UNCLASSIFIED

AD NUMBER

AD818780

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; JUL 1967. Other requests shall be referred to Air Force Materials Lab., Attn: MAAM, Wright-Patterson AFB, OH 45433.

AUTHORITY

Air Force Materials Lab. ltr dtd 12 Jan 1972

00

DEVELOPMENT OF ENGINEERING DATA ON TITANIUM EXTRUSION FOR USE IN AEROSPACE DESIGR

-

head

the second

FILE COPY

R. M. Brockett J. A. Gottbrath LOCKHEED--CALIFORNIA COMPANY

TECHNICAL REPORT AFML-TR-67-189

JULY 1967

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Materials Laboratory (MAAM).

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

NOTICE

DEVELOPMENT OF ENGINEERING DATA ON TITANIUM EXTRUSION FOR USE IN AEROSPACE DESIGN

R. M. Brockett J. A. Gottbrath

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Materials Laboratory (MAAM)

and the second second

FOREWORD

This report was prepared by the Lockheed-California Company, Burbank, California under USAF Contract No. AF/33(615)-5080, "Development of Engineering Data on Titanium Extrusion for Use In Aerospace Design". The contract was initiated under Project No. 7381, "Materials Applications", Task No. 738106, "Design Information Development". This work was performed under the direction of Lt. Harold Lachmann and Sidney O. Davis, Project Engineers, Air Force Materials Laboratory, Research and Technology Division.

This report covers work that was conducted between 27 June 1966 and 31 May 1967.

Manuscript released by authors, 31 May 1967.

Work was conducted under the direction of Mr. H. B. Sipple, Department Manager, Materials Engineering. Mr. R. M. Brockett was Engineering Project Leader. Technical consultation was provided by Mr. M. Tiktinsky, Group Engineer Metallic Materials, and by Mr. V. E. Dress and Mr. R. F. Simenz, Research Specialists. Static test programs were conducted under the direction of Miss Judith A. Gottbrath and fatigue testing under the direction of Mr. R. B. Urzi, with overall supervision of test activities by Mr. R. G. Adamson, Group Engineer, Materials Evaluation.

This technical report has been reviewed and is approved.

A. Shinn

Chief, Materials Information Branch Materials Application Division AF Materials Laboratory

ABSTRACT

Mechanical property data for Ti-6Al-4V, Ti-8Al-1Mo-1V and Ti-6Al-6V-2Sn extruded shapes in annealed tempers were obtained at test temperatures from -110°F to +800°F to provide a base for development of design information for these materials. Data obtained included ultimate tensile strength, tensile yield strength, compressive yield strength, shear, bearing, impact properties, creep, stress-rupture, fatigue, and fracture toughness characteristics.

Separate heats of material in each of the three alloys were obtained from separate suppliers. Two section sizes were obtained from one of the suppliers to provide information on size effects. Tests conducted provided data insofar as practicable within the scope of this program on property variations and on scatter.

Results of testing indicate that with consideration of effect of temperatures used in extrusion processing, extrusions may be utilized in the same manner as titanium materials produced by other methods such as rolling or forging. Data obtained generally indicate that extruded material may be expected to have not only the cost advantages which result from economy of shape design, but will possess advantages in delayed fracture characteristics and creep characteristics when compared with conventional alpha-beta processing of rolled or forged material.

(Distribution of this abstract is unlimited).

iii

TABLE OF CONTENTS

~ *₃

1

1

¢,

¥.

٩,

Section		Page
	FOREWORD	11
	ABSTRACT	111
	NOMENCLATURE	xv
I	SUMMARY	1
	Background Materials Test Objectives Test Results	1 1 1 3
II	MATERIAL	13
	Background Materials Producers Eeat Treatments Processing Data Metallographic Control	13 13 13 14 14
III	MATERIALS PROPERTY TEST PROCEDURES	21
	Tensile Tests Compression Tests Tension and Compression Modulus of Elasticity Shear Tests Bearing Tests Temperature Effect Test Procedures Creep and Stress Rupture Tests Charpy Impact Tests Plane-Strain Fracture Toughness Delayed Failure Tests S-N Fatigue Tests	21 21 21 24 24 24 26 30 30
IV	DISCUSSION OF RESULTS	33
	Basis for Evaluations Uniformity of Properties Relationship Between Vendors Modulus of Elasticity Temperature Effects on Tensile and Compressive Properties	33 33 40 40

1.17

VE MAL

TABLE OF CONTENTS (Continued)

Section		Page
	Bearing Shear Creep and Stress Rupture Impact Properties	և)գ և)գ Ե7
	Fracture Toughness and Delayed Failure Fatigue	59 59
v	PRELIMINARY DESIGN INFORMATION	67
	Ti-6Al-4V Tentative Design Properties Ti-8Al-1 Mo-1V Tentative Design Properties Ti-6Al-6V-2Sn Tentative Design Properties	67 67 84
IV	CONCLUSIONS AND RECOMMENDATIONS	115
	APPENDIX - TABULATION OF TEST RESULTS	711

LIST OF FIGURES

٩.

Figure		Page
1	Cross Section, Thin Extrusion	2
2	Cross Section, Thick Extrusion	2
3	Comparison of Typical Fracture Toughness and Delayed Failure Characteristics of Ti-6Al-4V, Ti-8Al-1Mo-1V and Ti-6Al-6V-2Sn Extrusions, and Typical Forgings and Bar	4
4	Comparative Creep Characteristics of Extrusions and Other Product Forms	5
5	Comparison of Typical Ultimate Tensile Strengths of Ti-6Al-4V, Ti-8Al-1Mo-1V and Ti-6Al-6V-2Sn Extrusions at Various Temperatures	6
6	Comparison of Typical Tensile Yield Strengths of Ti-6Al-4V, Ti-8Al-1Mo-1V and Ti-6Al-6V-2Sn Extrusions at Various Temperatures	7
7	Comparison of Typical Compressive Yield Strengths of Ti-6Al-4V, Ti-6Al-1Mo-1V and Ti-6Al-6V-2Sn Extrusions at Various Temperatures	8
8	Comparative Short Time, Rapid Heat and Load Creep Characteristics at 800°F Yield Strength	9
9	Comparative.Short Time Rapid Heat and Load Creep Characteristics at 800°F	10
10	Comparative Maximum Stresse, for 10 ⁵ , and 10 ⁷ cycles for Ti-6AL-4V, Ti-8AL-1Mo-1V and Ti-6AL-6V-2Sn Extrusions	12
ц	Macrostructure and Microstructure of Ti-6A1-4V Extrusion	1.8
12	Macrostructure and Microstructure of Ti-{Al-1Mo-1V Extrusion	19
13	Macrostructure and Microstructure of Ti-6Al-6V-2Sn Extrusion	20
14	Round Tensile Specimen	22
15	Flat Tensile Specimen	53
16	Compression Specimen	22
17	Shear Specimen	23

Fc.

10 25.0

ੁੱ

2 - + ****

17

5.0

Figure		Page
18	Bearing Specimen	23
19	Creep and Stress Rupture Specimen	25
20	Charpy Specimen, Thick Extrusion	27
21	Charpy Specimen, Thin Extrusion	27
22	Fatigue Cracked Bend Specimen, Thick Extrusion	28
23	Fatigue Cracked Bend Specimen, Thin Extrusion	29
24	Smooth Fatigue Specimen	31
25	Notched Fatigue Specimen	31
26	Comparison of Variation in TUS and TYS with Location in Cross Section, in Length, and Between Vendors, Sections and Heats Ti-6A1-4V Extrusions	57
27	Comparison of Variation in TUS and TYS with Location in Cross Section, in Length, and Between Vendors, Sections and Heats Ti-8A1-1Mo-1V Extrusions	8ز
28	Comparison of Variation in TUS and TYS with Location in Cross Section, in Length, and Between Vendors, Sections, and Heats, Ti-6A1-6V-2Sn Extrusions	39
29	Typical Distribution of Test Results Annealed Ti-6Al-4V Extrusions	41
30	Typical Distribution of Test Results Annealed Ti-6Al-6V-2Sn Extrusions	42
31	Typical Distribution of Test Results Annealed Ti-8A1-1Mo-1V Extrusions	43
32	Comparison of Effect of Temperature On Ultimate Tensile Strength of Annealed Ti-6Al-4V Extrusion and Ti-6Al-4V Sheet and Bar	47
33	Comparison of Effect of Temperature on the Tensile Yield Strength of Annealed Ti-6Al-4V Extrusion and Ti-6Al-4V Sheet and Bar	48
34	Comparison of Effect of Temperature on the Compressive Yield Strength of Annealed Ti-6Al-4V Extrusion and Ti-6Al-4V Sheet and Bar	49
35	Comparison of Effect of Temperature on the Ultimate Tensile Strength of Annealed Ti-8Al-1Mo-1V Extrusion and Ti-8Al-1Mo-1V Sheet	50

viii

The sum of the second se

. .

and the state of t

and the second state of th

2

\$

Ł

Figure		Page
36	Comparison of Effect of Temperature on the Tensile Yield Strength of Annealed Ti-8A1-1Mo-1V Extrusion and Ti-8A1-1Mo-1V Sheet	51
37	Comparison of Effect of Temperature on the Compressive Yield Strength of Annealeu Ti-8Al-1Mo-1V Extrusion and Ti-8Al-1Mo-1V Sheet	52
38	Comparison of Effect of Temperature on the Ultimate Tensile Strength of Annealed Ti-6Al-6V-2Sn Extrusion and Ti-6Al-6V 2Sn Forgings	53
39	Comparison of Effect of Temperature on the Tensile Yield Strength of Annealed Ti-6A1-6V-2Sn Extrusion and Ti-6A1-6V-2Sn Forgings	54
40	Charpy Impact Properties of Ti-6A1-4V Extrusions	60
41	Charpy Impact Properties of Ti-8Al-1Mo-1V Extrusions	61
42	Charpy Impact Properties of Ti-6AJ-6V-2Sn Extrusions	62
43	Delayed Failure Characteristics of Ti-6Al-4V Extrusions	63
կկ	Delayed Failure Characteristics of Ti-8Al-1Mo-1V Fxtrusions	64
45	Delayed Failure Characteristics of Ti-6Al-6V-2Sn Extrusions	65
46	Effect of Temperature on the Ultimate Tensile Strength (F_{tu}) of Annealed Ti-6Al-4V Extrusions	69
47	Effect of Temperature on the Tensile Yield Strength (F_{tv}) of Annealed Ti-6Al-4V Extrusions	70
48	Effect of Temperature on the Compressive Yield Strength (F _{cy}) of Annealed Ti-6Al-4V Extrusions	71.
49	Effect of Temperature on the Ultimate Shear Strength (F _{su}) of Ti-6Al-4V Extrusions	72
50	Effect of Temperature on the Ultimate Bearing Strength (F _{bru}) of Ti-6Al-4V Extrusion	73
51	Effect of Temperature on the bearing Yield Strength (F _{bry}) of Ti-6Al-4V Extr. Los	74
52	Typical Tensile Stress-Strain Curve for Ti-6Al-4V Extrusion at Room Temperature	75
53	Typical Compression Stress-Strain Curve for Ti-6A1-4V Extrusion at Room Temperature	76

ix

Figure		Page
54	Typical S/N Fatigue Curve for $K_T = 1.0$, Ti-6A1-4V Extrusions at Room Temperature	77
55	Typical S/N Fatigue Curves for $K_p = 2.76$ (A = ∞ , A = 0.98, A = 0.4), Ti-6Al-4V Extrusions at Room Temperature	78
56	Typical S/N Fatigue Curves for $K_{j} = 2.76$ (A = ∞ , A = 0.98, A = 0.4), Ti-6Al-4V Extrusions at 400F	79
57	Typical S/N Fatigue Curves for $K_T = 2.76$ (A = ∞ , A = 0.98, A = 0.4), Ti-6Al-4V Extrusions at 600F	80
58	Constant-life Fatigue Diagram for Notched Ti-6Al-4V Annealed Extrusions at Room Temperature	81
59	Constant-life Fatigue Diagram for Notched Ti-6A1-4V Annealed Extrusions at 400F and 600F	82
60	Effect of Temperature on the Ultimate Tensile Strength (F _{tu}) of Annealed Ti-8A1-1Mo-1V Extrusions	85
61	Effect of Temperature on the Tensile Yield Strength (F _{tv}) of Annealed Ti-8A1-1Mo-1V Extrusions	86
62	Effect of Temperature on the Compressive Yield Strength (F _{cv}) of Annealed Ti-8A1-1Mo-1V Extrusions	87
63	Effect of Temperature on the Ultimate Shear Strength (F_{sy}) of Ti-8A1-1Mo-1V Extrusions	88
64	Effect of Temperature on the Ultimate Bearing Strength (F _{bru}) of Ti-8A1-1Mo-1V Extrusions	89
65	Effect of Temperature on the Bearing Yield Strength (F _{hrv}) of Ti-8Al-1Mo-1V Extrusions	90
66	Typical Tensile Stress-Strain Curve for Ti-8Al-1Mo-1V Extrusions at Room Temperature	91
67	Typical Compression Stress-Strain Curve for Ti-8A1-1Mo-1V Extrusion at Room Temperature	92
68	Typical S/N Fatigue Curve for K _T = 1.0, Ti-8A1-1Mo-1V	93
69	Typical S/N Fatigue Curves for $K_T = 2.76$ (A = ∞ , A = 0.98, A = 0.4) Ti-8A1-1M0-1V Extrusions at Room Temperature	94
70 , '	Typical S/N Fatigue Curves for $K_T = 2.76$ (A = ∞ , A = 0.98, A = 0.4) Ti-8A1-1Mo-1V Extrusions at 400F	95
71	Typical S/N Fatigue Curves for $K_m = 2.76$ (A = ∞ , A = 0.98, A = 0.4) Ti-8A1-1Mo-1V [*] Extrusions at 600F	96

3

2

Sec. Barriston

and the state of t

the price and

いたに思いて

a state to

Figure		Page
72	Constant-Life Fatigue Diagram for Notched Ti-8Al-1Mo-1V Annealed Extrusions at Room Temperature	98
73	Constant-Life Fatigue Diagram for Notched Ti-8A1-1Mo-1V Annealed Extrusions at 400F and 600F	99
74	Effect of Temperature of Temperature on the Ultimate Tensile Strength (F _{tu}) of Annealed Ti-6Al-6V-2Sn Extrusions	100
75	Effect of Temperature on the Tensile Yield Strength (F _{ty}) of Annealed Ti-6Al-6V-2Sn Extrusions	101
76	Effect of Temperature on the Compressive Yield Strength (F _{cy}) of Annealed Ti-6Al-6V-2Sn Extrusions	102
77	Effect of Temperature on the Ultimate Shear Strength (F _{su}) of Ti-6Al-6V-2Sn Extrusions	103
78	Effect of Temperature on the Ultimate Bearing Strength (F _{bru}) of Ti-6Al-6V-2Sn Extrusions	104
79	Effect of Temperature on the Bearing Yield Strength (F _{bry}) of Ti-6Al-6V-2Sn Extrusions	105
80	Typical Tensile Stress-Strain Curve for Ti-6Al-6V-2Sn Extrusion at Room Temperature	106
81	Typical Compression Stress-Strain Curve for Ti-6Al-6V-2Sn Extrusion at Room Temperature	107
82	Typical S/N Fatigue Curve for $K_{TT} = 1.0$, Ti-6A1-6V-2Sn Extrusions at Room Temperature	108
83	Typical S/N Fatigue Curves for $K_T = 2.76$, (A = ∞ , A = 0.98, A = 0.4) Ti-6A1-6V-2Sn Extrusions at Room Temperature	109
84	Typical S/N Fatigue Curves for $K_T = 2.76$, (A = ∞ , A = 0.98, A = 0.4) Ti-6Al-6V-2Sn Extrusions at 400F	110
85	Typical S/N Fatigue Curves for $K_T = 2.76$, (A = ∞ , A = 0.98, A = 0.4) Ti-6Al-6V-2Sn Extrusions at 600F	111
86	Constant-Life Fatigue Diagram for Notched Ti-6Al-6V-2Sn Annealed Extrusions at Room Temperature	112
87	Constant-Life Fatigue Diagram for Notched Ti-6A1-6V-2Sn Annealed Extrusions at 400F and 600F	113

xi

Figure		Page
38	Typical Cross Section Locations, Longitudinal Specimens	119
89	Typical Cross Section Locations Transverse Specimens	120
90	Specimen Locations, Pieces I and III (Part of)	121
91	Specimen Locations, Piece I (cont)	123
92	Specimen Locations, Piece III (cont)	125
93	Specimen Locations Pieces II and IV	127
94	Specimen Locations, Piece V, Thick Extrusions	129

x11

LIST OF TABLES

ž

Table		Page
I	Chemical Composition of Test Extrusions	15
II	Extrusion Processing History	16
III	Ti-6Al-4V Extrusions, Variation in Properties with Cross Section Location, Position in Length, and Piece	34
IV	Ti-8Al-1Mo-1V Extrusions, Variation in Properties with Cross Section Location, Position in Length, and Piece	35
v	Ti-6AL-6V-2Sn Extrusions, Variation in Properties with Cross Section Location, Positicn in Length, and Piece	36
VI	Effect of Temperature on Ultimate Tensile Strength of Titanium Alloy Extrusions	45
VII	Effect of Temperature on the Tensile Yield Strength of Titanium Alloy Extrusions	45
VIII	Effect of Temperature on the Compressive Yield Strength of Titanium Alloy Extrusions	46
x	Ultimate Bearing Strengths of Titanium Alloy Extrusions	55
x	Bearing Yield Strengths of Titanium Alloy Extrusions	56
XI	Shear Strength of Titanium Alloy Extrusions	57
XII	Comparison of Creep Strain Under Varying Loading Conditions	58
XIII	Fracture Toughness and Delayed Failure Characteristics of Titanium Alloy Extrusions	66
XIV	Tentative Design Mechanical and Physical Properties of Ti-6Al-4V Titanium Alloy (Extrusions)	68
XV	Tentative Design Mechanical and Physical Properties of Ti-8Al-1Mo-1V Titanium Alloy (Extrusions)	83
XVI	Tentative Design Mechanical and Physical Properties of Ti-6A1-6V-2Sn Titanium Alloy (Extrusions)	99
XVII	Tensile Test Summary	131
XVIII	Compression Test Summary	142

100 and 10 and

าน และเป็นส่งเรารัสสาย และสมาร์สามาร์มาระการและ และเป็นสี่มีเป็นสืบสามาร์มาระการให้เราะสี่สามาร์

xiii

LIST OF TABLES (Continued)

Table		Page
XXIX	Tensile Modulus Summary	150
XX	Bearing Test Summary	151
XXI	Shear Test Summary	157
XXII	Charpy Impact Test Summary	1 62
XXIII	Fracture Toughness Test Summary	165
XXIV	Delayed Failure Test Summary	167
xxv	Creep Test Summary	169
XXVI	Rapid Heat and Load Creep Test Summary	177
XXVII	Fatigue Test Summary, K _T = 1.0	183
XXVIII	Fatigue Test Summary $K_{T} = 2.76$, Room Temperature	187
XXIX	Fatigue Test Summary $K_{T} = 2.76, 400^{\circ}F$	190
XXX	Fatigue Test Summary $K_m = 2.76, 600^{\circ} F$	194

xiv

NOMENCLATURE

TUS	Tensile Ultimate Strength, observed value	
TYS	Tensile Yield Strength, observed value	
CYS	Compressive Yield Strength, observed value	
F _{tu}	Ultimate Tensile Strength, room temperature minimum value	
F _{ty}	Tensile Yield Strength, room temperature minimum value	
Fcy	Compressive Yield Strength, room temperature minimum value	
F. bru	Bearing Ultimate Strength, room temperature minimum value	
^F bry	Bearing Yield Strength, room temperature minimum value	
F	Shear Ultimate Strength, room temperature minimum value	
^K Ic	Plane Strain Critical Stress Intensity Factor (Fracture Toughness)	
ĸ _{Ii}	Sustained load environmental stress intensity limit (Delayed Failvre)	
A	Ratio of Alternating Stress (Fatigue Tests) to Mean Stress	
ĸ _T	Theoretical Stress Concentration Factor	
L	Longitudinal	
т	Transverse	
ksi	Kips (1000 pounds) per square inch	
f	Highest Value of Gross Area Stress	
fmean	Mean Gross Area Stress	
N	Number of Cycles	
R	Ratio of Minimum to Maximum Stress	
RT	Room Temperature	

XV

Section I

SUMMARY

BACKGROUND

Major increases have occurred in the use of titanium alloy extruded shapes for aerospace applications. These applications include sub-sonic systems operating in conventional environments where advantage is taken of titanium's favorable strength to density relationship and supersonic vehicles where the elevated temperature strength of titanium is exploited.

