UNCLASSIFIED

AD NUMBER

AD801623

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; AUG 1966. Other requests shall be referred to Space Systems Division, Air Force Systems Command, Los Angeles, CA. This document contains exportcontrolled technical data.

AUTHORITY

SAMSO ltr dtd 24 Jan 1972

THIS PAGE IS UNCLASSIFIED

Prepared for BALLISTIC SYSTEMS AND SPACE SYSTEMS DIVISIONS AIR FORCE SYSTEMS COMMAND LOS ANGELES AIR FORCE STATION Los Angeles, California Air Force Report No. SSD-TR-66-168 Aerospace Report No. TR-669(6250-10)~9

THE EFFECT OF HEAT TREATMENT ON THE THERMAL EXPANSION OF PYROLYTIC GRAPHITE

Prepared by

E. S. Elliott and J. H. Richardson Materials Sciences Laboratory

Laboratories Division Laboratory Operations AEROSPACE CORPORATION

August 1966

Prepared for

BALLISTIC SYSTEMS AND SPACE SYSTEMS DIVISIONS AIR FORCE SYSTEMS COMMAND LOS ANGELES AIR FORCE STATION Los Angeles, California

FOREWORD

This report is published by the Aerospace Corporation, El Segundo, California, under Air Force Contract No. AF 04(695)-669.

This report, which documents research carried out from February 1965 to April 1965, was submitted on 16 September 1966 to Captain William D. Bryden, Jr., SSTRT, for review and approval.

Information in this report is embargoed under the U. S. Export Control Act of 1949, administered by the Department of Commerce. This report may be released by departments or agencies of the U. S. Government to departments or agencies of foreign governments with which the U. S. has defense treaty commitments. Private individuals or firms must comply with Department of Commerce export control regulations.

Approved

W. C. Riley, Associate Director Materials Sciences Laboratory

Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

William D. Bryden Jr., Capt USAF Space Systems Division Air Force Systems Command

-ii-

ABSTRACT

Thermal expansion was studied by x-ray techniques for three graphites: a commercially available pyrolytic graphite, PG: the same PG annealed at 3410°C for 1 hr; and AGKSP, a spectrographic grade graphite. The coefficients of thermal expansion along the C-axis a_c for the three materials are respectively: 26.5 × 10⁻⁶ (20-2400°C); 27.9 × 10⁻⁶ (20-3000°C); and 30.1 × 10⁻⁶ (20-2700°C). The value of a_c is found to increase with a decrease in the fraction of disordered layers (p) in the graphite. Discussion of this effect is extended to include the results of other studies.

CONTENTS

FORE	WORI	· · · · · · · ·	• • •	••	•••	• •	•	•	•••	•	• •	•	•	• •	•	•	•	•		•	•	•	•	ii
ABST	RACT	•••••		• ,	•••		•	•	•••		. .	·	•				•	•		•	•			iii
J.	INTR	ODUCTION	• • •				•	•			• •		•		•		•	•				•	•	1
II.	EXP	RIMENTAL					•	•		•						•	•	•		•			•	3
	А.	Materials				• •		•	•••								•						•	3
	В.	Procedure	• • •	· ·		• •	•	•	•••	•		•			•	•	•	•		•	•	•	•	4
ш.	RESU	LTS AND D	ISCU	SSI	ON		•		•••		• •	•	•	• •			•	•	• •	•	•	•	•	7
IV.	CONC	LUSION		•••	• •	• •	•					•	•		•		•	•	, ,	•			·	13
REFE	ERENC	CES					•																	15

FIGURES

1.	Configuration of Specimen Used in X-Ray Diffractometer Furnace	3
2.	X-Ray Diffractometer Furnace for G.E. XRD-5 Goniometer (Spectrometer-style base is not shown.)	5
3.	C ₀ Lattice Dimensions and Percent Thermal Expansion for AGKSP Graphite as a Function of Temperature	8
4.	C ₀ Lattice Dimensions and Percent Thermal Expansion for Unannealed Pyrolytic Graphite as a Function of Temperature	9
5.	C ₀ Lattice Dimension and Percent Thermal Expansion as a Function of Temperature for Pyroltic Graphite Treated at 3410°C for 1/2 hr	10

