AD-782 858

WHERE BRIDE

R&M DATA ANALYSIS OF THE UH-1/AH-1 TAIL ROTOR SYSTEM

George E. Knudsen, et al

Bell Helicopter Company

Prepared for:

Army Air Mobility Research and Development Laboratory

April 1974

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

EUSTIS DIRECTORATE POSITION STATEMENT

The UH-1 and AH-1 series helicopter tail rotor system reliability and maintainability (R&M) assessment presented in this report is considered to be technically sound and complete. This report is one of a series dealing with helicopter subsystems and component R&M assessments, and is considered to be directly usable in developing new system design requirements and evaluation of proposed tail rotor concepts. The report's assessment of operational effects (combat damage, foreign object damage, tree strikes, etc.) provides an excellent insight into the severe conditions confronting tail rotor systems in Army helicopter operations.

The reader's attention is drawn to Appendix VI, which describes a technique that provides a means of rapidly predicting Mean-Time--Between-Failures (MTBF) and Mean-Time-Between-Removals (MTBR) carly in the life cycle (300 to 400 flight hours) for components initially installed on a fleet of helicopters. Basic input data for this prediction technique are readily available in the Major-Item-Removal-Frequency (MIRF) reports which are developed under the Army Aviation Systems Command's Reliability and Maintainability Management Improvement Techniques program of the Product Assurance Directorate. Allowance can also be made for adjusting fleet MTBR calculations for off-aircraft repair. This easy-to-apply approach provides a much more accurate basis for estimating spare component requirements or life-cycle costs than is obtained by calculating MTBF as the reciprocal of failure rate for a particular time period.

The technical monitor for this contract was Royace H. Prather of the Military Operations Technology Division of this directorate.

	DISCLAIMERS
	The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
	When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or
CISSION fer	otherwise as/m any manner licensing the holder or any other person or corporation, or conveying any rights or commission, to manufacture, use, or sell any patented invention that may in any way be related therein
IS	while Schlas
C	Commercial Mandware or software.
APER DANGED	
TIFICATION	DISPOSITION INSTRUCTIONS
	Destroy this report when no longer needed. Do not return it to the originator.
ISTRIBUTION /A	VAILABILITY CODES
	I
DIST AVA	L and of affeine

UNCLASSIFIED

are to

SECURITY CLASSIFICATION OF THIS	S PAGE (When Data Entered)			
REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER	2. GOVT	ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER		
USAAMRDL-TR-74-11		AN 782858		
4. TITLE (and Subtitio)		5. TYPE OF REPORT & PERIOD COVERED		
REM DATA ANALYSIS OF T	HE UH-1/AH-1 TAIL			
ROTOR SYSTEM		Final		
		5. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(#)		
George E. Knudsen		DAAJ02-72-C-0028		
Patricia V. Carr				
. PERFORMING ORGANIZATION NA	ME AND ADDRESS	10. PROGRAM ELEMENT. PROJECT, TASK		
Bell Helicopter Company	у	AREA & WORK UNIT NUMBERS		
Box 482				
Fort Worth, Texas 761	UI	Task 1F162205A11901		
11. CONTROLLING OFFICE NAME A	ND ADDRESS	12. REPORT DATE		
Eustis Directorate	PED Tabaratany	April 1974		
Fort Eustie Virginia	23604	382		
14. MONITORING AGENCY NAME &	ADDRESS(II dillerent from Cont	rolling Office) 15. SECURITY CLASS. (of this report)		
		Unclassified		
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of I	his Report)			
17. DISTRIBUTION STATEMENT (of I	17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES	NATIONAL DC MOLACIA DC AVIENTICS	HNICAL SERVICE		
19. KEY WORDS (Continue on reverse .	aide if necessary and identify t	by block number)		
Accidents I	Maintainability	Tail Assemblies		
Antitorque Rotors 1	Maintenance	Rotors		
Helicopters I	mean Time			
Costs	Reliability			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)				
This report provides reliability, maintainability, and cost analysis of histor- ical data reported on the UH-1/AH-1 tail rotor subsystems.				
The objectives of this tic support data for the put into better perspec	analysis are to de he design of future ctive the cost of t	evelop benchmark maintenance and logis- e helicopter anti-torque systems and to ail-rotor-system-associated mishaps.		

DD 1 JAN 73 1473 EDITION OF T NOV 65 IS OBSOLETE

UNCIASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Then Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Block 20

For this report, the tail rotor systems were each divided into three dynamic subsystems: the tail rotor hub and blade assembly, the tail rotor drive, and the tail rotor control. Most of the analyses were conducted at the component level. The results where appropriate were combined to determine values for the subsystems and the tail rotor systems. Special techniques used to analyze some of the data are developed.

The MTBF values obtained from Navy 3-M data on UH-1D and AH-1G components were considerably lower than those obtained from the UH-1/AH-1 Maintainability and Reliability (M&R) Program data. The unscheduled maintenance rate determined from the M&R Program data was about 34 percent higher for the AH-1G and 19 percent higher for the UH-1C than it was for the UH-1D/H. This was due to a high rate of damage to the UH-1C blades from armament debris and a higher frequency of 90° gearbox failure on the AH-1G.

The MTBM for the UH-1C is much lower than that which was determined for the other aircraft because of the more frequent, 50-hour hub maintenance specified for the UH-1C.

The average maintenance task time from the analysis of monitored data is less than 20 percent of the average obtained from the analysis of the 3-M data. This difference partially results from maintenance personnel accounting for their work period by charging their time, both active and nonactive, to the maintenance tasks performed.

The maintenance man-hours per flight hour (MMH/FH) were computed for the UH-1D and AH-1G aircraft. The UH-1D system required almost 40 percent more MMH/FH than the AH-1G. The reason appears to be the large amount of maintenance performed at the intermediate level.

Mishap costs increased the basic support cost for the utility helicopters (UH-1D/H) by 58 percent and the attack helicopters (UH-1C/AH-1G) by 128 percent The basic life-cycle support cost in dollars per flight hour for the two types was reasonably close.

The MTR and MTBR values determined from the overhaul data are considerably larger than the values obtained from the RAMMIT reports. This is to be expected since many of the removals in the RAMMIT data are for nonfailure and the assemblies are subsequently reinstalled on the same or other aircraft. The overhaul data, however, includes only those removals where the assembly is forwarded to an overhaul facility.

UNCLASSIFIED

PREFACE

and the second state of the second states

This report provides reliability, maintainability, and cost analysis of historical data reported on the UH-1/AH-1 tail rotor subsystems. This analysis was conducted under Contract DAAJ02-72-C-0028, Task 1F162205Ai1901, for the Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory (USAAMRDL), Fort Eustis, Virginia.

USAAMRDL technical direction was provided by Mr. Royace Prather of the Reliability and Subsystems Technical Area, Military Operations Technology Division.

The principal analyst for Bell Helicopter Company was Mr. George E. Knudsen, assisted by Mrs. P. Carr and Mr. O. L. Hensley, all of M&R Analysis. Program management was provided by Mr. J. VanWyckhouse (deceased) and Mr. L. Erb, Manager, Research Administration. Technical direction was provided by Mr. J. A. Gean, Chief of Reliability, Maintainability and System Safety.

TABLE OF CONTENTS

Deee

Service .

	rage
PREFACE	iii
LIST OF ILLUSTRATIONS	ix
LIST OF TABLES	xi
1. SUMMARY	1
1.1Basis of the Analysis	1 2
2. INTRODUCTION	8
2.1 Data Sources Analyzed	8
2.1.1BHC Data Sources2.1.2Government Furnished Data	8 13
2.2 Tail Rotor System Description	14
2.2.1Tail Rotor Drive2.2.2Tail Rotor Hub and Blade2.2.3Tail Rotor Control	14 17 17
2.3 Information Compiled	21
3. MEAN-TIME-BETWEEN-FAILURES (MTBF) ANALYSIS	21
3.1MTBF Analysis Approach	21 22
4. MEAN-TIME-BETWEEN-(SCHEDULED AND UNSCHEDULED) MAINTENANCE (MTBM) ANALYSIS	27
4.1MTBM Analysis Approach	27 29
5. MAINTAINABILITY INDEXES	32
5.1 Maintainability Indexes Analysis Approach	32
5.1.1 Mean-Time-to-Repair (MTTR)	32
5.1.2 Mean Preventive Maintenance Action Time (\overline{M}_{pt})	34
5.1.3 Mean Corrective and Preventive Action Time (M)	37

TABLE OF CONTENTS (Cont'd)

Page

1

£ ...

-3

5.2 Main Res	ntainability Indexes Analysis ults	•	38
5.2.1	Mean-Time-to-Repair (MTTR) Mean Preventive Maintenance	•	38
500	Action Time (\overline{M}_{pt})	•	41
J.Z.J	Action Time (\overline{M})	•	41
6. MEAN-T BETWEE	IME-TO-REMOVAL (MTR) AND MEAN-TIME- N-REMOVAL (MTBR) ANALYSIS	•	49
6.1 MTR	and MTBR Analysis Approach	•	49
6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7	Computing MTR		49 50 52 53 54 54 58
6.2 MTR	and MTBR Analysis Results	•	59
6.2.1 6.2.2	BHC Overhaul Data	•	59 61
7. REPAIR	-VERSUS-SCRAP ANALYSIS	•	69
7.1 Repa	air-Versus-Scrap Analysis Approach	•	69
7.1.1 7.1.2	TAMMS 2407 Unscheduled Maintenance Data	•	70 70
7.2 Repa	air-Versus-Scrap Analysis Results	•	71
7.2.1 7.2.2	TAMMS Data Analysis	•	71 71
8. MAINTER	NANCE PERSONNEL REQUIREMENTS ANALYSIS	•	77
8.1 Main Anal	ntenance Personnel Requirements Lysis Approach	•	77

TABLE OF CONTENTS (Cont'd)

Martin Martin

Page

8.1.1 Maintenance Personnel Types 8.1.2 Maintenance Tasks 8.1.3 Maintenance Organizations 8.1.4 Manpower Requirements	, 77 , 77 , 78 , 79
8.2 Maintenance Personnel Requirements Analysis Results	. 80
9 MAINTENANCE MAN-HOURS PER FLIGHT HOUR (MMH/FH)	\$
ANALYSTS	87
	0,
9.1 MMH/FH Analysis Approach	87 88
10. FAILURE MODE ANALYSIS	93
10.1 Peilung Mede Apelugis Appressh	0.2
10.2 Failure Mode Analysis Approach	93
10.2 Fallule Mode Analysis Results	54
11. MISHAP/ACCIDENT DATA ANALYSIS	102
ll.l Mishap/Accident Analysis Approach	102
11.1 1 All Mishans (Anv-System)	102
11.1.2 Tail-Rotor-Associated Mishaps	103
11 2 Mishan/Accident Analysis Results	104
II.2 MISHAP/ACCIDENT MALYSIS RESults	104
11.2.1 All Mishaps	104
11.2.2 Tail-Rotor-Associated Mishaps	104
11.2.3 Any-System Versus Tail-Rotor-	
Associated Mishaps	116
12. COST ANALYSIS \ldots \ldots \ldots \ldots \ldots	118
12.1 Cost Analysis Approach	118
12.1.1 Fleet Life-Cycle Consideration	110
12.1.2 Cost of Tail Rotor System Delivered	110
as Part of the Production Aircraft	118
12.1.3 Number of Spares Required	120
12.1.4 Cost of Spare Parts Required	123
12.1.5 Cost of Overhauled Assemblies	123
12.1.6 Transportation Costs	123
12.1.7 Maintenance Costs	126
12.1.8 Cost of Tail Rotor System Related	
Mishaps	126

TABLE OF CONTENTS (Cont'd)

Page 12.1.9 Total Tail Rotor System Life Cycle 127 Cost: 12.2 Cost Analysis Results . . . 127 Initial Cost of the Tail Rotor System as Delivered on Production Aircraft . . 12.2.1 128 12.2.2 128 12.2.3 Overhaul Costs 131 12.2.4 Transporation Cost to Move the Spare and Overhaul Components . . . 132 12.2.5 Maintenance Support Costs 132 Costs of Tail Rotor System Related 12.2.6 134 Total Tail Rotor System Life-Cycle 12.2.7 134 Cost LITERATURE CITED . . . 136 GLOSSARY 140 APPENDIXES I. Maintenance Procedures 144 II. UH-1/AH-1 Tail Rotor System Mean-Timeto-Removal (MTR) and Mean-Time-Between-Removal (MTBR) Analyses 199 III. UH-1/AH-1 Tail Rotor System Mishap/ Accident Data Material Failure Analysis. 248 IV. UH-1/AH-1 Tail Rotor System Failure Mode Analysis 263 V. Tail Rotor Hub and Blade Assembly Maintenance Procedures Direct/General 274 '/I. MTBF and MTBR Predictions from MIRF Report Data Using Weibull Distribution 330

LIST OF ILLUSTRATIONS

2

いたいであっていたのとうと

Figure		Page
1	Distribution of the Basic Tail Rotor System Life-Cycle Cost of a Utility UH-1 Type Helicopter	5
2	Distribution of the Basic Tail Rotor System Life-Cycle Cost of an Attack AH-1 Type Helicopter	6
3	UH-1/AH-1 Tail Rotor System Diagram	1.5
4	UH-1/AH-1 Tail Rotor Drive System Diagram	16
5	UH-1/AH-1 Tail Rotor Hub and Blade Assembly and Pitch Change Mechanism Diagram	18
6	UH-1/AH-1 Tail Rotor Control Quill and Chain Diagram	19
7	MTBF Versus MTBR for 1100-, 1500-, 2500-, and 5000-Hour Time Change Components and On-Condition Items	56
8	Percentage of the Components That Will Survive to Time Change Versus MTBF	57
9	Percentage of the Components That Will Survive Time Change Versus Their MTBR	58
10	Flight Hours Accrued by the Fleet of Aircraft	119
11	Balancing-Tail Rotor Hub and Blade, Models UH-1C/D/H and AH-1G	284
12	Tail Rotor Hub Assembly (P/N 204-011-801), Models UH-1C/D/H	289
13	Tail Rotor Hub Limits (P/N 204-011-801), Model UH-1D/H	291
14	Tail Rotor Hub Grip Damage Limits (Hub P/N 204-011-801), Models UH-1D/H	292
15	Tail Rotor Hub Yoke Damage Limits (Hub P/N 204-011-801), Models UH-1D/H and AH-1G	293

LIST OF ILLUSTRATIONS (Cont'd)

19

Figure		Page
16	Shimming Tail Rotor Yoke	300
17	Shimming Tail Rotor Hub Spring Assembly (P/N 204-011-801)	303
18	Tail Rotor Hub Limits (P/N 204-011-801-5), Model UH-1C	307
19	Tail Rotor Hub Grip Damage Limits (P/N 204-011-801-5 and 204-011-701), Model UH-1C	308
20	Tail Rotor Hub Yoke Damage Limits (P/N 204-011-801-5), Model UH-1C	309
21	Tail Rotor Hub Assembly (P/N 204-011-701), Model UH-1C	311
22	Tail Rotor Hub Yoke Damage Limits (P/N 204-011-701), Model UH-1C	314
23	Tail Rotor Hub Limits (P/N 204-011-701), Model UH-1C	315
24	Tail Rotor Hub Bearings - Apex Alignment Mark (P/N 204-011-701), Model UH-1C	319
25	Tail Rotor Hub Assembly (P/N 204-011-801), Model AH-1G	323
26	Tail Rotor Hub Limits (P/N 204-011-801), Model AH-1G	325
27	Tail Rotor Hub Grip Limits (P/N 204-011-801), Model AH-1G	326
28	Plot To Determine the Location of the Weibull Mean from β	332
29	An Example of Weibull Graph Paper	333
30	Weibull Mean µ and the Exponential MTBF Relationships	349
31	Plot of Distributions on Weibull Graph Paper	357

LIST OF TABLES

No. of the other states of

Table		Page
I	Summary of Values Determined From the Tail Rotor System Deta Analysis	3
II	MTR/MTBR of UH-1/AH-1 Tail Rotor System Overhaul and Limited Life Components	7
III	Tail Rotor System Components	9
IV	Overhaul and Retirement Schedule	11
v	Comparison of 3-M and M&R Program Tail Rotor System MTBF Values	23
VI	Component MTBF for UH-1D/AH-1G Tail Rotor System	24
VII	Component MTBF for the UH-1D/H/C, AH-1G Tail Rotor System	25
VIII	Comparison of MTBF Values Determined From Four Data Sources	26
IX	Frequency of Scheduled Maintenance Actions for Models UH-1C/D/H and AH-1G Helicopters	28
X	Mean-Time-Between-Scheduled Maintenance for the Tail Rotor System	30
XI	Mean-Time-Between-Maintenan _or the Tail Rotor System	31
XII	Mean Corrective Maintenance Time (MTTR) Grouped by Maintenance Action	39
XIII	Mean Preventive Maintenance Action Time (M _{pt}) for the Tail Rotor System	42
XIV	Mean Preventive Maintenance Action Time (\overline{M}_{pt}) for the Tail Rotor	42
XV	Mean Preventive Maintenance Action Time (\overline{M}_{pt}) for the Tail Rotor Drive Subsystem .	43
XVI	Mean Preventive Maintenance Action Time (M _{pt}) for the 90-Degree Gearbox	43

Table		Page
XVII	Mean Preventive Maintenance Action Time (\overline{M}_{pt}) for the 42-Degree Gearbox	44
XVIII	Mean Preventive Maintenance Action Time (\overline{M}_{pt}) for the Tail Rotor Hanger Assemblies	44
XIX	Mean Preventive Maintenance Action Time (M _{pt}) for the Tail Rotor Control Subsystem	45
XX	Mean Maintenance Action Time (M) for the Tail Rotor System Based on Monitored Data	46
XXI	Mean Maintenance Action Time (\overline{M}) for the Tail Rotor System From 3-M Data	47
XXII	Comparison of M Values	48
XXIII	Summary of MTR/MTBR Analysis of BHC Component Overhaul Data	60
XXIV	Summary of MTR/MTBR Analysis of RAMMIT MIRF Data	61
XXV	Comparison of RAMMIT MIRF Analysis Values of Early and Later Components	64
XXVI	Significant Failure Modes Observed in the RAMMIT MIRF Reports Data Analyses	66
XXVII	Summary of MTBF/MTBR Values Obtained from Analysis of RAMMIT MIRF Data	67
XXVIII	Fepair-Versus-Scrap Analysis of UH-1C Tail Rotor Components	72
XXIX	Repair-Versus-Scrap Analysis of UH-1D Tail Rotor Components	73
XXX	Repair-Versus-Scrap Analysis of UH-1H Tail Rotor Components	74

1

ないないたちというと

Table		Page
XXXI	Repair-Versus-Scrap Analysis of AH-1G Tail Rotor Components	75
XXXII	Tail Rotor Component Depot-Level Scrap Analysis	76
XXXIII	UH-1C/D/H Maintenance Manpower Requirements	81
XXXIV	AH-1G Maintenance Manpower Requirements	83
XXXV	Average Number of Men Required Per Maintenance Action	85
XXXVI	MOS Personnel and Maintenance Allocations	86
XXXVII	Tail Rotor System Maintenance Man-Hours Per Flight Hour	89
XXXVIII	Tail Rotor System Intermediate Maintenance Man-Hours Per Flight Hour	90
XXXIX	Tail Rotor System Organizational Level Maintenance Man-Hours Per Flight Hour	91
XL	Tail Rotor System Components Maintenance Man-Hours Per Million Flight Hours	92
XLI	Tail Rotor System Most Frequent Failure Modes by Component (M&R Program Data)	95
XLII	Failure Mode Analysis Summary for the UH-1D/H/C and AH-1G Tail Rotor System	99
XLIII	Mishap Classification Definitions	102
XLIV	Summary of All UH-lC/D/H and AH-lG Mishaps on File	105
XLV	Summary of Tail-Rotor-Associated Mishaps	107

1

<u>Table</u>		Page
XLVI	Tail Rotor Strikes as a Percentage of All Damage-Causing Tail Rotor Mishaps	109
XLVII	Average Repair Costs Due to Tail- Rotor-Associated Mishaps, Model UH-1C	110
XLVIII	Average Repair Costs Due to Tail- Rotor-Associated Mishaps, Model UH-1D	111
XLIX	Average Repair Costs Due to Tail- Rotor-Associated Mishaps, Model UH-lH	112
L	Average Repair Costs Due to Tail- Rotor-Associated Mishaps, Model AH-1G	113
LI	Average Repair Costs Due to Tail- Rotor-Associated Mishaps, Models AH-1G and UH-1C/D/H	114
LII	Summary of Tail Rotor System Failure Modes Causing Mishaps	115
LIII	Tail-Rotor-Associated Versus All Mishaps	117
LIV	Tail Rotor System Component Replacement Costs	121
LV	Aircraft Total Loss Cost Vs Date, Per USAAAVS Mishap Records	127
LVI	Spare Parts Requirements for a Fleet of Utility Aircraft Delivered at a Rate of 25 Aircraft Per Month	129
LVII	Spare Parts Requirements for a Fleet of Attack Helicopters Delivered at a Rate of 25 Aircraft Per Month	130

and the second second

<u>Table</u>		Page
LVIII	Overhaul Costs	131
LIX	Parts Shipping Weights	133
LX	Tail Rotor System Life-Cycle Cost Summary	135
LXI	Reason for Removal/MTR/MTBR Analysis of 42-Degree Gearboxes Overhauled or Scrapped at BHC, Model UH-10, Part No. 204-040-003-23	200
LXII	Reason for Removal/MTR/MTBR Analysis of 42-Degree Gearboxes Overhauled or Scrapped at BHC, Model UH-1D, Part No. 204-040-003-23	201
LXIII	Reason for Removal/MTR/MTBR Analysis of 42-Degree Gearboxes Overhauled or Scrapped at BHC, MoJel UH-1C/D, Part No. 204 040-003-23	202
LXIV	Reason for Removal/MTR/MTBR Analysis of 42-Degree Gearboxes Overhauled or Scrapped at BHC, Model UH-1C, Part No. 204-040-003-37	203
LXV	Reason for Removal/MTR/MTBR Analysis of 42-Degree Gearboxes Overhauled or Scrapped at BHC, Model UH-1D, Part No. 204-040-003-37	204
LXVI	Reason for Removal/MTR /MTBR Analysis of 42-Degree Gearboxes Overhauled or Scrapped at BHC, Model UH-1H, Part No. 204-040-003-37	205
LXVII	Reason for Removal/MTR/MTBR Analysis of 42-Degree Gearboxes Overhauled or Scrapped at BHC, Model AH-1G, Part No. 204-040-003-37	206
LXVIII	Reason for Removal/MTR/MTBR Analysis of 42-Degree Gearboxes Overhauled or Scrapped at BHC, Models UH-1C/D/H, AH-1G, Part No. 204-040-002-37	207

1 A

Bri.

1

<u>Table</u>		Page
LXIX	Reason for Removal/MTR/MTBR Analysis of 90-Degree Gearboxes Overhauled or Scrapped at BHC, Model UH-1C, Part No. 204-040-012-7	208
LXX	Reason for Removal/MTR/MTBR Analysis of 90-Degree Gearboxes Overhauled or Scrapped at BHC, Nodel UH-1D, Part No. 204-040-012-7	209
LXXI	Reason for Removal/MTR/MTBR Analysis of 90-Degree Gearboxes Overhauled or Scrapped at BHC, Model UH-1C/D, Part No. 204-040-012-7	210
LXXII	Reason for Removal/MTR/MTBR Analysis of 90-Degree Gearboxes Overhauled or Scrapped at BHC, Model UH-1C, Part No 204-040-012-13	211
LXXIII	Reason for Removal/MTR/MTBR Analysis of 90-Degree Gearboxes Overhauled or Scrapped at BHC, Model UH-1D, Part No. 204-040-012-13	212
LXXIV	Reason for Removal/MTR/MTBR Analysis of 90-Degree Gearboxes Overhauled or Scrapped at BHC, Model UH-1H, Part No. 204-040-012-13	214
LXXV	Reason for Removal/MTR/M7BR Analysis of 90-Degree Gearboxes Cverhauled or Scrapped at BHC, Model AH-1G, Part No. 204-040-012-13	215
LXXVI	Reason for Removal/MTR/MTBR Analysis of 90-Degree Gearboxes Overhauled or Scrapped at BHC, Model UH-1C/D/H, AH-1G, Part No. 204-040-012-13	216
LXVII	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Hub Assemblies from RAMMIT MIRF Report Data, Model UH-1D, Part No. 204-011-701-11	218

....

W- 5.

いたいないないないないないのです ~~~

<u>Table</u>		Page
LXXVIII	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Hub Assemblies from RAMMIT MIRF Report Data, Model UH-1D, Part No. 204-011-701-19	219
LXXIX	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Hub Assemblies from RAMMIT MIRF Report Data, Model UH-1D, Part No. 204-011-801-5	220
LXXX	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Hub Assemblies from RAMMIT MIRF Report Data, Model UH-1D, Part No. 204-011-801-9	221
TXXXI	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Hub Assemblies from RAMMIT MIRF Report Data, Model UH-1H, Part No. 204-011-701-19	222
LXXXII	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Hub Assemblies from RAMMIT MIRF Report Data, Model UH-1H, Part No. 204-011-801-5	223
LXXXIII	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Hub Assemblies from RAMMIT MIRF Report Data, Model UH-1H, Part No. 204-011-801-9	224
LXXXIV	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Hub Assemblies from RAMMIT MIRF Report Data, Model AH-1G, Part No. 209-010-701-3	226
LXXXV	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Hub Assemblies from RAMMIT MIRF Report Data, Model AH-1G, Part No. 204-011-801-3	227
LXXXVI	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Blade Assemblies from RAMMIT MIRF Report Data, Model UH-1D, Part No. 204-011-702-15	228

Table		Page
LXXXVII	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Blade Assemblies from RAMMIT MIRF Report Data, Model UH-1D, Part No. 204-011-702-17	229
LXXXVIII	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Blade Assemblies from RAMMIT MIRF Report Data, Model UH-1H. Part No. 204-011-702-15	230
LXXXIX	Reason for Removal/MTR/MTBR Analysis of Tail Rotor Blade Assemblies from RAMMIT MIRF Report Data, Model AH-1G, Part No. 204-011-702-17	232
XC	Reason for Removal/MTR/MTBR Analysis of 42-Degree Gearboxes from RAMMIT MIRF Report Data, Model UH-1D, Part No. 204-040-003-23	233
XCI	Reason for Removal/MTR/MTBR Analysis of 42-Degree Gearboxes from RAMMIT MIRF Report Data, Model UH-1D, Part No. 204-040-003-37	234
XCII	Reason for Removal/MTR/MTBR Analysis of 42-Degree Gearboxes from RAMMIT MIRF Report Data, Model UH-1H, Part No. 204-040-003-37	235
XCIII	Reason for Removal/MTR/MTBR Analysis of 42-Degree Gearboxes from RAMMIT MIRF Report Data, Model AH-1G, Part No. 204-040-003-37	236
XCIV	Reason for Removal/MTR/MTBR Analysis of 90-Degree Gearboxes from RAMMIT MIRF Report Data, Model UH-1D, Part No. 204-040-012-7	237
XCV	Reason for Removal/MTR/MTBR Analysis of 90-Degree Gearboxes from RAMMIT MIRF Report Data, Model UH-1D, Part No. 204-040-012-13	238

e

-

Table		Page
XCVI	Reason for Removal/MTR/MTBR Analysis of 90-Degree Gearboxes from RAMMIT MIRF Report Data, Model UH-1H, Part No. 204-040-012-13	239
XCVII	Reason for Removal/MTR/MTBR Analysis of 90-Degree Gearboxes from RAMMIT MIRF Report Data, Model AH-1G, Part No. 204-040-012-13	241
XCVIII	Reason for Removal/MTR/MTBR Analysis of T/R Driveshaft Hanger Assemblies from RAMMIT MIRF Report Data, Model UH-1D, Part No. 204-040-600-7	242
XCIX	Reason for Removal/MTR/MTBR Analysis of T/R Driveshaft Hanger Assemblies from RAMMIT MIRF Report Data, Model UH-1D, Part No. 204-040-600-9	243
C	Reason for Removal/MTR/MTBR Analysis of T/R Driveshaft Hanger Assemblies from RAMMIT MIRF Report Data, Model UH-1H, Part No. 204-040-600-7	244
CI	Reason for Removal/MTR/MTBR Analysis of T/R Driveshaft Hanger Assemblies from RAMMIT MIRF Report Data, Model UH-1H, Part No. 204-040-600-9	245
CII	Reason for Removal/MTR/MTBR Analysis of T/R Driveshaft Hanger Assemblies from RAMMIT MIRF Report Data, Model AH-1G, Part No. 204-040-600-9	247
CIII	42-Degree Gearbox Failures Resulting in Mishaps to Models UH-1C/D/H and AH-1G,Grouped by Aishap Classification	249
CIV	90-Degree Gearbox Failures Resulting in Mishaps to Models UH-1C/D/H and AH-1G,Grouped by Mishap Classification .	250
CV	Tail Rotor Drive System Failures Resulting in Mishaps, Grouped by Mishap Classification	251

1

Table		Page
CVI	Tail Rotor and Pitch Change Control Failures Resulting in Mishaps to Models UH-lC/D/H and AH-lG, Grouped by Mishap Classification	253
CVII	42-Degree Gearbox Failures Resulting in Mishaps, Grouped by Model	256
CVIII	90-Degree Gearbox Failure Resulting in Mishaps, Grouped by Model	257
CVIX	Tail Rotor Drive System Failures Resulting in Mishaps, Grouped by Model	258
CX	Tail Rotor and Pitch Change Control Failures Resulting in Mishaps, Grouped by Model	26 0
CXI	Tail Rotor Hub and Blade Failure Mode Analysis	264
CXII	Tail Rotor Drive Subsystem Failure Mode Analysis	266
CXIII	Tail Rotor Control Subsystem Failure Mode Analysis	270
CXIV	Tail Rotor Hub and Hub Components Usability Chart (Hub P/N 204-011- 801-5 and -9)	297
CXV	Failure and R _e moval Distribution Characteristics	344
CXVI	Weibull Distribution Mean Values and Exponential Distribution MTBF and MTBR _e Values Based on Failure- Caused Removals	347
CXVII	Weibull Distribution Mean Values and Exponential Distribution Mear. and Estimated MTBR Values Based on Removals for All Causes	35()

Table		Page
CXVIII	^omponent MTBR Values Adjusted for Off-Aircraft Repair	352
CXIX	UH-1H RAMMIT MIRF 90-Degree Gearbox Data	355
CXX	Determining Percentage of Failure Values	356

Spectra states

and the second se

1. SUMMARY

1.1 BASIS FOR THE ANALYSIS

A State States Long - U.S.

The data analyses of the UH-1C, UH-1D, UH-1H, and AH-1G helicopter tail rotor systems and this report were prepared under Contract DAAJ02-72-C-0028. The use of a tail rotor system to counteract the torque of the main rotor and provide directional control has been controversial. The tail rotor system performs the function efficiently for low weight and low basic cost. However, since it is normally outside the vision of the pilot, it has been associated with a large share of the nonmaterial-failure-caused mishaps in addition to those resulting from material failure. A study of the UH-1/AH-1 mishap data revealed that tail-rotor-associated mishaps resulted in accidents (Class 1, 2, or 3 mishaps) 1.8 times more frequently than all mishaps, regardless of the system involved. In the case of material failures, a tail rotor component failure is 2.7 times as likely to cause an accident as any system material failure. (See the glossary for the definitions of mishap and accident.) The objectives of this analysis are to develop benchmark maintenance and logistic support data for the design of future helicopter anti-torque systems and to put into better perspective the cost of tail-rotor-system-associated mishaps. The analyses were performed on data acquired from:

- UH-1/AH-1 Maintainability and Reliability (M&R) Program (1964 - 1970)
- Monitored Maintenance Task Time (February, April, May 1972)
- Component overhaul (1963 1970)
- Army's Maintenance and Management System (TAMMS) (1 January 1964 1 February 1972)
- Navy's Maintenance and Material Management (3-M) System (1 September 1965 - 1 March 1972)
- Aircraft technical manuals
- Army's Reliability and Maintainability Management Improvement Techniques (RAMMIT) program (1 January 1964 - 30 June 1970, 1 July 1971, or 31 December 1971)
- U. S. Army Agency for Aviation Safety (USAAAVS) (1 January 1967 31 March 1972)
- UH-1 Series Target Price Lists

Information on all four models was available from only some of the data sources.

In the analyses, the tail rotor systems were each divided into three dynamic subsystems: the tail rotor hub and blade assembly, the tail rotor drive, and the tail rotor control. Most of the analyses were conducted at the component level. The results where appropriate were combined to determine values for the subsystems and the tail rotor systems. Table I shows, at the tail rotor system level, some of the more significant values determined.

1.2 DISCUSSION OF RESULTS

The mean-time-between-failure (MTBF) values obtained from 3-M analyses on UH-1D and AH-1G components were considerably lower than those obtained from the UH-1/AH-1 Maintainability and Reliability (M&R) Program monitoring activities. Many of the unscheduled maintenance actions in the 3-M data dealt with nonfailure occurrences, the type of which was seldom reported during the period of M&R monitoring.

The mean-time-between-maintenance (MTBM) values were computed by combining the mean-time-between-scheduled-maintenance (MTBSM) values obtained from the aircraft technical maintenance manuals with the MTBF values from M&R data. The more frequent, 50-hour hub maintenance specified for the UH-1C makes its MTBM much lower than that which was determined for the other aircraft.

There appears to be a significant difference between the time required to perform a maintenance task and the time that is reported by the data systems. This difference partially results from maintenance personnel accounting for their work period by splitting their time, both active and nonactive, between the maintenance tasks performed. The average maintenance task time from the analysis of the monitoring data is less than 20 percent of the average obtained from the analysis of the 3-M data.

The only data source that contained both maintenance manhours and flight-hour values was the Navy 3-M data. The maintenance man-hours per flight hour (MMH/FH) were computed for the UH-1D and AH-1G aircraft that were loaned to and operated and maintained by the Navy. The results showed that the UH-1D system required almost 40 percent more maintenance than the AH-1G. The reason for this appears to be the large amount of maintenance performed at the intermediate level on the tail rotor hub.

	Utility		Attack		
	Helicopters		Helic	opters	
	UH-ID	UH-IH	UH-IC	AH-1G	
MTBF (Hours)					
3-M Data M&R Program Data	30. 9	0	76.	21. 67.	
		Ĭ			
MTBM (Hours)	4	7.4	30.2	40.1	
MTBSM (Hours)	1	00.	50.	100.	
Mean Maintenance Time (M) (Calendar Hours)					
Monitored Data 3-M Data	0.2 1.2	086 500	0.2115	0.2321 1.1700	
MMH/FH	0.1131			0.0816	
Unscheduled Maintenance Actions per Million Flight Hours	11,	093	13,223	14,881	
Mishaps per Million Flight Hours	83.6	60.3	54.4	114.9	
Average Cost per Mishap for Repair or Replace- ment	\$44,733	\$68,460	\$55,482	\$79,671	
Total T/R System Life-Cycle Cost per Flight Hour for a 1000-Aircraft Fleet					
Costs Excluding Mishap Costs	\$11. \$ 7	.44	\$19.11		
Excluding Mishap Costs	\$ 7	.26	\$ 8.40		

TABLE I.SUMMARY OF VALUES DETERMINED FROM
THE TAIL ROTOR SYSTEM DATA ANALYSIS

and the second

The unscheduled maintenance rate determined from the M&R Program data was about 34 percent higher for the AH-1G and 19 percent higher for the UH-1C than it was for the UH-1D/H. This was due to a high rate of damage to the UH-1C blades from armament debris and a higher frequency of 90 gearbox failure on the AH-1G.

A repaired versus scrapped analysis was attempted using TAMMS 2407 maintenance data. The data was found to be deficient in that the disposition of most of the items is not recorded. The disposition could be assumed for most of the maintenance actions; however, "replaced" is one of the actions for which disposition could not be assumed. Since 53 to 97 percent of the records fall into the "replaced" category, the repair versus scrapped analysis was inconclusive.

The factors that impacted the most on the tail rotor system life-cycle costs were the tail rotor system associated mishap rate and the average cost per mishap.

In the cost analysis which applied the results of the many analyses to two fleets of aircraft, utility and attack, the impact of the mishap costs increased the basic support cost for the utility helicopters by 58 percent and the attack helicopters by 128 percent. The basic life-cycle support cost in dollars per flight hour for the two types was reasonably close. Figures 1 and 2 show how the basic life-cycle support costs are divided among the various cost elements.

Since mean-time-to-removal (MTR) and mean-time-betweenremovals (MTBR) are values which have meaning only for the items being removed, they are not combinable for most of the tail rotor subsystems. The values (Table II) determined from the overhaul data are considerably larger than the values obtained from the RAMMIT reports. This is to be expected since many of the removals in the RAMMIT data are for nonfailure and the assemblies are subsequently reinstalled on the same or other aircraft. The overhaul data, however, includes only those removals where the assembly is forwarded to an overhaul facility. Exponential distribution analysis procedures were used in Section 6 to estimate the mean-time-between-removals (MTBRe) of the assemblies reported in the RAMMIT data when the nonfailure removals are reinstalled and permitted to function until they either fail or achieve their overhaul interval or scheduled life limit. Appendix VI performs a similar analysis on the same data using a Weibull analysis procedure. It also examines the effect that off-aircraft repair has on the components' MTBR.

Figure 1. Distribution of the Basic Tail Rotor System Life-Cycle Cost of a Utility UH-1 Type Helicopter.

Figure 2. Distribution of the Basic Tail Rotor System Life-Cycle Cost of an Attack AH-1 Type Helicopter.

1				
	MTBR* Including Repairs		527 587 587 829 713 781	ailures the
STEM	MTBR _e Appendix VI		541 596 840 720 781	emovals for f a fraction of
AIL ROTOR SI FE COMPONENT	MTBR _e Section 6	1 1	634 620 858 732 689	considers re repair of a
-1/AH-1 T	e Cause vals MTBR	2796 2891	898 857 1206 1253 689	ta which -aircraft ment.
BR OF UH UL AND L	Failur Remo MTR	718 652	289 316 540 473 416	eport da udes off replace
E II. MTR/MT OVERHA	All Removal Causes MTR/MTBR	1010 884	208 298 675 462	from RAMMIT r nly, but incl their use for
TABL	Source of Data Component	Component Overhaul 42 ⁰ Gearbox 90 ⁰ Gearbox	RAMMIT Reports T/R Hub T/R Blade 42° Gearbox 90° Gearbox Hanger Assembly	<pre>* An MTBR computed and time change o failed items and</pre>

2. INTRODUCTION

This report is prepared in accordance with the requirements of Contract DAAJ02-72-C-0028, Data Analysis of the UH-1/AH-1 Tail Rotor System (DATRS).

The purpose was to study the reliability, maintainability, and safety (RMS), and cost characteristics of the tail rotor system in order to develop benchmark maintenance and logistic support data for the design of future helicopter antitorque systems. Operational, failure, maintenance, repair, accident and cost data were analyzed to provide basic RMS and cost values which establish levels to be surpassed by future antitorque systems and a basis for evaluation of improvements to current designs.

The analysis considered aircraft configuration (utility, attack), inspection and maintenance procedures, and criteria for repair or scrappage. The mission types (training, noncombat, combat) were not defined in the data sources and therefore were not considered. Operating loads, stresses, and deflectiors versus design values could not be presented because a review of the mission profile recorder data obtained under the UH-1/AH-1 Maintainability and Reliability (M&R) Program and the BHC flight test data revealed that neither of these sources provides information on tail rotor loads, stresses, and deflections under actual flight usage.

The components analyzed are listed in Table III. Those that have overhaul or retirement intervals are listed in Table IV along with their respective interval values.^{1,2,3}

2.1 DATA SOURCES ANALYZED

This analysis was performed using both BHC and governmentfurnished data. The following paragraphs provide a brief description of the major sources.

2.1.1 BHC Data Sources

2.1.1.1 The Disassembly Inspection Summary, SAV Form 634 Data (Formerly OSM Form 634)

This is a government form on which BHC reports the overhaul, repair, and scrappage of overhaul and limited life components from military aircraft. Computer programs were prepared under the M&R Program to list and analyze the "reason-for-removal" file and the "parts-replaced and assemblies-scrapped" file. A special file of the "reasons-for-removal" data including only

TABLE III. TAIL ROTOR SYSTEM COMPONENTS						
SUBSYSTEM Component	Bell Part Number	Federal Stock Number		Models Used		
			С	D	H	G
<u>T∕R HUB x BLADE</u>	204-011-701-009 204-011-701-015 204-011-701-017 204-011-800-009 204-011-800-011 204-011-800-013 204-011-800-023 209-010-701-001	1 560-7 53-7298 1 560-871-8678 161 5-907-0843 None 161 5-133-7363 161 5-133-7238 None 161 5-928-9014	x x x	x x x	x	x x x
Hub Assembly	0.04 - 0.01 - 7.01 - 0.011 2.04 - 0.01 - 7.01 - 0.013 2.04 - 0.01 - 7.01 - 0.019 2.04 - 0.01 - 7.01 - 0.029 2.04 - 0.01 - 8.01 - 0.03 2.04 - 0.01 - 8.01 - 0.05 2.04 - 0.01 - 8.01 - 0.09 2.04 - 0.01 - 8.01 - 0.011 2.09 - 0.01 - 7.01 - 0.03	1615-017-9616 1615-871-8677 1615-933-6825 1615-933-6824 1615-178-8531 1615-135-0294 1615-133-6872 1615-176-1797 1615-928-6311	x x x x	x x x x x x	x x x	××××
T∕R Blade	204-011-702-015 204-011-702-017	1615-472-7308 1615-907-0842	x	x	x	x
T R DRIVE						
T'R Drive Shaft	204-040-620-003 204-040-620-005 209-040-611-001	1 560-678- 5414 161 5-01 9-0217 161 5-931-2290	x	x x	x x	x x
Hanger Assembly	204-040-600-007 204-040-600-009	1 61 5- 766- 8 57 8 1 61 5- 832- 89 51	x x	x x	x	x
42 ⁰ Gearbox	204-040-003-023 204-040-003-037	1615-776-1626 1615-918-2676	x x	x x	x	x
90 ⁰ Gearbox	2 04 - 04 0- 01 2-007 2 04 - 04 0- 01 2-01 3	1615-472-7305 1615-918-2677	x x	x x	x	×

States and

TABLE III. (Cont'd)						
SUBSYSTEM Components	Bell Part Number	Fejeral Stock Number	Modeis Used On:		.s I	
			С	D	H	G
T/R CONTROL				Ì		
Chain	204-001-739-003	1615-674-6963	x	x	x	x
Quill Assembly	204-010-740-00 3 2 04- 010-740-005	1615-633-0806 1615-815-6683	x	x x	x x	x
Sprocket 'Vheel	204-010-768-001	1615-6°4-6956	x	x	x	x
Control Tube	204-010-742-009	1615-886-5998	x	x	x	x
Cone Set	204-010-724-005	1615-775-3846	x	x	x	x
Static Stop	204-010-774-011	1615-083-0468	x	x	x	x
Nut	204-010-719-001	3110-624-6714	x	x	x	x
Boot	47-641-101-001	1615-503-1896	x	x	x	x
Slider	204 - 010 - 720 - 003 204 - 010 - 720 - 005 204 - 010 - 720 - 007	1615-859-6111 1615-929-1017 1615-350-4427	x	× x	x x	x x
Plate	204-010-721-003	3110-973-3512	x	×	x	x
Bearing Set	204-011-761-003 204-011-769-001	3110-056-7571 3110-135-0563	x x	XX	x x	x x
Crosshead	204-011-711-001	1615-051-3646	x	×	×	×
Pitch Change Link	204-011-762-001	1615-086-6781	×	×	×	V
	204-011-762-003 204-011-762-007 KSP 9003-5	1615-805-7522 1615-805-7456	x	×	×	x
Rod End Bearing	204-011-763-001	3120-980-0344	x	x	x	
	204-011-763-003 KSP 7007-1 KSP 7007-3	3120-851-5880 3120-369-9600 3120-248-1470	x	x	x	x

Component Part Numbers	Overhaul Interval (Hours)	Retirement Interval (Hours)			
Tail Rotor Hub					
204-011-701-11,-13,-19,-29					
204-011-801-3,-5,-9,-11		1100			
209-011-701-3					
Tail Rotor Blade					
204-011-702-11,-15,-17		1100			
42° Gearbox					
204-040-003-7,-37	1500				
90° Gearbox					
204-040-012-7,-13	1100				
*Per References 18,19 and 20.					

TABLE IV. OVERHAUL AND RETIREMENT SCHEDULE*

the records which were "first removals" from aircraft which have already attained 1100 hours' flying time has also been created. The 1100-hour value was chosen because this is the aircraft overhaul interval for most of the UH-1/AH-1 components for which an overhaul interval has been specified.

2.1.1.2 <u>UH-1/AH-1 Maintainability and Reliability (M&R) Frogram</u> Data

These data consist of information obtained by reliability field engineers while monitoring UH-1C/D/H and AH-1G helicopters. The Field Failure/Discrepancy Reports (FDR), one type of data collected under the M&R Program, were a source for failure rates, mean-time-between-failure values and failure modes used in this analysis report.

2.1.1.3 Monitored Maintenance Task Time Data

To obtain maintenance task time information for DATRS, monitoring programs were conducted by Reliability engineers at three locations:

- BHC Flight Test Facility
- Lowe Army Airfield, Fort Rucker, Alabama
- Hunter Army Airfield, Fort Stewart, Georgia

The BHC Flight Test Facility provided a maintenance mechanic and two aircraft for the simulation of the removal and installation actions of the tail rotor components in accordance with Army maintenance manual instructions. These actions were repeated four times. They were observed and timed, and the average maintenance times were calculated.

The Lowe Army Airfield monitoring effort was accomplished from 1 May 1972 to 5 May 1972. Maintenance actions were performed by Page Aircraft Maintenance, Incorporated (PAMI), a civilian maintenance contractor at Fort Rucker. The maintenance activities monitored included:

- 100-hour Scheduled Inspection
- Tail Rotor Hub and Blade Assembly Balancing
- Miscellaneous Unscheduled Maintenance

The Hunter Army Airfield monitoring was accomplished during the period 15 April 1972 - 30 April 1972. This effort included about eight days observation in the organizational maintenance area, and two days at the oil analysis laboratory and the direct

support/general support **prop rotor shop**. Army personnel performed the maintenance at these locations.

The task times obtained from the monitoring at these three locations were averaged where possible. However, the tasks were not always performed in the same sequence of subtasks. This resulted in portions of tasks or combinations of subtasks being timed at different points in the total task.

2.1.1.4 Bell Helicopter Company UH-1 Series Target Price List

Five Target Price Lists covering contract periods FY'67 through FY'72 were used to obtain spare parts cost values for the Cost Analysis (see Table LIV).

2.1.2 Government-Furnished Data

2.1.2.1 The Army Maintenance Management System (TAMMS) Data

These data are supplied on magnetic tape to BHC as Governmentfurnished data under other contracts. BHC has received Maintenance Request (DA Form 2407), Equipment Maintenance Record (Organizational) (DA Form 2408-3), and Component Removal and Repair/Overhaul Record (DA Form 2410) data. Working data files have been created from the raw data tapes by the selection of appropriate records.

In addition, certain Army prepared Reliability and Maintainability Management Improvement Techniques (RAMMIT) reports based on TAMMS data were used. They were the Major Item Removal Frequency (MIRF)^{4,5,6} and the Major Item Special Study (MISS) reports.⁷ thru 13

2.1.2.2 U.S. Army Agency for Aviation Safety (USAAANS) Data

BHC has received records of UH-1/AH-1 accidents since 1963 from U.S. Army Agency for Aviation Safety (USAAAVS). These data are received on IBM cards. There was a change in the format of these cards starting 1 January 1967; therefore, only data subsequent to this date were used for this analysis. Due to the large number of cards received since 1967, these data have been placed on magnetic tape to facilitate computer analysis of the data.

2.1.2.3 Army Technical Manuals

Technical manuals^{1,2,3} were used to obtain description of maintenance procedures, including inspection instructions and repair/replacement criteria.

2.1.2.4 <u>Naval Aviation Maintenance and Material Management</u> (3-M) Data

Currently, the 3-M data bank at BHC contains over 1.5 million records on BHC aircraft purchased by the Navy or Loaned to the Navy by one of the other services. These data were derived from Support Action Form (SAF), Maintenance Action Form (MAF), Technical Directive Compliance Form (TDCF), and Equipment Statistical Data (ESD) cards. Additional working files containing UH-1D and AH-1G data have been created from the raw data by card code selection and segregation.

The data have been analyzed to obtain failure rates, task times and maintenance man-hour-per-flight-hour ratios.

2.2 TAIL ROTOR SYSTEM DESCRIPTION

The tail rotor system (see Figure 3) counteracts the torque of the main rotor and provides directional control. The UH-1/AH-1 tail rotor system as defined in this report consists of three subsystems:

- tail rotor drive
- tail rotor hub and blade
- tail rotor control

2.2.1 Tail Rotor Drive

The tail rotor drive (see Figure 4) consists of the drive shafts and hanger assemblies, the 42-degree gearbox, and the 90-degree gearbox. Five identical drive shaft sections are incorporated in the power train aft of the transmission. These drive shafts. three bearing hanger assemblies, the 42-degree gearbox on the tail boom and the 90-degree gearbox on the verical fin transmit the power to drive the tail rotor. An additional shorter drive shaft section and hanger assembly are provided on helicopters with 48-foot main rotor (Models UH-1D/H). Each drive shaft consists of an anodized aluminum alloy tube with a curvic-splined coupling riveted on each end. The forward shaft extends through a tunnel between the engine firewalls, with ends connected by V-band clamps to mating splined couplings on the transmission tail rotor drive quill and on the forward hanger assembly. Other shafts are mounted in similar manner along the tail boom and fin between the hangers and gearboxes.

The hanger assemblies consist of couplings on a short splined shaft, mounted through a single-row sealed ball bearing in a

かいいまし

Figure 3. WH-1/AH-1 Tail Rotor System Diagram.

Figure 4. UH-1/AH-1 Tail Rotor Drive System Diagram.

ring-shaped hanger, equipped with two mounting lugs for attachment on a support fitting.

The 42-degree gearbox is located on the tail boom, at the base of the vertical fin. This gearbox provides a 42-degree change in direction of the tail rotor drive, with no speed change. The gearbox assembly consists of a case with a gear quill in each end. The case is fitted with an oil filler cap, a vent breather, an oil level sight gage, and a drain plug equipped with a magnetic insert or an electric chip detector. Input and output quills have flexible couplings for the attachment of drive shafts. Access to the gearbox is provided by a vented cover fairing which has quick-release fasteners.

The 90-degree gearbox at the top of the tail boom vertical fin provides 90-degree change in direction of drive and 2.6:1 speed reduction between its input drive shaft and the output shaft on which the tail rotor is mounted. The gearbox has mating input and output gear quill assemblies set into a gear case provided with a vented oil filler cap, an oil level sight gage, and a drain plug which has a magnetic insert plug or an electric chip detector. The input quill has a flexible coupling for attachment of the driveshaft.

2.2.2 Tail Rotor Hub and Blade

The hub and blade assembly (see Figure 5) is a single twoblade controllable pitch tail rotor located on the left side of the tail fin. Two blades, the hub, and attaching hardware comprise the assembly. It is driven by the tail rotor gearbox. The blades are constructed of metal and are attached by bolts to blade grips which are mounted through bearings to spindles of a hub yoke. The tail rotor hub is hinge-mounted to provide automatic equalization of thrust on advancing and retreating blades. Pitch change links provide equal and simultaneous pitch change to both blades.

2.2.3 Tail Rotor Control

Tail rotor blade pitch control is accomplished by means of a control quill assembly (see Figure 6) mounted into the right side of the tail rotor gearbox, with a control tube extending through the hollow shaft on which the tail rotor is mounted. The control quill sprocket is operated by a chain attached to control cables and is engaged to the control tube through a worm thread, so that rotation of the sprocket is transmitted through the tube as linear motion to a crosshead which is connected to tail rotor blade grips by the pitch change links (see Figure 5).

Figure 5. UH-1/AH-1 Tail Rotor Hub and Blade Assembly and Pitch Control Mechanism Diagram.

2.3 INFORMATION COMPILED

The information compiled for this DATRS report was divided into ten smaller analyses, each of which is presented in a separate section (Sections 3 through 12). Each section is divided into two major parts--the analysis approach and the analysis results. Any conclusions which have been observed are included in the results. Additionally, more detailed information is presented in the appendixes.

The following comments concern some of the analyses:

- The mean-time-to-removal (MTR) analysis was expanded to include mean-time-between-removals (MTBR).
- The failure modes analysis is a history of the failures which are known to have occurred rather than the usual prediction type of failure modes and effects analysis.
- The cost analyses presented are for typical fleets of UH-1 (utility) and AH-1 (attack) helicopters. The wide variation in fleet size, use rate, use environment, spares cost, and repair cost over the period of data analyzed precluded the possibility of establishing the actual support costs for any given model.

3. MEAN-TIME-BETWEEN-FAILURES (MTBF) ANALYSIS

3.1 MTBF ANALYSIS APPROACH

影

In order to determine the MTBF of an item, it is necessary to have an adequate time base during which the failures are observed. For this reason the analysis was based on M&R Program FDR data and Navy 3-M data. The FDR data were obtained by monitoring a representative group of aircraft and recording the flight times and failure information as they occurred. FDR data are available on Models UH-1C/D/H and AH-1G. 3-M data were gathered by Navy personnel on all aircraft flown by them and represent the total picture for these aircraft. 3-M data are available on Models UH-1D and AH-1G because these models were on loan to the Navy by the Army.

The MTBF is the sum of the item operating times accumulated on all items of a given type divided by the number of failures of that item. In this analysis a failure is defined as any occurrence requiring unscheduled maintenance. The item operating times are obtained by multiplying the number of items on each aircraft times the sum of the aircraft flight hours of the group of aircraft on which the items failed.

$$MTBF = \frac{k \sum_{j=1}^{m} t_j}{f}$$
(1)

where t_j = total flight hours of the jth aircraft
m = number of aircraft in the group
k = number of items on each aircraft
f = number of item failures

All of the parts listed in Table III are considered critical because a functional failure of any one of the parts will cause failure of the subsystem.

The failure rate (λ) of an item is equal to the reciprocal of its MTBF if the failures are assumed to occur randomly:

$$\lambda = \frac{1}{\text{MTBF}} = \frac{f}{k \sum_{j=1}^{m} t_j}$$
(2)

3.2 MTBF ANALYSIS RESULTS

Table V presents a comparison of the MTBF values and failure rates of the subsystems and the total tail rotor system from the two data sources. The total system MTBF values derived from Navy 3-M data, Table VI, are about one-third of the comparable values obtained from the M&R data, Table VII. The flight time on which the 3-M data are based is 44 percent of the M&R time base for AH-1Gs and 52 percent of the M&R time base for UH-1D/Hs.

The 3-M analyses indicate that most of the tail rotor system failures occur in the hub and blade and drive subsystems, while the M&R data indicate that most of the failures are in the control subsystem. However, the 3-M data show a significant frequency of maintenance actions to correct rotor unbalance which was not as thoroughly reported during the M&R program. The M&R program emphasis was placed more on the reporting of component failures. Conditions which required only unscheduled maintenance adjustments had a lower priority.

In the 3-M analysis, two conditions, both probably related to the age of the aircraft, appeared to cause the MTBF of the UH-1D hub and blade assemblies to be lower than that of the AH-1G assemblies. The data show that the rate of hub wear and rotor unbalance was higher on the UH-1D than on the AH-1G. The UH-1D aircraft (FY 1965 and 1966) were two to three years older than the AH-1G aircraft (primarily FY 1968).

In Section 6, the MTR/MTBR analyses, additional MTBF values have been computed for the tail rotor system overhaul and time change components. Table VIII compares the MTBF values from the four data sources for these components. The comparison shows that the 3-M data produced the lower values and the M&R data produced the higher values. For some components the M&R data values and the RAMMIT MIRF data values were in general agreement.

		Ľ	ABLE	· · · · · · · · · · · · · · · · · · ·	COMPARIS	SON C)F_3-M SYSTEM	AND M&R MTBF VA	t PRC	GRAM					
			-	Σ.							M&R				Π
		ij			с С			D/H			С	Γ		c	Γ
Subsystem	MTBF (Hr)	Å _{ER}	r, ⁰	MTBF (Hr)	Å _{III}		MTBF (Hr)	$\boldsymbol{\lambda}_{\mathrm{in}}$	ь <u>?</u>	MTBF (Hr)	Å _m	00 20	MTBF (Hr)	ک _{III}	é,
Tail Rotor Hub & Blade	25	17,453	52	ŝ	11,407	24		2,415	2.2	155	6,450	43	3-1	2,025	L o
Tail Rotor Drive	1 (X)	11,495	35	34 3	29,27-	61	1 ~	4,205	5	267	3,750	5	164	c. 105	41
Táil Rotor Control	240	4,153	13	134	7,427	15	177	4,413	0 t	331	3,023	2 T	163	6 , 145	ţ.
Total Tail Rutor System	30	33,101	100	21	48,111	100	0,	11,093	100	ے ا	13,223	100	67	14, ~~]	100
A _m = the faile 5 = subsyster failure 1	ire rat n failu rate	e in Ía. Irc rate	i lurc as a	s perc	mi l l i oi entage	n fl of T	ight ha otal T	ours ail Rot	or S	ys tem					

(3-M Data Through Feb	ruary 1972)	
	UH-1D	AH-1G
SUBSYSTEM Component	MTBF (Hours)	MTBF (Hours)
T/R HUB & BLADE	<u>57</u>	88
T/R Hub T/R Blade* Other	83 764 352	209 988 217
T/R DRIVE	<u>87</u>	34
T/R Drive Shaft** Hanger Assembly*** 42° Gearbox 90° Gearbox Other	3,472 1,348 539 304 604	1,325 198 245 204 686
T/R CONTROL	<u>240</u>	134
Control Quill Control Tube Pitch Control Mechanism Chain Pitch Change Link* Crosshead	5,778 20,226 3,111 4,045 1,154 612	3,351 4,308 1,077 1,160 602 558
* Two per aircraft ** Six per aircraft on UH-1D, five AH-1G *** Four per aircraft on UH-1D, the AH-1G	e per aircraf ree per aircr	't on raft on

TABLE VI.COMPONENT MTBF FOR THE UH-1D/AH-1GTAIL ROTOR SYSTEM

...

SUBSYSTEM		MTBF (Hours)	
Component	UH-1D/H	UH-IC	AH-1G
T/R HUB & BLADE	414	155	381
T/R Hub	1,876	2,976	1,368
T/R Blade*	1,159	365	1,122
Other	6,410	1,592	8,929
T/R DRIVE	234	267	164
T/R Drive Shaft**	10,204	12,820	3,891
T/R Hanger Assembly***	1,605	1,553	2,049
42 ⁰ Gearbox	2,083	2,551	1,088
90 ⁰ Gearbox	1,418	965	442
Other	-	-	4,274
T/R CONTROLS	227	331	163
T/R Boot	3,086	5,952	926
T/R Slider	2,571	1,021	2,012
T/R Crosshead	3,846	-	2,538
Crosshead Bearing Set	3,508	7,143	4,902
T/R Pitch Change Link*	1,093	1,931	938
T/R Chain	1,927	8,929	1,342
T/R Quill	2,653	5,102	1,244
T/R Control Tube	4,525	35,714	13,699
Other	4,525	2,825	4,566
* Two per aircrafi			
** Five per aircraft on UH- UH-1D/H	-1C and AH-1	LG, Six per a	ircraft on

TABLE VII. COMPONENT MTBF FOR THE UH-1D/H/C, AH-1G TAIL ROTOR SYSTEM (Based on M&R Data)

25

*** Three per aircraft on UH-1C and AH-1G, Four per aircraft on UH-1D/H

	FROM	FOUR DAT	A SOURCE	5	
Component	Model	M&R Data	3M Data	B ell O/H Data	RAMMIT MIRF Data
Tail Rotor Hub	UH-1C UH-1D UH-1D/H AH-1G D/H/G	2976 	83 209 -	- - - -	- 1004 569 898
Tail Rotor Blade	UH-1C UH-1D UH-1D/H AH-1G D/H/G	365 - 1159 1122 -	764 - 988 -	- - - - -	- 924 638 857
42 ⁰ Gearbox	UH-1C UH-1D UH-1D/H AH-1G D/H/G C/D/H/G	2251 	539 245 -	- - - 718	- 1271 924 1206 -
90 ⁰ Gearbox	UH-1C UH-1D UH-1D/H AH-1G D/H/G C/D/H/G	965 - 1418 442 - -	304 204 -	- - - - 652	- 1311 982 1253 -
Hanger	UH-1C UH-1D UH-1D/H AH-1G D/H/G	1553 - 1605 2049 -	1348 198 -	- - -	- 693 652 689

b.c.

.

<u>C</u>

4. <u>MEAN-TIME-BETWEEN-(SCHEDULED AND UNSCHEDULED)</u> MAINTENANCE (MTBM) ANALYSIS

4.1 MTBM ANALYSIS APPROACH

The MTBM is the mean-time-between-maintenance for all maintenance actions (scheduled and unscheduled) performed on the tail rotor system. The tail rotor system mean-time-betweenscheduled maintenance (MTBSM) was determined from data in the organizational maintenance manuals 1,2,3 for Models UH-1C/D/H and AH-1G helicopters. These TMs specify the scheduled maintenance tasks and the periodic requirement for their performance.

