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PREFACE 

This report is Intended to be a brief summary of the most 

basic elements of the subject of Power Spectral Analysis of tine- 

series data.    These elements are presented and discussed heuristically 

without rigorous mathematical Justification.    It is hoped that the 

material may be used as a practical reference for those gaining their 

first exposure to the subject, although key references are given for 

further research into specific points.   Any errors of omission most 

likely reflect the author's limited exposure to the field through 

his application of the method to a few particular research problems. 

il 



ABSTRACT 

A short presentation Is made on the basic elements of Power 

Spectral Analysis with emphasis on the Blackmftn-Tukey method.    Short 

discussions are included on the topics of pre-whitening, frequency 

and spectral windows, and statistical reliability.    Bxaaqples are 

included whenever possible, and a Fortran subroutine for calculating 

a power spectrum is presented. 

ill 
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I.     BRIEF BACKGROUND 

A.    Historical Roots 

Power spectral analysis is one small area of the touch broader 

field of Communications Theory.    This broader field is an indispens- 

able part of communications engineering and provides the theoretical 

foundations for the design and analysis of much of the advanced engi- 

neering found in modern communications systems (Lee, i960).    The 

theory is basically a statistical theory in which the central idea is 

that noise and messages are considered to be random phenomena.    Arab- 

ability theory is therefore incorporated into the very foundation of 

the theory and is an integral part of it. 

The basis of the theory finds its roots in statictieal mechanics. 

The equivalence of time and ensemble averages, first assumed by Gibbs 

and later stated more precisely by Maxwell in his ergodic hypothesis, 

is the starting point for statistical communications theory.    Prom 

this and the quasl-ergodic hypothesis are derived the formal proofs 

necessary for the logical development of the subject. 

B.    Ergodicity and Statlonarity 

Two conditions necessary for the development of the theory are 

imposed on the random ensembles of data vhich we wish to power spec- 

trum analyze.    We shall merely state them as being the foundation for 

the development of the theory, with proofs and implications to be 

found elsewhere. 
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(l) Ergodlclty. The ergodic theorem may be stated as "in a 

stationary ensemble of random functions having a continuous range of 

possible values the amplitudes of an ensemble member will come infin- 

itely close to every point of the continuous range of possible values 

if given an infinite amount of time." This theorem allows the replace- 

ment of ensemble averages with time averages, and is the basis for the 

formal analysis of conmunicatlons theory. 

(?) Stationarlty. If the amplitude probability density of an 

ensemble is time independent, the ensemble is said to be stationary. 

In practical terms related to power spectral analysis this means that 

the power spectrum of a finite data set is time independent. 

In addition to the two above conditions, it is assumed that 

the random process is Gaussian or nearly daussian in character, that 

is, the probability distribution of the elements in an ensemble is 

Gaussian or nearly so. Blackman and Tukey (1958) show that for an 

infinite data set a Gaussian assumption yields exact results, and 

rather good approximations otherwise. 

C. Notation 

With these preliminaries stated, we now give the notation to 

be used throughout the rest of this section. Fourier transforms, 

correlations (auto- and cross-), and convolutions are used rather 

frequently in power spectrum work. Therefore to reduce the complexity 

of the equations in the following discussion a simplified notation 

will be adopted as follows: 

I 



1. Fourier Transform 

Let f(t) be specified on the interval (-•, «). Then  define 

the Fourier transform 

T(v)  --I-;" f(t) e-iu,fc dt  . 

We shall also use the Fourier transform operator 9, e.g., 

Wt)] = ?(w) 

and inverse Fourier transform operator 

r^fCt)] .-A- r f(t) elu,t dt 

2.    Correlation Functions 

Let f.(t) and fp(t) be specified on the interval (-•,  «•).    We 

then use the following notation: 

a.    Convolution.    Define 

♦12CT) = lim i/^ ^(t) f?(T - t) dt 
T-*m 

s ^(t) * f2(t) 



where * denotes convolution. 

b. Cross Correlation. Define 

T-»« 

= t^t) *  f2(-t)  . 

c.    Autocorrelation.    Cross correlation of a function with 

itself.    Define 

«u^'iaH-^'i^'V**^« T-Hi 

- ^(t) • f^-t) 

= ^(t) ♦ ^Ct)     , 

the last step being a result of tl e synmetry of the autocorrelation 

operation. 

In general, then, small letters will denote functions of tine 

and capital letters Fourier transforms (functions of frequency) of 

the corresponding functions of tire.    Letters written in script will 

be used to denote operators.    Additionally, MLP will be used as an 



abbreviation for mean-lagged-product, and FFT for faat-Fourier- 

transform.    The term "power-spectral-density" (PSD) will also be 

used synonymously with "power spectrum". 
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II.    THE POWER SPECTRUM FOR THE CONTINUOUS CASE 

A Fourier series Is one set of orthogonal functions that may 

be used to expand a well-behaved function on the Interval (-•,  "), 

If we consider a time series f(t), we can represent It by 

f(t) = S^fFU)] 

where 

FM = f[f(tn      . 

The power spectrum of a function is defined as the absolute value 

squared of the Fourier transform of the function. If P(m) is the 

power spectrum, then 

PU) = WfCtni2» \?M\2   . 