TABLE

Table I.	Coefficient of Thermal Expansion and Fraction	
	of Disoriented Layers for Several Graphites	11

I. INTRODUCTION

The growing demands on graphite as an aerospace material make it necessary to know the thermal expansion of selected graphites to increasingly higher temperatures. The determination of thermal expansion for pyrolytic graphite (PG) is complicated, however, by irreversible changes in the structure resulting from heat treatment at temperatures above its deposition temperature. Guentert and Cvikevich include among these changes: increased layer order, increased particle size, reduction in C-direction microstrain, and increased orientation (Ref. 1). The effect of heat treatment on the room temperature C_0 -lattice parameter has been investigated by Kctlensky and Martens (Ref. 2), Bragg and Packer (Fef. 3) and Richardson and Zehms (Ref. 4). The resultant effect on the gross thermal expansion as the result of such treatment has beem demonstrated by Pappis and Blum (Ref. 5).

Lowell (Ref. 6) has shown that the crystal lattice thermal expansion is a function of the crystallinity of the graphite. He has suggested two possible reasons for the differences he observed in the thermal expansion of several graphites: (1) pinning of a given crystallite by neighboring crystallites in the untreated graphite grains, thereby reducing the effective thermal expansion, and (2) the presence of carbon atoms which form interlayer cross links, thereby increasing the room-temperature C_0 -spacing and reducing thermal expansion along the C-axis. Steward, et al. (Refs. 7 and 8) determined the coefficient of thermal expansion a for two graphites from room temperature to 728°C. They found the coefficient of thermal expansion a to be largely independent of both the interplanar spacing d and fraction of disoriented planes p.

The purpose of this study is to extend the C-axis thermal-expansion data for annealed PG to temperatures up to 3000°C and to ascertain the effect of annealing on the thermal expansion.

-1-

II. EXPERIMENTAL

A. MATERIALS

The material used as a control for this experiment was AGKSP graphite, a commercially available manufactured graphite.¹ Pyrolytic graphite specimens were prepared from a 3/4-in. block of continuously nucleated material² which was deposited at 2150°C. The heat-treated PG specimens were further annealed at 3410°C for 1 hr in argon. The specimen configuration is shown in Fig. 1.

Fig. 1. Configuration of Specimen Used in X-Ray Diffractometer Furnace

¹National Carbon Company

²High Temperature Materials, Division of National Carbon Company

-3-

The high degree of anisotropy of the PG required that it be machined so that the basal planes of the graphite were parallel to the major surface of the specimen to permit easy measurement of the 0002 reflection. The orientation of the AGKSP was random with respect to the specimen.

B. PROCEDURE

The x-ray diffractometer furnace used in this study is shown in Fig. 2. Its operation has been described in detail in Ref. 9. Temperature measurements were made with a Micro-Optical Pyrometer. An emissivity of 0.85 (Ref. 10) was used for the AGKSP and 0.95 (Ref. 11) was used for the surface parallel to the C-axis of the PG.

The room temperature lattice parameters of the specimens were obtained using the standard G. E. XRD-5 flat sample diffraction assembly. The furnace was then placed on the x-ray spectrogoniometer and a specimen inserted and aligned on an appropriate x-ray reflection. After purging the furnace with heliuin, the specimien was heated to 800°C and a diffractograph made of the relevant reflection(s). This procedure was repeated at each temperature and finally at room temperature. The final room temperature pattern for the annealed PG was used to determine the change in observed lattice dimensions during the experiment due to possible sample warpage, furnace alignment, and permanent lattice changes. The maximum change observed from initial to final room temperature measurements was 0.12 percent.

After each run above 2000°C the specimen was cooled to room temperature, and the surface observed with the pyrometer was cleaned to remove a porous recondensed graphite deposit (Ref. 12).

The C_0 -values were calculated from the 0002 reflections. Absorption corrections were made using natural graphite crystals as a standard.

-4-

Fig. 2. X-Ray Diffractometer Furnace for G. E. XRD-5 Goniometer (Spectrometer-style base is not shown.)