Table IX shows the scheduled maintenance requirements extracted from the TMs. Note that the servicing tasks performed during daily inspections were not included in this analysis.

For UH-1 and AH-1 helicopters, maintenance tasks are scheduled to be performed at multiples of either the intermediate inspection periods (25-hour intervals) or the periodic inspections (100-hour intervals). To determine the MTBSM for a tail rotor system component, the approach is somewhat different from that used to determine MTBF. Where several different scheduled actions are specified for a component, each with a different period interval, those actions occurring at the same scheduled time are considered dependent (or combined) rather than independent actions.

For example, a 42-degree gearbox requires servicing (action A) every 100 hours and greasing (action B) every 500 hours. Since every time action B is performed, action A is also performed, the MTBSM is 100 hours.

Following this approach, the MTBSM for each component is the smallest of the established time between maintenance for any specified maintenance actions for that component. Similarly, the MTBSM for the tail rotor system is the smallest of the MTBSM values for the tail rotor components.

The MTBF values from MNR data, presented in the MEAN-TIME-BETWEEN-FAILURES ANALYSIS, Section 3, were combined with the MTBSM values to obtain the MTBM as follows:

$$MTBM = \frac{1}{\frac{1}{MTBF} + \frac{1}{MTBSM}}$$
 (3)

This equation assumes that the failure rate is constant and that the data is from mature aircraft.

TABLE IX. FREQUENCY OF SCHEDULED MAINTENANCE ACTIONS FOR MODELS UH-1C/D/H AND AH-1G HELICOPTERS

0

SUBSYSTEM Component	Grease	Service	Balance	тво	Retirement Life
T/R HUB & BLADE			100		
Hub	100*	-		-	1.100
Blade	-	-	-	-	1100
T/R DRIVE					
42° Gearbox	500	100	-	1500	-
90° Gearbox	500	100	-	1100	_
Hanger Assembly	500	-	-	-	-
T/R CONTROL					
Crosshead Bearing Set	100	-	-	-	-
* On Model UH-1C	this is	done ever	ry 50 hour	cs.	

4.2 MTBM ANALYSIS RESULTS

Table X presents the mean-time-between-scheduled maintenance for the tail rotor system. Table XI presents the results of the MTBM analysis for the M&R Program FDR data. The results show that the MTBM values for the UH-1D/H and the AH-1G are fairly comparable, while the UH-1C is more than 25 percent lower because of its more frequent hub maintenance and lower tail rotor blade MTBF. During the M&R Program, the UH-1C tail rotor blade was subjected to frequent armament debris damage from hand-held door guns. This condition was improved later when a pintle mount and brass catches were made available.

SUBSYSTEM		CRAFT MODET	
Components	UH-1D/H	UH-1C	AH-1G
T/R HUB & BLADE	100	50	100
T/R Hub Assembly	100	50	100
T/R Blade	100	100	100
T/R DRIVE	100	100	100
T/R Drive Shaft	-	-	-
T/R Hanger Assembly	500	500	500
42° Gearbox	100	100	100
90° Gearbox	100	100	100
T/R CONTROL	100	100	100
Crosshead Bearing Set	100	100	100
TOTAL T/R SYSTEM	100	50	100

TABLE X.MEAN-TIME-BETWEEN-SCHEDULEDMAINTENANCEFOR THE TAIL ROTOR SYSTEM

A-

--

•

	(Based on M&R		
SUBSYS TEM	AIRO	CRAFT MODEL	
Components	UH-1D/H	UH-1C	AH-1G
T/R HUB & BLADE	80.5	37.8	79.2
T/R Hub Assembly	94.9	49.2	93.2
T/R Blade	92.1	78.5	91.8
T/R DRIVE	70.1	72.8	62.1
T/R Drive Shaft	10,204	12,820	3,891
T/R Hanger Assembly	381.2	378.2	401.9
42° Gearbox	95.4	96.2	91.6
90° Gearbox	93.4	90.6	81.5
T/R CONTROL	69.4	76.8	62.0
Crosshead Bearing	97.2	100.0	96.2
TOTAL T/R SYSTEM	47.4	30.2	40.1

TABLE XI. MEAN-TIME-BETWEEN-MAINTENANCE FOR THE TAIL ROTOR SYSTEM (Based on M&R Data)

15. 1 21

5. MAINTAINABILITY INDEXES

5.1 MAINTAINABILITY INDEXES ANALYSIS APPROACH

The maintainability indexes "are the means for determining whether or not the maintainability requirement in an overall specification for a system has been complied with." ²⁰ In arriving at these indexes, units of time are the most useful measures of success. The overall reference is the period of time when the system is operable as against the period when the system is not operable (downtime).

Downtime consists of active downtime and delay downtime. Active downtime is the actual time spent performing maintenance, inspection, repair, replacement, check-out, etc. Delay downtime is the period when a system is inoperable due to unavailability of tools, test equipment, spare parts and other administrative delays. The basic element of the maintainability indexes is the repair time R_t , which is defined as the period of active downtime required to return a failed system to normal operation.

The indexes developed in this section are for organizational maintenance actions only.

The maintenance times used were those acquired during the monitoring of tail rotor maintenance which was performed as a part of this study. The maintenance procedures in Appendix I provided a means of calculating time values for a series of actions. The maintenance times from the Navy 3-M data were used for comparison. The TAMMS data could not be used because it was not possible to obtain maintenance times in calendar hours from this source.

5.1.1 Mean-Time-To-Repair (MTTR)

The MTTR is the average downtime in calendar hours for a specified unscheduled task. The maintenance tasks were grouped into the following maintenance actions:

Remove	Track
Replace (Install)	Grease
Align (Rig)	Service

To determine the mean time to repair for specific actions MTTR_A on like items within the tail rotor system, the following equation was used:

where

n j = the number of failures that require a specific maintenance action j to correct on like items

 R_t = the repair time for the ith failure repair of i a specific corrective action j on like items

However, to find the MTTR of any item, it was necessary to consider the frequency with which each type of action occurred. By examining the TAMMS 2407 data, it was possible to determine the percentage of all maintenance actions on a component that fell into each action category for that component. The following equation was used to determine the component mean time to repair $MTTR_C$.

$$MTTR_{G_{k}} = \frac{\sum_{j=1}^{n_{k}} P_{j} MT'TR_{A_{j}}}{100}$$
(5)

where F_j = the percentage of all unscheduled maintenance actions performed on the component which are action type j

To determine system and subsystem MTTR values, it was necessary to consider the rates at which failures of the various components occurred. The component failure rate values used are from the M&R data.

Table V expresses these rates as failures per million flight hours (λm). The value for "other" items was not considered because R_t for these items is not known. The following equation was used to obtain the subsystem mean time to repair MTTR_{SS}.

$$MTTR_{SS} = \frac{\sum_{k=1}^{n_{L}} a_{kL} \lambda_{k}^{MTTR} C_{k}}{\sum_{k=1}^{n_{L}} a_{kL} \lambda_{k}}$$
(6)

where n = the number of different types of components L within the subsystem L

akL = the number of components of type k within
the system L

 λ_k = the failure rate for component type k within the subsystem L

Similarly, the system mean time to repair $MTTR_S$ is obtained by using the following equation:

$$MTTR_{S} = \frac{\sum_{L=i}^{m} \lambda_{L} MTTR_{SS}}{\sum_{L=i}^{m} \lambda_{L}}$$
(7)

where m = the number of subsystems within the tail rotor system

 λ_{L} = the failure rate of subsystem L determined by

$$\lambda_{\rm L} = \sum_{k=1}^{n_{\rm L}} a_{k\rm L} \lambda_{k} \tag{8}$$

5.1.2 Mean Preventive Maintenance Action Time (\overline{M}_{pt})

In order to reduce the probability that a system will require corrective maintenance action, this system is taken out of operation for a period of time for preventive maintenance (lubrication, calibration, adjustment, etc.). The mean preventive action time M_{pt} is defined as the statistical mean of the sum of the times required for preventive actions divided by the number of these actions scheduled for a given period. For this report the scheduled maintenance actions for 1500 flight hours of helicopter operation were considered. This time was selected because it is the greatest allowable operating time for an item (42-degree gearbox) within the tail rotor system. Daily and preflight inspections are excluded.

The number of preventive maintenance actions n_p was determined using the mean-time-between-scheduled-maintenance values MTBSM presented in Table X. The number of scheduled actions on a component n_i in a 1500-hour period is expressed by P_{C_k}

$$n_{p_{C_{k}}} = a \sum_{i=1}^{s} n_{p_{A_{i}}}$$
 (9)

where

s = the number of types of scheduled maintenance actions i on the component

a = the number of like components k on the aircraft

n = the number of scheduled actions of type i P_{A_i} on the component k in 1500 hours where generally

$$n_{p_{A_{i}}} = \frac{1500}{MTBSM_{A_{i}}}$$
(10)

When the action involves the removal and installation of a component (tail rotor balancing, TBO replacements, etc.), the removal and installation are considered as two different actions.

The number of preventive maintenance actions in 1500 hours for the subsystem n $$\rm is\ determined\ by\ $PSS$$

 $n_{p_{SS}} = \sum_{k=1}^{n_{L}} n_{p_{C_{k}}} + 60$ (11)

where $n_L =$ the number of different k components within the subsystem L

There are 60 inspections of each subsystem in 1500 hours: an intermediate every 25 hours and a periodic every 100 hours. The time for these is not included in the number of component actions.

The number of preventive actions for the system in 1500 hours $n_{p_{\rm S}}$ is expressed by

$$n_{p_{S}} = \sum_{L=1}^{m} n_{p_{SS_{L}}} + 60$$
 (12)

where \mathbf{m} = the number of L subsystems within the system

The additional 60 actions are those used in inspecting the exterior and opening and closing access doors during the intermediate and periodic inspections. These actions were not charged to any particular subsystem.

Using the preventive maintenance action times obtained during the monitoring, the following equations were used to find the mean preventive maintenance action time \overline{M}_{pt} for the component, subsystem, and system. The mean preventive maintenance action time for the component k is expressed by

$$\overline{M}_{pt}_{C_{k}} = \frac{\sum_{i=1}^{s} \left(\overline{M}_{pt}_{A_{i}} \right) \left({}^{n}_{p_{A_{i}}} \right)}{{}^{n}_{p_{C_{k}}}}$$
(13)

where

s = the number of types of preventive maintenance actions on the component

The mean preventive maintenance action time for the subsystem L is expressed by

$$\overline{\mathbf{M}}_{\mathsf{pt}_{SS}} = \underbrace{\begin{bmatrix} {}^{\mathsf{n}_{\mathbf{L}}} \\ \sum_{k=1}^{\mathsf{n}_{\mathbf{L}}} {\binom{\mathsf{n}_{\mathsf{p}_{\mathsf{C}_{k}}}}{\binom{\mathsf{m}_{\mathsf{pt}_{\mathsf{C}_{k}}}}} + 60 & \mathbf{I}_{SS} \\ {}^{\mathsf{n}_{\mathsf{p}_{SS}}} \end{array}$$
(14)

where I_{SS} = the mean preventive maintenance action time for the inspection of the subsystem

The mean preventive maintenance action time for the system is expressed by

$$\overline{\mathbf{M}}_{pt_{S}} = \underbrace{\left[\underbrace{\sum_{L=1}^{m} \binom{n_{p_{SS_{L}}}}{\binom{n_{pt_{SS_{L}}}}{n_{p}}} \right]^{+ 60 I_{S}}}_{n_{p_{S}}}$$
(15)

where I_S = the mean preventive maintenance action time for the inspection of the system

5.1.3 Mean Corrective and Preventive Action Time (\overline{M})

5.1.3.1 Monitored Data

ないでもあるとうでいたいです。

The \overline{M} (active system downtime resulting from both corrective and preventive activities) was calculated for each subsystem using the following equation:

$$\overline{M} = \frac{\binom{n_c}{MTTR_S} + \binom{n_{p_s}}{\overline{P}_S}}{\frac{n_c + n_{p_s}}{\overline{P}_S}}$$
(16)

where $n_c =$ the number of corrective maintenance actions in 1500 flight hours (1500 x $\lambda m/1000,000$)

Other items are as previously defined.

5.1.3.2 3-M Data

As a comparison, the Navy 3-M data were used to determine the value of \overline{M} . Of the models covered in the 3-M data, UH-1D and AH-1G are the only ones of interest for this report. These data identify components by work unit code rather than part number; therefore, the analysis combines all similar components regardless of part number. The mean maintenance action time from the 3-M data analysis is presented in calendar hours, providing a comparison for monitored task times.

The maintenance actions were divided in two groups: "part replacements," both corrective and preventive (scheduled), and "on-aircraft" repairs (corrective). The part replacement items consider the remove-and-replace (installation of a like item) action times. The "on-aircraft" repairs are maintenance actions that are not "part replacements." The data did not include identifiable preventive maintenance actions other than scheduled replacements. "All Maintenance" is the two sets of data combined. The values for M_C for each component for each group of data were determined using the following equation:

$$\mathbf{M}_{\mathrm{C}} = \frac{\sum_{i=1}^{n} \mathbf{M}_{i}}{n}$$
(17)

where \overline{M}_{C} = mean maintenance action time for the component M_{i} = maintenance time for ith action on the component n = number of actions on the component The subsystem \overline{M} values were computed by using the following equation:

$$\overline{M}_{SS} = \frac{\sum_{j=1}^{m} r_j \overline{M}_{C_j}}{\sum_{j=1}^{m} r_j}$$
(18)

where j = the jth component within the subsystem

r; = maintenance rate of the jth component type

m = the number of different component types

The system M values were computed by using the following equation:

$$\overline{M}_{S} = \frac{\sum_{k=1}^{p} r_{k} \overline{M}_{SS_{k}}}{\sum_{k=1}^{p} r_{k}}$$
(19)

where k = the kth subsystem within the system

 r_k = the maintenance rate for the kth subsystem

p = the number of subsystems

The maintenance rates used were also extracted from the 3-M data.

5.2 MAINTAINABILITY INDEXES ANALYSIS RESULTS

5.2.1 Mean-Time-To-Repair (MTTR)

Table XII presents the MTTR values obtained by monitoring tail rotor maintenance. The task times are the same for all three models for most components. The UH-1D/H and UH-1C have the same task times except for the tail rotor drive shaft replacement (installation) time. This difference is caused by the difference in number of drive shafts: The UH-1C has five (one fin drive shaft and four tail boom drive shafts) and the UH-1D/H has six (one fin and five tail boom drive shafts).

TABLE XII. MEAN (TIME (MAINT) (Time Monito	ORRECTIVE M (MTTR) GROUF ENANCE ACTIO Values Base ored Data)	AINTENANCE PED BY N ed on	
SUBSYSTEM	MTTR	(Hours, El	 MT)
<u>Component</u> <u>Maintenance</u> Action	UH-1D/H	UH-1C	AH-1G
TAIL ROTOR HUB & BLADE	0.4689	0.4490	0.5790
Remove Replace Track Grease	0.1668 1.1578 0.0762 0.0800	0.1668 1.1578 0.0762 0.0800	0.1668 1.3328 0.0762 0.0800
TAIL ROTOR DRIVE	0.4290	0.5241	0.6863
Remove Replace Service 90° <u>Gearbox</u>	0.2983 0.8088 0.1118	0.2983 0.8088 0.1118	0.2983 0.8088 0.1118
Remove Replace Service	0.4808 1.7593 0.1482	0.4808 1.7593 0.1482	0.5642 2.1084 0.1482
Hanger Assembly			
Remove Replace Grease	0.1368 0.3947 0.6495	0.1368 0.3947 0.6495	0.1368 0.3947 0.6495
<u>T/R Drive Shaft</u>			
Remove Replace	0.1145 0.3320	0.1149 0.3329	0.1149 0.3329
TAIL ROTOR CONTROL	0.2292	0.2205	0.2631
Remove Replace Align (Rig)	0.1257 0.4047 0.5303	0.1257 0.4047 0.5303	0.1673 0.4625 0.6298
TOTAL TAIL ROTOR SYSTEM	0.3591	0.4224	0.4930

TA	BLE XII.	(Cont'd)	
SUBSYSTEM	MT	rR (Hours,	EMT)
Component	ע ו עו		AV 10
		00-10	AU-10
TAIL ROTOR CONTROL (Cont'd)			
Quill Assembly			
Remove	0.2268	0.2268	0.2685
Replace	0.8222	0.8222	0.9973
Control Tube			
Remove	0.2435	0.2435	0.2852
Replace	0.8390	0.8390	1.0140
Boot			
Remove	0.1017	0.1017	0.1017
Replace	0.3875	0.3875	0.3875
Slider			
Remove	0.1017	0.1017	0.1017
Replace	0.3875	0.3875	0.3875
Bearing Set			
Remove	0.0905	0.0905	0.0905
Replace	0.2907	0.2907	0.2907
Grease	0.0467	0.0467	0.0467
Crosshead			
Remove	0.0570	0.0570	0.0570
Replace	0.3138	0.3138	0.3138
Pitch Change Link			
Remove	0.0650	0.0650	0.0650
Replace	0.1938	0.1938	0.1938

ł

The fin drive shaft requires a little more task time than the others. The time value for this part is weighted more heavily for the aircraft with fewer drive shafts, thus resulting in higher overall time for UH-1C drive shafts. The AH-1G and UH-1C drive shafts require the same amount of maintenance time.

There is a difference in average task times between the AH-1G and UH-1D H C for some maintenance actions. The AH-1G sometimes requires, in addition to the other task elements, the removal of one or both of the tail fin fairings. The UH-1 models do not have fin fairings covering the 90-degree gearbox and control quill, tube, and chain.

5.2.2 Mean Preventive Maintenance Action Time (M_{pt})

Tables XIII through XIX present the \overline{M}_{pt} grouped by model and subsystem. Component tables are presented only if there is more than one type of action per component. The average maintenance time computed from the data obtained during the monitoring of the tail rotor maintenance and the number of times each action is repeated in a 1500-hour interval are presented. Notice that scheduled actions may have time values different from the unscheduled maintenance actions presented in Table XII. This is because a scheduled removal of the 90-degree gearbox, for instance, requires less time than an unscheduled removal because opening of access doors and removal of controls to gain access to the gearbox have already been accomplished as a part of the eleventh 100-hour inspection.

5.2.3 Mean Preventive and Corrective Action Time (\overline{M})

Table XX presents the subsystem and system \overline{M} for all the models, calculated using the MTTR and \overline{M}_{pt} obtained from monitored task time data.

Table XXI presents \overline{M} in calendar hours elapsed maintenance time EMT obtained from 3-M data. In Table XXII, the system and subsystem values under "All Maintenance" are compared to the \overline{M} values presented in Table XX.

The difference between the values obtained from the two data sources is probably due to the reporting methods. The monitored data includes only actual "touch time." The 3-M data probably represents touch time and other actions required by maintenance men to accomplish a task; that is, preparing an area for removed parts, getting tools, doing paperwork in connection with the task, and even coffee breaks, should they occur in the midst of a task. The last item is probably included in the time reported due to a requirement that every

TABLE	E XIII.	MEAN PRE TIME (\overline{M}_{p}) (Express	EVENTIVE ot) FOR 1 sed in Ho	MAINTENA THE TAIL	ANCE ACT: ROTOR SY	ION ISTEM
Maintananaa	UH-	1D/H	UI	I-1C	AF	I-1G
Action	No.*	Mpt	No.*	M _{pt}	No.*	Mpt
Inspect	240.00	0.1924	240.00	0.1924	240.00	0.1924
Remove	17.36	0.1699	17.36	0.1699	17.36	0.1808
Replace	17.36	0.6078	17.36	0.6078	17.36	0.7863
Align	120.00	0.2916	120.00	0.2916	120.00	0.3412
Track	60.00	0.0762	60.00	0.0762	60.00	0.0762
Grease	46.73	0.1248	43.73	0.1178	43.73	0.1178
Service	30.00	0.1174	30.0 0	0.1174	30.00	0.1174
All Actions	531.45	0.2040	528.45	0.2042	528.45	0.2215
* The numbe interval	er of act	ions occ	urring i	n a 1500)-flight-	hour

Ľ

TABLE	XIV. M T A (IEAN PREV TIME (M _{pt} ND BLADE Expresse	VENTIVE M) FOR TH ed in Hou	IAINTENAN HE TAIL F Hrs EMT)	NCE ACTIC ROTOR HUE) N 8
Maintenance	UH-	1D/H	U	I-1C	Al	I-1G
Action	No.*	M _{pt}	No.*	M _{pt}	No.*	Mpt
Inspect	60.00	0.0834	60.00	0.0834	60.00	0.0834
Remove	15.00	0.1669	15.00	0.1669	15.00	0.1669
Replace	15.00	0.6155	15.00	0.6155	15.00	0.7905
Align	60.00	0.0527	60.00	0.0527	60.00	0.0527
Track	60.00	0.0762	60.00	0.0762	60.00	0.0762
Grease	15.00	0.0800	15.00	0.0800	15.00	0.0800
Service	-	-	-	-	-	-
All Actions	225.00	0.1140	225.00	0.1140	225.00	0.1257
* The numbe interval	er of act	ions occ	urring i	n a 1500	-flight-	hour

TAB	TABLE XV. MEAN PREVENTIVE MAINTENANCE ACTION TIME (\overline{M}_{pt}) FOR THE TAIL ROTOR DRIVE SUBSYSTEM (Expressed in Hours EMT)							
Maintenance	UH-	lD/H	UH	-1C	АН	-1G		
Action	No.*	Mpt	No.*	Mpt	No.*	M pt		
Inspect	60.00	0.0834	60.00	0.0834	60.00	0.0834		
Remove	2.36	0.2452	2.36	0.2452	2.36	0.2692		
Replace	2.36	0.5591	2.36	0.5591	2.36	0.7602		
Align	-		-	-	-	-		
Track	-	-	-	-	-	-		
Grease	16.73	0.2410	13.73	0.2442	13.73	0.2442		
Service	30.00	0.1147	30.00	0.1147	30,00	0.1147		
All Actions	111.45	0.1290	108.45	0.1262	1.08.45	0.1310		
The numb interval	per of ac	tions occ	curring	in a 150	00-flight	-hour		

TABL	TABLE XVI. MEAN PREVENTIVE MAINTENANCE ACTION TIME (Mpt) FOR THE 90-DEGREE GEARBOX (Expressed in Hours EMT)						
Maintonanoo	UH-	LD/II	UII	-10	A]]	-1G	
Action	No.*	Mpt	No.*	Mpt	No.*	Mpt	
Inspect	sir .	*	:+	ske	7'	ж	
Remove	1.36	0.3012	1.36	0.3012	1.36	0.3429	
Replace	1.36	0.6986	1.36	0.6986	1.36	1.0479	
Align	_ 1	-	-	-	-	4	
Track	-	-	-	-	-	-	
Grease	2.73	0.1657	2.73	0.1657	2.73	0.1657	
Service	15.00	0.1482	15.00	0.1482	15.00	0.1482	
All Actions	20.45	0.1974	20.45	0.1974	20.45	0.2232	
* The numb interval ** Included	er of ac	tions occ Rotor Di	curring	in a 150 system I	0-flight nspectio	-hour n	

TABLE XVII. MEAN PREVENTIVE MAINTENANCE ACTION TIME (M_{p+}) FOR THE 42-DEGREE GEARBOX								
	(Expresse	d in Hou	rs EMT)	KEE GEAK	BUX		
N. internet	UH-	10/H	UH	-10	AH	-1G		
Action	No.*	M _{pt}	No.*	Mpt	No.*	M _{pt}		
Inspect		**		**	*	*		
Remove	100	0.1687	1.00	0.1687	1.00	0.1687		
Replace	1.00	0.3691	1.00	0.3691	1.00	0.3691		
Align	-	-	-	-	-	-		
Track	-	-	-	-	-	-		
Grease	2.00	0.4314	2.00	0.4314	2.00	0.4314		
Service	15.00	0.0813	15.00	0.0813	15.00	0.0813		
All Actions	19.00	0.1379	19.00	0.1379	19.00	0.1379		
interval ** Included in Tail Rotor Drive Subsystem Inspection								
					·····			
TABLE XVI	II. ME. TII AS (E:	AN PREVE ME (M _{pt}) SEMBLIES xpressed	NTIVE MA FOR THE in Hours	IN TENANC TAIL RO s EMT)	E ACTION TOR HANG	ER		
TABLE XVI	II. ME. TII AS. (E: UH-	AN PREVE ME (M _{pt}) SEMBLIES xpressed 1D/H	NTIVE MA FOR THE in Hours UH	IN TENANC TAIL RO s EMT) -1C	E ACTION TOR HANG AH	ER -1G		
TABLE XVI Maintenance Action	II. ME. TII AS. (E: UH- No.*	AN PREVE ME (M _{pt}) SEMBLIES xpressed 1D/H Mpt	NTIVE MA FOR THE in Hours UH No.*	IN TENANC TAIL RO s EMT) -1C M _{pt}	E ACTION TOR HANG AH	ER -1G M _{pt}		
TABLE XVI Maintenance Action Inspect	II. ME. TII AS. (E: UH- No.*	AN PREVE ME (M _{pt}) SEMBLIES xpressed 1D/H M _{pt}	NTIVE MA FOR THE in Hours UH No.*	IN TENANC TAIL RO s EMT) -1C M _{pt}	E ACTION TOR HANG AH No.*	ER -1G M _{pt}		
TABLE XVI Maintenance Action Inspect Remove	II. ME. TII AS. (E: UH- No.* *	AN PREVE ME (M _{pt}) SEMBLIES xpressed 1D/H M _{pt} *	NTIVE MA FOR THE in Hours UH No.*	IN TENANC TAIL RO s EMT) -1C M _{pt}	E ACTION TOR HANG AH No.* *	ER -1G M _{pt} *		
TABLE XVI Maintenance Action Inspect Remove Replace	II. ME. TII AS (E: UH- No.* *	AN PREVE ME (M _{pt}) SEMBLIES xpressed 1D/H Mpt * - -	NTIVE MA FOR THE in Hours UH No.*	IN TENANC TAIL RO s EMT) -1C Mpt * -	E ACTION TOR HANG AH No.* * -	ER -1G M _{pt} * - -		
TABLE XVI Maintenance Action Inspect Remove Replace Align	II. ME. TII AS. (E: UH- No.* * - -	AN PREVE ME (M _{pt}) SEMBLIES xpressed 1D/H Mpt * - -	NTIVE MA FOR THE in Hours UH- No.* *	IN TENANC TAIL RO s EMT) -1C Mpt * - -	E ACTION TOR HANG AH No.* * - - - -	ER -1G M _{pt} * - - -		
TABLE XVI Maintenance Action Inspect Remove Replace Align Track	II. ME. TII AS. (E: UH- No.* * - - -	AN PREVE ME (M _{pt}) SEMBLIES xpressed 1D/H Mpt * - - -	NTIVE MA FOR THE in Hours UH No.* + - - -	IN TENANC TAIL RO s EMT) -1C Mpt * - - - -	E ACTION TOR HANG AH No.* - - - - - -	ER -1G M _{pt} * - - - -		
TABLE XVI Maintenance Action Inspect Remove Replace Align Track Grease	II. ME. TII AS. (E: UH- No.* * - - - - 12.00	AN PREVE ME (M _{pt}) SEMBLIES xpressed 1D/H M _{pt} * - - - 0.2265	NTIVE MA FOR THE in Hours UH No.* * - - - 9.00	IN TENANC TAIL RO s EMT) -1C - - - - - - - - - - - - - - - - - -	E ACTION TOR HANG AH No.* * - - - - 9.00	ER -1G Mpt * - - 0.2265		
TABLE XVI Maintenance Action Inspect Remove Replace Align Track Grease Service	II. ME. TII AS. (E: UH- No.* * - - - 12.00	AN PREVE ME (M _{pt}) SEMBLIES xpressed 1D/H Mpt * - - - 0.2265	NTIVE MA FOR THE in Hours UH No.* * - - - 9.00	IN TENANC TAIL RO s EMT) -1C Mpt * - - - - - 0.2265 -	E ACTION TOR HANG AH No.* * - - - 9.00	ER -1G Mpt * - - - 0.2265 -		
TABLE XVI Maintenance Action Inspect Remove Replace Align Track Grease Service All Actions	II. ME. TII AS. (E: UH- No.* * - - 12.00 - 12.00	AN PREVE ME (M _{pt}) SEMBLIES xpressed 1D/H Mpt * - - - 0.2265 - 0.2265	NTIVE MA FOR THE in Hours UH No.* * - - - 9.00 - 9.00	IN TENANC TAIL RO s EMT) -1C Mpt * - - - - 0.2265 - 0.2265	E ACTION TOR HANG AH No.* * - - - 9.00 - 9.00	ER -1G Mpt * - - 0.2265 - 0.2265		
TABLE XVI Maintenance Action Inspect Remove Replace Align Track Grease Service All Actions * The numbe interval	II. ME. TII AS. (E: UH- No.* * - - 12.00 - 12.00 - 12.00	AN PREVE ME (M _{pt}) SEMBLIES xpressed 1D/H Mpt * - - 0.2265 - 0.2265 tions occ	NTIVE MA FOR THE in Hours UH- No.* * - - - 9.00 - 9.00 curring	IN TENANC TAIL RO s EMT) -1C Mpt * - - - - 0.2265 - 0.2265 in a 1500	E ACTION TOR HANG AH No.* * - - - 9.00 - 9.00 - 9.00 0-flight	ER -1G Mpt * - - 0.2265 - 0.2265 - 0.2265 -		

(M _{pt}) FOR THE TAIL ROTOR CONTROL SUBSYSTEM (Expressed in Hours EMT)								
Maintananaa	UH-	LD/H	UH	-10	AH	-1G		
Action	No.*	M _{pt}	No.*	M _{pt}	No.*	M _{pt}		
Inspect	60.00	0.2402	60.00	0.2402	60.00	0.2402		
Remove	-	-	-	-	-	_11		
Replace	-	-	_11		-	-		
Align	60.00	0.5304	60.00	0.5304	60.00	0.6300		
Track	-	-	-	-	-	-		
Grease	15.00	0.0400	15.00	0.0400	15.00	0.0400		
Service	-	-	-	-	-	-		
All Actions	135.00	0.3469	135.00	0.3469	135.00	0.3911		
·		·						
* The number interval	r of act	ions occ	urring i	n a 1500-	-flight-1	hour		

TABLE XIX ME ~ \1 TTME ... ____ .

0.04

ſ

	TABLE XX. ME TA (E	AN MAINTI AL ROTOR Xpressed	ENANCE AC SYSTEM B/ in Hours	TION TIME ASED ON MC EMT)	(M) FOR 1 NITORED I	CHE DATA	
		Corre	sctive	Prever	tive	A	11
Model	Subsystem	No.*	MTTR	No.*	M _{pt}	No.*	Σ
	T/R Hub and Blade	3.386	0.4689	225.00	0.1140	228.386	0.1193
н/ U L = HII	T/R Drive	6.400	0.4290	111.45	0.1290	117.850	0.1453
	T/R Control	6.311	0.2292	135.00	0.3469	141.311	0.3416
	TOTAL T/R SYSTEM	16.097	0.3591	531.45	0.2040	547.547	0.2086
	T/R Hub and Blade	8.753	0.4440	225.00	0.1140	233.753	0.1265
UH-1C	T/R Drive	5.625	0.5241	108.45	0.1262	114.075	0.1458
	T/R Control	3.989	0.2205	135.00	0.3469	138.989	0.3433
	TOTAL T/R SYSTEM	18.367	0.4224	528.45	0.2042	546.817	0.2115
	T/R Hub and Blade	3.770	0.5790	225.00	0.1257	228.770	0.1332
A H-1G	T/R Drive	8.901	0.6863	108.45	0.1310	117.351	0.1731
	T/R Control	8.898	0.2631	135.00	0.3911	143.898	0.3832
	TOTAL T/R SYSTEM	21.569	0.4930	528.45	0.2215	550.019	0.2321
∙qmuN *	er of maintenance act	ions in l	500 fligh	it hours			

The state of the s

TABLE XXI. MEAN M ROTOR (Expre	AINTENANC SYSTEM FI ssed in I	CE ACTION ROM 3-M D. Hours EMT	TIME (M) ATA)	FOR THE	TAIL	
SUBSYSTEM	All Mair	ıtenance	Part Rep	lacement	On A/C	Repair
Component	AH-1G	UH-ID	AH-1G	UH-ID	AH-1G	UH-ID
T/R HUB & BLADE	1.66	0.96	2.24	1.81	1.21	0.67
T/R Hub T/R Blade Other	1.66 1.86 1.57	0.84 1.07 1.36	2.67 1.89 1.66	2.21 1.27 0.79	0.79 1.77 1.54	0.41 0.93 1.47
T/R DRIVE	0.93	1.69	<u>1.06</u>	2.32	0•69	1.70
T/R Drive Shaft Hanger Assembly 42° Gearbox 90° Gearbox Other	0.77 0.63 1.13 1.80 0.91	1.51 0.98 1.97 2.33 1.36	0.78 0.68 1.59 2.83 0.93	2.37 1.41 2.68 3.58 1.33	0.75 0.43 0.69 0.86	1.26 0.69 1.70 2.31 2.31
T/R CONTROL	1.20	1.30	1.38	1.98	1.08	1.03
Control Quíll* Control Tube Pitch Control Mechanism** Chaín	2.08 3.00 1.27 0.91	1.90 1.75 1.58 2.55	3.50 4.50 1.10 0.83	4.00 1.75 1.33	0.95 1.02 1.47	1.07 1.51
Pitch Change Link Crosshead	0.99 1.32	1.29 0.98	1.25	2.09 0.86	0.88	1.03
TOTAL T/R SYSTEM	1.17	<u>1.25</u>	<u>1.34</u>	2.01	0.94	1.55
*Includes sprocket wheel **Includes cone set, static st	op, nut,	boot, sl	ider, pla	te, cross	head bea	ıring

TABLE	TABLE XXII. COMPARISON OF M VALUES									
Monitored Data 3-M Data										
Subsystem	UH-1D/H	UH-1C	AH-1G	UH-1D	AH-1G					
Hub and Blade	0.1193	0.1265	0.1332	0.96	1.66					
Drive Subsystem	0.1453	0.1458	0.1731	1.69	0.93					
Control Subsystem	0.3416	0.3433	0.3832	1.30	1.20					
TOTAL T/R SYSTEM	0.2086	0.2115	0.2321	1.25	1.17					

minute of the maintenance personnel's work day must be charged to a maintenance task.

6. <u>MEAN-TIME-TO-REMOVAL (MTR) AND</u> <u>MEAN-TIME-BETWEEN-REMOVAL (MTBR)</u> <u>ANALYSES</u>

6.1 MTR AND MTBR ANALYSIS APPROACH

6.1.1 Computing MTR

MTR of an item is the average of the total operating time (measured in flight hours) of the items removed. It is computed by summing the total time t_i on each item and dividing the result by the number of items n removed, as shown in the following equation:

$$MTR = \frac{\sum_{i=1}^{n} t_i}{n}$$
(20)

This equation is used to compute the MTR for the items removed for all causes of removal as well as for the items removed for each specific failure cause. While the MTR computed for items removed for all causes and for each of the subgroups of removal reasons (i.e., unscheduled maintenance, material failures, external failure causes, no failure causes, scheduled maintenance) are reasonably meaningful, the MTR values for a small number of items removed for failure modes which seldom occur are not really significant.

Another factor that is important when conducting MTR analysis is that early component analyses of a new production fleet using the above equation will give results which are very misleading. Obviously, if the fleet has accrued only, say, 300 flight hours per aircraft, the few components removed will have an MTR of 300 hours or less while the components remaining on the aircraft and which continue to acquire time may well have operating times greater than the components removed. In this situation it is preferable to estimate the MTBF or MTBR to obtain values that are significant for the component.

This tail rotor system analysis is for components of mature aircraft. The MTR equation has been used to obtain the values presented in Appendix II.

6.1.2 Computing MTBR

Mean time between removals (MTBR) is the average interval in hours between maintenance actions resulting in the removal of an item from a fleet of aircraft. It is computed using the following equation:

$$MTBR = \frac{k \sum_{j=1}^{m} T_{j}}{n}$$
(21)

where $\sum_{j=1}^{m} T_j$ = the total flight hours on a fleet of m aircraft

 T_i = the time on the jth aircraft

k = the number of items installed per aircraft

n = the number of reported removals in the fleet

This equation is similar to mean time between failures (MTBF) equation (1), except n in this case is number of removals while n in the MTBF equation is number of failures.

There are several significant factors to be recognized in MTBR analysis.

- a. The MTBR for an item for all removal causes may be close to, although it should be larger than, its MTR for all causes. This is because the total fleet time will be equal to the total hours on the items removed PLUS the total time on the items installed and still operating. It is only at some theoretical point in time where all the items have been removed without replacement and the fleet is shut down that the MTR and MTBR for all causes will become equal.
- b. The item's MTBR for all subgroups of removal reasons will be greater than the item's MTBR for all removal causes. Obviously, since the number of removals decreases for the subgroups of removal reasons while the fleet time stays the same, the resulting MTBR will be larger.
- c. The MTBR for items removed for causes that seldom occur can be very large. Here the significance in
the value is that it permits identification of a removal reason that is probably not cost effective to correct. Conversely, the removal causes with the lower MTBR values are those for which product improvement may be justified.

While the overhaul and DA form 2410 removal history data provide time for the items removed, it is not necessarily a complete history of the item removals. Also, as discussed in a above, the total hours in the component removal data are less than the hours on all the items since the items in the aircraft are also accruing time. To compensate for this, the MTBR equation can be modified as follows:

$$MTBR = \frac{T_f}{n!}$$
 (22)

where

T_f = an adjusted total time for the items that have been removed and that are installed

n' = an adjusted number of items removed

where

$$T_{f} = \sum_{i=1}^{n} t_{i} + MTR_{T} \times km$$
(23)

where

 $\sum_{i=1}^{n} t_i = \text{the total time on the items n removed}$ for all causes $MTR_T = \text{the item's mean time to removal for all}$ causes m = the estimated number of aircraft in thefleet k = number of items installed per aircraft

and where n' = n + km.

(24)

This modification assumes that at a specific point in time the items installed on the operating aircraft will eventually be removed and that these items at removal will have an MTR equivalent to that already observed on the items previously removed. This assumption becomes reasonable only after the aircraft fleet becomes mature, that is, after it has completed a sufficient portion of its life cycle so that the component MTR's have essentially reached their maximum and become level. By performing the algebra associated with these modifications, the equation reduces to

$$MTBR = \frac{\sum_{i=1}^{n} t_i}{n}$$
(25)

This is the same as the MTR equation (20) for "All Cause" removals. However, in Section 6.1.2 the analysis factor a states that the MTBR values for "All Cause" removals are larger than the MTR values for "All Cause" removals until the fleet essentially completes its life cycle. This means that MTR_T in equation (23) should be somewhat larger than that previously observed on the items already replaced. But the magnitude of this difference cannot be estimated since it will vary with the maturity of the aircraft fleet. The UH-IC/D/H and AH-IG aircraft are sufficiently mature to expect this difference to be minimal. Therefore, in the MTR/MTBR component analyses in Appendix II, the total component times used to compute the "All Cause" removal MTR values and to compute the MTBR values are equal and the resulting "All Cause" removal NTR and MTBR values are shown as equal.

The following equation was used to compute the component MTBR for the subgroups of removal reasons:

$$MTBR_{h} = \frac{\sum_{i=1}^{n} t_{i}}{n_{h}}$$
(26)

where

MTBR_h = the mean-time-between-removals of the item for subgroup h removal cause

n_h = the number of items removed for subgroup h
 removal cause

 $\sum_{i=1}^{n} t_i = \text{the total time on the items n removed for all causes}$

6.1.3 Sources of Data

Two data sources were used for the MTR/MTBR analyses:

- SAV Form 634 data - disassembly inspection summary reports of UH-1C/D/H and AH-1G assemblies overhauled or received for overhaul and scrapped at BHC - Army Reliability and Maintainability Maintenance Improvement Techniques (RAMMIT) Major Item Removal Frequency (MIRF) reports ^{4, 5, 6} of DA form 2410 component removal and installation records

To obtain a representative sample from the first source, the following technique was used. Only those assemblies which had serial numbers the same as those originally installed on aircraft that had accrued more than 1100 hours (the usual time between overhauls (TBO)) were included in the sample. This provides the most correct ratio of premature removals to TBO removals from the data source. Only the 42- and 90degree gearbox assemblies were analyzed from this data source. The data used were for the period from initial delivery of the production aircraft through 1970. Since both the tail rotor hub and tail rotor blades are retirement items, they did not appear in the overhaul data. The drive-shaft hanger bearing assemblies which are overhauled are "on condition" items (have no assigned TBO) and are installed three (UH-1C/AH-1G) or four (UH-1D/H) per aircraft. Although the overhaul data contained a large number of assemblies, it was not possible to determine an adequate sample from this source.

The tail rotor system components that were selected from the second data source were those which had at least 100 removal records. The MIRF reports were available only on Model UH-1D, UH-1H, and AH-1G components. The reports used contained removal data for the interval from 1 January 1964 through 30 June 1971 for the UH-1D and through 31 December 1971 for the UH-1H and AH-1G.

6.1.4 Formatting the Analysis

For the purpose of presenting the mean-time-to-removal (MTR) and mean-time-between-removal (MTBR) analyses, the individual removal reasons were combined to form the following groups of reason for removal classifications:

- All Causes
 - Unscheduled Maintenance/Failure
 - Material (Inherent Failures)
 - External and Induced Failures
 - Inspection
 - Scheduled Overhaul (TBO)

- Other Removal Reasons as Applicable
 - No Defect
 - Other Scheduled Maintenance
 - Unknown

The material failures category consists of those reasons that are inherent in, or are thought to be the fault of, the item under consideration, e.g., bearing failure, oil leakage, etc.

The external failures category consists of those reasons that are not the fault of the item under consideration but were induced or caused by some external agent, e.g., foreign object damage, combat damage, etc.

The unknown category includes those records where reasons for removal are unstated or reasons that are inconsistent with the item being removed; e.g., fuse blown, poor focus, etc., for removal of a tail rotor blade.

6.1.5 Grouping the Data

With such a large number of failure codes to select from, it was apparent when reviewing the MIRF data that several codesused had the same meaning for the component being reported: e.g., 381-leaking and 307- oil leak; 008- noisy and 150chattering; and 670- unbalanced and 690- vibration excessive. As a result, to make the analyses more meaningful, records of removals with codes where only a small number of components were reported were grouped with those with essentially the same failure mode where a large number of components were reported.

6.1.6 Estimating MTBR From Component MTBF

If the failure rate of a component is constant, i. e., $R = \exp - \lambda t$ (where $\lambda = 1$ /MTBF), if the component is life limited or has an assigned TBO, and if the mean time between removals (MTBR_e) to be estimated considers only failure cause and time change removals, the equation for the MTBR_e can be obtained for a quantity of components N for which an MTBF is known by integrating the area under the reliability curve between the limits of zero time and the assigned time change t_{c} .

S. Contract

「「ないない」

The following developes the equation to obtain \mbox{MTBR}_{e} where N is the original quantity of components.

$$N \times MTBR_{e} = N \int_{0}^{t_{c}} e^{-\frac{t}{MTBF}} dt$$

$$MTBR_{e} = \int_{0}^{t_{c}} e^{-\frac{t}{MTBF}} dt$$

$$= MTBF \left[-e^{-\frac{t}{MTBF}} \right]_{0}^{t_{c}}$$

$$= MTBF \left[-e^{-\frac{t_{c}}{MTBF}} - \left(-e^{-\frac{0}{MTBF}} \right) \right]$$

$$= MTBF \left[1 - e^{-\frac{t_{c}}{MTBF}} \right]$$
(27)

Figure 7 shows the relationship between MTBF and MTBR_{e} for components with time changes of 1100, 1500, 2500, and 5000 hours based on equation (27).

Figure 7. MTBF Versus MTBR for 1100-, 1500-, 2500-, and 5000-Hour Time Change Components and On-Condition Components.

The MTBR_e values were estimated from the MIRF data analyses for each component by equating the MTBF to the component MTBR shown in Tables LXXVII through CII in Appendix II for "Unscheduled Maintenance" removals and time change t_c to 1100 hours for the hubs, blades and 90-degree gearboxes, 1500 hours for the 42-degree gearboxes, and 5000 hours (approximate aircraft life) for the hanger assemblies. In computing MTBR_e, the nofailure cause removal components are considered to have been reinstalled and permitted to operate until they are subsequently removed for failure or time change.

Figures 8 and 9, developed using the reliability and MTBR_e equations, show the percentage of the limited-life assemblies that can be expected to achige time change versus their MTBF and MTBR values.

Figure 9. Percentage of the Components That Will Survive to Time Change Versus Their MTBR.

6.1.7 Other Variations in MTBR Estimating

Modifications of the $MTBR_e$ equation (27) can be used to project the MTBR where a repairable fraction of the TBO or limited-life components is repaired, reinstalled (not necessarily on the same aircraft), and later removed for failure or time change causes. This failure and repair process may occur several times to a component before it is sent to overhaul or is retired. Appendix VI shows the equations and a set of examples for this estimation.

6.2 MTR AND MTBR ANALYSIS RESULTS

6.2.1 BHC Overhaul Data

Table XXIII summarizes the results of the MTR and MTBR analysis of the 42- and 90-degree gearbox data on assem' ies processed for overhaul at BHC. The more detailed results of the analysis are shown in the first sixteen tables in Appendix II. Table XXIII shows that the MTR and MTBR values for the AH-IG assemblies are consistently lower than those of the UH-1 models. The MTR for the later dash-numbered assemblies is higher than for the earlier assemblies both for "All Causes" of removal and for "Unscheduled Maintenance" ("Failure") causes. However, even though the MTBR values for the same later dash-numbered assemblies were higher than for the earlier assemblies for "All Causes" of removal, they were lower in the later assemblies for "Failure" causes of removal. The number of assemblies removed for these causes (presented in Appendix II) shows that while from 19 to 24 percent of the earlier assemblies were removed for failures, 32 to 42 percent of the later dash-numbered assemblies were so removed although they had a higher average time. Explanation of probable cause for the increased failure percentage is given in 6.2.2.1 <u>Basic MTR/MTBR Analysis</u>.

The significant failure modes for the two types of gearboxes were:

- a. Material Failures (MF) 63 percent of the Unscheduled Maintenance removals
 - Leakage 60 percent of the MI removals
 - Metal Particles 13 percent of the MF removals
 - Excessive Wear 5 percent of the MF removals
 - Internal Failure > percent of the MI removals
- b. Externally Caused Lailures (ECL) 37 percent of the Unscheduled Maintenance removals
 - Sudden Stoppage 48 percent of the ECF removals
 - Crash 17 percent of the ECE removals
 - Hard Landing/Overstressed 11 percent of the FCF removals

These results were generally consistent with the results of the RAMMIT MIRF report data discussed below.

MTBR ANALYSIS OF BHC COMPONENT OVERHAUL DATA	me To Removal Mean Time Between Removals Tctal	re Time Other All Failure Time Other Part	es unange reasons causes causes unange reasons Hours		1391 350 936 2247 2247 5617 11.234	11149 643 955 5440 1529 4774 233,939	1157 632 954 5108 1552 4807 245,173	1430 791 1116 3128 2548 5432 206,412	1439 779 1.038 2783 2487 4948 489,883	1467 710 1000 2268 2474 6459 381,059	1456 306 681 1178 3404 3063 30,633	1448 739 1023 2541 2512 5379 1,107,987	1371 737 1010 2796 2259 5265 2,706,320		1067 1100 928 2253 1972 7887 15.773	1092 646 868 3890 1635 3537 194,518	1091 662 873 3689 1656 3689 210,291	1085 690 878 2508 1795 5448 157,988	1094 702 929 3512 1558 6794 414,413	1097 568 861 2393 1792 5375 327,902	1130 448 712 1498 1779 5694 28,469	1094 639 887 2756 1680 5954 928,772	1094 645 884 2891 1675 5348 2,278,126
DF BHC	Mean	TIA	Lauses		936	955	954	1116	1038	1000	681	1023	1010		928	868	873	878	929	861	712	887	884
LYSIS C	oval	Other	reasons		350	643	632	162	677	710	306	739	737		1100	646	662	690	702	568	448	639	645
BR ANA	To Remo	Time	unange		1391	1149	1157	1430	1439	1467	1456	1448	1371		1067	1092	1001	1085	1094	1097	1130	1094	1094
MTR /MT	ean Time	Failure	Lauses		715	619	629	612	735	674	556	728	718		219	580	597	674	677	675	429	662	652
ARY OF	We	ALL	STADED		936	955	954	1116	1038	1000	681	L023	1010		928	868	873	878	929	861	712	887	884
SUMM		Vedel	TADOL		UH-1C	UH-LD	C (D	UH-1C	CH-HD	H1-HU	AH-1G	CDHG	CDHC		UH-1C	CI-HU	C/D	UH-1C	UH-ID	UH-1H	AH-1G	CDHG	CDHG
TABLE XXIII.		Component Bort Number	Far C Mulliner	42° Gearbox	204-040-003-23	204-040-003-23	204-040-003-23	204-040-003-37	204-040-003-37	204-040-003-37	204-040-003-37	204-040-003-37	All 42s	90° Gearbox	204-040-012-7	204-040-012-7	204-040-012-7	204-040-012-13	204-040-012-13	204-040-012-13	204-040-012-13	204-040-012-13	A 11 90s

6.2.2 RAMMIT MIRF Report Data

6.2.2.1 Basic MTR/MTBR Analysis

Table XXIV summarizes the results of MTR and MTBR analysis of the RAMMIT MIRF report data on fourteen assemblies installed on one or more of the three aircraft models, UH-1D, UH-1H and AH-1G. The more detailed analyses are contained in Appendix II. In this analysis, as was previously shown in the overhaul data analysis, the MIR/MTBR values for all causes of removal were consistently lower for the AH-1G than for the UH-1D/H. However, the later dash-numbered assemblies showed higher MTR/MTBR values for all causes of removal for only some of the components. (For the components listed, where the first 9 numbers of a part number are the same, the larger number in the final dash number designates the newer designs. Also the -801 tail rotor hub assemblies are more recent designs than the -701 hubs.)

Table XXV compares the number of failure-caused removals as a percentage of total removals for the earlier and later assemblies. Similarly, it also compares the number of material-failure-caused removals as a percentage of total removals for the same assemblies. The MTR/MTBR values for these removals are also presented. No consistent trend is observable.

Since an increase MTR/MTBR for the later (improved) assemblies is the trend one would expect to see in the analyses and since the characteristics of most changes in this type of equipment are such that the later assemblies are at least as good as the earlier ones, other reasons for explaining the results of the analyses must be identified. There are two factors that impact on the later 42- and 90-degree gearboxes. First, the later assemblies have a chip detector installed which alerts maintenance personnel to a metal-chip ontaminated oil condi-This results in either gearbox replacement at an earlier tion. time than would have been the case on the earlier assemblies. or an oil change. The most frequent action is the oil change. This change reduces the accelerated wear and secondary damage that can be caused by the abrasive lubricant. The overall result is that the later assemblies could attain either a shorter or longer installed time depending on which action predominated.

The second factor is that these data cover the initial installations of the components on new aircraft. As such, the earlier dash-numbered assemblies were on the earlier fiscal year aircraft during the period when their initial utilization was in the United States, prior to their being deployed in Vietnam. The later aircraft with the later assemblies were primarily deployed directly to Vietnam shortly after delivery. The

	Total Part		75,929	34,311	59.353	12.469	321.960	30,118	135.720	57,680		568,769	84,907	578,086 62,993		371,489	39,708	322,191	558, 336 80, 527	
					-1					2,1			20					<u></u> е	~~~~~	, , ,
F CATA	novals Other Doccore		690 176	464	396 179	395	293	161	259 254	287		516	523 523	340 780		2527	2096	2204	1739	1 1 1 1
IT MIR	rime	Cliange	7593 3432	34311	29682 3894	12497	4247	5422	08534	4732		1612	10408	15069 11006		2580	20118	5111	5536	>
DF RAMM	Tailure		1012 1558	1040	612 1850	852	1004	632	5,50 5,69	868		1335 1335	8/F	638 868		1637	1076	1271	924 1206	>
) SISY	Mean T All		389 151	318	238 157	264	215	126	176	208		354	326	221 301		717	900	6969	572	, ;
TBR ANA	Other		330 138	281	204	239	184	118	151	179		320	287	201 266		619	687 687	679	585 662	1
MTR/M	To Remo	Qualifie	669 299	93	334 334	319	267	205	442	264		871	80 80 91 91 91 91 91 91 91 91 91 91 91 91 91	674 832		1118	1410	1327	1384 1331	1
MARY OF	Failure	2020	440 197	108	5 2 Q Q	315	309	145	227	289		345	547	239 321		526	543	550	497 540	
. sum	All		389 151	318	157	264 208	215	126	176	208		354	326	301		717	656	6969	675	
E XXIV	Lobox Model	10 001	UI-HU	UH-ID	UH-HU	UH-1H	D/H	AH-1G	AH-1G	D/H/G		UH-ID	D/H	D/H/G		UH-ID	HI-HU	D./H	AH- LG D/H/G	
TABI	Component Boart Numbor	T R Hub	204-011-701-11 204-011-701-19	204-011-801-5	204-011-801-9 204-011-701-19	204-011-801-5 204-011-801-5	All D H Hubs	209-011-701-3	All G Hubs	All Hubs	T/R Blades	204-011-702-15	All D/H Blades	All Blades	42 ⁰ Gearboxes	264-040-003-23 294-040-003-33	204-040-003-37	All D/H 42s	Z04-040-003-3/ All 42s	

Section -

			TAB	LE XXI	V. (Col	nt'd)				
		W	ean Time	To Remc	val	Mean 1	Time Betw	een Rem	ovals	Total
Component		AIL	Failure	Time	Other	All	Failure	Time	Other	Part
Part Number	Model	Causes	Causes	Change	Reasons	Causes	Causes	Change	Reasons	Hours
90° Gearboxes										
204-040-012-7	UH-1D	729	543	1088	591	729	1791	2303	2638	145.076
204-040-012-13	UH-ID	697	474	1054	651	697	1624	2294	2618	1.094.370
204-040-012-13	UH-1H	614	481	1073	634	614	1146	4368	1894	1.725.444
All D/H 90's	H/Q	647	481	1064	637	647	1311	3171	2142	2.964.890
204-040-012-13	AH-1G	550	432	1059	597	550	982	5580	1613	474,303
A11 90's	D/H/G	632	473	1064	630	632	1253	3372	2050	3,439,193
D/S Hanger Assembly										
204-040-600-7	UH-1D	373	143	101	565	373	645	3225	1215	1.938.084
204-040-600-9	UH-1D	430	414	571	457	430	665	59371	1245	1.662.284
204-040-600-7	HI-HU	560	625	405	451	560	889	89444	1542	447.222
204-040-600-9	UH-1H	515	506	585	540	515	209	261192	1899	5.485.034
All D/H Hangers	H/Q	465	414	974	524	465	693	14554	1561	9.532.624
204-040-600-9	AH-1G	435	430	376	445	435	652	273639	1316	1 094 556
All Hangers	D/H/G	462	416	970	514	ù62	689	16126	1531	10.627.180
									•	0046.40604

17	ABLE XXV	. CONPARISON OF OF EARLY AND L	R.MMIT MIF	RE ANA	LYSTS	VALUES		
			All Failu Causes	ıre		Materia ¹ Caus	Failu ses	re
Component	Model	Part Number	Percent Total Removals	MTR	MTBR	Percent Total Removals	MTR	MTBR
Tail Rotor Hub	UH-ID	204-011-701-11 204-011-701-19 204-011-801-5 204-011-801-9	38 10 31 39	440 197 408 285	1012 1558 1040 612	26 5 30	482 238 433 334	1519 2854 1320 802
	UH-1H	204-011-701-19 204-011-801-5 204-011-801-9	4 1 1 8 8 7 1 8	256 315 331	1850 852 746	2914 291	286 370 359	3603 1264 1050
	AH-1G	209-011-761-3 204-011-801-3	44 44	145 271	632 535	32 32	203 303	2002 740
42° Gearbox	UH-ID	204-040-003-23 204-040-003-37	477 718	526 571	1637 1575	24 32	526 608	2692 2333
90° Gearbox	UH-ID	204-040-012-7 204-040-012-13	33 7 7 7	543 474	1791 1624	25 29	583 505	2961 2405
Hanger Assembly	UH-ID	204-040-600-7 204-040-600-9	57 65	143	645 665	46 56	580 418	814 775
	UH-1H	204-040-600-7 204-040-600-9	63 73	625 506	889 506	48 60 8	640 515	1174 862

UH-1/AH-1 M&R monitoring program revealed that the use rate, gross weights, and general treatment of the aircraft were much more severe in the combat environment. This factor was particularly significant for the higher powered UH-1H and AH-1G.

Although the operator's manuals restricted the engine power to 1100 shp, the engine had output torque values equivalent to 1400 hp at 6600 rpm for military rating and 1250 hp at 6600 rpm for normal rating. The 1100 shp was frequently exceeded when the aircraft were operated under the stress of combat conditions.

Table XXVI presents the significant failure modes for material failure- and external-failure-caused removals observed for each type of component when the data in Appendix II for each of the part numbers and for each of the aircraft models are combined. For all components, three failure modes make up 80 percent of the material-failure-caused removals. Excessive wear is a significant failure mode for all components. Except for the tail rotor hub and blade, sudden stoppage is the most significant external-failure-caused failure mode.

6.2.2.2 Estimating MTBR From Component MTBF

Table XXVII shows the results of estimating the MTBR of the components using equation (27), which considers removals for failures and time change only. The resulting MTBR_e is a significant increase over the "All Gauses" of removal MTBR observed in the basic analysis. The basic reason for this difference is the large percentage of components that are removed for reasons other than failures and time change that are later reinstalled on either the same or other aircraft and are ultimately removed for failure or time change at a higher total time.

TABI	E XXVI. SIGNIFICANT F IN THE RAMMIT	FAILURE MO T MIRF REP	DES OBSERVED ORTS DATA ANALYSES	
	Material Failures ((⁷ 0 of All Failures)	(MF)	External Failure Causes (% of All Failures)	(EFC)
Component	Failure Mode	% of MF	Failure Mode	⅔ of ECF
Tail Rotor Hub	MF(64%) Excessive Wear Bearing Failure Clogged	59% 113% 111%	EFC (35%) Accident/Crash Sudden Stoppage Overspeed	23% 23% 16%
Tail Rotor Blade	MF(13%) Excessive Wear Unbalanced Poor Bond	46% 24% 16%	EFC(87%) Chipped, Nicked, etc. Battle Damage/Punctur Dented Accident/Crash Damage	ed 20% 16% 13%
42° Gearbox	MF(69%) Leaking Excessive Wear Contamination Internal Failure	64 64°6 64°	EFC(31%) Sudden Stop Accident/Crash Damage Overstressed	다 3 생 5 6 생 6 생
90° Gearbox	MF(69%) Leaking Excessive Wear Contamination	5 55 1 2 %	EFC(31%) Sudden Stop Accident/Crash Damage Overstressed	40% 26% 9%
Hanger Assembly	MF(82%) Excessive Wear Bearing Failure Leakage	56% 21% 17%	EFC(18%) Sudden Stoppage Accident/Crash Damage	37 ⁴ 32 ⁴

「「「「「「「」」」」、「「」」」、「」」、「」」、「」」、「」」、「」」、

	1.2		y																
	e-Between-Removals	For Failures* and Time Change Only		671 789	679	829	618	575	521	191	437	634		249	625	643	024 200	070	
FA I NED A TA	Mean-Tim	All Causes		389 151	318 238	157	264	308	126	235	176	208		354	319	322	177 100	067	
VALUES OB 11T MIRF DA	BF	Material Failures Only		1 519 2854	1320 802	3603	1264	1050	2002	740	679	1393		8465	7765	7981	6017		
MTBF / MTBR IS OF RAM	M	All Failures		1012 1558	1040	1850	852	746	632	535	ς ŕ	868		1335	871	924	0000 773		
UMMARY OF ROM ANALYS		Model		UH-ID UH-ID	UH-ID UH-ID	UH- IH	H1-HU	UH-IH	AH-1G	AH-1G	AH-1G	D/H/G		UH-HU	UH-LH	H/Q	0/ n/ U		
TABLE XXVII. S F		Component (Time Change) Part Number	Tail Rotor Hubs (1100-Hour Life)	204-011-701-11 204-011-701-19	204-011-801-5 204-011-801-9	204-011-701-19	204-011-801-5	204-011-801-9 All D/H Hubs	209-011-701-3	204-011-801-3	All G Hubs	All Hubs	T'R Blades (1100 Hour Life)	204-011-702-15	204-011-702-15	All D/H Blades		Sanate Ity	

	e-Between-Removals For Failures * and Time Change Only	982 967 809 881 742 858	822 799 744 662 732	645 645 665 886 708 692 692 689 689 causes. It is	
	Mean-Tim All Causes	717 757 656 696 572 675	729 697 614 647 550 632	373 4,30 560 515 4,65 4,65 4,62 4,35 4,62	MTBF.
1)	IBF Material Failures Only	2692 2333 1545 1863 1317 1817	2961 2405 1615 1886 1478 1817	814 775 1174 862 846 794 840 840	allures
L. (Cont'o	All Failures	1637 1575 1076 1271 924 1206	1791 1624 1146 1311 982 1253	645 645 665 889 709 693 693 689 689 ces and tir	The ALL F
BLE XXVI	Model	UH-1D UH-1D UH-1H D/H D/H/G	UH-1D UH-1D UH-1H D/H AH-1G D/H/G	UH-lD UH-lD UH-lH UH-lH UH-lH D/H AH-lG D/H/G	2// and 1
TA	Component (Time Change) Part Number	42 ⁰ Gearbox (1500 Hour TBO) 204-040-003-23 204-040-003-37 204-040-003-37 All D/H 42's 204-040-003-37 All 42's All 42's	90 ⁰ Gearbox (1100 Hour TBO) 204-040-012-7 204-040-012-13 All D'H 90's 204-040-012-13 All 90's All 90's	<pre>D/S Hanger Assembly (None) (None) 204-040-600-7 204-040-600-9 204-040-600-9 204-040-600-9 All D/H Hangers 204-040-600-9 All Hangers All Hangers An MTBR which considers on</pre>	estimated using equation (

7. REPAIR-VERSUS-SCRAP ANALYSIS

The analysis of repairable and scrap (nonrepairable) components of the tail rotor drive system has been limited to the tail rotor hub and blade assemblies, tail rotor drive shaft and hanger assemblies, 42-degree and 90-degree gearboxes, and tail rotor control quill assemblies. The remaining tail rotor system components when failing are considered nonrepairable and are scrapped during corrective maintenance.