But because of the convolution theorem, which states that for two 

functions f.  and f?, 

yff * f i = F  • p Lrl      I2J      rl      '2 



By setting f. = fp we have 

,rfl * fl1 = Fl * Fl  ' (2) 

Now f * f is the autocorrelation function for f . The autocorrela- 

tion function is always an even function, i.e., 

f^t) * ^C-t) = ^(t) * f^t) 

so that there are no sine components in its Fourier transform. The 

transform is therefore real and 

,rfl * fl] ■ ^ll1 ' $11 

*l*lm  l^l2 (5) 

so that 

PU) = |F((«)|
2
 . (k) 
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Therr"ore 

P(u)) = »(tt)) = ^.(t)] (5) 11 

or 

•|F((i))r = *,,((«)  . (6) 11 

This equality Is known as the Wiener 'flieorem and states that 

the power spectrum of a time series Is equal to 

(a) the Fourier transform squared of the function, or 

(b) the Fourier transform of the autocorrelation function. 

It may be noted that In (a) the Fourier transform utilizes both 

sine and cosine terms, while In (b) the Fourier transform of the 

autocorrelation function has only non-zero cosine terms, that is, 

#u((l.)     =     ftoyft)] 

-^- I* ^.(t) cos cut dt mJ-" 11 

— XT ^i^)co "*dt   • (7) 
J2h   c      11 



The first method of computing the power spectrum is the most 

direct and straightforward way.    The fast-Fourier-transform (FFT) 

calculation utilizes the definition of the power spectrum directly 

to compute the power spectrum.    The second method is known as the 

mean-lagged-product (MLP) method, and is the one utilized by Blackman 

and Tukey (1958) to calculate power spectra. 
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III.    FINITE DATA SETS 

A.    Effect of Data Truncation on the Pover Spectrum 

The definition of the pover spectrum was made for infinitely 

long, continuous data sets.    Practical data analysis, however, re- 

quires the use of considerably less data.    To determine the effects 

on the power spectrum resulting from the truncation of a data set 

to finite lengths, considor the function fCt) defined cm the inter- 

val (-«, •) as shown in Figure   1. 

f(t) 

Figure 1 

If we truncate f(t) by multiplylnr by a data window g(t) such that 

g(t) 
r 1,   It I  s T/2 

I 0,   it I > T/2 

the truncated data set becomes 

h(t) - f(t) g(t) 

1 
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as shown in Figure ?. 

h(t) = f(t) g(t) 

Figure ? 

The function h(t) then represents the truncated data set available 

from which the power spectrum is to be calculated. The power spectrum 

P M of h(t), representing the apparent power spectrum of f(t), is ap 

then 

*J*)  = \9(t '  g) ap 

IF ♦ GI 

IF I2» |o (8) 

the last step resulting from the fact that g is presumed to be an 

even function.    Thus the true power spectrum 

p*    M » IF | true 
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is modified by convolution with   |0|  , the Fourier transform squared 

of the data window.    G Is called the frequency window by Blackman and 

Tukey (1958).    For the data set shown in Figure A-?, G is the sine 

function, shown in Figure 5. 

8inc (X) = ÜIL* 
x 

Figure  ^ 

Convolution by the frequency windew causes a certain degree of 

smoothing in the calculated power spectrum and a small amount of 

leakage via the side lobes from nearby frequency bands into the fre- 

quency band of interest.    If the computed power spectrum Is relatively 

flat, i.e., has a dynamic range of less than 2 or 3 orders of magni- 

tude, this smearing or leakage causes little or no problem, for the 

amplitude of the largest (first) side lobe of the sine function Is 

only on the order of several percent of that of the main lobe.    If, 

however, there are large, well-defined peaks In the power spectrum 

such large peaks act as a first approximation delta function.    When 

convolved with the frequency window they act to reproduce the win- 

dow, producing spurious peaks In the power spectrum corresponding to 

the side lobes of the frequency window.   These spurious peaks may 

be mistakenly identified as structural details of the true power 
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spectrum when in reality they are merely artifacts created by trunca- 

tion of the original data set. 

B. Reducing Frequency Wjndov Leakage 

Because of the frequency window side lobe leakage associated 

with data function truncation, one is properly concerned with means 

of reducing or minimizing the undesirable effects of such truncation. 

Several methods are available for doing this, each depending somewhat 

on the particulars of how the power spectrum is computed. Three 

commonly used methods will be described in the following sections, 

each being intended to illustrate the basic features of and rationale 

behind each procedure. 

1. Data Tapering 

One of the obvious methods of reducing the side lobe leakage 

is to choose the data window g(t) such that its Fourier transform 

Q(m)  has either no side lobes at all or side lobes that are small 

compared to the main lobe. Examples of the former are: 

-(|t|/2to)
2 

g(t) ■ e (Gaussian) 

where t    is some scale factor.    This function has a Fourier transform o 

equal to a Gaussian; and 

/.v     sin gn Af t / ..      ^     ^     \ g(t) ■ —pTT ^ -j.— (sine function) 
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which has a Fourier transform equal to the box-car function. 

However, for the side lobes to be eliminated altogether it is 

necessary to extend these data windows to ± •.    If they are truncated 

at some finite value  (as they must be in practice), side lobes are 

again introduced, though they will be  smaller than the case where 

g(t) is the box-car function. 