Today's typical titanium extrusion is produced using billet temperatures such that final working occurs in the beta field with the result that the metallurgical structure differs from that of products such as sheet and plate, bar, or forgings where final processing occurs in the alpha-beta field. The gross titanium extrusion produced, while producing radical savings in material because of closer shape approximation, requires overall machining since tolerances and surface conditions are not suitable for direct application, and since an alpha case on the extrusion must be removed to provide a satisfactory metallurgical surface.

Since the bulk of the present published data on properties of titanium alloys has been determined using rolled sheet and bar material or using forged material with final hot working occurring below the beta transus, this program has been established to provide a base of data from which values necessar for reliable design can be established when analyzed in conjunction with data from other sources.

MATERIALS

Annealed material in each of three alloys, Ti-6Al-4V, Ti-8Al-1Mo-1V and Ti-6Al-6V-2Sn was obtained from two vendors for analysis. The thin tee section, Figure 1, was supplied by both vendors to provide data on effect of heat and source on test results. A heavier section, Figure 2, was also obtained in each alloy from one of the vendors in order to probe size effect on annealed extrusions, and in order to expand the data base.

TEST OBJECTIVES

A STATE OF A

2.

Alter Rate

Mechanical property tests were conducted with the Ti-6A1-4V, Ti-8A1-1Mo-1V, and Ti-6A1-6V-2Sn extrusions at temperatures ranging from -110°F to 800°F. Tests included tensile and compressive property determinations, shear and bearing, creep and stress rupture, fracture and delayed failure properties, impact properties, and fatigue characteristics.

Figure 1. Thin Extrusion

Figure 2. Thick Extrusion

TEST PESULTS

Orientation of testing and analysis of deta has been directed in such manner as to define relative advantages and limitations of extruded materials in comparison to competitive alternates. Presentation has been directed toward development of MIL-NDBK-5 data when supplemented by data from other sources. Room temperature tensile and compressive properties were analyzed to establish that projecties are uniform within a piece, including cross-section location and position in length. Variations between vendors could not be evaluated on a meaningful basis within scope of this program, but can be determined from vendor test statistics. Present specification values accepted by producers are consistent with those offered for other product forms with the exception of elongation and reduction of area.

The effect of temperature on properties appeared to reflect a consistent relationship between vendors and heats.

The extruded product, with its beta worked structure appears to offer advantages in resistance to delayed failure (Figure 3), and in resistance to creep (Figure 4).

Properties of the alloys followed normal patterns, alloy Ti-6AL-6V-2Sn showing highest strengths, while Ti-8AL-1Mo-1V possessed best toughness and the highest tensile modulus. Comparative typical ultimate tensile strengths, tensile τ yield strengths and compressive yield strengths are shown in Figures 5, 6, and 7. Ti-6AL-6V-2Sn showed lower resistance to creep at elevated temperatures than the other alloys. Comparative resistance to creep of the three materials under rapid heat-rapid load test conditions is shown in Figures 8 and 9.

Ti-6Al-6V-2Sn provides the highest level of strength at any of the temperatures investigated. As an annealed product, it furnishes strength levels comparable to an intermediate level of Ti-6Al-4V heat treated and aged. Ductility and toughness are generally considered to be inferior to the other two alloys, Ti 6Al-4V and Ti-8Al-1Mo-1V. At elevated temperatures Ti-6Al-6V-2Sn appears more sensitive to creep than the other two materials but none appear to be creep limited at anticipated operating temperatures. Effect of elevated temperature on this alloy seems less severe than effect on the other two alloys.

Ti-8A1-1Mo-1V possesses favorable modulus and favorable density values. Toughness of this alloy appears excellent. Delayed failure characteristics of Ti-8A1-1Mo-1V appear unfavorable however, as shown in Figure 3, and have limited consideration of Ti-8A1-1Mo-1V for applications in general airframe use. The elevated temperature properties, particularly resistance to creep in hot areas, indicate possible specialized usages particularly suitable to Ti-8A1-1Mo-1V.

Ti-6A1-4V provides a good combination of strength, toughness not offered by Ti-6A1-6V-2Sn and environmental resistance. These qualities, coupled with production reliability and low cost tend to make this the present preferred alloy

Comparison of Typical Fracture Toughness and Delayed Failure Characteristics of Ti-6A1-4V, Ti-8A1-1Mo-1V and Ti-6A1-6V-2Sn Extrusions, and Typical Forgings and Bar Figure 3.

EXPOSURE UP TO 1/2 HOUR TYPICAL EFFEC ONE HEAT EACH ALLOY 2S n COMPRESSIVE YIELD STRENGTH (KSI) 40 🗆 -200 TEMPERATURE (°F) Figure 7. Comparison of Typical Compressive Yield Strengths of Ti-6Al-4V, Ti-8Al-1Mo-1V and Ti-6Al-6V-2Sn Extrusions at Various Temperatures

.080

1

ST DANS

山口に加た日本の影響を必要的

TIME (MIN.) Figure 8. Comparative Short Time Rapid Heat and Load Creep Characteristics at 900°F Yield Strength

choice except for instances where requirements dictate exploiting the special peculiarities of the other alloys.

Within overall data compilations, the fatigue characteristics of the three alloys appear comparable. Figure 10 compares typical fatigue characteristics at various lives.

3

å

• / •

A State of the sta

Section II

MATERIAL

BACKGROUND

Billet temperatures used in the extrusion of titanium alloy shapes are .ypically above the beta transus of the material - at temperatures which result in a metallurgical structure which differs markedly from that of other product forms such as sheet and plat . rod and bar, and forgings which normally have a final work in the alpha-beta .eld. Reduction ratios used in extrusion are higher than those used in other product types, and cooling in air occurs quite rapidly. Because of these, and other basic differences in the manufacturing processes, it has been necessary to establish material properties specifically for titanium extrusions.

MATERIALS PRODUCERS

Material for testing in this program was extruded by Harvey Aluminum, Torrance, California, and by the H.M. Harper Company, Morton Grove, Illinois. Harvey supplied both the thin extrusion, Figure 1, and the thick extrusion, Figure 2. Harper supplied material in the thin configuration only. Processing procedures used by the two producers were similar, except Harper utilized hot stretching as a standard straightening procedure, while Harvey utilized other straightening techniques.

HEAT TREATMENTS

1 33

Heat treatments used in these evaluations were selected to be generally applicable and acceptable in scrospace design, offering high levels of fracture toughness and resistance to delayed failure in salt water.

Since the present program was designed to test one heat treatment type only in each of the three alloys, annealed tempers were selected as being most represent tative for present use.

Annealing temperatures selected correspond with the standard temperatures shown for the alloys in MIL-H-81200, and in other standard industry documents. The soaking time at temperature was established with consideration of the section thicknesses involved. Air cooling from the annealing temperature to room temperature was used, since normally toughness characteristics with this processing are superior to those obtained with slow furnace cooling through part of the temperature range. For example, an extruded shape in Ti-6Al-4V tested in another program showed delayed fracture property (K_{T4}) of 46 ksi for air cooled material and 31 ksi for material from the same extrusion annealed and furnace cooled to 1000°F. Straightening after annealing was restricted to

N . 2 Marine to

avoid any residual Bauschinger effect. Time and temperature relationships are such that values obtained coordinate closely with existing producer data. Heat treatment schedules are shown below.

HEAT TREATMENT SCHEDULE

Alloy	Temperature (+25°)	Time	Cooling
TI-6A1-4V	1300°F	40-60 Min.	Air cool to room temp.
Ti-8A1-1Mo-1V	1450 ⁰ F	40-60 Min.	Air cool to room temp.
Fi-6A1-6V-2S n	1300 ⁰ F	40-60 Min.	Air cool to room temp.

Application of data from this program, and comparisons made with other data must be predicated on generally comparable heat treatment schedules.

PROCESSIENG DATA

Material from Harvey was cast as a 2¹⁴-inch dismeter ingot by the Consumable Electrode Vacuum Melt process by the Special Metals Division of Harvey Aluminum. The 2¹⁴-inch ingot was forged to furnish a lathe turned six-inch billet diameter for the thin extrusion (pieces A, B, F, G, L, M) and a seven-inch diameter for the heavy extrusion (pieces E, K and R).

Billet used by Harper for the Ti-6-4 extrusion (pieces C and D) and the Ti-6-6-2 extrusion (pieces N and P) was obtained from Reactive Metals Inc. Material was cast as a 30-inch diameter ingot by the Consumable Electrode Vacuum Melt process, forged to approximate billet size and lathe-turned to the 6 3/4-inch diameter used. The Ti-8-1-1 billet for pieces H and J were obtained from Titanium Metals Corporation. A twenty-eight-inch CEVM billet was forged and supplied lathe-turned to 6 3/4-inch round.

Chemical composition of the material used is shown in Table I.

Extrusions from Harvey Aluminum were produced on a Loewy 3850 ton horizontal extrusion press. Extrusions from H. M. Harper were produced on a Loewy 1650 ton horizontal extrusion press, modified to provide approximately 1800 tons of pressure. Details of processing are shown in Table II.

Straightening by Harvey was performed before the annealing operation. Harper produced material was straightened by a hot stretch after the anneal. Temperatures for hot straightening at Harper were monitored by thermocouples attached to the length being straightened. To avoid warpage, parts were cooled in the stretcher with a low stress level held and automatically monitored. The two variations outlined represent the two common practices being followed in extrusion production. With proper control of straightening temperature, amount of stretch, and control of relief of strain during cooling TABLE I CHEMICAL COMPOSITION OF TEST EXTRUSIONS

Extruder	Billet			ChG	mical Ar	alysis !	n Weigh	t Percen	<u>م</u>		
Piece Ident.	Source, Heat	TR	٨	0	N	ບ	Fre E	(WAA) H	Wo	Sn	Cu
T1-6-4											
Harvey.	Harvey 7 1.7	6.31	4.32	0.15	0.009	0.039	0.18	£4			
Rarvey, Earvey,	D 41 Harvey D 79	6.40	4.38	0.17	110.0	0.044	0.19	δC			
Harper, C,D	Reactive 301658	6.6	4.3	0.165	0.008	0.02	71.0	55			
11-8-1-1											
Harvey	Harvey 2363	7.82	1,04	11.0	0.014	0.024	0.26	61	1.06		
Harvey K	B 40	8.10	1.15	0.13	0.006	0.026	0.23	63	1.10		
Harper K,J	T ime t D-9399	7.9	1.1	0.080	0.008	0.023	0.06	60	1.0		
T1-6-6-2			-								
Harvey	Harvey b 16	5.75	5.72	0.17	0.013	0.097	0.68	62		1.82	0.72
Barvey	Harvey Harvey	5.85	5.49	0.13	0.008	170.0	17.0	88 8		2.18	0.72
Harper N.P	Reactive 292557	5.7	5.7	0.132	0.008	0.02	0.72	0.43		2.1	0.69

. - .

.

ž

Ľ,

TABLE IT EXTRUSION PROCESSING HISTORY

1.6

Producer	Alicy	Section	Nominal Container Diameter	Extrusion Ratio	Billet Temperature	Runout (Approx.)	Straightening	Gleaning
Barvey	T1-6-4	Fig. 1 Fig. 2		20.0 16.9	1980°F 1970°F	261-6" 231	Arbor Press before anneal	Kolene descale (850 ⁰ F l hour) Pickle (HNO ₃ -HF)
	T1-8-1-1	F16. 1 F16. 2	ž ž.	20.0 16.9	2085 ⁰ F 2070 ⁰ F	27' 23'		
	T1- 6-6-2	F166, 1. F166, 1. F166, 1.		20.0 16.9	2100 ⁰ F 2C10 ⁰ F	27' 23'	1	
Harper	T1-6-4 T1-8-1-1 T1-6-6-2	F166.1 F166.1 F166.1	* * *	23.8 23.8 23.8	2120 ⁰ F 2120 ⁰ F 2120 ⁰ F	261 261 261	Hot stretch after anneal, stretch per- formed at anneal temperature	Abrasive blast clean to descale Pickle (HN0 ₃ -HF)

Sector.

đặi-

no significant difference appeared in end results when hot straightening after anneal was compared with the final operation being the anneal cycle.

NETALLOGRAPHIC CONTROL

Two transverse sections were examined for each of the five lengths of extrusion in each of the three alloys. Specimen location was at the end inch of each piece.

In general, macrostructures exhibited end grain, with little evidence of grain flow. Those lines which occurred followed the contour of the section. Grain size appeared largest at the center or junction of the tee, and was finer in the leg areas. The thinner leg of the unequal thickness tee showed smaller grains than in heavier areas, as would be expected from the degree of work during extrusion.

Microstructures of the extrusions are considered to be characteristic of those of titanium alloys extruded above the beta transus temperature.

Typical photomicrographs and photomacrographs for Ti-6Al-4V are shown in Figure 11, for Ti-8Al-1Mo-1V in Figure 12 and for Fi-6Al-6V-2Sn in Figure 13.

Macrostructure (1-1/2x)

Microstructure, Junction (200x)

A Casting

Microstructure, Cap Tip (200x)

Figure 11. Typica Mecrostructure and Microstructure of Ti-6A1-4V Extrusion

Macrostructure (1-1/2x)

Microstructure, Junction (200x)

のないで、「たい」のないないないないで、

Microstructure, Cap Tip (200x)

Figure 12. Typical Macrostructure and Microstructure of Ti-8A1-1Mo-1V Extrusion

Macrostructure (1-1/2x)

Microstructure, Junction (200x)

Microstructure, Cap Tip (200x)

Figure 13. Typical Macrostructure and Microstructure of Ti-6A1-6V-2Sn Extrusion

Sesction III

MATERLAL PROPERTY TEST PROCEDURES

TENSILE TESTS

The specimens used in the tensile wests are shown in Figures 14 and 15. The standard 1-inch gage length flat specimen was used to test the small extrusions; the standard 1-inch gage length round specimen was used to test the large extrusions. The tests were conducted in 5.50, and 120 Kip Baldwin universal test machines, in accordance with the requirements of FED-STD-151. A strain rate of 0.005 in/in/min was used through the proportional limit of the material. Class B extensioneters were used in conjunction with standard autographic readout equipment to provide partial or full length load-strain curves.

COMPRESSION TESTS

The Lockheed standard X-6720.8 specimen used in the compression tests is shown in Figure 16. The tests were conducted in 5, 50, and 120 Kip Baldwin universal test machines at a strain rate of 0.005 in/in/min through the proportional limit of the material. Class B extensometers were used in conjunction with standard autographic readout equipment to provide load-strain curves.

TENSION AND COMPRESSION MODULUS OF ELASTICITY

The tension and compression modulus of elasticity tests were conducted on the specimens shown in Figures 15 and 16 in a Research Inc. 100 Kip closed loop servo-hydraulic materials testing system. The precision strain data for modulus determination were obtained using Tuckerman optical strain gages. Each specimen was loaded in a minimum of five equal load increments to a maximum stress that was below 50 percent of the nominal yield strength of the material. A Tuckerman gage was attached to each side of the specimen, and the strain was recorded for each gage at each load increment. The strain readings were plotted on graph paper, and a straight line between the points was drawn to provide a slope value for the two gages varied less than two percent, the average of the two values was reported as the modulus of elasticity for the specimen. If the two values varied by more than two percent, the specimen was retested using the same procedure until the results obtained varied by less than two percent.

SHEAR TESTS

The specimen used in the shear tests is shown in Figure 17. Double shear type tests were conducted in an 120 Kip Baldwin universal test machine using standard clevis and tongue fixtures. The load was applied at a rate which corresponded to a head deflection rate of 0.1 inch/min; only the ultimate load was recorded.

1.2.1

<u>نې</u>

. ش<u>ت</u>هه ا^ن ا Figure 17. Snear Specimen

Misalignment of some of the specimens in the fixtures resulted in certain failures occurring through single shear after extensive bending had taken place. The single shear values were lower than the double shear values for comparable specimens and were considered invalid. Data patterns establishing other test points were considered sufficiently significant, nowever, that duplicate testing was not considered to be required.

BEARING TESTS

The bearing tests (e/D = 2) were conducted on the specimen shown in Figure 18. The bearing hole was drilled and reamed to within one-thousandth of an inch of the diameter of the hardened steel loading pin. The tests were conducted in a 120 Kip Baldwin universal test machine at a rate corresponding to a test head movement rate of 0.008 in/min through the yield point of the material. A load-strain curve was obtained for each specimen by means of a Class B extensometer in conjunction with standard autographic readout equipment. The yield strength was calculated by using the load at which the recorded permanent deformation, using the offset method, Δ was equivalent to 2 percent of the balk diameter.

For the $\epsilon/D = 1.5$ tests, the bearing specimen was modified so that the edge distance was reduced from 0.750 to 0.562 inch. The test procedure remained the same.

TEMPERATURE EFFECT TEST PROCEDURES

The test procedures for the tension, compression, shear, and bearing tests were essentially the same for each test temperature between -110° and 800° F. The -110° F tests were conducted in a gaseous CO_2 test chamber; the elevated temperature tests were conducted in a circulating air furnace. The specimens were held at the test temperature for 20 minutes before testing. Both the test chamber and the specimen were monitored by thermocouples, and the test temperature of the specimen was maintained at the specified level + 5° F.

CREEP AND STRESS RUPTURE TESTS

Standard creep and stress rupture tests were conducted on the specimen shown in Figure 19 at 400, 600 and 800°F in accordance with ASTM Specification E-139. The tests were conducted in 6 or 12 Kip Satec creep machines. A thermocouple was attached to sach end of the specimen gage length and a temperature-time plot was recorded throughout the test. A LVDF extensometer was used to continuously record a time-strain plot.

After initial probes, stress rupture tests were discontinued if rupture did not occur within a time of at least 100 hours. The creep tests were discontinued after 1000 hours, or in some cases after a shorter period of time if the specimons were not undergoing creep deformation.

Because of the apparent resistance of the extruded metallurg ______ ructure to creep deformation, a portion of the testing was re-directed i ______ at rayad heating-rapid loading creep could be probed.

Constant State

新加加市市市市市区

Sec. Sec.

it. Ki

25

veren. Friktig The short time creep tests were conducted at $600^{\circ}F$ and $800^{\circ}F$ on the remainder of the specimens under conditions of rapid heating. The tests were conducted in accordance with ASTM Specification E-150 using loading condition (1). Tests were conducted in a Research Incorporated 100 Kip test machine using the selfresignance method of heating. The specimen was heated to the test temperature $\pm 10^{\circ}F$ in 60 seconds and held at the nominal test temperature for 50 seconds prior to application of the load. The temperature was monitored by thermocouples attached to the ends of the specimen gage length.

The load was applied at a uniform rate within 5 ± 2 seconds from the time of start of loading. Strain measurements were obtained using a Class B extensioneter. Strain was recorded from the start of heating of the specimen until the specimen was unloaded.

CHARPY IMPACT TESTS

The standard Charpy V-notched specimen shown in Figure 20 was used to test the large extrusions; the modified specimen shown in Figure 21 was used to test the small extrusions. The tests were conducted at -110, 72, 110, and 400°F in accordance with Method 221.1 of Federal Test Method Standard No. 151.

PLANE-STRAIN FRACTURE TOUGHNESS

Edge cracked, four point loaded constant moment bend specimens were used for the fracture toughness tests. The 1-inch wide specimen shown in Figure 22 was used to test the large extrusions; the 1/2-inch wide specimen shown in Figure 23 was used to test the small extrusions. A fatigue crack was generated at the base of the machined were notch by repeated tension-tension loading in four point bending. The ratio of minimum to maximum load was 0.1; the maximum nominal bending stress level used was less than 50 percent of the tensile yield atrength of the material. The total crack depth ("wee" notch plus fatigue crack) was nominally 20 percent of the specimen width.

The pre-cracked specimens were loaded to failure in the 100 Kip test machine at a rate equivalent to a strain rate of 0.005 in/in/min. A model PD-1M deflectometer was used to obtain an autographic curve of load vs. test head movement. The "pop-in" load (point of initial crack instability) was obtained from the curve, and the crack depth was measured on the specimen fracture surface. These values were used in the following equation to obtain the planc-strain fracture toughness value K_{IC} (the critical stress-intensity factor associated with initiation of unstable plane-strain fracturing). The units for the K_{IC} value are Ksi \sqrt{in} .

$$K_{Ic}^{2} = \frac{p^{2}L^{2}}{(1-\mu^{2})B^{2}w^{3}} 34.7 (\frac{a}{w}) - 55.2 (\frac{a}{w})^{2} + 196 (\frac{a}{w})^{3}$$

where:

- P = load at crack instability, (Kips)
- L = moment arm length (Inches) (3 in, for the 1-inch wide specimen and 3/2 in, for the 1/2-inch wide specimen)

1 . A. . A. .