The repairable and scrap components fall into three categories--limited (finite) life components, components with specified times between overhaul (TBO), and selected condition components. The technical bulletin on aircraft component replacement and re-use procedures establishes basic criteria for repair and scrap for these components.²¹ Limited life components are retired from service (scrapped) after reaching an established maximum allowable operating time (MAOT) since new. If a failure occurs before the component retirement life is reached, the component will be repaired if it is repairable and has more than 100 hours of the established MAOT remaining, or scrapped if it has less than 100 hours remaining. The tail rotor hub and blade are limited life items and are assigned a MAOT of 1100 hours.

TBO components are subject to restoration, through overhaul, when removed from service after reaching a MAOT since new or overhaul. If a failure occurs before the TBO schedule is reached, the component will be repaired if it has more than 200 hours of the established MAOT remaining and overhauled if it has less than 200 hours remaining. The 42-degree and 90degree gearboxes are TBO items.

Selected condition components are overhauled/repaired when necessary ("on condition") rather than at a particular TBO interval. "On condition" overhaul items are tail rotor hanger assemblies. "On condition" repair items are the tail rotor driveshafts and control quill assemblies.

This analysis will present a percentage comparison of components repaired to components scrapped.

7.1 REPAIR-VERSUS-SCRAP ANALYSIS APPROACH

The data analyzed were card records of overhaul, repair, and scrap tail rotor system components reported on the UH-1C/D/H and AH-1G helicopters. The data sources were Army TAMMS DA 2407 unsheduled maintenance data and BHC overhaul data.

7.1.1 TAMMS 2407 Unscheduled Maintenance Data

The TAMMS DA 2407 data were analyzed to determine what percentage of all maintenance actions results in the scrapping of a component. The five coded actions in these data which indicate that maintenance was performed on an item are:

- Checked, not repairable
- Removed and reinstalled
- Repaired
- Not repairable this station
- Replaced

It was assumed that the first action indicates that the item was scrapped, the next three actions indicate that the item was repaired. The last action is an unknown--it does not indicate the disposition of the removed component.

The TAMMS maintenance data were analyzed by first identifying the component, the component part number, and the disposition of the component, i.e., repaired, scrapped, or forwarded to a repair facility, and second expressing as percentages of the total component maintenance actions, the number of the components repaired and scrapped.

7.1.2 BHC Overhaul Data

The analysis of the data on components overhauled at BHC was performed by identifying the:

- Component overhauled
- Component part number
- Total number of components processed, i.e., overhauled, repaired, or scrapped
- Total number of components processed for which accumulated operating time is reported
- MTR of the components processed for which accumulated operating time is reported
- Total number of components scrapped

- Total number of components scrapped for which accumulated operating time was reported
- Percentage of the total number of components processed that were scrapped.

7.2 REPAIR-VERSUS-SCRAP ANALYSIS RESULTS

7.2.1 TAMMS Data Analysis

Tables XXVIII through XXXI present the percentage repaired, scrapped, and with unknown disposition for the components being analyzed. The tail rotor control items, other than the quill assemblies, were considered scrapped whenever replaced. The percentage of tail rotor drive system components and the tail rotor hub and blade assembly components that were scrapped cannot be determined because three-fourths or more of the maintenance actions considered were coded "replaced," which is a "disposition unknown" action. It was assumed that whenever a sprocket was replaced, a tail rotor control quill assembly was being repaired. This placed the majority (from 53-97 percent) of the control quills in the "repaired" category. None of the control quills were identified as scrapped. It is concluded that it is not possible to determine the complete percentage of repair or scrappage of any tail rotor system repairable item from the TAMMS data.

7.2.2 BHC Overhaul Data Analysis

Table XXXII presents a scrap analysis of tail rotor components processed at BHC which are overhaul or limited-life items. The limited-life items have much higher scrap rates than overhaul items.

TABLE XXVIII.REPAIR-VERSUS-SCRAP ANALYSIS OF
UH-1C TAIL ROTOR COMPONENTS

E tries

(Based on Unscheduled Maintenance Actions from TAMMS 2407 Data)

SUBSYSTEM	Bell	Dispo	osition of Tot	as a ö
Components	Part Number	Repair	Scrap	Unknown
<u>T/R HUB & BLADE</u>	204-011-701-017	10.0	-	90.0
Hub Assembly	204-011-701-013 204-011-701-019 204-011-801-005 204-011-801-009	8.3 5.7 *	* *	91.7 94.3 *
T/R Blade	204-011-702-017	7.5	0.1	92.4
T/R DRIVE				
T/R Drive Shaft	204-040-620-003	3.1	=	96.9
Hanger Assembly	204-040-600-007 204-040-600-009	1.7 3.1	-	98.3 96.9
42° Gearbox	204-040-003-023 204-040-003-037	* 4.0	* 1.0	* 95.0
90° Gearbox	204-040-012-007 204-040-012-013	* 1.6	* -	* 98.4
T/R CONTROL				
Quill Assembly	204-010-740-005	68.8	-	31.2
* Data are inadequate				

TABLE XXIX. REPAIR-VERSUS-SCRAP ANALYSIS OF UH-1D TAIL ROTOR COMPONENTS

時代

(Based on Unscheduled Maintenance Actions from TAMMS 2407 Data)

CHESVOTUM	Bo11	Dispo	osition	as a 6
Components	Part Number	Repair	Scrap	Unknown
T R HUB N BLADE	204-011-701-009 204-011-701-015	11.3 25.8	-	88.7 74.2
Hub Assembly	204-011-701-011 204-011-701-013 204-011-701-019 204-011-701-029 204-011-801-005 204-011-801-009	0,	-	99.3 97.9 92.9
T 'R Bl ade	204-011-702-015	1.8	0.1	98.1
T/R DRIVE				
T/R Drive Shaft	204-040-620-003 204-040-620-005	2.5 3.7	1.4 3.1	96.1 93.2
Hanger Assembly	204-040-600-007 204-040-600-009	1.0 0.9	0.3	98.7 99.1
42° Gearbox	204-040-003-023 204-040-003-037	3.8 3.5	1.4 -	95.8 96.5
90° Gearbox	204-040-012-007 204-040-012-013	5.3 1.9	-	94.7 98.1
T R CONTROL				
Quill Assembly	204-010-740-003 204-010-740-005	53.3	-	46.7
* Data are inadequat	e			

TABLE XXX.REPAIR-VERSUS-SCRAP ANALYSIS OF
UH-1H TAIL ROTOR COMPONENTS

(Based on Unscheduled Maintenance Actions from TAMMS 2407 Data)

		Disp	osition	as a %
SUBSYSTEM	Bell		of Tota	al
Components	Part Number	Repair	Scrap	Unknown
T/R HUB & BLADE	204-011-701-015	18.0	-	82.0
Hub Assembly	204-011-701-013	-	-	100.0
	204-011-801-009	15.2	-	84.8
T/R Blade	204-011-702-015	2.7	-	97.2
T/R DRIVE				
T/R Drive Shaft	204-040-620-003 204-040-620-005	1.7 0.8	-	98.3 99.2
Hanger Assembly	204-040-600-009	4.2	-	95.8
42° Gearbox	204-040-003-037	5.2	-	94.8
90° Gearbox	204-040-012-013	5.0	0.2	94.8
T/R CONTROL				
Quill Assembly	204-010-740-003 204-010-740-005	88.2	-	11.8

TABLE XXIX.REPAIR-VERSUS-SCRAP ANALYSIS OF
UH-1D TAIL ROTOR COMPONENTS

(Based on Unscheduled Maintenance Actions from TAMMS 2407 Data)

		Disp	osition	as a %
SUBSYSTEM	Bell		of lot	al
Components	Part Number	Repair	Scrap	Unknown
T/R HUB & BLADE	204-011-701-009	11.3	-	88.7
	204-011-701-015	25.8	-	74.2
Hub Assembly	204-011-701-011	*	*	*
	204-011-701-013	0.7	-	99.3
	204-011-701-019	2.1	-	97.9
	204-011-701-029	/.L	-	92.9
	204-011-801-005	^	Â	1000
	204-011-801-009	-	-	100.0
T/R Blade	204-011-702-015	1.8	0.1	98.1
I/R DRIVE				
T/R Drive Shaft	204-040-620-003	25	1.4	96 1
-,	204-040-620-005	3.7	3.1	93.2
Hanger Assembly	204-040-600-007	1.0	0.3	98.7
	204-040-600-009	0.9	-	99.1
42° Compos	20/1 0/10 003 023	3 0	1 /	05 0
42 Gearbox	204-040-003-023	3.0	L.4	93.0
	204-040-003-037	J*J	-	90.5
90° Gearbox	204-040-012-007	5.3	_	94.7
	204-040-012-013	1.9	-	98.1
T/R CONTROL				
Outll Assembly	001 010 740 002			
Quill Assembly	204-010-740-003	53.3	-	46.7
	204-010-740-005			
* Date are inadequat				

1

	JH-IH IAIL ROIOR	COMPONEN	112	
	Based on Unsched Actions from TAMM	uled Maj S 2407 D	ntenan: Data)	:e
		Disp	osition	as a %
SUBSYSTEM	Bell		of Tota	al
Components	Part Number	Repair	Scrap	Unknown
T/R HUB & BLADE	204-011-701-015	18.0	-	82.0
Hub Assembly	204-011-701-013	-	-	100.0
	204-011-701-019	1.7	0.2	98.1
	204-011-801-009	15.2	-	84.8
T/R Blade	204-011-702-015	2.7	-	97.2
T/R DRIVE				
T/R Drive Shaft	204-040-620-003	1.7	-	98.3
	204-040-020-005	0.0	-	99.2
Hanger Assembly	204-040-600-009	4.2	-	95.8
42° Gearbox	204-040-003-037	5.2	-	94.8
90° Gearbox	204-040-012-013	5.0	0.2	94.8
T/R CONTROL				
Quill Assembly	204-010-740-003 204-010-740-005	88.2	-	11.8

TABLE XXX.REPAIR-VERSUS-SCRAP ANALYSIS OF
UH-1H TAIL ROTOR COMPONENTS

TABLE XXXI.REPAIR-VERSUS-SCRAP ANALYSIS OF
AH-1G TAIL ROTOR COMPONENTS

(Based on Unscheduled Maintenance Actions from TAMMS 2407 Data)

SUBSYSTEM	Bell	Disposition as a % of Total			
Components	Part Number	Repair	Scrap	Unknown	
<u>T/R HUB & BLADE</u>	209-010-701-001	25.0	-	75.0	
Hub Assembly	204-011-801-003 204-011-801-011 209-010-701-003	3.0 * 4.0	- * -	97.0 * 96.0	
T/R Blade	204-011-702-017	2.0	-	98.0	
T/R DRIVE					
T/R Drive Shaft	204-040-620-003 2 0 9-040-611-001	2.0	-	98.0 100.0	
Hanger Assembly	204-040-600-009	4.4	-	95.6	
42° Gearbox	204-040-003-037	6.9	-	93.1	
90° Gearbox	204-040-012-013	2.0	-	98.0	
T/R CONTROL					
Quill Assembly	204-010-740-005	97.0	-	3.0	
* Data are inadequate					

1

. 1

TABLE XXXII. TAIL ROTOR COMPONENT DEPOT- LEVEL SCRAP ANALYSIS							
(Ba	sed on	BHC O	verha	ul Dat	a thru	1 1970)
Component Part Number	No. of Items Processed With*		MTR (hrs)	No. of Items Scrapped With*		MTR (hrs)	Percent Scrapped Using Total Number
Number	10 La1	TTuc		10 ca1	1 Juie		Mandel
Hanger Assembly 204-040-600-7 -9	2966 616	2666 614	678 381	3 1	3 1	1054 500	0.10 0.16
42 ⁰ Gearbox 204-040-003-23 -37	757 2928	679 2903	941 915	15 16	13 16	536 786	1.98 0.55
90 ⁰ Gearbox 204-040-012-7 -13	580 4020	499 4002	817 770	33 54	29 53	418 559	5.69 1.34
T/R Hub 204-011-701-11 209-010-701-3	21 3	19 2	610 61	5 0	3 0	1157 -	23.81 0.00
T/R Blade 204-011-702-15 -17	576 5	535 5	412 63	398 3	360 3	459 79	69.10 60.00
* The number of items processed for which a removal time is known.							

8. MAINTENANCE PERSONNEL REQUIREMENTS ANALYSIS

8.1 Maintenance Personnel Requirements Analysis Approach

The maintenance personnel requirements for this analysis were obtained from the UH-1C/D/H and AH-1G helicopter maintenance manuals, 1,2,3 and the Enlisted Military Occupational Specialties (MOS manual). ²²

The maintenance personnel requirement analysis was performed by establishing the:

- Maintenance personnel types
- Maintenance tasks
- Maintenance organizations
- Quantity of men required per task
- Average number of men required per maintenance action

8.1.1 Maintenance Personnel Types

In identifying the personnel requirements, the MOS selected from the data sources is the lowest skill level of maintenance personnel authorized to perform the maintenance function. The four types of personnel authorized to perform maintenance on tail rotor system components are:

- UH-1C/D/H helicopter repairman (MOS 67N20)
- AH-1G helicopter repairman (MOS 67Y20)
- Aircraft powertrain repairman (MOS 68D20)
- Aircraft rotor and propeller repairman (MOS 68E20)

8.1.2 Maintenance Tasks

1

The lowest skill level of personnel authorized to perform a maintenance function is dictated by the task's level of technical difficulty. The maintenance tasks, grouped by skill level, are shown below.

8.1.2.1 Lower Skill Level

The lower skill level tasks are assigned to MOS 67N20 and 67Y20 personnel. The lower skill level tasks ranked by increasing difficulty, are:

- Service: To clean, to preserve, to change, and to add fuel, lubricant, cooling agents and air.
- Replace: To replace unserviceable items with serviceable assemblies, subassemblies or parts.
- Adjust: rectify to the extent necessary to bring into prop. operating range.
- Align: To adjust specified variable elements of an item to bring to optimum performance.

8.1.2.2 Higher Skill Level

The higher skill level tasks are assigned to MOS 68D20 and 68E20 personnel. The higher skill level tasks ranked by increasing difficulty, are:

- Test: To verify serviceability and to detect electrical or mechanical failure by the use of test equipment.
- Inspect: To determine serviceability of an item by comparing its physical, mechanical, and electrical characteristics with established standards.
- Repair: To restore an item to serviceable condition through correction of a specific failure or unserviceable condition. This includes, but is not limited to, inspections, cleaning, preserving, adjusting, replacing, welding, riveting and strengthening.
- Overhaul: To restore an item to completely serviceable condition as prescribed by maintenance serviceability standards prepared and published for the specific item to be overhauled.

8.1.3 Maintenance Organizations

The Army's maintenance organization is divided into four main categories: Organizational (Org), Direct Support (D/S), General Support (G/S), and Depot (D). The description of each maintenance category is presented in the following paragraphs.

8.1.3.1 Organizational Maintenance

Organizational maintenance is that maintenance normally authorized for, performed by, and is the responsibility of a using organization on equipment in its possession. This maintenance is normally restricted to periodic checks of equipment performance, cleaning, servicing, preserving, and adjusting the equipment, and removal and replacement of some components.

8.1.3.2 Direct Support Maintenance

Direct support maintenance is that maintenance normally authorized and performed by designated maintenance activities in direct support of using organizations. This category of maintenance includes inspections, complicated adjustments, major repairs and modifications, major replacement of components, and overloads from organizational maintenance.

8.1.3.3 General Support

General support maintenance is that maintenance authorized and performed by designated organizations in support of the Army supply system. General support maintenance organizations will repair or overhaul components to required maintenance standards. The general support primary maintenance function is to repair those items that cannot be repaired at the direct support level.

8.1.3.4 Depot Maintenance

Depot maintenance is that maintenance which, through overhaul of economically repairable material, augments the procurement program in satisfying overall Army requirements and, when required, provides for repair of material beyond the capability of general support maintenance organizations.

8.1.4 Manpower Requirements

In the basic manpower requirements analysis, the number of men required to perform each tail rotor system maintenance task was extracted from maintenance engineering analyses on the Navy UH-1N and AH-1J helicopters, performed per Navy WR6 requirements.^{23, 24}

79

To determine the manpower requirements based on field experience, the average number of men required to perform a maintenance task was obtained from Navy 3-M data on the UH-1D and AH-1G using the equation:

 $\overline{MM} = \frac{\sum_{i=1}^{n} MMH_{i}}{\sum_{i=1}^{n} EMT_{i}}$ (31)

where \overline{MM} = average number of maintenance men required to perform a maintenance task

- MMH; = maintenance manhours to perform task i
- EMT; = elapsed maintenance time to perform task i
 - n = the number of tasks performed

8.2 MAINTENANCE PERSONNEL REQUIREMENTS ANALYSIS RESULTS

Tables XXXIII through XXXV present the personnel requirements for organizational maintenance actions of the tail rotor components. Tables XXXIII and XXXIV are the maintenance manpower requirements for the UH-1C/D/H and AH-1G, respectively, determined by maintenance engineering analysis.

The quantity of men required per maintenance task is designated as one or two. Two indicates that two men are required for at least a portion of the total task time, but both men are not necessarily required for the entire period.

Table XXXV is a summary of the average number of men required per maintenance action as determined from the Navy 3-M data analysis. It shows that with two exceptions the average for all tasks ranges from one to less than two men. The fraction over one is the fraction of the task time that the second man is required, on the average.

Table XXXVI presents the military occupation specialties (MOS) personnel authorized to perform maintenance on the tail rotor system and the maintenance organizations to which they are allocated.

TABLE XXXIII. UH-1C/D/H MAINTENANCE MANPOWER REQUIREMENTS					
MOS					
Maintenance Task	Maint. Level	Model UH-1	Men Reqd.	Components	
67N20					
Inspect	Org	C/D/H	1	All Components	
Test*	Org Org Org	C/D/H C/D/H C/D/H	1 1 1	42° Gearbox 90° Gearbox T/R Pitch Control Mechanism	
Service	Org Org	D/H C	1	All components serviced except T/R Blades T/R Blades - Tracking	
Adjust	Org Org Org	D / H C/D/H D/H	1 1 1	T/R Hub & Bld. Assembly T/R Blades - Tracking T/R Pitch Control Mechanism - Rigging	
Align	D/S	C/D/H	2	T/R Drive Shaft	
Replace	Org Org Org Org Org D/S D/S	D/H C C/D/H C/D/H C/D/H C/D/H C/D/H D/H	2 1 1 1 2 1	T/R Hub & Bld. Assembly T/R Blades T/R Drive Shaft Hanger Assemblies 42° Gearbox 90° Gearbox T/R Hub T/R Blades	
Repair	Org Org	C D/H	1 1	T/R Drive Shaft T/R Drive Shaft -Requires use of special tool	
68D20					
Replace	Org	D/H	1	T/R Pitch Control Mechanism	
Repair	D/S D/S D/S	C C/D/H D/H	1 1 1	Hanger Assemblies 42° and 90° Gearboxes T/R Pitch Control Mechanism	
	G/S	D/H	1	Hanger Assemblies	

TABLE XXXIII. (Cont'd)				
MOS Maintenance Task	Maint. Level	Model UH-1	Men Reqd.	Components
Overhaul	D/S	C/D/H	1	42° and 90° Gearboxes
<u>68E20</u> Adjust Align Benair	D/S D/S Org**	С D/н С/D/н	1	T/R Hub & Blade Assembly Balancing T/R Hub & Blade Assembly T/R Blades
nepuit	D/S	C/D/H	ĩ	T/R Hub
Maintenance operational check (Ref. TB-AVN-23-16)				
** An organizational maintenance function which may be performed provided it is specifically authorized by the direct support maintenance officer.				

TABLE XXXIV. AH-1G MAINTENANCE MANPOWER REQUIREMENTS			
MOS			
Maintenance Task	Maint. Level	Men Reqd.	Components
<u>67¥20</u>			
Inspect	Org	1	All Components
Serivce	Org	1	All Components Serviced
Adjust	Org Org	1 1	Hub and Blade Assembly T/R Llades - Tracking
Align	D/S D/S	2 2	T/R Drive Shaft Hanger Assemblies
Replace	Org Org Org Org D/S D/S	2 2 1 1 2 1	Hub and Blade Assembly 42° Gearbox 90° Gearbox T/R Drive Shaft Hanger Assemblies T/R Hub T/R Blade
Repair	0rg*	1	T/R Drive Shaft
<u>68D20</u>			
Replace	Org D/S	1 1	T/R Pitch Control Mechanism Quills (42° and 90° Gearboxes)
Repair	D/S D/S D/S D/S	1 1 1 1	42° Gearbox 90° Gearbox Quill (42° and 90° Gearboxes) T/R Pitch Control Mechanism
Overhaul	G/S D D	1 1 1	Hanger Assemblies T/R 42° and 90° Gearboxes Quills (42° and 90° Gearboxes)

TABLE XXXIV. (Cont'd)				
<u>MOS</u> Maintenance Task	Maint. Ievel	Men Reqd.	Components	
<u>68 E2 0</u>				
Align	D/S	1	T/R Hub and Blade Assembly	
Repair	Org** D/S	1 1	T/R Blades T/R Hub	
* Painting of the tail rotor drive shaft must be done at the Depot Maintenance level because painting can cause an unbalanced condition which would require rebalancing.				
** An organizational maintenance function which may be performed provided it is specifically authorized by the direct support maintenance officer.				

P
TABLE XXXV. AVERA PER N (3-M Data t	AGE NUMBE MAINTENAN hrough Fe	R OF MEI (CE ACTT ebruary	N REQUIRI DN 1972)	ß		
SUBSISTEM	ALL M	aint	Part R	epl	On A/C	Repair
Component	AH-1G	UH-1D	AH-1D	UH-1D	AH-1G	UH-ID
T/R HUB & BLADE						
T/R Hub •	1.19	1.61	1.16	1.57	1.26	1.64
Other	1.17	1.64	1.15	1.33	1.17	1.67
T/R DRIVE						
T/R Drive Shaft	1.17	1.53	1.23	1.70	1.09	1.40
42° Gearbox 00° Gearbox	1.27	1.59	1.36	1.71	90°-1	1.52
T/R D/S Clamp Other	1.00	1.54	00.1	1.67 1.75	1.00	1.50
T/R CONTROL					1) 1 • 4
Control Quill* Control Tube	1.00	1.45	1.00	1.50	1.00	1.38
Pitch Control Mechanism**	1.02	1.39	1.06	1.73	1.00	1.27
Pitch Change Link Crosshead	1.14 1.14	1.47 1.47 1.32	1.22 1.00	1.05 1.05	1.17 1.17	1.76 1.38 1.37
*Includes sprocket wheel **Includes cone set, static stop, nu	ut, boot,	slider	, plate,	crosshe	ad beari	ng.

/

85

P

	TABLE XXXVI.	MOS PERSON MAINTENANCI	NEL AND E ALLOCATION	S			
	Maint	enance Level					
MOS	Organizational Direct General Support Support Depot						
67N2O	Х	X	х	Х			
67¥20	х	х	х	х			
68D2O		x	х	х			
68 E2 O		x	х	x			

P

9. MAINTENANCE MAN-HOURS PER FLIGHT HOUR (MMH/FH) ANALYSIS

9.1 MMH/FH ANALYSIS APPROACH

MMH/FH is the average number of maintenance man-hours expended per aircraft flight hour to perform the scheduled and unscheduled maintenance required to support a specified item. For this analysis the specified item is the tail rotor system. The basic equation for the computation is:

$$MMH/FH = \frac{\sum_{i=1}^{n} t_{m_{i}}}{\sum_{j=1}^{m} t_{j}}$$
(32)

where

1

t = the maintenance man-hours expended to perform m i task i on the equipment

- n = the total number i maintenance tasks performed
 on the equipment
- t = the total time accrued on aircraft j during
 the period that the equipment was installed on
 the aircraft
- m = the total number of aircraft on which the equipment was installed

The only source found that provides the necessary elements for the computation is the Navy 3-M data. It contains both flight time and maintenance time. However, it identifies the tail rotor system components only by work unit code and it does not provide depot maintenance reports to analyze. The MMH/FH analysis has been performed for organizational and intermediate maintenance for the UH-1D and AH-1G tail rotor systems. The Navy's intermediate maintenance is similar to the Army's direct and general support maintenance.

In the organizational maintenance analysis of the Navy 3-M data, the maintenance actions were divided into two groups: actions which involved part replacements and actions which involved on-aircraft repairs. Each of these groups was further divided into scheduled and unscheduled maintenance actions.

The scheduled actions are "time change" and scheduled maintenance" actions, determined by the malfunction code. The rest of the malfunction codes are classed as unscheduled maintenance actions.

The intermediate maintenance records within the 3-M data analyses could not be subdivided in the same manner as the organizational maintenance data. However, they can be summed by component subsystem and for each total tail rotor system.

9.2 MMH/FH ANALYSIS RESULTS

Ι.

The MMH/FH expended in organizational and intermediate maintenance are shown in Table XXXVII for each subsystem and for the tail rotor system for model UH-1D and AH-1G aircraft. The significant difference between the two models is the much greater expenditure of intermediate maintenance for the tail rotor subsystem of the UH-1D. Table XXXVIII shows how the intermediate maintenance is subdivided among the components within the subsystems. Here it can be seen that most of the intermediate-level support was for the tail rotor hub and hanger assemblies. During this period the 701-hubs underwent frequent inspections. The hanger assembly can be overhauled by the intermediate maintenance level, while the 42- and 90-degree gearboxes must be overhauled at depot level. It is not possible to determine the percentage of hanger assemblies removed which were forwarded to depot maintenance for overhaul.

Table XXXIX shows the tail rotor subsystem grouping of organizational maintenance man-hours per flight hour subdivided by part replacement and on-aircraft repair for both scheduled and unscheduled maintenance. The results for the two models show that while there are significant differences between the comparable maintenance actions, the organizational MMH/FH for the UH-1D tail rotor system is more than 97 percent of the value for the AH-1G.

Table XL presents the maintenance man-hours per million flight hours expended for the tail rotor system components.

From a maintenance standpoint, the following components are critical in that they require the greater percentage of maintenance man-hours expended for the model's tail rotor system. Together, these components account for almost ninety percent of the organizational maintenance man-hours expended.

90° Gearboxes	22%
Tail Rotor Hubs	21%
Hanger Assemblies	18%
42° Gearboxes	10%
Tail Rotor Blades	7%
Pitch Change Links	6%
Tail Rotor Drive Shafts	5%

- UH-1D

1

. 1

Tail Rotor Hubs	28%
90° Gearboxes	24%
42° Gearboxes	11%
Tail Rotor Blades	9%
Hanger Assemblies	7%
Pitch Change Links	5%
Tail Rotor Drive Shafts	5%

TABLE XXXVII.	MAN-HOURS PER	STEM MAINTENAN FLIGHT HOUR	CE
(3-M Da	ta Through Febru	ary 1972)	
MODEL	Maintenan	ce Level	Both
Subsystem	Organizational	Intermediate	Levels
<u>UH-1D</u>			
T/R Hub & Blade T/R Drive T/R Control	0.028347 0.031375 0.007954	0.040859 0.004574 0.000024	0.069206 0.035949 0.007978
Total T/R System	0.067676	0.045457	0.113133
<u>AH-1G</u>			
T/R Hub & Blade T/R Drive T/R Control	0.025736 0.035421 0.009798	0.005537 0.005063 0.0	0.031273 0.040484 0.009798
IOLAL I/R System	0.070933	0.010000	0.001333

89 [·]

TABLE	XXXVIII. 1	AIL ROTOR S MAINTENANCE 3-M Data Th	YSTEM INTE MAN-HOURS rough Febr	RMEDIATE PER FLIGHT uary 1972)	HOUR	
		UH-TD			AH-1G	
	Org. +		Int. %	0rg. +		Int. %
	Int.	Int.	of Org.	Int.	Int.	of Org.
SUBSYS TEM Component	Maint. MMH/FH	Maint. MMH/FH	+ Int. Maint.	Maint. MMH/FH	Maint. MMH/FH	+ Int. Maint.
T/R HUB & BLADE	0.069206	0.040859	0*65	0.031273	0.005537	17.7
T/R Hub T/R Blade Other	0.055916 0.006366 0.006924	0.038977 0.001288 0.000594	69.7 20.2 8.6	0.018226 0.004602 0.008445	0.005477 0.000033	30.1
T/R DRIVE	0.035949	0.004574	12.7	0.040484	0.005063	12.5
T/R Drive Shaft Hanger Assembly 42° Gearbox 90° Gearbox	0.003140 0.007693 0.006637 0.014939	0.000074 0.003449 0.000210 0.000742	44.8 3.2 5.0 0 2.0	0.003223 0.016170 0.015955 0.013349	0.000099 0.0004957 0.000007	3.1 30.7 0.0
1/K U/S Glamp Other	0.002591	0.000099	0 æ 0 e	0.000242 0.001545	00	000
T/R CONTROLS	0.007978	0.000024	0.3	0.009798	0.0	0.0
Chain Quill Assembly Control Tube Crosshead Fitch Change Link Pitch Change Mechanism	0.001236 0.000477 0.000173 0.002109 0.003278 0.003278	0.0 0.0 0.000012 0.0 0.000012 0.0	CO0000	0.000809 0.000620 0.000763 0.002659 0.003737 0.001210	000000	000000

/

90

*

TABLE XXXIX. TAIL MAIN	ROTOR SY	STEM ORG	ANIZATIONA PER FLIGH	L LEVEL T HOUR
	Tail H	Rotor Sub	osystems	Total
MODEL	T/R Hub	Drive		Tail Rotor
Maintenance	& Blade	System	Controls	System
UH-1D	l.			
On A/C Repair	0.0150	0.020 3	0.0048	0.0401
Scheduled	0.0026	-	-	0.0026
Unscheduled	0.0124	0.0203	0.0048	0.0375
Part Replacement	0.0133	0.0111	0.0032	0.0276
Scheduled	0.0011	0.0018	-	0.0029
Unscheduled	0.0122	0.0093	0.0032	0.0247
All Maintenance Scheduled	0.0283	0.0 314 0.0018	0.0080	0.0677 0.0055
Unscheduled	0.0246	0.0296	0.0080	0.0622
<u>AH-1G</u>				
On A/C Repair	0.0107	0.0087	0.0054	0.0248
Scheduled	0.0006	0.0002	-	0.0008
Unscheduled	0.0101	0.0085	0.005-	0.0240
Part Replacement	0.0150	0.0267	0.0044	0.0461
Scheduled	0.0050	0.0003		0.0053
Unschedured	0.01.00	0.0204	0.0044	0.0400
All Maintenance	0.0257	0.0354	0.0098	0.0709
Scheduled	0.0056	0.0005	-	0.0061
Unscheduled	0.0201	0.0349	0.0098	0.0648

ſ

M

1

	TAB:	LE X	г.	LAIL	ROT	COR SI	KSTE R MI	ILLE M	OMPON ON FL	IGH.	T HC	AINTE	NANC	ы				
			-	(Fro	п 3-	M Dai	ta T	hro	ugh F	ebr	uary	197	2)					
			All Mair	ntenanc	¢.			4	art Repla	ic ement					On A/C	Repair		
SUBSYSTEM		AH-IC			CH-10			AH-1G			CH-11			AH-1G			CH-ID	
Conponent	Total	Sched.	Unsched.	Total	Sched.	Unsched.	Total	Sched.	Unsched.	Total	Sched.	Unsched.	Total	Sched.	Unsched.	Total	Sched. [nsched.
T/R HUB & BLADE ASSY.																		
T/R Hub	12749	5199	7550	16939	3224	13715	9277	4559	4715	10311	593	9715	3472	540	2532	6625	2631	1995
T/R Blade	4509	c01	4161	5075	371	4707	3515	409	3110	2549	371	2175	1051		:051	2529	•	2529
Other	0-18	•	8418	6331	57	62	2225		2225	161	57	407	6193	,	6193	5337.	•	5637
T/R DRIVE SYSTEM																		
T/R Drive Shaft	3123	•	3123	3065	•	3065	2132	1	2132	1463	1	1403	166	ł	166	1602	1	1602
Hanger Assy's	11214	33	11151	4245		4245	9350	1	9350	2163	•	2:63	1564	33	1531	2082	,	2002
42° Gearbox	24:65	133	5155	6427	311	6116	4370	1	4370	2605	311	2297	1575	133	1445	3019	•	3619
90° Gearbox	1.349	295	13051	14197	1533	12664	10461	298	10163	4566	1533	30.33	2555	ī	2586	9631	١	9631
T/R D/S Clamps	242	ļ	242	676		676	10	1	10	124	•	124	232	ł	232	525	•	÷25
Other	15+5	1	15-5	2492	•	2492	3-5	ľ	345	173	1	173	1200	·	1200	2 31 9	•	5319
T/R CONTROLS																_		
Control Quill*	620	1	620	477	,	477	797	,	404	297	•	297	156	•	156	150	•	150
Control Tube	763	1	763	101	h	101	597	ı	265	Lei	,	161	166	,	166	•	•	•
Pitch Control Mechanism**	1210	•	1210	705	ł	705	550	1	550	235	•	235	630	1	630	170	•	02+
Chain	÷06	1	609	1236	1	1236	607	,	407	505	•	565	202	,	202	371	•	371
Pitch Change Links	3737	'	37.37	3266	•	3266	1 509	,	1509	1407	•	1+07	2225		2228	1559	,	1359
Crosshead	2659	,	2059	2109	•	2109	693	1	693	247	•	247	1966	1	1966	1502	•	1302
 Includes sprucket wheel Includes cone set, static 	c stop.	nut, b	out slic	der, pl	ate, cri	osshead b	earing]					

P

...

/

. 1

- `

10.1 FAILURE MODE ANALYSIS APPROACH

The failure modes and failure rates for this analysis were obtained from the UH-1/AH-1 M&R Program Failure/Discrepancy Report (FDR) data on Army UH-1C/D/H and AH-1G helicopters and a time base of 178,000 monitored flight hours.

The failure mode analysis was performed by identifying:

- The mode of failure
- The cause of failure

4

where

- The classification of failure by increasing severity per reference Paragraph 3.14 of MIL-STD-882:²⁵

Negligible (Category I) Marginal (Category II) Critical (Category III) Catastrophic (Category IV)

- The component primary and secondary (dependent) individual failure mode failure rates
- The average and total component failure rates for both primary and secondary failures
- The combat damage as a primary failure mode

Primary failure rates were determined for modes caused by inherent failures, induced failures, and combat damage. Secondary failure rates were determined for modes caused by primary failures. The component failure mode rates and the total component failure rates were determined using the following 'nations:

$$\lambda_{M} = \frac{f_{M}}{k} \times 1,000,000$$
(33)
$$k \sum_{j=1}^{m} t_{j}$$

λ_M onent failure mode rate in failures per million t hour**s**

f_M = reader of item failures of a specific failure mode uring the monitoring period

- t_j = total flight hours of the jth aircraft during the monitoring period
- m = the number of aircraft in the group
- k = the number of like components per aircraft

$$\lambda_{\rm TC} = \sum_{i=1}^{r} \lambda_{\rm M_i}$$

where λ_{TC} = total component failure rate in failures per million flight hours

 $\lambda_{M_{i}}$ = total component failure mode rates of the ith failure mode

r = the number of failure modes identified for the component

The total subsystem failure rate and the average component failure rate were computed using the following equations:

$$\lambda_{SS} = \sum_{h=1}^{S} k_h \lambda_{TC_h} + \lambda_0$$
(35)

where λ_{SS}^{λ} = total subsystem failure rate in failures per million flight hours

$$\lambda_{TC_{h}}$$
 = total component failure rate of the hth component

- λ_0 = "other" component failure rate, i.e., failures reported against the subsystem as a whole and against miscellaneous connecting items of the subsystem
- k_h = the number of like components within the subsystem
 - s = the number of different components in the subsystem

$$\overline{\lambda}_{C/S} = \frac{\sum_{h=1}^{S} k_h \lambda_{TC_h}}{\sum_{h=1}^{S} k_h}$$
(36)

where $\overline{\lambda}_{C/S}$ = average component failure rate for the components in the subsystem

10.2 FAILURE MODE ANALYSIS RESULTS

- 4

Table XLI presents the most frequent component failure modes observed on the tail rotor system. For most of the components

(34)

TABLE XLI. TAII BY C	, ROTOR SYSTEM MOST FRE	QUENT FAI DATA)	LURE MODES	
Failure Mode	Cause	Class	Type	Aircraft Model
T/R HUB & BLADE				
<u>T/R Blade</u> T/R Blade Damaged By Armament Debris	Spent Brass Strike	111	Induced	D/H, C, G
T/R Blade Has Strike Damage	Contact Tree, Wire	111	Induced	H/d
<mark>T/R Hub</mark> T/R Hub Grip Bearings Worn/Loose/ Rough	Normal Wear/Sandy Environment	II	Inherent	D/H, C, G
T/R CONTROL				
T/R Control Quill Assembly T/R Control Quill Binding	Sand & Dirt in Bearing	II	Inherent	D/H, C, G
T/R Control Tube Splines Worn on T/R Control Tube	Overtorque, Maintenance	11	Induced	р/н. с
Threads Stripped on T/R Control Tube or Nut	Error Maintenance Error	III	Induced	D/H, G
T/R Crosshead T/R Crosshead Assembly Scored by P/C Link Bearing	Improper Alignment	111	Induced	D/H, G
T/R Chain				
T/R Chain Worn	Sand Contamination, Oil, Dust	11	Inherent	D/H, C, G

	TABLE XLI. (Cont'd)	•		
Failure Mode	Caùse	Class	Туре	Aircraft Model
T/R Boot				
T/R Boot Torn or Cut	Rough Handling, Main- tenance Error	11	Induced	D/H, C, G
T/R Slider				
T/R Slider Worn	Normal Wear, Sandy Environment	II	Inherent	D/H, C, G
Crosshead Bearing Set				
Bearing Set Worn/Separating	Sandy Environment, Lack of Lube	II	Inherent	D/H, C, G
T/R Pitch Change Link				
T/R P/C Link Bearings Worn	Sandy Environment, Lack of Lube	11	Inherent	D/H, C, G
T/R DRIVE				
Hanger Assembly				
T/R D/S Hanger Bearing Failure	Sandy Environment, Lack of Lube	II	Inherent	D/H, C, G
42 [°] Gearbox				
42 ⁰ G/B Leaking at Input Quill	Seal Deteriorated, Sandy Environment	и	Inherent	D/H, C, G
90 ⁰ Gearbox				
90 ⁰ G/B Leaking at Input Quill	Seal Deterioration, Sandy Environment	I	Inherent	D/H, G
90 ⁰ G/B Has Metal Particles on Magnetic Plug	Unknown - Suspect Internal Wear	111	Inherent	U

	TABLE XLI. (Cont'd)	•		
Failure Mode	Cause	Class	Tvpe	Aircraft Model
90 [°] Gearbox (Cont'd)				
90 ⁰ G/B Input Quil! Has Inadequate Lube, D/S Bottoms Out	Lack of Lube	11	Inherent	U
90 ⁰ G/B Damaged Internally	T/R Overload	111	Induced	U
T/R Drive Shaft				<u>.</u>
T/R D/S Dented/Damaged	Blade Strike/Hard Landing/Unknown	II	Induced	D/H, C, G
T/R D/S Clamp Damaged	Unknown	11	Inherent	υ

analyzed, one or two failure modes were predominant. These modes were responsible for most of the total component failure rate.

Table XLII summarizes the tail rotor system failure rates for the UH-1C/D/H and AH-1G aircraft. It presents the total primary and secondary failure rates for each component that has a nonzero failure rate. Also included is the "other" category for each subsystem. The failure rate failure mode analysis from which these rates were computed is presented in Appendix III.

In the analysis of the M&R Program data the secondary failure rates were negligible, accounting for less than 1% of the total primary and secondary failure rates. The secondary failure rates and causes were reported as follows:

- 29 x 10⁻⁹ AH-1G Tail Rotor Drive Subsystem T/R D/S failures per hanger assembly seal melted, coming apart flight hour due to heat/vibration from a blower failure.
- 102 x 10⁻⁰ AH-1G Tail Rotor Drive Subsystem 90-degree failures per gearbox lost in flight; tail rotor hub failflight hour ure was suspected.
- 13 x 10⁻⁰ UH-1D/H Tail Rotor Control Subsystem T/R failures per pitch change link nut frozen due to bolt flight hour corrosion

The most significant inherent and induced failure modes identified for each subsystem are:

T/R Hub and Blade Subsystem

<u>Inherent</u> - AH-1G T/R grip bearings worn/loose/rough due to normal wear/lack of lubrication. Failure rate = 380×10^{-6} failures per flight hour.

<u>Induced</u> - UH-1C T/R blade damaged by armament debris. Failure rate = 2393×10^{-6} failures per flight hour.

T/R Drive Subsystem

ξ

Inherent - UH-1C T/R drive-shaft hanger bearing failure aue to sandy environment/lack of lube. Failure rate = 494×10^{-6} failures per flight hour.

Induced - AH-1G 90-degree gearbox damaged internally due to T/R overload. Failure rate = 978 x 10^{-6} failures per flight hour.

TABLE XLII.FAILURE MODE ANALYSIS SUMMARY FOR THE
UH-1D/H/C AND AH-1G TAIL ROTOR SYSTEM

(Based on M&R Data)

	Numbe	r of Fai	lures p	er Mil	lion Fligh	t Hours
		Тур	e of Fa	ilure		
SUBSYSTEM		Prima	ry			A11
Component	Inherent	Induced	Combat	Total	Secondary	Failures
MODEL UH-1D/H						
T/R HUB & BLADE T/R Hub	7 <u>15</u> 273	$\frac{1480}{260}$	<u>64</u> -	<u>2415</u> 533	-	<u>2415</u> 533
T/R Blade**	221	610	32	863	-	863
Other	*	*	*	156	-	156
$\frac{T/R DRIVE}{T/R Drive Shaft+}$	<u>2728</u> 6	1 <u>488</u> 86	<u>49</u> 6	<u>4265</u> 98	-	<u>4265</u> 98
T/R Hanger Assembly++	494	129		623	-	623
42° Gearbox	324	143	13	480	-	480
900 Gearbox	392	313	-	-	-	705
Uther	-	-	-	-	~	-
T/R CONTROLS	<u>3010</u>	1169	-	4400	<u>13</u>	4413
T/R Boot	-	324	-	324	**	324
T/R Slider	363	20	· -	389	-	260
Crosshead Bearing Set	207	234 78	_	285	-	285
T/R Pitch Change Link**	824	78	-	902	13	915
T/R Chain	519	-	-	519	-	519
T/R Quill	247	130	-	377	-	377
T/R Control Tube	-	221	-	221	-	221
Other	*	*	*	221	T	221
T/R SYSTEM TOTAL	<u>6453</u>	<u>4137</u>	1 <u>1.3</u>	1 <u>1080</u>	<u>13</u>	<u>11093</u>
MODEL UH-1C		1				
T/R HUB & BLADE	476	5346	-	6450	-	6450
T/R Hub	84	252	-	336	-	336
T/R Blade**	196	2547	-	2743	-	2743
Other	*	*	*	628		628
<u>T/R DRIVE</u> T/R Drive Shaft+	<u>2433</u> 39	<u>1287</u> 33	<u>30</u> 6	<u>3750</u> 78	-	<u>3750</u> 78
T/R Hanger Assembly 	522	122	-	644	-	644
42 ⁰ Gearbox	252	140	- [392	-	392
90° Gearbox	420	616	-	1036	-	1036
Other	-	-	-	-	-	-

99

TABLE XLII. (Continued)							
	Number of Failures per Million Flight Hours						
CUD CV CTEN		Туре	of Fai	lure			
SUBSYSTEM	Inhorent	Prima	ry Combot	Total	C	All	
Component	Innerent	Induced	Combat	Total	Secondary	Failures	
T/R CONTROLS	2183	476	-	3023	-	3023	
T/R Boot	-	168	-	168	-	168	
T/R Slider	979	-	-	979	-	979	
T/R Crosshead	-	-	-	-	-	-	
Crosshead Bearing Set	140	-	-	140	-	140	
T/R Pitch Change Link**	406	112	-	518	-	518	
T/R Chain	84 169	28	-	112	-	112	
T/R Control Tube	-	28	-	28		28	
Other	*	*	*	364	-	364	
T/R SYSTEM TOTAL	5092	7109	30	13223	-	<u>13223</u>	
MODEL AH-IG	075	1409	20	2625		26.25	
T/R HUB & BLADE	<u>875</u> 585	146	<u>30</u>	731	-	731	
T/R Bladestor	145	731	- 15	891	-	891	
Other	*	*	*	112	-	112	
	2227	2217	00	5077	121	6109	
T/R Drive Shaft+	2337	245	12	257		257	
T/R Hanger Assembly++	409	50	-	459	29	488	
42° Gearbox	380	539	-	919	-	919	
90 ⁰ Gearbox	730	1403	29	2162	102	2264	
Other	*	*	*	234	-	234	
T/R CONTROLS	4363	1566	_	6148	-	6148	
T/R boot	44	1036	-	1080	-	1080	
T/R Slider	497	-	-	497	-	497	
T/R Crosshead	160	234	-	394	-	394	
Crosshead Bearing Set	204	-	-	204	-	204	
T/R Pitch Change Link **	977	89	-	1066	-	1066	
T/R Chain	730	15	-	745	-	745	
T/R Quill	774	30	-	804	-	804	
T/R Control Tube	- 	/3 	-	210	-	210	
other	^	^	î	219	-	219	
T/R SYSTEM TOTAL	7575	<u>6491</u>	<u>119</u>	1 <u>4750</u>	<u>131</u>	<u>14881</u>	
* Primary failures fallin	ng in the	"other"	categor	y were	e not divid	ied among	
the subgroupsinheren	t, induce	a, and co	ombat da	amage.			
+ Five per aircraft on III	H-1C and	AH-1G: si	xpera	ircraf	t on UH-11	_{У/н}	
++ Three per aircraft on 1	JH-1C and	AH-1G: f	our per	airci	aft on UH	10/8	

T/R Control Subsystem

. .

1.

<u>Inherent</u> - UH-1C T/R slider worn due to normal wear, sandy environment. Failure rate = 979×10^{-6} failures per flight hour.

<u>Induced</u> - AH-1G T/R installation boot torn/cut due to rough handling, maintenance error. Failure rate = 1036×10^{-6} failures per flight hour.

11. MISHAP/ACCIDENT DATA ANALYSIS

11.1 MISHAP/ACCIDENT ANALYSIS APPROACH

The data analyzed were card records of mishaps reported on Army UH-1C/D/H and AH-1G helicopters. The data were obtained from the U.S. Army Board for Aviation Accident Research (USABAAR), currently called the U.S. Army Agency for Aviation Safety (USAAAVS).

The USAAAVS data are coded per AR385-40 26 to identify the mishap classifications. These are defined, in part, by the repair time in maintenance manhours required to return an aircraft involved in a mishap to a serviceable condition. The following table presents the classes as defined for each model.

TABLE XLIII. MISHAP CLASSIFICATION DEFINITIONS							
Mishap Class	UH-1C/D/H	AH-1G					
l 2 (Major Damage) 3 (Minor Damage) 4 (Incident) 5 (Forced Landings) 6 (Precautionary Landing)	Total Loss Over 500 MMH 100-500 MMH 1-99 MMH No Damage No Damage	Total Loss Over 800 MMH 125-800 MMH 1-124 MMH No Damage No Damage					

The first three of the six mishap classifications are designated as accident classifications.

The data coding permits the separate identification of material failure caused mishaps and mishaps from other (nonmaterial) causes. The coding also permits to a reasonable degree the identification of the helicopter subsystems and components which failed or were associated with the reported mishaps.

The period during which the data were collected is 1 January 1967 to 31 March 1971. The time bases which apply to this period are:

-	UH-1C		1,250,000	flight	hours
-	UH-1D		4,050,000	flight	hours
-	UH-1H		5,450,000	flight	hours
-	AH-1G		949,000	flight	hours
-	UH-1C/D/H,	AH-1G	11,699,000	flight	hours

11.1.1 ALL MISHAPS (ANY-SYSTEM)

6

The first step in analyzing the accident data was an examination of all mishaps on file for aircraft Models AH-1G and UH-1C/D/H regardless of the systems involvel (any-system). The number of

mishaps were counted and grouped according to model, cause (material or nonmaterial), and mishap class. The mishap rate per million flight hours λ_m for each group was determined by the following equation:

$$\lambda_{\rm m} = \frac{\rm n \times 10^{\rm b}}{\rm t}$$
 (37)

where n = the number of mishaps

t = the time base

11.1.2 TAIL-ROTOR-ASSOCIATED MISHAPS

Tail-rotor-associated mishaps are those caused by a material failure within the tail rotor system or by nonmaterial causes affecting the tail rotor system. Nonmaterial causes include maintenance errors (tool left under drive shaft cover, lack of proper scheduled maintenance), and tail rotor contacts.

11.1.2.1 MATERIAL FAILURES

The data on mishaps resulting from material failures within the tail rotor system were divided into four groups, according to the failed component. They are:

- 42-degree gearbox
- 90-degree gearbox
- Tail rotor drive shafts and hangers
- Tail rotor hub and blade and pitch change mechanism

This grouping was determined by the USAAAVS method of coding data. The first three groups make up the tail rotor drive subsystem. The tail rotor hub and blade and the pitch change mechanism (tail rotor control) are grouped together in the data. Though some items in the last group may be definitely identified as part of one or the other subsystem, other parts such as bearings and nuts, bolts, washers, and similar items cannot be so identified, making it impossible to separate these two subsystems.

Within each component group, the data was further divided by failed item within the component and/or the failure mode. Failure modes are not always available because USAAAVS data defines the failure mode only in the narrative section of the mishap records, if at all. This information is not accessible without reading each narrative record. The quantity of data makes this approach impractical. In Appendix III, a count of the material failures for each component and their mishap rates are presented in two sets of tables-the first grouped by model and the second by mishap class.

11.1.2.2 NONMATERIAL FAILURES

The nonmaterial failure mishap records were separated into tail rotor contacts and other nonmaterial failures.

The tail rotor contacts consist of tail rotor strikes and tail rotor hits. A strike occurs when the tail rotor on a moving aircraft strikes a stationary object. When a foreign object hits or blows into the tail rotor, the incident is a hit.

The "other" nonmaterial failure mishaps are generally caused by carelessness on the part of maintenance personnel. Equation (37) was used to determine mishap rates.

11.1.2.3 EXTENT OF DAMAGE (REPAIR/REPLACEMENT COST)

In the USAAAVS data, the extent of damage in terms of repair or replacement cost in dollars is given for mishap classes 1, 2, 3, and 4. By definition classes 5 and 6 have no repair cost (see Table XLIII). For each aircraft model, mishap cause (material or nonmaterial) and mishap class the average cost of repair C was determined using the following equation:

$$C = \frac{\sum_{j=1}^{n} C_{j}}{n}$$

(38)

where C_i = the cost of the jth mishap

n = the number of mishaps with a known
 cost

11.2 MISHAP/ACCIDENT ANALYSIS RESULTS

11.2.1 ALL MISHAPS

Table XLIV presents a summary of all mishaps involving UH-1C/D/H and AH-1G aircraft. The mishap rates for the AH-1G aircraft are much higher than the same values for the UH-1 aircraft particularly the material failure caused mishaps of classes 1 & 2 and 5 & 6, and nonmaterial failure mishaps of classes 5 & 6. The data includes AH-1G records from the time that aircraft was first delivered to the Army. The UH-1 Models

4	ABLE XLIV.	SUMMARY (OF ALL UH-1	C/D/H AND	AH-1G MISH	APS ON FI	Ë
				Mishap	ss Due To		
Model Time Base	Mishap	Mat Fai	erial lures	Nonn Ca	laterial uses	Ü	All auses
(flt hrs)	Class	No.	λ ^m *	No.	λm *	No.	λ _m *
	1. 2	95	76.0	176	8 071	126	8 910
UH-1C	1 F 1	1	3.2	13	10.4	17	13.6
1,250,000	, t	71	56.8	136	108.8	207	165.6
· ·	all All	4 2 3 5 9 3	238.4 474.4	103 428	82.4 342.4	526 1,021	420.8 816.8
	1 , 2	433	45.6	1,042	109.7	1,475	155.3
UH-1D/H	n 4	1/ 271	1.8 28.5	1.747	7.6 183_9	2,018	212.4
9.500.000	5, 6	3,308	348.2	732	77.1	4,040	425.3
	IIA	4 ,0 29	424.1	3, 593	378.2	7,622	802.3
AH-1G	1, 2	109	114.9	135	142.3	244	257.1
000-646	n -1	7 7	7.7	171	180,5	12	12 . 6
	5, 6	514	541.6	202	212.9	716	754.5
	All	679	715.5	518	545.8	1,197	1,261.3
ALL	1, 2	637	54.4	1,353	115.7	1,990	170.1
11,699,000	14	396	33.8	2.054	175.6	2.450	209.4
	5, 6	4,245	362.9	1,037	88.6	5,282	451.5
	11A	5,301	453.1	4,539	388.0	9,840	841.1
* λ _m = M1	shaps per u	iilion fl	ight hours				

.

had been in the field for four years before the data period began. Consequently, "infant mortality" type failures and forced and precautionary landings due to unfamiliarity with the *eircraft* are not included in the UH-1 data, but are included in AH-1G data.

11.2.2 Tail-Rotor-Associated Mishaps

The number of all tail-rotor-associated mishaps grouped by model, cause of mishap, and accident class are presented in Table XLV. The class 1 through 4 total is presented because all damage-causing mishaps fall in these classes.

11.2.2.1 Tail Rotor Strikes

All tail rotor contact mishaps fall in classes 1, 2, 3, and 4-thus all tail rotor contacts cause damage to the aircraft. Table XLVI presents the tail rotor strikes as a percentage of damage causing mishaps. It was noted that 50 percent of the class 1-4 mishaps involving troop carrying helicopters (UH-1D/H) are strikes, while strikes by the attack helicopter (UH-1C/AH-1G) comprise only 25 percent of the class 1-4 mishaps.

11.2.2.2 Extent of Damage

The extent of damage for tail rotor mishaps is presented in Tables XLVII through LI. An average dollar cost per mishap for each model, grouped by material, nonmaterial, and all causes and by mishap classification is given. The value presented is based on the number of mishaps with known cost (96 percent of all damage causing mishaps). The mishap rate per million flight hours is also presented. These values are used in the Cost Analysis section.

11.2.2.3 Material Failures

The material failures analysis for each tail rotor component consists of a list of the failed items within the component and the mode of failure, if known, and the number of occurrences for each failed item/mode grouped by aircraft model and by mishap class. The tables presenting the details of this analysis are in Appendix III. Table LII is a summary of the material failures analysis, presenting the number of mishaps (classes 1-6) and the number of accidents (classes 1-3) resulting from failures within the tail rotor system. The mishap rates are also presented.

From this data it can be seen that 61 percent of the accidents are caused by 90 degree gearbox and/or tail rotor separations, tail rotor hub failures, and suspected tail rotor failures, while the same modes account for only 29 percent of the mishaps.

TABLE XLV. SUMMARY OF TAIL-ROTOR- AS SOCIATED MISHAPS						
Number of Mishaps						
Causes of Mishaps	1	2	3	4	1-4	A11
UH-1C						
Material Failure Causes	8	6	1	8	23	40
Nonmaterial Causes	4	5	0	14	23	28
Contacts	3	5	0	9	17	17
Strikes	3	4		Q	10	10
				-		11
Other			0	5	0	LL
ALL CAUSES	<u>12</u>	<u>11</u>	<u>1</u>	<u>22</u>	<u>46</u>	<u>68</u>
UH-1D						
Material Failure Causes	22	16	2	13	53	154
Nonmaterial Causes	22	53	11	73	159	185
Contacts	19	46	11	67	143	143
Strikes	19	43	8	42	112	112
Hits	0	3	3	25	31	31
Other	3	7	0	6	16	42
ALL CAUSES	44	<u>69</u>	<u>13</u>	<u>86</u>	<u>212</u>	<u>339</u>
<u>UH-1H</u>						
Material Failure Causes	23	32	1	21	77	144
Nonmaterial Causes	33	41	3	86	163	185
Contacts	28	36	1	84	149	149
Strikes	26	33		56	116	116
HITS	2	5		20	33	33
Other	5	5	2	2	14	36
ALL CAUSES	<u>56</u>	<u>73</u>	<u>4</u>	<u>107</u>	<u>240</u>	<u>329</u>
AH-1G						
Material Failure Causes	9	19	0	8	3 6	68
Nonmaterial Causes	3	11	0	13	27	41
Contacts	2	8	0	13	23	23
Strikes	2	8	0	10	20	20
Hits		0	0	3	3	3
Uther		3	U	0	4	18
ALL CAUSES	12	<u>30</u>	<u>0</u>	<u>21</u>	63	<u>109</u>

P

TABLE XLV. (Cont'd)							
MODEL		Num In	ber of Misha	E Mis ap Cl	haps ass		
Causes of Mishaps	1	2	3	4	1-4	A11	
ALL MODELS							
Material Failure Causes	62	73	4	50	189	406	
Nonmaterial Causes Contacts Strikes Hits	62 52 50 2	110 95 88 7	14 12 9 3	186 173 108 65	372 332 255 77	439 332 255 77	
Other	10	15	2	13	40	107	
ALL CAUSES	<u>124</u>	<u>183</u>	<u>18</u>	<u>236</u>	<u>561</u>	<u>845</u>	

ſ

4

1

t

TABLE XLVI. TAIL ROTOR STRIKES AS A PERCENTAGE OF ALL DAMAGE-CAUSING TAIL ROTOR MISHAPS						
Model	No. of Strikes	No. of Class 1-4 T/R Mishaps	%			
UH-1C	7	46	15			
UH-1D	112	212	53			
UH-1H	116	240	48			
AH-1G	20	63	32			
UH-1C/AH-1G	27	109	25			
UH-1D/H	228	452	50			
All 4 Models	255	561	45			

Т	ABLE XLVII.	AVERAGE REPA ROTOR "ASSOCI	AIR COSTS DUE ATED MISHAPS	TO TAIL- MODEL UH-1C
Cause	Mishap Class	λm	No. With Known Cost	Average Cost
Material	1	6.4	8	\$ 218,425
railures	2	4.8	5	1?6,573
	3	0.8	1	16,898
	4	6.4	8	2,252
	5	8.0	10	-
	6	5.6	7	-
	1-4	18.4	22	109,781
	All	32.0	39	61,928
Non-	1	3.2	4	219,348
material	2	4.0	4	75,722
	3	0	0	-
	4	11.2	13	836
	5	1.6	2	-
	6	2.4	3	-
	1-4	18.4	21	56,721
	All	22.4	26	45,813
A 11	1	9.6	12	218,733
Causes	2	8.8	9	103,972
	3	0.8	1	16,898
	4	17.6	21	1,376
	5	9.6	12	-
	6	8.0	10	-
	1-4	36.8	43	83,868
	A11	54.4	65	55,482

. .

