who is aware of these two limitations can easily code 
around them.    Simple suggestions are contained in the PRM.    Indeed,  the 
limitations are so easy to circumvent that programmers sometimes forget 
to do so,  and for this reason we have included a warning message like the 
one in the following example; 

0. 0/0. 0 ERROR AT 14506 
EXECUTION TERMINATED. 

ERROR-TRACE WITH CALLS IN REVERSE ORDER      C0DE 25 

CALL IS IN 
DECK NAMED 

SUB2 
SUB1 
MAIN 

AT IFN OR 
LINE NO. 

17 + 
25 

2 

ABSOLUTE 
LOCATION 

14513 
07762 
05413 

EXECUTING IFN/LINE NO.  2 OF  'SUBl' AFTER PROGRAM 
WAS KICKED OFF.    FROM NOW ON IN 'SUBl',  THE VALUE 
OF A SUBSCRIPTED VARIABLE WITH VARIABLE SUBSCRIPT. 
OR THE EXECUTION OF A COMPUTED GO TO' OR 'DO' 
STATEMENT WITH VARIABLE PARAMETER,  MAY BE 
INCORRECT UNLESS THE RELEVANT INDEX IS RESET. 
SEE THE PROGRAMMERS' REFERENCE MANUAL. 

This message is more formidable than necessary.    It would be 
unnecessary altogether if the   IF(KICKED{OFF))    statement were imple- 
mented in a language,  like   ALGOL, with a block structure.    Then kick-off 
within a block would cause control to be transferred to the last   KICKED 
reference,  if any,  executed in the same block but not in a deeper sub-block. 

One other complication would arise were the   IF{KICKED(OFF)) state- 
ment to be implemented within a compiler which contained a   MONITOR 
statement.    Such a statement is exemplified by 

MONITOR  X,  Y(*),  Z{*,   3),  PROG, n 

which would cause output of the following kind to be generated: 

Whenever the variable X is changed, write out its new value; 

X = 14.271434     . 
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