ł

-5-

III. RESULTS AND DISCUSSION

The AGKSP graphite used as a control material had a fraction of disoriented planes p = 0.34. The coefficient of thermal expansion for AGKSP in the C_0 -direction as determined in this study is $a_c = 30.1 \times 10^{-6}$; Yang (Ref. 13) obtained a value of 31.9×10^{-6} for the same grade of graphite with p = 0. The agreement is reasonable if, as discussed below, a is dependent on p.

The C_0 -spacing and percent expansion of the AGKSP as a function of temperature are shown in Fig. 3. A slight departure from linearity may be noted for the thermal expansion.

The coefficient of thermal expansion of the "as received" pyrolytic graphite (p = 0.83) is $a_c = 26.5 \times 10^{-6}$ from 20 to 2100°C. Thermal expansion above 2400°C was not reported for this material because the lattice dimensions are also influenced by the irreversible changes in the structure mentioned earlier (Ref. 4). The C₀-lattice dimensions and the percent expansion as a function of temperature are shown in Fig. 4 for the "as received" PG.

The coefficient of thermal expansion in the C_0 -direction for the annealed PG is $a_c = 27.9 \times 10^{-6}$ from 20 to 3000°C. The C_0 -lattice dimension and percent expansion as a function of temperature for the annealed PG is shown in Fig. 5. The fraction of disoriented layers in this material was p = 0.39.

The effect of annealing on the PG was to reduce the room-temperature C_0 from 6.834 Å to 6.744 Å. According to the generally accepted views of Bacon (Ref. 15) and Franklin (Ref. 16) this signifies a decrease in the fraction of disoriented layers p as a result of annealing. The thermal expansion in the C_0 -direction was also measurably increased as a result of this treatment. Thus it would seem that the coefficient of thermal expansion is dependent on p. This observation may be extended to include the following data: (1) AGKSP graphite used in this study, (2) Lowell (Ref. 6), (3) Yang (Ref. 13), and (4) Steward, et al. (Ref. 8). The a and p for the various graphite in these studies are listed in Table I, where we see that in general the thermal

-7-

Fig. 3. C₀-Lattice Dimensions and Percent Thermal Expansion for AGKSP Graphite as a Function of Temperature

-8-

Carlos Solar

Fig. 4. C₀-Lattice Dimensions and Percent Thermal Expansion for Unannealed Pyrolytic Graphite as a Function of Temperature

Fig. 5. C₀-Lattice Dimension and Percent Thermal Expansion as a Function of Temperature for Pyrolytic Graphite Treated at 3140°C for 1/2 hr

Faction of Dis- ovented Layers (p)	Temperature Range, °C	Coefficient of Thermal Expansion × 10 ⁻⁶ (a)	Reference
0	20-2600	31.9	Yang
0.05	20-2527	32.8	Lowell
0.13	-196-2600	31.6	Steward, Cook & Kellett
0.24	20-2527	29.4	Lowell
0.34	20-2700	30.1	Present
0.39	20-3000	27.9	Present
0.54	20-2400	29.2	Yang
0.72	20-2527	27.9	Lowell
0.83	20-2100	26.5	Present

Table I.Coefficient of Thermal Expansion (TE) and Fraction of
Disoriented Layers for Several Graphites

expansion decreases as p increases. It is not clear at this time how thermal expansion is thus influenced, but various mechanisms have been proposed to explain the phenomenon (Refs. 3 and 6).

IV. CONCLUSION

The results of this study are summarized as follows:

- 1. The coefficient of linear thermal expansion along the C-axis for a 2150°C-deposited PG is a = 26.5×10^{-6} °C⁻¹ (20-2100°C). Measurements above 2400°C were not reported because of irreversible contractions resulting from structural changes which start to occur at this temperature in addition to the thermal expansion.
- 2. Specimens of the 2150°C-deposited pyrolytic graphite were heattreated at 3410°C for 1 hr in argon to remove the effects of the irreversible contractions resulting from the changes mentioned above. The coefficient of linear expansion for this material along the C-axis is $a_c = 27.9 \times 10^{-6}$ °C⁻¹ (20-3000°C).
- 3. The coefficient of linear expansion along the C-axis for AGKSP spectrographic graphite is $a_c = 30.1 \times 10^{-6} \,^{\circ}C^{-1}$ (20-2700 $^{\circ}C$).
- 4. Heat treatment of the pyrolytic graphite resulted in an increase in a_{c} and a reduction in p (indicated by a decrease in the C_{0} spacing). These results have been compared with those of other lower temperature studies; all results demonstrate a general dependence of a on p.