Figure 20. Charpy Specimen, Thick Extrusion

Figure 21. Charpy Specimen, Thin Extrusion

- B = Specimen thickness (Inches)
- W = Specimen width (Inches)
- a = Crack depth in the center of the specimen thickness (Inches) (notch plus fatigue crack)
- μ = Poisson's ratio = 0.3

The -110° F fracture toughness tests were conducted in a CO₂ gas chamber. The specimens were held at the test temperature for 30 minutes before testing. Both the test chamber and the specimen were monitored by thermocouples, and the test temperature of the specimen was maintained at $-110 \pm 5^{\circ}$ F. The area of the crack was covered with plastic tape to prevent contamination by moisture.

DELAYED FAILURE TESTS

The delayed failure tests were conducted on the pre-cracked fracture toughness specimens previously described. A transparent plastic strip was taped to each side of the specimen in the area of the crack. A sodium chloride solution (3 1/2 percent by weight sodium chloride in distilled water) was added to the container prior to load application so that the entire crack was covered. The top of the container was left open to the air; if evaporation occurred the container was refilled with distilled water. The level of the solution was kept nearly constant throughout the tests.

The specimens were stressed at a rate equivalent to a strain rate of 0.005 in/in/min to a predetermined sustained load level which was fifty percent of the ultimate load for the fracture toughness specimens from the same test group. The 1/2-inch wide specimens were tested in a Research Incorporated 100 Kip test machine; the 1-inch wide specimens were tested in Lockheeddesigned hydraulic test machines. If a test specimen did not fail during a specified time at the sustained , ad level, it was loaded to failure. Additional specimens from the same test group were loaded to higher (or lower) load levels until a threshold level at which failure did not occur was determined.

The sustained load level for each specimen is substituted for "P" in the equation for "K_{Ic}" to obtain the sustained load plane-strain stress intensity value which is designated as $K_{T,i}$ and which also has units of Ksi \sqrt{in} .

At least one specimen from each test group was held at the threshold level for 100 hours. It should be pointed out that because of the scatter in the test results, the threshold level is defined as the highest K_{Ii} level at which a specimen held, and below which no specimen from the test group failed. There are usually specimens in any test group which do not fail at levels above the threshold K_{Ii} value, but additional specimens from the same group will fail at the same level. The range of the scatter in the K_{Ii} values for titanium alloy specimens is often as much as 10 Ksi \sqrt{in} units.

S-N FATIGUE TESTS

The smooth $(K_t = 1)$ and center notched $(K_t = 2.7)$ fatigue specimens that were used are shown in Figures 24 and 25. The tests were conducted in Lockheed

ă.

designed constant amplitude fatigue test machines at stress ratics (Å) of ω_{2} 0.98 and 0.4. The specimens were tested until failure occurred or until 107 cycles had clapsed.

Elevated temperature fatigue tests were conducted in radiant heat furnaces. The specimen test temperature was monitored by a thermocouple and was maintained at the desired level + 5°F. The specimens were held at the desired level for 10 minutes before testing. Tests were conducted at 1800 cycles per minute.

Section IV

DISCUSSION OF RESULTS

BASIS FOR EVALUATION

It is considered that this program has developed either two or three data points to be used in conjunction with material from other sources to establish MIL-HDBK-5 values for titanium extrusions (the number of data points depends on the mixture of tests and material source).

Reliability and uniformity of properties within the individual piece were established by room temperature testing. Having obtained this verification, vendor data can be used with confidence to establish room temperature specifications or A and B design values for longitudinal tensile properties. Transverse property data and compressive property data are available in depth from extrusion producers so that statistical values may be obtained by direct methods, or by indirect methods with a broad statistical base.

Effect of temperature on properties, and properties for which design values are normally obtained by derivation have been analyzed to determine that material performance was consistent between vendor, deat, and size. These relationships, in turn, were reviewed in relation to published data on other product forms to establish if the limited information appeared to be part of the same statistical data population, or if significant differences appeared.

UNIFORMITY OF PROPERTIES

Properties throughout all pieces in each of the three alloys tested were considered to be uniform, well within the variations normally expected from extruded material. In the combination of length, test direction, and cross section location within one piece the indicated variation in Ti-6Al-4V tensile ultimate strength (TUS) was under 4%, and variation in TYS less than 5%. In alloys Ti-6Al-6V-2Sn and Ti-8Al-1Mo-1V, the variation within any one piece was under 6% in TUS and under 8% in TYS. Variation in properties between pieces, with location in cross section grain direction, and length is shown in Tables III, IV, and V, and in Figures 26, 27, and 28.

No effect of extrusion direction is apparent from these and other tests. Section location has a random effect, and does not appear to follow a pattern on annealed material. Processing controls 50 avoid possible degradation of properties because of work effects would allow design in the transverse direction to parallel design in the longitudinal direction. The same principle could also apply in control tests.

 \mathcal{K}

TABLE III T16A1-4V EXTRUSIONS, VARIATION IN PROPERTIES WITH CROSE SECTION LOCATION, POSITION IN LENGTH, AND PIECE

Bect	3 g	Ittimte	Trusile Stu (IDI)	4		• Yield Str (0.2%) Xei	47 2		Riongatica		S	aive Yield (0.2%) Kai	tryagth
	£.	ŧ	2	2	Tont	Conter	Rear	ži ž	Conter	Aper	W cat	Conter	X
-1	7	<u>y</u>	141	345	S	1न्न	130	ដ	8	14	H	661	661
-1	7	3	भू	i.	521	927	k	17	5î	ii.	5	627	PET
	ิล	 9	0 	141	প্ল		8 2	1		ส	Şŗ		
	7	3	141	સ્થ	87	121	921	প্র	ñ	41	137	131	Ŕ
•	74	ş	143	3 <u>1</u>	127	121	121	41	8	73	Ð	110	961
 	ā	3			521			77					
	1	 2			123			2					
ы	74	ç.			128			71					
<u>ب</u>	a	7			121			97					
64	4	 2		241	121		7 57	41		11			
+4	7	4	145	2 h 3	130	135	हरा वि	41	73	77	à	2HI	li
2	1	Ę,	141	341	S	8 21	621 621	91	52	1	140	સ્યા	140
4	7			31	627		TE7	15		2	SHI		
	7	13	141	1	127	92T	6 130	81	92	316	Ike	142	141
t	1	3	146	342	130	130	8 21	14	51	3	145	Ħ	¥
ч	Ā	38			132			7 9					
ы	74	 2			121			Я					
	7	2			130			Ŗ					
	Ä	\$			136	_		ħ1					-
t.	7	 ¥		141	ŝ		8	77		ร			
ч	7	Ģ		144	ŝ		061	7		74			-
	7	2		141	73		131	41		71	-		
	7	3		31	.6] []		921 1	14		14			
H	ন	Ę,		141	ୟ		61	*		1 ⁴			
		-											

34

جر! مہ

R

TABLE IV T18A1-1MO-1V EXTRUSIONS, VARIATION IN PROPERTIES WITH CROSS SECTION, POSITION IN LENGTH, AND PIECE

and a star of the second start of the second

تنافحه وأندل

1.12

Place	Cross Be	et ion	Ut tant	e Tenslie Btr (Kai)	ang th	-Treell	e Tield Stree (0.25) Kai	415		Rionger ton		Compress	two Yield Be (0.2%) Kei	ding the
.9	Locatile	2	Proat	Center	ž	Prout	Center	keer	Front	Center	Taur	Froat	Center	ž
, , , , , , , , , , , , , , , , , , ,	đ	- 1-	138	141	117	125.	ईरा	8J	ค	15	51 SI	137	137	91
]-	Auction		133	135	ŧ	RI	R	เส	R	18	81	135	135	3 57
	đ	بر ار	141		71	:36		्र श्र	£		ñ	6 7		
	Bt im	11	961	137	141	:23	R	L27	17	15	£	461	136 1	138
	Ca	н ,	138	137	137	124		121	14	15	51	661	136	661
0	св С		134			911			র					
(strut)	Junction	ï,	144			121			76					
	ð		143			124			61					
	1	 	6 1			ğ	*****		61					
	ð	F 1	131		136	120		121	11		15			
H H	8	در 1	ĄĒT	134	461	128	611	120	15	17	31	R R	ध्र	2
	Junction .	 	81	131	131	11	116	911	81	Я	17	क्ष	131	8 3
-	ŝ		ያ		137	8		Ž	51		16	153		
_	B Cess	.'	134	121	R	ផ្ត	81	977	22	29	R	131	132	af1
	đđ	84 1	133	351	Ř	118	117	711	ñ	17	15	ຄ	27	ន
	8	 	136			221			81					
	Junction	1,	133		-	611			16	_				
_	8		ŧ		•	611			13					
	B1/3	,3 1	135			121			18					
	8	84 1	A 7		133	120	_	711	ŝî		36			
×	8		130		136	۲ <u>۶</u>		8	21		57			
Ì	Junction		21		133	611		ផ្ត	11		15			
		4	461		231	R		27	15		51			
_	8	₽1 1	136		131	ឆ្ម		125	14		รา			

<u>n</u>

TABLE V T16A1-6V-2Sn EXTRUSIONS, VARIATION IN PROPERTIES WITH CROSS SECTION LOCATION, POSITION IN LENGTH, AND PIECE

1			Ulsimt.	. Tracile St.	meth		Tield Baru	418		Elongation	Γ	Compress	itw Tiald Bt	41.000
				(Kei)			(0.2%) Kat			~[[107 (42"0)	
â	Loca	tion	Prost	Center	ł	Front	Center	Ĭ	Prost	Center	Rear	Prost	Center	Base
1	8	, a	151	156	199	97	67	342	15	15	13	154	156	156
	Juncts	7 - 30	451	157	156	8 27	27	7PO	1	77	4	T,	125	155
	8	1 -	121		139	5k0		143	R		13	\$1		
	ł	1	197	7 <u>%</u>	158	111	£.	મા	15	ñ	4	123	451	156
	đ	с ,	13	9g	661	140	241	147	ส	42	ដ	667	157	139
×	8		991			1 ^{to}			79					
	Juncti	2 - 2 2	158			130			16					
	8	11	151			¥2			ĸ					
	ł	1	157			131			17					
	ð	04	199		91	91		143	15		1			
M	đ	4	153	146	348	¥.	ន្ត	ig.	ñ	51	15	147	243	641
	Junct 1	01 - L	147	143 1	245	ŧ	Ħ	27	97	11	17	148	142	346
	C.S	1	747		150	Ð		133	धा		9	130		
	Btem	1	130	¥.	245	567	53	สา	71	81	17	146	641	140
	8	94 1	725	121	150	131	135	135	Я	Я	13	153	151	6 4 1
.	8	H 1	ક્ષત			46.1			8					
	Juncts	00 - L	142			R			ដ					
	3	н 1	3			135			18					
	a a a a a a a a a a a a a a a a a a a	1	47			136			19					
	3	11 1	116		061	ま		ŝ	9		71			
.	8	ير ۱	151		156	3K			ส		ม			
(4	Shurt's	08 - L	136		151	136		8	E1		พ้			
	at te	4	451		151	131		131	15		41			
	8	P 1	ম্ব		দ্ব	ક્ષા		747	ส		2			

RELATIONSHIPS BETWEEN VENDORS

Sufficient data points do not exist within this program to establish relationships between vendors, except as related to a single test point only. The relation - and property scatter - between vendors should be determined from vendor accumulated property data. From the limited points, comments are as follows:

Properties of the Ti-GAL-4V extrusions supplied by the two vendors were, as shown in Figure 26, quite close. Total spread between values was less than 10%. The percentage relation on temperature effects and on derived properties such as shear and bearing appeared consistent. Relation of test data to a normal mill property distribution may be obtained by comparison with Figure 29.

Ti-6AL-6V-2Sn extrusions appeared to show a slightly greater margin of differences between vendors, possibly based on production background in the alloy. Property relationships to room temperature properties were consistent. General relationships are shown in Figure 28. Typical distribution of vendor tests for TUS is shown in Figure 30.

Ti-8A1-1Mo-1V showed greater differences than the other alloys. The discrepancy did not appear at room temperature, but both sub-zero and elevated temperatures tests..seemed to indicate a change in temperature effect. Room temperature relationships are shown in Figure 27. Figure 31 shows a typical distribution of TUS test results based on vendor data.

The yield strengths shown for pieces H and J (Ti-8Al-1Mo-1V) and for pieces N and P (Ti-6Al-6V-2Sn) are lower than those shown for the alloys in Section V. The values shown as design minimums are at present consistently being achieved by one vendor as shown by Figures 30 and 31, and are presently being used in design.

MODULUS OF ELASTICITY

Precision modulus determination showed typical tensile modulus of elasticity at room temperature values as follows:

Ti-8Al-1Mo-1V	17.6 x 10 ⁶ psi
Ti-6Al-4V	16.9×10^6 psi
Ti-6Al-6V-2Sn	16.1 x 10 ⁶ psi

Values for the Ti-8Al-1Mo-1V agree with MIL-HDBK-5 values for other product forms of this alloy, the other two alloys have indicated modulus values higher than those shown for other product forms in MIL-HDBK-5. The relationship between alloys is in accordance with the expected pattern.

TEMPERATURE EFFECTS ON TENSILE AND COMPRESSIVE PROPERTIES

The effect of temperature on tensile properties of the three alloys is shown in Figures 5 and 6, and effect on compression yield strength in Figure 7. Temperature effect data has been plotted to show effect as percent of the room temperature property value and is presented in Section V.

4Ô FREQUENCY (PERCENT) 1.56 TUS (KSI) Typical Distribution of Test Results Annealed Ti-6Al-4V Extrusions (170 Tests) Figure 29.

• • •

Figure 30. Typical Distribution of Test Results Annealed Ti-6AL-6V-2Sn Extrusions (60 Tests)

Figure 31. Typical Distribution of Test Results Annealed Ti-8Al-IMO-LV Extrusions (40 Tests)

Two comparison points at each temperature (one from each vendor) were established in the longitudinal direction and one data point at each temperature in the transverse direction. Temperature effect relationships were consistent between vendors and grain directions. Tables VI, VII, and VIII indicate these trends.

Sufficient data points have not been established by this program to provide verification of the depth required for MIL-HDBK-5. The pattern thus far however is consistent and appears to indicate that the reduction in properties at elevated temperature is in excess of that shown in MIL-HDBK-5 for other product forms of these alloys. Comparison of temperature effects are shown in Figures 32 through 39, inclusive.

In the higher temperatures, effects on Ti-6Al-6V-2Sn appear to be less than on the other alloys. This follows trends in other Lockheed investigations covering other heat treat conditions, and follows patterns shown in MIL-HDBK-5 for other products.

BEARING

Results of tests for ultimate bearing strength and for bearing yield strength are summarized in Tables IX and X. The normal pattern of reduced strength at elevated temperature is followed, with alloys maintaining normal strength relationships. Effect of elevated temperature on the 600° F properties of Ti-6Al-6V-2Sn appears to be less than that of the other alloys - corresponding to the trends shown in properties such as tensile strength.

Agreement of values and of ratios between vendors is considered normal considering the limited number of data points. Ratios of ultimate bearing strength to ultimate strength, and of bearing yield strength to tensile yield strength are of the same general order of magnitude as those given in MIL-HDBK-5 for other product forms. Additional data points are required to define ratio and temperature effects more precisely.

SHEAR

Results of tests to determine ultimate shear strengths are summarized in Table XI.

Values obtained agree closely between vendors and between grain directions. Ratios of bearing strength to ultimate strength closely coincide with published values for other product forms, and temperature effect curves follow patterns established for other products.

Ti-6Al-6V-2Snagain shows less effect on properties from elevated temperature than that shown by the other alloys.

CREEP AND STRESS RUPTURE

Creep and stress rupture testing was initiated in accordance with the contract test schedule. Because of the resistant characteristics of the extruded product form to creep, the program was modified to provide stress rupture data

		Test	Percent	; of Roo	m Temper	ature St	rength
Alloy	Piece	Direction	-110F	R'F	400F	600F	800f
TI-GAL-4V	A	L	122	100	73	71	65
	C	L	121	100	79	70	66
	A	T	120	195	77	72	66
Ti-8Al-1Mo-1V	F	L	121	100	83	77	71
	H	L	117	100	79	71	66
	F	T	119	100	82	76	69
Ti-6Al-6V- 2Sn	L	L	119	100	79	77	69
	N	L	118	100	85	79	74
	L	T	120	100	83	79	72

TABLE VI EFFECT OF TEMPERATURE ON THE ULTIMATE TENSILE STRENGTH OF TITANIUM ALLOY EXTRUSIONS

TABLE VII EFFECT OF TEMPERATURE ON TENSILE YIELD STRENGTH OF TITANIUM ALLOY EXTRUSION

		Test	Percent	t of Roc	m Temper	ature St	rength
Alloy	Piece	Direction	-110F	RT	400F	600F	800F
Ti-6Al-4V	A	L	128	100	71	61	58
	C	L	125	100	72	59	57
	A	T	127	100	70	62	57
Ti-8Al-1Mo-1V	F	L	130	100	72	65	58
	H	L	120	100	72	58	53
	F	T	126	100	73	65	58
Ti-6Al-6V-2Sn	L	L	127	100	72	69	62
	N	L	121	100	78	69	66
	L	T	127	100	76	69	64

S. S.

		Test	Percent	of Roc	m Temper	ature St	rength
Alloy	Piece	Direction	-110F	RT	400F	600F	800F
Ti-6Al-4V	A	L	125	100	67	57	56
	C	L	123	100	70	59	55
	A	T	125	100	69	59	56
TI-8AL-1Mo-1V	F	L	125	100	72	60	57
	H	L	124	100	70	59	54
	F	T	125	100	71	61	56
Ti-6Al-6V-2Sn	L	L	127	100	74	67	62
	N	L	124	100	74	68	64
	L	T	127	100	74	67	63

TABLE VIII EFFECT OF TEMPERATURE ON THE COMPRESSIVE YIELD STRENGTH OF TITANIUM ALLOY EXTRUSIONS

only at 400°F, to provide both limited creep and stress-rupture data at 600°F and to provide a limited probe at 800°F creep characteristics. In addition, a probe was made of creep under conditions of rapid heating and loading such as might occur under over ride conditions. General airframe parameters were considered rather than such specialized applications as engines where extensive special creep investigations would be conducted.

400°F CHARACTERISTICS

Tests indicated that creep at 400° should not be considered to be significant in general airframe design. In order to produce 0.1 percent strain in 1000 hours, Ti-6Al-4V and Ti-8Al-1Mo-1V specimens were loaded to approximately 95 percent of the ultimate strength at temperature, a level twenty to thirty percent above yield. The same level of stress produced 0.2 percent combined creep and strain deformation in Ti-6Al-6V-2Sn.

Stress Rupture at 400F is considered to be coincident with the ultimate tensile strength. Tests within a nominal 2 ksi of the ultimate tensile strength at temperature failed on loading or showed no failure at one week exposure. Since stress rupture characteristics were directed toward use in construction of fatigue diagrams the stress rupture curve was considered to coincide with the tensile strength within test limits.

600°F CHARACTERISTICS

Stress-rupture and nominal ultimate tensile strength at temperature were considered to be coincident. Ti-6Al-4V and Ti-6Al-6V-2Sn specimens loaded within 2 ksi of ultimate strength at * emperature did not fail in 1000 hours of exposure. Tests of the Ti-8Al-1Mo-1V at the same relative load were discontinued at approximately 650 hours without failure.

Creep in Ti-8A1-1Mo-1V and in Ti-3A1-4V did not appear significant at the 600°F yield stress. Tests of Ti-8A1-1Mo-1V at yield strength indicate less than

自然的時期が必然になって

~~

PERCENT OF F

О PERCENT OF F₁, AT ROOM TEMPERATURE ORGINGS -8 (SST AIRCRAF DE EXTRUDED SHAPES /E (TEN TEMPERATURE ([°]F) ~200

I	Descripti	lon		Ultima at	te Beau Tempera	ring Stature,	rength Ksi	Percent of
Alloy	Piece	Direction	e/D	-110F	RT	400F	600f	TUS at Kr
Ti-6Al-4V	A	L	2.0	330	295	210	201	208
	С	L	2.0		276	228	204	189
	A	Т	2.0		301	225		212
	C	т	2.0		296			203
	A	L	1.5		244			172
	С	L	1.5		247			169
Ti-8Al-1Mo-1V	F	L	2.0	323	292	220	192	210
	H	L	2.0		270	215	191	200
	F	Т	2.0		291	222		211
	H	T	2.0		323			243
	F	L	1.5		239			172
	H	L	1.5		222			164
Ti-6Al-6V-2Sn	L	L	2.0	357	316	255	216	201
	N	L	2.0		297	250	236	198
	L	т	2.0		341	248		21 ¹ 4
	N	т	2.0		317			208
	L	L	1.5		269			171
	N	L	1.5		252			168

TABLE IX ULTIMATE BEARING STRENGTHS OF TITANIUM EXTRUSIONS

 \triangle

Average of three tests

55

, 2 V.F .