TABLE XLVIII. AVERAGE REPAIR COSTS DUE TO TAIL - ROTOR-ASSOCIATED MISHAPS, MODEL UH-1D						
Cause	Misnap Class	λm	No. With Known Cost	Average Cost		
Material	1	5.4	22	\$ 225,520		
Failures	2	4.0	15	78,754		
	3	0.5	2	13,834		
	4	3.2	12	3,055		
	5	4.0	16	-		
	6	21.0	85	_		
	1-4	13.1	51	121,708		
	A11	38.0	152	40,836		
Non-	1	5.4	22	221,277		
material	2	13.1	50	67,341		
	3	2.7	11	10,027		
	4	18.0	70	3,631		
	5	2.4	10	-		
	6	4.0	16	-		
	1-4	39.2	153	56,207		
	A11	45.6	179	48,043		
All	1	10.8	44	223,399		
Caus es	2	17.1	65	69,975		
	3	3.2	13	10,613		
	4	21.2	82	3,547		
	5	6.4	26	-		
	6	25.0	101	-		
	1-4	52.3	204	72,582		
	All	83.6	331	44,733		

F

TABLE XLIX. AVERAGE REPAIR COSTS DUE TO TAIL - ROTOR -ASSOCIATED MISHAPS, MODEL UH-1H						
Cause	Mishap Class	λm	No. With Known Cost	Average Cost		
Material	1	4.2	22	\$ 238,142		
Failures	2	5.9	29	152,958		
	3	0.2	0	-		
	4	3.8	21	7,857		
	5	5.1	28	-		
	6	7.2	39	-		
	1-4	14.1	72	136,665		
	A11	26.4	139	70,791		
Non-	1	6.0	32	231,783		
material	2	7.5	41	104,686		
	3	0.6	3	66,155		
	4	15.8	85	3,493		
	5	1.3	7	-		
	6	2.7	15	-		
	1-4	29.9	161	75,802		
	A11	33.9	183	66,690		
A11	1	10.2	54	234,374		
Causes	2	13.4	70	124,684		
	3	0.8	3	66,155		
	4	19.6	106	4,354		
	5	6.4	35	-		
	6	9.9	54	-		
	1-4	44.0	233	94,610		
	A11	60.3	322	68,460		

'

TABLE L. AVERAGE REPAIR COSTS DUE TO TAIL- ROTOR-ASSOCIATED MISHAPS, MODEL AH-1G						
Cause	Mishap Class	λm	No. With Known Cost	Ave rage Cost		
Material	1	9.5	9	\$ 394,558		
railure	2	20.0	18	142,129		
	3	0	0	-		
	4	8.4	6	2,297		
	5	6.3	6	-		
	6	27.4	26	-		
	L-4	37.9	33	185,549		
	All	71.6	65	94,202		
Non-	1	3.2	3	356,489		
material	2	11.6	11	111,097		
ſ	3	0	0	-		
Ì	4	13.7	1.3	2,343		
	5	7.4	7	L _		
	6	7.4	7	-		
	1-4	28.5	27	85,999		
	A 11	43.3	41	56,634		
A11	1	1.2.7	12	385,041		
Causes	2	31.6	29	130,358		
	3	0	0	-		
	4	22.1	19	2,328		
	5	13.7	13	-		
	6	34.8	33	-		
	1-4	66.4	60	140,752		
	All	114.9	106	79,671		

TABLE LI. AVERAGE REPAIR COSTS DUE TO TAIL-ROTOR- ASSOCIATED MISHAPS, MODELS AH-1G AND UH-1C/D/H						
Class	Mishap Class	λm	No. With Known Cost	Average Cost		
Material	1	5.3	61	\$ 254,082		
Failure	2	6.2	67	131,467		
il .	3	0.4	3	14,855		
	4	4.3	47	4,967		
	5	5.1	60	-		
	6	13.4	157	-		
	1-4	16.2	178	138,120		
۰	A11	34.7	395	62,241		
Non-	1	5.3	61	233,312		
material	2	9.4	106	86,643		
	3	1.2	14	22,055		
	4	15.9	181	3,271		
	5	2.2	26	-		
	6	3.5	41	-		
	1-4	31.8	362	67,174		
	All	37.5	429	56,683		
A11	1	10.6	122	243,696		
Causes	2	15.6	173	104,002		
	3	0.6	17	20,784		
	4	20.2	228	3,620		
	5	7.3	86	-		
	6	16.9	198	-		
	1-4	48.0	540	90,560		
	A11	72.2	824	59,348		

!

TABLE LII. SUMMARY OF TAIL MODES CAUSING MI	ROTOR S	YSTEM FA	AILURE	
Subsystem	Mi	shap	Acc	ldent
Component Failure Mode	No.	λ _m	No.	λm
<u>T/R Drive</u>	231	19.75	63	5.38
42° Gearbox 42° Gearbox Failure Other	25 10 15	2.14 0.85 1.29	4 1 3	0.34 0.09 0.25
90° Gearbox 90° Gearbox Failure Gearbox Separation Metal on Plug Other	101 55 22 8 16	8.63 4.70 1.88 0.68 1.37	28 8 18 - 2	2.39 0.68 1.54 - 0.17
T/R Drive Shafts & Hangers Hanger Bearing Failure Coupling Failure Other	105 63 20 22	8.98 5.39 1.71 1.88	31 13 8 10	2.65 1.12 0.68 0.85
T/R Hub and Blade and Pitch Change Mechanism	175	14.96	76	6.50
Suspect Tail Rotor Failure	47	4.02	31	2.65
Tail Rotor Hub Failure Tail Rotor Yoke Failure Tail Rotor Grip Failure Tail Rotor Hub Failure	30 11 5 14	2.57 0.94 0.43 1.20	19 9 3 7	1.62 0.77 0.25 0.60
Tail Rotor and Gearbox Separation	21	1.79	17	1.45
Tail Rotor Bearing Failure P/C/L Bearing Thrust Bearing Failure Crosshead Bearing Failure Tail Rotor Bearing Failure	15 1 2 3 9	1.29 0.09 0.17 0.26 0.77	1 0 0 1	0.09 - - 0.09
Control Rod Retaining Nut/ Cotter Key Failure	14	1.19	2	0.17
Control Quill Failure	8	0.68	1	0.09
Control Chain Twisted	10	0.85	-	-
Other	3 0	2.57	5	0.43
All Tail Rotor System Failures	406	34.71	139	11.89

ע

These modes are the only ones which comprise a larger percentage of the accidents than of the mishaps.

11.2.3 Any-System Versus Tail-Rotor-Associated Mishaps

A comparison between the ratios of the number of accidents to the number of mishaps (accident probability) for mishaps, regardless of the aircraft system involved (any-system mishap) and for tail-rotor-associated mishaps is presented in Table LIII. Tail-rotor-associated occurrences result in accidents more frequently than do any-system occurrences. In the case of material failures, a tail rotor component failure is 2.7 times as likely to cause an accident as an any-system material failure.

The accident probability for tail rotor associated nonmaterial occurrences is 1.3 times the corresponding value for any-system occurrences. For all causes, the tail rotor system accident probability is 1.8 times the any-system accident probability.

Number of OccurrencesMaterial FailuresNumber of OccurrencesMishaps (All Classes)530140645394399840Accidents (Classes 1-3)66013914481862108Ratio of the Number of Accidents to the Number.124.342.319.423.214	TABLE LIII.	TAIL-ROTO	R-ASSOCIA	TED VERSUS A	LL MISHAPS		
Material FailuresNonmaterial FailuresAll CauAnyT/RAnyT/RAnyTMishaps (All Classes)530140645394399840Accidents (Classes 1-3)66013914481862108Ratio of the Number of Accidents to the Number.124.342.319.423.214			NU	umber of Occ	irrences		
Any T/R Any T/R Any T/R Any T/R Any T Mishaps (All Classes) 5301 406 4539 439 9840 9840 Accidents (Classes 1-3) 660 139 1448 186 2108 842 .423 .214 .05 .423 .214 .05 .423 .214 . .423 .214 . .423 .214 . .423 .214 . .423 .214 . .423 .214 . .423 .214 . . .423 .214 . <td></td> <td>Material</td> <td>Failures</td> <td>Nonmaterial</td> <td>Failures</td> <td>All Cé</td> <td>auses</td>		Material	Failures	Nonmaterial	Failures	All Cé	auses
Mishaps (All Classes) 5301 406 4539 439 9840 Accidents (Classes 1-3) 660 139 1448 186 2108 Ratio of the Number of Accidents to the Number of Mishaps .124 .342 .319 .423 .214		Any	T/R	Any	T/R	Any	T/R
Accidents (Classes 1-3)66013914481862108Ratio of the Number of Accidents to the Number.124.342.319.423.214of Mishaps	Mishaps (All Classes)	5301	406	4539	439	9840	845
Ratio of the Number of .124 .342 .319 .423 .214 . Accidents to the Number of Mishaps	Accidents (Classes 1-3)	660	139	1448	186	2108	325
	Ratio of the Number of Accidents to the Number of Mishaps	.124	.342	.319	.423	.214	• 385

12. COST ANALYSIS

The purpose of the cost analysis is to determine the total support cost of the UH-1/AH-1 tail rotor system. As can be observed in the preceding analyses there is considerable variation in the MTBF, MTR, MTBR, etc., for the components and in the fleet size and the use rate of the aircraft. These are all factors that are used in a cost analysis. This means that several separate analyses for each model under different use environments would be required. This would be very complex, difficult, if not impossible to establish, and not necessarily more useful than the following composite cost analyses for the utility and attack helicopter tail rotor systems.

12.1 COST ANALYSIS APPROACH

This cost analysis has been prepared by identifying each of the cost elements that comprise the total support cost of the UH-1D/H and AH-1G tail rotor system components.

12.1.1 Fleet Life-Cycle Consideration

To provide a basis for the analysis two fleet of aircraft are considered, one utility (UH-1D/H) and the other attack (AH-1G). Both are fleets of 1000 aircraft each having production deliveries of 40 aircraft per month over a 25month period. The use rate of these aircraft is 70 flight hours per month per aircraft for the utility helicopter fleet and 60 flight hours per month per aircraft for the attack helicopter fleet. The useful life of the utility helicopters is 5000 flight hours and for the attack helicopters it is 3500 flight hours. This makes the total life-cycle equal to 5 million flight hours for the attack fleet. For the analysis it is assumed that the flight hours are accumulated for each fleet as shown by the curves on Figure 10.

12.1.2 Cost of the Tail Rotor System Delivered As Part of the Production Aircraft

A research made in several Departments at BHC revealed that no cost breakdown exists that proportions the air vehicle cost to its subsystems and components. To establish a value that could reasonably represent this element of the total tail rotor life, the following equation was used. In this equation the cost of the component as it is delivered is estimated to be 60 percent of the packaged spare component.

ער

MILLIONS OF FLIGHT HOURS

; '

J

119

ł

$$C_{I} = 0.60m \sum_{i=1}^{n} k_{i}C_{i}$$

where C_I = the total estimated cost of the tail rotor systems delivered on the production aircraft

m = the number of production aircraft in the fleet

 C_i = the dollar cost of the ith spare component

- k = the number of i components installed per aircraft
- n = the number of different components in the aircraft tail rotor system

The spare parts dollar costs used in the analysis are those shown in Table LIV which were established from the sources referenced.

12.1.3 Number of Spares Required

1

The number of spares required for parts that are normally scrapped when they are removed from the aircraft for failure is determined by dividing the model's life-cycle flight hours by the MTBF of the component. The number of replacement items required where the parts are either limited-life items or overhaul items is determined by dividing the model's life-cycle flight hours by the MTBR" computed for the component in Appendix VI.

To establish a logistic pool of replacement parts for the two types of parts, the total flight hours to be accrued during the first 21 months after the initial production delivery is divided by the MTBF and MTBR" values as appropriate.

To determined, for the number of overhaulable items, the replacements that are spare assemblies and those that are overhauled, the number of replacements are multiplied by the fraction of items that are scrapped. The result is the number of spare assemblies that are required. It is assumed that the remainder are overhauled.

Where it was determined from the data that the control quill assembly was frequently repaired by replacing the sprocket, the number of spare items for each of these items has been appropriately adjusted.

120

(39)
TABLE LIV	V. TAIL ROTOR SYSTI	EM COMPONEN	T REPLACE	MENT COSTS	
SUBSYSTEM Components	Bell Part Number	Spares Cost Dollars	Cost Source *	Dollar Cost Used In Analvsis	Dollar Cost For Overhaul *G
T/R HUB & BLADE					
Hub Assembly	204-011-701-019 204-011-801-003	500.79	υc		
	204-011-801-005	565.66	A	ג ר <u>מ</u> ז ר	
	204-011-801-009	815.15 854.02	പ്പ ഇ	010	
	209-010-701-003	461.86	ដ		
T/R Blade	204-011-702-015 204-011-702-017	303.28 347.52	ដេ ជ	348	
T/R DRIVE					
T/R Drive Shaft	204-040-620-003 204-040-620-005	114 78	មា ច	154	
	209-040-611-001	189.39	J A		
Hanger Assembly	204-040-600-007	120.73	∢ (172	48
42° Gearbox	204-040-003-037	1242.21	ວບ	1242	286
90° Gearbox	204-040-012-013	1534.35	Q	1534	408
T/R CONTROL					
Chain	204-001-739-003	53.00	D	53	
Quill Assembly	204-010-740-005	48.29	ы	48	
Sprocket Wheel	204-010-768-001	5.81	ы	9	
Control Tube	204-010-742-009	18.93	ш	19	
Cone Set	204-010-724-005	3.01	D	ß	

	TABLE	LIV. (Con	t'd)		
SUBSYSTEM Components	Bell Part Number	Spares Cost Dollars	Cost Source *	Dollar Cost Used In Analysis	Dollar Cost For Overhaul *G
T/R CONTROL (Cont'd)					
Static Stop	204-010-774-011	9.26	ш	6	
Nut	204-010-719-001	15.88	ш	16	
Boot	47-641-101-001	3.65	ĴΣ.	4	
Slider	204-010-720-003 204-010-720-007	45.14 41.34	ជា ជា	42	
Plate	204-010-721-003	06.	ш	Ч	
Bearing Set	204-011-761-003 204-011-769-001	6.16 11.47	ΑQ	12	
Crosshead	204-011-711-001	12.25	ы	12	
Pitch Change Link	204-011-762-001 204-011-762-005	22.28 23.16	<u>م</u> 0	i	
	204-011-762-007 204-011-762-011	20.82	а н	24	
* COST SOURCE Bell Helicopter Con No. 3 DAAJ01-67- No. 4 DAAJ01-68- No. 5 DAAJ01-69- No. 6 DAAJ01-69- No. 8 DAAJ01-69- No. 8 DAAJ01-69- Cost Source F - the DAAJ01-72-A-0012 Cost Source G - RAM	npany UH-l Series Ta -A-0014 -A -A-0022 -B -A-0314 -C -A-0314 -D -A-0012 -E e current procedure	arget Price specified i	List No. Or spares	: pricing by	Contract Mponents

12.1.4 Cost of the Spare Parts Required

The cost of the spare parts C_{sp} required was obtained by multiplying the number of parts required of each type by the cost established for it on Table LIV. The part costs used are the costs that are typical for the greater percentage of components installed.

Although the UH-1D/H has two types of tail rotor drive shafts installed, five -3 and one -5 assemblies, the failure rate and maintenance man-hour data do not distinguish between the two types of assemblies. The DA form 2407 data indicate that the -5 assembly's replacement rate is lower than that of the -3. For this reason no attempt has been made in the cost analysis of the utility helicopter's tail rotor system to differentiate between the two except in the initial production delivered on-board systems. The cost used in the analysis is that shown for the -3.

12.1.5 Cost of the Overhauled Assemblies

Separate costs were computed for the three assemblies that are overhauled: the 42. and 90-degree gearboxes, and the tail rotor drive-shaft hanger assemblies. A review of the different overhaul contracts showed considerable variation in the overhaul costs for these components, although they were generally consistent with the overhaul costs contained in the RAMMIT Major Item Special Study (MISS) reports, ¹³ thru 19 which are shown on Table LIV and are used in this analysis.

The overhaul costs, C_{OH} , were computed by multiplying the number of component overhauls by the overhaul cost per unit.

The analysis may contain a degree of duplication in that the intermediate maintenance **man-hours** for the hanger assembly probably include **a mixture of overhauls and** repairs. The cost analysis treats this maintenance as if it were all repairs.

12.1.6 Transportation Costs

The transportation costs to be considered in the tail rotor system are:

a. Cost of moving spare parts from the factory to the Army's main distribution center (Red River Army Depot-182 miles)

- b. Cost of moving overhaul components from the distribution center to the factory (or depot maintenance area) and back to the distribution center
- c. Cost of moving both spare parts and overhaul parts between the distribution center and
 - bases within the United States
 - bases overseas

Costs in moving the production helicopters from the factory to the use locations are not considered.

Three methods of transportation are included:

- a. Ground (truck) transportation
- b. Transportation by air
- c. Transportation by cargo vessel

For this analysis the aircraft are considered to be stationed

- 20 percent in the United States at an average distance of 1500 miles from the distribution center; transportation of parts is accomplished by ground transportation
- 80 percent overseas where 25 percent of the overseas spare and overhaul components are transported to the location by air and the remainder are transported by cargo vessel. It is assumed that all assemblies for overhaul are returned to the United States by cargo vessel.

Based on cost information obtained from the Spares Engineering Department at BHC, components of the size and density of those that make up the tail rotor system can be shipped by truck at a cost of 0.15 dollar **per ton-mile**. The cost of air transportation which will vary considerably depending on the distance has been estimated at 600 dollars per ton. Similarly, the cost for cargo shipment has been estimated at 300 dollars per ton.

The total cost CTR for transportation of spares and overhaul components is determined using the following equations

$$C_1 = (W_s + 2W_o) D \times R_m$$
 (40)

- W_s = the total weight in tons of the spare components
- W_o = the total weight in tons of the overhauled components
 - D = the distance to be hauled by the truck
- R_T = the cost rate per ton-mile to move the items by truck

$$C_2 = P_1 (W_s + 2W_o) D \times R_T$$
 (41)

T

where C₂ = the dollar cost of moving parts and overhaul assemblies between the distribution center and base locations within the US

$$C_3 = P_2(W_s + W_o)R_A$$
 (42)

where

Cz

Сц

=

the dollar cost of moving the items between the distribution center and overseas locations by air

 P_2 = the fraction of items to be airshipped

 R_{Δ} = the cost per ton to move the items by air

$$C_{4} = \left[(1 - P_{1} - P_{2})(W_{s} + 2W_{o}) + P_{2}(W_{o}) \right] R_{C}$$
 (43)

where

1

= the dollar cost of moving the items between the distribution center and overseas locations by cargo vessel

R_C = the cost per ton to move the items by cargo vessel

$$C_{TR} = C_1 + C_2 + C_3 + C_4$$
 (44)

12.1.7 Maintenance Costs

The maintenance cost per flight hour to support the tail rotor system was obtained by multiplying the total organizational and intermediate maintenance man-hours per flight hours by 16.50 dollars. This man-hours cost was obtained from RAMMIT MISS reports, ⁷ thru ¹⁹ and it represents their best estimate of the current average direct and indirect cost for maintenance man-hours expended at each maintenance level. The depot maintenance cost was not computed since this cost should be included in the component overhaul cost. The total life-cycle cost value for tail rotor system maintenance C_{MN} was computed by multiplying the cost per flight hour by 5 million flight hours for the utility helicopter and 3.5 million flight hours for the attack helicopter.

12.1.8 Cost of Tail Rotor System Related Mishaps

The cost of tail rotor related mishaps was determined by: first separately obtaining the mishap rate for each mishap classification for UH-1D/H and the AH-1G from Section 11; next, the cost of the total loss mishaps, Class 1, was obtained by taking the highest costs observed in the USAAAVS accident data for Class 1 mishaps, as shown on Table LV, and rounding the result to 245,000 dollars for the utility helicopter and 475,000 dollars for the attack helicopter; and finally, the average cost of Classes 2, 3, and 4 repairable mishap damage was obtained for the UH-1D/H and AH-1G from Section 11.

These factors were then inserted in the following equation.

$$C_{A} = (\lambda_{I} \times C_{I} + \lambda_{II}C_{II} + \lambda_{III}C_{III} + \lambda_{IV}C_{IV})mT$$
(45)

where

CA	Ξ	the total life cycle cost in dollars for tail rotor associated mishaps
y ^Ι 'y ^{ΙΙ'y} ΙΙΙ' _y ΙΛ	=	the mishap rate in occurrences per flight hour for Class 1, 2, 3, and 4 mishaps, respectively
c _I ,c _{II} ,c _{III} ,c _{IV}	Ξ	the average dollar cost used for Class 1, 2, 3, and 4 mishaps respectively

T = the total expected life for each aircraft

1

TABLE LV. AI US	RCRAFT TOTA	AL LOSS COM AP RECORDS	ST VS DATE	, PER
Accident		Aircraf	t Model	
Date Yr/Mo	UH-1C	UH-1D	UH-1H	AH-1G
67/01 67/02 67/07 68/09 69/07 69/08 69/09 70/04	219,911 217,679 217,679 216,914 216,914 216,914 224,415 224,415	288,554 228,554 228,554 228,554 237,504 237,504 237,504 237,504	- 228,554 228,554 228,554 244,345 244,345 244,345	- 318,707 318,707 451,141 451,141 451,141 451,141
71/03	224,415	237,504	244,345	471,630

12.1.9 Total Tail Rotor System Life-Cycle Costs

The estimate of the total tail rotor system life-cycle costs, $C_{\rm T}$, is obtained by summing each of the cost factors.

$$C_{T} = C_{I} + C_{SP} C_{OH} + C_{TR} + C_{MN} + C_{A}$$
 (46)

where the terms are as previously defined.

12.2 COST ANALYSIS RESULTS

Г

ha

Each of the elements which comprise the total support cost is presented separately. These elements are then combined to obtain the total cost estimate. Many of the constants within the analysis are established as such by the constraints of fleet size, rate of delivery, use rate, spares cost, etc.

These constants are actually variables for which different values can be established with a different set of constraints. There was insufficient time to evaluate the sensitivity of changes to these values.

12.2.1 Initial Cost of the Tail Rotor System as Delivered on Production Aircraft

The following is the estimated cost of the initial tail rotor installation delivered on the production aircraft

- Utility Helicopter

3,679.80 Dollars For One Ship Set 3,679,800 Dollars For a 1000 Aircraft Fleet 0.73596 Dollar/Flight hour

- Attack Helicopter

3,507.60 Dollars For One Ship Set 3,507,600 Dollars For a 1000 Aircraft Fleet 1.00217 Dollars/Flight Hour

While the utility helicopter's cost per ship set is higher due to the additional driveshaft and hanger assembly, the cost per flight hour is greater for the attack helicopter fleet which has a lower number of flight hours in its life cycle.

12.2.2 Spare Parts Cost

4

Tables LVI and LVII show the estimated number of spare parts that would be required to support fleets of utility and attack aircraft through their life cycles based on the component MTBF, MTBR, TBO and retirement lives.

These tables also show the estimated number of spare assemblies in addition to those required for scheduled and unscheduled replacement to maintain an adequate supply system. This estimate is based on:

- a. A use rate of 70 hours per month for the utility aircraft and 60 hours per month for the attack helicopter
- Deliveries of production helicopters at a rate of 25 aircraft per month
- c. Spare components for replacements of failed items during the first 21 months being established as a logistics pool of components.

TABLE LVI. SI DE	PARE	PARTS RED AT	REQUIREMENTS A RATE OF 25	FOR A FLEET OF AIRCRAFT PER	UTILITY A MONTH	IRCRAFT
SUBSYSTEM Component	No. Per A/C	Scrap %	Spares Required for Part Replacement	Spares Required for Logistics Pool*	Total Spares Required	Total Spares Cost (Dollars)
T/R HUB & BLADE T/R Hub T/R Blade	2 Ч	107.0 103.0	9,026 16,529	697 1,276	9,723 17,805	14,120,385 7,924,245 6,196,140
T/R DRIVE T/R Drive Shaft 42° Gearbox 90° Gearbox	r L L S	100.0 5.1 2.2	2,832 300 152	227 453 533 7.64	3,059 753 685	2,735,054 471,086 935,226 1,050,790
T/R CONTROL	r	•	7.72	1 1	010,1	566.146
Chain Quill Assy Sprocket Wheel	~ ~ ~	100.0 100.0	2,595 227 1 650	200 145	2,795 372 1 787	148,135 17,856
Control Tube Cone Set	4 p=4 p=4 p	100.0	1,105	- 86	1,191	22,629 -
Slider		100.0	- - 1,620 1,945	- 126 151	- - 1,746 2,096	- - 6,984 88,032
Plate Bearing Set Crosshead Pitch Change Link	てしてる	0.001	1,426 1,300 9,150	 101 706	1,536 1,401 9,856	
TAIL ROTOR SYSTEM			Total Co Cost/Fli	st ght Hour		17,421,585 5.4843
*Based on the fi	irst	21 mon	ths' accrued	flight hours (385,875)	

Y

TABLE LVII. S D	PARE	PARTS ERED AT	REQUIREMENTS A RATE OF 25	FOR A FLEET OF 5 AIRCRAFT PER	F ATTACK HE MONTH	LICOPTERS
<u>SUBSYSTEM</u> Component	Nc. Per A/C	Scrap %	Spares Required for Part Replacement	Spares Required for Logistics Pool*	Total Spares Required	Total Spares Cost (Dollars)
T/R HUB & BLADE T/R Hub T/R Blade	ы сі 1	1.00.0 1.00.0	8,951 14,028	846 1.326	9,797 15.354	13,327,747 7,984,555 5.343.192
T/R DRIVE T/R Drive Shaft 42° Gearbox 90° Gearbox Hanger Assv	20 20 20 20 20 20 20 20 20 20 20 20 20 2	100.0 1.9 0.7	4,408 104 104 109	425 468 515 1464	4,833 681 619 1.573	2,810,186 744,282 845,802 949,546 270,556
T/R CONTROL Chain	, In-	100.0	2,608	247	2,855	511,552 151,315
Quill Assy Sprocket Wheel Control Tube Cone Set		100.0 100.0 100.0	2,730 256 -	266 258 - 25	351 2,988 -	16,848 17,928 5,339 -
Static Stop Nut Boot Slider		100.0 100.0 100.0	- 3,780 1,740	- 358 165	- - 1,905	- - 16,552 80,010
Plate Bearing Set Crosshead Pitch Change Link	0 F F F	100.0 100.0 100.0	714 1,379 7,463	- 68 131 706	- 782 1,510 8,169	9,384 18,120 195,056
TAIL ROTOR SYSTEM *Based on 21 mo	nths	accru	Total Cos Cost/Flig ed flight hou	it ¢ht Hour Irs (330.750)		16,649,485 4.7570
			0			

Y

Finally, Tables LVI and LVII show the estimated spare-part life-cycle cost required to support the tail rotor systems of the two aircraft fleets. Here again, the utility fleet has a larger total cost (5 percent) than the attack fleet, while the cost per flight hour for the attack fleet is larger (37 percent) than the similar cost for the utility fleet. Once again, the difference is primarily due to the difference in total fleet life-cycle flight hours.

12.2.3 Overhaul Costs

1

Table LVIII shows that the cost to perform the overhaul of tail rotor system components during the life cycle of the utility fleet of aircraft is about 30 percent greater than the similar cost for the attack fleet. This is primarily due to the larger number of hanger assemblies on the utility helicopter and difference in total life-cycle flight hours. The overhaul cost per flight hour for the attack fleet is only about 10 percent larger than the similar cost for the utility fleet.

TABLE	LVIII.	OVERHAUL COS	STS	
	Utility	Helicopter	Attack	Helicopter
Assembly	Number of O/H	Overhaul Cost – Dollars	Number of O/H	Overhaul Cost - Dollars
42° Gearbox	5,569	1,592,734	4,738	1,355,068
90° Gearbox	6,745	2,751,960	5 ,3 40	2,178,720
Hanger Assembly	25,197	1,209,456	15,377	738,096
TOTAL COST		5,554,150		4,271,884
COST/FLIGHT HOUR		1.1108		1.2205

12.2.4 Transportation Cost To Move the Spare and Overhaul Components

Table LIX shows the weight of the spare parts and overhaul assemblies to be transported between the factory, the distribution center, and the using location. Using the cost factors, the part distribution ratios, and the assumptions and equations presented in 12.1.6, the following estimate of transportation costs of tail rotor system components was determined.

- Utility Helicopter

296,072 Dollars for the Life Cycle of a 1000-Aircraft Fleet

0.0592 Dollar/Flight Hour

- Attack Helicopter

246,068 Dollars for the Life Cycle of a 1000-Aircraft Fleet

0.0703 Dollar/Flight Hour

12.2.5 Maintenance Support Costs

The costs for the tail rotor system organizational, direct support, and general support maintenance man-hours per flight hour were estimated using MMH/FH values from Section 9 and man-hour direct/indirect costs from RAMMIT MISS reports. The resulting fleet life-cycle cost and the cost per flight hour for this element are:

- Utility Helicopter

9,333,500 Dollars Total 1.8667 Dollars/Flight Hour

- Attack Helicopter

4,709,950 Dollars Total 1.3457 Dollars/Flight Hour

Here, both the total life-cycle cost and the cost per flight hour for this cost element are greater for the utility aircraft than they are for the attack aircraft. This difference is due to the large difference in maintenance man-hours per flight hour observed for the two types of aircraft in the Navy 3-M data (see Section 9).

TABLE LIX	 PARTS SHIF 	PING WEIG	HTS		
	Component		Total W	leight	
SUBSYSTEM	Shipping Weight	Spa	res	0/H Ass	emblies
Component	(Founds)	Utility	Attack	Utility	Attack
T/R HUB & BLADE					
T/R Hub T/R Blade	19.0 10.0	184,737 178,050	186,143	11	1 1
T/R DRIVE					
T/R Drive Shaft	6.0	18,354	28,998	1	I
42° Gearbox 90° Gearbox	32.0	24,096 34,250	21,792	178,208	151,616
Hanger Assy	4.0	6,464	6,292	100,788	61,508
T/R CONTROLS				•	
Chain	0.6	1,677	1,713	1	1
Quill Assy	1°0	372	351	ı	1
sprocket wheel Control Thhe	- C	212	1,195 1,40	1	I
Cone Set	0.1		- TO7 -	1 1	1 1
Static Stop	0.4	1	1	1	I
Nut	0.2	I	1	1	ı
Boot	\$°0	873	2,069	1	1
ot Ider Dista		979	7/0	I	I
Bearing Set	4 C	- 768	301	1	I
Crosshead	0.5	700	755	1	1 1
Pitch Change Link	0.5	4,928	4,084	I	1
TOTAL WEIGHT		457,327	439,014	616,246	480,124
Utility Helicopter			1,073	,573	
Artack Helicopter			616	,139	

12.2.6 Costs of Tail Rotor System Related Mishaps

During the life of the aircraft fleet, tail-rotor-associated Class 1 mishaps would result in the loss of:

Utility	52	aircraft
Attack	44	aircraft

The dollar loss due to the tail-rotor-associated Class 1 mishaps is:

Utility	12,740,000	Dcilars
Attack	20,900,000	Dollars

P

٠.

.

During the life of the aircraft fleet, tail-rotor-associated mishaps of Class 2, 3, and 4 could be expected to occur the following number of times with the resulting estimated dollar cost:

Utility 76 Class 2 mishaps for 7,455,600dollar loss

> 13 Class 3 mishaps for 307,866dollar loss

101 Class 4 mishaps for 403,394dollar loss

Attack 126 Class 2 mishaps for 16,425,108dollar loss

0 Class 3 mishaps for zero-dollar loss

77 Class 4 mishaps for 179,256-dollar loss

12.2.7 Total Tail Rotor System Life-Cycle Cost

6

The total life-cycle cost of the two fleets of aircraft, utility helicopters and attack helicopters, was estimated by summing each of the cost elements described above. The resulting dollar cost per flight hour was also computed. Table LX summarizes the results of this analysis.

Discounting the cost of tail-rotor-system-associated accidents, the dollar cost per flight hour for the attack helicopter is 116 percent of the cost rate for the utility helicopter. However, when considering the tail-rotor-system-associated accidents, the dollar cost per flight hour for the attack helicopter is almost 167 percent of the cost rate for the utility helicopter.

% of Total Costs 5.24 24.89 6.39 0.37 43.93 56.07 100.00 7.04 % of Cost Subtotal 127.6 227.6 100.0 11.9 14.5 6.0 16.0 56.7 Attack Helicopter TAIL ROTOR SYSTEM LIFE-CYCLE COST SUMMARY Dollar Cost/ Flt Hr 10.7155 1.0022 4.7570 1.2205 19.1112 0.0703 1.3457 8.3957 37,504,364 3,507,600 16,649,485 66,889,351 246,068 4,709,950 4,271,884 29,384,987 Dollar Cost/ Fleet 36.56 30.46 6.43 9.71 100.00 16.32 63.44 0.52 % of Total Costs % of Cost Subt∩tal Utility Helicopter 157.6 48.0 100.0 57.6 10.2 15.3 8.0 25.7 Dollar Cost/ Flt Hr 3.4843 0.7360 1.1108 4.1814 7.2570 U.0592 11.4384 1.8667 20,906,860 3,679,800 17,421,585 57,191,967 5,554,150 296,072 9,333,500 36,285,107 Dollar Cost/ Fleet TABLE LX. Cost of T/R System Associated Accidents Cost of T/R System Delivered on the Production Aircraft Component Transporta-tion Costs Component Overhaul Cost Subtotal Maintenance Cost Spare Parts Cost Total Cost Cost Element Costs

-

4

.]

135

. .

- -

•

LITERATURE CITED

- 1. ORGANIZATIONAL MAINTENANCE MANUAL ARMY MODEL UH-1C HELICOPTER, Department of the Army Technical Manual TM55-1520-220-20, Headquarters, Department of the Army, November 1968.
- ORGANIZATIONAL MAINTENANCE MANUAL ARMY MODEL UH-1D/H HELICOPTER, Department of the Army Technical Manual TM55-1520-210-20, Headquarters, Department of the Army, May 1969.
- 3. ORGANIZATIONAL MAINTENANCE MANUAL ARMY MODEL AH-1G HELICOPTER, Department of the Army Technical Manual TM55-1520-221-20, Headquarters, Department of the Army, 10 September 1971.
- 4. MAJOR ITEM REMOVAL FREQUENCY, UH-1H FLEET, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered January 1, 1964, through December 31, 1971, Directorate for Product Assurance, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- 5. MAJOR ITEM REMOVAL FREQUENCY, AH-1G FLEET, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered January 1, 1964, through December 31, 1971, Systems Engineering Directorate, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- MAJOR ITEM REMOVAL FREQUENCY, UH-1D FLEET, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered January 1, 1964, through July 1, 1971, Systems Engineering Directorate, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- 7. MAJOR ITEM SPECIAL STUDY, UH-1D TAIL ROTOR HUB, P/N 20401170119, FSN 16159336825, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered by Data January 1, 1964, through July 1, 1971, Directorate for Product Assurance, U. S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- MAJOR ITEM SPECIAL STUDY, UH-1H TAIL ROTOR HUB ASSEM-BLY, P/N 20401170119, FSN 16159336825; P/N 2040118015, FSN 16151350294; P/N 2040118019, FSN 16151336872; A Reliability and Maintainability Management Improve-

ment Techniques Report, Period Covered by Data January 1, 1964, through July 1, 1971, Directorate for Product Assurance, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.

- 9. MAJOR ITEM SPECIAL STUDY, AH-1G TAIL ROTOR HUB, P/N 2040118013, FSN 16151788531, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered by Data January 1, 1964, through July 1, 1971, Directorate for Product Assurance, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- 10. MAJOR ITEM SPECIAL STUDY, UH-1D TAIL ROTOR BLADE, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered by Data January 1, 1964, to June 30, 1970, Systems Engineering Directorate, U.S. Army Aviation Systems Command, St. Louis. Missouri 63166.
- 11. MAJOR ITEM SPECIAL STUDY, UH-1H TAIL ROTOR BLADE, P/N 20401170215, FSN 16154727308, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered by Data January 1, 1964, through June 30, 1970, Systems Fngineering Directorate, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- 12. MAJOR ITEM SPECIAL STUDY, AH-1G TAIL ROTOR BLADE, P/N 20401170217, FSN 16159070842, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered by Data January 1, 1964, through June 30, 1970, Systems Engineering Directorate, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- 13. MAJOR ITEM SPECIAL STUDY, UH-1D 42° GEARBOX FSN 16159182676, P/N 20404000337, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered by Data January 1, 1964, through June 30, 1970, Systems Engineering Directorate, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- 14. MAJOR ITEM SPECIAL STUDY, UH-1H 42° GEARBOX P/N 20404000337, FSN 16159182676, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered by Data January 1, 1964, through June 30, 1970, Systems Engineering Directorate, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- 15. MAJOR ITEM SPECIAL STUDY, AH-1G 42° GEARBOX FSN 16159182676, P/N 20404000337, A Reliability and Maintainability Management Improvement Techniques Report,

Period Covered by Data January 1, 1964, through June 30, 1970, Systems Engineering Directorate, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.

- 16. MAJOR ITEM SPECIAL STUDY, UH-1H 90° GEARBOX P/N 20404001213, FSN 16159182677, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered by Data January 1, 1964, through June 30, 1970, Systems Engineering Directorate, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- MAJOR ITEM SPECIAL STUDY, AH-1G 90° GEARBOX P/N 20404001213, FSN 16159182677, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered by Data January 1, 1964, through June 30, 1970, Systems Engineering Directorate, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- 18. MAJOR ITEM SPECIAL STUDY, UH-1H TAIL ROTOR HANGER ASSEM-BLY FSN 16158328951, P/N 2040406009, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered by Data January 1, 1964, through July 1, 1971, Directorate for Product Assurance, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- 19. MAJOR ITEM SPECIAL STUDY, AH-1G TAIL ROTOR HANGER ASSEM-BLY FSN 16158328951, P/N 2040406009, A Reliability and Maintainability Management Improvement Techniques Report, Period Covered by Data January 1, 1964, through July 1, 1971, Directorate for Product Assurance, U.S. Army Aviation Systems Command, St. Louis, Missouri 63166.
- 20. RESEARCH AND DEVELOPMENT OF MATERIEL, MAINTAINABILITY ENGINEERING, Department of the Army Pamphlet 705-1, Headquarters, Department of the Army, June 1966.
- 21. AIRCRAFT COMPONENT REPLACEMENT AND RE-USE PROCEDURES, Department of the Army Technical Manual TB55-1500-300-25, Headquarters, Department of the Army, 8 December 1971.
- 22. ENLISTED MILITARY OCCUPATIONAL SPECIALTIES, Department of the Army Regulation AR611-201, Headquarters, Department of the Army, January 1967.
- 23. WEAPON SYSTEM PERSONNEL PLANNING DATA UH-1N, Bell Helicopter Company, Fort Worth, Texas 76101, 30 November 1970 (Confidential).

- 24. WEAPON SYSTEM PERSONNEL PLANNING DATA AH-1J, Bell Helicopter Company, Fort Worth, Texas 76101, 31 October 1969 (Confidential).
- 25. MILITARY STANDARD, SYSTEM SAFETY PROGRAM FOR SYSTEMS AND ASSOCIATED SUBSYSTEMS AND EQUIPMENT: REQUIREMENTS FOR, Department of Defense MIL-STD-882, 15 July 1969.
- 26. SAFETY, ACCIDENT REPORTING AND RECORDS, Department of the Army Regulation AR 385-40, Headquarters, Department of the Army, 29 October 1969.
- 27. DS, GS, AND DEPOT MAINTENANCE MANUAL ARMY MODEL UH-1C HELICOPTER, Department of the Army Technical Manual TM55-1520-220-35, Headquarters, Department of the Army, November 1968.
- 28. DS AND GS MAINTENANCE MANUAL ARMY MODEL UH-1D/H HELICOPTER, Department of the Army Technical Manual TM55-1520-210-34, Headquarters, Department of the Army, September 1971.
- 29. DS AND GS MAINTENANCE MANUAL ARMY MODEL AH-1G HELICOPTER, Department of the Army Technical Manual TM55-1520-221-34, Headquarters, Department of the Army, 21 August 1971.
- 30. King, James R., GRAPHICAL DATA ANALYSIS WITH PROBABILITY PAPERS, Lowell, Massachusetts, TEAM Special Purpose Graph Papers, 1969, p. 14.
- 31. Kaplan, E. L., and Meier, P., NONPARAMETRIC ESTIMATION FROM INCOMPLETE OBSERVATIONS, <u>American Statistical</u> Association Journal, June 1958, p. 472.

GLOSSARY

Accident, Army Aircraft	An Army aircraft mishap resulting in total loss of the aircraft or damage to the air- craft requiring greater than 99 man-hours to repair for the UH-1C/D/H or greater than 124 man-hours to repair for the AH-1G.
Any-System	A term used to refer to all mishaps, regard- less of the system involved.
Contact	A term which refers to a group of non-mate- rial tail rotor associated mishaps which are either tail rotor strikes or tail rotor hits.
EMT	The elapsed maintenance time expressed in calendar hours.
Hit	A term that refers to tail rotor contacts which involve a foreign object hitting or blowing into the tail rotor.
M	Mean corrective and preventive action time. This is the mean active downtime resulting from both corrective and preventive mainte- nance expressed in calendar hours.
M _C	$\overline{\mathbf{M}}$ for a specified component C.
₩ _S	$\overline{\mathbf{M}}$ for a specified system S.
₩ _{SS}	$\overline{\mathbf{M}}$ for a specified subsystem SS.
M _{pt}	Mean preventive maintenance action time. This is the statistical mean of the sum of the times required for preventive actions divided by the number of these actions scheduled for a given period expressed in calendar hours.
M _{pt} C	The mean preventive maintenance action time for the component C.
M _{ptS}	The mean preventive maintenance action time for the system S.
M _{pt} ss	The mean preventive maintenance action time for the subsystem SS.

MAOT	The maximum allowable operating time to retirement or between overhauls.
MIRF	Major Iten Removal Frequency, one of the RAMMI analyses containing component histogram tables of accumulated operating time at removal and coded reasons for re- moval of major aircraft components. It presents separate tables for first re- movals of new items and first removals of items with one prior overhaul.
Mishap, Army Aircraft	An unplanned event involving one or more Army aircraft, occurring between the time the engine(s) is(are) started for the purpose of commencing flight until the time the aircraft comes to rest with all engines and propellers or rotors stopped and brakes set or wheel chock in place, which may or may not result in damage to the aircraft. This excludes any action by enemy or hostile forces.
Mishap, Tail- Rotor-Associated	A mishap caused by a material failure within the tail rotor system or by a nonmaterial cause affecting the tail rotor system. The nonmaterial causes include maintenance errors and tail rotor contacts.
MM	The average number of maintenance men re- quired to perform a maintenance task.
MMH	Maintenance man-hours.
MMH/FH	Maintenance man-hours per flight hour. This is the average number of man-hours required per flight hour to perform the maintenance (scheduled and unscheduled) required to support a specified item.
MOS	Military occupational specialty. The MOS numbers of military personnel indicate their occupations and skill levels.
MOS 67N20	A UH-1C/D/H helicopter repairman.
MOS 67Y20	An AH-1G helicopter repairman.
MOS 68D20	An aircraft powertrain repairman.
MOS 68E20	An aircraft rotor and propeller repairman.

.]

MTBF	Mean-time-between-failures. The sum of the operating times accumulated on all items of a given type divided by the number of failures of that item, where a failure is defined as any occurrence requiring unscheduled maintenance.
МТВМ	The mean-time-between-maintenance for all maintenance actions (scheduled and un- scheduled) expressed in flight hours.
MTBR	Mean-time-between-removals. The average interval in hours between maintenance actions resulting in the removal of an item from a fleet of aircraft.
MTBR '	An estimated MTBR computed from RAMMIT MIRF data which considers only failures and time change removals but includes a group of components which had failed once and had been repaired.
MTBR''	An estimated MTBR computed from RAMMIT MIRF data which considers only failures and time change removals but includes a group of components which had failed once and had been repaired and a second group which had failed twice and had been re- paired twice.
MTBR _e	An estimated MTBR computed from RAMMIT MIRF data which considers only failures and time change removal causes.
MTBR	The mean-time-between-removals of the component for removal cause h.
MTBSM	Mean-time-between-scheduled-maintenance.
MTR	Mean-time-to-removal. The average of the component operating times at removal from the aircraft. The component operating time is the time since new and/or time since last overhaul, expressed in flight hours.
MTR _F	The mean-time-to-removal for the assem- blies removed for failure causes.

MTR _{NF}	The mean-time-to-removal for the assem- blies removed for nonfailure causes (in- cludes both nonfailure and scheduled maintenance (nontime change) coded re- moval causes).
mtr _t	The item's mean-time-to-removal for all causes.
MTTR	The average downtime in calendar hours for a specified unscheduled task.
MTTRA	The MTTR for a specific repair action A on like items.
MTTR	MTTR for a specified component C.
MTTRS	MTTR for a specified system S.
MTTR	MTTR for a specified subsystem SS.
RAMMIT	Reliability and Maintainability Manage- ment Improvement Techniques. A TAMMS data analysis activity conducted by the Product Assurance Directorate of the Army Aviation Systems Command, St. Louis, Missouri.
Strike	A term that refers to tail rotor contacts which occur when the tail rotor of a mov- ing aircraft strikes a stationary object.
т _с	The specified retirement life or life at removal for overhaul (TBO).
TAMMS	The Army Maintenance Management System described in Department of the Army Tech- nical Manual TM 38-750.
TRO	The MAOT between overhauls.

• •

-

APPENDIX I

MAINTENANCE PROCEDURES

The maintenance procedures appearing in this appendix were extracted from the Army Technical Manuals on organizational level maintenance for Models UH-1C/D/H and AH-1G. 1,2,3 The procedures included are those relating to the tail rotor system as defined in this report. They are presented in the following order:

	Procedure		Page
TAIL ROTOR HUB AND BLADE			149
Model_UH-1D/H			149
A. B. C. D. E.	Removal Inspection Repair or Replacement Installation Lubrication		
<u>Model U</u>	<u>H-1C</u>		155
A. B. C. D. E.	Removal Inspection Repair or Replacement Installation Lubrication		
Model A	<u>H-1G</u>		156
A. B. C. D. E.	Removal Inspection Repair or Replacement Installation Lubrication		
TAIL ROTOR BLADES			1.57
Model U	<u>H-1D/H</u>		157
A. B. C. Model U	Inspection Repair or Replacement Cleaning <u>H-1C</u>		159
A. B. C.	Inspection Repair or Replacement Cleaning		

	Procedure	Page
Model A	AH-1G	160
A. B. C.	Inspection Repair or Replacement Cleaning	
TAIL RO	TOR PITCH CONTROL QUILL AND ROD	160
<u>Model U</u>	H-1D/H	160
A. B. C. D. E.	Removal Inspection Repair or Replacement Installation Cleaning	
<u>Model U</u>	H-1C	165
A. B. C. D. E.	Removal Inspection Repair or Replacement Installation Cleaning	
Model A	<u>H-1G</u>	167
A. B. C. D. E.	Removal Inspection Repair or Replacement Installation Cleaning	
TAIL RC	DTOR DRIVE SHAFT	169
A. B. C. D. E. F.	Removal Inspection Repair or Replacement Installation Lubrication Cleaning	
Model U	<u>H-1C</u>	173
A. B. C. D. E.	Removal Inspection Repair or Replacement Installation Lubrication	

F. Cleaning

	Procedure	Page
Model A	AH-1G	174
A. B. C. D. F.	Removal Inspection Repair or Replacement Installation Lubrication Cleaning	
TAIL RO	TOR HANGER ASSEMBLY	176
Model U	JH-1D/H	176
A. B. C. D. E. F.	Removal Inspection Repair or Replacement Installation Lubrication Cleaning	
Model U	<u>JH-1C</u>	179
A. B. C. D. F.	Removal Inspection Repair or Replacement Installation Lubrication Cleaning	
Model A	NH-1G	181
A. B. C. D. F.	Removal Inspection Repair or Replacement Installation Lubrication Cleaning	
42-DEGR	REE GEARBOX	182
Model U	JH-1D/H	182
A. B. C. D. F. G.	Removal Inspection Repair or Replacement Installation Lubrication Cleaning Packaging	

	Procedure	Page
<u>Model U</u>	<u>H-1C</u>	187
A. B. C. D. E. F. G.	Removal Inspection Repair or Replacement Installation Lubrication Cleaning Packaging	
Model A	<u>H-1G</u>	188
A. B. C. D. E. F. G.	Removal Inspection Repair or Replacement Installation Lubrication Cleaning Packaging	
<u>90-DEGR</u>	EE GEARBOX	189
<u>Model U</u>	H-1D/H	189
A. B. C. D. E. F. G. H.	Removal Inspection Repair or Replacement Installation Lubrication Cleaning Packaging Repair or Replacement of Support Fitting	
Model U	<u>H-1C</u>	195
A. B. C. D. E. F. G. H.	Removal Inspection Repair or Replacement Installation Lubrication Cleaning Packaging Repair or Replacement of Support Fitting	
Model A	<u>H-1G</u>	196

A. B. C.

Removal Inspection Repair or Replacement

	Procedure	Page
D. E. F.	Installation Lubrication Cleaning	197
0	Poolegging	

¥

G. PackagingH. Repair or Replacement of Support Fitting

1

. 1

MAINTENANCE PROCEDURES

10

TAIL ROTOR HUB AND BLADE ASSY

Model UH-1D/H

- A. Removal
 - 1. Disconnect pitch change link from each tail rotor blade grip pitch horn by removing nut, bolt, and washers. Keep safety washer, steel washer, and other attaching parts with link.
 - 2. Remove crosshead and shim by removing two attaching bolts with nuts and washers.
 - 3. Cut lockwire wrapped on each end of boot.
 - 4. Remove cotter pin, nut, and washer from end of pitch change rod. Remove bearing set, retainer plate, and pitch change slider. Remove boot.
 - 5. Cut lockwire and remove hub retainer nut. Remove static stop and shim, if existing.
 - 6. Move tail rotor hub (and blade assembly) outboard on splines of shaft, and remove split cone set as it is released. Remove tail rotor over end of gearbox shaft and pitch change rod.

NOTE

Fasten split cones together and retain as a matched set.

B. Inspection

- 1. Inspect all tail rotor parts for evidence of damage.
- Inspect moving parts and pivot bolts in the pitch change mechanism for looseness, wear, and play. Use a dial indicator to measure axial and radial play in the pitch link bearings.
- 3. Inspect for excessive movement between blade grip and the hub on each blade as follows:
 - a. Rigidly support the rotor at hub yoke to eliminate any possibility of movement. (The blades and grips must be free.)

- b. Free play check. With fingertips, move leading edge of blade away from center just enough to take out play. Do not use force. Measure total movement. Release and allow blade to return to center. Move trailing edge away from center and measure in the same manner. Maximum movement allowed: 0.25 inch each side. Repeat procedure on opposite blade.
- c. Maximum deflection check. Pull leading edge of blade away from center with 4 to 5 pounds force. Measure amount of movement. Allow blade to center. Pull the trailing edge of blade away from center with 4 to 5 pounds force, and measure amount of movement. Maximum movement allowed: 1.0 inch each side.
- d. Inspect crosshead for visible damage, surface nicks and scratching. Corrosion or pitting shall be cause for rejection.

C. Repair or Replacement

Repair or replace hub and blade assembly if inspection requirements are not met. Request assistance of Direct Support maintenance personnel for repair. If ssistance is not immediately available, replace the hub and blade assembly. See Appendix V for Direct/General Support maintenance procedures.

D. Installation

NOTE

Prior to installation, ensure tail rotor hub, crosshead, and pitch links are compatible for installation on helicopter.

- 1. Observe color coding of parts during installation.
- 2. Position tail rotor hub and blade assembly near end of shaft with bearing bosses of hub inboard and flat side outboard. Be sure internal bevel of hub is inboard. Align master splines and slide hub on shaft until trunnion is just started on second set of splines.
- 3. Place split cone set with bevel outboard, in groove between splines and shoulder on shaft with ends gaps equally spaced. Slide hub inboard

to seat trunnion on cones. Check cone set for equal spacing.

NOTE

Install split cones as matched set only.

4. Install shim on shaft against trunnion. Install static stop and hub retaining nut. Hold rotor by hub and tighten to a torque of 300 to 400 inchpounds. A maximum of one exposed unengaged thread inside nut is permissible after shimming instructions have been accomplished. (Refer to Step 12 for shimming instructions.) Lockwire nut to static stop and install boot on shaft.

CAUTION

Ensure proper alignment of etched "V" back-to-back mating on bearing set is maintained prior to and during installation. Nuts MS17826-5 and MS17825-4 are not to be reused.

- 5. Install slider on shaft and into boot. Safety wire each end of boot. Place retainer plate and bearings on end of pitch change rod and secure by washer and nut. Tighten nut 60 to 85 inch-pounds torque and secure with cotter pin.
- 6. Determine thickness of shim required for 0.002 to 0.004 inch pinch on pitch change rod bearings as follows:
 - a. With shim omitted temporarily assemble cross head and secure with two bolts, washers, and nuts.

CAUTION

Ensure correct P/N crosshead is installed.

- b. Tighten nuts enough to secure assembly without distortion.
- c. With a feeler gage measure gap between retainer plate and crosshead. Subtract 0.002 to 0.004

inch and peel or replace shim as necessary for this thickness.

d. Remove bolts and crosshead.

CAUTION

Recheck "V" etched on outer races of bearing set for proper back-toback mating.

7. Fill cavity of crosshead with grease. Place shim and crosshead over bearings. Align parts and install bolts, with washers under heads, through crosshead, shim, retainer plate, and flange of slider.

NOTE

Use bolts, P'N NAS1304-21D, nuts, P/N MS17825-4, and cotter keys. P/N MS24665-151, to attach crosshead to slider. Use one steel washer under head of bolts and one steel washer under nuts. One additional thin steel washer may be used under nuts to align for cotter key.

- 8. Check pitch change links to ensure they are a matched pair, in serviceable condition, and properly installed in crosshead, with each bolt head toward rotation.
 - a. Maximum allowable wear tolerance for rod-end bearings is 0.020 inch, either axial or radial play.
 - b. Set pitch links to initial length of 5.4 inches measured between bolt hole centers. Refer to TAIL ROTOR PITCH CONTROL QUILL AND ROD.
- 9. Connect each pitch change link to blade pitch horn as follows:
 - a. Inspect pitch change links, and determine part number of links being installed.
 - b. Install links on tail rotor grips with attaching parts. Torque nuts to 60 to 100 inchpounds, and install cotter pins.

The pitch change link with the extended rod end bearing must contact the tail rotor grip.

- 10. Install pitch change links in crosshead as follows:
 - a. Install bolts with washers. Install bolts with heads in direction of retation.
 - b. Torque nuts to 50 to 70 inch-pounds and install cotter pins. Use one additional thin steel washer under nuts, if necessary, for cotter pin alignment.
- 11. Rig tail rotor (see <u>PITCH CONTROL QUILL AND ROD</u>, paragraph D.6, 7, and 9).
- 12. Check for 3.0 (±0.5) inch clearance between tail boom vertical fin and nearest trailing edge of tail rotor at full right pedal position in rigged condition. If necessary, change thickness of shim installed between rotor hub trunnion and static stop for proper clearance. Use bonded laminated shims only.

CAUTION

Ensure all safety provisions are followed if adjustment of shim is required.

NOTE

Inspect hub retaining nut for proper thread engagement to shaft. A maximum of one exposed unengaged thread inside nut is permissible, after shimming is accomplished.

- 13. Check the tail rotor and controls for free movement, with no interference, through full flapping angle with full right and left antitorque pedal applied. If installation is not correct, interference between the pitch change links and the safety washer may occur before the rotor hub contacts the static stop.
- 14. Lubricate the tail rotor (see paragraph E).

153

NOTE

- 15. Track tail rotor.
 - a. Attach a small piece of sponge rubber 1/8 to 1/4 inch thick on the end of a 1/2-x-1/2-inch pine stick or any other flexible device. Cover sponge rubber with Prussian blue or similar type of coloring thinned with oil.

NOTE

Ground runup shall be performed by authorized personnel only.

- b. Start engine. Run engine at 6600 rpm, with pedals in neutral position. Rest marking device on underside of tail boom assembly. Slowly move marking device into disc of tail rotor just far enough to touch near blade approximately 1 inch from tip.
- c. When near blade is marked, stop engine and allow rotor to stop. Shorten pitch control link of marked blade and recheck track of blades.

NOTE

Between 5 and 10 hours of flight, after installation of tail rotor, retorque tail rotor retaining nut. Retorque can be accomplished with slider and crosshead installed with care that wrench does not contact adjacent parts.

16. Relubricate tail rotor grips after tracking. Centrifugal force may force grease away from inboard bearings. Purge grips until uncontaminated grease is expelled at inboard seal.

E. Lubrication

Use hand-type grease gun only.

- 1. Grip Bearings, 1 place. Purge lubricate tail rotor hub and blade grip bearings every 100 hours or if conditions warrant every 25 hours as follows:
 - a. Disconnect pitch link at one blade grip and purge bearing with grease. Rotate grip several

times in both directions. Repeat purging procedure. Wipe off excess grease and reconnect pitch link.

- b. Disconnect pitch link on opposite blade grip and purge bearing in accordance with Step a procedure. Reconnect pitch link.
- 2. Trunnion Bearings, 1 place each, every 100 hours.
- 3. Crosshead Bearing, 2 shots only, every 100 hours.

Model UH-1C

A. Removal

See UH-1D/H

B. Inspection

See UH-1D/H except:

- 3. Should blade movement exceed limits, inspect grip installation for proper torque on grip retaining nut. Continued excessive movement after torque check is cause for rejection.
 - d. Maximum allowable depth after repair of surface nicks and scratches not to exceed 0.020 inch. Maximum allowable depth after repair of corrosion or pitting not to exceed 0.015 inch. Excessive corrosion or pitting shall be cause for rejection.
- C. Repair or Replacement
 - See UH-1D/H
- D. Installation

6

See UH-1D/H except:

- 5. Torque of bearing retaining nut not specified.
- Crosshead cavity not filled with grease, and part numbers of nuts, bolts, and cotter key not specified. Torque of nuts not specified, but rod end alignment specified at 37° - 39°.
- 14. Lubrication not specified in UH-1C manual.

- 16. Relubrication after tracking not mentioned.
- E. Lubrication

See UH-1D/H except:

- 1. Purge-lubricate tail rotor hub and blade grip bearings after initial installation of a tail rotor hub assembly and subsequent ground run (to accomplish tracking requirements), after helicopter operation in the rain, and after every 50 hours of operation in the same manner as the UH-1D/H.
- 3. Hand pack when grease fitting is not installed. If installed, same as UH-1D/H.

Model AH-1G

1

See UH-1D/H except:

C. Repair and Replacement

AH-1G manual adds the following step:

- 3. Replace pitch links or crosshead parts as required if excess play is found. Maximum allowable wear for rod ends of pitch links is 0.020 inch, either axial or radial.
- D. Installation

See UH-1D/H except:

- 3. Equal spacing of end gaps in split cone set not mentioned in AH-1G manual. AH-1G manual states "place cone set . . . with external chamfer of cone outboard."
- 5. Torque is specified as 50-95 inch-pounds.
- 7. Torque specified as 50-70 inch-pounds. Torque is not specified in UH-1D/H manual.

. .

- 8. a. Maximum wear for rod end bearing is not specified.
 - b. Pitch links mitial length is 5.03 inches.
- 9. Torque nuts to 110-165 inch-pounds.
- 10. Torque nuts to 60-110 inch-pounds. Use of additional washer under nuts not mentioned.
- 12. Clearance for AH-1G is 2.65 (±0.35) inches.
- 14. Lubrication is not specified in AH-1G manual.
- E. Lubrication

See UH-1D/H

TAIL ROTOR BLADES

Model UH-1D/H

A. Inspection

NOTE

Any repair or replacement of tail rotor blades will be performed by Direct Support maintenance level. (See Appendix V for Direct/General Support maintenance procedures)

- 1. Nicks and scratches
 - a. Nicks and scratches on the surface of the blade that are 0.008 inch, or less, deep are repairable.
 - b. Nicks and notches in the extreme trailing edge of the blade that are 0.050 inch, or less, deep are repairable.
- Dents that are not deeper than 0.060 inch are acceptable. In cases where a scratch or nick is present in a dent, the depth is measured to the bottom of the scratch or nick and must be repaired.
- 3. Any crack, in any location, on any blade, is cause for blade replacement. Replace tail rotor hub and blade assembly.
- 4. Voids.
 - a. Between the abrasive strip and the inner doubler, along blade centerline, a void with a maximum width of 0.250 inch is acceptable.

- b. At butt end, voids between skin and trailing edge, under doubler rear "fingers" are not acceptable.
- c. At butt end, voids between skin and inner doubler, under front "fingers" are not acceptable.
- d. At blade tip, between skins and trailing edge, in the outboard 1.00 inch voids are not acceptable.
- e. In the blade body between the ends of the blade, between the skin and the core, voids not larger than 0.200 inch wide chordwise, by 0.500 inch long spanwise, are acceptable, providing spacing between centers exceeds 2.00 inches.
- f. In the blade body between the ends of the blade, between the skin and the inner doubler, voids not larger than 0.500 inch wide chordwise, by 1.00 inch long are acceptable, providing spacing between centers exceeds 3.00 inches.
- g. In the blade body between the ends of the blade, between the core and the inner doubler, voids not larger than 0.500 inch chordwise, by 1.500 inch spanwise, are acceptable, providing spacing between centers exceeds 3.00 inches.

Any edge void is not acceptable. Replace tail rotor hub and blade assembly.

- 5. Inspect the tail rotor blades for corrosion in accordance with the following limits:
 - a. Skin corrosion areas inboard of station 25.0 not in excess of 0.010 inch in depth are permissible.

٠.

- b. Skin corrosion areas outboard of station 25.0 not in excess of 0.015 inch in depth are permissible.
- c. Corrosion areas in the abrasive strip not in excess of 0.010 inch in depth are permissible.

1.58

- d. Corrosion areas in the trailing edge not deeper than 0.015 inch are permissible.
- 6. Inspect retention bolts for tightness and security.
- 7. Looseness of either retention bolt hole bushing is cause for blade replacement.
- 8. If overspeed, sudden stoppage, hard landing or overtorque has occurred, inspect blades.
- 9. Bond separation or cracks anywhere on blade is cause for blade replacement.
- 10. Movement of tip or root weights is cause for blade replacement.
- 11. Inspect all tail rotor blades for chordwise cracks in tip cap. Cracks in tip cap are repairable.
- 12. If one blade of pair has been damaged badly enough that metal has been torn or any bond lines have separated, both blades must be replaced.
- B. Repair or Replacement
 - Request assistance of Direct Support maintenance personnel for repair of repairable items, as shown in paragraph A. If assistance is not immediately available, replace tail rotor hub and blade assembly. See Appendix V for Direct/General Support maintenance procedures.
 - 2. Replace hub and blade assembly if any blade has voids in excess of limits shown in paragraph A.4.
- C. Cleaning

Wash tail rotor blades with a solution of mild soap and water.