REFERENCES

- 1. O. J. Guentert and S. Cvikevich, "X-Ray Study of the Effects of Heat Treatment on Pyroltyic Graphites," <u>Proceedings of the Fifth Conference</u> on Carbon, Pergamon Press, New York (1962) pp 473-481.
- M. V. Kotlensky and H. H. Martens, <u>Tensile Properties of Pyrolytic</u> <u>Graphite to 5000°F</u>, Technical Report 32-71, Jet Propulsion Laboratory, Pasadena, California (1961).
- 3. R. H. Bragg and C. M. Packer, X-Ray Investigations of Heat Treated <u>Pyrolytic Graphite</u>, Report No. 6-90-62-10, Lockheed Missiles and Space Company, Sunnyvale, California (January 1962).
- 4. J. H. Richardson and E. H. Zehms, <u>Materials and Structures</u>, <u>Physical</u> <u>Measurement Program</u>, <u>Fyrolytic Graphite</u>, TDR-669(2240-64-TR-2, Aerospace Corporation, El Segundo, California p 4 (1 October 1962).
- 5. J. Pappis and S. L. Blum, "Properties of Pyrolytic Graphite" J. Am. Ceram. Soc. 44 (12) 592, (1961).
- 6. C. E. Lowell, <u>Research and Development on Advanced Graphite</u> <u>Materials Vol. XXIV - The Thermal Expansion of Graphite in the C</u> <u>Direction</u>, WADD-TR-61-72 AFML, Research and Technology <u>Division</u>, AFSC, Wright-Patterson AFB (1963).
- 7. E. G. Steward and B. P. Cook, "X-Ray Measurement of Thermal Expansion Perpendicular to the Layer Planes of Artificial and Natural Graphites," Nature, 185, 78,(1960).
- 8. E. G. Steward, B. P. Cook and E. A. Kellett, "Dependence on Temperature of the Interlayer Spacings in Carbon of Different Graphite Perfection," Nature, 187, 1015, (1960).
- 9. J. H. Richardson, "Thermal Expansion of Three Group IV A Carbides to 2700°C, "<u>J. Am. Ceram. Soc.</u> <u>48</u>, (10) 497 (1965).
- 10. J. D. Plunkett and W. D. Kingery, <u>Proceedings of the Fourth Con-</u> ference on Carbon, Buffalo, 1959, Pergamon Press, New York (1960), pp 457 -72.
- 11. Schneiderhohn and Ramdohr, <u>Lehrbuch der Erzmikroskopie</u> Vcl. 2, Bornhager, Berlin (1931), p 18.

- 12. J. H. Richardson and E. H. Zehms, <u>Structural Changes in Pyrolytic</u> <u>Graphite at Elevated Temperatures</u>, TDR-269(4240-10)-3, <u>Aerospace Corporation</u>, El Segundo, California (1963).
- 13. Kwan Teh Yang, "The Determination of the Interlayer Spacing in Carbons at High Temperature," <u>Proceedings of the Fifth Conference</u> on Carbon, Pergamon Press, N. Y., (1962), pp 492-96.
- J. B. Nelson and D. P. Riley, "Thermal Expansion of Graphite from 15° to 800°C: I, Experimental," Proc. Phys. Soc. (London) 57, (Part 6), 447-86, (1945).
- 15. G. E. Bacon, "The Interlayer Spacing of Graphite," Acta. Cryst. 4, 556 (1951).
- 16. R. E. Franklin, "The Structure of Graphitic Carbons," Acta. Cryst. 4. 253 (1951).