ġŢ
Description				Bearing Yield Strength at Temperature, Ksi				Percent of
Alloy	Pfece	Direction e/D		-110F	RT	400F	600F	115 at M
T1-6AL-4V	A	L	2.0	296	250	190	172	200
	с	L	2.0		239	193	168	18
	A	T	2.0		257	194		202
	с	T	2.0		255			196
	A	L	1.5		208			166
	С	L	1.5		210			163
Ti-8A1-1Mo-1V	F	L	2.0	282	240	185	167	192
	Н	Ŀ	2.0		221	172	152	184
	F	Т	2.0		249	192		201
	Н	т	2.0		268			227
	F	L	1.5		201			161
	ĸ	L	1.5		186			155
Ti-6A1-6V-2Sn	L	L	2.0	329	279	224	205	199
	N	L	2.0		254	218	201	190
	L	Т	2.0		290	222		207
	N	Т	2.0		270			197
	L	L	1.5		231			165
	N	L	1.5		223			166

TABLE X BEARING YIELD STRENGTHS OF TITANIUM EXTRUSIONS 🔬

Average of three tests

Description			Shear Strength at Temperature, ksi				Percent of
Alloy	Piece	Direction	-110F	RT	400F	600f	TUS AT NT
T1-6A1-4V	A C A C	L L T T	106	92 91 92 92	77 77 76.3	70 70	65 62 65 63
Ti-8Al-1Mo-1V	F H F H	L L T T	102	91 87 87 88	79 2 75	69 68	65 64 63 66
Ti-6A1-6V-2Sn	119	101 101 102 100	90 2 88	81 83	64 67 64 66		
Average of three tests							
Results not tabulated because of abnormal bending							

TABLE XI SHEAR STRENGTH OF TITANIUM ALLOY EXTRUSIONS 1

'0.1 percent creep is 1000 hours. Ti-6A1-4V showed 0.1 percent creep in 1000 hours at stress levels 10 percent above yield. Ti-6A1-6V-2Sn showed more susceptibility, with approximately 0.2 percent creep indicated after 500 hours exposure, and approximately 0.4 percent in 1000 hours.

At 800°F creep becomes significant in all alloys. As at all other temperatures, Ti-8AL-1Mo-1V showed the highest degree of resistance, while Ti-6AL-6V-2Sn showed most susceptibility.

Creep tests conducted under conditions of rapid heating and rapid loading result in higher strains than those produced by standard creep exposures, except for Ti-6Al-6V-2Sn. Results of these tests would indicate the desirability of further testing in this area because of the close relationships between this type test and occasional extreme exposure. Relationships between creep under conditions of rapid heat and load compared with creep under standard conditions are shown in Table XII.

Creep data are susceptible to scatter because of minor variations in test procedure and considerable scatter is shown in the data obtained in this program. This does not, within this program, affect interpretation of results.

IMPACT PROPERTIES

Results of Charpy impact tests indicate generally higher values for transverse specimens than for longitudinal specimens at all temperatures. This does not seem reflected in any other properties, but could be due to the notch occur-

			Creep Strain in/in					
Alloy	Temp	Stress (Ksi)	Rapid Heat And Load			Standard Creep		
			5 min	30 min	60 min	l hr	100 hr	500 hr
TI-6AL-4V	600F	71	0.0012	0.0017	0.0018			
		79	0.0006	0.0022	0.0029	0.0006		0.0027
		85	0.0007	0.0020	0.0030			
		89				0.0006	0.0009	0.0010
	800F	58	0.0004	0.0010	0.0012			
		65	0.0005	0.0007	0.0007			
		75	0.0004	0.0018	0.0028	0.0014	0.0183	
Ti-8Al-1Mo-1V	600F	81	0.0004		0.0006	0.0004	0.0005	0.0006
	800F	58	0.0002	0.0008	0.0010			
		72	0.0003	0.0006	0.0007	0.0003	0.0028	0.005
		85	0.0008	0.0017	0.0020	0.0006	0.0046	0.008
Ti-6Al-6V-2Sn	600F	90						
		10 0	0.0004	0.0006	0.0006	0.0004	0.0016	0.0024
		112	0.0009	0.0018	0.0018	0.0006	0.0024	
	800F	69	0.0008	0.0029	0.0048			
		88	0.0015	0.0067	0.0105			
		98	0.0059	0.0242	0.0428			
1	1							

TABLE XII COMPARISON OF CREEP STRAIN UNDER VARYING LOADING CONDITIONS

Ц.

ring in the junction area. Impact toughness varies inversely with alloy strength as expected. The tests at minus llOF represent specimens machined and tested separately from other specimens and, therefore, are considered to represent a variable in test rather than a reversal of trend in impact properties. Test results are shown in Figures 40, 41, and 42.

FRACTURE TOUGHNESS AND DELAYED FAILURE

 K_{Ic} fracture toughness values at -110°F and at room temperature, along with delayed failure characteristics are given in Table XIII. Values obtained in this program agree within expected scatter with values obtained on similar material evaluated as part of recent programs at Lockheed, and are less than scatter observed in heavy products such as forgings. Ti-8Al-1Mo-1V presents the most favorable fracture toughness characteristics, but appears to have slightly inferior delayed failure characteristics. Delayed failure of Ti-8Al-1Mo-1V extrusions, air-cooled, appear to be superior to past values obtained using furnace-cooled materials and are above values obtained in the past on annealed bar worked in the alpha-beta field.

Figures 43, 44, and 45 depict delayed failure as a function of time.

FATIGUE

Results of the fatigue tests on the three titanium alloys tested are presented as S/N curves in Section V. Figure numbers of curves are as follows:

Alloy	K _T	A	Temp	Fig. No.
Ti-6A1-4V	1.0	0.98	RT	54
	2.76	a,0.98,0.4	RT	55
	2.76	w,0.98,0.4	400 ⁰ F	56
	2.76	œ,0.98.0.4	600 ⁰ ғ	57
Ti-8Al-1Mo-1V	1.0	0.98	RT	66
	2.76	w.0.98.0.4	RT	67
	2.76	w.0.98.0.4	400°F	68
	2.76	æ,0.98,0.4	600°F	69
Ti-6Al-6V-2Sn	1.0	0.98	RT	78
	2.76	w.0.98.0. 4	RT	79
	2.76	m.0.98.0.4	400°F	80
•	2.76	æ,0.98,0.4	600°F	81

Fatigue characteristics of the three alloys were considered to be similar in the same scatter band. Values were intermediate in relation to those seen in previous evaluations of extruded products. Values appear to be below those shown in MIL-HDBK-5, but do not appear to be below typical values seen in other programs on heavy sections such as bar, plate, or forgings.

Material from one vendor tends to show slightly higher fatigue values than that of the other. At this time, this is considered to represent random scatter IMPACT STRENGTH (FT-LB)

IMPACT STRENGTH (FT-LB)

IMPACT STRENGTH (FT-LB)

Figure 42. Charpy Impact Properties of Ti-6A1-6V-2Sn Extrusions

Delayed Failure Characteristics of Ti-6Al-4V Extrusions Figure 43.

	74	Grain	K _{IC} (ksi	L √In.)	K _{II} ()	usi √in.)
ALLOY	Alloy Piece D		-110F	RT	Held	Failed
TI-6AL-4V	A C E	L L L	68 63	73 65 79	36 45 39	40 48 42
Ti-8Al-1Mo-1V	F H K	L L L	76 88	83 88 85	34 34 34	35 36 36
TI-6AL-6V-2Sn	L N R	L L L	46 56	58 72 58	29 42 36	34 57 41

TABLE XIIIFRACTURE TOUGHNESS AND DELAYED FAILURECHAPACTERISTICS OF TITANIUM ALLOY EXTRUSIONS

until effect of processing variables on fatigue can be determined through other programs.

Elevated temperatures seem to affect only the high-cycle end of the fatigue curves. Alloys Yi-6Al-4V and Ti-8Al-1Mo-1V seem to see more effect than Ti-6Al-6V-2Sn. This trend has been observed on previous programs.

Modified Goodman diagrams prepared from data obtained in this program are presented in Figures 58, 59, 72, 73, 86 and 87.

Section V

PRELIMINARY DESIGN INFORMATION

Tentative design properties for extruded titanium alloys Ti-6Al-4V, Ti-8Al-1Mo-1V, and Ti-6Al-6V-2Sn in the Annealed tempers are presented in this Section. Current specifications for these products are not established on a government nor an industry basis*. Design properties are indicated as tentative until such time as sufficient depth of data (and corresponding modifications) to meet MIL-HDBK-5 standards are compiled and incorporated.

TI-6AL-4V TENTATIVE DESIGN PROPERTIES

- (1) Tentative room temperature design mechanical properties are summarized in Table XIV.
- (2) Effect of temperature on ultimate tensile strength at temperature is shown in Figure 46. Effect of temperature on tensile yield strength is shown in Figure 47. Effect of temperature on compressive yield strength is shown in Figure 48. Effect of temperature on shear and on bearing properties are shown in Figures 49, 50, and 51.
- (3) Stress-strain curves in tension and compression (typical curves) are shown in Figures 52 and 53.
- (4) S/N diagrams showing typical room temperature and elevated temperature fatigue characteristics of smooth and of notched specimens are shown in Figures 54, 55, 56, and 57, modified Goodman diagrams in Figures 58 and 59.
- (5) Discussion of fracture toughness, and of delayed failure characteristics is included in Section IV.
- (6) Discussion of fracture toughness, and of delayed failure characteristics is included in Section IV.

TI-8A1-1MO-1V TENTATIVE DESIGN PROPERTIES

(1) Tentative room temperature design mechanical properties are summarized in Table XV.

*ANS4935 in its present form (Revision A) is not normally used without exceptions.

ومجميد بالمراب المربسة مناها بالشروعي والتواني تواجها والمسيبها لودان متدام المان المتكاب الشائم	
Alloy	TI-6Al-4V
Form	Extruded Shapes, Rod and Bar
Condition	Annealed
Thickness or diameter, in	ALL
Basis	8
Mechanical properties:	
F _{tu} , ksi L IT	135 135
L L F _{cy} , ksi	125 125 (Typical Values Shown in Table IV)
IT Fsu, ksi	(Typical Values Shown in Table XI)
	(Typical Values Shown in Table IX)
Fbry, ks1: (e/D = 1.5) (e/D = 2.0)	(Typical Values Shown in Table X)
In 2 in. In 4 D	10 10
E, 10^6 psi E _c , 10^6 psi G, 10^6 psi μ	16.9 /
Physical properties: ω, lb/in. ³ C, Btu/(lb)(F) K, Btu/[(hr)(ft ²)(F)/ft] α, 10 ⁻⁶ in./in./F	0.160
	and the second

Table XIVTentative Design Mechanical and Physical Properties
of Ti-6Al-4V Titanium Alloy (Extrusions)

-68-

時に一支

PERCENT OF F_{tu} at room temperature

£

語を見ている。著作者がある。「おいろの」

1⁻

l

Typical S/N Fatigue Curve for $K_{\!T\!}$ 54. Figure

, ^۲

Constant-life Fatigue Diagram for Notched Ti-6Al-4V Annealed Extrusions at Room Temperature

81

r di Este

يت ب 2 Ti-6Al-4V Extrusions at 1,00F and 600F

1

2 **这些国际的主义**是这些主义。

82

Alloy	T1-8A1-1Mo-1V
Form	Extruded Shapes, Rod and Bar
Condition	Annealed
Thickness or diameter, in	
Basis	8
Mechanical properties:	
F _{tu} , ksi L LT	130 130
F _{ty} , ksi L LT F _{cy} , ksi	120 120 (Typical values shown in Table V)
L IT F _{su} , ksi F _{bru} , ksi:	(Typical values shown in Table XI)
(e/D = 1.5) (e/D = 2.0) Fory, ksi: (e/D = 1.5) (e/D = 2.0)	(Typical values shown in Table X)
e, per cent: In 2 in. In 4 D	10 10
E, 10^6 psi E _c , 10^6 psi G, 10^6 psi μ	17.6
Physical properties: ω , lb/in. ³ C, Btu/(lb)(F) K, Btu/[(hr)(ft ²)(F)/ft] a, 10 ⁻⁶ in./in./F	0.158

Table XV Tentative Design Mechanical and Physical Properties of Ti-8A1-1Mo-1V Titanium Alloy (Extrusions)

-

37

いな

にいたなまで

6 .

No. State

-,

ないのななななのないとなったないのでいたとうで、こと

AL NALEY NA

- (2) Effect of temperature on ultimate tensile strength at temperature is shown in Figure 60. Effect of temperature on tensile yield strength is shown in Figure 61. Effect of temperature on compressive yield strength is shown in Figure 62. Effect of temperature on shear and on bearing properties are shown in Figures 63, 64, and 65.
- (3) Stress-strain curves in tension and compression (typical curves) are shown in Figures 66 and 67.
- (4) S/N diagrams showing typical room temperature and elevated temperature characteristics of smooth and of notched specimens are shown in Figures 68, 69, 70, and 71, modified Goodman diagrams in Figures 72 and 73.
- (5) Discussion of fracture toughness and of delayed failure characteristics is included in Section IV.
- (6) Discussion of creep characteristics is included in Section IV.

Ti-6A1-6V-2Sn TENTATIVE DESIGN PROPERTIES

- (1) Tentative room temperature design mechanical properties are summarized in Table XVI.
- (2) Effect of temperature on ultimate tensile strength at temperature is shown in Figure 74. Effect of temperature on tensile yield strength is shown in Figure 75. Effect of temperature on compressive yield strength is shown in Figure 76. Effect of temperature on shear and on bearing properties is shown in Figures 77, 78, and 79.
- (3) Stress-strain curves in tension and compression (typical curves) are shown in Figures 80 and 81.
- (4) S/N diagrams showing typical room temperature and elevated temperature characteristics of smooth and of notched specimens are shown in Figures 82, 93, 84 and 85, modified Goodman diagrams in Figures 86 and 87.
- (5) Fracture toughness and delayed failure characteristics are discussed in Section IV.
- (6) Creep characteristics are discussed in Section IV.

.

Figure 60. Effect of Temperature on the Ultimate Tensile Strength (F_{tu}) of Annealed Ti-8Al-1Mo-1V Extrusions

1.

「おこと

. ₽

(

210 180 COMPRESSIVE STRAIN (KSI) 150 120 90 60 30 0 .005 .010 .015 .020 0 .025 .030 STRAIN (IN./IN.)

69. Typical S/N Fatigue Curves for $K_m = 2.76$ (A = ∞ , A Ti-8Al-lMo-lV Extrusions at Room^TTemperature

1-14

7

(SAW

e.

Alloy	Ti-6A1-6V-2Sn
Form	Extruded Shapes, Rod and Bar
Condition	Annealed
Thickness or diameter, in	
Basis	S
Mechanical properties:	
F _{tu} , ksi L LT	150 150
F _{ty} , ksi L LT Fay, ksi	135 135 (Tunical values shown in Table VI)
L L IT F _{su} , ksi	(Typical values shown in Table XI)
F _{bru} , ksi: (e/D = 1.5) (e/D = 2.0)	(Typical values shown in Table IX)
(e/D = 1.5) (e/D = 2.0)	(Typical values shown in Table X)
In 2 in. In 4 D	10 10
E, 10^6 psi E _c , 10^6 psi G, 10^6 psi μ	16.1
Physical properties: ω, lb/in. ³ C, Btu/(lb)(F) K, Btu/[(br)(ft ²)(F)/ft] α, l0 ⁻⁶ in./in./F	0.164

Table XVI Tentative Design Mechanical and Physical Properties of Ti-6Al-6V-2Sn Titanium Alloy (Extrusions)

, . , .

*

1

9

Ŀ

. 4:2

ų, ¹4

160 r EXP OSURE UP T 0 /2 H OUR 1 140 120 PER CENT OF F_{to} AT POOM TEMPERATURE 100 80 60 40 **TENTAT!** 20 0 200 600 800 1000 -200 0 400 TEMPERATURE (°F)

Typical S/N Fatigue Curves for K_T Ti-6A1-6V-2Sn Extrusions at 600F^T

Figure 87. Constant-life Fatigue Diagram for Notched Ti-6Al-6V-2Sn Annealed Extrusions at 400F and 600F

113

Section VI

CONCLUSIONS AND RECOMMENDATIONS

This program has developed data on annealed titanium extrusions to illustrate where the product form possesses advantages over other materials and other forms of titanium when properly applied in aerospace applications. Extruded products are uniform in properties in the section, in its length, and do not possess abnormal directional characteristics. Data indicate that materials from different vendors and from different heats have closely related properties, and that the relationship of properties as affected by environment or application are consistent.

Within the scope of the testing in this program, MIL-HDBK-5 values could not be developed because of the restrictions on the volume of data which could be generated. Sufficient direction and verification was obtained to establish trends and relationships necessary to establish design data.

Titanium extrusions offer advantages in cost and in environmental suitability.

- Because of shape flexibility, savings are usual in material and machining in the type of section where extrusion is adaptable. While machining is required to provide a surface and tolerances suitable for use, machining costs and material costs are generally lower than other heavy product forms.
- (2) In high temperature applications creep characteristics of extrusions appear to be superior to other product forms because of the beta worked metallurgical structure. At applications up to 600F, creep does not appear to be a significant factor, while other product forms may require consideration of creep in order to provide satisfactory life.
- (3) The beta-worked structure of extrusions appears to offer advantages in delayed failure characteristics in corrosive environments. Recent studies of other product forms have shown the desirability of processing or heat treatment in the beta field in order to achieve better toughness and delayed failure characteristics.

In application of titanium extrusions consideration must be given to other effects of its manner of production and its metallurgical structure. Ductility is generally considered to be lower for beta processed material than for material processed in the alpha-beta field. This may have definite effects on forming characteristics and may make use of such products as alpha-beta

processed sheet preferable. Other properties however seem to be of the same order of magnitude as those of other product forms produced with the lower temperature final processing.

Trends shown by this study indicate that temperature effects on extruded products do not conform to those published in MIL-HDBK-5 for other products. Derived property values should be based on extrusion data to insure proper application. In this respect, it should be pointed out that beta-processed material, or beta heat-treated material, in any product form will be having increased usage, and that verification of property relationchips for this type material will be required.

To achieve the long range objectives of this program, action should be taken in the following areas:

(1) Room temperature mechanical property data can at present be established on a specification basis on tensile properties and on compressive yield strength based on vendor guarantees. Sufficient vendor data exists to establish A and B values for Ti-6A-4V. Data points on Ti-8Al-1Mo-1V and Ti-6Al-6V-2Sn may be more limited when evaluated from Handbook standpoint. Vendor data on compression properties exists in reasonable depth in all alloys.

In establishing values and determining properties, it is suggested that date of production be considered as a variable. Definite changes in property trends have been observed based on refinements, or changes in production techniques. This has been particularly true in Ti-8Al-1Mo-1V, with elimination of furnace cooling, and in Ti-6Al-6V-2Sn where original production was directed toward the special requirements of a single application.

Tentative values for other properties can be established using industry accumulated test data in these areas.

- (2) Property determination programs should be instituted to provide design data for beta processed sheet, plate, and bar. Current trends for application indicate that this processing will be of increasing importance in gages over approximately 0.062 inch.
- (3) Property determination programs should be instituted to provide design data for heat treated and aged (STA) extrusions, and the "Overaged" extrusion where intermediate property levels are established to provide desirable secondary characteristics such as more usable forming temperatures in conjunction with strengths higher than annealed products.
- (4) Studies of rapid heating-rapid load creep characteristics, including repeat cycle effects should be continued to determine specific effects on supersonic aircraft under temperature override conditions, and other vehicles such as spacecraft on re-entry.

Aupendix

TABULATION OF TEST RESULTS

117

一行一行。 新江市场市场的东西市场,市场市场局,市场市场市场市场市场市场

Figure 88. Typical Cross Section Locations Longitudinal Specimens

A DESCRIPTION OF A DESC

TOP

SIDE

BLOCK B

SPECIMEN IDENTIFICATION	TYPE TEST	RE
51, 82,83 84,85,95 87,88,69 80 TK 55 515	TENSILE, LONGIT, COMPRESSION, LONGIT TENSILE, TRANSVERSE COMPRESSION, TRANS,	والمعادية والمعادية والمستعمل والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية والمعادية

AA	AB	
L		

BLOCK A

SPECIMEN IDENTIFICATION	TYPE TEST	REFERENCE
AI THRU A4 A5 THRU A8 A94 A104 A11 M24 A104 A11 M24 A134 A14	TENSILE, LONGIT. COMPRESSION, LONGIT. TENSILE, TRANSVERSE COMPRESSION, TRANS.	FIG. 11 FIG. 12 FIG. 11 FIG. 12

E (PC, I) SEE FIG, 9 G (PC, II) SEE FIG, 9 DC.I) SEE FIG.6 PC.III SEE FIG.7 DECIV SPECIMEN CODE

		SFECH	MENY COU	c Prerix
PIECE	VENDOR	Ti-6-4	Ti-8-1-1	Ti-6-6-2
د	HARVEY	A	F	L
lil	HARPER	C	н	N

.