A simpler method is to taper the data set at the ends using 

data windows indicated in the following sketches: 

or 

g(t) 

^T72 time 

Although side lobes are still present in the frequency windows 

for each of the above cases, they will be smaller than for the case 

«here the simple box-car data window was used. The smaller side lobes 

are a result of replacing the abrupt discontinuities of the original 

box-ear data window with more gently sloping functions. 



I 

15 

Data tapering is most often performed when the FFT method Is 

used to compute the power spectrum. For a more complete discussion 

of this topic see Enochson and Otnes (19^8)• 

?. Tapering the Autocorrelation Function 

If the ML? method of computing the PSD is used the problem of 

side lobe leakage is not as simple as it was in the ease of confuting 

the PSD directly from its definition. An additional factor for con- 

sideration enters when not only the original data set must be trun- 

cated, but so also the autocorrelation function. When an MLP cal- 

culation is made it becomes advisable, for reasons to be discussed 

in connt-'tion with statistical reliability, to truncate the auto- 

correlation function at a maximum lag of not more than 10—POjfe of 

the length of the data set (Blackman and Tukey, 1958), In order to 

see what effect this second truncation has, consider the original 

data set f(t) properly truncated with a data window g(t). The  auto- 

correlation function »■■jC'O then becomes 

^(T) = [f(t) • g(t)l * [f(t) • g(t)] 

or 

^ - (f * g) * Cf * g) 
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Now cp     represents the entire autocorrelation function avail- 

able after f is truncated by g.    To truncate cp     at a lag of 10—20)t 

of the length of the data set therefore involves specifying another 

function qCr)» called the lag window, by which cp     is multiplied 

in order to effect truncation.    Let cp/. represent the truncated 

autocorrelation function.    Then 

©^ = «Pj^ • q «  [(f •  g) *   (f * g)l * q      . 

The apparent power spectrum is the Fourier transform of the 

truncated autocorrelation function so that 

PU) = 9[[(t •  g) *   Cf •  g)]  •  q} ap 

. f[(f • g) ♦ (f • g)] ♦ f(a) 

- mt • g) • y(f • g)i ♦ y(q) 

= [(F * G) •   (F • 0)1 ♦ Q      , (9) 

where Q (the so-called spectral window) is the Fourier transform of 

q, the lag window.   Now g and q are normally chosen to be even 

functions, so that 
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ap 

= rptrue(u)) * bMn* Q   . do) 

We see that, as in section III-A, the true power spectrum has been 

altered by convolution with |G((IJ) I , and additionally by convolution 

with Q. If QCT) was the box-car function, then Q(u)) is the familiar 

sine function, not squared. It is this last convolution that can 

lead to negative values in the apparent power spectrum even though 

negative values are theoretically impossible in a power spectrum. 

They are, in this case, merely an artifact due to truncation. 

To remove the possibility of negative values for the power 

spectral estimates, as well as making the sid« lobes of the window 

Q smaller, It is once again advisable to tailor the shape of 

the lag window nM. It is to be tailored in such a way that the 

side lobes that remain are small in comparison to the main lobe, and 

damp out quickly with increasing distance from the main lobe. Two 

lag windows that have been found to do this effectively are; 

(1)   q, (T) - Jfl + cos J^l  ,    - T^ < T « Tn SJ/T) - f 1 + COS =-    , 
I      ml 

where T is the greatest lag used in the autocorrelation function, 
m 
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The use of this window is called "hanning". A second, more conmonly 

used lag window is 

TTT 
(?)   qp(T) - 0.5k  + 0.U6 cos p  , 

m 
T < T s T 
m     m 

Use of this window is called "hamming". 

The two functions q. and q-, along with their associated 

transforms Q, and Q. are shown in Figure k. 

SPECTRAL WINDOWS 
l.0i»       i i i       1.3 

0.« 

LAG WINDOWS 

0.6 

0.4 

0.2 

ax or PEAK 
otiiractzrrrj.-.-.-U. 

/- X 
/ 

/ 

N - —.— 

Ä
 / 

-U     -o.e     -0.4       o       o.4      o.e       I.I 

r/rn 

r 
CM*NGl   IN 

VfPTlCAL SCALE 

ääS^i 
r:i r 

ÜS-V^f 
p-—'i »c 

J 1 I 1. 

0.02 

-0.02 

0 0.25      OM       0.7b 1.00        I.TS        ISO        1.7b       2.00      ^.2i       2.b0 
■0.04 

Figure U 

(After Blackman and Tukey, 1958.) 
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Although in principle qCx) would normally be applied to the 

autocorrelation function prior to transforming, the interchange- 

ability of the integrations associated with the transform and the 

convolution makes it possible to convolve with Qf«,) after the 

transform has been completed. This hf s particular advantages when 

the data are In digital form. In the case of hamming or banning, 

the convolution will take the form of a '-point smoothing formula 

easily applied to the power spectrum estimates calculated by trans- 

forming the autocorrelation function. More will be said about this 

form of smoothing in section V when a specific power spectrum example 

is given. 