Security Classification			
DOCUM	ENT CONTROL DATA - R	20	ىلى ورىدى مە
(Security Classification of title, body of abstract ORIGINATING ACTIVITY (Corporate author)	and indezing aunotation must be	antered she	DRT SECURITY. CLASSIFICATION
Aerospace Corporation		Un	classified
El Segundo, California		25 GRO	UP sportant and a start of the
. REPORT TITLE	······		and the second
THE EFFECT OF HEAT TREA PYROLYTIC GRAPHITE	ATMENT ON THE T	HERMA	L EXPANSION OF
DESCRIPTIVE NOTES (Type of report and inclusive	detee)		, sa R
AUTHOR(S) (Last name, first same, initial)			
Elliott, Ewart S. and Richards	on, James H.		
REPORT DATE	70. TOTAL NO. OF	PAGES	78. NO. OF REFS
August 1966	16		16
AT DALLOS 440	Se ORIGINATOR'S	REPORT NU	MBE (8)
AF 04(095)-009 6. Project no.	TR-009(0	250-10	- 7
<i>c</i> .	35. OTHER REPOR	T NO(5) (4:	· other numbers that may be asalgn
d.	SSD-TR-	66-168	9
. AVAILABILITY/LINITATION NOTICES			
of SSD (SSTRT).	12 SPONSORING MI	LITARY AS	
			VISION
	Space Syst	Sveten	os Command
3. ABSTRACT	Space Syst Air Force Los Angel	Systen es, Cal	ns Command lifornia
Thermal expansion was studied a commercially available pyro at 3410°C for 1 hr; and AGKSP coefficients of thermal expansi are respectively: 26.5 \times 10 ⁻⁶ 30.1 \times 10 ⁻⁶ (20-2700°C). The decrease in the fraction of disc of this effect is extended to inc	Space Syst Air Force Los Angel d by x-ray technique lytic graphite, PG: on along the C-axis (20-2400°C); 27.9 > value of a _c is found ordered layers (p) in clude the results of a	tems Di System es, Cal es for the the san grade g a _c for (10-6 (1 to inc) n the gr other st	hree graphites: me PG annealed (raphite. The the three materials 20-3000°C); and rease with a raphite. Discussion rudics.
Thermal expansion was studied a commercially available pyro at 3410°C for 1 hr; and AGKSP coefficients of thermal expansi are respectively: 26.5×10^{-6} 30.1×10^{-6} (20-2700°C). The decrease in the fraction of disc of this effect is extended to inc	Space Syst Air Force Los Angel d by x-ray technique lytic graphite, PG: con along the C-axis (20-2400°C); 27.9) value of a _c is found ordered layers (p) in clude the results of a	tems Di System es, Cal es for the the san grade g ac for (10-6 (1 to inc) n the gr other st	nree graphites: me PG annealed graphite. The the three materials 20-3000°C); and rease with a caphite. Discussion rudics.
Thermal expansion was studied a commercially available pyro at 3410°C for 1 hr; and AGKSP coefficients of thermal expansi are respectively: 26.5×10^{-6} 30.1×10^{-6} (20-2700°C). The decrease in the fraction of disc of this effect is extended to inc	Space Syst Air Force Los Angel d by x-ray technique lytic graphite, PG: d a spectrographic (20-2400°C); 27.9) value of a _c is found ordered layers (p) in clude the results of the	tems Di System es, Cal es for the the san grade g ac for (10-6 (1 to inc) n the gr other st	nree graphites: me PG annealed (raphite. The the three materials 20-3000°C); and rease with a raphite. Discussion audics.
Thermal expansion was studied a commercially available pyro at 3410 °C for 1 hr; and AGKSP coefficients of thermal expansi are respectively: 26.5×10^{-6} 30.1×10^{-6} (20-2700 °C). The decrease in the fraction of disc of this effect is extended to inc	Space Syst Air Force Los Angel d by x-ray technique lytic graphite, PG: d a spectrographic on along the C-axis (20-2400°C); 27.9 y value of a _c is found ordered layers (p) in clude the results of a	tems Di Systen es, Cal es for ti the san grade g ac for (10-6 (l to inc) n the gr other st	nree graphites: me PG annealed graphite. The the three materials 20-3000°C); and rease with a caphite. Discussion rudics.