TOP

	BLOCK B	
SPECIMEN IDENTIFICATION	TYPE TEST	REFERENCE DWG
81,82,83 84,85,86 87,86,89 80 Thau 813	TENSILE, LONGIT, COMPRESSION, LONGIT, TENSILE, TRANSVERSE COMPRESSION, TRANS.	FIG 11 FIG 12 FIG 11 FIG 12

BLOCK C

SPECIMEN IDENTIFICATION	TYPE TEST	REFERENCE
CI THRU C4	TENSILE, LONGIT.	FIG. 11
C5,C6,C7	COMPRESSION, LONGIT.	FIG. 12
C8,C9,C10	TENSILE, TRANS.	FIG. 11
C11,C12,C13	COMPRESSION, TRANS.	FIG. 12

٠.

Figure 90. Specimen Locations, Pieces I and III (Part of)

のないが、「「「「「「「」」」

DI3 THRU D24

010

80

170

022 6

018

õ

000

	<u>DLUCK D</u>	
EN IFICATION	TEST TYPE	REFERENCE
RU D12 IRU D24 HRU D36 HRU D48 IRU D63 HRU D69 HRU D84 86,087	TENSILE , TRANSVERSE COMPRESSION, TRANS. TENSILE , LONGIT. COMPRESSION, LONGIT. BEARING, LONGIT. BEARING, TRANS. SHEAR, LONGIT. SHEAR, TRANS.	FIG 11 FIG. 12 FIG. 12 FIG. 12 FIG. 14 FIG. 14 FIG. 18 FIG. 13

- DI THRU DIZ

2

D25

D6 50

6 8

> SP EI E4

- D49 THRU D63

0

1049 O

0

D 50

TOP

D51

0

С

SPECIMEN IDENTIFICATION	TEST TYPE	REFERENCE
F.I. THRU F.2.	TENSILE, LONGITUD.	FIG. 11
FJ3 THRU F 24	COMPRESSION, LONGITUD.	FIG. 12
F.2.5THRU F.36	BEARING, LONGITUD.	FIG. 14
F.36F39	BEARING, TRANS.	FIG. 14
F40 THRU F 48	CHARPY, TRANS.	FIG. 17
F49 THRU F 57	CHARPY, LONGIT.	FIG. 13
F 36 THRU F 69	SHEAR, LONGITUD.	FIG. 13
F 70 THRU F 75	SHEAR, TRANS.	FIG. 13

SPECI IDEN	MEI
GI TH	RU
G•16	THI
G2 6 T	HR

÷.

σ

÷

Ha	
SIDE	

	1(ЭЬ	
F]

1		

Ha	
	_
SIDE	

SI	DE	

1			
1			

BLOCK H				
SPECIMEN IDENTIFICATION	TYPE TEST	REFERENCE DWG	P	
HI THRU H4 H5,H6,H7	TENSILE, LONGIT TENSILE, TRANSVERSE	FIG. 11 FIG. 11		

	BLOCK J
SPECIMEN IDENTIFICATION	TYPE TEST
56,51,12	TENSILE, TRANSVERSE

	•		•					•	
* -			σ						به
19. 	-				this as the logar				
							-] -		
							$ \eta$		
	V						I/J		
	n								
				Leneou		F			
		PIECE	VENDOR	JILL A	T:-9-1 1	TI A A-2			
			HADVEN	1/-0-4 D	11-0-1-1	11-0-0-2			
			DAKYCY	l D	G	I M			

KI	Ð	К 3	0	К5	К52	К54
K2	0	Kå	0	K6	К53	К55
				TO	P	

HARPER

D

J

P

IV

BLOCK J

 \overline{C}_{1}

SPECIMEN	TYPE TEST	REFERENCE DWG
5Le2fe1L	TENSILE, TRANSVERSE	FIG. 11

C	(\cap)	ĸ	K
ヒし		IN -	-1

SPECIMEN (TYPE TEST	REFERENCE DWG
KI THRUK45	NOTCHED FATIGUE	FIG. 21
K46 THRU K55	SMOOTH FATIG'JE (K _T = 1.0)	FIG. 20

st.

SPECIMEN IDENTIFICATION	TYPE TEST	RE FERENC DW 6.
MI, N2N3 N4 THRUNT M8,M9, M10 MIT THRU M15 M16 THRU N24 N25, N26,M27 N28, M29,M30	TENSILE LONGITUDINAL TENSILE TRANSVERSE TENSILE LONGITUDINAL FATIGUE SMOOTH KT*1.0 FRACTURE TOUGHNESS DELAYED FAILURE CHARPY TRANSVERSE CHARPY LONG	F1G = = F1G = = F1G = = F1G = = F1G = = F1G = =

	•		1 - 23
	• • •	•••• • • •	·
	·		
		- M25-30 -	
\leq	MU	MI4 MI5	
	(*
	M22]		
SPECIMEN IDENTIFICATION	TYPE TEST REFERENCE DW6.	SPECIMEN CODE PREFIX PIECE VENDOR Ti-6-4 Ti-8-1-1 Ti-6-6-2	
MI, N2M3 N4 THRUN7 M8,M 9, M 10	TENSILE LONGITUDINAL FIG IC TENSILE TRANSVERSE FIG IC TENSILE LONGITUDINAL FIG IC	- V HARVEY E K R	
MIL' THRU MIS MI6 THRU M24 M25, M26 M27	FATIQUE SMOOTH KT21.0 FIG 20 FRACTURE TOUGHNESS FIG 18 DELAYED FAILURE CHARPY TRANSVERSE FIG 16		
M 28, M 29, M30	CHARPY LONG FIG. 16		NAME AND ADDRESS
	L		
		Figure 94. Specimen Locations,	
		Piece V, Thick Extrusion	NUMBER OF
		129	A STATE OF
	and the second		CETEC A

1.9 1.9

Alloy	Section	Specimen I.D.	Grain Dir.	Test Temp. (°F)	TUS (ksi)	TYS (ksi)	Elong. (%)
Ti-6-4	Thin	AD25	Ļ	-110	173	157	12
t t	(Fig.1)	AD26	•	ł	174	164	12
	ľ	AD27			172	163	12
		CFl			179	162	12
		CF2			174	162	1 ⁾ i
		CF3		-110	17.*	162	13
		AAl		Room	142	125	13
		AA2			141	125	17
		AA3	2 X		142	126	14
		AA4			141	128	16
		ABl			144	127	16
		AB2			142	126	15
		AB3			141	124	15
		ACL			145	130	14
		AC2					
		AC3			141	128	12
		AC4			142	128	14
		BHl			140	125	14
		BH2			140	123	12
		внз			1 ⁴ 3	126	17
		BH4			141	124	16
		CAL			147	130	14
		CA2			143	125	16
		CA3			146	129	15
		CA4			143	127	18
		CB1			145	135	13
		CB2			144	128	15
		ርዓვ			144	128	16
T1-6-4	Thin (Fig.1)	CCl	Ĺ	Room	143	128	14

TABLE XVII TENSILE TEST SUMMARY

Ś

Alloy	Section	Specimen I.D.	Grain Dir.	Test Temp. (°F)	TUS (ksi)	TYS (ksi)	Elong. (%)
T1-6-4	Thin	CC2	L	Room	146	129	11
4	(Fig.1)	CC3	Ā	4	146	131	15
	•	cc4			144	130	16
		DH1			146	132	16
		DH2			143	127	16
		DH3			145	130	16
		DH4		Room	149	136	14
		AD28		400	110	90	~~ 15
		AD29		•	112		16
		AD30			110	88	20
		CF4			113	93	20
		CF5			113	94	18
		CF6		400	112	92	20
		AD31		600	100	76	16
		AD32		Ŷ	103	77	16
		AD33			100	79	17
		CF7			102	79	18
		CF8			191.	72	18
		CF9		600	101	63	17
		AD34		600	92	73	17
		AD35		ŧ	93	73	17
		AD36			93	73	16
		CF10			96	73	24
		CF11			95	75	19
		CP12	L	800	<u>9</u> 4	· 73	18
		AD1	T	-110	170	160	1.2
		ads			172	162	33,
		AD3		-110	169	161	11
T1-6-4	Thin (Fig.1)	AA9	Ť	Room	142	127	14

and the second se

132

A STATE AND A S

Alloy	Section	Specimen I.D.	Grain Dir.	Test Temp. (of)	TUS (ksi)	TYS (ksi)	Elong. (%)
Ti-6-4	Thin	AA10	Т	Room	142	128	14
•	(Fig.1)	AA11	4	4	141	126	14
		AB7			142	127	13
		AB8			143	127	<u>1</u> 4
		AB9			143	128	11
		AC8			141	127	14
		AC9			142	126	13
		AC10			142	127	15
		BH5			143	126	15
		БНС			142	126	14
		BH7			145	129	14
		BJl			141	124	1
		BJ2			145	130	15
		BJ3			140	125	15
		CA9			145	129	15
Î		CA1O			146	130	14
		CALL			146	130	14
		CB7			145	130	15
		CB8			146	129	15
		CB9			146	130	14
		800			146	131	15
		cc 9			145	128	14
		CC10			146	129	14
		DH5			146	130	13
		DH6	-		146	129	14
		DH7			146	130	14
		DJ1			146	130	17
		DJ2			150	133	34
Ti-6-4	Thin (Fig.1)	D.13	Ť	Room	144	128	14

133

Alloy	Section	Specimen I.D.	Grain Dir.	Test Temp. (°F)	TUS (ksi)	TYS (ksi)	Elong. (%)
T1-6-4	Thin	AD ¹ 4	́т	400	109	86	16
A	(Fig.1)	AD5	4	4	110	88	16
		AD6		400	111	90	15
		AD7		600	102	78	15
		AD8		1	103	79	17
		AD9		600	103	80	16
		AD10		800	93	71	16
	Thin	AD11		t	93	72	16
	(Fig.1)	AD12	T	800	94	72	16
	Thick	EM1	L	Rcom	143	129	14
	(Fig.2)	EM2		ł	140	125	14
		EM3			141	126	14
		EMS			144	130	14
		EM9			141	127	14
		Emio	L		142	128	24
		EM4	Ţ		143	130	14
		EM5			142	133	14
Ļ	Thick	EM6			144	131	14
T1-6-4	(Fig.2)	EM7	Ť	Room	144	130	14
Ti-8-1-1	Thin	FD25	L	-110	170	161	12
Ť	(Fig.1)	FD26			167	159	12
		FD27			168	161	12
		HF1			155	143	16
		HF2			156	142	14
		HF3		-110	156	143	16
		FAl		Room	138	125	13
		FA2			1.35	121	16
Ļ		FA3			141	125	13
Ti-8-1-1	Thin (Fig.1)	FA4	L	Room	138	123	14

134

Alloy	Section	Specimen I.D.	Grain Dir.	Test Temp. (°F)	TUS (ksi)	TYS (ksi)	Elong. (%)
Ti-8-1-1	Thin	FBl	L	Room	141	125	15
	(Fig.1)	FB2			135	121	18
	Ī	FB3			137	121	15
		FCl			144	129	15
		FC2			134	121	18
		FC3			141	126	15
		FC4			141	127	15
		GH1			134	118	21
		GH2			144	127	16
		GH3			143	124	19
		GH4			139	122	19
		HAL			134	118	15
		HA2			129	114	18
		HA3			136	122	18
		HA4			134	121	17
		HBl			134	119	17
		HB2			131	116	16
		нвз			134	120	16
		HCl			134	120	16
		HC2			131	116	17
		нсз			137	124	16
		HC4			132	118	16
		JH1			136	122	18
		JH5			133	119	16
		ЈНЗ			134	119	13
		JH4		Room	135	121	18
		FD28		400	115	89	18
		FD29		1	115	89	18
Ti-8-1-1	Thin (Fig.1)	FD30	Ĺ	400	115	88	19

135

Alloy	Section	Specimon I.D.	Grain Dir.	Test Temp. (°F)	TUS (ksi)	TYS (ksi)	Elong. (%)
Ti-8-1-1	Thin	HF ¹ 4	L	400	106	85	20
4	(Fig.1)	HF5	4	ł	105	86	19
		HF6		400	106	35	19
		FD31		600	107	81	18
		FD32		A	108	80	20
		FD33			108	81	20
		HF7			95	65	19
		HF8		ļ	96	72	23
		HF9		600	94	70	19
		FD34		800	99	72	19
		FD35		ł.	99	72	20
		FD36			99	73	20
		HF10			88	64	20
		HF11			88	62	23
		HF12	L	800	89	64	19
		FD25	Ŧ	-110	170	161	12
		FD26	l 🕴		167	159	12
		FD27		-110	168	161	12
		FA9		Room	137	122	12
4		FAlO			138	124	15
		FAll			138	126	16
		FB7			138	123	15
		FB8			137	122	15
		FB9			136	122	15
		FC8			136	120	15
		FC9			136	121	15
		FC10			138	123	16
↓ ↓		GH5			137	120	17
Ti-8-1-1	Thin (Fig.l)	СНС	Ť	Room	137	121	17

136

Alloy	Section	Specimen I.J.	Grain Dir.	Test Temp. (°F)	TUS (ksi)	TYS (ksi)	Elong. (%)
Ti-8-1-1	Thin	GH7	T	Room	138	120	17
†	(Fig.1)	GJl			138	121	15
	Î	GJ2			137	120	15
		GJ3			138	122	15
		HA9			133	118	14
		HAlO			134	119	14
		HAll			133	118	
		HB7			133	118	
		HB8			132	117	
		HB9			132	117	
		HC8			132	116	
		HC9			132	117	
		HC10			132	117	
		JH5			136	123	
		ЈН6			134	119	
		JH7			134	119	
		JJl			133	117	
		JJ2	i		132	116	
		J J3		Room	133	118	
		FD4		400	113	89	18
		FD5			112	88	18
		FD6		400	114	90	18
		FD7		600	106	80	20
		FD8		Ĵ	103	78	16
		FD9		600	105	80	18
		FD10		800	96	72	18
ł		FD11			93	69	18
Ti-8-1-1	Thin (Fig.l)	FD12	Ť	800	95	72	20

Alloy	Section	Specimen I.D.	Grain Dir.	Test Temp. (°F)	TUS (ksi)	TYS (ksi)	Elong. (%)
Ti-8-1-1	Thick	KMI	L	Room	138	126	12
4	(Fig.2)	KM2	•	A	132	119	14
	f	клз			134	122	15
		KM8			138	126	15
		KM9			133	121	15
		KM10	L		132	120	15
		KM4	Ţ		136	123	15
		KM5	l f		136	123	13
l l	Thick	KIM6			136	123	14
Ti-8-1-1	(Fig.2)	KM7	Ť	Room	138	127	15
Ti-6-6-2	Thin	LD25	Ļ	-110	190	180	9
† 1	(Fig.1)	LD26	4	1	189	178	9
	Ī	LD27			187	177	11
		NFL			172	162	13
		NF2			173	162	12
		NF3		-110	173	162	14
		LAI		Room	157	140	15
		LA2		1	154	138	14
		LA3			157	140	15
		LA ¹ 4			164	144	15
		LB1			158	139	15
		LB2			157	132	14
		LB3			156	-	15
		ICI			159	142	13
		IC2			158	140	14
		IC3			159	143	13
	j l	LC4			158	141	14
		MH1			160	140	16
Ti-6-6-2	Th'n (Fig.l)	MH2	Ĺ	Room	158	138	16

ś.

1995 1995

138

73.51.50

Alloy	Section	Specimen I.D.	Grain Dir.	Test Temp. (OF)	TUS (ksi)	TYS (ksi)	Elong. (%)
Ti-6-6-2	Thin	MH3	L	Room	154	136	15
•	(Fig.l)	MH4	≜	4	157	137	17
		NAL			153	136	15
		NA2			147	134	16
		NA3			147	133	18
		NA ⁴			150	135	17
		NBL			146	132	15
		NB2			143	131	17
		NB3			146	133	18
		NCL			148	134	15
		NC2			145	132	17
		NC3			150	135	16
		NC4			145	132	17
		PHL			145	134	20
		PH2			142	131	21
		рнз			146	135	18
		PH4		Room	147	136	19
		LD28		400	125	101	16
		LD29			125	100	17
		LD30			126	100	17
		NF4			125	104	18
		NF5			125	105	21
		NF6		400	125	104	20
		LD31		600	121	100	19
		LD32			121	94	18
		LD33			121	95	17
		NF7			116	93	17
		NF8			117	93	19
Ti-6-6-2	Thin (Fig.1)	NF9	Ľ	600	115	92	16

Alloy	Section	Specimen I.D.	Grain Dir.	Test Temp. (°F)	TUS (ksi)	TYS (ksi)	Elong. (%)
Ti-6-6-2	Thin	LD34	L	800	108	86	17
ł	(Fig.1)	LD35		4	108	86	24
		LD36			110	88	18
		NF10			108	89	19
		NF11			107	86	17
		NF12	L	800	108	89	17
		IDI	T	-110	191	180	9
		TD5		1	190	181	9
		LD3		-110	193	182	9
		LA9		Room	160	139	11
		LA10		f	157	140	11
		IA11			159	142	13
		LB7			160	141	15
		LB8			159	141	12
		LB9			160	145	14
		IC8			160	145	13
		IC9			161	146	13
		IC10			157	142	14
		MH5			159	139	14
		MH6			160	141	15
		MH7			159	140	15
		MJ1			161	143	14
		MJ2			161	143	14
		MJ3			159	141	13
		NA9			152	.136	16
		NA10			153	137	17
		NAll			152	137	15
ł		NB7			151	135	15
Ti-6-6-2	Thin (Fig.1)	NB8	Ť	Room	150	135	17

Æ

140

Alloy	Section	Specimen I.D.	Grain Dir.	Test Temp. (°F)	TUS (ksi)	TYS (ksi)	Elong. (%)
Ti-6-6-2	Thin	NB9	T	Room	151	135	16
4	(Fig.1)	nc8	A	4	150	134	15
Í	•	NC9	í í		150	136	15
		NC10			151	135	15
		PH5			148	134	18
		рнб			148	134	19
		PH7			148	133	16
		PJ1			149	133	17
		PJ2			150	136	16
		PJ3		Room	150	136	17
		LD4		400	134	107	16
		LD5		1	132	108	14
		LD6		400	133	108	14
		LD7		600	126	9 8	15
		LD8			127	100	14
		ID9		600	125	9 8	15
		ID10		800	114	91	18
	Thin	IDII		1	114	91	16
	(Fig.1)	ID12	T	800	115	92	16
	Thick	RML	L	Room	157	142	12
	(Fig.2)	RM2		Î	156	138	13
	l î	RM3			154	137	15
		RM8			156	140	13
		RM9			154	136	15
		RM10	L		154	137	14
		RM4	T		161	144	13
		RM5	1		161	145	13
		RM6			160	145	12
Ti-Ġ-6-2	Thick (Fig.2)	RM7	Ť	Room	162	148	11

the she was " is an

Alloy	Section	Specimen I.D.	Grain Direct.	Test Temp (°F)	CYS 0.2% (ksi)
Ti-6-4	Thin (Fig. 1)	AD37 AD38 AD39 CF13 CF14 CF15 AA5 AA6 AA7 AA8 AB4 AB5 AB6 AC5 AC6 AC7 CA5 CA6 CA7 CA5 CA6 CA7 CA5 CA6 CA7 CA5 CA6 CC7 CB5 CB6 CC5 CC6 CC7 AD40		-110 -110 Room 400	$ \begin{array}{c}\\ 172\\ 174\\ 179\\ 171\\ 171\\\\ 137\\ 139\\ 137\\ 139\\ 139\\ 139\\ 139\\ 139\\ 139\\ 139\\ 139$
Ti-6-4	Thin (Fig. 1)	AD41	Ĺ	400	93 .