It might be added that when the MLP method for computing PSD's 

is used It Is usually unnecessary to be overly concerned about the 

effects of the convolution of lQ(,n)l with Ptrue(m) f8«« EQ» (10)]. 

p 
Since G(w)  is squared, whereas Q(w) is not, the side lobes of |G((i))| 

will be unimportant compared to those of QCtu). The half-width of the 

major lobe of G(m)  Is also small (~ 1 order of magnitude smaller) 

compared to that of Qd,} since the original data set is ^ 10 tines 

longer than q(r) Therefore the effects of Q will far outweigh those 

of G, and it is those effects that hamming or banning are designed 

to offset. It is accordingly not necessary to taper the original data 

set (or pre-whiten; see next section) except In cases of extremely 

discontinuous spectra, or when extreme care need be taken to assure 

the validity of the results. 
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5. Pre-whitening 

As was mentioned previously, if there are large, well-defined 

peaks in the power spectrum such peaks can produce spurious detail 

in the power spectrum due to frequency or spectral window side lobe 

leakage. It is for this reason that methods were sought to reduce 

the side lobes. An alternate method that can be used on occasion is 

known as "pre-whitening". This procedure involves flattening the 

power spectrum prior to calculation by passing the data through a 

filter with a known power transfer function in order to eliminate 

large peaks and discontinuities. With the peaks and gross discontin- 

2       2 
uities thus removed, the effective ccnvolutioa of |Fl with lG| to 

yield P (m) will not act to reproduce the side lobes of \G\    as 

would have been the case had the peaks not been removed. Once the 

power spectrum is computed the inverse of the pre-whitening, the 

so-called "post-darkening", is applied to the PSD estimates to 

complete the calculation. 

In order for pre-whitening to be used effectively some prior 

knowledge of the expected shape of the spectrum to be flattened must 

be available. This is necessary in order to design a filter with 

the proper power transfer function. An < xample of how pre-whitening 

may be used is the following: Suppose we have a data set for which 

we know approximately the shape of the power spectrum, and suppose it 

has a very large low (zero) frequency coinponent, as in Figure 5. 
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log PCCU) 

Figure 5 

If the power spectrum is computed directly from the data with- 

out some measures being taken to compensate for possible side lobe 

leakage, the apparent power spectrum P (UJ) would look something like 
ap 

Figure 6. 

log P (u)) 
ap 

Figure f 
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The small scale structure may well be that solely due to side 

lobe leakage, though in the case where confidence in the results is 

low this structure can be masked by statistical noise. 

Suppose now that the original data f(t) is pre-whitened by 

convolution with a smoothing function s(t). Then the data set h(t) 

available fron which the PSD calculation is made will be 

h(t) = f(t) * sCt) 

or more simply, 

h = f * s 

Then 

PU) =   |fCh)|2=   |f(f # s)|2 

ap 

= IF • si2    , 

or 

P    U) =   iF?|   •   |S|? 

ap 

Ptru>) '   iS|? (11) 

. 
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since s(t) is an even function. 

Thus,  if the original data set is ''onvolved with a smoothing 

function s(t), the true PSD is modified by the direct product of the 

square of the transform of s(t).    |s|    is called the power transfer 

function.    To compensate for this at the end of the calculation we mul- 

tiply by the inverse of  |s(u))|    to restore the proper shape to P((D). 

In the above example suppose we choose a smoothing function 

s(t) 

1 
TT(t   -   t    ) 

1    .                            0 

• It  -  tol < 2AT 
2 1 + COS         ?£T 

L                                       J 

0 » it   -  tj 2 ?AT 

where AT is some scale factor. This smoothing function may be passed 

over the data as many times as one desires, more smoothing being 

accomplished with each pass and more of the high frequency components 

being suppressed. 

If the data is in digital form the smoothing function above 

takes the form such that if f'ft) is the smoothed data, 

f^t) -IVO + J Tf^ft) + fi+1(t)]  . (1?) 

Holloway fl958) showed that for n successive passes of the above 

elementary filter function through the data, the power transfer func- 

tion    s|    becomes 
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|S|?= cos ^(nf At) 

where at is the data sanple spacing. 

The above filter function may be uaed to effectively remove 

the low-frequency component in the present example.    If the smoothed 

data (low-pass filtered) is subtracted from the original unsmoothed 

data, the difference will represent the original data filtered by a 

high-pass filter with a power transfer function equal to the comple- 

ment of the original transfer function.    Suppose the original data 

is filtered using this method.    The smoothing function applied to the 

original data set f(t) will have a power transfer function similar to 

Figure 7. 

0.5 -■ low-pass filter 
function 

m 

Figure 7 

When this smoothed data is subtracted from the original f(t), 

the resultant power transfer ftmctlon will be the complement of the 

function shown above. 
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high-pass filter function 
(conplement of low-pass 
filter function of Fig. 7) 

Figure 8 

uu 

Applied to our example of data with a large low-frequency 

component, this will effectively flatten the curve to minimize the 

possibility of side lobe leakage.    After the PSD has been computed 

post-darkening is achieved by multiplying by the inverse of the func- 

tion shown In Figure   8   to complete the calculation. 