Model UH-1C

A. Inspection

See UH-1D/H

B. Repair or Replacement

See UH-1D/H

C. Cleaning

See UH-1D/H

Model AH-1G

A. Inspection

See UH-1D/H except:

- b. Nicks or scratches not over 0.50 inch deep are repairable. (UH-1D/H/C manuals specify 0.050 inch.)
- 5. Inspection for corrosion not mentioned in AH-1G manual.
- 11. Tip cap cracks not mentioned in AH-1G manual.
- B. Repair and Replacement

See UH-1D/H

C. Cleaning

See UH-1D/H

TAIL ROTOR PITCH CONTROL QUILL AND ROD

Model UH-1D/H

- A. Removal
 - Remove tail rotor pitch control crosshead assembly. (Refer to TAIL ROTOR HUB AND BLADE ASSEMBLY, paragraph A.1-4.) Be sure bearings and retaining nut are removed from pitch control rod.
 - 2. Cut lockwire and remove two bolts and cover from housing pan. Remove screw from bracket of pan.
 - 3. Remove three nuts, washers, and guard from gear case studs.
 - Open speed rigs to allow slack in control cables. Lift chain from sprocket. If chain is to be removed, detach ends from cables by removing bolts.
 - 5. Remove pan.

- 6. Pull control quill with packing and control rod out of gear case. Cover open port. Detach rod from quill by turning sprocket to disengage thread.
- B. Inspection

1

- 1. Pitch Control Quill and Rod
 - a. Inspect guard, cover and pan for cracks and damage.
 - b. Inspect control rod for improper operation, binding, cracks, damaged threads or splines.
 - c. Inspect chain for faulty operation or wear.

NOTE

Joint wear of control chain may be checked by placing chain under tension and measuring length of any 32 pitches. Maxi um allowable length is 6-3/16 inches. If chain has been removed from helicopter, tension may be applied by suspending chain from one end and attaching 10-pound weight to opposite end.

d. Inspect control quill for roughness, binding, and unserviceable seals.

NOTE

Inspection of the tail rotor sprocket can be performed without removing sprocket from the helicopter. Gain access to sprocket by removing sprocket guard.

e. Lay a straight edge across top of sprocket teeth and determine if any space exists between the teeth and straight edge. During this inspection it may be noted that slight depressions are visible on the sprocket. This is caused by the chain links and should not be misconstrued as criteria for sprocket replacement.

Apply following procedure to determine amount of looseness between internal spline of tail rotor control head slider and rotor shaft spline and looseness in pitch change rod bearings and in pitch change threads.

- a. Mount a dial indicator on tail rotor shaft with indicator against crosshead.
- b. With left control pedal held full forward, manually test crosshead for radial play not to exceed 0.020 inch.
- c. With full right pedal, repeat check for radial play not to exceed 0.035 inch.
- d. With pedals held neutral, manually test for axial play (along shaft center line without radial motion) not to exceed 0.018 inch.
 Excessive axial play would indicate worn or loose pitch change rod bearings or worn pitch change threads.

C. Repair or Replacement

- 1. Replace guard, cover, or pan when cracked or damaged.
- 2. Replace control rod for faulty operation or visible defects such as cracks, bending, and damaged threads or splines.
- 3. Replace control chain when faulty operation or visible indications of excessive wear occur. When chain is replaced, replace sprocket on control quill as outlined in Step 4.

CAUTION

Do not apply any lubricant on control chain.

 4. Replace sprocket if any space exists between sprocket teeth and straight edge. (See paragraph B.l.e.) To replace sprocket on control quill, proceed as follows:

Tail rotor chain and sprocket shall be changed as a matched set.

- a. Remove cotter pin and retaining nut while holding sprocket carefully in padded jaws of suitable tool or vise.
- b. Remove and replace sprocket without separating other parts.
- c. Reinstall retaining nut on end of control nut. Tighten 100 to 300 inch-pounds and align cotter pin holes.
- d. Install cotter pin with spread ends parallel to face of sprocket and bent flat against hex face of retaining nut.
- 5. Replace control quill when rough or binding in operation, or for oil leaks past internal seals. Replace packing on quill housing at installation.

D. Installation

- 1. Insert control rod through inner end of control quill with splines meshed. Turn sprocket to engage quill control nut on threads of rod. Place O-ring on quill.
- 2. Uncover port on right side of 90-degree gearbox. Insert control rod carefully through rotor shaft and seat quill flanges over mounting studs.
- 3. Place cover pan on studs and secure temporarily with nuts and washers, and with screw through bracket on lower corner into matching plate nut of vertical fin.
- 4. Install pitch change control head assembly (see TAIL ROTOR HUB AND BLADE ASSEMBLY, paragraph D.5-10).
- 5. Install and connect control chain while rigging system.
- 6. Rigging

2

J

NOTE

Accomplish rigging with hydraulic boost off.

Length specified for pitch change links is an initial setting, and may be changed after operational checks for blade track or to obtain normal pedal positioning in autorotative landing and right sideward flight.

- a. Check that sprocket guard nuts and washers are reinstalled. Bottom out control quill by turning sprocket clockwise to end of travel.
- b. Mark any convenient tooth of sprocket with grease pencil, and place a reference mark on cover pan next to marked tooth.
- c. With sprocket bottomed clockwise, and left pedal held against stop, apply sufficient tension on lower cable to take out servo cylinder control valve motion. Install chain over sprocket and connect upper speed rig.
- d. Adjust cable tension at 40 to 50 pounds, maintaining sprocket position.
- Actuate control pedals through full travel and recheck sprocket tooth position to be 2-1/2 to 3-1/2 teeth off of bottom with full left pedal applied.
- f. Place and hold right pedal full forward. Mark sprocket tooth opposite reference mark.
- g. Pull lower chain to rotate sprocket four or five teeth counterclockwise. At this position, check that splines of pitch change slider and tail rotor shaft are securely engaged.
- h. At full left pedal, without hydraulic power, check that sprocket is 2-1/2 to 3-1/2 teeth from bottom position as shown by reference mark.

NOTE

6

If hydraulic power is available, check full left pedal sprocket position with "boost on" to be 1/2 to 1-1/2 teeth from bottom by observing relation of sprocket and index mark.

- i. Secure cable speed rigs with lockwire.
- 7. After rigging, install sprocket guard on mounting studs, secured by nuts and washers.
- 8. Check gap between flanges of quill housing and retainer. If gap is more than 0.025 but less than 0.040 inch, add one thin aluminum alloy washer between housing and retainer on each stud. If gap is more than 0.040 inch, add two thin aluminum alloy washers in the same manner. After installing, apply sealant externally around joints at inner and outer sides of quill housing.
- 9. Install cover secured by two bolts and lockwire.

E. Cleaning

Not covered in UH-1D/H manual.

Model UH-1C

4

A. Removal

See UH-1D/H except:

Change Step 2 to read:

"Open hinged cover on control housing pan by removing lockwire and bolt near lower end of cover. Disconnect cables at quick disconnect."

Delete Step 4.

- B. Inspection
 - 1. Pitch Control Quill and Rod

See UH-1D/H except:

c. Add "chain shall be replaced when the measurement between hole centerlines is 41.96 inches or greater."

Add the following steps:

- f. Inspect control quill housing for oil leakage past internal seals and cork plugs.
- g. Check gap between quill housing and retainer.

- h. Inspect for corrosion.
- i. Inspect clevis and bushing holes for excessive wear.

If any item is replaced, the tail rotor must be tracked.

2. Control Head

See UH-1D/H

C. Repair or Replacement

See UH-1D/H

UH-1C Manual also adds the following note:

NOTE

When replacing control quill assembly it is important to prelubricate the assembly during installation. Lubricate worm threads in control quill assembly and on control tube and the splines in the quill housing and on the control tube with lubricating oil.

D. Installation

See UH-1D/H except:

- 7. Delete last sentence.
- 9. Replace with the following statement: "Close transparent cover and secure with bolt through cover into bracket in pan. Lockwire bolt to bolt-head at upper end of cover."

E. <u>Cleaning</u>

Clean metal parts with dry cleaning solvent. Dry with filtered compressed air. Clean transparent housing cover with materials and methods used for cabin windows.

TAIL ROTOR PITCH CONTROLS

Model AH-1G

A. Removal

See UH-1D/H except:

- 2. Replace with the following: "Remove fairing from right side of vertical fin."
- 5. Delete.
- B. Inspection

See UH-1D/H except:

- 1. a. Delete words, "cover and pan."
 - b. Change to read, "Inspect chain and sprocket for faulty operation . . . "
- C. Repair or Replacement of Control And Rod

See UH-1D/H except:

1. Delete the words, "cover, or pan".

D. Installation

See UH-1D/H except:

- Change last sentence to read: "Place new O-ring on quill."
- 2. Add the following sentence: "Secure temporarily with nuts and washers."

٠.

3. Delete.

4

6. Rigging

NOTE

Accomplish rigging without hydraulic power, except when otherwise stated.

a. Bottom out quill by rotating sprocket clockwise to end of travel. b. Place a reference mark with soft pencil on any tooth and on face of quill opposite the marked tooth.

Ð

- c. Keeping left pedal full forward and control quill sprocket bottomed at reference mark, with bottom cable connected, pull aft on bottom part of chain with approximately 40 pounds tension and place chain on sprocket. (This is necessary to maintain sprocket position when tension is later added to top cable.)
- d. Connect top cable at speed rig, and adjust tension until 40 to 50 pounds is obtained on both cables.
- e. Move pedals through full travel. Sprocket should be 2-1/2 to 3-1/2 teeth off bottom (index mark) at full left pedal. Hold full left pedal, and pull forward on top chain with normal pressure (enough to actuate valve of hydraulic cylinder). Sprocket should bottom.

NOTE

With hydraulic power, sprocket should be 1/2 to 1-1/2 teeth off bottom at full left pedal.

- f. When preceding steps have been accomplished, place and hold right pedal full forward. Mark tooth index at control quill sprocket. Pull forward on lower chain and push aft on top chain until sprocket rotates five more teeth past index mark. At this position, grip both tail rotor blades firmly and vibrate to check for slippage if splines of control quill and rod are disengaged at this extreme setting. Splines should still be engaged.
- g. With right pedal full forward and SCAS unit centered (off), adjust stop bolt on upper arm of hydraulic cylinder walking beam to have 0.005 to 0.015 inch clearance with stop on support. With left pedal forward, adjust stop bolt on lower arm of walking beam to have 0.005 to 0.015 inch clearance with top.

CAUTION

Clearance between stop and support must not exceed 0.015 inch as disengagement of splines on tail rotor slider could result with full right pedal and a SCAS hardover condition.

Ľ

ţ

- h. Place pilot's pedals even with each other. Position arm of magnetic brake square to the beam on which brake is mounted. Adjust rodend of force gradient to connect on underside of bellcrank, and install bolt from top. Use thin aluminum alloy washer under bolt head, and standard steel washer under nut. Tighten lock-nut on rod-end.
- i. Check attachment of forward end of SCAS transducer to structural panel with screw and spacer. Place controls to each extreme of travel, and check that rod-end of transducer will align to lever without bottoming out in either position. Adjust rod-end to eliminate any bottoming, and attach to upper side of lever with bolt and spacer. Use standard washer under bolt head, and thin aluminum alloy washer next to nut. Tighten lock-nut on rod-end.

NOTE

Make sure sprocket guard is centered so as not to bind on chain and sprocket throughout travel.

E. Cleaning

Clean parts with dry cleaning solvent. Dry with filtered compressed air.

TAIL ROTOR DRIVE SHAFT

Model UH-1D/H

- A. Removal
 - 1. Open hinged access doors along top of tail boom and vertical fin by releasing fasteners on left side. Also remove tail pipe fairing and vented cover over 42-degree gearbox, as necessary.

2. Remove clamp set from coupling at each end of shaft. Push shaft against flexible coupling to disengage opposite end, and lift out shaft. Remove other shafts aft of forward bearing hanger in the same manner.

Ė.

4

1

B. Inspection

- 1. Replace shaft for any of the following conditions:
 - a. Any crack
 - b. Any sign of rivet failure
 - c. Total indicated run-out, using dial indicator and V-blocks, in excess of 0.050 inch at any area on shaft. No straightening procedures are prescribed.
 - d. Loss or partial detachment of balance strips which are bonded on tube near center.

NOTE

Do not mistake a single empty imprint, in bonding material next to balance strip, as an indication of a missing balance strip. This spot results from removal of a test coupon to inspect for bonding voids.

- e. Damaged or excessively worn curvic coupling teeth. There should be no radial play or backlash between mating teeth when fully meshed with V-band clamp removed.
- f. Grooves worn by V-band clamp on shaft coupling to extent that such wear prevents proper clamping.
- g. Surface damage of shaft tube exceeding limits in 2. below.
- Classify surface damage on shaft tube as acceptable, repairable, or excessive by following limits. Define "Area A" as central portion of shaft, and "Area B" as portions within 14 inches of ends.
 - Any damage to anodized finish requires anticorrosion treatment in accordance with TM 55-405-3.

b. Nicks or scratches aligned within 15 degrees of spanwise axis are acceptable without repair to maximum depth of 0.002 inch in "Area A" or 0.004 inch in "Area B."

y

c. Other nicks or scratches must be polished out with fine abrasive cloth, provided depth of material removed does not exceed 0.008 inch in "Area A" or 0.012 inch in "Area B."

NOTE

If total reworked area on one side of shaft is 8 square inches greater than on opposite side, shaft will be out of balance and should be replaced.

- d. Sharp dents are permissible to maximum depth of 0.010 inch in "Area A" and 0.015 inch in "Area B."
- e. Nonsharp dents are permissible to maximum depth of 0.020 inch in "Area A" and 0.030 inch in "Area B."

NOTE

All dents should be carefully inspected for cracks, nicks, and scratches. No cracks permitted. Nicks or scratches shall be within limits. Total depth of defect shall not exceed limits for dents.

3. Inspection - Drive Shaft Clamps (Steel)

Ĺ

- a. Inspect clamps for distortion or burrs on clamping surface.
- b. Inspect length of welds. Minimum length should be 0.500 inch.
- c. Inspect clamp bolts for stripped or damaged threads and self-locking nuts for serviceable condition.
- d. Inspect spot welds for evidence of failure.
- e. Steel clamps may be inspected by Magnetic Particle method.

- 4. Inspection Drive Shaft Clamps (Aluminum)
 - a. Inspect bolt holes for wear, nicks, and scratches.
 - b. Inspect spot face, lug fillets, and internal "V" groove for nicks and scratches in excess of 0.008 inch and gouges or wear pattern extending into the fillet radius at bottom of internal "V."
 - c. Inspect all remaining surfaces for nicks and gouges exceeding 0.010 inch.
 - d. Aluminum clamps may be inspected by Fluorescent Penetrant method.
- C. Repair or Replacement

Replace shafts or clamp sets which do not meet inspection requirements.

NOTE

Replace clamps as sets. Both halves of each set must be of the same part number.

NOTE

Do not intermix different partnumbered nuts. All nuts used to install any clamp must have the same part number.

D. Installation

1

 Engage shaft couplings with mating fixed and flexible couplings. Install clamp sets at each end, with nuts trailing direction of rotation, and with bolted joints indexed 90 degrees to those of adjacent clamps for balance in operation.

NOTE

Clamp assemblies with different part numbers may be installed on the same drive shaft; however, clamp halves cannot be intermixed. If onehalf of a clamp requires replacing, complete clamp assembly must be replaced as they are matched pairs. Each clamp must have nuts of the same part number installed. Do not intermix nuts.

NOTE

Determine friction torque of each nut as follows: Thread nut onto bolt until full length of each nut is on attaching bolt and then check torque.

- 2. Torque clamp bolts evenly to 30 to 35 inch-pounds above the nut friction torque noted above. Tap lightly around outer surface of seal clamps, and rucheck torque.
- 3. Reinstall tail pipe fairing or gearbox cover as required. Close access doors and cowling.

E. Lubrication

Grease couplings by hand every 500 hours and at replacement of hanger bearings (see <u>TAIL ROTOR HANGER</u> ASSEMBLY, LUBRICATION paragraph E).

F. Cleaning

Not covered in UH-1D/H Manual.

Model UH-1C

A. Removal

See UH-1D/H. In addition the following note appears in the UH-1C Manual:

CAUTION

Clamp set shall be removed from both ends of the shaft before removing either end of the shaft from its mating curvic coupling to avoid coupling tooth or bearing damage.

B. Inspection

See UH-1D/H.

173

NOTE

- a. Inspect for cracks by fluorescent penetrant method. (Method not stated in UH-1D/H Manual.)
- 2. e. UH-1C Manual adds: "If there is distortion, cracks, evidence of shearing of rivets, static balance not within 0.1 inch-ounces, or if nicks, dents, or scratches are not within acceptable limits, the shaft shall be considered unserviceable and unrepairable."

C. Repair or Replacement

See UH-1D/H (UH-1C Manual does not contain notes that refer to replacement of clamps as sets and to the use of the same part-numbered nuts when installing clamps).

D. Installation

See UH-1D/H. UH-1C Manual adds this note:

NOTE

Maximum weight differential for matched halves is one (1) gram. Every effort should be made to retain clamp halves as matched sets. If doubt exists concerning clamp balance, the parts should be forwarded to a higher echelon for matching halves.

E. Lubrication

See UH-1D/H

F. Cleaning

Clean all shaft surfaces with dry cleaning solvent, with care, to avoid marring anodized surfaces.

Model AH-1G

4

A. Removal

See UH-1D/H except:

The following "Caution" note appears in the AH-1G Manual:

CAUTION

Clamp set must be removed from both ends of shaft before removing either end of shaft from its mating curvic coupling to avoid coupling tooth or bearing damage.

- Add the following:
- Remove second shaft section with oil cooler blower attached (P/N 209-040-611-1), if so equipped. Remove oil cooler blower from shaft. This assembly was used only on early AH-1G's. On later aircraft the -620-3 shaft is used in this location. See Step 2.

B. Inspection

See UH-1D/H except:

- 2. Add the following:
 - f. Corrosion must be polished out with fine abrasive cloth, provided depth of material removal does not exceed 0.012 inch in Area B. Deeper corrosion is cause for rejection.

3. Deleted

4. d. Deleted

C. Repair or Replacement

See UH-1D/H

D. Installation

See UH-1D/H except:

 The first note in this section (referring to matched clamp sets) does not appear in the AH-1G Manual.

E. Lubrication

See UH-1D/H except:

AH-1G Manual adds the following:

Pack grease 0.12 inch deep over splines.

F. Cleaning

See UH-1C

TAIL ROTOR HANGER ASSEMBLY

Model UH-1D/H

- A. Removal
 - 1. Open hinged access doors along top of tail boom by releasing fasteners on left side.
 - Remove tail rotor drive shafts from each side of hanger. (Refer to <u>TAIL ROTOR DRIVE SHAFT</u>, Paragraph A)
 - 3. Remove bolt, with nut and washers, at each side to detach any hanger assembly from its support fitting.
- B. Inspection

Inspect for:

1. Evidence of excessive bearing wear, roughness, or binding.

NO TE

Bearing P/N 204-040-623-1 has more drag than the older type bearing. This bearing may feel slightly rough after 150 to 200 hours of operation. This is due to the special lubricant separating into minute particles. When the bearing is rotated slowly by hand with driveshaft disconnected, the rolling elements contact and spread these minute particles. This type of roughness does not constitute cause for rejection. If when rotated slowly by hand the bearing comes to a definite stop, then jumps and a corresponding increase in roughness is noted, the hanger should be replaced.

- 2. Cracks, elongated bolt holes, or other visible damage to hanger ring or attachment lugs.
- 3. Inspect hanger support fittings, in place on tail boom, for security of attachment and evidence of cracks or other damage.

CAUTION

Do not attempt to remove or change shims under fittings.

C. Repair or Replacement

Replace drive shaft hangers that do not meet the requirements of paragraph B.

- D. Installation
 - 1. Position hanger assembly, with flexible coupling forward, on support fitting.
 - 2. Install aluminum hanger assembly by installing bolt on each side with thin steel washer next to bolt head and thin aluminum alloy washer next to hanger. Install thin aluminum alloy washer against underside of support fitting, with thin steel washer under nut. Torque nuts 50 to 70 inch-pounds.
 - 3. Install steel or stainless steel hanger assembly by installing bolt on each side with two thin steel washers under bolt head and under nut. Torque nuts 50 to 70 inch-pounds.
 - 4. Install drive shafts. (Refer to TAIL ROTOR DRIVE SHAFT, paragraph D.)
- E. Lubrication

6

1. Bearing

The driveshaft hanger bearings, <u>except</u> bearing Part No. 204-040-623-1, may be lubricated in the field without removing the seal from the bearing or bearings from hanger by using the following equipment and procedures.

WARNING

Positively identify bearing before lubricating by the following procedure. Bearing Part No. 204-040-623-1 CANNOT be lubricated. This bearing utilizes a special lubricant. Any attempt to lubricate the 204-040-623-1 bearing will also result in seal damage which is cause for bearing rejection. Bearing must be replaced.

NOTE

These instructions do not constitute, by definition, bearing repack.

a. Utain one hypodermic syringe.

NOTE

Prior to lubrication of bearing, drive train must be disconnected from each side of hanger assembly. Examine bearing for indications of failure (binding, overheating, etc.)

- b. Using a clean, dry cloth, wipe bearing seal area as clean as possible.
- c. Fill hypodermic syringe with grease, then carefully insert tapered portion of needle under lip of bearing seal. (Avoid damage to seal.) Inject a small amount of grease at each of three locations (120 degrees apart); two cc's of grease per bearing is considered sufficient. After lubrication is completed, wipe off all excess grease.

NOTE

Any damage to seal is cause for rejection of bearing.

d. Lubrication of drive shaft hanger bearing should be accomplished as dictated by environmental conditions.

2. Coupling

Coupling splines can be lubricated as described below. This procedure can be accomplished with drive shafts disconnected and hangers installed on tail boom.

- a. Remove spiral lockring while holding seal plate against spring pressure.
- b. Remove seal plate spring and spacer.

NOTE

Care must be taken to ensure that the retainer plug does not become unseated from inner coupling.

CAUTION

Do not use cleaning solvent inside coupling.

- c. Hold couplings at full outward position. Remove old grease as thoroughly as possible.
- d. Hand pack grease to 0.12 inch depth over top of internal spline teeth. Use lubricant.
- e. Keep coupling at full outward position. Ensure retainer and locking spring are properly seated. Reinstall spacer, spring, seal plate, and spiral lockring.
- F. Cleaning

Not covered in UH-1D/H Manual.

Model UH-1C

A. Removal

See UH-1D/H

B. Inspection

See UH-1D/H except:

2. Delete.

Add:

- 4. Inspect curvic faces for distortion and evidence of excessive load.
- 5. Inspect mounting ears of hanger for cracks or distortion.
- 6. Inspect teeth of spherical couplings for cracks or galling.
- 7. Inspect detail parts for cracks by magnetic particle or fluorescent penetrant methods as applicable.

NOTE

If inspection reveals cracks or distortion, indicative of excessive loads, the assembly shall be considered unserviceable and unrepairable.

- 8. Inspect bearing seal for leakage.
- C. Repair or Replacement
 - 1. Replace hanger assemblies for excessive bearing roughness.
 - Replace hanger ring or attachment lugs if cracked, holes are elongated, or other visible damage exists.
 - 3. Replace couplings if they fail to meet inspection requirements.
- D. Installation

4

See UH-1D/H except:

- 1. Add: "Place vinyl tape between hanger assembly and support fitting."
- E. Lubrication

Not covered in UH-1C Manual.

F. Cleaning

Clean exterior surfaces by wiping with cloth moistened with dry cleaning solvent.

CAUTION

Do not permit solvents or dirt to be forced into the bearing or flexible coupling by use of compressed air for drying or cleaning.

Model AH-1G

A. Removal

See UH-1D/H

B. Inspection

See UH-1D/H and add:

4. Inspect bearing seal for leakage.

NOTE

Lubrication expelled from the bearing is not in itself cause for rejection of the bearing unless an obvious defect is apparent, i.e., broken, bent, or missing seal, etc. The expelled lubricant is normally the result of overlubrication by the bearing manufacturer during bearing assembly.

New bearing assemblies which ooze grease should be observed periodically for the first 100 hours of operation. The excess grease should be wiped from the bearing. If the grease continues to ooze from the bearing in excessive amount after 100 hours, the bearing should be removed and replaced since continued lubricant loss is indicative of problems other than overlubrication of the bearing. Do not wash, clean, or spray the bearings or hanger assemblies with any type of solution during inspection. Use only clean cloths, without solvents, to wipe bearing exterior.

C. Repair and Replacement

See UH-1C

D. Installation

See UH-1C

E. Lubrication

1. Bearings are permanently lubricated at time of manufacture. No further lubrication is required.

Ľ.

ţ

WARNING

Attempting to lubricate bearing will cause damage to seal and render the bearing unserviceable.

F. Cleaning

See UH-1C

42-DEGREE GEARBOX

Model UH-1D/H

- A. Removal
 - 1. When replacing any gearbox, unless condition prevents operation, accomplish preservation before removal: Drain oil and reservice gearbox with corrosion preventive oil. Ground run at least ten minutes. Do not drain gearbox.
 - 2. Remove gearbox cover and open tail rotor driveshaft access doors.

CAUTION

As shafts are disconnected from gearbox, support unattached ends to hold shaft alignment on normal operating axis to avoid damage to hanger bearing or coupling.

- 3. Remove or disconnect shafts from gearbox input and output couplings.
- 4. Remove electrical wire from electrical chip detector.

- 5. Remove lockwire and four bolts, with washers, which secure gearbox on tail boom. Lift off gearbox assembly. Do not attempt to remove shims from mounting points.
- The maximum allowable wear (elongation) for all 42° gearbox attachment holes is 0.005 inch over standard high side dimension (0.287 inch).

B. Inspection

1

- 1. Inspect gearbox case for cracks and damage .
- Check cap assembly, vent cap, and chip detector for security. Unscrew chip detector to determine magnectic particle build up. Unscrew vent cap and determine if clean throughout.
- 3. Ensure that studs and nuts are tight, with no apparent leakage.
- 4. Inspect sight gage for damage or stain.

C. Repair or Replacement

1. Replace unserviceable oil filler cap or packing and vent breather or gasket.

CAUTION

Do not interchange filler caps of 42-degree gearbox and 90-degree gearbox. The 42degree gearboxes are marked with a black dot on the case and a corresponding black dot on the filler cap. The 90-degree gearboxes and filler caps have white dot markings.

- a. Secure chain of cap by safety pin through drilled hole in case rib at right of filler neck.
- b. Lock-wire breather to drilled hole in case rib just ahead.
- 2. To replace other gearbox fittings, drain oil by removing drain plug from right side of gear box.

- a. This plug also has a magnetic insert which can be removed, without loss of oil, to inspect for steel particles as indication of gear or bearing wear.
- b. Replace packing on magnetic insert plug, and gasket on drain plug.
- c. When installed, lock-wire magnetic plug to drain plug.

Lock-wire drain plug in accordance with paragraph D.3.

- 3. Remove oil level sight gage retaining ring, glass, packing, and indicator disc to clean, inspect, or replace parts. To reinstall, place indicator disc in port with indexing tab in notch of inner lip. Place packing in groove around glass, install glass with flat side out, and secure with spiral retaining ring.
- D. Installation
 - 1. Check condition and security of shims at gearbox location on tail boom just ahead of vertical fin.

CAUTION

Do not attempt to remove or change shims installed on tail boom under gearbox, as any resulting misalignment could cause excessive stresses, vibration, wear and possibly eventual failure of components in tail rotor drive train.

- 2. Position intermediate gearbox, with oil service fittings at right side, on tail boom shims.
- 3. Install four bolts through corners of gearbox base into plate nuts in tail boom. Use thin aluminum alloy washers next to gear case and thin steel washers next to bolt heads. If holes in the 42° gearbox mounting flange do not exceed the dimensions given in paragraph A.6, install bolts with steel washers under head and and aluminum washer between steel washer and

flange. Torque bolts 50 to 70 inch-pounds. Lockwire left rear attachment bolt to left forward attachment bolt. Lockwire right rear attachment bolt through drain plug to right forward attachment bolt.

- 4. Connect electrical wire to electrical chip detector.
- 5. Install drive shafts (see TAIL ROTOR DRIVE SHAFT).
- E. Lubrication

1

- Fill gearbox to sight gage level with oil prescribed by servicing points diagram. (Refer to TM-55-1520-210-20, Chapter 1)
- Internal splines of couplings on gearbox are packed with grease during assembly. Coupling splines can be lubricated as described below. This procedure can be accomplished with quills in place on gearbox, with drive shafts disconnected.

CAUTION

Do not intermix parts removed from forward quill with parts removed from aft quill.

- a. Remove spiral lock-ring from coupling while holding seal plate against spring pressure.
- b. Remove seal plate and spring.

NOTE

Care must be taken to ensure that the retainer plug does not become unseated from inner coupling.

CAUTION

Do not use cleaning solvent inside coupling.

- c. Hold couplings at full outward position. Remove old grease as thoroughly as possible.
- d. Hand pack grease to 0.12 inch depth over top of internal spline teeth. Use lubricant.

e. Keep coupling at full outward position, ensure retainer and locking spring are properly seated. Reinstall spring, seal plate and spiral lock-ring. ¥

t

Ł

٠

F. Cleaning

- Clean exterior of gearbox case with dry cleaning solvent.
- 2. Clean vent cap as follows:
 - a. Wash cap assembly in dry cleaning solvent.
 - b. Flush breather passage with cleaning solvent.
 - c. Dry with filtered compressed air.
- 3. Clean cap assembly and chip detector with dry cleaning solvent.

G. Packaging

- 1. Clean and dry gearbox in accordance with MIL-P-116.
- 2. Flush gearbox with operating oil.
- 3. Wrap assembly in grease-proof barrier material and secure with pressure-sensitive tape. Shape wrapper to contour of gearbox.
- 4. Place gearbox in contoured bottom cushion of metal container.
- 5. Align top contoured cushion to fit gearbox and lower in place in container.
- 6. Place 10 eight-unit bags (total of 80 units) of desiccant in container.
- 7. Install lid, with rubber gasket in place, on lower half of container.
- 8. Place locking ring on tip of container lid and secure with bolt and nut. Tighten nut sufficiently to ensure a moisture-vapor-proof closure.

Model UH-1C

- A. <u>Removal</u> See UH-1D/H and add:
 - 7. Remove oil level sight gage retaining ring, glass, O-ring, and indicator disc as required to clean, inspect, or replace parts.

B. Inspection

See UH-1D/H and add:

- 5. Check O-ring packings for leakage or damage and vent breather and gasket for damage and serviceability.
- C. Repair or Replacement

See UH-1D/H

D. Installation

See UH-1D/H and add:

- 6. Service gearbox with oil.
- E. Lubrication

See UH-1D/H

F. Cleaning

ć

See UH-1D/H and add:

4. Clean oil level sight glass.

CAUTION

Do not permit dirt or solvent to be forced into bearings or flexible couplings by use of compressed air.

5. Check condition and security of shims at gearbox location on tail boom just ahead of vertical fin.

CAUTION

Do not permit dirt or solvent to be forced into bearings or flexible couplings by use of compressed air.

5. Check condition and security of shims at gearbox location on tail boom just ahead of vertical fin.

CAUTION

DO NOT attempt to remove or change shims installed on tail boom under gearbox, as any resulting misalignment could cause excessive stresses, vibration, wear, and possibly eventual failure of components in tail rotor drive train.

G. Packaging

See UH-1D/H

Model AH-1G

キャーシアトンドがないたの間時にも

A. Removal

See UH-1D/H

(Step 6 is under "Inspection", in the AH-1G Manual)

B. Inspection

See UH-1D/H paragraphs A.6 and B.; UH-1C paragraphs B and F.5. Also, add the following:

NOTE

To remove chip detector, push body of detector in and turn left to disengage bayonet pins and withdraw from drain plug.

In scheduled or special inspection for evidence of over-torque of drive system, visually inspect through gearbox filler port for scoring of output gear teeth. If scoring is found, also inspect 90° gearbox.

C. Repair or Replacement

See UH-1D/H and add:

- 4. Replace gearbox if
 - (1) Case is cracked or damaged
 - (2) Teeth are scored.
 - (3) Attachment holes are elongated over 0.292 inch.
- D. Installation

See UH-1D/H and add:

Before servicing gearbox with oil determine whether system contains MIL-L-7808 oil or MIL-L-23699 oil. Splined couplings are lubricated at assembly with hand-packed lubricant to 0.12 inch deep over internal spline teeth, in same manner as tail rotor drive quill couplings.

E. Lubrication

See UH-1D/H and add:

Before servicing gearbox to sight gage level with oil, determine whether system contains MIL-L-7808 oil or MIL-23699 oil.

F. Cleaning

See UH-1D/H paragraph F and UH-1C paragraph F.4.

G. Packaging

See UH-1D/H

90-Degree Gearbox

Model UH-1D/H

- A. Removal
 - Accomplish preservation before removal: Drain oil and reservice gearbox with corrosion preventive oil. Ground run at least ten minutes. Do not drain gearbox.

- 2. Remove tail rotor hub and blade assembly. (Refer to TAIL ROTOR HLB AND BLADE ASSEMBLY)
- 3. Remove pitch control mechanism, or detach cover from the fin structure and chain from control cables if replacement of gearbox or output gear quill is not required. (Refer to TAIL ROTOR PITCH CONTROL).

CAUTION

To avoid damage to gearboxes or couplings, either remove clamp set from both ends of shaft before removing either end of shaft from its mating curvic coupling, or support unattached end of shaft to hold shaft aligned on normal operating axis while gearbox is removed.

- 4. Open hinged access door on front of vertical fin and remove or disconnect driveshaft from input coupling of gearbox. (Refer to TAIL ROTOR DRIVE SHAFT).
- 5. On helicopters Serial No. 65-9565 and subsequent, remove electrical wire from electrical chip detector.
- 6. Detach gearbox from support casting on vertical fin by removing nuts and washers from six mounting studs around input coupling. Lift off gearbox assembly.
- 7. Reinstall nuts with suitable spacers on two opposite studs to secure input gear quill in case during handling or shipping.

B. Inspection

L

- 1. Inspect gearbox cases for cracks and damage.
- 2. Inspect quill for evidence of oil and grease leakage.
- 3. Check oil filler cap and O-ring packings for serviceability.
- 4. Inspect chip detector for excessive accumulation of metal particles.

- 5. Inspect gearbox breather filler cap as follows.
 - a. Inspect to determine that the cap is still tightly filled with aluminum wool by slightly compressing the wool by pressing the retaining washer.
 - b. If cap is properly filled with wool, the wool will return the retaining washer against the retaining ring when pressure is released.
- 6. Inspect gearbox input sleeve flange for protrusion of sealant in jack screw holes. Inspect mating surface of tail boom fin casting for areas of sealant remaining on casting.
- 7. Inspect sight gage for damage or stain.
- C. Repair or Replacement
 - Replace unserviceable oil filler cap or packing. Secure cap chain by safety pin through drilled hole in filler neck boss of case.

CAUTION

Do not interchange filler paps of intermediate gearbox and tail rotor gearbox. The 90-degree gearboxes are marked with a white dot on the case and a corresponding white dot on the filler cap. The 42-degree gearboxes and filler caps have black dot markings.

- 2. Replace gearbox breather filler caps containing an insufficient quantity of aluminum wool.
- 3. To replace other gearbox fittings, drain oil by removing drain plug.
 - a. Drain plug also has a magnetic insert which can be removed, without loss of oil, to inspect for steel particles as indication of gear or bearing wear.
 - b. Replace packing on magnetic plug, and gasket on drain plug, as required.
 - c. When reinstalled, lock-wire magnetic plug to drain plug, and drain plug to

adjacent drilled holes in boss of base.

t

1

- 4. Remove oil level sight gage retaining ring, glass, packing, and indicator disc to clean, inspect, or replace parts. To reinstall, place indicator disc in port with indexing tab in notch of inner lip. Place packing in groove around sight glass, install glass with flat side out, and secure with spiral retaining ring.
- 5. If sealant protrudes above surface of jack screw holes, trim off excess sealant. Remove any uneven areas of sealant remaining on tail boom fin casting. Any cleaned area that penetrates to the bare metal should be protected with zinc chromate primer.
- D. Installation
 - Inspect 90-degree gearbox support fitting on tail boom for wear and damage limits. Repair damage, if within limits, prior to installation of gearbox. Refer to paragraph H. If damage exceeds limits, request assistance of field maintenance.
 - 2. Remove nuts and shipping spacers from studs at input gear quill flange.

NOTE

When installing new gearbox, refer to paragraphs B.6 and C.5.

- 3. Position gearbox with studs engaged through support casting at top of vertical fin. Rotate box counterclockwise until studs contact sides of the holes. If holes in the 90-degree gearbox mounting flange do not exceed the dimensions given in paragraph B, install nuts with steel washers under nut and aluminum washer between steel washer and flange. Torque nuts evenly to a torque of 100 to 140 inch-pounds.
- 4. Install drive shaft, connected to output coupling of gearbox. (Refer to TAIL ROTOR DRIVE SHAFT.)
- 5. Connect electrical wire to electrical chip detector.
- 6. Install pitch control mechanism. (Refer to Tail Rotor Pitch Control Installation).
- 7. Install and rig tail rotor. (Refer to TAIL ROTOR HUB AND BLADE, paragraph D.)
- 8. Service gearbox with oil.
- E. Lubrication
 - Fill gearbox to sight gage level with oil prescribed by servicing points diagram. (TM 55 1520-210-20, Chapter 1.)
 - Internal splines of couplings on gearbox are packed with grease during assembly. Coupling splines can be lubricated as described below. This procedure can be accomplished with quills in place on gearbox, with drive shaft disconnected.
 - a. Remove spiral lock-ring from coupling while holding seal plate against spring pressure.
 - b. Remove seal plate spring and spacer.

NOTE

Care must be taken to ensure that the retainer plug does not become unseated from inner coupling.

CAUTION

Do not use cleaning solvent inside coupling.

- c. Hold couplings at full outward position. Remove old grease as thoroughly as possible.
- d. Hand pack grease to 0.12 inch depth over top of internal spline teeth.
- e. Keep coupling at full outward position, ensure retainer and locking spring are properly seated. Reinstall spacer, spring, seal plate and spiral lock-ring.
- F. Cleaning
 - 1. Clean exterior of gearbox assembly, or removed parts, with dry cleaning solvent.

CAUTION

Do not permit solvent or dirt to be forced into flexible coupling by use of compressed air.

- 2. Clean gearbox breather filler cap as follows.
 - a. Wash cap assembly in dry-cleaning solvent.
 - b. Clean aluminum wool in the breather passage by flushing with dry-cleaning solvent.
 - c. Dry with filtered compressed air.
- G. Packaging
 - 1. Clean and dry gearbox in accordance with MIL-P-116.
 - 2. Flush gearbox with operating oil.
 - 3. Wrap assembly in grease-proof barrier material and secure with pressure-sensitive tape. Shape wrapper to contour of gearbox.
 - 4. Place gearbox in bottom contoured cushion of container.
 - 5. Align top contoured cushion to fit gearbox and lower into container.
 - 6. Place 12 eight-unit bags (total 96 units) of desiccant in container.
 - 7. Install lid, with rubber gasket in place, on lower half of container.
 - 8. Place locking ring on lip of container lid and secure with bolt and nut. Torque nut sufficiently to ensure a moisture-vapor-proof closure.
- H. Repair or Replacement of Support Fitting
 - Inspect tail rotor gearbox for damage and wear in excess of limits. Request assistance of higher level of maintenance, if damage or wear exceeds limits. Repair damage or wear that is within limits as outlined in steps 2 through 5 below.

- 2. Blend out damage within limits with a smooth file or stone. Form a generous radius into surrounding area. Inspect the fitting after cleanup of damage to ensure that limits have not been exceeded. Touch up repaired area with zinc chromate primer.
- 3. Build up chafed area of repairable support fitting in area A (45 degrees on either side of the vertical fin center line) to a minimum of 0.150 inch using adhesive as a filler providing a new seat for the shaft cover.
- 4. Build up chafed area of repairable support fitting in area B (45 to 85 degrees on either side of the vertical fin center line) to a minimum of 0.200 inch thickness using adhesive as a filler providing a new seat for the drive shaft cover.
- 5. Install tape on forward upper edge of support fitting where tail rotor drive shaft cover contacts fitting.

Model UH-1C

10

A. Removal

See UH-1D/H except:

- 5. Delete the phase "On Helicopter Serial No. 65-9565 and subsequent".
- B. Inspection

See UH-1D/H except:

- 2. Deleted
- 6. Deleted
- 7. Deleted
- Check wear limits (elongation) of stud holes in the casting (P/N 204-030-828) do not exceed 0.010 inch over standard hole diameter (standard high side 0.319).

C. <u>Repair or Replacement</u>

See UH-1D/H except:

- 5. Deleted, add the following step:
- 6. Replace gearbox if cracks are found in the tail rotor gearbox case.

- 1

D. Installation

- ·

See UH-1D/H

- E. <u>Lubrication</u> See UH-1L/H
- F. <u>Cleaning</u> See UH-1D/H
- G. <u>Packaging</u>

See UH-1D/H

H. <u>Repair or Replacement of Support Fitting</u> Deleted

Model AH-1G

10

A. Removal

See UH-1D/H except:

- 2. Add: "Remove covers from both sides of the gearbox."
- 5. Delete the phase: "On helicopters Serial No. 65-9565 and subsequent".
- B. Inspection

See UH-1C and:

4. Add:

To remove chip detector, push body of detector in and turn left to disengage bayonet pins and withdraw from drain plug.

- 6. Add: "When required in scheduled or special inspections, visually inspect through gearbox filler port for scored condition of gear teeth."
- C. Repair or Replacement

See UH-1D/H except:

5. Deleted, Add:

- 6. Replace gearbox if cracks are found in the case.
- 7. Replace gearbox if gears are scored.
- D. Installation

See UH-1D/H, and add:

NOTE

Refer to TM 55-405-2 for re-use cf selflocking nuts in critical applications.

- 6. "Install covers on both sides of gearbox."
- "Before servicing gearbox with oil, determine whether system contains MIL-L-7808 oil or MIL-L-23699 oil."
- E. Lubrication

See UH-1D/H and add:

Before servicing gearbox to site gage level with oil, determine whether system contains MIL-7808 or MIL-L-23699 oil. If type of oil used cannot be determined, refer to TM 55-1520-221-20, paragraph 1-7, step j.

F. Cleaning

See UH-1D/H

197

NOTE

G. Packaging

1

See UH-1D/H

.

H. <u>Repair or Replacement of Support Fitting</u> See UH-1D/H Y

•

.

APPENDIX II

UH-1/AH-1 TAIL ROTOR SYSTEM MEAN-TIME-TO-REMOVAL (MTR) AND MEAN-TIME-BETWEEN-REMOVAL (MTBR) ANALYSES

The results of the analyses are presented in two groups of tables. The first group presents the MTR/MTBR analyses on 42-degree and 90-degree gearboxes overhauled or scrapped at Bell Helicopter Company (BHC). The second group presents the MTR/MTBR analyses on the major tail rotor system components from data taken from the Army's Reliability and Maintainability Management Improvement Techniques (RAMMIT) Major Item Removal Frequency (MIRF) reports.

6

TABLE LXI. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 42-DEGREE GEARBOXES OVERHAULED OR SCRAPPED AT BHC			
Aircraft Model(s): UH-1C	Part N	lo. <u>204-04(</u>)-003-23
Reason For Removal	Record Part	s With Time	MTBR
	Number	MTR (Hours)	(Hours)
All Causes Unscheduled Maintenance Material Failures Leakage Excessive Vibration External Failures Crash Hard Landing/Overstress Sudden Stoppage Scheduled Overhaul (TBO) Unknown	12 5 2 1 1 3 1 1 5 2	936.2 715.0 684.5 400.0 969.0 736.3 1,317.0 762.0 130.0 1,391.4 349.5	936 2,247 5,617 11,234 11,234 3,745 11,234 11,234 11,234 2,247 5,617

-

4

.

Z

TABLE LXII.	REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 42-DEGREE GEARBOXES OVERHAULED OR SCRAPPED AT BHC					
Aircraft Model(s):	UH -1 D	Part N	lo . <u>204-040</u>	-003-23		
Reason For Removal	Records Wit Part Time		Reason For Removal		ls With Time	MTBR (Hours)
		Number	MTR (Hours)			
	All Causes	245	954.9	955		
Unscheduled Mainten Material Failures Leakage Excessive Wear Metal Particles Internal Failure	ance in Assy	43 25 18 4 2 1	619.3 565.5 585.8 674.0 303.0 292.0	5,440 9,358 12,997 58,485 116,970 233,939		
External Failures Sudden Stoppage Hard Landing/Over Overstress Crash Damaged Part- Chi	rstress ip, Nick, Etc.	18 8 6 2 1 1	694.1 684.3 748.8 984.5 381.0 176.0	12,997 29,242 38,990 116,970 233,939 233,939		
Scheduled Overhaul	(ТВО)	153	1,149.0	1,529		
Other Unknown No Failure Manufacturing Dei Scheduled Mainter Various	fect nance	49 41 5 1 1	643.0 622.1 737.8 188.0 1,315.0 811.0	4,774 5,706 46,788 233,939 233,939 233,939		

TABLE LXIII.	REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 42-DEGREE GEARBOXES OVERHAULED OR SCRAPPED AT BHC			
Aircraft Model(s):	UH-1C/D	Part N	o. <u>204-040</u>	0-003-23
Reason For Removal		Record Part	Records With Part Time	
		Number	MTR (Hours)	(Hours)
All	L Causes	257	954.0	954
Unscheduled Maintenand Material Failures Leakage Excessive Wear Metal Particles in Internal Failure Excessive Vibratio	ce n Assy on	48 27 19 4 2 1 1	629.4 574.3 576.0 674.0 303.0 292.0 969.0	5,108 9,681 12,904 61,293 122,587 245,173 245,173
External Failures Sudden Stoppage Hard Landing/Overs Crash Overstress Damaged Part- Chip	stress D, Nick, Etc.	21 9 7 2 2 1	700.1 622.7 750.7 849.0 984.5 176.0	11,675 27,241 35,025 122,587 122,587 245,173
Scheduled Maintenance	(ТВО)	158	1,156.7	1,552
Other Unknown No Failure Manufacturing Defe Scheduled Maintena Other	ect ance	51 43 5 1 1	631.5 609.4 737.8 188.0 1,315.0 811.0	4,807 5,702 49,035 245,173 245,173 245,173

Q

L

TABLE LXIV. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 42-DEGREE GEARBOXES OVERHAULED OR SCRAPPED AT BHC

Aircraft Model(s): UH-1C Part No. 204-040-003-37

4

-

U

Reason For Removal	Records With Part Time		MTBR	
	Number	MTR (Hours)	(Hours)	
All Causes	185	1,115.7	1,116	
Unscheduled Maintenance Material Failures Leakage Metal Particles in Assy Internal Failures Corrosion Cracked/Broken Excessive Wear Excessive Vibration Loose, Deteriorated, Flaking Other	66 35 20 3 2 2 2 2 2 2 1 1	916.9 850.8 870.8 782.0 941.0 1,090.0 838.0 1,033.0 302.5 485.0 1,123.0	3,128 5,898 10,321 68,804 103,206 103,206 103,206 103,206 103,206 206,412 206,412	
External Failures Crash Sudden Stoppage Damaged Part- Chip, Nick, Etc. Foreign Object Damage Temperature Out of Limit Overstress Other	31 15 8 4 1 1 1	991.5 1,193.7 849.0 1,071.8 332.0 393.0 635.0 390.0	6,659 13,761 25,802 51,603 206,412 206,412 206,412 206,412	
Scheduled Overhaul (TBO)	81	1,430.2	2,548	
Other Unknown Scheduled Maintenance No Failure	38 29 7 2	790.9 741.5 878.3 1,203.0	5,432 7,118 29,487 103,206	

TABLE LXV. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 42-DEGREE GEARBOXES OVERHAULED OR SCRAPPED AT BHC			
Aircraft Model(s):UH-1D	Part N	io. 204-04	+0-003-37
Reason For Removal	Record Part	s With Time	MTBR (Hours)
	Number	MTR (Hours)	
All Causes	472	1,037.9	1,038
Unscheduled Maintenance Material Failures Leakage Internal Failure Excessive Wear Metal Particles in Assy Loose, Deteriorated, Flaking Corrosion Excessive Vibration Cracked/Broken Other External Failures Sudden Stoppage Crash Damaged Part - Chip, Nick, Etc. Hard Landing/Overstress Overstress RPM Out of Limit Improper Safety Other	176 108 72 8 7 4 2 1 1 5 08 39 11 9 32 1 1 2	734.6 760.8 688.9 770.1 946.0 612.9 943.0 1,173.0 1,002.0 2,487.0 988.0 692.9 734.3 712.2 419.8 842.0 602.5 1,005.0 1,455.0 338.5	2,783 4,536 6,804 61,235 59,983 122,471 244,942 489,883 97,977 7,204 12,561 44,535 54,431 163,294 244,942 489,883 489,883 2883 244,942
Scheduled Overhaul (TBO)	197	1,439.0	2,487
Other Unknown Scheduled Maintenance No Failure Manufacturing Defect	99 84 9 5 1	779.0 776.8 870.4 728.0 396.0	4,948 5,832 54,431 97,977 489,883

•

:

TABLE LXVI. REASON FOR REMOV OF 42-DEGREE GEA SCRAPPED AT BHC	AL/MTR/MARBOXES (ITBR ANALY OVERHAULED	SIS OR	
Aircraft Model(s): UH-1H	Part N	0. 204-04	0-003-37	
Reason For Removal	Record Part	s With Time	MTBR	
``	Number	MTR (Hours)	(Hours)	
All Causes	381	1,000.2	1,000	
Unscheduled Maintenance Material Failures Leakage Excessive Wear Internal Failure Metal Particles in Assy Cracked/Broken Excess Vibration Corrosion Other External Failures Sudden Stoppage Crash Overstress Improper Handling/Operation Foreign Object Damage Temperature Out of Limit Heat Damage Combat Damage Power Surge Other	168 110 80 8 7 5 4 2 1 3 58 29 11 5 4 1 1 1 1 4	673.8 649.6 631.8 669.1 750.4 802.4 521.5 748.0 800.0 636.0 719.8 551.8 1,128.4 847.2 836.3 517.0 450.0 996.0 468.0 1,235.0 521.8	2,268 3,464 4,763 47,632 54,437 76,212 95,265 190,530 381,059 127,020 6,570 13,140 34,642 76,212 95,265 381,059 381,059 381,059 381,059 381,059 381,059 381,059	
Scheduled Overhaul (TBO)	154	1,467.2	2,474	
Other Unknown Scheduled Maintenance No Failure	59 36 19 4	710.4 619.6 841.3 906.3	6,459 10,585 20,056 95,265	

- -

Ľ

y

TABLE LXVII.REASON FOR REMOVAL/MTR/MTBR ANALYSISOF 42-DEGREE GEARBOXES OVERHAULED ORSCRAPPED AT BHC				
Aircraft Model(s): AH-1G	Part N	0. 204-04	0-003-37	
Reason For Removal	Record Part	s With Time	MTBR	
	Number	MTR (Hours)	(Hours)	
All Causes	45	680.7	681	
Unscheduled Maintenance Material Failures Leakage Excess Wear Internal Failure Metal Particles in Assy External Failures Sudden Stoppage Crash Improper Handling/Operation Heat Damage Scheduled Overhaul (TBO) Other Unknown Scheduled Maintenance Other	26 18 9 5 3 1 8 5 1 1 1 9 10 7 1 2	556.5 524.4 589.0 520.4 384.0 385.0 628.8 488.2 1,250.0 947.0 396.0 1,456.2 305.7 294.6 699.0 148.0	1,178 1,702 3,404 6,127 10,211 30,633 30,633 30,633 30,633 3,404 3,063 4,376 30,633 15,317	

Y

TABLE LXVII.REASON FOR REMOVAL/MTR/MTBR ANALYSIS
OF 42-DEGREE GEARBOXES OVERHAULED OR
SCRAPPED AT BHC

2

Aircraft Model(s): UH-1C/D/H, AH-1G Part No. 204-040-003-37

Reason For Removal	Records With Part Time		MTBR
	Number	MTR (Hours)	(Hours)
All Causes	1,083	1,023.1	1,023
Unscheduled Maintenance Material Failures Leakage Excessive Wear Internal Failure Metal Particles in Assy Cracked, Broken Corrosion Loose, Deteriorated, Flaking Excess Vibration Other	436 271 181 23 20 16 7 5 5 5 5	728.1 711.6 678.8 764.7 722.4 689.6 892.7 1,065.2 851.4 620.6 885.7	2,541 4,089 6,122 48,173 55,399 69,249 158,294 221,597 221,597 221,597 123,110
External Failures Sudden Stoppage Crash Damaged Part- Chip, Nick, Etc. Overstress Improper Handling/Operation Hard Landing/Overstress Foreign Object Damage Temperature Out of Limit Heat Damage Combat Damage RPM Out of Limit Power Surge Improper Safety Other	165 81 38 13 8 5 3 2 2 2 1 1 1 1 7	755.3 665.1 1,036.9 620.4 759.5 857.6 842.0 824.5 421.5 696.0 468.0 1,005.0 1,235.0 1,455.0 450.6	6,715 13,679 29,158 85,230 138,499 221,597 369,329 553,994 553,994 553,994 1,107,987 1,107,987 1,107,987 1,107,987 1,58,284
Scheduled Overhaul (TBO)	441	1,447.6	2,512
Other Unknown Scheduled Maintenance No Failure Other Manufacturing Defect	206 156 36 11 2 1	738.6 712.3 851.8 879.2 148.0 396.0	5,379 7,103 30,777 100,726 553,994 1,107,987

TABLE LXIX.REASON FOR REMOVAL/MTR/MTBR ANALYSISOF 90-DEGREE GEARBOXES OVERHAULED ORSCRAPPED AT BHC

Y

Aircraft Model(s): UH-1C Part No. 204-040-012-7

Reason For Removal Records With Part Time		MTBR	
	Number	MTR (Hours)	(Hours)
All Causes	17	927.8	928
Unscheduled Maintenance Material Failures Leakage Metal Particles in Assy	7 4 3 1	719.1 856.8 847.7 884.0	2,253 3,943 5,258 15,773
External Failures Sudden Stoppage RPM Out of Limit Other	3 1 1 1	535.7 355.0 417.0 835.0	5,258 15,773 15,773 15,773
Scheduled O erhaul (TBO)	8	1,067.4	1,972
Other Unknown	2	1,100.0 1,100.0	7,887 7,887

1

TABLE LXX. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 90-DEGREE GEARBOXES OVERHAULED OR SCRAPPED AT BHC				
Aircraft Model(s):UH-1D	Part N	lo. 204-04	0-012-7	
Reason For Removal	Records With Part Time		MTBR	
	Number	MTR (Hours)	(Hours)	
All Causes	224	868.4	868	
Unscheduled Maintenance Material Failures Leakage Metal Particles in Assy Excessive Wear Cracked/Broken Excess Vibration Other	50 29 13 8 5 1 1 1	579.8 632.7 646.2 535.6 834.0 525.0 776.0 192.0	3,890 6,708 14,963 24,315 38,904 194,518 194,518 194,518	
External Failures Sudden Stoppage Damaged Part- Chip, Nick, Etc. Foreign Object Damage Overstress Crash Hard Landing/Overstress Combat Damage Wrinkled, Buckled, Bent Scheduled Overhaul (TBO) Other Unknown No Failure	21 10 3 2 1 1 1 1 1 1 55 52 3	506.7 417.7 695.3 421.0 914.5 370.0 466.0 617.0 253.0 1,092.5 645.8 649.4 585.0	9,263 19,452 64,839 97,259 97,259 194,518 194,518 194,518 194,518 194,518 1,635 3,537 3,741 64,839	
		,		

ļ

TABLE LXXI. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 90-DEGREE GEARBOXES OVERHAULED OR SCRAPPED AT BHC				
Aircraft Model(s): UH-1C/D	Part N	lo. 204-04	0-012-7	
Reason For Removal	Record Part	ls With Time	MTBR (Hours)	
	Number	MTR (Hours)		
All Causes	241	872.6	873	
Unscheduled Maintenance Material Failures Leakage Metal Particles in Assy Worn, Excess Play Cracked/Broken Excess Vibration Other External Failures Sudden Stoppage Damaged Part - Chip, Nick, Etc. Foreign Object Damage Overstress Crash Hard Landing/Overstress Combat Damage RPM Out of Limit Wrinkled, Buckled, Bent Other	57 33 16 9 5 1 1 1 1 24 11 3 2 2 1 1 1 1 1 1	596.9 659.8 683.9 574.3 834.0 525.0 776.0 192.0 510.3 412.0 695.3 421.0 914.5 370.0 466.0 617.0 417.0 253.0 835.0	3,689 6,373 13,144 23,366 42,058 210,291 210,291 210,291 210,291 8,762 19,117 70,097 105,146 105,146 210,291 210,291 210,291 210,291 210,291	
Scheduled Overhaul (TBO)	127	1,090.9	1,656	
Other Unknown No Failure	57 54 3	661.8 664.0 585.0	3,689 3,894 70,097	

Ľ

TABLE LXXII. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 90-DEGREE GEARBOXES OVERHAULED OR SCRAPPED AT BHC				
Aircraft Model(s): UH-1C	Part N	lo204-04	0-012-13	
Reason For Removal	Record Part	s With Time	MTBR	
	Number	MTR (Hours)	(nours)	
All Causes	180	877.7	878	
Unscheduled Maintenance Material Failures Leakage Metal Particles in Assy Excessive Wear Internal Failure Damaged Bearing - Loose, Burnt, Etc. Locked/Frozen Other External Failures Sudden Stoppage Crash Foreign Object Damage Combat Damage Holes Punched Other Scheduled Overhaul (TBO) Other Unknown No Failure Scheduled Maintenance	63 43 26 8 4 1 1 2 20 12 3 2 1 1 1 88 29 26 2 1	674.1 707.4 663.9 746.6 803.3 569.0 1,113.0 697.0 671.0 602.5 584.4 834.3 570.0 228.0 744.0 421.0 1,085.3 690.3 703.2 504.0 727.0	2,508 3,674 6,077 19,749 39,497 157,988 157,988 78,994 7,899 13,166 52.663 78,994 157,988 157,988 157,988 157,988 157,988 157,988 157,988 157,988	

y

TABLE LXXIII. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 90-DEGREE GEARBOXES OVERHAULED OR SCRAPPED AT BHC			
Aircraft Model(s): UH-1D	Part N	lo04_04	0-012-13
Reason For Removal	Record Part	ls With Time	MTBR
	Number	MTR (Hours)	(Hours)
All Causes	446	929.2	929
Unscheduled Maintenance Material Failure Leakage Metal Particles in Assy Internal Failure Damaged Bearing - Burnt, Loose, Etc. Cracked/Broken Corrosion Excessive Wear Excess Vibration Loose, Deteriorated, Flaking Other	118 73 36 11 7 4 3 2 2 2 2 1 5	676.9 701.1 681.3 698.5 703.9 548.8 1,067.0 995.5 820.0 508.0 210.0 757.8	3,512 5,677 11,512 37,674 59,202 103,603 138,138 207,207 207,207 207,207 414,913 82,883
External Failures Sudden Stoppage Crash Hard Landing/Overstress Damaged Part - Chip, Nick, Etc. Foreign Object Damage Improper Handling/Operation Combat Damage Power Surge Temperature Out of Limit Other Inspection	45 24 5 4 3 2 2 1 1 1 2 1	552.2 816.8 684.5 703.0 291.5 950.5 1,003.0 602.0 313.0 886.5 753.0	9,209 17,267 82,883 103,603 138,138 207,207 207,207 414,413 414,413 207,207 414,413 207,207 414,413
Scheduled Overhaul (TBO)	266	1,093.8	1,558

Reason For RemovalRecords With Part TimeMTBR (Hours)NumberMTR (Hours)Other Unknown Scheduled Maintenance No Failure61 51 698.7 3 798.3702.2 6,794 8,126 59,202 138,138
Number MTR (Hours) (Hours) Other Unknown Scheduled Maintenance No Failure 61 7 686.3 3 702.2 59,202 6,794 8,126 7 686.3 3 59,202 3 3 798.3 138,138
Other 61 702.2 6,794 Unknown 51 698.7 8,126 Scheduled Maintenance 7 686.3 59,202 No Failure 3 798.3 138,138

TABLE LXXIV. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 90-DEGREE GEARBOXES OVERHAULED OR SCRAPPED AT BHC			
Aircraft Model(s): UH-1H	Part N	o . <u>204-04</u>	0-012-13
Reason For Removal	Record Part	s With Time	MTBR
	Number	MTR (Hours)	(Hours)
All Causes	381	860.6	861
Unscheduled Maintenance Material Failures Leakage Metal Particles in Assy Internal Failure Excessive Wear Cracked/Broken Other	137 93 46 23 16 5 2 1	675.2 669.9 552.0 599.8 1,035.6 794.2 728.5 1,115.0	2,373 3,526 7,128 14,257 20,494 65,580 163,951 327,902
External Failures Sudden Stoppage Crash Overstress Combat Damage Damaged Part- Chip, Nick, Etc. Hard Landing/Overstress Power Surge Foreign Object Damage Temperature Out of Limit Dent Overtorque Other	44 16 7 5 4 3 2 2 1 1 1 1 1	686.5 522.6 761.4 1,059.8 663.8 763.3 570.0 751.0 399.0 450.0 1,006.0 1,003.0 770.0	7,452 20,494 46,843 65,580 81,976 109,301 163,951 163,951 327,902 327,902 327,902 327,902 327,902
Scheduled Overhaul (TBO)	183	1,096.9	1,792
Other Unknown Scheduled Maintenance No Failure	61 46 10 5	568.2 569.0 653.7 390.0	5,375 7,128 32,709 65,580

y

TABLE LXXV. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 90-DEGREE GEARBOXES OVERHAULED OR SCRAPPED AT BHC			
Aircraft Model(s): AH-1G	Part N	10. 204-04	0-012-1.3
Reason For Removal	Records With Part Time		MTBR
	Number	MTR (Hours)	(Hours)
All Causes	40	711.7	712
Unscheduled Maintenance Material Failures Leakage Excessive Wear Internal Failure Metal Particles in Assy Excess Oil Consumption Other	19 11 5 2 1 1 1 1	428.8 509.7 483.6 651.0 820.0 49.0 943.0 300.0	1,498 2,588 5,694 14,235 28,469 28,469 28,469 28,469
External Failures Sudden Stoppage Crash Damaged Part - Chip, Nick, Etc. RPM Out of Limit Overstress	8 4 1 1 1	317.5 245.0 1,100.0 148.0 200.0 112.0	3,559 7,117 28,469 28,469 28,469 28,469
Scheduled Overhaul (TBO)	16	1,130.1	1,779
Other Unknown Other	5 4 1	448.0 523.0 148.0	5,694 7,117 28,469

.