TABLE XVIII COMPRESSION TEST SUMMARY

Alloy	Section	Specimen I.D.	Grain Direct.	Test Temp (°F)	CYS 0.2% (ksi)
Ti-6-4	Thin (Fig. 1)	AD42 CF16 CF17 CF18 AD43 AD44 AD45 CF19 CF20 CF21 AD46 AD47 AD48 CF22 CF23 CF24 AD13 AD14 AD15 AA12 AA13 AA14 AD15 AA12 AA13 AA14 AB10 AB11 AB12 AB13 AC11 AC12		400 600 800 -110 Room	93 97 99 100 80 78 80 83 83 84 79 76 78 77 79 173 172 176 139 138 139 138 139 138 139 138 140 142 138 139
T1-6- 4	Thin (Fig. 1)	AC13	Ť	Room	139 -

TABLE XVIII COMPRESSION TEST SUMMARY (Continued)

ŧ

. Line 143

and the second state of th

Alloy	Section	Specimen I.D.	Grain Direct.	Test Temp (°F)	CY3 0.2% (ksi)
Ti-6-4	Thin	CA12	T	Room	144
		CA13		4	147
		CA14			145
		CB10			146
		CB11			145
		CB12			143
		CB13			142
		CC11			144
		CC12			143
		CC13		Room	146
		AD16		400	95
		AD17			96
		AD18		400	96
		AD19		600	82
		AD20			82
		AD21		600	82
		AD22		800	77
		AD23		I.	77
Ti-6-4		AD24	Ť	800	78
Ti-8-1-1		FD37	L	-110	169
		FD38			167
		FD39			174
		HF13			162
		HF14			
		HF15		-110	163
		FA5		Room	137
		FAG			135
T1-8-1-1	Thin (Fig. 1)	FA7	L	Room	139

読み

all a deliveration of

11;4

Alloy	Section	Specimen I.D.	Grain Direct.	Test Temp (°F)	CYS 0.2% (ksi)
Alloy Ti-8-1-1	Section Thin (Fig. 1)	Specimen I.D. FA8 FB4 FB5 FD6 FC5 FC6 FC7 HA5 HA6 HA7 HA8 HB4 HB4 HB5 HB6 HC5 HC6	Grain Direct.	Test Temp (°F) Room	CYS 0.2% (ksi) 134 137 135 136 140 131 138 132 129 133 131 128 131 132 130 128
Til	Thin	HC7 FD40 FD41 FD42 HF16 HF17 HF18 FD43 FD44 FD45 HF19 HF20 HF21	ľ	Room 400 400 600	132 99 96 98 92 92 91 82 83 82 77 77 77

Alloy	Alloy Section		Grain Direct.	Test Temp (°F)	CYS 0.2% (ksi)
Ti-8-1-1	Thin	FD46	Ļ	800	78
4	(Fig. 1)	FD47	•		78
	•	FD48			77
		HF22			70
		HF23			70
		HF24	Ŀ	800	70
		FD13	т	-1.10	173
		FD14	f f	1	173
		FD15		-110	
		FA12		Room	140
		FA13			1 3 8
		FA14			138
		FB10			137
		FB11			138
		FB12			138
		FB13			139
		FC11			139
		FC12			139
		FC13			139
		HA12			135
		HA13			136
		HA14			134
		HB10			133
		HB11			132
		HB12			133
		HB13			132
L.		HC11			132
Ti-8-1-1	Thin (Fig. 1)	HC15	Ť	Room	135

Alloy	Section	Specimen I.D.	Grain Direct.	Test Temp ([°] F)	CYS 0.2% (ksi)
Ti-8-1-1 Ti-8-1-1 Ti-6-6-2	Thin (Fig. 1)	I.D. HC13 FD16 FD17 FD18 FD19 FD20 7D21 FD22 FD23 FD24 LD37 LD38 LD39 NF13 NF14 NF15 LA5 LA5 LA5 LA5 LA5 LA5 LA5 LA5 LA5 LA	Direct.	Room 400 600 800 -110 Room	(ksi) 133 100 98 98 84 84 79 80 75 194 196 182 186 184 154 154 154 155 156 155 156 147
Ti-6-6-2	Thin (Fig. 1)	na6 na7	L	Room	148 150

Alloy	Section	Specimen I.D.	Grain Direct.	Test Temp (°F)	CYS 0.2% (ksi)
Ti-6-6-2	Thin	na8	L	Room	148
•	(Fig. 1)	NB4	ŧ	4	148
	1	NB5			147
		NB6			149
		NC5			149
		nce			146
		NC7		Room	148
		LD40		400	
		LD41		i i	114
		LD42			114
		NF 16			111
		NF17			011
		NF18		400	110
		LD43		600	102
		LD44		•	104
		LD45			102
		NF19			102
		NF20			101
		NF21		600	101
		ID46		800	94
		LD47		•	96
		LD48			97
		NF22			96
		NF23			95
		NF 24	L	800	95
		LD13	T	-110	201
↓		LD14	1		199
T1-6-6-2	Thin (Fig. 1)	LD15	¥ T	-110	202

.....

7

and a strengthe state and the second strengthe second states and

Alloy	Section	Specimen I.D.	Grain Direct.	Test Temp (°F)	CYS 0.2% (ksi)
Ti-6-6-2	Thin	LA12	Ŧ	Room	159
	(Fig. 1)	LA13	≜	•	158
	f f	LA14			160
		LB10			157
		LB11			155
		LB12			157
		LB13			159
		LC11			158
		TC15			161
		IC13			157
		NA12			152
		NA13			154
		NA14			153
		NB10			
		NB11			151
		NB12			149
		NB13			153
		NCII			151
		NC12			148
		NC13		Room	149
		LD16		400	117
ľ	~	LD17			118
		LD18		400	116
		LD19		600	105
		LD20			105
		TD51		600	106
		TD55		800	103
		LD23			100
Ti-6-6-2	Thin (Fig. 1)	I:D24	Ť	800	98

Alloy	Specimen Number	Et (x 10 ⁶ psi)	
T1-6-4	AA2	16.8	
	AB2	16.9	
	ACL	17.0	
	Average		16.9
Ti-8-1-1	FA2	17.5	
	FB2	17.6	
	FC2	17.6	
	Average		17.6
T1-6-6-2	IA2	16.3	
	LB2	15.8	
	IC2	16.2	
	Average		16.1

TABLE XIX TENSILE MODULUS SUMMARY

ROOM TEMPERATURE, LONGITUDINAL SPECIMENS

ũ

Alioy	Specimen ID	Test Temp.	Grain Direction	e/D	Ultimate Bearing Strength(ksi)	Bearing Yield Strength(ksi)
Ti-6-4	AD49	-110°F	L	2.0	329	294
	AD50	Î	4		A	Á
	AD51	-110°F			332	299
	AVG				330	296
	AD52	RT			A	A
	AD53				A	
	AD54				295	250
	AVG				295	250
	CF28				265	233
	CF29				293	2 ^{).}
	CF30	RT			270	240
	AVG	•			276	240
	AD58	400 ⁰ F			219	190
	AD59				207 -	195
	AD60				204	186
	AVG				210	190
	CF31				226	193
	CF32				231	188
	CF33	400 ⁰ F			227	198
	AVG				228	193
	AD61	600 ⁰ f			208	173
	AD62				209	170
	AD63				187	174
	AVG				201	172
	CF34				199	166
+	CF35				195	169
Ti-6-4	CF36	600 ⁰ F	L	2.0	218	170
	AVG				204	168

TABLE XX BEARING TEST SUMMARY

151

+ Str.

Alloy	Specimen ID	Test Temp.	Grain Direction	e/D	Ultimate Bearing Strength(ksi)	Bearing Yield Strength(ksi)
Ti-6-4	AD64	PT	Ţ	2.0	308	259
	AD65	Ť			294	252
	AD66				302	260
	AVG				301	257
	CF37				300	245
	CF38				298	266
	CF39	RT			290	255
	AVG				296	255
	AD67	400 ⁰ F			215	194
	AD68				237	195
	AD69	400°F	T	2.0	223	193
	AVG				225	194
	AD55	RT	L	1,5	248	210
	AD56				244	207
	AD57				239	207
	AVG				244	208
	CF25				253	217
	CF26				240	205
	CF27	RT	I.	1.5	247	209
Ti-6-4	AVG				247	210
Ti-8-1-1	FD49	-110°F	L	2.0	323	282
	FD50				A	A
	FD51	-110°F			Ā	A
	AVG				323	282
	FD52	ŖT			279	228
	FD53				296	240
Ti-8-1-1	FD54	RT	L	2.0	300	252
	AVG				292	240

Alloy	Specimen ID	Test Temp.	Grain Direction	e/D	Ultimate Bearing Strength(ksi)	Pearing Yield Strength(ksi)
Ti-8-1-1	HF28	RT	L	2.0	262	224
	HF29				283	220
	HF30	RT			266	218
	AVG				270	221
	FD58	400 ⁰ F			221	189
	FD59	Ī			251	181
	FD60				219	184
	AVG				220	185
	HF31				214	169
	HF32				219	171
	HF33	400 ⁰ F			212	176
	AVG				215	172
	FD61	600 ⁰ г			199	174
	FD62				186	160
	FD63				192	167
·	AVG				192	167
	HF34				197	154
	HF35				186	151
	HF36	600°F	L		192	150
	AVG				192	152
	FD64	RT	T		290	249
	FD65				299	251
	FD66				285	247
	AVG				291	249
	HF37				310	269
	HF38				314	255
Ti-8-1-1	HF39	RT	T	2.0	326	281
	AVG	į]	323	268
	1	ŧ	1]		

153

 \mathcal{T}

م يشير الم سيتشير الم

2.2

STR.

1.55

S. Start.

Alloy	Specimen ID	Test Temp.	Grain Direction	e/D	Ultimate Bearing Strength(asi)	Bearing Yield Strength(ksi)
Ti-8-1-1	FD67 FD68	400 ⁰ F	۲.	2.0	226 220	190 190
	FD69	400°F	• T	2.0	221	195
	AVG				222	192
	FD5j	RT	L	1.5	239	203
	FD56				241	197
	FD57				237	203
	AVG				_239_	203
	HF25				228	194
	HF26				225	189
Ti-8-1-1	HF27	RT		1.5	213	177
	AVG				_222	1.87
T1-6-6-2	LD49	-110°F		2.0	344	323
	LD50			II	370	335
	`LD51	-110°F				
	AVG					329
	LD52	RT			309	274
	LD53				340	288
	LD54				300	275
	AVG				316	279
	NF28				297	260
	NF29				308	256
	NF30	RT			287	246
	AVG				297	254
	LD58	400°F			254	219
	LD59	11			260	228
Ti-6-6-2	LD60	400°F	L	2.0	251	224
	AVG				255	224

ν.

÷et

154

_*____

1. 1. 1. E.

Alloy	Specimen ID	Test Temp.	Grain Direction	e/D	Ultimate Bearing Strength(ksi)	Bearing Yield Strength(ksi)
T1-6-6-2	NF31	400 ⁰ F	L	2.0	254	219
	NF32		4	ł	244	216
	NF33	400 [°] F			253	219
ļ	AVG				250	218
	LD61	600 ⁰ F			225	208
	LD62	ſ			214	207
	ld63				209	201
	AVG				216	205
	NF34				245	204
	NF35				229	201
	NF36	600°F	Ĺ		234	199
	AVG				236	201
	LD64	RT	T		344	298
	LD65				340	291
	LD66				339	282
	AVG				341	290
	NF37				310	269
	NF38				314	255
	NF39	RT			326	284
	AVG				317	270
	LD67	400 ⁰ F			244	207
	ld68				254	227
	LD69	400°F	T	2.0	247	231
	AVG				248	222
	LD55	RT	Ŀ	1.5	262	228
	LD56				270	235
Ti-6-6-2	LD57				274	-
	AVG	RT	L	1.5	269	231

Alloy	Specimen ID	Test Temp.	Grain Direction	e/D	Ultimite Bearing Strength(ksi)	Bearing Yield Strength(ksi)
Ti-6-6-2 Ti-6-6-2	NF25 NF26 NF27 AVG	RT RT	L L L	1.5	247 258 250 <u>252</u>	218 223 228 223
A Abnormal deformation at loading hole						

STATISTICS AND IN THE REAL PROPERTY OF

A33	Specimen	Test	Grain	Double Shear
Alloy	ID	Temp	Direction	Strength (ks1)
Ti-6- 4	AD70	-110 ⁰ F	L	103
	AD71		1	108
	AD72			107
	Avg			106
	AD73	RT		95
	AD74			94
	AD75			92
	AD76			93
	AD77			90
	AD78			89
	Avg			92
	CF5 8			94
	CF59			91
	Стбо			93
	CF61			89
	CF62			90
	Сгбз			91
	Avg			91
	AD79	400°F		79
	O8dA			75
	AD81			
	Avg			TT
	CF64			A
	CF65			77
	CF66			A
	Avg	T		[77]
	AD82	600°F		7 0
	AD83			7 0
	AD84			71
T1-6-4	Avg	600 ⁰ F	Ĺ	70

TABLE XXI SHEAR TEST SUMMARY

and the second state of th

;

÷

Alloy	Specimen ID	Test Temp	Grain Direction	Double Shear Strength (ksi)
T1-6-4	CF67	600 ⁰ F	Ļ	69
	CF68			69
	С г 69	600°F	Ĺ	72
	Avg			70
	AD85	RT	Ţ	88
	AD86	ł	1	94
	AD87			95
	Avg			<u>æ</u>
	CF7 0			90
	CF71			92
	CF7 2	RT		94
	Avg			9
	CF73	400°F		78
	CF74			77
Ti-6- 4	C F7 5		Ť	74
	Avg			76
Ti-8-1-1	FD7 0	-110°F	L	102
I	FD71			
	FD72			103
	Avg			102
	FD73	RT		90
	FD74			92
	FD75			93
	FD76			92
	FD77			89
	FD78			90
	Avg			91
	HF58			89
T1-8-1-1	H F 59	RT	L	87

158

10.0

AND A DESCRIPTION OF A

Alloy	Specimen ID	Test Temp	Grain Direction	Double Shear Strength (ksi)
Ti-8-1-1	нгбо	RT	Ļ	88
	HFG1		•	90
	HF62			86
	HF63	RT		86
	Avg			87
	FD79	400 ⁰ F		78
	FD80			7 9
	FD81			79
	Avg			79
	HF64			A
	HF65			
	нғ66	400 ⁰ F	L	A
	Avg			
	FD82	600 ⁰ F	L	70
	FD83			69
	FD84			68
	Avg			69
	нг67			66
	HF68			68
	HF69	600 ⁰ F	Ĺ	70
	Avg			68
	FD85	RT	Т	87
	FD86			88
	FD87			87
	Avg			87
	HF70			90
	HF71			88
Ti-8-1-1	HF72	RT	T	86
	Avg	\		88

and the second second

0

159

Mart Strate

TALL AND ADDE TO BE

A THE AREA AND A REAL AND A

Alloy	Specimen ID	Test Temp	Grain Direction	Double Shear Strength (ksi)
Ti-8-1-1 Ti-8-1-1	н г 73 нг74 нг75	400°F	T	A A 75
	Avg			75
Ti-6-6-2	LD70	-110 ⁰ F	L	118
	LD71			121
	LD72	-110°F		119
	Avg			119
	LD73	RT		102
	LD74	1		100
	LD75			. 101
	1 D 76			102
	LD77			99
	1 D 78			100
	Avg			101
	NF58			100
	NF 59			100
	NF60			101
	NF61			104
	HF62			101
	NF63	RT		99
	Avg			101
	1 D7 9	400 ^C F		92
	LD8 0			90
	LD81			89
	Avg			90
I	NF64			A
Ti-6-6- 2	NF 65	400°F	L	A

160

. .

Alloy	Specimen ID	Test Temp	Grain Direction	Double Shear Strength (ksi)		
Ti-6-6-2	NF66	400°F	L	A		
	Avg					
	LD82	600 ⁰ F	L	82		
	LD83		4	03		
	LD84			82		
	Avg			81		
	NF67			83		
	NF68			83		
	NF69	600°F	Ĺ	84		
	Avg			83		
	LD85	RT	т	103		
	LD86		•	101		
	LD87			102		
	Avg			102		
	NF70			100		
	NF71	ļ		99		
	NF72	RT		101		
	Avg			_ 100		
	NF73	400 ⁰ F		86		
	NF74			A		
Ti-6-6-2	NF75	400°F	ŕ	90		
	Avg			88		
Abnormal failure with bending						

TABLE XXI SHEAR TEST SUMMARY (Concluded)

161

Alloy	Alloy Spec. Grain		Test Temperature	Impact Strength (ft-1b)	
	Ident.	Direction	(°F)	.250 Width	.394 Width
Ti-6-4	AL1 AL2 AL3 CL1 CL2 CL3 AE48 AE49 AE50 CF52 CF53 CF54 EM28 EM29	Longitudinal	-110 A	7.0 7.0 7.0 6.5 6.5 5.5 5.5 5.5 6.5 5 6.5 5 6	9 8
	EM30 AE45 AE46 AE47 CF49 CF50 CF51 AE51 AE52 AE53 CF55 CF56 CF57 CT1 CT2 CT3 CF43	Longitudinal. Transverse	72 110 110 400 -110 -110 72	$ \begin{array}{c} 6.0\\ 6.0\\ 7.0\\ 7.0\\ 6.4\\ 6.0\\ 11.0\\ 11.0\\ 11.0\\ 10.5\\ 9.0\\ 9.5\\ 9.0\\ 6.5\\ 9.5\\ 14\end{array} $	8
Ti-6-4	CF44 CF45 EM25 EM26 EM27 CF40 CF41 CF42 CF46 CF47 CF48	Transverse	72 110 110 400 400	11 13 12.0 15.0 14.5 17.0 16.5 16.5	9 28 28

TABLE XXII CHARPY IMPACT TEST SUMMARY

•

**

33

Service States Street

÷

Alloy Sper. Gre		Grain	Test Temperature	Impaci Si (fig.)	trength Lb)
	ident.	Direction	(°F)	.250 Width	.39% Width
Ti-8-1-1	FL1 FL2 FL3 HL1 HL2 HL3 FE48 FE49 FE50 HF52 NF53 HF54 KM28 KM29 KM30	Longitudinal	-110 A -110 72	10.0 10.0 10.5 10.5 10.0 6 11 10.5 8 11 10	18.5 20 18
	FE45 FE46 FE47 HF49 HF50 HF51 FE52 FE53 HF556 HF56 HF57	Longitudinal	110 110 400	11.5 12.0 12.5 11.0 12.5 12.9 21.5 21.5 22.0 18.0 17.5 19.0	
	HT1 NT2 HT3 HF43 HF44 HF45 KM25	Tranzverse	110 110 72	14.0 15.0 15.0 9.5 20.5 18	19
Ti-8-1-1	км26 Км27 НF40 НF41 НF42 НF46 НF47 НF48	Transverse	-72 110 110 110 400 1:00	21.5 23.5 21 24.5 24.5 22.5	17.5 19.5

TABLE XXII CHARPY IMPACT TEST SUMMARY (Continued)

163

. An fa

Allov	Spec.	Grain	Test Temperature	Impact St (ft-	trength lb)		
	Ident.	Direction	(°F)	.250 Width	.394 Width		
TI-6-6-2	LL1 LL2 LL3 NL1 NL2 NL3 LE48 LE48 LE49 LE50 NF52 NF53 NF54 RM28	Longitudinal	-110 A	6.5 6.0 6.5 7.0 5.0 6.0 11 6 5 5 5 5 4	5.5		
	RM29 RM30 LE45 LE46 LE47 NF49 NF50 NF51 LE51 LE52 LE53 NF55 NF56		72 110 110 400	9.5 9.0 10.0 4.5 6.0 5.5 21.5 21.5 22.0 8.0 8.5	4.5 5.5		
T1-6-6-2	NF57 NT1 NT3 NF43 NF44 NF45 RM25 RM25 RM26 RM27 NF40 NF41 NF42 NF46 NF47 NF48	Longitudinal Transverse Transverse	400 -110 A -110 A 72 A 110 110 400	9.5 10.0 10.0 12.5 12 13.5 13.0 12 15.5 12.0 19.0 16.0 16.5	555		
A Specimens for testing at -110F were fabricated and tested separately from other specimens.							

TABLE XXII CHARPY IMPACT TEST SUMMARY (Concluded)

The second se			
Alloy	Spec. Ident.	Test Temp	^K Ic (ksi √in)
Ti-6-4	AE25 AE26 AE27 AE28 AE29 AVG CG26 CG27 CG28 CG29 CG30 AVG	-110F -110F	87 86 67 71 67 64 66 65 62 61 64
Ti-6-4	AE30 AE31 AE32 AE33 AE34 AVG CG31 CG32 CG33 CG34 CG35 AVG EM16 EM17 EM18 AVG	RT RT	74 72 74 73 73 70 61 61 61 61 61 71 66 65 77 81 79 79
Ti-8-1-1	FE25 FE26 FE27 FE28 FE29 AVG HG26 HG27 HG28 HG29 HG30 AVG FE30 FE30	-110F -110F -110F RT BT	77 76 75 79 74 76 89 92 87 85 91 89 79 84

TABLE XXIII FRACTURE TOUGHNESS TEST SUMMARY (Longitudinal)

344 L
Alloy	Spec. Ident	Test	^K Ic
	tueno.	remb	(ksi √in)
Ti-8-1-1	FE32	RT	81
	FE33		84
	FE34		85
	AVG		83
	HG3L		00
	HC33		90
	HG34		89
	HG35		90
	AVG		88
	KM16		84
	KM17		91
π. Ω. 1. 1	ANIC	ma	0V 85
11-0-T-T	AVU	AL	02
Ti=0-5-2	LE25	-110F	43
	1520		47 bb
	LE2		44 10
, , , , , , , , , , , , , , , , , , ,	LE29		48
	AVG		46
	NG26		51
	NG27		59
	NG28	,	60
	NG30		01 50
	AVG	-110F	58
	LE30	RT	57
	LE31	•	61
	LE32		52
	LE33		59
			50 58
	NG31		76
	NG32		74
	NG33		74
	NG34		71
	NG35		68
	AVG RMTK		E, IT
	RM17		
ł	RM18		51
T1-6-6-2	AVG	RŤ	58

TABLE XXIII FRACTURE TOUGHNESS TEST SUMMARY (Continued) (Longitudinal)

166

Ş¥.