For a more complete discussion of the topic of pre-whitening 

and digital filtering techniques see Blac^nan and Tukey (1958) and 

Enochson and Otnes  (19^8). 
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IV. DIOITIZED DATA 

The discussion of power spectra has been general up to this 

point, vlth only an occasional reference to specifics. Since we are 

here primarily Interested In data that appears in discrete, digital 

form, it Is appropriate to specialize to that case. We shall from 

this point forward consider only the power spectra of data consisting 

of discrete, eaui-spaced samples. The discrete forms of the general 

equations of section II will be given for both the MLP and FFT cal- 

culations. The statistical reliability or PSD estimates will be 

discussed briefly for each of the two metiods, and several considera- 

tions helpful for planning will be mentioned. The averaging of 

several power spectra is also mentioned. 

A. Discrete Forms of Pelevart Equations 

1. MLP Method 

The steps required for calculation of a power spectrum using 

the MLP method may be summarized from the above discussion to be the 

following: 

(l)    Rre-whitening.    If the power rpectrum is known to contain 

large peaks or discontinuities, the raw deta should be pre-whitened 

by use of appropriate digital filters (high-pass, low-pass, band-pass, 

or combinations of these).    The necessity for this procedure is 
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somewhat open to Interpretation according to one's perception of 

what constitutes a large peak or discontinuity.    My own limited 

experience over several years Is that for a power spectrum with a 

dynamic range of > 2—5 orders of magnitude, pre-whltenlng to 

flatten the spectrum prior to Its computation Is advisable.    The 

example given In section III of a method of constructing a high* 

pass filter was used successfully by the author (M.S. thesis, 1975). 

Since, however, the actual method used to pre-whlten will depend 

on the details of the various power spectra encountered In practice, 

the reader Is referred to chapter 5 of Enochson and Otnes  (1968) 

for a thorough discussion of recursive, non-recursive, and second- 

and higher-order filters and their application to time series. 

(?)   Normalizing the Data.    Althoa^h not mentioned i 1 the 

previous sections, it Is advisable in practice to normalize the data 

to zero mean and unit standard deviation before calculation of the 

PSD.    Since the calculation of the mean-lagged-products   (autocorrela- 

tion function) Involves the sum of many products, it is easy to termi- 

nate a computer calculation of a PSD prematurely due to overflow. 

Subtracting the mean from the data removes only the zero-frequency 

cosine term from the PSD, and can be included in the calculation after 

the remaining following steps are completed.    Dividing the (pre- 

whltened) zero-mean data set by a reduces the data to unit standard 

deviation.    Correct absolute units can be restored to the final com- 
r 

puted PSD if desired by multiplying by o . 



86 

(*>)   Calculation of the autocorrelation function. If «p 

denotes the J'th value of the autocorrelation function, the discrete 

form for the autocorrelation function of the data set f(t) with data 

sample spacing AT containing n discrete values f. Is 

vrh^i' fl+J   '    J = 0' ^ 5' •••m  ' (15> 

where m Is the maximum number of lags In the autocorrelation function. 

As mentioned In section II, m will generally be limited to 10—20£ 

that of n. 

(k)   Fourier transform of the autocorrelation function.    Since 

the autocorrelation function is an even function, the discrete form 

for the Fourier transform becomes the discrete finite cosine series. 

Applying this to the sequence  > ,  to.,  ....  v   we obtain as raw 

estimates for the PSD 

P   = AT 
m-1 ;      TT\ 

V   + ?   Y,   to. cos ij -I ■»  rf>   cos in o          .*-•     j l     nu       m 
j=l    u 

(Ik) 

1=0, 1, ... m 

where AT is the sample spacing. 
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(5) Smoothing the rav estimates. The raw estimates calculated 

in step (U)  correspond to Eq. (10) 

Pap(m) • rPtrue
(u,) * lG^)I^* ^  ' 

with a box-car lag window leading to a sine function spectral window. 

What remains is convolution with a suitably tailored spectral window 

Q with small side lobes to complete the calculation.    A commonly 

used window is the hamming window, the digital   form of which becomes 

Pj = 0.5^ Pj + 0.23  (P1+1 + Piml)      . (15) 

(6)    Post-darkening.    If the raw ^ata were pre-whitened in 

step (l), the last step in the calculation of the PSD will be to 

restore the true shape of the power spectrum by post-darkening.    This 

process involves multiplying the smoothed estimates of step (5) by 

the inverse of the pre-whitening filter power transfer function. 

The frequency resolution Af of the resultant spectrum will be 

Af-      i an AT 

where 

m ■ the maximum number of lags in the autocorrelation function 

and 

AT ■ data set. sample period. 
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The maximum frequency of the computed PSD will be 

f     - mar ■ si- (16) max ?AT 

in accordance with the sampling theorem. 

2. FFT Method 

The fast-Four:er-transform technique of computing the PSD of 

a time series was a major improvement over the MLP method in terms of 

the actual computer time  baken for the calculation.    If N is the num- 

ber of points in a tlr.« series,  the total computer time needed for 

an MLP calculation is roughly proportional to N' , where for the FFT 

method it goes approximately as N(log N).    The advantages of utilizing 

the FFT method whenever many points are 1"ing power spectrum analyzed 

therefore lie on the side of efficiency rather than any fundamental 

superiority of the method over that of the MLP.    As a technique of 

computing PSD's, it Is quickly supplanting the MLP method and Is 

therefore worth studying.    An extensive discussion of the FFT com- 

puted one-dimensional PSD by Brault and Wilte (l97l) provides a 

thorough introduction to FFT methods and their application to astro- 

nomical problems. 