OF 90-DEGREE GEARBOXES OVERHAULED OR SCRAPPED AT BHC				
Aircraft Model(s): <u>UH-1C/D/H, AH-</u> 1	Aircraft Model(s): <u>UH-1C/D/H</u> , AH-1G Part No. 204-040-012-13			
Reason For Removal	Records With Part Time		MTBR	
•	Number	MTR (Hours)	(Hours)	
All Causes	1,047	887.1	887	
Unscheduled Maintenance Material Failures Leakage Metal Particles in Assy Internal Failure Excessive Wear Cracked/Broken Damaged Bearing - Loose, Burnt, Etc. Corrosion Excess Vibration Loose, Deteriorated, Flaking Excess Oil Consumption Locked/Frozen Other External Failures Sudden Stoppage	337 220 113 43 25 13 5 5 2 2 2 1 1 1 9 117 56	661.7 679.6 613.9 639.6 915.4 778.9 931.6 661.6 995.5 508.0 210.0 943.0 697.0 755.1 628.1 528.7	2,756 4,222 8,219 21,599 37,151 71,444 185,754 185,754 185,754 464,386 928,772 928,772 928,772 928,772 103,197 7,938 16,585	
Crash Damaged Part - Chip, Nick, Etc. Hard Landing/Overstress Combat Damage Overstress Foreign Object Damage Power Surge Temperature Out of Limit Improper Handling/Operation Holes Punched RPM Out of Limit Dent Overtorque Other	16 7 6 5 3 2 2 1 1 1 4	813.6 649.6 646.3 647.7 901.8 424.4 701.3 381.5 950.5 744.0 200.0 1,006.0 1,003.0 824.5	58,048 132,682 154,795 154,795 154,795 185,754 309,591 464,386 928,772 928,772 928,772 928,772 928,772 232,193	

TABLE LXXVI. REASON FOR REMOVAL/MTR/MTBR ANALYSIS

ŕ

ł

TABLE LXXVI. (Cont'd)				
Reason For Removal Pa:		s With Time	MTBR	
	Number	MTR (Hours)	(Hours)	
Inspection	1	753.0	928,772	
Scheduled Overhaul (TBO)	553	1,094.5	1,680	
Scheduled Overhaul (TBO) Other Unknown Scheduled Maintenance No Failure Other	553 156 127 18 10 1	1,094.5 639.4 647.1 670.4 535.3 148.0	1,680 5,954 7,313 51,598 92,877 928,772	

TABLE LXXVII. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF TAIL ROTOR HUB ASSEMBLIES FROM RAMMIT MIRF REPORT DATA			
Aircraft Model(s): <u>UH-1D</u>	Part N	10. <u>204-01</u>	1-701-11
Reason For Removal	Reason For Removal Records With Part Time		
	Number	MTR (Hours)	MTBR (Hours)
All Causes	195	389.4	389
Unscheduled Maintenance Material Failures Bearing Failure Excessive Wear Unbalanced Leaking Broken/Cracked Other External Failure Causes Overspeed Sudden Stop Maintenance Induced Burned Dented Foreign Object Damage Retirement Other Removal Reasons No Failure Causes No Defect	75 50 22 18 4 3 2 1 25 10 6 5 2 1 1 1 10 10 49 19 30	439.5 481.7 490.9 503.1 357.0 371.3 645.0 399.0 355.0 301.2 297.6 651.0 198.0 184.0 243.0 669.3 329.8 285.1 316.0 296.4	1,012 1,519 3,451 4,218 18,982 25,310 37,965 75,929 3,037 7,593 12,655 15,186 37,965 75,929 75,929 7,593 690 1,550 3,996 2,531
Other Scheduled Maintenance	26	325.6	2,920
Unknown Causes	35	395.5	2,169

Y

TABLE LXXVIII. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF TAIL ROTOR HUB ASSEMBLIES FROM RAMMIT MIRF REPORT DATA				
Aircraft Model(s): <u>UH-1D</u>	Part N	0. <u>204-01</u>	1-701-19	
Reason For Removal	Record Part	Records With Part Time		
	Number	MTR (Hours)	MTBR (Hours)	
All Causes	1911	150.8	151	
Unscheduled Maintenance Material Failures Excessive Wear Broken/Cracked Unbalanced Leaking Internal Failure Bearing Failure Clogged Other External Failure Causes Sudden Stop Overspeed Maintenance Induced Chipped, Dented, Grooved, Cut Accident/Crash Damage Overstressed Battle Damage Burned Foreign Object Damage Induced By Other Failure	185 101 58 12 8 7 6 5 1 4 84 26 20 11 8 6 6 3 2 1 1	197.0 237.8 247.3 269.7 79.6 236.8 389.3 260.8 353.0 38.7 147.8 125.0 159.7 243.8 164.1 36.1 141.0 36.3 247.0 201.0 111.0	1,558 2,854 4,970 24,023 36,035 41,183 48,047 57,656 288,281 72,070 3,431 11,088 14,414 26,207 36,035 48,047 48,047 96,094 144,141 288,281 288,281	
Retirement	84	298.8	3,432	
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint Cannibalization Other Scheduled Maintenance	1642 160 97 57 6 1418	138.1 173.7 176.5 178.8 79.5 131.3	176 1,802 2,972 5,058 48,047 203	
Unknown Causes	64	199.6	4,504	

TABLE LXXIX. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF TAIL ROTOR HUB ASSEMBLIES FROM RAMMIT MIRF REPORT DATA			
Aircraft Model(s): UH-1D	Part N	o. 204-01	1-801-5
Reason For Removal	Record Part	s With Time	
	Number	MTR (Hours)	MTBR (Hours)
All Causes	108	317.7	318
Unscheduled Failures Material Failures Excessive Wear Bearing Failure Leaking Internal Failure Clogged Contamination External Failure Causes Overstressed Sudden Stop Chipped, Torn, Nicked, Cut, Etc. Maintenance Induced Overspeed Burned	33 26 13 7 2 1 1 7 2 1 1 1 1 1	407.7 433.0 569.7 316.2 321.0 249.0 299.0 200.0 313.6 312.5 16.0 700.0 152.0 101.0 601.0	1,040 1,320 2,639 4,902 17,156 17,156 34,311 34,311 34,311 34,311 34,311 34,311 34,311 34,311
Retirement Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization	1 49 45 2 2	93.0 280.6 324.2 344.8 70.0 115.0	34,311 464 700 762 17,156 17,156
Other Scheduled Maint.	20	161.0	1,716
Unknown Causes	5	332.2	6,862

TABLE LXXX. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF TAIL ROTOR HUB ASSEMBLIES FROM RAMMIT MIRF REPORT DATA			
Aircraft Model(s): UH-1D Part No. 204-011-801-9			
Reason For Removal	Record Part	ls With Time	
	Number	MTR (Hours)	MTBR (Hours)
All Causes	249	238.4	238
Unscheduled Maintenance Material Failures Excessive Wear Bearing Failure Internal Failure Clogged Broken/Cracked Leaking Unbalanced Other External Failure Causes Accident/Crash Damage Sudden Stop Overspeed Battle Damage Chipped, Torn, Nicked, Cut, Etc. Maintenance Induced Burned Bent	97 74 51 9 5 3 2 1 1 2 2 3 11 5 2 1 1 1 1 1	284.6 333.8 363.8 269.8 233.6 242.6 274.5 874.0 94.0 152.5 126.5 172.5 30.6 248.0 240.0 208.0 192.0 36.0 149.0	612 802 1,164 6,596 11,873 19,788 29,682 59,365 59,365 29,682 2,581 5,397 11,873 29,682 59,365 59,365 59,365 59,365 59,365
Retirement	2	59 0.0	29,682
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization Other Scheduled Maint. Unknown Causes	130 118 105 10 3 12 20	203.8 218.8 228.7 106.0 248.0 125.0 163.0	396 503 565 5,936 19,788 4,947 2,968

TABLE LXXXI.	REASON FOR REMOVAL/MTR/MTBR ANALYSIS
	OF TAIL ROTOR HUB ASSEMBLIES FROM
	RAMMIT MIRF REPORT DATA

· 1

Aircraft Model(s): UH-1H

4

Part No. 204-011-701-19

Reason For Removal	Records With Part Time		
	Number	MTR (Hours)	MTBR (Hours)
All Causes	3078	156.9	157
Unscheduled Maintenance Material Failures Excessive Wear Unbalanced Bearing Failure Broken/Cracked Leaking Internal Failure Contamination Other	261 134 46 22 21 16 14 11 1 3	256.4 285.8 241.7 224.7 298.5 500.0 288.6 280.7 199,0 212.7	1,850 3,603 10,497 21,948 22,993 30,178 34,490 43,896 482,853 160,951
External Failure Causes Sudden Stop Maintenance Induced Chipped, Torn, Nicked, Cut, Etc Overstressed Overspeed Foreign Object Damage Accident/Crash Damage Battle Damage Bent	127 54 16 10 10 10 9 7 1	225.4 264.7 121.5 470.6 184.1 116.2 95.8 229.5 232.5 33.0	3,802 8,942 30,178 48,285 48,285 48,285 48,285 53,650 68,979 482,853
Retirement	124	334.3	3,894
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maintenance Cannibalization	2693 215 108 79 28	139.1 188.6 169.0 209.6 205.3	179 2,246 4,471 6,112 17,245
Other Scheduled Maintenance	2351	131.6	205
Manufacturing Defect	2	53.0	241,426
Unknown Causes	125	195.4	3,863

TABLE LXXXII. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF TAIL ROTOR HUB ASSEMBLIES FROM RAMMIT MIRF REPORT DATA			
Aircraft Model(s): UH-1H	Part N	lo 204-0	11-801-5
Reason For Removal	Records With Part Time		
	Number	MTR (Hours)	MTBR (Hours)
All Causes	426	264.0	264
Unscheduled Maintenance Material Failures Excessive Wear Clogged Bearing Failure Internal Failure Unbalanced Broken/Cracked Leaking Broken Safety Wire	132 89 41 18 9 8 5 4 3 1	314.6 370.2 369.7 579.1 380.0 189.5 76.6 289.0 195.0 304.0	852 1,264 2,743 6,248 12,497 14,059 22,494 28,117 37,490 112,469
External Failure Causes Sudden Stop Accident/Crash Damage Chipped, Torn, Nicked, Cut, Etc. Overspeed Maintenance Induced	43 12 11 7 5 3	199.6 155.7 240.6 269.5 64.0 248.7	2,616 9,372 10,224 16,067 22,494 37,490
Overstressed Battle Damage	3 2	145.6 338.5	37,490 56,234
Retirement	9	318.7	12,497
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Main. Cannibalization	285 136 112 15 9	238.8 299.1 316.8 162.0 306.4	395 827 1,004 7,498 12,497
Other Scheduled Maintenance	97	146.5	1,159
Manufacturing Defect	6	71.3	18,745
Unknown Causes	46	277. ^{Ls}	2,445

TABLE LXXXIII.REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF TAIL ROTOR HUB ASSEMBLIES FROM RAMMIT MIRF REPORT DATAAircraft Model(s):UH-1HPart No. 204-011-801-9			
Resson For Removal	Records With Part Time		
Reason For Removal	Number	MTR (Hours)	MTBR (Hours)
All Causes	2495	308.1	308
Unscheduled Maintenance Material Failures Excessive Wear Clogged Bearing Failure Broken/Cracked Leaking Internal Failure Unbalanced Other	1031 732 472 114 66 31 21 13 13 23	330.8 359.2 291.6 341.2 333.1 306.5 385.9 330.5 152.1 456.5	746 1,050 1,629 6,743 11,648 24,798 36,607 59,135 59,135 384,376
External Failure Causes Accident/Crash Damage Sudden Stop Chipped/Torn,Nicked,Cut,Etc. Battle Damage Maintenance Induced Burned Overstressed Overspeed Foreign Object Damage Induced By Other Failure Other	299 121 48 38 32 32 8 7 7 3 2 1	261.3 257.7 186.9 242.6 305.5 302.7 550.1 219.1 209.4 188.0 144.0 1043.0	2,571 6,354 16,016 20,230 24,024 24,024 96,094 109,822 109,822 256,251 384,376 768,752
Retirement	19 9	185.8	3.863
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization	1265 968 892 25 51	312.9 303.9 314.3 118.6 212.3	608 794 862 30,750 15,074

Ū

I

TABLE LXXXIII. (Cont'd)			
Reason For Removal	Records With Part Time		
	Number	MTR (Hours)	MTBR (Hours)
Other Scheduled Maintenance	24	761.2	32,031
Manufacturing Defect	1	121.0	768,752
Unknown Causes	272	287.3	2,826
		1	

V

TABLE LXXXIV. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF TAIL ROTOR HUB ASSEMBLIES FROM RAMMIT MIRF REPORT DATA

Reason For Removal	Records With Part Time		
	Number	MTR (Hours)	MTBR (Hours)
All Causes	1037	125.5	126
Unscheduled Maintenance Material Failures Excessive Wear Unbalanced Broken/Cracked Internal Failure Leaking Overheats	206 65 30 14 9 8 3 1	144.6 203.3 269.7 97.7 152.8 162.1 327.0 100.0	632 2,002 4,337 9,294 14,458 16,265 43,373 130,118
External Failure Causes Overspeed Sudden Stop Accident/Crash Damage Chipped, Grooved, Nicked Battle Damage Foreign Object Damage Maintenance Induced Overstressed	141 77 22 14 12 5 5 4 2	117.5 119.9 104.1 121.2 162.2 66.6 39.2 113.2 210.0	923 1,690 5,914 9,294 10,843 26,024 26,024 32,530 65,059
Retirement	24	204.8	5,422
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint Cannibalization	807 126 67 50 9	118.2 139.8 151.9 129.2 108.2	161 1,032 1,942 2,602 14,458
Other Scheduled Maintenance	646	123.5	201
Unknown Causes	35	188.8	3,718

4

. 1

Aircraft Model(s): AH-1G Part No. 209-010-701-3

7

TABLE LXXXV. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF TAIL ROTOR HUB ASSEMBLIES FROM RAMMIT MIRF REPORT DATA Part No. 204-011-801-3 Aircraft Model(s): AH-1G Records With Part Time Reason For Removal MTR MTBR Number (Hours) (Hours) 235 235.0 875 All Causes 535 384 271.4 Unscheduled Failures 303.1 740 Material Failures 278 Excessive Wear 183 300.3 1,124 37 5,557 Bearing Failure 268.6 6,425 331.1 32 Clogged 11 402.0 18,691 Leaking 34,367 Broken/Cracked 283.5 6 41,120 5 303.0 Unbalanced 102,801 2 428.5 Internal Failure 102.801 2 146.0 Corroded 1,939 106 188.1 External Failure Causes 5,272 39 143.0 Maintenance Induced 8,939 23 238.7 Accident/Crash Damage 10,821 19 143.6 Sudden Stop 174.8 22,845 9 Battle Damage 34,267 419.2 Chipped, Torn, Nicked, Cut, 6 Etc. 3 201.6 68,534 Overstressed 68,534 3 321.6 Overspeed 93.3 68,534 3 Burned 204.0 205,602 Bent Ŀ. 3 442.0 68,534 Retirement 488 205.1 421 Other Removal Reasons 1,044 197 236.9 No Failure Causes 1,344 252.6 153 No Defect 11,422 To Facilitate Other Maint. 18 199.5 164.7 8,567 Cannibalization 24 Other Scheduled Maintenance 182 176.2 1,130 11,422 18 134.3 Manufacturing Defect 2,259 91 217.3 Unknown Causes

227

TABLE LXXXVI. REASON FOR REA OF TAIL ROTOR RAMMIT MIRF RE	MOVAL/MTR/MTBR ANALYSIS BLADE ASSEMBLIES FROM EPORT DATA
Aircraft Model(s): UH-1D	Part No. 204-011-702-15
	Records With Part Time

V

Reason for Removal			
	Number	(Hours)	MTBR (Hours)
All Causes	1.890	353.8	3 54
Unscheduled Maintenance Material Failures Excessive Wear Poor Bonding Unbalanced Corroded Internal Failure Other	501 79 34 18 11 8 4 4	345.3 390.4 558.3 310.5 334.1 220.3 115.7 92.5	1,335 8,465 19,670 37,154 60,797 83,596 167,192 167,192
External Failure Causes Dented Chipped/Nicked/Cut/Cracked Foreign Object Damage Accident/Crash Damage Sudden Stop Punctured Battle Damage Overspeed Broken Overstressed Burned	422 97 81 71 43 37 29 24 16 13 8 3	336.9 308.4 375.8 299.7 349.5 259.9 369.5 413.6 399.0 451.2 124.1 664.3	1,585 6,895 8,256 9,419 15,553 18,075 23,061 27,865 41,798 51,444 83,596 222,923
Retirement	93	871.3	7,191
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization Other Scheduled Maintenance Unknown Causes	1296 839 720 96 23 338 119	320.0 293.3 335.1 273.7 329.2 283.3 368.5	516 797 929 6,966 29,077 1,979 5,620
TABLE LXXXVII. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF TAIL ROTOR BLADE ASSEMBLIES FROM RAMMIT MIRF REPORT DATA			
--	---	--	---
Aircraft Model(s):UH-1D	Part N	io. <u>204-01</u>	1-702-17
Reason For Removal	Record Part	Records With Part Time	
	Number	MTR (Hours)	MTBR (Hours)
All Causes	289	191.6	192
Unscheduled Maintenance Material Failures Poor Bonding	119 3 3	137.9 193.0 193.0	465 18,462 18,462
External Failure Causes Foreign Object Damage Battle Damage Dented Chipped/Nicked/Cut/Cracked Sudden Stop Punctured Maintenance Induced Overstressed Overspeed Accident/Crash Damage	116 35 25 18 15 7 6 4 2 2 2	136.5 118.2 112.0 168.9 191.5 124.1 133.0 174.0 268.0 36.0 7.0	477 1,582 2,215 3,077 3,692 7,912 9,231 13,847 27,693 27,693 27,693
Retirement	8	933.1	6,923
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization	162 103 70 24 9	194.5 203.7 188.3 280.1 119.2	342 538 791 2,308 6,154
Other Scheduled Maint.	28	147.4	1,978
Unknown Causes	31	206.6	1,787

Y

_

4

.

TABLE LXXXVIII. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF TAIL ROTOR BLADE ASSEMBLIES FROM RAMMIT MIRF REPORT DATA			
Aircraft Model(s): <u>UH-1H</u>	Part N	0. <u>204-0</u>	11-702-15
Reason For Removal	Record Part	s With Time	
	Number	MTR (Hours)	MTBR (HOURS)
All Causes	7886	319.1	319
Unscheduled Maintenance Material Failures Excessive Wear Unbalanced Poor Bonding Internal Failure Corroded	2888 324 157 76 52 29 10	347.1 383.0 447.1 293.6 361.4 233.4 600.8	871 7,765 16,026 33,107 48,387 86,763 251,614
External Failures Causes Chipped/Nicked/Cut/Cracked Battle Damage Dented Accident/Crash Damage Broken Sudden Stop Foreign Object Damage Punctured Collapsed Overstressed Burned Maintenance Induced Overspeed Induced by Other Failures	2564 578 455 369 345 322 179 111 72 49 36 22 12 10 4	342.5 352.9 362.6 334.5 305.7 396.8 287.6 320.4 311.2 312.4 404.9 408.1 188.0 166.0 95.0	981 4,353 5,529 6,818 7,293 7,814 14,056 22,667 34,946 51,349 69,892 114,370 209,678 251,613 629,034
Retirement Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization Other Scheduled Maintenance	213 4785 2865 2145 445 275 1196	848.8 278.6 320.6 384.6 225.9 255.2 167.0	11,812 526 878 1,173 5,654 9,150 2,104

Ł

TABLE LXXXVIII. (Cont'd)			
Reason For Removal	Record Part		
	Number	MTR (Hours)	MTBR (Hours)
Manufacturing Defect	2	33.0	1,258,069
Unknown Causes	722	2 97. 0	3,484
			-

;

TABLE LXXXIX. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF TAIL ROTOR BLADE ASSEMBLIES FROM RAMMIT MIRF REPORT DATA Aircraft Model(s): AH-1G Part No. 204-011-702-17			
Reason For Removal	Record Part	Records With Part Time	
	Number	MTR (Hours)	MTBR (Hours)
All Causes	3068	221.0	221
Unscheduled Maintenance Material Failures Excessive Wear Unbalanced Poor Bonding Internal Failure Corroded Other External Failure Causes Chipped/Nicked/Cut/Cracked Battle Damage Dented Accident/Crash Damage Broken Sudden Stop Foreign Object Damage Punctured Overspeed Maintenance Induced Overstressed Burned Retirement Other Removal Reasons No Failure Causes	$ \begin{array}{r} 1063 \\ 158 \\ 69 \\ 50 \\ 18 \\ 10 \\ 5 \\ 6 \\ 904 \\ 176 \\ 165 \\ 157 \\ 114 \\ 96 \\ 56 \\ 47 \\ 42 \\ 24 \\ 14 \\ 8 \\ 5 \\ 45 \\ 1916 \\ 1144 \\ 90 \\ 50 \\ 45 \\ 1916 \\ 1144 \\ 90 \\ 144 \\ 8 \\ 5 \\ 45 \\ 1916 \\ 1144 \\ 90 \\ 144 \\ 90 \\ 144 \\ 144 \\ 144 \\ 10 \\ 50 \\ 114 \\ 144 \\ 144 \\ $	239.0 316.0 370.4 254.1 174.1 222.5 747.8 426.8 225.8 264.9 222.3 234.7 185.6 259.8 160.6 177.1 263.0 200.2 400.4 674.5 200.8 235.9	638 4,292 9,827 13,562 37,671 67,809 135,617 113,014 750 3,853 4,110 4,319 5,948 7,063 12,109 14,427 16,145 28,254 48,435 84,761 135,617 15,069 346 593 771
No Detect To Facilitate Other Maint. Cannibalization	187 77	247.6 177.0 245.2	3,626 8,806
Other Scheduled Maintenance Unknown Causes	564 2 53	135.9 186.5	1,202 2,680

TABLE XC.REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 42-DEGREE GEARBOXES FROM RAMMIT MIRF REPORT DATAAircraft Model(s):UH-1DPart No. 204-040-003-23			
Reason For Removal	Record Part	ls With Time	
	Number	MTR (Hours)	MTBR (Hours)
All Causes	51.8	717.2	717
Unscheduled Maintenance Material Failures Leaking Excessive Wear Internal Failure Broken Contamination Overheats Bearing Failure Corroded Loose Bolts External Failure Causes Sudden Stop Overstressed Overspeed Maintenance Induced Burned Nicked/Chipped/Torn Accident/Crash Damage Foreign Object Damage Scheduled Overhaul (TBO) Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Other Scheduled Maintenance	227 138 78 19 16 12 7 2 2 1 1 1 89 55 20 5 3 2 2 1 1 1 44 147 29 12 17 30	526.1 576.1 489.4 836.1 588.4 750.5 597.2 544.5 407.0 637.0 299.0 448.6 463.2 351.8 476.0 823.3 561.5 501.0 133.0 303.0 1118.5 619.1 472.2 407.8 517.6 853.6	1,637 2,692 4,763 19,552 23,218 30,957 53,070 185,744 185,744 185,744 371,489 371,489 371,489 4,174 6,754 18,574 18,574 18,574 18,574 12,580 2,527 12,810 30,957 21,852 12,383
Unknown Causes	88	587.5	4,221

TABLE XCI. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 42- DEGREE GEARBOXES FROM RAMMIT MIRF REPORT DATA			
Aircraft Model(s):UH-1D	Part N	lo	40-003-37
Reason For Removal	Record Part	ls With Time	
	Number	(Hours)	MTBR (Hours)
All Causes	1 599	757.3	7 57
Unscheduled Maintenance Material Failures Leaking Excessive Wear Internal Failure Contamination Broken Bearing Failure Overheats Corroded External Failure Causes Sudden Stop Accident/Crash Damage Overstressed Overspeed Battle Damage Nicked/Chipped/Torn Foreign Object Damage Maintenance Induced Scheduled Overhaul (TBO) Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization Other Scheduled Maintenance	769 519 337 71 35 25 7 6 3 250 144 44 24 11 10 8 5 4 300 530 168 132 24 12 269	570.8 608.2 608.4 625.5 587.6 654.9 586.3 250.8 625.3 853.0 493.2 512.0 452.8 414.5 569.4 359.1 630.0 581.6 473.5 1369.3 681.6 776.6 823.4 601.7 612.5 583.3	1,575 2,333 3,593 17,056 34,600 48,440 172,999 201,832 403,665 4,844 8,410 27,523 50,458 110,090 121,099 151,374 242,199 302,748 4,037 2,285 7,208 9,174 50,458 100,916 4,502
Uther Scheduled Maintenance Unknown Causes	269 93	583.3 794.3	4,502

TABLE XCII. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 42-DEGREE GEARBOXES FROM RAMMIT MIRF REPORT DATA			
Aircraft Model(s): UH-IH	Part N	lo	040-003-37
Reason For Removal	Record Part	ls With Time	
	Number	MTR (Hours)	MTBR (Hours)
All Causes	2654	655.5	6 56
Unscheduled Maintenance Material Failures Leaking Excessive Wear Contamination Internal Failure Broken Overheats Bearing Failure Corroded Loose Bolts External Failure Causes Accident/Crash Damage Sudden Stop Overspeed Battle Damage Burned Nicked/Chipped/Torn Induced By Other Failure Maintenance Induced Foreign Object Damage	1617 1126 791 150 72 55 36 10 6 4 1 492 180 179 34 30 28 15 13 8 5	543.4 565.6 561.9 612.7 569.3 591.8 551.4 376.5 285.5 353.5 196.0 491.6 550.3 455.1 547.3 431.2 466.3 401.0 481.4 381.1 288.4	1,076 1,545 2,199 11,599 24,163 31,631 48,325 173,971 289,951 434,927 1,739,708 3,536 9,665 9,719 51,168 57,990 62,132 115,981 133,824 217,463 347,942
Scheduled Overhaul (TBO)	206	1409.9	8,445
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization Other Scheduled Maintenance Unknown Causes	830 496 432 35 29 135	687.4 754.1 774.9 676.5 537.3 672.7 531.2	2,096 3,507 4,027 49,706 59,990 12,887 8,742
	277		~,/~~

			•
TABLE XCIII. REASON FOR EMOVAL/MTR/MTBR ANALYSIS OF 42-DEGREE GEARBOXES FROM RAMMIT MIRF REPORT DATA			
Aircraft Model(s): AH-1G	Part N	io. <u>204-04</u>	0-003-37
Reason For Removal	Record Part	s With Time	
	Number	MTR (Hours)	MTBR (Hours)
All Causes	976	572.1	572
Unscheduled Maintenance Material Failures Leaking Excessive Wear Internal Failure Broken Contamination Overheats Bearing Failure External Failure Causes Accident/Crash Damage Sudden Stop Overstressed Battle Damage Nicked/Chipped/Torn Overspeed Burned Foreign Object Damage	604 424 279 96 23 12 10 3 1 180 72 53 21 9 9 6 5 3 21	496.7 536.6 496.2 659.7 573.6 547.1 459.2 396.0 217.0 402.6 456.4 380.3 244.5 393.4 414.0 533.8 440.4 354.0 290.5	924 1,317 2,001 5,816 24,275 46,528 55,834 186,112 558,336 3,102 7,755 10,535 26,587 62,037 62,037 93,056 111,667 186,112 279,168
Scheduled Overhaul (TBO)	51	1383.7	10,948
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization Other Scheduled Maintenance	321 172 154 10 8 43	585.0 599.8 623.7 515.2 245.2 470.4	1,739 3,246 3,626 55,834 69,792 12,985
Manufacturing Defect	1	23.0	558,336
Unknown Causes	105	611.0	5,317

TABLE XCIV. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 90-DEGREE GEARBOXES FROM RAMMIT MIRF REPORT DATA			
Aircraft Model(s): UH-1D	Part N	0	
Reason For Removal	Record Part	s With Time	
	Number	MTR (Hours)	MTBR (Hours)
All Causes	199	729.0	729
Unscheduled Maintenance Material Failures Leaking Contamination Internal Failure Excessive Wear Broken Bearing Failure Other External Failure Causes Sudden Stop Overstressed Overspeed Burned Maintenance Induced Accident/Crash Damage Battle Damage Scheduled Overhaul (TBO) Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization Other Scheduled Maint. Unknown Causes	81 49 21 11 7 5 2 2 1 32 12 9 3 3 1 1 6 3 55 20 14 5 1 11 24	543.3 582.7 618.4 670.5 421.6 324.6 779.5 700.5 656.0 483.1 537.4 400.2 613.7 26.6 756.3 525.0 694.0 1088.2 591.1 518.7 474.2 725.4 109.0 499.2 636.0	1,791 2,961 6,908 13,189 20,725 29,015 72,538 72,538 145,076 4,534 12,090 16,120 48,359 145,076 145,076 13,189 6,045

Y

TABLE XCV. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 90-DEGREE GEARBOXES FROM RAMMIT MIRF REPORT DATA			
Aircraft Model(s): UH-1D	Part N	lo. 204-04	0-012-13
Reason For Removal	Record Part	Records With Part Time	
	Number	MTR (Hours)	ATBR (Hours)
All Causes	1569	697.5	697
Unscheduled Maintenance Material Failures Leaking Contamination Internal Failure Excessive Wear Broken Bearing Failure Corroded Other	674 455 209 99 57 52 30 3 2 3	474.5 505.2 520.0 497.0 454.1 582.6 438.4 441.0 329.0 235.7	1,624 2,405 5,236 11,054 19,199 21,046 36,479 364,790 547,185 364,790
External Failure Causes Sudden Stop Accident/Crash Damage Overstressed Overspeed Battle Damage Nicked/Chipped/Torn Foreign Object Damage Burned Maintenance Induced	219 119 43 23 12 8 6 4 2 2	410.6 392.6 453.6 328.0 467.2 479.7 446.0 336.2 399.5 939.5	4,997 9,196 25,450 47,581 91,198 136,796 182,395 273,593 547,185 547,185
Scheduled Overhaul (TBO)	477	1053.7	2,294
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization	418 131 97 29 5	650.6 532.4 576.3 419.4 335.8	2,618 8,354 11,282 37,737 218,874
Other Scheduled Maintenance	203	427.1	5,391
Manufacturing Defect	1	66.0	1,094,371
Unknown Causes	83	550.6	13,185

Ð

TABLE XCVI. REASON FOR REMOVAL/MTR/MTBR ANALYSIS OF 90-DEGREE GEARBOXES FROM RAMMIT MIRF REPORT DATA			
Aircraft Model(s): <u>UH-1H</u>	Part N	o. <u>204-04</u>	0-012-13
Reason For Removal	Records With Part Time		
	Number	MTR (Hours)	MTBR (HOURS)
All Causes	2812	613.6	614
Unscheduled Maintenance Material Failures Leaking Excessive Wear Metal on Magnetic Plug Internal Failure Contamination Broken/Cracked Bearing Failure Overheats Corroded Loose Bolts	1506 1068 649 122 85 76 75 49 6 3 2 1	481.0 498.0 502.4 487.8 520.7 519.8 483.1 440.4 428.1 552.7 237.0 45.0	1,146 1,615 2,659 14,143 20,299 22,703 23,006 35,213 287,574 575,148 862,722 1,725,444
External Failures Causes Sudden Stop Accident/Crash Damage Battle Damage Nicked/Chipped/Torn Overspeed Overstressed Maintenance Induced Foreign Object Damage Induced By Other Failure Burned Punctured	438 159 134 39 27 22 20 14 8 7 6 2	439.5 435.1 416.5 409.1 502.0 489.0 447.2 412.2 412.2 444.5 738.8 486.3 412.0	3,939 10,851 12,876 44,242 53,905 78,429 86,272 123,246 215,680 246,492 287,574 862,922
Scheduled Overhaul (TBO)	395	1073.3	4,368
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization	911 574 489 46 39	633.5 697.2 738.7 510.3 396.6	1,894 3,006 3,529 37,510 44,242

TABLE XCVI.	(Cont'	d.)	
Reason For Removal	Record Part	Records With Part Time	
	Number	MTR (Hours)	MTBR (Hours)
Other Scheduled Maint.	98	621.1	17,607
Unknown Causes	239	485.6	7,219

-

4.

.

Y

TABLE XCVII. REASON FOR REMO OF 90- DEGREE GE MIRF REPORT DAT	VAL/MTR/N ARBOXES 1 A	MTBR ANAL FROM RAMM	YSIS IT
Aircraft Model(s): AH-1G	Part N	io. 204-0	40-012-13
Reason For Removal	Record Part	ls With Time	
	Number	MTR (Hours)	MTBR (Hours)
All Causes	862	550.2	550
Unscheduled Maintenance Material Failures Leaking Excessive Wear Contamination Internal Failure Broken Corroded Bearing Failure Other External Failure Causes Sudden Stop Accident/Crash Damage Overstressed Maintenance Induced Overspeed Nicked/Chipped/Torn Battle Damage Burned Foreign Object Damage Scheduled Overhaul (TBO) Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint.	483 321 164 61 38 37 16 2 1 2 162 51 46 22 16 8 8 7 2 2 85 294 142 119 13	432.4 469.8 455.9 495.1 588.6 386.8 431.6 404.5 473.0 483.5 358.5 372.9 373.7 346.7 313.7 350.8 385.1 374.1 107.5 246.5 1058.7 596.7 622.0 649.7 498.6	982 1,478 2,892 7,775 12,482 12,819 29,644 237,151 474,303 237,151 2,928 9,300 10,311 21,559 29,644 59,288 59,288 67,758 237,151 237,151 237,151 5,580 1,613 3,340 3,986 36,485
Other Scheduled Maintenance	68	452.4 489.7	6,975
Unknown Causes	84	640.7	5,646

TABLE XCVIII. REASON FOR REMO OF T/R DRIVE SH FROM RAMMIT MIR Aircraft Model(s):UH-1D	VAL/MTR/I AFT HANG F REPORT Part N	MTBR ANAL ER ASSEMB DATA No. 204-0	YSIS LIES 40-600-7
Reason For Removal	Record Part	ls With Time	
	Number	MTR (Hours)	MTBR (Hours)
All Causes	5202	372.5	373
Unscheduled Maintenance Material Failures Excessive Wear Bearing Failure Leaking Broken Internal Failure Overheats Contamination Corroded Other External Failure Causes Sudden Stop Overstressed Cut/Nicked/Cracked/Torn Accident/Crash Damage Overspeed Burned/Heat Damage Maintenance Induced Foreign Object Damage Battle Damage Overhaul Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization	3007 2380 962 680 524 81 79 46 4 1 3 627 377 86 60 34 24 22 11 9 4 601 1594 549 251 288 10	$142.9 \\ 580.2 \\ 602.0 \\ 637.2 \\ 465.3 \\ 555.6 \\ 639.0 \\ 555.5 \\ 533.5 \\ 76.0 \\ 500.0 \\ 465.1 \\ 481.0 \\ 225.4 \\ 502.9 \\ 621.1 \\ 594.1 \\ 603.3 \\ 537.3 \\ 393.5 \\ 656.5 \\ 1010.8 \\ 565.1 \\ 519.0 \\ 557.2 \\ 477.2 \\ 767.1 \\ 502.9 \\ 67.1 \\ 57.2 \\ 67.1 \\ 502.9 \\ 67.1 \\ 502.9 \\ 67.1 \\ 57.2 \\ 67.1 \\ 502.9 \\ 67.1 \\ 57.2 \\ 57.2 \\ 67.1 \\ 57.2 \\ 5$	645 814 2,015 2,850 3,699 23,927 24,533 42,132 484,521 1,938,084 646,028 3,091 5,141 22,536 32,301 57,002 80,754 88,095 176,189 215,343 484,521 3,225 1,216 3,530 7,721 6,729 193,808
Other Scheduled Maintenance	680	588.9	2,850
Unknown Causes	365	590.2	5,310

Y

I

TABLE XCIX. REASON FOR REMO OF T/R DRIVE SH FROM RAMMIT MIR	VAL/MTR/N AFT HANG F REPORT	MTBR ANAL ER ASSEMB DATA	YSIS LIES
Aircraft Model(s):UH-1D	Part N	o. <u>204-0</u>	40-600-9
Reason For Removal	Record Part	s With Time	
	Number	(Hours)	MTBR (Hours)
All Causes	3864	430.2	430
Unscheduled Maintenance Material Failures Excessive Wear Bearing Failure Leaking Internal Failure Contamination Broken Overheats Corroded Other External Failure Causes Sudden Stop Accident/Crash Damage	2501 2145 1104 641 285 68 20 15 6 5 1 356 139 109	414.5 418.3 422.6 443.3 366.3 333.1 525.1 374.9 107.1 438.6 33.0 389.9 350.2 450.9	665 775 1,506 2,593 5,833 24,447 83,119 110,826 277,064 332,477 1,662,384 4,670 11,960 15,251
Accident/Grash Damage Overstressed Overspeed Cut/Nicked/Cracked/Torn Maintenance Induced Burned/Heat Damage Battle Damage Foreign Object Damage Induced By Other Failure	38 23 19 18 5 2 2 1	281.5 527.3 401.3 330.7 542.8 706.0 478.5 500.0	43,747 72,278 87,494 93,355 332,477 831,192 831,192 1,662,384
Overhaul	28	570.9	59,371
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization	1335 387 293 75 19	456.8 467.9 527.6 294.1 234.4	1,245 4,296 5,674 22,165 87,494
Other Scheduled Maintenance	774	484.0	2,148
Unknown Causes	174	311.2	9,554

Y

TABLE C. REASON FOR REMOVA OF T/R DRIVE SHAF FROM RAMMIT MIRF	L/MTR/MT T HANGER REPORT D	BR ANALYS ASSEMBLI ATA	IS ES
Aircraft Model(s): UH-1H	Part N	o.204-040	- 600- 7
Reason For Removal	Record Part	s With Time	
	Number	MTR (Hours)	MTBR (Hours)
All Causes	798	560.4	560
Unscheduled Maintenance Material Failures Excessive Wear Bearing Failure Leaking Corroded Internal Failure Overheats Contamination	503 381 196 101 73 4 3 3 1	625.0 639.8 734.5 638.0 423.7 388.2 246.3 293.0 1246.0	889 1,174 2,282 4,428 6,126 111,806 149,074 149,074 447,222
External Failure Causes Sudden Stop Cut/Nicked/Cracked/Torn Accident/Crash Damage Overstressed Battle Damage Overspeed Maintenance Induced Foreign Object Damage	122 49 24 19 14 6 6 3 1	578.8 705.5 556.9 367.3 369.6 450.1 710.8 1087.0 300.0	3,666 9,127 18,634 23,538 31,944 74,537 74,537 149,074 447,222
Overhaul	5	404.8	89,444
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint Cannibalization Other Scheduled Maintenance	290 109 62 38 9 159	451.1 545.5 516.0 597.6 530.3 408.2	1,542 4,102 7,213 11,769 49,691 2,813
Unknown Causes	22	294.1	20,328

Y

t

TABLE CI. REASON FOR REMO OF T/R DRIVE SH FROM RAMMIT MIR	VAL/MTR/ AFT HANG F REPORT	MTBR ANAL ER ASSEMB DATA	YSIS LIES
Aircraft Model(s): UH-1H	Part N	lo	40-600-9
Reason For Removal	Record Part	ls With Time	
	Number	(Hours)	MTBR (Hours)
All Causes	10648	515.1	515
Unscheduled Maintenance Material Failures Excessive Wear Leaking Bearing Failure Contamination Internal Failure Broken Corroded Overheats Loose Bolts External Failure Causes Accident/Crash Damage Sudden Stop Maintenance Induced Overstressed Battle Damage Cut/Nicked/Cracked/Torn Burned/Heat Damage Overspeed Foreign Object Damage Induced By Other Failures Other	7738 6361 4022 1062 981 113 71 70 23 18 1 70 23 18 1 1377 621 365 112 73 53 51 12 73 53 51 46 42 8 3 3 21	505.8 515.1 545.3 398.5 508.0 623.4 534.0 490.0 467.7 486.5 54.0 462.8 486.4 464.1 414.7 491.5 364.9 385.6 482.6 349.2 714.1 328.6 300.0 585.1	709 862 1,364 5,165 5,591 48,540 77,254 78,358 238,480 304,724 5,485,034 3,983 8,833 15,027 48,974 75,137 103,491 107,550 119,240 130,596 685,629 1,828,345 261,192
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization	2889 1509 1348 84 77	539.5 536.9 553.2 413.2 386.7	1,899 3,635 4,069 65,298 71,234
			1

Y

245

1

i

TABLE CI. (Co	nt'd)		
Reason For Removal	Record Part	s With Time	
	Number	MTR (Hours)	MTBR (Hours)
Other Scheduled Maintenance	675	612.0	8,126
Unknown Causes	705	475.7	7,780
		E.	

TABLE CTL. PEASON FOR REMO	VAT./MTR/	MTBR ANAL	YSIS
OF T/R DRIVE SHA	AFT HANG	ER ASSEMB DATA	LIES
Aircraft Model(s): <u>AH-1G</u>	Part N	lo. 204-04	0-600-9
Reason For Removal	Record Part	ls With Time	
	Number	MTR (Hours)	MTBR (Hours)
All Causes	2 51 5	435.2	435
Unscheduled Maintenance Material Failures Excessive Wear Bearing Failure Leaking Contamination Internal Failure Overheats Broken Corroded Unbalanced External Failure Causes Accident/Crash Damage Sudden Stop Maintenance Induced Overstressed Battle Damage Cut/Nicked/Cracked/Torn Burned/Heat Damage Overspeed Foreign Object Damage	1679 1378 832 257 234 24 15 7 6 2 1 301 105 100 41 16 15 10 9 4 1	430.4 441.1 409.8 474.4 341.6 475.1 343.6 680.7 291.1 261.5 471.0 381.2 433.8 350.8 554.3 134.6 199.8 307.4 199.2 286.0 232.0	652 794 1,316 4,259 4,678 45,606 72,970 156,365 182,426 547,278 1,094,556 3,636 10,424 10,946 26,696 68,410 72,970 109,456 121,617 273,639 1,094,556
Overhaul	. 4	375.7	273,639
Other Removal Reasons No Failure Causes No Defect To Facilitate Other Maint. Cannibalization Other Scheduled Maintenance	832 365 339 17 9 244 223	445.2 375.1 376.2 199.7 665.8 545.0 465.6	1,316 2,999 3,229 64,386 121,617 4,486 4,908
Unknown Causes	223	40.3.0	4,500

...

APPENDIX III

4

•

UH-1/AH-1 TAIL ROTOR SYSTEM MISHAP/ACCIDENT DATA MATERIAL FAILURE ANALYSIS

The results of the analysis are presented in two groups of tables. The first group (Tables CIII through CVI) presents the failed item and/or mode by mishap classification. The second group (Tables CVII through CX) presents the failed item and/or mode by the aircraft model for which it was reported.

0.25 0.85 0.09 0.09 0.09 0.17 0.09 0.09 2.14 × 0.09 0.17 0.17 `¤ ∕ 2.14 25 2 10 e 1 N N 1 ALI 42-DEGREE GEARBOX FAILURES RESULTING IN MISHAPS TO MODELS UH-1C/D/H AND AH-1G, GROUPED BY MISHAP CLASSIFICATION L.21 0 S c 14 of Mishaps 0.34 11,699,000 ഹ 2 L 4 Class 0.25 (Data Period, 1-1-67 thru 3-31-71) 2 e t Number Mishap t t 0.25 ς ŧ 2 Mishap rate per million flight hours 0.09 1 1 ī **H** t G/B Failure/Metal Chips on Plug G/B Failed/Tore Loose from A/3 (flight hours) TOTAL MATERIAL FAILURES Failed Item/Mode TABLE CIII. Wire on Plug/Broken Input Bevel Gear TIME BASE Input Coupling G/B Failure **Output Seal** Coupling * œ ~ Spline 11 Plug Gears ۳Å *۸

249

.]

1.20 0.68 0.68 0.09 0.34 8.63 4.70 0.09 0.17 0.17 0.17 0.34 * E ~ 8.63 55 All 14 Ø 101 00 2 2 2 ___ 4 4 -4.52 53 37 ł I 8 F 2 4 90-DEGREE GEARBOX FAILURE RESULTING IN MISHAPS TO MODELS UH-1C/D/H AND AH-1G, GROUPED BY MISHAP 0 Number of Mishaps 11,699,000 0.94 Q 11 t 2 \sim Mishap Class 0.77 δ t 4 2 1 (Data Period, 1-1-67 thru 3-31-71) I t ī 1 I I 1 1.45 1 17 00 コ I I. t, t I = Mishap rate per million flight hours **76.0** 11 2 4 4 1 _ ł. 1 L I CLASS IFICA TION G/B Failed/90° G/B & T/R Separated Hi-Frequency Vibration, Suspected G/B Failure TIME BASE (flight hours) TOTAL MATERIAL FAILURES Failed Item/Mode Metal Particles on Plug TABLE CIV. G/B & T/R Separated Wire on Plug Loose Input Coupling. G/B Failure Quill Assy. × ª Y G/B Seal Gears ۳ * ۲ * Mount

6

. 1

Y

1.88 *= 0.34 0.26 2.14 0.09 60.0 0.26 60.0 1.03 **60°0** 0.94 0.77 0.77 12 25 22 Э 1 σ 4 3 5 ч Ч All TAIL ROTOR DRIVE SYSTEM FAILURES RESULTING IN 15 S 17 1 ٦ 6 2 ŝ I 1 -MISHAPS, GROUPED BY MISHAP CLASSIFICATION (Data Period 1-1-67 thru 3-31-71) Number of Mishaps I S 2 1 2 ŧ 4 t I. 4 I t 2 Ч Mishap Class 9 ŝ ł : I 1 I I t I I. t I 1 I 1 r 1 ſ ł Ч 1 1 I t 2 I ! 2 2 1 2 ł 2 1 I 2 2 S N I 1 ī e 1 ſ 2 _ T/R Quill, Control Tube/Nicked Hanger Bearing Bolt/Backed Off Failed Item/Mode TABLE CV. No. 4 Hanger Bearing No. 1 Hanger Bearing No. 3 Hanger Bearing No. 2 Hanger Bearing T/R Quill Couplings ---- Hanger Bearing T/R D/S Assembly T/R D/S Coupling T/R Drive Quill T/R D/S Clamp T/R Assembly

_

1

-9

	TA	BLE CV	(Cc	nt'd)				
			Numb(er of l	Mishap:	5		
Failed Item/Mode		2	3	4	5	6	All	× ۳ ۲
T/R D/S Coupling Seal	I	Ч	I	I	1	I	1	60°0
T/R Drive System Failure	ſ	2	1	I	1	T.	2	0.17
TOTAL MATERIAL FAILURES	17	13	1	12	15	47	1.05	8.98 8
λ*	1.45	1.11	60°0	1.11	1.37	3.93	90.6	
Time Base (flight hours)				11,69	99,000			
* λ _m = Mishap rate per million fl	ight	hours						

IN MISHAPS TO MO MISHAP CLASSIFIC	ATTON	UH-LC/	D/H AL	ND AH-	LG, GK	OUFEL	BY		
(Data Period, 1-	1-67	thru 3	3-31-71						
		Num	ber of	Misha	tps				
Failed Item/Mode		2	с С	4	5	9	ALT	× œ v	
//Suspected Failure	16	15	1	5	9	5	47	4.02	
: Failure/T/R and/or 90° G/B Separated	4	S	Ч	ŝ	ł	I	13	1.11	
.and/or 90° G/B Separated/Cause Unknown	Ч	9	I	1	1	1	80	0.68	
. Control/Suspected Failure	1	Ч	I	I	ł	I		0.09	
Bearing	1	Ч	I	4	n	1	6	0.77	
/Sheared, Loss of Torque on Retainer Nut	ł	I	1	Ч	I	l	-1	0.09	
on Yoke Bearing Retainer Nut/ Sheared, Nut Lost Torque	Ч	ł	I	I	t	1	i	60° 0	
ter Key/Broke	ı	I	 1	I	Ч	I	-	0.09	
E-Locking Nut	Ч	I	I	I	I	Ч	1 0	0.17	
Hub	ę	ę	Ч	2	4	Ŋ	14	1.20	
Grip	1	2	н,	1	н -	I	Ŋ	0.43	
Yoke	4	S	1	1	t	Ч	11	76-0	
per on Grip Retainer Nut	ı	ı	1	1		ı		60.0	
Hub Thrust Bearing	1		J	1	1		2	0.17	
Blade/Skin Unbonded	I	I	I	LI I	1	1	Ч	60.0	
Blade	1	I	ſ	1	1	2	2	0.17	1
ch Change Mechanism	ı	I	ł	ı	ı	Ч	Ч	0.09	

	TABLE	CVI.	(Con	t'd)				
			Number	of Mi	shaps			
Failed Item/Mode		2	lishap 3	Class 4	ſ	9	ALL	* " ~
Crosshead Bearing	1	1		. 1	2	,	ß	0.26
Crosshead Shear Pin	I	I	I	1	I	Ч	I	0.09
Crosshead Bearing/Fell Out	ı	I	I	I	I	-1	1	0.09
Crosshead Retaining Bolt	٦	I	I	1	I	1	Ч	60.0
P/C/L Bearing	I	I	I	I	ı	-1	٦	60.0
P/C/L/Worn, Caused Binding	-	I	ı	ł	ł	2	e	0.26
P/C/L Nut Broke	I	1	I	1	I	J	F-1	60.0
Control Tube, Control Tube Nut or Cotter Key/Sheared, Failed	Ч	Г	I	2	7	ຕ	14	1.19
Slider/Lacked Lube, Failed	1	I	I	1	I	2	2	0.17
Self-Locking Nuts on P/C Shaft	I	I	I	I	1	ł	1	60.0
T/R Control Quill Assembly	ı	Г	I	2	e	2	Ø	0.68
T/R Control Quill Housing	ł	I	8	I	I	F-1	-1	60°0
T/R Control Quill Sprocket Guard/ Worn	I	I	I	I	I	F 1	Ч	60.0
T/R Control Quill Sprocket Wheel/ Worn	1	I	I	I	ł	Ч	1	60.0
T/R Control Quill Sprocket/Loose	I	I	ı	Ч	1	I	2	0.17
T/R Control Quill Sprocket	i	1	I	I	1	Ч	1	0.09
Control Chain/Broke	1	I	I	1	1	ł	1	0.09
Control Chain/Stretched	1	I	I	ı	I	Ч	Ч	0.09

V

		ľ	Number	OF MIS	shaps	t		*
		W	ishap C	lass	F	6	ALL	Е <
Ttem/Mode	F	2	3	ŧ	2	-	1	0.09
railed flow red	1	1	1	. 0		- ~	IO	0.85
ontrol Chain/Failed	33 -	t 0	. n	26	30	43	175	14.96
TOTAL MATERIAL FAILURES				T	1	9 60	14 96	
	2.82	3.42	0.26	2.22	2.50	00.0	2	
γ				1	000 00			
TTME BASE (flight hours)				0 ¹ 11	2001			

TABLE CVII.	42-DH MISH/ (Data	EGREE (APS, GI a Peri(GEARB ROUPEI od 1-	OX FAI D BY M L-67 t	LURES ODEL hru 3.	RESUL: -31-71	()	IN		
			5	A	rcrat	t Mode				
	UH UH	I-IC	10	I-1D	15	H1-1	AH	[-1G		All
Failed Item/Mode	NU.	λ ^m *	No.	۸ ^m *	No.	۸ ^m *	No.	۸ _m *	No.	۸ ^m *
G/B Failure	2	1.60	77	66.0	3	0.55	1	1.05	10	0.85
G/B Failure/Metal Chips on Plug	ı	ı	2	0.49	Н	0.18	ſ	I	ŝ	0.25
G/B/Tore Loose From A/C	1	ı	I	t	Ч	0.18	1	ī	Ч	0.09
G/B Spline	ı	i	2	0.49	I	I	I	F	2	0.17
Output Seal	1	1	2	0.49	I	I	ł	ı	7	0.17
Wire on Plug/Broken	1	I	Ч	0.25	I	t	t	1	Ч	60 ° 0
Plug	ŀ	ı	Ч	0.25	1	I	I	I	-1	0.09
Coupling		I	Ч	0.25	1	I	l	ı	, 1	0.09
Input Coupling	1	1	ı	I	2	0.37	I	ł	2	0.17
Gears	I	1	1	0.25	T	I	ł	I		60.0
Input Bevel Gear	I	I	١	1	1	ı	-4	1.05		60.0
TOTAL MATERIAL FAILURES	7	1.60	14	3.49	7	1.28	7	2.10	25	2.14
TIME BASE (flight hours)	1,250	,000	4,050	,000	5,450	000,0	76	19,000	11,69	000, 6
* λ _m = Mishap Rate per milli	on fli	ght ho	sinc							

0.68 0.34 8.63 4.70 0.68 0.17 0.09 0.34 1.20 0.09 0.17 11,699,000 0.17 , e, R No. 55 14 00 Ч 2 2 2 œ 4 4 25.29 101 949,000 1.05 1.05 1.11 4.21 4.21 12.64 رخ E I. F I 1 ī AH-1G No. 24 12 2 4 I ŧ ī -_____ 1 90-DEGREE GEARBOX FAILURE RESULTING IN MISHAPS, GROUPED BY MODEL Alrcraft Model 0.73 6.42 2.75 1.65 0.18 0.18 0.18 0.73 × 5,450,000 Ĕ I ł ī 1 thru 3-31-71) No. 35 1.5 -1 ----4 4 δ Ч 1 1 ŧ 0.25 0.25 0.99 0.25 * E < 0.25 0.25 8.89 4,050,000 6.17 0.49 ī I ī UH-ID (Data Period 1-1-67 Mishap rate per million flight hours No. 36 25 2 ----I _____ × ۳ ۲ 4.80 2.40 1.60 0.80 1,250,000 I UH-1C No. 9 3 2 -1 I 1 ı 4 TIME BASE (flight hours) and T/R Separated/Cause Unknown TOTAL MATERIAL FAILURES G/B and T/R TABLE CVIII. Vibration/Suspected G/B Metal Particles on Plug Failed Item/Mode Wire on Plug Loose Failed/90° Input Coupling Separated Failure Failure Quill Assy. 11 × m Gears Mount Seal G/B G/B G/B *

4

257

1.88 0.26 0.34 0.26 0.77 2.14 0.09 0.09 0.77 0.09 1.03 0.09 0.94 E No. 25 22 σ 4 ო 5 ო 1 12 Ч 11 ----Ч 1.05 1.05 1.05 1.05 1 ı ī ł I ŧ t E G AH-1 No. Ч 1 ---ч н ī I ł I. ł ł TAIL ROTOR DRIVE SYSTEM FAILURES RESULTING IN MISHAPS, GROUPED BY MODEL AIRCRAFT MODE 0.18 0.18 0.18 1.65 * = 0.92 0.73 1.65 0.37 0.37 0.73 ŧ ı ŧ Ξ (Data Period 1-1-67 thru 3-31-71) UH- 1 No. ŝ 4 Ч σ 2 2 I σ 4 Ч Ч I 1.23 0.25 64.0 0.25 L.73 3.70 0.49 3.70 0.49 0.49 × I t UH-1D No. 15 0.80 15 ŝ 2 2 3 Ч 2 ~ Ч I I I 4.00 0.80 0.80 ı ı I ł ¥ ı I T ī ı E' UH-1C No. 7 ı ഗ I 1 ł ŧ L I L 1 Ч I ч T/R Quill, Control Tube/Nicked Hanger Bearing Bolt/Backed Off TABLE CVIX. FAILED ITEM/MODE T/R Quill Drive Quill Hanger Bearing 2 Hanger Bearing 3 Hanger Bearing 4 Hanger Bearing T/R Quill Couplings - Hanger Bearing T/R D/S Coupling T/R Quill Assy T/R D/S Clamp T/R D/S Assy -No. No. No. No.

4

258

TABLE CVI	x • (0	Cont ¹ d	~							
				A	IRCRA	FT MOI	DEL			
	-HU	-1C	HU	-1D	-HU	-1H	I-HA	5		ALL
FAILED ITEM/MODE	.ov	* " "	No.	× ۳ ۳	.ov	ک ۳ *	No.	× ۳	No.	* ¤ *
T/R D/S Coupling Seal Failed	1	I	1	I	I	0.18	I.	1	1	60°0
I/R Drive System Failure, Cause Unknown	1	I	I	I	7	0.37	I	I	2	0.17
TOTAL MATERIAL FAILURES	80	6.40	52	12.84	41	7.52	4	4.21	1.05	8.98
TIME BASE (flight hours)	1,25	0,000	4,05	000,00	5,45	0,000	646	9,000	11,69	000,96
* λ_m = Mishap rate per million fl	ight	hours								

TABLE CX. TAIL ROTOR RESULTING I (Date Per	δ. PIT N MIS 'iod',	CH CHA HAPS, 1-1-67	ANGE GRO 7 th	CONTRC UPED BY ru 3-31	JL F/	AILURES DEL)	10				
				AIR	CRAI	FT MODE	L.				
	Н	-1C	HN	-10	5	H-1H	AH	-16		III	
FAILED ITEM/MODE	No.	۸ _m *	No.	ک _ش *	No.	λ ^m *	No.	۸ _m *	No.	۰×m*	
T/R/Suspected Failure	6	7.2	80	1.98	20	3.67	10	10.54	47	4.02	
T/R and/or 90° G/B Separated/ Cause Unknown	1	I	ς	0.74	З	0.55	2	2.11	80	0.68	
T/R Failure/T/R and/or 90° G/B Separated	5	4.00	Ч	0.25	e	0.55	4	4.21	13	1.11	
T/R Control/Suspected Failure	ł	I	I	ī	1	I	1	1.05	I	0.09	
T/R Bearing	1	0.80	Ч	0.25	5	0.92	2	2.11	6	0.77	
Pin/Sheared, Loss of Torque Retainer Nut	ı	ł	Ч	0.25	1	I	i	1	Ч	0.09	
Pin on Yoke Bearing Retainer Nut/Sheared, Nut Lost Torque	I	I	Ч	0.25	I	1	I	1	1	0.09	
Cotter Key/Broke	I	i	I	1	1	0.18	1	i	Ч	0.09	
Self Locking Nut	1	I	2	0.49	I	1	I	i	2	0.17	_
T/R Hub	ц,	0.80	S	1.23	9	1.10	2	2.11	14	1.20	
T/R Grip	1	I		0.25	٦	0.18	e	3.16	5	0.43	
T/R Yoke	1	1	9	1.48	2	0.37	S	3.16	11	0.94	
Keeper on Grip Retainer Nut	1	1	1	t	I		l	1.05	Ч	0.09	
T/R Hub Thrust Bearing	I	,	1	I	L	0.18	Ч	1.05	7	0.17	
T/R Blade/Skin Unbonded		0.80	1	I	ı	1	I	I	Ч	0.09	
											_

'9

0.26 0.09 0.09 0.09 0.09 0.09 0.09 0.26 0.09 0.68 0.09 0.09 1.19 0.17 0.17 ₹ ALL No. 14 2 --e ø --------1 щ e 2 Ч Ч 1 1.05 1.05 1.05 1.05 I ī I I 1.05 I t ł ł. t <E 1 AH-1 AIRCRAFT MODEI No. I L L I ----I. I Ч L ł Ч -----L 1 0.37 0.74 0.18 0.37 0.55 I 0.18 0.37 1 I I ́е, UH-1H No. 2 2 4 Ч I Ч c ŧ 2 I 1 I 0.25 0.25 0.49 0.99 0.25 I 1.73 I I 1 ×^E <u> ПН-1</u> D (Cont'd) No. t, ı I 2 I I t ~ -0.80 2.40 0.80 T 1 L L 1 ı I T I I 1 JH-1C Ч Н TABLE CX. No. c I I I I 1 L Ч ŧ ----T/R Control Quill Sprocket Guard, Worn Control Tube, Control Tube Nut or Cotter Key/Sheared, Failed FAILED ITEM/MODES Crosshead Bearing/Fell Out P/C/L/Worn, Caused Binding T/R Control Quill Assembly T/R Control Quill Housing Self-Locking Nuts on P/C Shaft Crosshead Retaining Bolt Pitch Change Mechanism Crosshead Shear Pin P/C/L/Broke, Failed Slider/Lacked Lube Crosshead Bearing P/C/L Bearing T/R Blade

4

.)