1. 48 L

,	Spec.	K _{Ii}	Time	Notes
Alloy	Ident.	(ksi √in)	(Min)	
Ti-6-4	AE35 AE36 AE37 AE38 AE39 AE40 AE41 AE41 AE42 AE43 AE44	55 40 23 31 42 40 36 43 38 45	1 3 180 120 180 180 6000 6 60 3	Fail Fail No Failure No Failure No Failure No Failure Fail No Failure Fail
	CG36 CG37 CG38 CG39 CG40 CG41 CG42 CG42 CG43 CG44 CG45	43 51 48 45 52 51 42 42 39 53	180 3 2 6780 3 3 74 78 1	No Failure Fail Fail No Failure Fail Fail No Failure No Failure Fail
Ti-6- 4	EM19	29	187	No Failure
	EM20	39	1083	No Failure
	EM21	47	5	Fail
	EM22	42	10	Fail
	EM23	42	6015	No Failure
	EM24	43	90	No Failure
Ti-8-1-1	FE35 FE36 FE37 FE38 FE39 FE40 FE41 FE42 FE43 FE44	40 25 36 43 35 37 34 43 40 37	3 180 180 78 4 180 7020 6 6 4	Fail No Failure No Failure Fail No Failure No Failure Fail Fail Fail
Ti-8-1-1	HG 36	34	180	No Failure
	HG 37	56	4	Fail
	HG 38	40	9	Fail

 TABLE XXIV
 DELAYED
 FAILURE TEST
 SUMMARY

 (Room Temperature, Longitudinal)

167

Sine Action

Alloy	Spec. Ident.	K _{Ii} (ksi √in)	Time (Min)	Notes
T1-8-1-1	HG39	38	35	Fail
j . j	HG40	36	2700	Fail
	HG41	33	6840	No Failure
	HG42	47	9	Fail
í í	HG43	50	9	Fail
	HG44	40	80	No Failure
	HG45	41	10	Fail
	KM1.9	34	181	No Failure
	KM20	36	17	Fail
	KM21	39	6	Fail
[KM22	32	6009	No Failure
•	km23	40	85	No Failure
Ti-8-1-1	KM24	43	5	Fail
T1-6-6-2	LE35	51	1	Fail
4	LE36	43	1	Fail
	le37	29	180	No Failure
	LE38	34	1	Fail
	LE39	36	1	Fail
	LE40	41	5880	No Failure
	LE41	34	240	No Failure
	LE42	37	1	Fail
	LE43	38	60	No Failure
	le44	39	60	No Failure
	N G36	37	180	No Failure
	NG37	46	180	No Failure
	NG 38	57	2	Fail
	NG39	52	2	Fail
	NG40	42	5640	No Failure
	NG41	46	60	No Failure
	NG42	53	2	Fail
	NG43	51	65	No Failvre
	NG44	58	2	Fail
 > 	NG45	63	1	Fail
	RM19	27	185	No Failure
j i i	RM20	36	1055	No Failure
	RM21	51	2	Fail
	RM 22	48	2	Fail
	RM23	36	6003	No Failure
Ti-6-6-2	RM24	41	3	Fail

TABLE XXIV DELAYED FAILURE TEST SUMMARY (Continued) (Room Temperature, Longitudinal)

50

168

A residence and

Alloy	Specimen ID	Stress (k3i)	Test Temp	Creep Strain (in/in)	Time (Hr)	Remarks
Ti-6-4	AE-4	109	'ioof	-	.15	Failed
(TUS 110 TYS 89)	AE-6	108		0 .0038 .0052 .0057 .0066 .0067	0 1 2 3 68 120	Unloaded
	AE5	107		C .0028 .0039 .0046 .0050 .0054 .0060 .0060	0 1 2 3 4 17 89 115	Unloaded
	AE-1	105		0 .0001 .0008 .0010 .0012 .0012 .0012 .0014	0 1 20 117 261 525 597 964	Unloaded
Ti-8-1-1	FE-2	114		-	.05	Failed
(TUS 115 TYS 89)	FE 6	114		-	0	Failed on Loading
	FE. 4	113		0 .0038 .0048 .0057 .0060 .0062 .0062	0 1 18 90 162 192	Unloaded
	FE-3	115	цорг	0 0 .0002 .0002	0 257 353 426	Unloaded

TABLE XXV CREEP TEST SUMMARY

<u>у</u>ф....

169

. °

Alloy	Specimen ID	Stress (ksi)	Test Temp	Creep Strain (in/in)	Time (Hr)	Remarks
Ti-8-1-1	FE-1	109	400F	0 .0001 .0006 .0008 .0008 .0011 .0011	0 1 20 260 525 597 988	
T1-6-6-2	1 E- 6	130	400F	-	0	Failed on Loading
(TUS 125	LE- 5	128	no meas	surements	116	Unloaded
TIS 100)	le-4	126	no meas	surements	336	Unloaded
	le-3	124		0 .0230 .0373 .0382 .0383 .0391 .0396 .0396	0 19 187 595 691 859 960	Unlcaded
	IE-2	121		0 .0013 .0016 .0016 .0020 .0021 .0023 .0023 .0027	0 1 3 5 71 96 167 335 458	Unloaded.
	IE-1	119	400F	0 .0011 .0014 .0017 .0019 .0019 .0020 .002 .002 .002 .002 .002 .002	0 1 2 4 20 92 116 188 1428 596	

No. in

·

Alloy	Specimen ID	Stress (ksi)	Test Temp	Creep Strain (in/in)	Time (Hr)	Remarks
' fi-6-6- 2	LE-1		400F	.0025 .0025	860 940	Unloaded
Ti-6-4	AE-15	100	600F	-	0	Failed on Loading
(TUS 101 TYS 77)	AE-19	100.0		0 .0003 .0006 .0008 .0009 .0014 .0026 .0039 .0044	0 1 2 3 4 5 21 93 261 333	
	AE-17	99		0 .0006 .0007 .0009 .0013 .0020 .0025	0 1 5 23 71 147	Unloaded
	AE-13	98		0 .0006 .0008 .0015 .0018 .0021 .0021 .0021 .0024 .0025 .0025	0 19 235 307 403 643 739 810 978	Unloaded
	AE-1 6	95	600F	0 .0004 .0006 .0008 .0011 .0013 .0021	0 1 5 24 96 192 264	

Alloy	Specimen ID	Stress (ksi)	Test Temp	Creep Strain (in/in)	Time (Hr)	Remarks
Ti-6-4	AE-16	95	600F	.0022 .0023 .0023	672 768 941	Unloaded
	AE-13	93		0 .0003 .0004 .0003 .0021 .0021 .0027 .0034 .0044 .0048 .0048 .0050 .0051	0 1 3 4 5 22 46 118 214 382 718 957	Unloaded
	AF -14	89.0		0 .0006 .0009 .0010 .0010 .00105	0 1 90 498 1097 1169	
	AE-18	79.0		0 ,0006 ,0006 ,0008 ,0026 ,0032	0 2 22 477 645	
Ti-8-1-1	FE-22	107		-	0	Failed on Loading
(TUS 107 TYS 81)	FE-1 8	106		-	0	Failed on Loading
	FE-13	105	600 F	0 .0002 .0002	0 1 141	Unloaded

.1

Alloy	Srecimen ID	Stress (ksi)	Test Temp	Creep Strain (in/in)	Time (Hr)	Remarks
Ti-8-1-1	FE-14	105.0	600F 600F	0 .0004 .0006 .0009 .0018 .0021 .0024	0 2 20 235 475 643	
	FE-?3	104	-	-	0	Failed on Loading
	FE-21	102.0	600F	0 .0002 .0003 .0004 .0007 .0010 .0013 .0017	0 1 2 3 19 91 258 426	
	13 -24	100.0		0 .0003 .0008 .0009 .0010 .0012 .0014	0 1 22 70 237 405 477	
	FE-17	95.0		0 .0001 .0004 .0006 .0007 .0007	0 1 16 65 232 472	
	FE-15	81.0	600F	0 .0004 .0005 .0005 .0006 .0006	0 2 20 260 500	

4

ALE.

Å

17

173

£,

Alloy	Specimen ID	Stress (ksi)	Test Temp	Creep Strain (in/in)	Time (Hr)	Remarks
T1-6-6-2	IE-14	127	600F	-	0	Failed on Loading
(TOS)21 TYS 97)	IE-15	123		-	0	Failed on Loading
	LE-21	121		-	0	Failed on Loading
	LE-13	120		0 .0018 .0027 .0033 .0037 .0086 .0120 .0200 .0223 .02145 .0273 .02145 .0273 .02145 .0273 .03 ¹ 49 .03 ¹ 49 .03 ¹ 49 .03 ¹ 49 .03 ¹ 49 .03 ¹ 9 .0390 .0407 .0434 .0457 .0471	0 1 2 3 4 20 4 40 188 2 3 40 4 7 2 40 188 3 40 4 7 2 40 12 3 40 4 7 2 40 4 7 2 40 4 7 2 40 4 7 40 12 3 40 4 40 12 3 40 12 12 12 10 12 12 12 12 12 12 12 12 12 12 12 12 12	Unloaded
	IE-16	117	600F	0 .0009 .0012 .0016 .0066 .0072 .0081 .0090 .0104 .0114 .0120 .0123 .0129 .0134	0 2 4 93 140 189 261 357 525 597 765 861 937	Unloaded

The second se		_				
Alloy	Specimen ID	Stress (ksi)	Test Temp	Creep Strain (in/in)	Time (Hr)	Remarks
'Ti-6-6-2	l£-18	114.0	600F	0 .0009 .0012 .0014 .0015 .0028 .0040 .0052 .0060	0 1 2 3 5 41 112 376 616	
	LE-17	112		0 ,0006 .0008 .0009 .0015 .0024 .0033 .0042 .0054	0 1 3 5 24 71 142 310 646	
	le-20	100.0	600 F	0 .0004 .0006 .0008 .0016 .0020 .0021 .0022 .0024	0 1 2 3 21 94 166 262 430 502	
TH-6-4 (TUS 93 TYS 73)	AE-2	85	800F 800F	0 .0037 .0058 .0074 .0089 .0265 .0410 .0425 .0425	0 1 2 3 4 21 45 69 77	Failed
				l 1		

Alloy	Specimen ID	Stress (ksi)	Test Temo	Creep Strain (in/in)	Time (Hr)	<u>Remarks</u>
T1-6-4	AE-3	75	800F	0 .0014 .0026 .0032 .0077 .0120 .0183 .0264 .0378 .0431	0 1 2 18 43 91 163 259 336	Unloaded
TI-8-1-1 (TUS 99 TYS 72)	¥2-12	95		0 .0002 .0003 .0012 .0038	0 2 20 68 1 3 9	Failed
	FE-5	85		0 .0006 .0016 .0028 .0044 .0056 .0070 .0084	0 18 42 90 162 258 330	Unloaded
	FE-11	72.0		0 .0003 .0004 .0006 .0007 .0028 .0039 .0043	0 1 2 3 4 92 260 332	
T1-6-6-2 (TUS 109 TYS 87)	le-9	98	800F	0 .0190 .0306 .0393 .0474 .1372	0 2 3 4 14	Failed

Alley	Specimen ID	Stress (ksi)	Test Temp	Creep Strain (in/in)	Time (min)	Remarks
Ti-6-4 (TUS 101 TYS 77)	AE-21	98	70C6	0 .0003 .0009 .0015 .0017 .0017	0 1 10 25 40 60	At load Unloaded
	AE-22	89		0 .0009 .0013 .0014	0 5 10 60	At load Unloaded
	AE-23	79		0 .0002 .0004 .0009 .0012 .0012	0 5 10 15 25 60	At load Unloaded
	AE-24	71		0 .0012 .0014 .0016 .0017 .0018 .0018	0 5 15 20 30 70 80	At load Unloaded
Ti-8-1-1	FE-16	107		-	-	Failed on loading
(TUS 107 TYS 81) FE-19	103	600F	0 .0015 .0018 .0021 .0024	0 5 10 20 34	At load Failed

÷.

liez V

TABLE XXVI RAPID HEAT AND LOAD CREEP TEST SUMMARY

Alloy	Specimen ID	Stress (ksi)	Test Temp	Creep Strain (in/in)	Time (min)	Remarks
14-8-1-1	FE-20	81	600F	0	0	At load
(TUS 107 TYS 81)				.0004 .0006	5 60	Unloaded
Ti-6-6-2	LE-19	119		-	0	Failed on loading
(TUS 121 TYS 97)	LE-22	112				
	L. L.			0 .0009 .0015 .0018	0 5 10 30	At load
				.0018	60	Unloaded
	LE-23	100		0 .0004 .0005 .0006	0 5 10 25	At load
	: !			,0006	60	Unlcaded
	LE-24	90	600F	0 .0006 .0007 .0008 .0010 .0010	0 5 10 15 25 60	At load
Ti-6-4	AE-9	90	800F			A+ 1
(TUS 93 TYS 73)				0 .0027 .0048 .0066 .0081 .0097 .0165 .0335 .0450	0 1 2 3 4 5 10 15 20	At load
		90	800F	.0585	25	Failed

TABLE XXVI RAPID HEAT AND LOAD CREEP TEST SUMMARY (Continued)

王朝后,王大王朝

178

<u>مر بر م</u>

Alloy	Specimen ID	Stress (ksi)	Test Temp	Creep Strain (in/in)	Time (min)	Remarks
Ti-6-4 (TUS 93 TYS 73)	AE-7	85	800F	0 .0007 .0012 .0016 .0019 .0020 .0022 .0025 .0028 .0030	0 5 10 15 25 30 35 45 50 60	At load Unloaded
	AE-10	79		0 .0006 .0012 .0016 .0019 .0021 .0023 .0025 .0027 .0029	0 5 10 15 20 25 35 40 50 60	At load Unloaded
	AE-8	75		0 .0004 .0007 .0012 .0014 .0016 .0018 .0022 .0024 .0026 .0028	0 5 10 15 20 25 30 40 45 50 60	At load Unicaded
	AE-12	65	800F	0 .0005 .0006 .0007	0 5 10 35 65	At load Unloaded

TABLE XXVI RAPID HEAT AND LOAD CREEP TEST SUMMARY (Continued)

.

and the second

179

.

Alloy	Specimen ID	Stress (ksi)	Test Temp	Creep Strain (in in)	Time (min)	Remarks
T1-6-4	AE-11	58	800F	0 .0004 .0006 .0008 .0010 .0012 .0012	0 5 10 20 30 35 60	At load Unlcaded
Ti-8-1-1	FE-7	94		-	0	Failed on loading
(TUS 99 TYS 72)	FE-C	85		0 .0008 .0010 .0014 .0016 .0018 .0020	0 5 10 15 20 45 60	At load Unloaded
	FE-9	72		0 .0003 .0005 .0006 .0007 .0008	0 5 10 25 55 70	At load Unloaded
	FE-10	58	800F	0 .0002 .0005 .0006 .0008 .0010	0 5 10 15 25 40 70	At load Unloaded

TABLE XXVI RAPID HEAT AND LOAD CREEP TEST SUMMARY (Continued)

Alloy	Specimen ID	Stress (ksi)	Tost Temp	Creep Strain (in/in)	Time (min)	Remarks
Ti-6-6-2 (TUS 109 TYS 87	LE-10	98	SOOF	0 .0014 .0028 .0038 .0050 .0159 .0106 .0144 .0178 .0209 .0242 .0275 .0305 .0336 .0336 .0336 .0396 .0428 .0456	0 1 2 5 4 5 0 15 20 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	At load Unloaded
	LE-7	88	Soof	0 .0015 .0030 .0039 .c048 .0060 .0067 .0075 .0081 .0087 .0090 .0097 .0105	0 5 10 15 20 25 30 35 45 55 60	At load Unloaded

TABLE XXVI RAPID HEAT AND LOAD CREEP TEST SUMMARY (Continued)

σ

Ş

` ;

181

::

Alloy	Specimen ID	Stress (ksi)	Test Temp	Creep Strain (in/in)	Time (min)	Remarks
Ti-6-6-2	LE-9	78	800F	0 .0016 .0028 .0037 .0044 .0052 .0060 .0067 .0070 .0074 .0078 .0082 .0085	0 5 10 15 20 25 30 35 40 55 60	At load Unloaded
	LE-11	69	800F	0 .0008 .0012 .0016 .0022 .0026 .0032 .0038 .0042 .0044 .0046 .0048	0 5 10 15 20 25 35 40 45 50 55 60	At load Unloaded

TABLE XXVI RAPID HEAT AND LOAD CREEP TEST SUMMARY (Concluded)

1914) 1914)

TABLE XXVII FATIGUE TEST SUMMARY, $K_{T} = 1.0$

Range Ratio: R = .1 TEST TEMP.: ROOM 1300 CPM Grain Direction: Longitudinal

Allo	оу	Specimen Number	TUS (ksi)	Max Stress Net Area (ksi)	Cycles To Failure	Remarks
Ti-6-	-4	CG-21	145	120	57,630	
		-24	1	110	59,225	
		-16		100	219,045	
		-23		95	769,125	
		-17		90	1,110,525	
		-18		85	2,582,037	
		-19		80	3,316,840	
		-25		78	8,198,675	
		-20		75	4,811,562	
		CG-22	145	72	17,774,195	
		DK- 46	145	130	36,900	
		-47		110	111,780	
		- 53		100	809,820	
		-48		90	220,500	
		-51		85	219,780	
		-54		82	88,920	
		-49		80	2,265,000	
		-55		78	7,714,620	
		DK-5 0	145	75	6,647,400	No Failure
		BK-53	141	120	91,025	
		-47	Ï	110	259,500	
		-48		100	1,355,750	
		-54		95	2,542,250	
		-46		90	2,904,700	
		-49		85	3,585,250	
ļ		- 35		8ż	7,989,600	
Ti-6-	-4	-50	141	78	108,405	

	Alloy	Specimen Number	TUS (ksi)	Max Stress Net Area (ksi)	Cycles To Failure	Remarks
]	T1-6-4	BK-51	141	78	353,405	
		BK-52	141	76	10,039,500	
		EM-11	142	120	34,177	Heavy Extr
		-12		95	982,632	Heavy Extr
		-13		76	3,512,105	Heavy Extr
		-14		72	290,280	Heavy Extr
		EM-15	142	72	10,607,900	Heavy Extr
	T1-6-4	HG-24	133	130	25,020	
	T1-8-1-1	-23		105	479,700	
	1	-16		100	822,960	
Ì		-17		97	792,180	
		-18		90	54,360	
		- 21		88	677,160	
		-25		87	1,293,300	
		-19		85	6,845,000	
1		HG-20	133	82	10,083,600	No Failure
		JK- 46	134	110	105,540	
		-47		100	90,930	
		-48		90	1,734,500	
∤		-49		85	3,678,000	
		-50		82	1,045,350	1
		-51		80	1,768,880	
		-54		77	6,349,860	
		-53		75	9,160,900	
		JK-55	134	72	8,554,700	
		GK- 48	140	120	157,866	
		-46		110	445,000	ļ
		~ 53 ·		105	638,750	ļ
	Ti-8-1-1	-51	140	100	71,000	

TABLE XXVII FATIGUE TEST SUMMARY, $K_{T} = 1.0$ (Continued)

Ailoy	Specimen Number	TUS (ksi)	Max Stress Net Area (ks1)	Cycles To Failure	Remarks
Ti8A1-	GK-52	140	95	1,286,010	
1Mo-1V	-47	ł	90 ·	1,159,860	
	-49		85	2,004,750	
	-54		82	1,969,680	
	-50		61	14,170,750	No Failure
	3K-55	140	75	13,345,700	
	KM-11	139	120	101,723	Thick Extr
	-12		100	54,390	Thick Extr
	-14		90	212,440	Thick Extr
	-13		80	2,541,500	Thick Extr
	KM-15	139	75	1,786,640	Thick Extr
1:16A1-	NG-18	147	120	77,040	
6V-2Sn	-19		110	429,300	
	-25		100	719,100	
	-21		95	854,820	
	-23		92	2,823,840	
	-16		90	3,631,680	
	-24		88	1,601,280	
	-17		85	455,400	
	-22		83	8,527,320	
	NG-20	147	80	10,144,800	No Failure
	FK-51	145	120	93,250	
	-49		100	583,560	
	-53		95	1,831,860	
	-52		90	2,456,820	
	-54		85	1,738,800	
	- 55		80	2,404,800	
	-50		78	9,237,600	
	-47		75	4,053,900	
Ti-0-0-2	FK-48	345	73	11,780,000	No Failure