Although no attempt will be made here to outline in detail the 

steps required for FFT calculation of a PSD, the basic steps are as 

follows: 
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(l)    Pre-whltenlng.    The necessity for pre-vhltenlng the data 

is less strong when the FFT method is used than it is for the MLP 

method.    The reason for this lies in the fact that the FFT calculated 

PSD takej the form 

PapW = Ptrue#  lG^)l? 

whereas the MLP method yielded 

p («)» rptrue * |o(tt»)r] * Q((B) 

The FFT form does not involve a convolution with Q,  so that 

one need only be concerned with the shape of G((i)).    If g(t) is 

properly specified the side lobes of |0(o))|    can be kept small enough 

so that very little leakage is present   fs^e step i7) below].    Only 

in the case where there are exceptionally large peaks or discontin- 

uities in the power spectrum should pre-w:itening be necessary.    In 

general, it may be said that, in most cases this step will not be 

necessary at all. 

(2) Normalizing the data. It is advisable to normalize the 

data to zero-mean and unit standard deviation, for the same reasons 

as given for the MLP method above. 

(5)    Data window correction.    As discussed in section III-A, 

truncation of a data set can produce spurious detail in the computed 

PSD.    It is therefore necessary to choose a data window g(t) by which 
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to multiply the time series such that the frequency window G(a>) will 

have small side lobes. A window currently in common use is the ten- 

percent cosine bell, the application of which is called coswinding. 

For the generalized formula for this data window see Brault and White 

(1971, Equation 13). 

(k)    Appending zeros to the data. The most efficient versions 

of the FFT require the data to consist of a number of points equal 

to a power of two, although some generalized versions will work with 

an arbitrary number of points. If s version is used requiring some 

specific number of points, the original normalized data set to be 

transformed must have zeros appended to it to bring the total points 

up to the specified number. 

(5) Transforming the data. The normalized data set f. is 

transformed using the forward discrete Fourier series transform to 

yield Fourier coefficients 

. o        r 
a. + lb, = — V    f. exp i -Jk —— 
J   J  no k^O k     L   

no " 1 
J = 0, 1, ..., no - 1 

(17) 

where 

At a data sample spacing, 

n = number of data points in the normalized data set, and 

1 = /^l  , 

(6)    Computing the raw spectrum.    The raw PSD Is Just the ab- 

solute value squared of the Fourier transform, adjusted to compensate 
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for the appendage of zeros to the original data set. 

n 

where n « number of points In the original data set. 

(7)    Smoothing the raw estimates.    The raw estimates obtained 

In step (6), although theoretically correct, may be statistically 

unreliable.    It is possible to increase the statistical reliability by 

smoothing  (convolving) the estimates with a suitable smoothing func- 

tion.    For an excellent discussion on the subject of smoothing raw FFT 

estimates see Edmonds and Webb  (197?). 

The frequency resolution  (PSD estimate spacing) of the FFT 

calculated PSD will be 

o 

For specifics on the programming of the FFT algorithm,  including 

Fortran Indexing peculiarities, one should consult 'Special Issue 

on FFT and Its Applications to Digital Filtering and Spectral Analysis', 

IEEE Truns. AU-15, No. 2 C1967).    Another special issue on the same 

topic, IEEE Trans. AIM7, No. ? (19^9)» gives an extensive biblio- 

graphy. 
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B.    The Statistical Reliability of the PSD Estimates 

1.    Confidence Limits 

The calculation of the PSD from a finite number of discrete 

data points can be expected to have associated with it a set of confi- 

dence limits reflecting the presumed statistical nature of the ori- 

ginal time series.    In theory, if a PSD calculation could be made from 

an infinite number of data points, one would have absolute confidence 

In the results.    In practice one must settle for a finite number of 

points tram which to make the calculation.    Each point in the resul- 

tant power spectrum will have a set of "confidence limits" assigned 

to it reflecting the confidence  (in a statistical sense) that the re- 

sulting power spectrum is not due solely to randomly distributed 

data points. 

The statistical accuracy of the computed PSD is estimated in 

terms of "equivalent degrees of freedom",  from which the confidence 

limits are calculated.    The degrees of freedom may be thought of as 

representing the number of estimates of power in the frequency inter- 

val Af, the frequency resolution of the computed PSD.    A measure of 

the probability that an estimate falls within an upper and lower 

bound, the ratio of which is designated the confidence factor f ,  is 

given by 

= 10b/(ia^) s exp 
c 

^b   > (20) 
lo/STTTi 
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where 

This is an approximation, but for k * k is very close to more exact 

calculations based upon chi-square tables  (Edmonds, 19^6). 

The confidence factor f   may be used as error bars for the 
c 

computed PSD, being positioned on each data point in such a way 

that the point falls on the geometric mean of the upper and lower 

limits of f . Another way of stating this is that the upper limit 

for the confidence limits is equal to the PSD estimate times the 

square root of f ; the lower limit equals the estimate divided by the 

square root of f . If the PSD is plotted on a semi-log scale the 

confidence limits will be centered on each point. 