Y

TABI	E	(Col	nt'd	~						
				AIRCRAF	ML	ODEL				
	Þ	H-IC	UH	-1D	5	H-1H	AH	-16		ALL
FAILED ITEM/MODE	No.	* ^{ee}	.oN	×۳×	No.	× ۳	No.	× س×	No.	* [#]
T/R Control Quill Sprocket Wheel/										
Worn	1	1	1	1	Ч	0.18	I	I	1	0.09
T/R Control Quill Sprocket/Loose	1	1	ł	1	Ч	0.18	Ч	1.05	2	0.17
T/R Control Quill Sprocket										
Failure	ı	I		0.25	I	I	1	1	Ч	0.09
Control Chain/Broke	U	I	Ч	0.25	T	1	I	I	Ч	0.09
Control Chain/Stretched	I	l	1	1	I	1		1.05	-	0.09
Control Chain/Twisted	I	1	I	1	I	I	Ч	1.05	1	0.09
Control Chain/Failed	2	1.60	S	1.23	2	0.37	Ч	1.05	10	0.85
TOTAL MATERIAL FAILURES	24	19.2	52	12.84	61	11.19	38	40.04	175	14.96
TIME PASE (flight hours)	1,2	50,000	4,0	50,000	5,4	50,000	646	000,6	11,6	99,000
* λ _m = Míshap rate per millio	n fl	ight ho	ours							

¥

262

.]

APPENDIX IV

u

UH-1/AH-1 TAIL ROTOR SYSTEM FAILURE MODE ANALYSIS

The tables in this appendix are the details of the failure mode analysis presented in Section 10. Included are all occurrences from the M&R program data which resulted in unscheduled maintenance on the tail rotor system.

TABLE C	XI. TAIL ROTOR HUB	AND B	IAD	E F	AILU	RE 1	40 DE	ANA	LYS!	S			
					9	ilure	Rates I	er Mil	ion Fl	isht Ho	ours		
				I-HO	D/H	$\left \right $		CH-1C				NH-16	
		Class	nhere	nt	T	1	nhe rent	ary	Т	Inhe	rent	2	
Failure	Failure	of Fail.	<u> </u>	nduced Co	mbat Se	-uno	Inc	Comb	at Seco		Indu	ced Combat	Secur-
T/R Hub	1.4156	400.		en l	nage	ary	+	Dama	ge dar	-		Ватаде	dary
Safety Wire From Hub Retaining Nut to Static Stop Broken	Uaknown		13	,	•	'	,		•		1	1	•
Data Plate Missing From T/R Hub/ Bond Failed	Bonding Failure	1	13	ı	,	•	•	'	` 	•	•	1	1
T/R Hub Components Corroded	Insufficient Plating	1	65	,	•	,		•	•	•	•	,	ł
T/R Hub Trunnion Bearings Rough/ "">rm	Normal Wear/Sandy Environment	11	96	,	•			' 	'			1	,
. A Grip Bearings Worn/Loose/Rough	Normal Wear/Lack of Lubrication	11	130	,	,	,	44			380		•	•
T/R Hub Spindle Fretting/Damaged/ Cracked	Fatigue	ΛI	•		•			• 	-	13		ı	•
T/R Hub Grease Fitting Missing/Loose	Unknown		,		•	•	-		' 	75		,	•
T/R Grip Nut/Bearing Retainer Nut Loose	Maintenance Undertorqued	111	•	26	•	•	•	.' 	•	!	•	,	,
T/R Grip Pitch Change Bushing Worn	Securing Bolt Has Low Torque	11	•			•	,	1	-	,	'	ı	,
T/A Hub Removed-Engine Overspeed	Engine Overspeed	N/A	,	65	,		•			'	73	ł	•
T/R Hub Removed - Sudden Stoppage	Pilot Error, Tree ^c trike	N/N	,	٤. ا	,	•	1	' 	'	+	29	,	,
T/R Hub Bearings Won't Take Lubrication	Thrust Unit Installed Backwards	1	,			ı		r	'		•	3	'
T/R Hub Damaged by P/C Link	T/R P/C Link Inproperly Installed	I	1	,	•	•				-	15	'	,
T/R Hub Damaged by Armament Debris	Spent Brass Strike	11	1	13	,	•				'	•	,	1
T/R Hub and Blade Lost in Flight	i/R Yoke Crack/Unknown	IV	,			•					59	'	•
T/R Hub Removed - Wrong Part Number	Maintenance Error	N/N	•	E1	•	•		' 	•	•	+	'	1
T/R Vibration	Out of Track/Balance	11	13	1	•	•				0	•	•	
	UH-ID/H TOTAL 533 SUBTOTALS 533	†	273	260									
	UH-IC TOTAL 336 SUBTOTALS						54 25	~					
	AH-1G TOTAL 731 SUBTOTALS									585	146	•	

,'
_	TABLE C	ц. ((Lon	t'd)									
					Failt	Te Re	tes Pe	r Millio	n Flight	t Hour	S		
			1	븳	D/H			JH-1C			AH	-IC	
		5	I.		T		Prim	LEY			rimar		
		1 55877	nnere				terent			Inher	rent		
Failure	Pedline.	5	-	Dauced	-	_	Indi	ced			Induc	ed	
Mode	Cause	rail.	-	0	bat Seco	a		Combat	Secon-		·	Combat	Secon-
T/R Blade		20021	\dagger					Uemage	darv	Τ		Damage	dary
T/R Blade has Strike Damage	Contact Tree, Wire, Etc.	111	1	122	, 			ł	I		:		
T/R Blade Has Leading-Edge Erosion	Wear, Sandy Environment	11	169	•				•		1 I	;	ł	•
T/R Blade Damaged By Armament Debris	Spent Brass Strike	III	•	169			2 29 5		1	•	356	1	•
T/R Blade Has Combat Damage	Enemy Combat Fire	111	,		. ¹		; 		ł	,	967	, !	•
T/R Blade Has Bunding Void	Bonding Failure	п	20	,	; ,			•	,		•	51	ł
T/R Blade Removed - Overspeed	Overspeed - Pilot Error	N/A	•	65					•	67	1	,	•
T/R Blade Removed - Sudden Stoppage	Hard Landing. Engine Failure	N/N		10			<			77	,		•
T/R Blade Has Foreign Object Damage	Foreign Object Damage	***		<u>.</u>		-		•	•		8	•	•
T/R Blade Leading-Edge Hole Patch	Bondine Failure			1	' <u></u> -		,	•	ı	2	373	•	•
Luose		;				-	-	•	,	•	1	•	•
T/R Vibration	Blades Out of Track	11	32		, 		0	,		C a			
Lost in Flight	Unknown	IV			• 		,	•			• •	• •	
	UH-IN/H TOTAL 863		ī	610		+							
	UH-IC TOTAL 2743 SUBTOTALS						17547	1	1				
	AH-IG TOTAL 891 SUBTOTALS 891									5.1	121	U.	(
						-	_			ł	110/	2	I

TABLE CXI	I. TAIL ROTOR DRIVE	SUBS	LSY	M	FAII	URE	MOI	DE 4	NAL	SISI				
						ailure	Rate	s Per	Milior	fligh	LE Hou	5		
				77.7	H/DI-			ΩH	-10			¥	-10	
				Primar	Y		P.	rimary			à,	rimarv	 -	
		Class	Inher	Induce	ą		Inher	ent Induce	Ţ	<u></u>	Inher	ent	-	
Fallure Mode	Failure Cause	Fail. Mode		00	ombat	Secon-		0.0	ombat	secon-		0.2	ombat	Secon-
T/R Drive Shaft Hanger Assy									1			1		
T/R r/S Hanger Assy Seal Failure	Sandy Environment, utease Deterio- rates Seal	1	16	,	4	ı	5				63	1	ł	,
T/R D/S Hanger Assy Seal Trip	Damaged During Lubrication	I	•	55	,	•	1	ł	,		'	1	,	ı
T/R D/S Hanger Coupling Seal In- stalled Wrong	Maintenance Error	н		m	•	ı	ŀ	6	,	ı	ł	1	,	,
T/R D/S Hanger Bearing Failure	Sandy Environment/Lack of Lube	II	403	,	•	•	767	,	,	•	302	ı	•	,
T/R D/S Assy Removed - Sudden Stoppage	Crash, Rotor Stoppage	Ш	•	68	,	ı	•	4	,	•	'	45	1	ı
T/R D/S Hanger Assy Mount Chafing D/S Covei	Incorrect Cowling Installation	1		1	•	1	•	61	•	•	•	•	•	ł
T/R D/S Hauger Grease Inadequate/ D/S Bottoms Out	Lack of Lubrication	H	4	ñ	•	,	1	£.1	,	,	44	1	ı	•
T/R D/S Hanger Assy Stack-up Improper	Maintenance Error	1	•	•	1	ı	,	23	,	۰.	1	4	,	•
T/R D/S Hanger Assy "Thru Bolt" Loose	e Suspect Bad Bearing	-	,	•		•	19	,	•	•	'	,	,	•
T/R D/S Hanger Assy Mount Bolt Installed Wrong	lmproper Maintenance	1	ı	•		ı	•	61	•	,	•	Ŀ,	•	t
No. l T/R D/S Hanger Assy Seal Melted/Coning Apart	Heat/Vibration from Blower Failure	1	1	1	,	'	1	4	ι	•	,	'	,	59
	CH-ID/H TOTAL 623 SUBTOTALS		767	129	1	1								
	UH-IC TOTAL 644 SUBTOTALS						522	122	1					
	AH-1G TOTAL 468 SUBTOTALS						-				607	00		29

Ě

.

ight Hours	AH-1G	Primary	Inherent Induced	v Combat Secon		•	350	15	•	•	•	•	, , ,	•	- 29	15	- 43	- 15 -	- 423	- 29	•				380 539 -
r Million Fl	UH-IC	ITY	Iced	Combat Seco Damage dar		•	•		•	· ·	•		, ,	•	•	'	•	•	•	, ,	, 			1	
Rates Pe		Prim	nherent Indi	-	-	1 •	168 -	+	56 -	- 87	' '	- 5	ў н	- 25	+	•	•		1	,	•	_		252 140	
Filure				Secon- dary		•	•	•	,	,	•	•	,	,	,	,	1	•	•	,	,		•		
	H/01-H.	٩ry	ced	Combat Damage		13	ı	,	1	,	,	I	1	,	þ	,	'	'	1	1	•		13		
		Prin	Indu			'	، و	' 	، ح	-	147	'	•	'	•	•	•	•	•	•	•	_	4 143		
μ			tah	. =	-	•	24	2	2			'	•		•	•			' 	'	-		35,		
			Cla	Failure Fai Cause Mo		Enemy Fire	Seal Deteriorated, Sandy Environment 1	Seal Deteriorated, Sandy Environment 1	Washer Deteriorated	Suspect Packing Deteriorated	T/R Hit Tree, M/R Sudden Stoppage 11	Unknown - Suspect Faulty Main- Lunance	Maintenance Mishandling, Plug Damaged	Maintenance Error II	Ľnknown :	Unknown	Hard Landing	Maintenance Mishandled	T/R Overload II	Unknown	Unknown 11		LH-ID/P ICTAL 450 SI BTOTALS	UH-IC TOTAL 392 SUBTOTALS	AH-1G TOTAL 919 SUBTOTALS
				Failure Mude	42° Gearbox	-2 ⁰ G/B Damaged - Combat Inflicted	42° G/B Leaking at Input Quill	^{w2°} G/B Leaking at Aft Quill	42° G/B Leaking at Sight Gage	-2° G/B Leaking at .iller Cap	42° G/B Removed - Sudden Stoppage	42 [°] G/B Drain Flug Broken	42 [°] G/B Oil Leak at Magnetic Plug	42 [°] G/B Mounting Bolts Loose	42 ⁰ G/B Sight Gage Broken	42° G/B Crack¢d	42° G/B Replaced - Hard Landing	u2 ⁰ G/B Filler Cap Chain Broken	42° C/B Damaged By T/R Overload	42° G/B Oil Contaminated	42° G/B Grease Seal Torn	\$			

267

P

č ~ TABLE CXII

	TABLE CXII.	ŭ	ont	(P.										
						ailure	Rates	Per Mi	llion	Flizht	Hours			T
				CH-I	D/H			UH-IC				AH-LG		
				rinary	T	<u> </u>	Pr	Tary	Т		Pri	nary		
		of	unere.	nduced			Innerer	duced			lheren 1	t dured		
Failure Mode	Failure	Fail.		<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	atat	econ-	<u>.</u>	E C	bat Se	-uoo		Cont	at Se	-uco
90° Gearbox	10365			5	a de la		+	nan		2	╀	nama	5 9 9	2
90° G/B Filler Cap Chain Broken	Suspect Maintenance Error	ы		1	•	,	,	23				19		
90° G/B Case Stud Sheared	Maintenance Overtorque	11	,	13	,		•				•			
90° G/B Components Corroded	Suspect Poor Plating	IJ	07	,	,	,	۲		,		,	•		
90 ⁰ G/B Oil Contaminated/Water Grease	Improper Washdown Procedure, Cap Left Off, Excess Grease		•	<u>.</u>	,	,	•	\$				3		,
90 ⁰ G/B Has Metal Particles on Magnetic Plug	Unknown - Suspect Internal Wear	111	65		ı	,	4				365			•
90° G/B Leaking at Input Quill	Seal Deterioration, Sandy Environment	н	[+]	,	,		20		,		234			
90° G/B Leaking at Output Quill	Seal Deterioration, Sandy Environment	1	16	1	,	,	56	,			102	,		
90° C/B Leaking at Sight Gage	Sight Gage Washer Deteriorates	11	9	'		1	1	,			29	•		,
90° G/B Leaking at Filler Cap	Cap Improperly Tightened, Packing Demaged, Maintenance Error	1	_	<u></u>		,		52				3		
90° G/B Mounting Nuts Loose	Vibration	11	13	•		,	'	•	 ,		,			
90° G/B Removed - Sudden Stoppage	Tree Strike, Pilot Error	111	,	156	,	1	,		,		,	-		
90 [°] G/B Oil Level Sight Gage Glass Discolored	Sand, Wind, Oil Contaminated	ы	•	3		1	•	34				· ·		
90° G/B Leaking at Chip Detector	Damaged by Maintenance		,	,	,	,	,	56	,	1	1	•		 1
90 [°] C/B I/P Quill Has Inadequate Lube, D/S Bottoms Out	Lack of Lube	11	,	•	•	•	224	1						
90° G/B Case Chafed By G/B Cover	Improper Cover Fit	-	,	,	,	,	,	,	,	,	,	3		
90° G/B Chain Chafes Cover	Improper Installation	ч	1	•	,	,	,				,	15		
90° G/B Filler Neck Chipped	Unknown	ч	,	•	1	1	,	,	,		,	15		
90° G/B Cracked	Preloaded Mounting Position	111	•	•	•	ı	•		•	•	,	4		
90° G/B Replaced/ ost in Flight	Suspect T/R Hub Failure	111	•	•	+	,	•		,		,			02
						-	-	-	-	_		_	-	-

	TABLE CX		ပိ	nt'e										
				LH-11	5. ⁷ H	ilure	Rates	Per	11 I I I I I	- HISH	Ноц	AH A	-16	
		Class 1	P P	rimary			P	rimary			9	rimary	T	
Failure Mode	Failure Cause	of Faii. Mode		nduc ed Cor Dar	age >	icon-	<u> </u>	Di Ci ci	mbati S make	écon-		Induce	d ombat amare	Secon-
10 ⁰ Geerbox (Cont'd)							-						á	
0 ⁰ G/B Har Jumbat Damage	Enemy Fire	111	,	1			,	•		,	,	,	24	,
00 G/B Damaged internally	T/R Overload	111	'	-	•	•	•	•	1	•	'	975	,	1
	TH-10/H TOTAL 205 SUBTOTALS		392	313		1								
	UH-IC TOTAL LUJU SUBTOTALS						420	616				-		
	AH-1G TOTAL 2264 SUBTOTALS			·							730	1403	29	102
T/R Drive Shaft			-								t	ł	T	
T/R D/S Corroded	Improper Maintenance, Aircraft Cleaning Suap	1	,	47	,		,	,	ţ	•	,	·	1	,
T/R D/S Dented or Damaged	Elade Strike/Hard Landing/Unknown	11	•	1 / 1	,	,		22	,	,	t	0		,
T/R D/S or Clamp⇒ Damaged	Tools Left Under D/S Cover, Rough Handling	11	+	÷	1	4	P	11	•	,	1	91	ı	
T/R D/S Has Combat Demage	Enemy Fire	111	•	,	ې	,	•		¢	•	,	,	12	,
T/R D/S Clamp Lcose/Misaligned/ Cracked	Improperly Installed	111	•	19	1		•	,	,	ı	,	26	,	
T/R D/S Removed - Sudden Stoppage	T/R Bladt Hit Tree	111	1	15	,	•					,	21	,	,
T/R D/S or Clamps Damaged	Chafed by Adjacent Parts	1	,	,	1	,	,	. 1	,	'	1	55	,	ı
T/R D/S Clamp Damaged	[naknown	11	Ş	1	,	ı.	39		,	,	,	1	•	ı
	UH-ID/H TOTAL 95 SUBTOTALS		°	e e	٥		<u> </u>	+			<u> </u>	<u>†</u>	<u> </u>	Γ
	UH-IC TOTAL 75 SUBTOTALS						39	33	\$	1		_		
	AH-1G TOTAL 257 SUBTOTALS										,	245	12	1
				-	-			-						

Inherent Induced Combat Secon-Damage dary . . . r 1 . . I L 1 . . . 1 t I 1-H-V Primary 1036 1036 . . I 1 E . . t 16+ -1 167 4 - 707 204 . . TAIL ROTOR CONTROL SUBSYSTEM FAILURE MODE ANALYSIS Secondary ī . • i 4 t ı 1 F Les Frimary Inherent Combc Sec ŧ Failure Rates Per Million I. . . . I i i с (ł E01 103 ٠ ŧ 1 1 . . . 1 ī 616 1 140 с **т** ı 619 . 140 Combat Secon-Damage dary 1 **1** 1 1 1 ŧ 1 ŧ • 1 UH-ID/ . . ī i 1 . Inherent Induced Primary 298 -26 - 9,7 324 26 52 ari C 503 . . 1 363 207 207 . Class of Fail. Mode : : 11 115 Rough Handling, Maintenance Error Sandy Erwironment, Lack of Lube Normal Wear, Sandy Environment 324 6-6 1030 15Ă 369 10. 285 3 204 Failure Cause Improper Installation AH-1G TOTAL SUBTOTALS SUBTOTALS UBTOTALS UH-IC TOTAL SUBTOTALS AH-13 TOTAL SUBTOTALS UH-ID/H TOTALS UH-IC TOTAL SJBTOTALS UH-1D/4 TOTALS CH-1C TOTAL SUBTOTALS AH-1G TOTAL SUBTOTALS T/R Strike T/R strike L/R Strike Unknown TABLE CXIII. T/R Boot Removed ~ Sudden Stoppage T/R Installation Boot Torn or Cut Slide Removed - Sudden Stoppage earing Set Worn/Separating Failure Mode rosshead Bearing Set earing Set Removed earing Set Loose /R Slider Worn T/R Boot Loose /R Slider C/R Boot

J

...

. •

٠.

ł

ľ,

۰,

Ł

•

i

	TABLE CXI	11.	ဗိ	nt'd	~								
				G1 - 11-2	Failure	Rates	Per	dillion	Flight	Hour		4	Π
		1	Pri	71-U1			rimar				rimary		T
		Class I cf	iheren In	t duced		Inher	ent Induc	þ		Inher	ent Induce	"	
Failure Mode	Failure Cause	Fail.	_	Conb	at Secon-			Comba t Dama ge	Secon- dary		00	ombat	Secon-
T/R Crosshead													
T/R Crosshead and Attaching Bolt Corroded	Insufficient Plating	11	13		•	•	1	,	,		1	•	t
T/R Crosshead Assembly Scored by P/C Link Bearing	Improper Alignment	11		-	•	•	•		•	1	2 34	•	•
Loss of Torque on Crosshead Retain- ing Nuts	Undertorqued, Maintenan.e	11		-	•	•	•	,	•	•	•	,	ı
T/R Crosshead Assy Removed - Sudden Stoppage	Tree Strike (T/R)	111		- 	•	1	,	•	,	•	,	•	•
Crosshead Improperly Shimmed	Mainter.ance Error	11		· 	'	'			•	,	•	,	•
T/R Crosshead Loose - High Frequency. Vibration	Bushing Worn, Misaligned	11	13	• 	1	1	•	•		160		•	,
	UH-ID/H TOTAL 260 SUBTOTALS		26 2	1	1								
	AH-LG TOTAL 394 SUBTOTALS					1	L	1		160	23+	1	ı
<u>T/A Chain</u> T/8 Chain Horn	Sand Contanitation Oil Duct				1	4				u T			
T/R Chain Has Frozen Links	Sand Contamination	- 11	26		,	2.5	'		,		,	•	'
T/R Chain Dirty	Sand Contamination	11	,		•	,	25	•	•	'	•		,
T/R Chain Twisted/Pedals Binding	℃nknown	11	65	·	,	,	•	•	,	15	1	•	,
T/R Chain Removed - Sudden Stoppage	T/R Strike	111	,	' 	,	1	1	١		,	15	,	,
	UH-ID/H TOTAL 519 SUBTOTALS		519		•		†				\square	1	
	CH-IC TOTAL 112 SUBTOTALS					94	23	1	1				
	AH-1G TOTAL 745 SUBTOTALS									730	15	Ţ	1

	TABLE CXI		Co	lt '	2									
					Fa	ilure R	ates	er Mi	llion	Flight	Hours			
				н-	1D/H			СH	-1C			A	-10	
		;	ď	ILAL	Τ		4	imarv	1		д ,	rimary		
		of	i l	nt nduce			Inhere	nduce	P		Inher	ent Induce	5	
Failure Mode	Feilure Cause	Fail.			ombat	darv-		20	ombat	Secon-		<u> </u>	ombat	Secon-
I/R Control Guill Assy							╞	-	T		T	F		
T/R Control Quill Binding	Sand & Dirt in Bearing	11	195	,	,		103	,	,	•	. 12	·	1	
Excess Play in T/R Control Quill	Lack of Lube, Teetn Worn	11	52	•		,	•	,	,	,	'	,	,	•
T/R Control Quill Leaking	Improper Packing	11	•	16	4		•	23	,	1	73	,		1
T/R Control Quill Binding	Improper Rigging	III	•			•	•	,	•	•	,	15		·
Quill Removed - Sudden Stoppage	T/R ŝtrike	111	,	56	,	•	•	,	,	•	•	13	1	,
	UH-1D/H TOTAL 377 SUBTOTALS		247	8	•	1					1			
	r'H-IC TOTAL 144 SUBTOTALS						103	23	,	,				
	AH-IG TOTAL =0. SUBTOTALS										774.	30	I	I
T/B Control Tuba			t	+	T		↑	╉	1	T	1	╋	T	
Splines Worn on T/R Control Tube	Overtoroue - Maintenance Error	11	,	50				1		ą				
Torque Low on T/R Retaining Nut	Undertorque - Maintenance Error	III	'	26	,	:	1) 				• •		• •
Threads Stripped on T/X Control Fube or Nut	Maintenance Error	111	ı	117	,	,	ı	,	i	,	,	73		,
Removed - Sudden Stoppage	T/R Strike	111	ł	507	1	•	ľ	t	,	,		,	,	•
	UH-1D/H TOTAL 221 SUBTOTALS		•	177	•			<u> </u>					1	
	UH-IC TOTAL 20 SUBTOTALS							22		,				
	AH-1G TOTAL 73 SUBTOTALS										•	73	ı	1

	TABLE CX	.111.	CC	ont'	(P	l							
				1-H0	D/H Faild	ITE RA	tes P	er Mil	lion Fl	ght Ho	urs	- IC	
			Pri	Darv		μ	Prin	ary			Prima	ý	
		Class I	nheren 11-	r.		년 1	erent F-4			Inhe	Fent.		
Failure	Failure	Fail.	-		bat Secol		DL T	Contro Contro	at Secol	<u> </u>	an bu T	Combat	Secon-
T/R Pitch Change Link	2020		+	3		_	+	0		-		המוייז לכ	ATEN
T/R P/C Link Bearings Worn	Sandy Environm∈nt, La.k of Lube	11	765	,	, 	3.5	0	1	•	116	•	ł	1
T/R P/C Link Bearings Frozen	Sandy Environment	н	5	•	' 	,	•	' 	,	•	•	1	•
Teflon Liner Separation in T/R P/C Link Bearing	Bond Failure	11	39		· 	•	•	,	•	•	•	•	1
T/R P/C Link Bearing Outer Race Corroding	Laknown	11	~	,				•	:	1	'	1	ŧ
T/R P/C Link Ass) Out of Alignment	Mainterance Error	11	,	39	' 				'	•	37	1	•
T/R P/C Link Replaced, Nut Frozen	Bolt Corrosion	1	•			~	• 	1		1	1	,	1
T/R P/C Link Rivet Sheared	Maintenance Error	11	,	- ,	۱ 		-	1 .1		•	15	1	. 1
T/R P/C Link Stack-up Improper	Maintenance Error	11	•		1			n		•	•	1	•
T/R P/C Link Rod Bent/Threaus Stripped	- Enknown-Suspect Overload	111	ı		, 		ę			1	15	•	1
T/R P/C Link Bearing Chafes T/R Crosshead	Bearing Worn	11	1						•		:	ŀ	•
T/R P/C Link Bearing Inner Race Cracked	า	::	,	•		•	·		1		•	,	,
T/R P/C Link Damaged/Hard Landing	Pilot Error	111	1	59			-	·		•	~	•	ı
T/R P/C Link Jam Nut Loose	Maintenance Error	11	1		• 			•		•	15	1	•
	CH-ID/H TOTAL 915 SUBTOTALS		824	90 20	-						 		
	UH-IC TOTAL 513 SUBTOTALS				<u> </u>	3		ו ~					
	AH-LG TOTAL .006 SUBTOTALS		<u> </u>	····-						67		I	1

APPENDIX V

P

۰.

TAIL ROTOR HUB AND BLADE ASSEMBLY MAINTENANCE PROCEDURES DIRECT/GENERAL SUPPORT LEVELS 27, 28, 29

Model UH-1D/H

A. Tail Rotor Blades

NOTE

The special tools required to perform maintenance functions of the tail rotor hub and blade are listed below:

Special Tools Required

PART NUMBER	NOMENCLATURE
T101412	Grip Spacing Tool
T101407	Seal Bearing Tool
7HEL065	Kit, Blade Balancing
7 AU 50	Kit, Blade Balancing
7HEL01 53	Kit Balancing

1. Removal

a. Remove hub and blade assembly. (Refer to Appendix I, Page 149.)

.....

NOTE

Observe and note colcr coding on blades and grips.

- b. Remove nuts, washers, and bolts attaching tail rotor blades to blade grips, and remove blades.
- c. Loosely install bolts, washers, and nuts in grips as removed, if same blades and hub are to be reassembled. If blades or hub are to be replaced, bolts, washers, and nuts need not be saved.
- 2. Repair or Replacement Tail Rotor Blades. (Refer to Appendix I, page 149.)

274

a. Inspect blades according to the following criteria:

NOTE

Tail rotor blades damaged to the following extent should be "condemned and demilitarized" locally rather than returned to an overhaul facility.

- (1) Water in the honeycomb area.
- (2) Any blade that has reached maximum service life or has less than 200 hours remaining service time.
- (3) If one or more cracks develop and extend from a previously repaired area.
- (4) Holes in the skin larger in area than allowed for patching.
- (5) Any corrosion that penetrates entirely through the skin larger in area than allowed for patching.
- (6) If the abrasive strip is worn completely through at the tip.
- (7) Edge voids deeper than 0.50 inch at the tip end of any of the root end doublers or grip plates.
- (8) Edge voids in the leading edge or trailing edge of the doublers that are 0.25 inch or more in depth and show indications of corrosion in the void.
- (9) Any crack in any location in the main bonded part of the blade unless within area of allowable patches and within limits. (See NOTE under Paragraph A.3.e.)

. •

(10) Bond separations on any part of the blade.

NOTE

A void is defined as an unbonded area that is normally bonded. Many sub-definitions of voids are given, such as lack of adhesive, gas pocket, misfit, etc. This manual shall make no distinction among these, but shall group them in the one general term, Void. All dimensions are in inches.

WARNING

If one blade of a pair has been damaged badly enough that metal has been torn or any bond lines have separated, both blades must be replaced.

- (11) Movement of the tip or root end weights.
- (12) Cracks or dents in the abrasion strip unless within area of allowable patches and within limits.
- b. Replacement of blade is necessary if the following defects or damage is found.

NOTE

Refer removed blades to higher maintenance activity for evaluation.

- (1) Void exceeding 0.25 inch wide between the abrasive strip and the inner doubler along the centerline.
- (2) Edge voids in any single bond line at the butt end around the edges and the grip plates exceeding 10% of the total periphery of that bond line. Single-edge void exceeding 0.06 inch in depth by 2.0 inches in length.
- (3) Void between skin and trailing edge under the doubler rear "fingers" at the butt end.
- (4) Void between skin and inner doubler under the front "fingers" at the butt end.
- (5) Void between the tip block and the trailing-endge extrusion.

- (6) Void between skins and trailing edge at the tip in the outboard 1.0 inch.
- (7) Void in the blade body between the ends of the blade between the skin and the core exceeding 0.20 inch wide chordwise by 0.50 inch long spanwise or if spacing between centers is less than 2.0 inches.
- (8) Void in the blade body between the ends of the blade between the skin and the inner doubler exceeding 0.50 inch wide chordwise by 1.0 inch long spanwise or if spacing between centers is less than 3.0 inches.
- (9) Void in the blade body between the core and the inner doubler exceeding 0.50 inch chordwise by 1.5 inches spanwise or if centers are less than 3.0 inches.
- (10) Looseness of either retention bolt hole bushing.
- (11) Inside diameter of retention bolt hole bushing exceeds 0.4380 inch.

NOTE

Any void not specified in paragraphs (1) through (11) will require blade replacement.

- (12) Sudden stoppage or overtorquing.
- (13) Blades that have been subjected to an overspeed condition that do not meet limits of Special Inspection.
- c. Repair Tail Rotor Blades

NOTE

Installation of blade on grip or removal from grip must be performed by direct support maintenance activity.

CAUTION

Damage exceeding the limits of steps (1) through (4) requires replacement of blade.

- (1) Polish out all nicks and scratches on the surface of the blade that are 0.008 inch deep or less using abrasive cloth (180 grit or finer). Polish to a surface finish of 63 RMS or better, removing only enough material to remove scratch or nick. Aluminum wool may be used on aluminum surfaces, and steel wool may be used on the abrasive strip to polish out defects.
- (2) Polish out nicks and notches in the extreme trailing edge of the blade that are 0.050 inch or less in depth to a distance of at least 2.0 inches on each side of the nick or notch using abrasive cloth. Depth of polishing to be minimum necessary to clean up all evidence of the nick or notch.
- (3) Polish out all nicks or scratches in dents that are 0.008 or less in depth using abrasive cloth (180 grit or finer). Polish to a surface finish of 63RMS or better, removing only enough material to remove the nick or scratch. Aluminum wool may be used on aluminum surfaces, and steel wool may be used on the abrasive strip to polish out defects.
- (4) Polish out pits not exceeding 0.008 inch in depth using abrasive cloth (600 grit) or aluminum wool, rubbing spanwise to remove sanding marks. Finish to 32 RMS or better.
- d. Repair and Touch Up Blades
 - Burnish out any scratches which are within allowable limits. (Refer to Paragraph C)

- (2) Burnish out any pits which are within allowable limits. (Refer to Paragraph C)
- (3) If entire blade is to be refinished, strip paint from area to be refinished using methyl-einyl-ketone.

CAUTION

DO NOT IMMERSE BLADES IN STRIPPING SOLUTION. Use ONLY methyl-ethylketone for stripping finish from blades to prevent damage to adhesive bonded areas.

- (4) Plug the retention bolt holes to prevent entry of finishing materials.
- (5) Remove all surface oxides and chemical conversion coatings using Scotchbrite from all pare aluminum surfaces.
- (6) Wash blade using cleaning compound. Achieve water-breakfree surface which will be evident by continuous unbroken film of water on the surface after thoroughly rinsing all traces of cleaning compound from the surface.

NOTE

1

Following achievement of water breakfree surface through final paint, do not touch blade with bare hands.

- (7) Spray or brush a solution of alodine on all bare aluminum surfaces.
- (8) Apply one coat of primer to the touch-up areas only, and allow to air-dry a minimum of 30 minutes and a maximum of 4 hours.

۰.

NOTE

If primer is allowed to dry more than 4 hours before the first coat of lacquer, the lacquer will not adhere properly.

- (9) Apply one coat of lacquer and allow to dry 1 hour.
- (10) Apply second coat of lacquer and allow to dry 1 hour.
- (11) Apply one coat of lacquer to tip area and allow to dry 1 hour.
- (12) Apply second coat of lacquer to tip area and allow to dry 1 hour.
- (13) Air-dry blade 3 hours before handling, and dry a total of 48 hours before flying.

NOTE

If a fast cure is desired, airdry part for 1 hour, followed by an oven-dry at 180° to 190°F for 1 hour. Finish will then be completely cured.

(14) Remove the plugs from the retention holes.

٠.

- (15) Apply a coating of corrosion preventive to the inside surface of the bushings.
- e. Patch Repairs Tail Rotor Blades

NOTE

Scratches, nicks, dents, gouges, holes or other damage to the skin of the tail rotor blade that exceed allowable limits that are in the outboard of station 34.0 but 1.75 inches minimum inboard of the blade tip, 1.0 inch minimum forward of trailing edge of the blade, and 1.0 inch aft of the aft end of abrasive strip may be repaired by patching and returned to service.

(1) Remove all the paint in the area to be

patched using abrasive cloth (120 grit). Polish area using abrasive cloth (250 grit).

- (2) Cut out the defect using a hole saw or by scribing through the skin with a sharp instrument. The maximum cutout must not exceed 1.50 inch in diameter.
- (3) Remove skin in the cutout area, disturbing the core as little as possible. It is desirable to heat the cutout disk to 200°F maximum and to lift out the disk of skin while heated.
- (4) Deburr the edges of the hole, making sure the skin is free of scratches and nicks.
- (5) Prepare a patch of aluminum alloy. The patch must be large enough to overlap at least 0.75 inch around the perimeter of the hole.
- (6) Using fine abrasive cloth, polish the side of the patch that will be bonded.
- (7) Wipe the patch and the surface around the hole in the blade with a clean cloth dampened with methyl-ethyl-ketone. Wipe dry with a clean cloth.

CAUTION

Do not allow methyl-ethyl-ketone to enter the blade.

- (8) Apply adhesive to bond areas of the patch and blade.
- (9) Apply the patch to the blade. Move the patch slightly back and forth while applying pressure to expel air pockets in the adhesive. Blend out excess adhesive into surrounding area.
- (10) The patch may be held in place, while

curing, with rubber bands made from an inner tube, or by other mechanical means. If epon 934 is used, cure at 75°F minimum for 5 days, or at 180°F for 60 minutes. If using metalset A4, cure at 70° to 90°F for 24 hours, or at 145°F to 155°F for 30 minutes.

- (11) Refinish the area.
- 3. Preparation of Repairable Blades for Shipment
 - a. Remove foreign matter from entire exterior blade surfaces using cheesecloth or clean rags dampened with naphtha.
 - b. Tape all holes in the blade surface to protect interior of the blade.
 - c. Apply a coating of wax to all exterior surfaces of the blade except the retention bolt holes. If wax is not available, coat entire exterior surface of the blade with oil or grease.
 - d. Apply a light coat of grease to retention bolt holes.
 - e. Place blade in shipping container.

WARNING

Include detail records to simplify overhaul requirements (Form DA 2410 -Component Removal and Repair/Overhaul Record) in container.

- 4. Installation of Tail Rotor Blades in Grips
 - a. Clean paint or foreign material out of blade holes in grips and blades.

NOTE

Observe color coding on blades and grips.

CAUTION

Do not attempt to align bolt holes by striking the blade with any tool. Back up the grip at the bolt hole with a wooden block while carefully tapping bolts into place. Y

NOTE

Coat bolts with corrosion inhibitor before installation.

- Insert blade into grip with leading edge of blade on same side of grip as pitch horn.
 Align one bolt hole and install bolt, washers, and nut.
- c. Align second bolt hole and install bolt, washers, and nut in the same manner. Torque bolts 270 to 300 inch-pounds adjacent to grip bushings.

NOTE

Blade bolts may be installed with heads either inboard or outboard, but all four bolts must be installed the same.

- d. Repeat steps a through c to install opposite tail rotor blade.
- e. Balance tail rotor hub and blade assembly. (See Paragraph B)
- f. Install and rig tail rotor. (Refer to Appendix I, page 150)
- B. Balancing Tail Rotor Assembly

. 1

1. Assemble workstand and hoist kit 7A050 (Figure 11). Place fixture (2) recessed side downward on table of stand as shown in view A.

- 2.
- Fixture Assembly (2532, 7HELO153 Kit)
- 3. Bar Pair (11 sets)
- 2940 thru 2950, 7HEL065 Kit) 11. Post Assembly (2) 4.
- (2939, 7HELO153 Kit) Tail Rotor Hub and 5.
- .Blade Assembly
- Plate, Special Tool (2586, Procure) 6.
- 7. Bushing
 - (2533, 7HELO153 Kit)

- (2516, 7HEL0153 Kit)
- Arbor Scale 9.
- Bushing Set Screw 10.
 - Pilot Bushing
- (2529, 7HELO153 Kit) Lower Fixture Set Screw 12.
- 13. Post Thread
- Movable Index Section 14.
- 15. Index Pin-Set Screw
- Tail Rotor Attaching Nuts 16.
- Tail Rotor Attaching Bolts 17.

Balancing - Tail Rotor Hub and Blade, Figure 11. Models UH-1C/D/H and AH-1G.

If workstand is not available, auxiliary support blocks may be used to act as a support stand.

- Prior to installing post assemblies (4), adjust movable index pin (15) of the positioning post to a dimension of 1-11/16 inch (length L in view B). Tighten the locking set screw in index pin (15) using 3/32-inch hex wrench to maintain proper setting.
- 3. After adjusting post assemblies properly, install post assemblies (4) into holes of fixture (2), shown as holes A in fixture (view C).
- 4. Locate pilot bushing (11) large end down, centrally on top of fixture bulb.
- 5. Remove or loosen nuts (16) from tail rotor blade attaching bolts (17). Drive bolts partially out of yoke assembly to obtain an approximate 9/32inch gap under bolt heads as shown in view A.
- 6. Set tail rotor on fixture (2) so that blade shanks clear posts (4); flat surface of hub is upward, and inside diameter of rotor splined trunnion fits over diameter of pilot bushing (11).
- 7. Install bushing (7), flange end downward, on balancing arbor (8) so that top surface of bushing aligns with 7-1/4-inch or 7-3/8-inch position on arbor scale (9), depending on the yoke configuration. Lock bushing in this position by moderate and uniform tightening of bushing set screws (10), using 3/32-inch hex wrench.
- 8. Place plate (6) centrally on top surface of rotor hub as shown in top view of assembly, and insert lower end of balancing arbor (8) downward through plate (6), bushing (11), and hub of fixture (2). Seat assembly firmly together by pressing downward on bushing (7), and lock in this position by moderate and uniform tightening of two lower fixture set screws (12).
- 9. Rotate the rotor hub on fixture, positioning the

NOTE

index pins (15) of the two post assemblies (4) until the indexing pins enter pitch linkage holes in grip arms to their full depth.

- 10. From the matched sets of positioning bars (3) (P/N 2940 thru 2950, 7HELO65 kit), select the pair (set) identified as having the lowest part number (2940), Make sure each bar bears the same matched pair serial number and the same part number. Trial install the matched set of bars, blocks upward, between opposite blade attachment bolts, contacting shanks underneath the bolt heads. If bars are short. continue the trial installation using increasingly longer bar sets as necessary until the longest matched pair that can be installed between the bolts without force has been established. Once this set and length have been established, select the next higher part number bar pair. This is the matched pair bar set that shall be used during the balance operations. Be certain that the pair is identified correctly.
- 11. Carefully lift upward on both rotor blades at the tips simultaneously to produce increase span distance between the blade bolts; install the properly matched pair of bars described in Paragraph 10 above. Then, release blade tips, allowing bolts to rest firmly on bar ends. Move bars into final position by pressing upward to seat block sections against rotor grip bushing face surface and inward to set tang of bars against bolts. See view D.
- 12. Check to make sure that the positioning post index sections are engaged in grip pitch arm holes and that the arbor (8) with bushing (7) is tight against the rotor hub.
- 13. Sight beneath the rotor hub across the positioning bars (3) to make sure they are in the same plane. Correct, if required, by readjusting the index section of each positioning post on its mounting rod and equal mount.
- 14. Install quick-disconnect coupling (7HEL053 kit or 7A050 kit) on arbor suspension coupler, and suspend entire assembly free of interference, Note balance condition indicated by black indicator disc at top of balancing arbor.

Balancing must be done in an absolutely draftless area. A maximum of six washers of any combination is allowed on each bolt. Do not remove or rework blade assembly weights. Use a combination of AN960-716 and -716L, 204-011-708-1 and 204-011-708-3 washers, with heaviest washers next to grip. Use bolts AN177-35A (minimum length) to AN177-40A (maximum length) to accommodate balance washers.

- 15. Balance blades chordwise and spanwise by adding washers to one or more of the blade grip bolts until the indicator bushing is as near center as possible.
- C. Tail Rotor Hub Assembly. (P/N 204-011-801)
 - 1. Description
 - a. Tail rotor hub assembly, Part No. 204-011-801, has a production effectivity on UH-1H helicopters Serial No. 68-16050 and subsequent.
 - b. It will also be supplied as all future spares and will eventually, through attrition, become effective on all UH-1 series helicopters.
 - c. This hub is delta-hinge mounted on a trunnion which is splined for mounting on the gearbox output shaft.
 - d. The hub utilizes a grooved yoke and split cone arrangement inboard of the retaining nuts to hold the pitch change bearings in place and to route the centrifugal and oscillatory loads into the yoke at the groove rather than at the retaining nut threads.
 - e. A preload spring assembly is provided to maintain hub and blade alignment in the static condition.

- 2. Disassembly
 - a. Secure hub assembly in vise, using T101412 as a holding fixture. Secure with flat side of yoke down.
 - b. Cut lockwire and remove screws (2, Figure 12), washers (3), and lockplate (4) from grip assembly (1).
 - c. Back off adapter nut (22) and remove grip assembly (1).
 - d. Remove shim (5).
 - e. Remove plug (6) and shims (7) from spring assembly (8).
 - f. Remove spring assembly (8) from yoke (24).
 - g. Disassemble spring assembly (8) by removing cotter pin (9), pin (10), and washers (11) from case (12).

NOTE

Tag Belleville washers (11) as removed for reassembly in the same position. A total of 42 washers, consisting of 14 stacks of three washers per stack, are required.

- h. Cut lockwire from around nut (14). Remove two spring pins (13) and remove nut from yoke (24).
- i. Remove shim (15), ring (16), split cone (17), bearing set (18), shim (19) and spacer (20).

٠.

NOTE

Keep bearing set (18) and shims (19) together as a set for reassembly on same spindle of yoke.

j. Remove seal 21 from spacer (20).

10. Pin

- 11. Washers 12. Case
- 23. Radius Ring 24. Yoke

Tail Rotor Hub Assembly (P/N 204-011-801), Figure 12. Models UH-1C/D/H.

• •

- k. Remove adapter nut (22) and radius ring (23) from spindle of yoke (24).
- 1. Repeat steps (b) through (k) for disassembly of parts from opposite yoke spindle.
- m. Cut lockwire and remove four bolts (25), washers (26), and thrust cap (27).
- n. Remove thrust washer (28), packing (29), and shim (30).
- o. Remove housing (31). Use seal bearing tool, T101407, to press bearing (32) from housing.
- p. Repeat steps (m) through (o) to remove parts from opposite side of yoke.
- q. Remove hub assembly from holding fixture and remove trunnion from yoke.

3. Cleaning

- a. Clean all parts with cleaning solvent.
- b. Dry with filtered compressed air.
- 4. Inspection
 - a. Visually inspect all components for damage, excessive wear, or corrosion. (See Figures 12-15)

NOTE

Any nicks, scratches, and sharp dents not exceeding the maximum damage limits will be dressed and blended into the surrounding areas.

- b. Check bearings for smooth operation.
- c. Inspect splines in trunnion for chipped or worn teeth.
- d. Inspect all components dimensionally for excessive wear. (Figure 13)

ļ

ITEM	NOMENCLATURE		MIN.	MAX.	REPLACE
I	Grip Liner	ID	2.4410	2.4415	2.4425
2	Yoke, Bearing Seat	OD	1.3771	1.3780	1.3750
3	Trunnion Spindle	OD	1.1246	1.1250	1.1230
4	Bushing, Pitch Link	ID	0.2495	0.2500	0.2525
			TORQU	E	
5	Nut	In. Lb.	500	600	
6	Nut	In. Lb.	100	125	

Figure 13.	Tail Rotor Hub Limits
-	(P/N 204-011-801),
	Model UH-1D/H.

TAIL ROTOR GRIP P/N 204-011-728

TYPE OF DAMAGE		AREA B AS SHOWN MAXIMUM DE P TH	
NICKS, SCRATCHES SHARP DENTS	0.010	0.005	0.020
CORROSION	0.005	0.002	0.010
AREA OF FULL DEPTH REPAIR	0.10 INCH SQUARE	0.20 INCH SQUARE	0.30 INCH SQUARE
NUMBER OF REPAIR AREAS	тю	TWO	TWO

NON OVERLAPPING

1

. 1

- DAMAGE TO THREADS LESS THAN ONE THIRD OF THE THREAD DEPTH MAY BE CLEANED UP TO EXISTING DEPTH FOR A TOTAL LENGTH OF ONE INCH.
 COAT REPAIR AREAS ON ALUMINUM WITH BRUSH ALODINE OR ZINC CHROMATE PRIMER.
 ALL EDGES MAY BE RADIUSED OR CHAMFERED LOCALLY TO DEPTH OF 0.030 INCH TO REMOVE NICKS OR DENTS.
 AND SUCCE SCRATCHES AND SHARD DEDTS.

- ANY NICKS, SCRATCHES, AND SHARP DENTS NOT EXCEEDING THE MAXIMUM DAMAGE LIMITS, WILL BE DRESSED AND BLENDED INTO SURROUNDING AREAS. 4.

Figure	14.	Tail Rotor Hub Grip Damage Limits
0		(Hub P/N 204-011-801), Models UH-1D/H.

- -

YOKE ASSEMBLY P/N 204-011-722

TYPE OF DAMAGE	AREA A	AREA B	AREA C
NICKS, SCRATCHES, SHARP DENTS	0.005 inch Max. Depth	0.010 inch Max. Depth	Refer to Wear Limits Charts
CORROSION	0.002 inch Max. Depth	0.005 inch Max. Depth	

- NOTES
- 1. Inspect damage inside roll pin holes with a five (5) to ten (10) power magnifying glass.
- 2. Local gouges 0.005 inch or less in depth at thread root inside roll pin hole may be cleaned up using a round jewelers file. Clean up area length is 20 percent of hole depth. Minor damage to the peak of the thread surrounding the pin holes requires no clean up unless during installation interference is encountered. Should interference occur, the thread may be dressed using an india-stone, providing peak thread damage is less than 30 percent of the thread depth. Damage to thread in excess of above limits is cause for scrapping yoke.
- 3. Gouges inside roll pin holes beyond thread root, do not affect useability of part.
- 4. Inside diameter of spindles in area of thrust unit is not a critical area. However, roll pin holes at this location and surrounding surfaces shall be cleaned up. Damage limit is maximum depth of 0.020 inch. Repair will be blended into surrounding area.
- 5. Scratches in trunnion housing bore may be polished out if less than 0.002 inch in depth.
- 6. Repair areas on cadmium plated surfaces, should be touched up with zinc chromate
- ★ 7. All edges in Area B may be radiused or chamfered locally to a depth of 0.03 inch to remove nicks or dents.

* This note reters to Models UH-1D/H only.

Figure 15. Tail Rotor Hub Yoke Damage Limits (Hub P/N 204-011-801), Models UH-1D/H and AH-1G.

e. Inspect the following parts by magnetic particle method (M) or fluorescent penetrant method (F). Item numbers apply to Figure 12.

ITEM	NOMENCLATURE	CODE
1	Grip Assembly	F
14	Nut	М
16	Ring	F
22	Adapter Nut	M
24	Yo ke	М
33	Trunnion	М

NOTE

All parts must be demagnetized after magnetic particle inspection.

- f. Special magnetic particle inspection criteria have been established for the yoke (24, Figure 12) as follows:
 - Each yoke shall be inspected by all of the following steps, using the wet continuous method. The true length of any indication shall be determined by the residual method of magnetization.
 - (2) Magnetize the part by positioning it so that the yoke arms contact the gauze contack heads of the machine, and pass 1400 amperes DC or 1100 ampers AC through the part for indications.
 - (3) Magnetize the part by placing it inside a coil so that the long axis of the part (yoke arms) is approximately 90 degrees to the direction of the current flow in the coil, and pass 1400 amperes DC or 1100 amperes AC through the part. Inspect the complete part for indications.

NOTE

Do not exceed 4200 amperes turns.

- (4) Indications interpreted as cracks, seams, laps or shuts are cause for rejection.
- (5) Indications of stringers or nonmetallic inclusions will be acceptable provided they do not exceed the following limits. Indications below 0.015625 inch in length are not considered rateable.
 - (a) Indications of defects parallel to the long axis of the yoke arms (plus or minus 15 degrees) are acceptable provided they do not exceed 0.500 inch in length and do not extend into the radius. The length cf all rateable inclusions shall not exceed 1.0 inch total aggregate length.
 - (b) Indications of defects parallel to the long axis of the yoke arms (plus or minus 15 degrees) which extend into the radius are cause for rejection.
 - (c) Indications of defects in the yoke arms that are more than 15 degrees off the long axis, transverse or circumferential, are cause for rejection.
 - (d) Indications of defects on the outer surface of the yoke (excluding the yoke arms) are acceptable provided residual particle buildup does not indicate defects of the type mentioned in Paragraph 4.d.
 - (e) Indications which are caused by a sharp change in section are acceptable.
 - (f) Strong magnetic indications where considerable buildup of particles is present, indicating the defect has considerable depth and/or cross section, shall be cause for rejection.

regardless of length, size or direction.

 (g) Indications of defects extending into, or in, threaded holes, threads or delta-hinge holes (1.875 inches diameter) are cause for rejection.

NOTE

Demagnetize part after completion of inspection and check to assure demagnetization.

5. Repair or Replacement (Figures 14 and 15)

NOTE

Refer to Table CXIV for tail rotor hub and hub components usability criteria.

- a. Criteria
 - (1) Dimensional replacement limits apply to the physical item, "bare metal", prior to the application of any corrosion protection treatment, such as cadmium plating, dry-film lube, etc.
 - (2) Longitudinal scratches noted on the tail rotor yoke spindle which are not deeper than 0.002 inch, need not be completely removed; however, surface burrs should be removed using crocus cloth.
 - (3) Should the dry-film lube and/or cadmium plating require removal for any reason, it may be accomplished using abrasive cloth (Scotch Brite) saturated with methyl-ethyl-ketone.
 - (4) Whenever the cadmium plating or dry-film lube has been removed, it should be reapplied at the authorized echelon level in accordance with existing directives.

TABLE CXIV. TAIL ROTOR HUB AND HUB COMPONENTS, USABILITY CHART (HUB P/N 204-011-801-5 AND -9)						
Nomenclature	Detail Part Numbers	No. of Items Per Hub For Dash Number *-5 **-9				
Trunnion	204-010-785-1 or 204-011737-1	1				
	204-011-737-1		1			
Housing	204-010-786-1	2	2			
Thrust-Washer	204-010-787-1	2	2			
Thrust Cap	204-010-788-1	2	2			
Shim	204-010-789-1	2	2			
Yoke Assembly	204-011-722-1 or -5 204-011-722-5	1	1			
Grip	204-011-728-19 204-011-723-1 or -19	2	2			
 * The -5 configuration incorporates uniform static stop points of contact for the tail rotor hub and blade assembly for left-side installation only. ** The -9 configuration incorporates uniform static stop points of contact for the tail rotor hub and blade assembly for either left-or right-side installation. This configuration was created to make one universal bub assembly for use on certain commercial balicanters. 						

.

- b. Repair or replace, as applicable, any parts which are not within tolerances, or show evidence of failure, when inspected to the criteria outlined in Paragraph 4.
- c. Replace all packings and seals on reassembly. Replace all unserviceable parts.
- d. Dress splines and threads with a fine India oilstone if burrs or scratches are visible.
- e. Repair tail rotor grip assembly (1, Figure 12) to the limits shown in Figures 13 and 14.
- f. Repair tail rotor yoke (24, Figure 12) to the limits shown in Figures 13 and 15.
- g. Refinish tail rotor grip assemblies (1, Figure 12). Apply one ocat epoxy polyimide and two coats acrylic lacquer on all external surfaces. Do not paint holes or bores.
- 6. Lubrication
 - a. Line grip assembly cavity with grease prior to reassembly.
 - b. At reassembly, lubricate all mating surfaces with lubricating oil.
 - c. Use corrosion preventive compound on mating threads of dissimilar metals.
- 7. Reassembly
 - a. If cork seals (34, Figure 12) were removed from yoke, apply shellar to new cork seals and install into yoke while wet.
 - b. Use seal bearing tool, T101407, to press bearing (32) into housing (31). Position trunnion (33) in place in yoke (24). Push housing, with bearing, into yoke and on trunnion.

٠.

- c. Repeat Steps a and b to assemble parts on opposite end of trunnion.
- d. Center trunnion (33) in yoke (24) as follows:

(1) Secure holding fixture, T101412, in a vise. Position yoke and trunnion onto tool with flat side of yoke down.

NOTE

Ensure that I.D. of yoke and truunion are properly aligned and seated on tool.

- (2) Install and tighten locking nut of tool onto assembly.
- (3) Install thrust washer (28) and thrust cap
 (27) in place on each side of trunnion
 (33).

NOTE

Do not install shims (30) and packing (29) at this point of assembly.

- (4) Temporarily install washers (26) and bolts (25). Tighten evenly and lightly.
- (5) Use a feeler gage to measure gap between thrust cap (27) and mating surface of yoke (24) on one side of trunnion (33).
- (6) Prepare a shim (30) to thickness determined in step (e), above.
- (7) Remove 0.002 inch from shim to provide a total of 0.001 to 0.004 inch pinch fit on trunnion (33).
- (8) Remove thrust cap (27), bolt (25) and washers (26) from measured side of trunnion (33).
- (9) Install thrust washer (28), with groove outboard, packing (29) and previously prepared shim (30). Install thrust cap (27), bolts (25) and washers (26).

Observe locations of lubrication fitting in thrust cap (27) at time of installation. Do not tighten bolts (25) at this point of installation.

- (10) Prepare and install shim (30) for opposite side of trunnion (33) by same procedure outlined in Steps (3) through (9).
- (11) Torque bolts (25) 20 to 25 inch-pounds, and lockwire bolt heads in pairs.
- e. Determine for shimming, shim thickness for split cone clamp-up as follows (Figure 16):
 - (1) Identify spindle side, which is being evaluated for shim installation.
 - (2) Position radius ring onto the yoke spindle.
 - (3) Install thrust bearings (with thrust sides inboard), apex identification facing outboard, onto the yoke spindle.

1

Figure 16. Shimming Tail Rotor Yoke.
CAUTION

To ensure proper stackup of bearings, "V" markings on O.D. of bearings must line up. As a further check on proper alignment prior to assembly on yoke, each outer race is marked "THRUST HERE" on inboard side of bearing outer race. Assemble on yoke spindle with "V" pointing outboard. The word "OUT' BD" should then appear on OUT' BD face of OUT' BD inner race.

- (4) Place the split cone set into the groove provided on the yoke spindle, and retain in position with a small piece of tape.
- (5) Apply finger pressure to the bearing set, in an outboard direction. Insert two feeler gages between the radius ring and the inboard bearing inner race 180 degrees apart. Record gap dimension obtained.

NOTE

In obtaining the above dimensional gap, tight feeler gage readings (heavy drag) are preferred.

- (6) Take average of two readings obtained in Step (5). Add 0.002 to 0.004 inch to the dimension recorded. This figure will represent the shim thickness required.
- (7) Remove the split cone set, bearing set, and radius ring and identify for reinstallation on that spindle side.
- (8) Repeat Steps (1) through (7) on opposite yoke spindle.
- f. Complete assembly of voke spindles as follows: (Figure 12)

CAUTION

Shims, bearings, and radius rings must be installed on same spindle as determined in Step e.

- (1) Position radius ring (23) and adapter out (22) on each spindle of yoke.
- (2) Install seal (21) into spacer (20) and, with shim (19), slide into place on each spindle.
- (3) Install bearings (13) with face marked "OUT' BD" positioned toward outboard side of yoke spindle.
- (4) Install split cones (17), ring (16) and shims (15) on each side as required to permit installation of spring pins for locking nut.

NOTE

During installation of the split cones, a noticeable suap fit should be present, which will show that correct shim installation has been achieved.

Should either of the two following conditions be noted, incorrect shimming has been accomplished and Steps (1) through (7), under Paragraph (e), must be repeated:

1-Split cone set will not properly seat.

2-Radius ring will rotate during grip rotation.

 (5) Install nut (14) and torque 100 to 125 inch-pounds. Install spring pins (13). Adjust shim (15), as necessary, and safety wire spring pins in place on each spindle. Prior to attempting to install spring pins, it is necessary that positive alignment be established to ensure damagefree assembly.

- g. Assemble spring assembly (8) as follows:
 - Stack washers (11) (Figure 12) (42 required consisting of 14 stacks of three washers per stack) and insert pin (10) with washers into case (12).
 - (2) Lock in place with cotter pin (9).
 - (3) Install shim (7) into open end of spring assembly; a maximum of 12 shims may be used for complete hub assembly. Install thrust plug (6) on top of shim (7); adjust thickness of shims as necessary to maintain 0.275 inch protrusion of thrust plug (6) above shoulder of spring assembly (8). (Figure 12)
- h. Install adjusted spring assembly (Figure 17) into each end of yoke.

Figure 17. Shimming Tail Rotor Hub Spring Assembly (P/N 204-011-801).

- i. Install shim (5) (Figure 12) on shoulder of sleeve in grip, which will rest against outer race of duplex bearings (18).
- j. Install grip assembly (1) in place; align and screw adapter nut (22) into grip assembly.

NOTE

Line grip cavity completely with grease (MIL-G-25537) prior to assembly.

- k. Torque adapter nut 500 to 600 inch-pounds. To overcome resistance of the assembly to seating properly, the adapter nut (22) must be torqued, backed off, and retorqued.
- Position hub assembly on arbor portion of T101412 or T101457 tool, with flat side of hub down over flange of tool. Secure with wing nut. Install shim setting tool (gage assembly) in blade mounting holes. Check distance between pointer and shaft of tool on each side. Distance should be within 0.002 inch of each other.
- m. If adjustment is necessary. Remove grip and adjust shim (5) as installed in step (i) and reassemble.
- n. Install lockplates (4), washers (3) screw (2) on grip (1) shear flange into notch of nut (22). Lockwire in position.
- o. Lubricate hub assembly at fittings provided on thrust caps (27) and grip assemblies (1) with grease.

NOTE

If thrust cap will not take grease, check for proper assembly.

Model UH-1C

- A. NOTE: See UH-1D/H and add special part number 7HEL053, Balancing Part, to special tool list.
 - 1. Removal

See UH-1D/H

2. Repair or Replacement

(Refer to Appendix I, pages 155 and 159 for inspection)

See UH-1D/H except:

- a. NOTE appearing after Item (10) does not appear in UH-1C manual.
- b. See UH-1D/H except:

(11) Size of inside diameter is not specified in the UH-1C manual.

c. Patch Repairs

See UH-1D/H except Item (10) reads:

(10) the patch may be held in place while curing with rubber bands made from an inner tube or other mechanical means. If epon 934 is used, cure at 75°F for a minimum of 5 days or at 180°F for 60 minutes. If metalset A4 is used, cure at 70° - 90° for 24 hours or at 145° - 155°F for 30 minutes.

3. Preparation of Blades for Shipment

See UH-1D/H

4. Installation

See UH-1D/H

B. Balancing Tail Rotor Assembly

See UH-1D/H except:

7. Add this note following this paragraph:

NOTE

The 204-011-801 hub uses half moon "beefed-up" center rings.

C. Tail Rotor Hub Assembly (P/N 204-011-801)

See UH-1D/H except:

1. Description

See UH-1D/H except:

a. Delete

2. Disassembly

See UH-D/H

3. Cleaning

See UH-1D/H

4. Inspection

See UH-1D/H except:

Refer to Figures 12 and 18 - 20.