TABLE XXVII FATIGUE TEST SUMMARY, $K_{T} = 1.0$ (Continued)

Alloy	Specimen Number	TUS (ksi)	Max Stress Net Area (ksi)	Cycles To Failure	Remarks
T1-6-6-2	MK-48	157	120	258,660	
	-47		110	414,900	
	-46		100	987,660	
	-50		95	847,080	
	-49		90	3,472,560	
	-55		88	5,279,940	
	-54		87	10,000,000	No Failure
	-51		85	6,570,720	
	MK-52	157	82	18,243,000	No Failure
	RM-11	155	120	41,760	Thick Extr
	-15		110	448,610	Thick Extr
	-12		95	2,297,240	Thick Extr
	-14		90	2,844,180	Thick Extr
Ti-6-6-2	RM-13	155	82	4,830,920	Thick Extr

TABLE XXVII FATIGUE TEST SUMMARY, $K_{T} = 1.0$ (Concluded)

Alloy	Specimen Number	Range Ratio	Max Stress Net Area (ksi)	Cycles To Failure	Remarks
Ti-6-4	CG-3 DK-2 BK-5 DK-3 BK-2 CG-1 DK-1 DK-4 BK-3 CG-2 CG-5 DK-5	-1.0	50 50 40 40 35 35 30 30 29 26 26	44,798 48,825 22,320 71,145 287,550 509,400 501,500 1,364,000 6,412,000 5,600,000 6,460,000	
	CG-9 BK-19 DK-17 CG-6 DK-19 BK-16 CG-10 DK-16 BK-17 BK-18 CG-7 DK-18 BK-20 DK-20 CG-8	+ .01	80 80 70 65 60 60 55 50 46 45 45 45 42 41 40	23,760 19,440 28,426 65,600 39,322 532,260 695,700 838,780 1,895,550 2,567,800 2,256,300 3,931,200 3,000,000 797,580 2,611,300	
T1-6-4	DK-31 CG-13 BK-33 DK-32 CG-11 BK-34 CG-12 DK-33 BK-31 CG-14 BK-32 BK-35 CG-15	+ .43	93 80 80 75 71 70 60 60 60 60 57 56 55 54	39,060 399,600 52,740 129,600 77,040 1,258,820 2,937,200 1,353,900 3,827,100 1,429,500 5,196,500 8,243,100 5,770,000	

TABLE XXVIII FATIGUE TEST SUMMARY, $K_{T} = 0.76$, ROOM TEMPERATURE (Grain Direction: Longitudinal)

ç

187

Alloy	Specimer Number	Range Ratio	Max Strese Net Area (ksi)	Cycles To Failure	Remarks
Ti-8-1-1	HG-4 GK-1 JK-2 GK-4 HG-1 JK-1 GK-2 GK-3 JK-4 HG-2 GK-5 HG-5 JK-3 HG-3 JK-3 JK-5	-1.0	50 50 45 40 35 35 35 32 30 29 29 27 26 25 23	19,980 23,460 39,420 48,600 216,180 110,700 1,510,900 1,715,900 1,816,500 2,793,600 2,638,800 8,788,100 1,220,100 10,776,600 10,000,000	No Failure No Failure
	JK-18 HG-8 GK-19 HG-10 JK-16 GK-20 GK-17 HG-6 JK-17 GK-16 HG-7 JK-19 HG-9 JK-20	+ .01	80 71 75 65 65 60 50 50 50 50 50 50 50 50 50 50 50 50 50	27,940 33,120 37,800 27,000 55,965 485,770 216,470 663,480 1,187,400 1,595,570 944,640 11,580,000 10,700,000	No Failure No Failure
T1-8-1-1	HG-13 GK-35 JK-33 GK-34 HG-11 HG-12 JK-32 EG-14 JK-35 GK-31 HG-15	+ .43	00 20 85 80 75 70 65 65 62 60 60 58	70,560 47,160 26,230 162,330 378,540 394,000 1,125,700 340,000 2,404,600 655,900 10,000,000 9,320,000	No Failure No Failure

TABLE XXVIII FATIGUE TEST SUMMARY, $K_{T} = 2.16$, ROOM TEMPERATURE (Continued) (Grain Direction: Longitudinal)

189

「「ない」などのないので、「ない」ないであるというない。

Alloy	Specimen Number	Renge Ratio	Max Stress Net Area (ksi)	Cycles To Failure	Remarks
T1-6-6-2	PK-2 NG-1 NG-4 PK-1 MK-3 NG-2 PK-4 MK-4 PK-5 PK-3 NG-3	-1.0	45 40 35 35 35 30 30 30 28 25 25	52,095 25,012 134,460 240,040 395,200 499,980 1,405,000 7,399,000 1,693,000 10,152,000 11,130,000	No Failure No Failure
	NG-8 PK-19 MK-18 NG-6 PK-17 MK-19 NG-7 PK-16 MK-17 PK-18 NC-10 MK-20 PK-20 MK-16	+ .01	75 75 70 60 60 50 50 50 50 50 50 50 50 50 50 50 50 50	27,000 30,950 25,920 329,580 48,240 353,700 2,536,200 833,940 1,800,000 3,608,400 12,636,800 11,914,000 10,000,000 7,506,000	No Failure No Failare No Failure No Failure No Failure
T1-6-6-2	NG-14 MK-32 NG-15 FK-32 MK-35 NG-11 MK-33 PK-31 MK-31 NG-12 MK-34 NG-13	+ .43	90 85 80 80 75 75 70 70 67 67 67	37,080 28,620 81,540 36,900 801,000 895,500 746,860 46,800 3,643,200 1,036,600 10,000,000 1,566,180	No Failure
 K_T Base Range I 					

TABLE XXVIII FATIGUE TEST SUMMARY, $K_T = 2.76$, ROOM TEMPERATURE (Concluded) (Grain Direction: Longitudinal)

189

Allov	Specimen	Range	Max Stress Net Area	Cycles	Remarks
	Number	Ratio	(ksi)	To Failure	
Ti-6-4	BK-7	-1.0	45	16,920	
1	dk-6		40	56 , 832	
	DK-9		35	66,040	
	вк-6		35	40,500	
	BK-9		33	63,720	
	DK-7		30	519,400	
	FK- 8		30	3,129,400	
	BK-10		27	2,008,200	
	DK-10	-1.0	25	1,372,500	
	DK-22	+ .01	65	23,220	
	BK- 23		61	42,122	
	DK-21		55	37,620	
	BK- 24		50	1,809,300	
	BK-25		46	1,371,600	
	DK-23		45	1,658,800	
	DK-24		42	5,104,700	
	DX-25	+ .01	40	3,983,200	
T1-6-4	BK-37	+ .43	80	19,440	
					1

1 drait

STRING THE REAL

TABLE XXIX FATIGUE TEST SUMMARY, $K_{T} = 2.76$

Test Temperature: 400°F Grain Direction: Longitudinal

Alloy	Specimen Number	Range Ratio	Max Stress Net Area (ksí)	Cycles To Failure	Remarks
Ti-6-4	вк-38	+ .43	72	391,320	
	DK-3 6		70	34,920	
	ык-36		65	528 , 900	
	BK-40		63	1,854,000	
	DK-37		60	880,740	
	DK- 40		47	10,253,300	No Failure
Ti-6-4	DK-39	+ .43	45	11,043,000	No Failur¢
Ti-8-1-1	GK- 6	-1.0	45	29,260	
ł	јк- 6		40	18,012	
	JK-7		30	2,182,400	
	GK-7		30	1,131,170	
	јк- 8		27	1,273,100	
	JK-10		25	1,586,500	
	GK- 9	-1.0	25	10,000,000	No ⊽ailure
	GK-22	+ .01	65	23,708	
	JK-21		60	50,837	
	JK-25		55	109,980	
	GK2 ¹ 4		55	353,700	
	JK-22		50	357,180	
Ti-8-1-1	GK-21	+ .01	50	393,120	

TABLE XXIX FATIGUE TEST SUMMARY, $K_{T} = 2.76$ (Continued)

Allcy	Specimen Number	Range Ratio	Max Stress Net Area (ksi)	Cycles To Failure	Remarks
Ti-8-1-1.	JK- 23	+ .01	47	103,020	
•	GK-23		45	12,585,500	
	JK-24	+ .01	40	7,530,240	
	GK-37	+ .43	80	287,1460	
	JK-37		75	92,700	
	GK-38		75	202,680	-
	JK-3 6		65	1,691,200	
	GK-3 6		65	1,007,300	
	JK-40		63	2,674,800	
	GK-40		60	2,050,900	
Ti-8-1-1	JK-39	+ .43	58	13,402,800	No Failure
Ti-6-6-2	MK- 9	-1.0	50	16,790	
	МК-?		40	1 , 532,500	
	РК-7		30	33,320	
	мк- б		30	4,808,700	
	PK-10		28	1,963,900	
	рх-8		25	3,120 ,3 00	
	PK-9	-1.0	22	10,504,000	No Failure
¥1-6-6-2	MK-2);	+ .01	70	30.960	

TABLE XXIX FATIGUE TEST SUMMARY, $K_{T} = 2.76$ (Continued)

192

ないので、「日本の

	Alloy	Specimen Numoer	Range Ratio	Max Stress Net Area (ks1)	Cycles To Feilure	Remarks
T	Ti-6-6-2	PK- 22	+ .01	67	22,140	
	t	PK-23		55	400,640	
		MK-21		50	475,920	
		PK-24		46	552 , 500	
		MK-23		46	1,658,500	
		MK-25		42	18,478,200	No Failure
		PK-25	+ .01	4 0	1,182,300	
		MK- 39	+ 43	90	26,460	
		MK-37		80	659 , 160	
		MK-36		75	882 , 900	
		PK-36		70	52,200	
		MK- 38		70	1,896,800	
		MK - 40		67	842,760	
		PK-38		62	68,220	
		PK-4 0		60	7,894,600	
	ł	РК-37		55	5,785,500	
	Ti-6-6-2	рк-39	+ .43	50	8,649,500	

TABLE XXIX FATIGUE TEST SUMMARY, $K_{T} = 2.76$ (Concluded)

Alloy	Specimen Number	Range Ratio	Max Stress Net Area (ksi)	Cycles To Failure	Remarks
Ti-6-4	DK-13 BK-15 DK-12 BY 11 DK-14 BK-12 PK-14 DK-15	-1.0	40 40 30 25 25 23 20	23,800 22,120 711,180 2,569,800 3,533,800 1,808,500 3,252,400 3,256,000	
	BK-27 DK-27 DK-26 BK-29 BK-26 DK-28 BK-28 DK-29 DK-30 BK-30	+ .01	78 62 55 50 51 48 45 43 40 35	14,766 14,400 287,270 45,720 991,430 1,714,600 78,840 2,356,500 4,001,900 10,000,000	No Failure
Ti-6-4	BK-43 DK-42 DK-44 BK-41 DK-41 BK-42 DK-45 BK-44 BK-45	+ . ¹ 43	75 70 65 60 60 55 53 50	34,560 43,740 3,176,600 1,860,700 2,475,500 337,500 10,000,000 3,156,300 12,702,600	No Failure No Failure
Ti-8-1-1	GK-12 JK-11 GK-11 JK-14 GK-15 JK-15 GK-14	-1.0	40 35 30 28 26 24 24 24	28,860 25,560 446,110 731,160 2,088,700 3,511,400 10,386,000	No Failure
Ti-8-1-1	JK-26 JK-29 GK-26 JK-27 GK-28	+ .01	60 55 50 45 45	42,415 208,580 794,000 1,208,500 205,000	

TABLE XXX FATIGUE TEST SUMMARY $K_{T} = 2.76, 600^{\circ}$ F (Grain Direction: Longitudinal)

194

e

Alloy	Specimen Number	Range Ratio	Max Stress Net Area (ksi)	Cycles To Failure	Remarks
Ti-8-1-1	GK-29 JK-28 JK-30 GK-30	+0.01 +0.01	42 40 38 37	2,304,900 8,229,300 4,847,300 10,292,500	No Failure
T2-8-1-1	GK-45 GK-43 JK-42 JK-43 GK-41 JK-41 GK-42 JK-44 GK-44 JK-45	+0.43	90 80 75 72 70 65 63 60 57 56	22,860 312,750 55,620 176,820 637,970 1,136,200 683,350 761,000 10,000,000 10,000,000	No Failure No Failure
T1-6-6-2	PK-12 MK-15 PK-15 PK-11 MK-11 PK-13 MK-14 PK-14	-1.0	40 40 35 30 26 25 24	35,520 163,020 417,180 436,850 1,080,200 6,086,800 15,528,000 10,310,000	No Failure No Failure
	MK-28 PK-26 MK-30 PK-28 MK-26 MK-27 PK-27 PK-27 MK-29 PK-30 PK-29	+0.01	65 60 50 50 45 43 42 40 38	42,282 28,080 239,180 127,260 383,220 2,175,000 3,586,500 10,000,000 10,000,000 12,760,000	No Failure No Failure No Failure
Ti-6-6-2	MK-44 PK-43 MK-42 PK-41 PK-42 MK-41 MK-45	+0.43	90 80 80 78 70 70 63	10,800 23,400 356,220 11,000 2,397,700 3,004,900 2,366,200	

TABLE XXX FATIGUE TEST SUMMARY $K_T = 2.76$, 600° F (Continued) (Grain Direction: Longitudinal)

195

€ez,

UNCLASSIFIED	
Security Classification	
DOCUMENT (Security classification of title, body of abstract and in	CONTROL DATA - R&D ndexing annotation must be entered when the overall report is classified)
I. ORIGINATING ACTIVITY (Corporate author)	24. REPORT SECURITY CLASSIFICATION
BURBANK, CALIFORNIA	26 GROUP
·	
DEVELOPMENT OF ENGINEERING DATA ON	TITANIUM EXTRUSION
FOR USE IN AEROSPACE DESIGN .	/
SUMMARY TECHNICAL REP. 1. 27 Ju	in 66-31 May 672)
COTTBRATH TANK	
Um 67 (19) 7406	74. TOTAL NO, OF PAGES 75. NO. OF REFS
	Se. ORISINATOR'S REPORT NUMBER(S)
54H 33(615)-5080)	(DATE IN TR-IN 100)
(16)AF-7381)	WHFML UTIM-61-101
· (17)7200 24)	95. OTHER REPORT NO(S) (Any other numbers that may be assigned the report)
<u>.</u> (2728106)	
II. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY AIR FORCE MATERIAIS IABORATORY, RTD.
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY AIR FORCE MATERIALS IABORATORY, RTD, AIR FORCE SYSTEMS COMMAND WRIGHT PATTERSON AFB, OHIO
11. SUPPLEMENTARY NOTES 13. ABSTRACT Mechanical property data for Ti6Al- shapes in annealed tempers were obt +800 F to provide a base for develo materials. Data obtained included strength, compressive yield strengt stress-rupture, fatigue and fractur	12. SPONSORING MILITARY ACTIVITY AIR FORCE MATERIALS LABORATORY, RTD, AIR FORCE SYSTEMS COMMAND WRIGHT PATTERSON AFB, OHIO -4V, Ti8A1-1Mo-1V and Ti6A1-6V-2Sn extruded tained at test temperatures from -110°F to opment of design information for these ultimate tensile strength, tensile yield th, shear bearing, impact properties, creep, re toughness characteristics.
11. SUPPLEMENTARY NOTES 13. ABSTRACT Mechanical property data for Ti6Al- shapes in annealed tempers were obt +800°F to provide a base for develor materials. Data obtained included strength, compressive yield strengt stress-rupture, fatigue and fractur Separate heats of material in each separate suppliers. Two section sit to provide information on size effe as practicable within the scope of scatter.	12. SPONSORING MILITARY ACTIVITY AIR FORCE MATERIAIS IABORATORY, RTD, AIR FORCE SYSTEMS COMMAND WRIGHT PATTERSON AFB, OHIO -4V, Ti8A1-1Mo-1V and Ti6A1-6V-2Sn extruded tained at test temperatures from -110°F to opment of design information for these ultimete tensile strength, tensile yield th, shear bearing, impact properties, creep, re toughness characteristics. of the three alloys were obtained from izes were obtained from one of the suppliers ects. Tests conducted to provide data insofar this program on property variations and on
II. SUPPLEMENTARY NOTES II. SUPPLEMENTARY II.	12. SPONSORING MILITARY ACTIVITY AIR FORCE MATERIALS LABORATORY, RTD, AIR FORCE SYSTEMS COMMAND WRIGHT PATTERSON AFB, OHIO -4V, TI8A1-1MO-1V and TI6A1-6V-2Sn extruded tained at test temperatures from -110°F to opment of design information for these ultimate tensile strength, tensile yield th, shear bearing, impact properties, creep, re toughness characteristics.
 SUPPLEMENTARY NOTES IS TESTRACT Mechanical property data for Ti6Al-shapes in annealed tempers were obt +800°F to provide a base for develor materials. Data obtained included strength, compressive yield strengt stress-rupture, fatigue and fractur Separate heats of material in each separate suppliers. Two section si to provide information on size effe as practicable within the scope of scatter. Results of testing indicate that wi used in extrusion processing, extru- titanium materials produced by othe obtained generally indicates that e only the cost advantages which resu- possess advantages in developed fra- when compared with conventional alg- materials. (Distribution of this abstract is to 	12. SPONSORING MILITARY ACTIVITY AIR FORCE MATERIAIS IABORATORY, RTD, AIR FORCE SYSTEMS COMMAND WRIGHT PATTERSON AFB, OHIO -4V, Ti8A1-1Mo-1V and Ti6A1-6V-2Sn extruded tained at test temperatures from -110°F to opment of design information for these ultimate tensile strength, tensile yield th, shear bearing, impact properties, creep, re toughness characteristics. of the three alloys were obtained from lizes were obtained from one of the suppliers ects. Tests conducted to provide data insofar this program on property variations and on 1th consideration of effect of temperatures usions may be utilized in the same manuer as er methods such as rolling or forging. Data extruded material may be expected to bave not att from economy of shape design, but will acture characteristics and creep characterist: pha-beta processing of rolled or forged uni.mited)(209910)
 SUPPLEMENTARY NOTES ABSTRACT Mechanical property data for Ti6Al-shapes in annealed tempers were obt +800°F to provide a base for develor materials. Data obtained included strength, compressive yield strengt stress-rupture, fatigue and fracture. Separate heats of material in each separate suppliers. Two section sit to provide information on size effects practicable within the scope of scatter. Results of testing indicate that wi used in extrusion processing, extruitianium materials produced by othe obtained generally indicates that e only the cost advantages which resuppssess advantages in developed frawhen compared with conventional algumaterials. D FORM 1473 	12. SPONSORING MILITARY ACTIVITY AIR FORCE MATERIALS LABORATORY, RTD, AIR FORCE SYSTEMS COMMAND WRIGHT PATTERSON AFB, OHIO -4V, Ti8A1-1Mo-1V and Ti6A1-6V-2Sn extruded tained at test temperatures from -110°F to opment of design information for these ultimete tensile strength, tensile yield th, shear bearing, impact properties, creep, re toughness characteristics. of the three alloys were obtained from lizes were obtained from one of the suppliers ects. Tests conducted to provide data insofar this program on property variations and on 1th consideration of effect of temperatures usions may be utilized in the same maruer as er methods such as rolling or forging. Data extruded material may be expected to bave not all from economy of shape design, but will acture characteristics and creep characterist; pha-beta processing of rolled or forged uni.mited)(209970) UNCLASSIFIED

£

UNCLASSIFIED

4. KEY WORDS	LIN	<u>K A</u>	LINI	K 8	LIN	ĸc
	ROLE	<u>w</u> T	ROLE	WT	ROLE	WT
TITANIUM EXTRUSIONS						
MECHANICAL PROPERTIES						
T1-6A1-4VEXTRUSIONS						
Ti-8A1-1MO-1VEXTRUSIONS						
Ti-6A1-6V-2Sn EXTRUSIONS						
INSTR	UCTIONS				بروع مرتبعة ومتعاربها	ال ودهم البرام ال

1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantes, Department of Defense activity or other organization (corporate author) issuing the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Directive 5260.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of suthor(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal suthor is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7e. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. NUMBER CF R. FERENCES. Enter the total number of references cited in the report.

Sa. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.

85, 8c, & 3d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(5): Enter the official report number by which the document will be identified and controlled b ' he originating activity. This number must be unique to this . port.

9b. OTHER REPC.?T NUMBER(5): If the report has been assigned any other report numbers (sither by the originator or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.

12. SFONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation eheet shall be attached.

It is highly desirable that the abstract of classified reports be unclashified. Each paragraph of the abstract shall end with an indice on of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

> UNCLASSIFIED Security Classification