A plot of f as a function of degrees of freedom k for several 
c 

different confidences is shown in Figure 9.  The ordinate expresses 

f in Ob; to determine f one goes across to the straight line labeled 
c c 

"factor", then reads f off the abscissa. As an example, for k = 30 
C 

f   * confidence factor for a given confidence, 
c 

k    = degrees of freedom, and 

b   = factor depending on the desired confidence, given as 

follows: 

confidence 

50^    80^      90^     9^%      $6% 

8       If       20       25       P9 
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the 9056 confidence factor expressed In Db is seen to be « 5.8, for 

which f    w P.'- c 

The next two sections will consider formulas for determining 

k for each of the two methods of computing PSDs. 

P.    k for the MLP Calculation 

The number of degrees of freedom k for the one-dimensional MLP 

calculated PSD is given by (Blackman and Tukey,  1958) 

fN 1 k = ? - - — K       ^lM      5 

where 

N ■ the number of data points in the data set, and 

M = the maximum number of lags in the autocorrelation function 

= the number of points in the computed PSD. 

As can be seen from this formula, k is nearly proportional to 

the ratio N/M.    In order to achieve maximum confidence in the PSD 

estimates it is necessary that k be made as large as possible; this 

will Insure that the confidence factor f    [Eq.   (?0)] will be small. c 

N is usually some fixed number of points, so M is therefore chosen to 

be small relative to N. It is for this reason that M is normally 

chosen to be not more than 10—?($ of N. 
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k for the FFT Calculation 

The number of degrees of freedom k for the one-dimensional 

FFT calculated PSD is given by (Tukey,  196?) 

k » 2p 
(N.NT1 

vrtiere 

N = the number of points in thi original data set, 

N_ = the number of points tapered by the data windov g(t), 

N = the total number of data points after zeros have been 

appended, and 

p ■ the effective number of points involved in smoothing of 

the raw PSD estimates. 

Although the MLP and FFT formulas for k appear to be super- 

ficially different, it is not difficult to show that the confidence 

limit» calculated from a given k are essentially equivalent for the 

two cases, as would be expected. 

C.  Planning Considerations 

In the previous sections the basis of a PSD calculation was 

discussed with appropriate equations given. In a practical applica- 

tion some thought must be given to the problem of choosing data sample 

spacing, frequency resolution, and the frequency range over which the 

power spectrum is to be calculated. This section will deal only with 

i 
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considerations to be made in performing an MLP calculation; similar 

considerations will apply to an FFT calculation. 

1.  Choosing AT and f 
max 

The raw data from which the PSD is to be calculated is assumed 

to consist of discrete, equi-spaced samples of period AT. Then if 

f   denotes the majciraum frequency for which PSD estimates are ob- 
max 

tained we have from the sampling theorem 

f   --t- 
max  PAT 

f   is clearly independent of the total number of data points and 

the maximum lag M of the autocorrelation function. It depends solely 

on the sample spacing. If in an analysis one wishes to examine the 

PSD up through a specific frequency, this formula shows what the 

corresponding minimum sampling frequency must be. Likewise, if it is 

desired only to compute the PSD for a limited frequency range, by 

choosing the correct AT the resulting PSD will have a frequency range 

of exactly the right ^ize. This fact is helpful in minimizing the 

number of data points required in a calculation. For example, if one 

were interested in examining the PSD of a set of data only in the fre- 

quency range 0—5 Hz, the sampling period AT would be 0.1 sec. Samp- 

ling more often than this would increase f   beyond the range of 
max 

Interest, Increase the total number of data points, and thus the 

machine calculation time, and generally would not add any information. 
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If the sampled data already exists for which the power spectrum 

is to be calculated, it is possible to ad.iust AT to near the desired 

value by (a) decimation, using only every p'th point of the original 

data or fb) averaging, averaging by groups of p points. The former 

method increases AT by a factor of p and maintains the stendard devia- 

tion (for random or near-random iata^ about the mean. The latter 

increases AT by a factor of p but decreases the standard deviation 

about the mean by a factor of .'p. For further discussion on these 

methods consult Enochson and Otnes (l9fQ). 

2.    Choosing M and Af 

The freouency resolution Af of the calculated PSD is 

Af=^ 

where M is the maximum lag in the autocorrelation function. This 

formula may be used for either deterraininp in advance of a calculation 

what the frequency resolution will be, or for determining M for a 

given desired ^f. As discussed in section B, M should be small 

relative to the total amount of data. This fact must also be taken 

into account when planning a PSD calculation. 

As an example of how the foregoing considerations may be used, 

suppose we wish to calculate the PSD of a data set for the frequency 
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range 0—5 Hz.    Suppose further that we wish the frequency resolution 

Af to be 0.? Hz. providing a total of ?f points  (including the end- 

points) in the power spectrum,  and that the 90^ confidence factor is 

to be < 2.0.    Then 

AT = ^^ =0.1 sec 

M  " ^PT = ?-5 sec 

= the maxirauin lag of 26 data points. 

From Figure   9   we find that for the desired confidence we must 

have k > U5, from which 

for which 

N = 6io data points. 