- a. NOTE following this paragraph does not appear in UH-1C manual.
- e. Add the following to the NOTE following this step:

If magnetic indications are evident on the yoke assembly (24), only the yoke assembly and grip assembly require replacement.

5. Repair or Replacement

See UH-1D/H except:

a. Criteria

This paragraph and the NOTE preceding it do not appear in the UH-1C manual.

		U ~				
1	TEM	NOMENCLATURE		MIN.	MAX.	REPLACE
	1	Grip Liner	ID	2,4410	2,4415	2.4425
	2	Yoke, Bearing Seat	OD	1.3771	1.3780	1.3763
	3	Trunnion Spindle	OD	1,1246	1,1250	1.1230
	4	Bushing, Pitch Link	ID	0.3120	0.3125	0.3155
				TORQUI	E	
	5	Nut	IN, IB	500	600	
	6	Nut	IN,L3	100	125	

Figure	18.	Tail	Rotor	Hub	Limits
-		(P/N	204-01	1-8	01-5),
		Mode	L UH-10		

307

Ĵ

AREA B

AREA C

0.020 inch

Max. Depth

NICKS, SCRATCHES, SHARP DENTS

TYPE OF DAMAGE

CORROSION

ļ

0.002 inch Max. Depth

0.005 inch

Max, Depth

0.002 inch Max. Depth

0.005 inch

Max, Depth

0.010 inch Max, Depth

٠.

.

NOTES

- 1. ANY DAMAGE TO THREADS D IS CAUSE FOR SCRAPPING THE PART.
- 2. SCRATCHES IN BUSHING BORES MAY BE POLISHED OUT IF LESS THAN 0.002 INCH IN DEPTH.
- 3. MAXIMUM REPAIR AREA OF AREA A B 20% WITHIN 0.6 INCH OF BOLT HOLE CENTER LINE.
- 4. MAXIMUM REPAIR AREA OF AREA B NOT TO EXCEED 5% OF TOTAL SURFACE. MAXIMUM SINGLE REPAIR AREA SHOULD NOT EXCEED 0.10 SQUARE INCH.
- 5. REPAIR AREAS ON ANODIZED SURFACES SHOULD BE RECOATED BY BRUSHING WITH ANODINE SOLUTION.
- 6. MAXIMUM SINGLE REPAIR AREA OF AREA C SHOULD NOT EXCEED 0.25 SQUARE INCH AND 0.60 INCH IN WIDTH.
- Figure 19. Tail Rotor Hub Grip Damage Limits (P/N 204-011-801-5 and 204-011-701), Model UH-1C

TYPE OF DAMAGE

NICKS, SCRATCHES, SHARP DENTS

CORROSION

1. 0.005 inch Max. Depth

AREA A

0.010 inch Max. Depth 0.005 inch

AREA B

AREA C 11111 Refer to Wear

Limits Charts

٠.

1

. 1

0.002 inch Max. Depth

Max. Depth

NOTES

- 1. ANY DAMAGE TO SPINDLE THREADS IS CAUSE FOR SCRAPPING THE YOKE.
- 2. SCRATCHES IN TRUNNION HOUSING BORE MAY BE POLISHED OUT IF LESS THAN 0.002 INCH IN DEPTH.
- 3. REPAIR AREAS ON CADMIUM PLATED SURFACES SHOULD BE RECOATED BY BRUSHING WITH CADMIUM PLATING SOLUTION.

Tail Rotor Hub Yoke Damage Limits (P/N 204-011-801-5), Model UH-1C. Figure 20.

- e. Refer to Figures 13 20.
- f. Refer to Figures 19 and 20.
- g. Replace with the following:

Refinish tail rotor grips. Apply two coats of catalyzed epoxy paint to the exterior, fit bushings, and interior tangs of the grips. After completion of 1 hour air-dry, the applied coating will be cured for 10 minutes at 300°F.

6. Lubrication

See UH-1D/H

7. Reassembly

See UH-1D/H except:

f. (2) Add the following:

NOTE

Shim (19) as required to maintain a 0.002 to 0.004 inch pinch fit with split cone set (17) contacting the outboard surface of the radius on yoke spindle.

(3) Add the following:

CAUTION

To insure proper stack-up of bearings, both inboard and outboard faces of each bearing are marked. Install each bearing onto spindle of yoke separately, noting "inboard" and "outboard" position.

(4) Delete the note following this paragraph.

- D. Tail Rotor Hub (P/N 204-011-701)
 - 1. Disassembly (see Figure 21)
 - a. Remove tail rotor hub and blade assembly. (Refer to Appendix I, page 155)

1

Figure 21. Tail Rotor Hub Assembly (P/N 204-011-701), Model UH-1C.

b. Cut lockwire and remove screws and washers attaching lockplates (1) to grip assemblies. Remove lockplates. Back off blade grip retainer nuts (2) and remove grip assemblies (3). Remove pins and bearing retainer nuts (4) from yoke assembly spindles. Remove bearing sets (5) and shims (6).

CAUTION

Remove roll pins from bearing retainer nuts by driving pins from the inside of the spindle area in an outboard direction.

CAUTION

Keep bearing sets (5) and shims (6) together in sets when and as removed.

NOTE

Tail rotor hub assembly, 204-011-701-13, has a thrust unit assembly with duplex bearings instead of triplex bearings as indicated on Figure 21. Disassembly procedure is the same.

- c. Remove blade grip retainer nuts (2, Figure 21) and use seal and bearing tool T101407 to remove seals (7) from retainer nuts (2). Remove radius rings (8).
- d. Cut lockwire, remove bolts and washers attaching thrust cap assemblies (9) to trunnion bearing housing (10), and remove cap assemblies. Remove trunnion shims (11), O-rings (12), and thrust washers (13).
- e. Remove bearings (14) from trunnion bearing housings (10) with seal and bearing tool, T101407. Remove trunnion (15) and cork plugs (16) from yoke assembly (17).

2. Cleaning

See Paragraph C.3.

- 3. Inspection
 - a. Visually inspect all parts for damage, excessive wear, or corrosion. Check bearings for smooth operation and general condition. Inspect splines in trunnion for chipped or worn teeth. Inspect component of thrust unit assembly.
 - b. Inspect the following parts by magnetic particle method (Code M) or fluroescent penetrant method (Code F). Item numbers are applicable to Figure 21.

ITEM	NOMENCLATURE	CODE
2	Blade Grip Retainer Nut	М
3	Grip Assembly	F
4	Bearing Retainer Nut	М
15	Trunnion	М
17	Yoke Assembly	М
	Grip Assembly Inner Liner	М

NOTE

If magnetic indications are evident on yoke assembly (17), only the yoke assembly and grip assembly require replacement.

- c. Inspect parts for mechanical and corrosion damage. (See Figures 19, 20, and 22)
- d. Inspect parts dimensionally. (see Limits Chart, Figure 23)

4. Repair or Replacement

See Paragraph C.5(c) and (e).

Reword Paragraph C.5(d) to read:

NOTE

1. Damage caused by removing roll pins may be repaired using the following limits: other demage is cause for rejection.

a. Roll pins used to secure the tail rotor thrust bearing retaining nut P/N 204-010-711-3 should be removed by driving the pins from the inside of the spindle area in an outboard direction. Due to the design of the nut, it is possible to drive sufficient metal from the nut downward on to the threaded portion of the spindle which will prevent demage-free removal of the nut should the above method not be adhered to.

b. Minor damage to the peak of the thread surrounding the pin holes requires no cleanup unless during nut installation interference is encountered. Should this occur, the thread may be dreased using an India-stone, providing peak thread damage is less than 30% of the thread depth.

c. Should local gauges be detected at the thread root itself whithin the hole provided for the rull pin, they may be cleaned up to a maximum depth of .005 (nch using a round swiss pattern (jewe'ars) file.

d. The depth of nicks, scratches or gauges is limited to a maximum of .C20 inch on the cylindrical portion of the inside diameter of the spindle autopard of the cork. It will be necessary to blend all repeirs using a generous radii into the surrounding area.

e. Prior to attempting installation of the roll pins, it is mandetory that positive alignment be established to insure demage free assembly.

2. Scratches in trunnion housing bore may be polished out if less than 0.002 inch in depth.

Figure 22.

1

Tail Rotor Hub Yoke Damage Limits (P/N 204-011-701). Model UH-1C.

ITEM	NOMENC LATURE		MIN.	MAX.	REPLACE
1	Blade Grip Liner	Ð	2.4410	2.4415	2.4423
2	Bearing, Thrust (2 Required)	OD	2.4404	2.4409	2.4395
		D	1.3775	1.3780	1.3790
3	Yoke Thrust Bearing Seat	OD	1.3773	1.3778	1.3750
4	Link Attachment Hole	D	0.2495	0.2500	0.2525
5	Trunnion Spindle		1.1246	1.1250	1.1230
			TO	RQUE	
6	Nut	N./LB	300	600	
7	Nut	IN./LB	300	800	

* Three (3) required for the -13 hub assembly

1

J

Figure 23. Tail Rotor Hub Limits (P/N 204-011-701), Model UH-1C.

- d. Remove burrs and sharp edges on thrust unit inner ring caused by spring tension. Remove minor nicks and scratches which are not deeper than 0.005 inch using a fine India silstone.
- 5. Lubrication

See Paragraph C.6.

6. Reassembly

4

Refer to Figure 21.

NOTE

Prior to performing reassembly procedures, thoroughly degrease bearing retainer nut (4) and exposed threads of yoke assembly (17) spindle. Apply coating of primer to threaded surfaces of retainer nut and spindle.

a. Install cork plugs (16) in yoke assembly (17) spindles and secure with shellac. Use seal and bearing tool, T101407, to press bearings (14) into trunnion bearing housings (10). Position trunnion (15) in place of yoke assembly (17), and insert bearing and housing assemblies into yoke assembly (17) and on trunnion (15).

CAUTION

Press bearing (14) into housing (10) so that seal will be inboard when bearing and housing are assembled on trunnion (15).

b. Position trunnion (15) on threaded end of grip spacing tool, T101412, with flat side of hub down in place on flange of tool, and tighten nut against yoke assembly (17). Install thrust washer (13) with grease fitting groove against thrust cap assembly (9). Position thrust cap assembly (9) on trunnion bearing housing (10). Hold cap assembly (9) and housing (10) together

and move inboard until cap assembly bottoms against thrust washer (13). With cap assembly and housing held together, measure gap between cap assembly (9) and housing (10). Shim as required to provide 0.000 to minus 0.002 inch pinch on trunnion.

- c. Repeat step b on opposite side.
- d. Install preformed packing (12) in cap assembly (9) with four bolts, with thin washers under bolt heads. Assure correct positioning of lubrication fitting (Refer to Figure 21)
- e. Repeat procedure on opposite trunnion.
- f. Check for freedom of turning of yoke and trunnion on the tool. Trunnion should now be centered 0.001 to 0.004 inch pinch fit.

NOTE

If trunnion is not centered, the yoke will bind on flange of tool (T101412). This condition will occur if the pinch on one side is not approximately equal to that on the other. If binding occurs, repeat steps b thru f above.

- g. Lockwire four bolts in pairs when binding is eliminated.
- h. Use seal and bearing tool, T101407, to press seals (7) into blade grip retainer nut (2) with metal side of seal against shoulder in nut. Install radius ring (8) on yoke assembly (17) spindle, with radius of ring mated to radius of spindle. Position retainer nut (2) and seal (7) assembly over radius ring (8). Install shim (6) next to radius ring (8). Install bearing set (5) on spindle with apex marks aligned. (See View A, Figure 21)

When necessary and conditions warrant, bearing assemblies P/N 204-010-704-1 (triplex) or P/N 204-010-709-1 (duplex) need not be installed in serialized sets. Serviceable. used bearings may be mixmatched, providing apex installation marks are maintained. (See Figure 24.) The preloaded bearing (bearing most inboard) must be retained in its original position with the apex pointing outboard. New bearing will remain in matched sets and will be installed in accordance with existing technical manuals.

i. Apply sealing compound to threaded portions of retainer nut (4) and yoke assembly spindle. Install retainer nut on yoke assembly spindle next to bearing set (5), with thin side of retainer nut outboard.

NOTE

To assure proper thread engagement of nut (2) to threads of yoke (17), use a minimum shim (6) thickness to allow nut to set flush with, or below, end of yoke.

j. Use a suitable spanner wrench and tighten nut to a torque of 300 to 800 inch-pounds. Align holes and install two pins through holes at positions 180 degrees apart. Allow Loctite to cure 45 minutes before installing grip and blade assemblies.

NOTE

The application of Loctite does not apply to tail rotor P/N 204-011-701-19, as roll pins are installed and not cotter pins.

OUTBOARD

- •

P

BEARING SET P/N 204-010-704-9 INSTALL WITH APEX MARKS AS SHOWN

OUTBOARD

1

.]

٠.

BEARING SET P/N 204-010-704-1 INSTALL WITH APEX MARKS AS SHOWN

NOTE: THRUST UNIT MAY BE SUBSTITUTED FOR INBOARD BEARING

Figure 24. Tail Rotor Hub Bearings - Apex Alignment Mark (P/N 204-011-701), Model UH-1C.

k. Repeat steps f, g, and h on opposite side.

- Install grip assemblies (3) over bearing sets (5). Align and screw blade retainer nuts (2) into grip assemblies. Torque nuts 300 to 600 inch-pounds.
- m. Check grips for equal spacing, using T101412 tool set.
 - (1) Secure shaft of tool upright in a vise.
 - (2) Position hub trunnion on shaft with flat side of hub down. Install wing nut on shaft.
 - (3) Install gage assembly of tool on either grip with studs in blade mounting holes. Use a feeler gage to measure gap between gage rod and tool shaft.
 - (4) Move gage to opposite grip and repeat measurement.
 - (5) Compare measurements, to be equal within 0.004 inch. If not within tolerance, disassemble the grip with greatest dimension and peel shim (6, Figure 21) as required. After reassembly, repeat gaging procedure.
 - (6) When check is satisfactory, remove tools.
- n. Install new lockplates (1) on grips in position shown on Figure 21. Install attaching washers and screws. Using suitable punch, bend lockplate in, engaging retainer nut (2). Lockwire attaching screws.

The states when

「「「「「「」」」「「」」」」」」」

Model AH-1G

- A. NOTE: See UH-1D/H and add to special tool list, part number T101361, external spline assembly wrench.
 - 1. Removal

See UH-1D/H except:

a. Refer to Appendix I, page 156

2. Repair or Replacement

See UH-1D/H except:

- a. The NOTE following Paragraph (10) does not appear in the AH-1G manual.
- b. Replace Paragraph (10) with the following:

(10) Temporarily secure patch in place using rubber bands cut from an inner tube or by other mechanical means. Cure at 70° to 90°F for 24 hours or 140° to 155°F for 30 minutes.

3. See UH-1D/H and add the following to the WARNIN; following Paragraph e:

Attach a properly filled out DD form 1577-2 (Unserviceable/Reparable) Tag to blade.

4. See UH-1D/H except:

NOTE preceding Paragraph b does not appear in AH-1G manual.

B. Balancing Tail Rotor Assembly

See UH-1D/H except:

Delete NOTE following Paragraph 14. Replace Paragraph 15 with the following:

٠.

15. Final balance tail rotor assembly within 20 inch-grams, spanwise and chordwise as follows:

NOTE

Do not remove or rework blade assembly weights.

- a. Determine light side of tail rotor assembly spanwise and chordwise.
- Balance hub and blade assembly by using a combination of washers (AN960-716, 204-011-708-1, and -3) added to blade bolts on the light side of assembly under nuts.
- c. Do not use over six washers of any combination on -800 assemblies.
- d. Select proper-length blade bolt from acceptable lengths (AN177-35A through AN177-40A), to accommodate washers.

NOTE

Blade bolts may be assembled with heads either inboard or outboard, but all four bolts are to be installed the same.

- e. Assemble balance washers with heaviest washer adjacent to blade grip.
- f. Torque nuts on blade bolts to 270 to 300 inchpounds when hub and blade assembly is in balance.
- C. Tail Rotor Hub Assembly (P/N 204-011-801-3)

See UH-1D/H except:

Refer to Figure 25

1. Description

Delete Paragraphs a and b.

- 2. Disassembly
 - a. Replace with the following:

Secure hub assembly in vise using T101412 or T101457 as a holding fixture with flat side of yoke down.

1.	Grip Assembly	12.	Housing	23.	Radius Ring	Race
2.	Bolt	13.	Spring Pin	24.	Yoke	
3.	Washer	14.	Nut	25.	Bolt	
4.	Lockplate	15.	Shim	26.	Washer	
5.	Shim	16.	Ring	27.	Housing	
6.	Plug	17.	Split Cone	28.	Thrust Plug	
7.	Shim	18.	Bearing Set	29.	Shim	
8.	Spring Assembly	19.	Shim	30.	Bearing	
9.	Cotter Pin	20.	Spacer	31.	Trunnion	
10.	Pin	21.	Seal	32.	Cork	
11.	Washers	22.	Nut	33.	Bearing Inner	

Figure 25. Tail Rotor Hub Assembly (P/N 204-011-801), Model AH-1G.

g. NOTE

Delete the phrase "for reassembly in the same position."

m. Replace with the following:

Cut lockwire and remove four bolts (25), washers (26), and housing (27).

n. Replace with the following:

Remove thrust plug (28) on shims (29). Index shims for installation on same spindle from which removed.

o. Replace with the following:

Remove housing (27) and extract bearing (30) from housing using a suitable bearing puller.

3. Cleaning

See UH-1D/H

4. Inspection

See UH-1D/H except:

- a. Refer to Figures 25 27 and 15.
- b. Refer to Figure 25.
- c. Refer to Figure 26.
- d. Replace Paragraph e with the following:

Inspect the following parts by Magnetic Particle (Code M) method MIL-I-6868 or Fluorescent Penetrant (Code F) MIL-I-6866 as required. Remove inner race (33, Figure 25) from trunnion (31) for inspection. Install race on trunnion after inspection, if both the race and trunnion are acceptable.

325

_

GRIP ASSEMBLY P/N 204-011-728-5

۰.

TYPE OF DAMAGE	AREA A	AREA B AS SHOWN MAXIMUM DEPTH	AREA C
NICKS, SCRATCHES SHARP DENTS	0.010	0.005	0.020
CORROSION	9 005	0.002	0.010
AREA OF FULL DEPTH REPAIR	0.10 INCH SQUARE	0.20 INCH SQUARE	0.30 INCH SQUARE
NUMBER OF REPAIR AREAS NON OVER LAPPING	TWO	TWO	TWO

Notes

- 1. Damage to threads less than one third of the thread depth may be cleaned up to existing depth for a total length of one inch.
- 2. Coat repair areas on aluminum with brush alodine or zinc chromate primer.
- 3. All edges may be radiused or chamfered local 4 to depth of 0.030 inch to remove nicks or dents.

Figure 27. Tail Rotor Hub Grip Limits (P/N 204-011-801), Model AH-1G.

ITEM	NOMENCLATURE	CODE
1	Grip Assembly	F
14	Nut	М
16	Ring	F
22	Nut	М
24	Yoke	М
31	Trunnion	м

e. Refer to Figure 30.

5. Repair or Replacement

See UH-1D/H except:

Refer to Figures 27 and 15.

- a. Delete this paragraph.
- e. Refer to Figures 25, 26, and 31 respectively instead of those indicated in UH-1D/H section.
- f. Refer to Figures 25, 26, and 15 respectively instead of those indicated in UH-1D/H section.
- g. Delete
- 6. Lubrication

See UH-1D/H except:

b. Delete

7. Reassembly

1

See UH-1D/H except:

Refer to Figure 29 and replace index numbers with those indicated below. Where more than one number appears in one paragraph, they are listed in the order in which they are to be used. ۰.

- a. Replace index number with 32.
- b. Replace index numbers with 30, 27, 31, 24. Also, add the following:

Use enough shim to produce a gap between housing and yoke. Ensure that all parts are seated.

c. Add the following to this paragraph:

Install bolts (25) and washers (26).

- d. Replace Paragraphs (3) through (11) with the following:
 - (3) Using a feeler gage, measure the gap between housing (27) and mating surface of yoke (24), and record.
 - (4) Remove bolt (25), washers (26), housing (27), plug (28) and shims (29) from measured side of trunnion. Peel shim (29) to close gap to 0.000 to 0.002 inch. The total amount of shim removed may not be greater than the width of the gap measured in step c above.
 - (5) Install prepared shim (29), plug (28), housing (27), bolts (25), and washers (26) on trunnion.
 - (6) Prepare and install shim for opposite side of trunnion following steps (3) through (5) to provide a tool of 0.00L to 0.004 inch pinch fit on trunnion.
 - (7) Torque bolts (25) 20 to 25 inch-pounds, and lockwire bolt heads in pairs.
- e. Delete figure reference.
 - (3) Delete CAUTION following this paragraph.

Add the following paragraph:

- (9) Reassemble the tail rotor hub assembly in accordance with existing instructions contained in the appropriate maintenance manual.
- f. Change figure reference to Figure 25. Delete CAUTION preceding Paragraph (1). Delete NOTE following this paragraph.

g. Change figure reference to:

(3) Figure 25

کام کار

1

Ĵ

- Change figure reference to:
 Figure 25
- o. Delete NOTE following this paragraph.

19

. .

APPENDIX VI

MTBF AND MTBR PREDICTIONS FROM MIRF REPORT DATA USING WEIBULL DISTRIBUTION ANALYSIS TECHNIQUES

1.0 THE ANALYSIS OBJECTIVE

Section 6 and Appendix II present the results of analyses of tail rotor system component data obtained from Major Item Removal Frequency (MIRF) reports. The analysis results include MTR/MTBR and MTBF predictions. In addition, the analysis includes an estimate of the component MTBR that would be achieved if all the components removed prior to time change for nonfailure-caused removal reasons were reinstalled and operated until follower or time change required their removal. This MTBR estimate is based on the consideration that the component's failure rate is exponential.

The objective of this appendix is to show another analysis approach that may be used to predict the component MTBF and MTBR values from the MIRF reports if the component failure rate is Weibull rather than the classical exponential. The effect on the estimated MTBR value of off-aircraft repair (not including overhaul) to a percentage of the failed components is also examined using equations developed during this program.

2.0 THE ANALYSIS APPROACH

This analysis procedure takes the MIRF data, plots it on Weibull graph paper, determines the characteristics of the distributions, predicts comparable exponential distributions, and identifies MTBF values from which MTBR values can be estimated.

2.1 The Weibull Equations

The Weibull reliability equation used in this analysis is

$$R = e^{-\left(\frac{t}{\theta}\right)^{\beta}}$$

(47)

٠.

where R = the reliability at time t

 θ = the characteristic life of a Weibull distribution with a shape parameter β

The distribution frequently called the exponential distribution is a special case of the Weibull distribution where β is equal to one.

The characteristic life θ is the time t when the fraction that failed is equal to $1 - e^{-1}$ or .632. This is true regardless of the shape parameter. In an exponential distribution the characteristic life is also the mean value. The mean value of the Weibull distribution is determined from the following equations:

$$\mu = \theta \quad (1 + 1/\beta) \tag{49}$$

and

$$\mathbf{F}(\mu) = 1 - \exp\left[-(\mu/\theta)^{\beta}\right] = 1 - \exp\left\{-\left[\Gamma(1 + 1/\beta)\right]^{\beta}\right\} \quad (50)$$

where $\mu =$

the mean of the Weibull distribution

F (μ) = the fraction failed at t = μ $\Gamma(x) = \int_{0}^{\infty} u^{x-1} e^{-u} du$ is the gamma function

A curve relating the fraction failed $F(\mu)$ at the mean to the shape parameter β over the β range observed in the analyses is shown in Figure 28.

2.2 Weibull Graph Paper

Figure 29 is a form of Weibull graph paper developed by Mr. James R. King of a company called Technical and Engineering Aids for Management (TEAM) of Tamworth, New Hampshire. It is similar to other Weibull graph paper except for some features. The paper has a log scale along the horizontal time axis and a Weibull probability scale along the vertical axis. Points of accumulative percentage of failure are plotted against elapsed time. If the points approximate a straight line and a line is so drawn through them, this represents the Weibull distribution of the plotted points. The intersection of the line and 62.3 percent failures will locate the time that is equivalent to the characteristic life θ . A line parallel to the distribution passing through the origin of the small beta estimator will identify the β parameter of the distribution. Other characteristics of the paper are described in Reference 30.

Figure 28. Plot To Determine the Location of the Weibull Mean from β .

: '

. 1

2.3 Characteristics of the Data

The Major Item Removal Frequency (MIRF) reports are prepared by the Reliability and Maintainability Management Improvement Techniques (RAMMIT) System of the Systems Performance Assessment Division, Product Assurance Directorate, Army Aviation Systems Command, St. Louis, Missouri. The MIRF reports contain a breakdown by failure code of the initial removals per 100-hour flight-hour interval for those components which are included in the DA Form 2410 reporting system. This information is tabulated for each specific Federal stock number/part numbered component and is reported by aircraft model. Listings for those components with no prior overhauls and those with one prior overhaul are included. The total number of removals as well as the percentage of total removals is shown for each 100-hour flighthour interval. The report is further divided with respect to failures (actual failed components) and nonfailures (time change removals, removals to facilitate other maintenance, etc.).

Since the distribution of first removal times of new items included both removals for failure and nonfailure causes, an approach must be made to determine the percentage of failure cause removals which recognizes the diminishing population due to the nonfailure cause removals as well.

2.4 Determining Percentage of Failure From Multicensored Data

The fraction of components that have failed F(t) through time interval t is expressed by the following equation:

$$F(t) = 1 - P_{(t)}$$
 (51)

where P(t) = the probability of survival through time interval t

 P_t values are formed by multiplying together a sequence of estimates of conditional probabilities P_i of survival through intervals 0 to 99 hours, 100 to 199 hours, etc. A typical factor p of this sort can be estimated several ways, where the number of items n at the beginning of the interval is known to be reduced by n_f failures and n_{nf} nonfailures within the interval but the order in which these occur is not known.

$$\overline{p} = \frac{n - n_f}{n}$$
(52)

could be used if all the failures were known to precede all the nonfailure removals.

$$\underline{p} = \frac{n - n_f - n_{nf}}{n - n_{nf}}$$
(53)

could be used if all the nonfailure removals preceded all failure removals. However, here it is evident that $\underline{p} \leq \underline{P}_i \leq \overline{p}$. An equation for an intermediate value for p is provided in reference 31,

$$P_{i} = \frac{n_{i} - n_{f_{i}} - n_{nf_{i}/2}}{n_{i} - n_{nf_{i}/2}}$$
(54)

where 50 percent of the nonfailure-caused removals occur at the beginning of the interval and 50 percent at the end of the interval. Since, except for the initial interval, the 100-hour periodic inspections appear at the beginning and end of each 100-hour interval and since the periodic inspection time is the most probable time to remove nonfailed components, this equation appears to provide the best approach to the multicensored data analysis.

The n_i values are determined for each interval. For the first interval, 0 to 99 hours, n_i equals the total number of units n_t in the analysis. For the second interval, 100 to 199 hours, n_2 equals n_t minus the number of failures n_{f_1} and the number of nonfailure-caused removals n_{nf_1} in the first interval. For the third interval, 200 to 299 hours, $n_3 = n_t$ minus the number of failures n_{f_1} and the number of nonfailure-caused removals n_{nf_1} through the first two intervals. This expressed as an equation is

$$n_r = n_t - \sum_{i=1}^{i=r-1} n_{f_i} + n_{nf_i}$$
 (55)

where $n_r =$ the number of assemblies at the beginning on interval r

The probability of survival is determined for each 100-hour interval using the data and the above equations.

The accumulative probability of survival P_r through time interval r is determined for each interval using the following equation:

$$P_r = \prod_{i=1}^{i=r} P_i$$
 (56)

۰.

The accumulative fract: n of components that have failed F_r through time interval r is determined using equation (51).

The resulting set of accumulative failure values is plotted on the Weibull graph paper, and a straight line is drawn through the points to represent the Weibull distribution. The characteristic life θ , the slope parameter β , and the mean of the projected distribution μ are determined as previously described.

2.5 <u>Determining the Characteristics of an Exponential</u> Distribution Which Has Correspondence With the Weibull

The slope parameter β in a Weibull distribution identifies the characteristic of the failure rate. When β equals one for the special case where the Weibull distribution is also the exponential distribution, the failure rate is a constant for different time values. Where β is less than one, the failure rate of the distribution decreases with increasing time; when β is greater than one, the failure rate increases as time increases. For most dynamic components which have an assigned operating period of time to removal for overhaul or retirement, the β values are slightly greater than one. This indicates that there is a slight wear characteristic which causes an increased frequency of removal as the components approach time change.

In general, the desirable time to be established for time change is a period just prior to where the wear rate would appear to accelerate (i.e., where secondary damage may become significant).

Since the exponential equations are used most frequently in reliability computations and since the β for the Weibull distributions of most dynamic components are close to one, it is desirable to determine an exponential distribution which has a correspondence with each Weibull distribution.
This is accomplished graphically by drawing a line with a β slope of one through the point where the Weibull distribution line intersects a time equal to the time change. The rationale for selecting this point is that both the Weibull and exponential distributions so drawn have the same percentage of assemblies which survive to time change. The characteristic life which is the mean of the exponential distribution line intersects 62.3 percent failures. This mean is the MTBF value which will be used to estimate the MTBR values described in the following subsection.

In the example presented in Section 4.0 of this appendix, the exponential distribution has a larger percentage of failed components at the end of each 100-hour interval than the Weibull distribution up to the point of time change. The effect of using the exponential distribution instead of the Weibull distribution for spare component requirement estimations is that although the same number of premature replacements are required, the exponential analysis would indicate that a larger number would be required earlier.

Note that beyond time change, both distributions are truncated and spares would be required to replace the remaining components removed at that time.

2.6 <u>Estimating Mean-Time-Between-Removal Values Using the</u> Exponential Mean (MTBF)

In Section 6 of the report, equation 27 was developed which estimates the MTBR of an exponential distribution truncated at time change T_c :

$$MTBR_{e} = MTBF \begin{pmatrix} T_{c} \\ 1 - e^{-MTBF} \end{pmatrix}$$

This equation shall be used to estimate the MTBR for the exponential distribution plotted on the Weibull graph paper.

2.7 Adjusting the Estimated MTBR for Repaired Items Recycled Into the Inventory

It was observed in Section 7 of the report that a fraction of the components removed for failure are repaired (not overhauled) locally and are later reinstalled to continue

operating until they either fail again or are removed for time change. Note that the repaired components are not set back to zero time as are overhauled components. Their accrued time on reinstallation is the same as the time accrued when they were removed for failure. The repaired components are in effect a set of short-life components which have the same MTBF as the nonrepaired components but which also have a new potential time-to-removal life span of time change T minus the accrued time at failure Tf. Failures and subsequent repairs can occur and reoccur. The MTBR of a distribution which includes both repaired and nonrepaired components is lower than the MTBR of the distribution which contains only the nonrepaired assemblies. This analysis considers only two repair cycles. Computations of additional cycles have shown but little additional change in the total MTBR.

For this analysis, the K factor representing the fraction of failed components that are repaired, assigned to each type of component, is the largest value shown in Section 7 of the report for that component regardless of part number or aircraft model. This approach was taken since there is a large percentage of the components for which the action taken on the removed component is not identified.

The K values assigned are:

Tail rotor hub	.15	90-degree gearbox	.05
Tail rotor blade	.08	Hanger assembly	.04
42-degree gearbox	.07		

The equations developed to estimate the MTBR of a distribution with a population that includes the initial removals for failure and time change and a group of repaired failed assemblies which are subsequently removed for a second or subsequent failures or time change, were the result of a coordinated effort between Bell's Project Engineer for the program and the Government's Technical Representative for the program. Where the distribution contains one repair cycle (i.e., initial failures, repair, and second failures), the mean-time-between-removals has been identified as MTBR'. MTBR" similarly corresponds to a distribution containing, in addition to the assemblies in previous distribution, assemblies having a second repair cycle.

The MTBR' and MTBR" equations are based on two assumptions:

a. The mean-time-to-removal for the failed assemblies (MTR_c) is equal to the MTR of the repaired assemblies.

Since there are criteria which would preclude the repair of assemblies which fail near time change, the true MTBR' and MTBR" values would probably be higher than those obtained using the equations of this analysis.

b. The MTBF for the initial population and the groups of repaired components is constant.

The following shows the development of the equations.

MTBR' is determined by summing the total time to removal for failure and time change for a population of n components having a known MTBF with the additional total time to removal for failure or time change of a smaller group of n' repaired components which have a potential life to time change T_c-MTR_{fl} , and dividing the result by the sum of n and n'.

 MTR_{f_1} is determined by subtracting from the product of $MTBR_e$ and n the product of T_c and the number of components n_{T_c} which are removed for time change, and dividing the result by the number of component removed for failure $(n-n_{T_c})$.

MTBR" is determined by summing the product of MTBR' and (n"+n') with the additional total time to removal for failure or time change achieved by a still smaller group of n" repaired components (a fraction of the n' group failures) which have a potential life to time change of $T_c - MTR_{f_o}$, and

dividing the result by n + n' + n''.

 MTR_{f_2} , the mean-time-to-removal of the components that failed, were repaired, and which failed a second time, is determined from n' population in the same manner as MTR_{f_1} was determined from the n population. The following are the derivations and the resulting equations for MTR_{f_1} and MTBR':

where

1

 $MTBR_{f/R_1} = Mean-Time-Between-Removal for components that failed, were repaired and were put back into the system.$

$$MTBR' = \frac{N \times MTBR_{R} + MTBR_{f/R_{1}} \times N_{o}}{N'}$$

$$= \left\{ N \times MTBF \left(1 - e^{-\frac{T_{c}}{MTBF}} \right) + MTBF \left(1 - e^{-\frac{T_{c}}{MTBF}} \right) \left[N - N \left(e^{-\frac{T_{c}}{MTBF}} \right) \right] K \right\} \right\}$$

$$= \frac{MTBF}{\left(N - N \left(e^{-\frac{T_{c}}{MTBF}} \right) \right] K}{\left(N - N \left(e^{-\frac{T_{c}}{MTBF}} \right) \right] K}$$

$$= \frac{MTBR_{e} + MTBF}{\left(1 - e^{-\frac{T_{c}}{MTBF}} \right) \left[1 - e^{-\frac{T_{c}}{MTBF}} \right] \left[1 - e^{-\frac{T_{c}}{MTBF}} \right] K}{1 + \left[1 - e^{-\frac{T_{c}}{MTBF}} \right] K}$$
(58)

J

$$MTR_{f_{2}} = MTBF - \frac{\left[e^{-\frac{T_{c}-MTR_{f_{1}}}{MTBF}}\right]\left(T_{c}-MTR_{f_{1}}\right)}{\left[1-e^{-\frac{T_{c}-MTR_{f_{1}}}{MTBF}}\right]}$$
(59)

$$MTBR'' = \left\{ MTBR_{e} + MTBF \left[1 - e^{-\frac{T_{c} - MTR_{f_{1}}}{MTBF}} \right] \left[1 - e^{-\frac{T_{c}}{MTBF}} \right] K$$

$$+ MTBF \left[1 - e^{-\frac{T_{c} - MTR_{f_{1}} - MTR_{f_{2}}}{MTBF}} \right] \left[1 - e^{-\frac{T_{c}}{MTBF}} \right] \left[1 - e^{-\frac{T_{c} - MTR_{f_{1}}}{MTBF}} \right] K^{2} \right\}$$

$$\left\{ 1 + \left[1 - e^{-\frac{T_{c}}{MTBF}} \right] K + \left[1 - e^{-\frac{T_{c}}{MTBF}} \right] \left[1 - e^{-\frac{T_{c} - MTR_{f_{1}}}{MTBF}} \right] K^{2} \right\}$$

3.0 THE RESULTS OF THE ANALYSIS

The analysis results consider both the Weibull distribution of failure-caused removals versus time and the Weibull distribution of all cause removals versus time.

3.1 The Weibull Distribution Characteristics

Table CXV presents the tail rotor system components' Weibull distribution characteristics, β , θ , mean and percentage of failures at time change (TBO), and the MTBF of the exponential distributions which have the same percentage surviving to time change as the Weibull distributions. The table shows that except for some of the tail rotor hubs and one of the hanger assemblies, the β slopes of the Weibull distribution of fail-ure-caused removals are less than 1.20. This is comparatively close to an exponential distribution.

A comparison of the β slopes of the two sets of Weibull distributions indicates that while there is a slightly increasing failure rate for most of the distributions of failure-caused removals, the distribution for removals for all causes is very close to or slightly less than 1.0. This means that the distribution of nonfailure-caused premature (prior to time change) removals must have a fairly significant decreasing removal rate. This condition is most pronounced for the tail rotor hub assemblies. During the data period, special inspections were introduced on the hub assemblies that resulted in premature removals at scheduled times so that prescribed examination processes could be conducted. This may have introduced a distortion to the data that is not observable in the MIRF reports. It may well be that the earlier-calendar-date premature removals were primarily for failure cause, while the later date removals were for nonfailure, inspection purposes.

TABLE	CXV.	FA	ILURE	AND F	REMOVAL I	DISTRIBUTIC	IN CHA	RACTE	RISTICS	
			Removal	is for Fa	ilure Cause	s		All Re	moval Cau	ses
Component				Weibull Dist.		Exponential Dist.			Weibull Dist.	Exponential Dist.
(Time Change, TBO) Part Number	Model	β	$\begin{pmatrix} \theta \\ (hr) \end{pmatrix}$	Mean (hr)	7. Failure at TBO	MTBF (hr) **	8	θ	Mean (hr)	Mean (hr) **
Tail Rotor Hubs (1100-hour Life)										
204-011-701-11	UH-1D	1.74	792	706	83.00	621	1.33	740	404	726
204-011-701-19	UH-1D	1.20	1206	1134	59.13	1229	.84	148	162	202
204-011-801-5	UH-1D	1.55	795	715	80.93	664	1.06	335	328	312
204-011-801-9	CH-ID	1.32	542	667	92.19	432	1.10	253	244	219
204-011-701-19	HI-HU	1.10	1696	1635	46.22	1773	.81	149	168	218
204-011-801-5	HI-HU	1.18	683	646	82.68	627	.95	272	278	291
204-011-801-9	HI-HU	1.18	654	619	84.15	597	1.02	324	322	318 `
All D/H Hubs	H/d	1.27	662	742	07.77	733	- 89	217	230	260
209-010-701-3	AH-1C	1.14	630	601	84.88	582	.97	140	143	151
204-011-801-3	AH-1G	1.20	478	450	93.39	405	1.06	247	241	224
All G Hubs	AH-1G	1.22	512	479	92.23	431	66.	189	190	192
All the Hubs	D/H/G	1.24	740	690	80.84	672	06.	211	222	249
T/R Blades (1100-hour Life)										
204-011-702-15	UH-1D	1.03	1310	1295	56.62	1317	1.02	378	376	37.2
204-011-702-15	UH-1H	1.14	800	764	76.24	765	96.	335	340	349
All D/H Blades	H/d	1.12	998	832	72.90	842	.97	343	347	354
204-011-702-17	AH-1G	1.04	615	606	83.94	602	.94	222	229	246
All the Blades	D/H/G	1.08	815	167	16.47	796	- 95	312	319	331
42 [°] Gearbox (1500-hour TBO)										
204-040-003-23	UH-1D	1.11	1530	1470	62.40	1533	1.02	1096	1086	1088
204-040-003-37	UH-1D	.98	1666	1632	59.44	1662	66°	1011	1017	1016
204-040-003-37	H-HU	1.10	1024	686	78.14	986	1.07	772	752	736
A11 D/H 42's	H/d	1.06	1234	1207	70.74	1220	1.04	873	860	855
204-040-603-3/	AH-1G	1.05	895	877	82.12	871	96.	644	655	664
	2/11/2	· · ·	77.7	114/	1/.7/	6611	1.02	831	824	822

Ţ

			TA	BLE C	čV. (Cor	itinued)				
		~	emoval	s for Fa	ilure Cause:			All Ren	noval Cause	sa
Component (Time Change, TBO) Part Number	Mode 1	Ø	$\begin{pmatrix} \theta \\ (hr) \end{pmatrix}$	Weibull Dist. Mean (hr)	% Failure at TBO	Exponential Dist. MTBF (hr) **	8	$\begin{pmatrix} \boldsymbol{\theta} \\ (\mathrm{hr}) \end{pmatrix}$	Weibull Dist. Mean (hr)	Exponential Dist. Mean (hr) **
90 [°] Gearbox (1100-hour TBO)										
204-040-012-7 204-040-012-13	UH-ID UH-ID	1.10	1768 1655	1705 1700	44.70 49.35	1857 1617	1.10	1168 984	1126 1015	1175 991
204-040-012-13 A11 D/H 90's	H1-HU	1.14	1243	1031	64.02 58 41	1076	1.09	820	795	800
204-040-012-13	AH-1G	1.12	096	921	68.80	944	1.06	100 100 100 100	673	670
2 0 2 11 TTV	2/11/2	c ^•	1411	(611	01.00	1170	- ⁷	04/	C 25	839
D/S Hang≏r Assy (None≄)										
204-040-600-7	UH-ID	1.09	1112	1075	55°66	965	1.04	766	753	706
204-040-600-9	UH-ID	1.01	685	683	55°66	672	1.06	451	144	390
204-040-600-7	UH-IH	1.25	676	892	16.66	623	1.20	624	587	412
204-040-600-9	HI-HU	1.01	35	732	16.99	718	1.04	548	539	500
704-040-600-9	AH-1C	70.1	575	618	99.82 00 07	16/	1.04	с К. ц	570	533
All the Hangers	D/H/G	1.02	806	801	99.83	782	1.03	565	559	49/ 533
* Time change of 5000	flight	hours	(appro	ximate a	ircraft lif	e) has been use	d for c	omputat	ion purpose	
** These MTBF values a or time change as	tre the m compone	nts'	of expo Weibul	nential l distri	distributio butions.	ns which have '	he same	percen	itage surv	iving to TBO

.)

3.2 Comparison of the MTBR Values Estimated by This Analysis Procedure and the MTBR Values Estimated in Section 6

Table CXVI presents the Weibull distribution mean values, the MTBF values of the exponential distributions that were created on the basis of the same percentage of components having failed at time change, and estimated MTBR values that were computed using the MTBF values and equation 27. The MTBF and MTBR_e values that were presented in Section 6 for the same components are shown for comparison.

The relationship between the Weibull mean and the exponential MTBF generally depends on the percentage of failures at time change and the β slope. As shown in Figure 30, if the percentage of failures at time change is less than 62.3 and if the β is less than 1.0, then the mean of the Weibull distribution is always greater than the exponential MTBF. Also, if the percentage of failures at time change is less than 62.3 and if β is greater than 1.0, then the mean is always less than the exponential MTBF. If, however, the percentage of failures is greater than 62.3 and β is either less than or greater than 1.0, the mean can be either greater than or less than the exponential MTBF or approximately equal to it.

Except for the hanger assembly, nearly all of the MTBF/MTBR_e values computed for the components using the procedures of this appendix are less than the comparable MTBF/MTBR_e values obtained in Section 6.

Table CXVII compares the means of Weibull distributions and exponential distributions which consider removals for all causes. The relationship between these means is also as shown in Figure 30, described above. The MTBR estimated using the exponential mean and equation 27 is compared with the MTBR/MTR values for removals for all causes shown in Section 6. The differences between these values vary from zero to 47 percent. The greatest difference appears for the rotor hub, hanger assembly, and one of the 42-degree gearboxes. The maximum difference is about 9 percent for the olades and 5 percent for the 90-degree gearbox.

3.3 MTBR Adjustments Due to Off-Aircraft Repair

Table CXVIII shows how the MTBR reduces as a fraction of the failed assemblies are repaired and are used as replacement units. Since the fraction that is so repaired is small (4 to 15 percent), the percentage of change in MTBR from a single repair is also small--less than 3 percent. The additional percentage of change in MTBR from the distribution with single repairs to one which also includes a second repair cycle is extremely small--less than 0.5 percent.

j

TABLE CXVI. WEI MTB	BULL DIS F AND MT	TRIBUTION N BR _e VALUES	MEAN VALUES BASED ON F	AND EXPON AILURE-CAU	NENTIAL DIS JSED REMOVA	TRIBUTION LS
Component		Weibull	Exponential	MTBF From	MTBF	_0
(Time Change, TBO) Part Number	Model	Dist. Mean (hr)	Dist. MTBF (hr)	Section 6 (hr)	From Expo. Dist. MTBF	From Sect. 6 MTBF
Tail Rotor Hubs (1100-hour Life)						
204-011-701-11	01-HI	706	621	1012	515	671
204-011-701-19	UH-1D	1134	1229	1538	727	789
204-011-801-5 204-011 801 0	UH-ID	715	664	1040	527	679
204-011-701-19	UH-1H	1635	1773	1850	398 008	511
204-011-801-5	UH-1H	646	627	852	519	618
204-011-801-9	UH-1H	619	597	746	502	575
All D/H Hubs	H/d	742	733	1004	570	668
209-010-701-3	AH-1G	109	582	632	494	521
204-011-801-3	AH-1G	450	405	535	378	567
All G Hubs	AH-1G	:179	431	569	397	437
All the Hubs	D/H/G	690	672	898	541	634
T/R Blades (1100-hour Life)						
204-011-702-15	UH-1D	1295	1317	1335	746	749
204-011-702-15	UH-IH	764	765	87i	583	625
All D/H Blades	H/Q	832	842	924	614	643
ZU4-UII-/UZ-I/ All the Riades	AH-1G	606 791	602 704	638	505	524
42 [°] Gearbox (1500-hour TBO)						070
204-040-003-23	UH-1D	1470	1533	1637	957	982
204-040-003-37	UH-1D	1682	1562	1575	988	967
204-040-003-37	HI-HU	989	986	1076	771	809
204-040-003-37	AH-1C	877	1220	1271	863 715	188
All the 42's	D/H/G	1147	1155	1206	840	858

24. 10fa - 1264 - 1484

		TABLE CXV	'I. (Contin	(bəu		
Component		Weibull	Exponential	MTBF From	MTBR	e.
(Time Change, TBO) Part Number	Model	Dist. Mean (hr)	Dist. MTBF (hr)	Section 6 (hr)	From Expo. Dist. MTBF	From Sect. 6 MTBF
90 [°] Gearbox (1100-hour TBO)						
204-040-012-7	01-HU	1705	1857	1791	830	822
204-040-012-13	UH-HU	1031	161/ 1076	1624 1146	798 689	707
All D/H 90's	H/d	1210	1254	1311	732	744
All the 90's	D/H/G	1157	944 1198	982 1253	650 720	662 732
D/S Hanger Assy (None *)						
204-040-600-7	UH-ID	1075	965	645	960	645
204-040-600-9	UH-1D	683	672 .	665	672	665
204-040-600-7	UH-1H	882	623	889	62:	886
204-040-000-9 All D/H Hangers		815	701	60/	117	708
204-040-600-9	AH-1C	676	678	652	678	657
All the Hangers	D/H/G	801	782	689	781	689
* Time change of 5000 fl	ight hours	(approximate a	ircraft life) ha	s been used fo	r computation	purposes.

Figure 30. Weibull Mean μ and the Exponential MTBF Relationships.

.]

TABLE CXVII. WEII MEAN	SULL DIS	TRIBUTION I TIMATED MT	MEAN VALUES BR VALUES B	AND EXPO	NENTIAL DIS EMOVALS FOR	STRIBUTION ALL CAUSES
Component (Time Change, TBO) Part Number	Mode 1	Weibull Dist. Mean (hr)	Exponential Dist. Mean (hr)	(1) Estimated MTBR (hr)	(2) MTBR From Section 6 (hr)	7 Difference Between MTBR Values (2)-(1) x 100 (1)
Tail Rotor Hubs (1100-hour Life)						
204-011-701-11 204-011-701-19 204-011-801-5	UH-1D UH-1D	404 162 378	324 202 312	313 202 303	389 151 318	+24.3 -25.2
204-011-801-9 204-011-701-19	DI-HD	244	219	218	238 157	+ 9.2 -27.6
204-011-801-9 204-011-801-9	H1-H0	322	318	284 308	264 308	- 7.0
209-010-701-3 204-011-801-3	AH-IG AH-IG AH-IG	250 241	260 151 224	255 222	215 126 235	-16.0 -16.6 + 5.9
ALL G HUDS All the Hubs	D/H/G	222	192 249	191 246	176 208	- 7.8 -15.4
T/R Blades (1100-hour Life)						
204-011-702-15 204-011-702-15 All D/H Blades 204-011-702-17 All the Blades	UH-ID UH-IH D/H AH-IG D/H/G	376 340 347 319	372 349 354 331	352 334 338 338 319	354 319 326 321	+ 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
42 [°] Gearbox (1500-hour TBO)						
204-040-003-23 204-040-003-37 204-040-003-37 All D/H 42's 204-040-003-37 All the 42's	UH-ID UH-IU UH-IH D/H AH-IG D/H/G	1086 1017 752 860 824	1088 1016 736 855 822	814 7814 595 689	619 682 687 679 675	-24.0 -13.0 - 4.0 - 1.7

Ĵ

		TABLE CXV	/II. (Cont	inued)		
Component (Time Change, TBO) Part Number	Model	Weibull Dist. Mean (hr)	Exponential Dist. Mean (hr)	(1) Estimated MTBR (hr)	(2) MTBR From Section 6 (hr)	7. Difference Between MTBR Values (2)-(1) x 100 (1)
90 ⁰ Gearbox (1100-livür TBO)						
204-040-012-7 204-040-012-13 204-040-012-13 A11 D/H 90's 204-040-012-13 A11 the 90's	UH-1D UH-1D UH-1H D/H AH-1G D/H/	1126 1015 795 870 673 835	1175 991 800 875 839	714 665 598 626 613	729 697 647 550 632	
D/S Hanger Assy (None *)						
204-040-600-7 204-040-600-9 204-040-600-7	UH-1D UH-1U UH-1H	753 441 587	706 390 412	706 390 412	373 430 560	-47.2 +10.3 +35.9
204-040-600-9 All D/H Hangers 204-040-600-9 All the Hangers	D/H-J/F D/F AH-1G D/H/G	570 570 559	533 533 533 533	500 533 533 533 533 533 533 533 533 533	515 465 435 462	+ 3.0 -12.8 -12.5 -13.3
* Time change of 5000 f	light hours	(approximate a	aircraft life)	has been used	for computation	1 purposes.

	i																			_
REPAIR	7. Change MTBR' to MTBR"		. 44	. 44	.18	- 44 77	.43	-44	36	.44		.08	.12	.14	.12		.07	.10	.10	60.
AIRCRAFT	MTBR" (hr)		503 706	524 392	798	90¢	554	483	373 391	527		734	c/c 605	667	180		944	761	707	829
JUSTED FOR OFF-	7. Change MTBR _e to MTBR'		2.02	2.14	2.42	2.04 1.94	2.30	1.89	1.08	2.16		1.44	1.32	1.34	1.28		1.28 1.28	1.13	1.03 1.03	1.22
VALUES AD	MTBR' (hr)		505 708	393	800	508 493	556	485	374 393	530		735	9/6 606	500	000		975	762	708	830
NT MTBR	MTBR _e (hr)		515 727	398	820	502	570	464	378	541		746	614	505 50	860	Į	988	771	715	840
COMPONE	Model		01-HN	d1-HU	UH-IH	0H-1H	D/H	AH-1G	AH-1G	D/H/G		DI-HU	H/D	AH-16			01-H0	UH-IH	AH-1G	D/H/G
TABLE CXVIII.	Component (K) (Time Change, TBO) Part Number	Tail Rotor Hubs (.15) (1100-hour Life)	204-011-701-11 204-011-701-19	204-011-801-9	204-011-701-19	204-011-801-9	All D/H Hubs	209-010-701-3	204-011-801-3 All G Hubs	All the Hubs	<pre>r/R Blades (.08) (1100-hour Life)</pre>	204-011-702-15	All D/H Blades	204-011-702-17	42 [°] Gearbox (.07) (1500 iour TBO)		204-040-003-23	204-040-003-37	204-040-003-37	All the 42's

	TA	BLE CXVI	[II. (Cor	itinued)		
Component (K) (Time Change, TBO) Part Number	Model	MTBR (hr)	MTBR' (hr)	7. Change MTBR to MTBR'	MTBR" (hr)	7. Change MTBR' to MTBR"
90 ⁰ Gearbox (.05) (1100-hour TBO)						
204-040-012-7 204-030-012-13	01-10 01-10	830 798	823 791	.83	823 791	.02
204-040-012-13 All D/H 90's 204-040-012-13 All the 90's	D/H D/H D/H/G	689 732 650 720	683 726 644 713	.92 .91 .92	682 725 643 713	.0.0.0 .0.0.0 .0.00
D/S Hanger Assy (.04) (None*)						
204-040-600-7 204-040-603-9	UH-1D UH-1D	960 672	959 672	40 . 00	959 672	00.00
204-040-600-7 204-040-600-9	HT-HU	623 717	623 717	00	623 717	000
All D/H Hangers	D/H	062	789	0.	789	00
All the Hangers	D/H/Q	781	781	00.	6/8 781	000.00
						-
* Time change of 5000 fligh	t hours (appro	oximate aire	craft life) h	as been used for com	putation purp	oses.

For all assemblies, the percentage of change shown was computed before the MTBR' and MTBR" values were rounded to whole numbers. As a result, there is a percentage of change noted in Table CXVIII for some components where MTBR' values appear to be equal to the MTBR" values.

4.0 TRACING THE ANALYSIS OF THE UH-1H, 90-DEGREE GEARBOX, PART NUMBER 204-040-012-13 AS AN EXAMPLE

Table CXIX, extracted from the UH-1H MIRF report (Reference 4), shows how the distributions of failure, nonfailure new-item first-time removals are presented in these data for the UH-1H 90-degree gearbox, Part Number 204-040-012-13. The following paragraphs describe the analysis performed on these data.

The total number of assemblies removed is 2817. The probability of surviving the first 100-hour interval is computed using equation 54:

$$P_{1} = \frac{n_{1} \cdot n_{f_{1}} - n_{nf_{1}/2}}{n_{1} - n_{nf_{1}/2}} = \frac{2817 - 206 - 99/2}{2817 - 99/2} = .925565$$

The percentage of failures through the first 100-hour interval is determined using equation 51:

$$F(t_1) = (1 - P_{t_1})100 = (1 - .925565)100 = 7.4435$$

The number of assemblies remaining at the start of the second 100-hour interval is determined using equation 55:

$$n_2 = n_T - \sum_{i=1}^{i=r-1} n_{f_i} + n_{nf_i} = 2817 - 206 - 99 = 2512$$

Again using equation 54, the probability of surviving the second 100-hour interval is

$$P_2 = \frac{2512 - 144 - 74/2}{2512 - 74/2} = .941818$$

TABLE	CXIX. UH-1H RAMMIT MIRF 90-DEGREE GEARBOX DATA*
FUNCTIONAL GROUP 04 ROTOR,	жинканалалалалала FIRST REMOVAL - NEW ITEM жинкалалалалалалалалалалалалалалананан TRANSMISSION SYS/CLUTCHES ILLUS 198
GEARBOX ASSY, 90 DEG	FSN 16159182677 PN 20404001213 MFR CODE 97499 USED ON MODELS BCDH
	FLIGHT HOUR-INTERVALS 0000 0100 0700 0300 0400 0500 0600 0700 0800 0900 1000 1100 1200 1400 1500 1600 ABOVE 0099 0199 0299 0399 0499 0599 0699 0799 0899 0999 1099 1199 1299 1399 1499 1599 1699 1700
TOTAL IN INTERVAL CUMULATIVE TOTAL Percent in interval CUMULATIVE PERCENT	206 144 150 194 180 151 144 124 112 101 59 8 1 1 1 2 206 350 500 694 874 1025 1169 1293 1405 1506 1565 1573 1574 1575 1575 1575 1577 13.1 9.1 9.5 12.3 11.4 9.6 9.1 7.9 7.1 6.4 3.7 .5 .1 .1 .0 .0 .0 .0 .1 13.1 22.2 31.7 44.0 55.4 65.0 74.1 82.0 89.1 95.5 99.2 99.7 99.8 99.9 99.9 99.9100.0
TOTAL IN INTERVAL CUMULATIVE TOTAL PERCENT IN INTERVAL CUMULATIVE PERCENT	99 74 74 41 56 54 31 54 39 46 328 333 1 2 7 1 99 173 247 288 344 398 429 483 522 568 896 1229 1230 1232 1239 1239 1240 8.0 6.0 6.0 3.3 4.5 4.4 2.5 4.4 3.1 3.7 26.5 26.9 .1 .0 .2 .6 .0 .1 8.0 14.0 19.9 23.2 27.7 32.1 34.6 39.0 42.1 45.8 72.3 99.1 99.2 99.2 99.4 99.9 99.9100.0
	(INCLUDES FAILURES AND NONFAILURES) ********** SUMMARY BY FLIGHT-HOUR INTERVAL *******
TOTAL IN INTERVAL CUMULATIVE TOTAL PERCENT IN INTERVAL CUMULATIVE PERCENT	305 218 224 235 236 205 175 178 151 147 387 341 2 1 2 7 3 305 523 747 982 1218 1423 1598 1776 1927 2074 2461 2802 2807 2814 2817
* From pages 216 and 217 of R	eference 4.

-

The probability of surviving through the second 100-hour interval is determined using equation 56:

.

$$P_{t_2} = \prod_{i=1}^{1=r} P_i = P_1 \times P_2 = .925565 \times .941818 = .871714$$

The percentage of failures through the second 100-hour interval is determined using equation 51:

$$F(t_2) = (1-P_{t_2})100 = (1-.871714)100 = 12.8286$$

This process continues until the percentage of failures through each of the first ten 100-hour intervals are determined. Table CXX presents the values determined by using each of the equations in this procedure.

TABLE	CXX. I	DETERMI	NING P	ERCENTAGE	OF FAILURE	VALUES
100-Hour Interval	n _i	ⁿ fi	ⁿ nf _i	P. i	P _t	F(t _i) Percent
1	2817	206	99	.925565	.925565	7.44
2	2512	144	74	.941818	.871714	12.83
3	2294	150	74	.933540	.813780	18.62
4	2070	194	41	.905343	.736750	26.32
5	1835	180	56	.900387	.663360	33.66
6	1599	151	54	.903944	. 599 640	40.04
7	1 394	144	31	.895539	.537001	46.30
8	1219	124	54	.895973	.481138	51.89
9	1041	112	39	.890357	.428385	57.16
10	89 0	101	46	.883506	.378481	62.15

The $F(t_i)$ values are plotted on the Weibull graph paper as shown by the dots on Figure 31. The distribution of the total removals for all causes is plotted as inverted triangles using the values shown for the cumulative percentage at the bottom of Table CXIX. A solid line has been drawn through the dots and a dash-dot-dot line has been drawn through the inverted triangles. These two lines represent the two Weibull distributions.

The distribution of failure-caused removals has the following characteristics:

1.14 = β , the slope

1079 hours = θ , the characteristic life

64.0 = Percentage of failures at 1100-hour time change

The distribution of the components removed for all causes has the following characteristics:

1.08 = β , the slope

820 hours = θ , the characteristic life

74.70 = Percentage of removals prior to the 1100-hour time change

The mean values for the two distributions are determined by first, on Figure 32, determining the percentage of failures at the mean for the two β values and then by determining the time value where these values intersect the

Figure 32. Plot To Determine Percentage of Failure of the Weibull Mean From β .

respective distribution lines on the Weibull graph paper. The mean values so determined are:

- 1031 hours = the mean of the distribution of failure-caused removals
 - 795 hours = the mean of the distribution of the components removed for all causes

The characteristics of an exponential distribution having the same percentage of failures at time change as the Weibull distribution are determined by drawing a line with a β slope of 1.0 through the intersection of the Weibull distribution line and 1100 hours. This is shown as a dashed line on Figure 31. The characteristic life θ (62.3% failures) of this distribution is 1076 hours. θ is also the MTBF of this exponential distribution.

Using as input to equations 27, 57, 58, 59, and 60 an MTBF of 1076 hours, a time change T_c of 1100 hours, and a K repair factor of 0.05, the following values are computed:

MTBR = 689 hours MTR_{f1} = 485 hours MTR_{f2} = 278 hours MTBR' = 683 hours MTBR'' = 682 hours

J.O CONCLUSIONS AND RECOMMENDATIONS

This approach provides a means of rapidly predicting MTBF values from histograms of failure-caused component removals and component removals for nonfailure causes. The data can be plotted on Weibull graph paper at described, or it can be used as input to computer programs which in turn will provide answers that are more accurate. During this exercise, both techniques were employed.

One of the most significant advantages of this technique is the ability of estimating the MTBF and MTBR values for a finite number of components initially installed on a fleet of aircraft based on the failure- and nonfailure-caused removals which occur during the initial 300 to 400 flight hours. The accuracy of the estimate will increase as the higher time removals are included. Particularly where the distribution is Weibull with a β greater than 1.0, this approach will provide a much more accurate basis for estimating spare component requirements or life-cycle costs than can be obtained by a simple computation of the observed MTBF (total time accrued/number of failures) at the same time period.

The accuracy of this approach depends either on having a large population of removed assemblies or knowing the total number of components installed of which the components removed are a subset. Most of the MIRF data fall into the first classification since the installed component history is unavailable. Where MIRF data contain only a small number of component removals, the analysis using the Weibull approach would be inaccurate.

A simulation program is recommended where spare requirements or support costs are desired for specific periods of demand, changing demand rates, various sizes of aircraft groups, etc.