Thermal expansion was studied a commercially available pyro at 3410°C for 1 hr; and AGKSP coefficients of thermal expansi are respectively: 26.5×10^{-6} 30.1×10^{-6} (20-2700°C). The decrease in the fraction of disc of this effect is extended to inc	Space Syst Air Force Los Angel d by x-ray technique lytic graphite, PG: d a spectrographic (20-2400°C); 27.9 > value of a _c is found ordered layers (p) in clude the results of the	tems Di System es, Cal es for the the san grade g ac for (10-6 (1 to inc) n the gr other st	hree graphites: me PG annealed (raphite. The the three materials 20-3000°C); and rease with a raphite. Discussion rudics.
Thermal expansion was studied a commercially available pyrol at 3410 °C for 1 hr; and AGKSP coefficients of thermal expansi are respectively: 26.5×10^{-6} 30.1×10^{-6} (20-2700 °C). The decrease in the fraction of disc of this effect is extended to inc	Space Syst Air Force Los Angel d by x-ray technique lytic graphite, PG: 0, a spectrographic con along the C-axis (20-2400°C); 27.9 y value of a _c is found ordered layers (p) in clude the results of a	tems Di Systen es, Cal es for the the san grade g ac for (10-6 (1 to inc) n the gr other st	nree graphites: me PG annealed graphite. The the three materials 20-3000°C); and rease with a raphite. Discussion rudics.
Thermal expansion was studied a commercially available pyro at 3410°C for 1 hr; and AGKSP coefficients of thermal expansi are respectively: 26.5×10^{-6} 30.1×10^{-6} (20-2700°C). The decrease in the fraction of disc of this effect is extended to inc	Space Syst Air Force Los Angel d by x-ray technique lytic graphite, PG: on along the C-axis (20-2400°C); 27.9 > value of a _c is found ordered layers (p) in clude the results of a	tems Di System es, Cal es for the the san grade g ac for (10-6 (1 to inc; n the gr other st	nree graphites: me PG annealed graphite. The the three materials 20-3000°C); and rease with a caphite. Discussion and ics.
Thermal expansion was studied a commercially available pyrol at 3410 °C for 1 hr; and AGKSP coefficients of thermal expansi are respectively: 26.5×10^{-6} 30.1×10^{-6} (20-2700 °C). The decrease in the fraction of disc of this effect is extended to inc	Space Syst Air Force Los Angel d by x-ray technique lytic graphite, PG: , a spectrographic on along the C-axis (20-2400°C); 27.9 > value of a _c is found ordered layers (p) in clude the results of a	tems Di Systen es, Cal es for the the san grade g ac for (10-6 (1 to inc) n the gr other st	nree graphites: me PG annealed graphite. The the three materials 20-3000°C); and rease with a raphite. Discussion rudics.
Thermal expansion was studied a commercially available pyro at 3410 °C for 1 hr; and AGKSP coefficients of thermal expansi are respectively: 26.5×10^{-6} 30.1×10^{-6} (20-2700 °C). The decrease in the fraction of disc of this effect is extended to inc	Space Syst Air Force Los Angel d by x-ray technique lytic graphite, PG: d a spectrographic (20-2400°C); 27.9) value of a _c is found ordered layers (p) in clude the results of the	tems Di Systen es, Cal es for the the san grade g ac for (10-6 (1 to inc) n the gr other st	hree graphites: me PG annealed (raphite. The the three materials 20-3000°C); and rease with a raphite. Discussion rudics.
3. ABSTRACT Thermal expansion was studied a commercially available pyrol at 3410°C for 1 hr; and AGKSP coefficients of thermal expansi are respectively: 26.5×10^{-6} 30.1×10^{-6} (20-2700°C). The decrease in the fraction of disc of this effect is extended to inc	Space Syst Air Force Los Angel d by x-ray technique lytic graphite, PG: , a spectrographic on along the C-axis (20-2400°C); 27.9) value of a _c is found ordered layers (p) in clude the results of a	tems Di System es, Cal es for the the san grade g ac for (10-6 (1 to inc) n the gr other st	nree graphites: me PG annealed graphite. The the three materials 20-3000°C); and rease with a raphite. Discussion rudics.

.

.

.

UNCLASSIFIED	
Security Classification	
A thirde to the second se	
High Temperature X-ray Diffraction Pyrolytic Graphite Spectrographic Graphite Thermal Expansion	
the second s	
the second se	
The second	
Abstract (Continued)	
	INCI ACCIDICD