As a second example suppose a data set already exists consist- 

ing of 500 points with sanple spacing 1 s*c.    If the autocorrelation 

function is truncated at 10^6 the length of the data set, we calculate 

f..,,, Af, k, and f, (90^) to be: 



1*1 

f   = 7^- = 0.5 Hz 
max  PAT 

«■■k-sm-0-01 Hz   • 

-■HS-^)-^^^)-«-'   ■■** 

fc (90Jt) ■ 2.9  . 

From the above simple examples it is seen that M, N, AT. f , 

Af, and f  are to a degree interrelated. Therefore one must be some- 
max 

what Judicious in their specification in order to achieve the maximum 

amount of usable information in a PSD calculation. For example, one 

can achieve a very high degree of statistical reliability by making 

M very small. However this would be at the expense of the frequency 

resolution. In general, for a given data set there is a trade-off 

between statistical reliability and frequency resolution. This prob- 

lem can be surmounted by simply increasing N fusing more data) but 

then the computing time Increases, and so on. 

D. Averaging Power Spectra 

It Is occasionally desired to study the average characteristics 

of power spectra over long periods of time. Although it is possible 

to compute an average power spectrum over a long data set, It Is 
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sometimes more efficient to break it up into shorter sets, compute the 

PSD for each individual data set, then average the results. This pro- 

cedure is also necessary if, for example, several short, non-contiguous 

data sets of varying lengths exist for which one wishes to extract an 

average power spectrum. The validity of the averaged results will 

depend on the stationarlty of the data; for fiata which is non- 

stationary the results will be influenced by the lengths and number of 

data sets used in the calculation.  [For a short discussion on this 

point see Sentman (197^). ]    The following sections apply to MLP cal- 

culated PSD's, though similar considerations would apply to FFT cal- 

culated PSD's. 

I. Averaged Power Spectra from Data Sets of Equal Lengths 

If it is assumed that the frequency resolution Af is identical 

for each PSD comprising the average, the statistical reliability of 

each is the same. Then 

"& 

»  -. 
V 5 £ 1 h, 

where 

P. = I'th point In the averaged power spectrum, 

P. . = i'th point In the J'th power spectrum, 

N  ■ the number of spectra being averaged, and 
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a.    =  standard deviation about the mean of data In the original 

J'th (pre-whltened) data set. If the data In the J'th 

data set were divided by a   after the mean was removed 

prior to calculation of the power spectrum, this weight 

Is necessary to restore the proper relative units to 

P...  If the data were not normalized this weight is 

equal to one. 

P.    Averaged Power Spectra from Data Sets of Different Lengths 

If the Individual spectra comprising the average are computed 

from data sets of different lengths, the statistical reliability of 

each PSD Is different.  If Af is identical for each individual PSD. 

the expression for averaging becomes 

. N 
Pi "V It "j exp = *k 

o * 

?a/ir 
pu 

where 

k. = degrees of freedom in the j'th computed power spectrum, 

and 

b =8. for 50^6 confidence limits. 

The exponential weighting factor nust be included to properly 

weigh individual spectra according to its probable error. The uncer- 

tainty in the spectra is taken to be the probable error, or the 

square root of the 50)6 confidence factor defined in Eq. (20). 

1 
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Statistical Reliability of Averaged Spectra 

Confidence limits for the averaged spectrum are computed by- 

assuming that its equivalent degrees of freedom k equal the sum of 

the degrees of freedom in the individual spectra comprising the aver- 

age. 

N 

■k-> 

It can easily be shown that if the statistical "noise" present in each 

of the individual spectra is treated as a random fluctuation about 

the true power spectrum, the above expression for calculating k results 

in confidence limits that shrink at exactly the same rate as the 

"noise" when more and more spectra are averaged. 
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V.  AN EXAMPLE OF A POWER SPECTRUM CALCULATION 

As an example of how the information contained in the previous 

sections may be applied, the following will serve to illustrate the 

basic features of an MLP calculated power spectrum. The example 

given is from a calculation made in conjunction with the study of 

oscillatory phenomena in the solar atmosphere (fientman, 197')• 

The raw data consisted of antenna temperature 5 sec data 

samples of solar microwave emission recorded on the North Liberty 

Radio Observatory ?-cm radiometer. Individual data sets ranged in 

length from U—-1? h. The power spectrum of each data set was to be 

calculated, and the average of all the individual spectra computed 

to obtain an average power spectrum for all the data sets. 

The  frequency range of interest to this study was 0—15 mHz 

(l mHz = 10"y Hz), or f   =15 mHz. A sanpllng ti'iie AT of 
max 

1/2(15  x 10 ) = 55.3 sec was thus indicated. The nearest that one 

could come to this figure using 5  sec data samples was either "0 sec 

or '»5 sec, corresponding to averaging the 5 sec samples by groups of 

6 or 7, respectively. Averaging by groups of 6 was chosen, yielding 

an effective sampling time AT = 30 sec an 1 a maximum frequency 

f  =16.7 mHz. A typical data set with 30 sec resolution (effective 
max 

sampling time) is shown in Figure 10. 
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It was known in advance of the calculation  (by trial runs on 

several data sets) that the power spectra all contained a very large 

peak at near zero frequencies,  thus indicating a need   for 

pre-whitening.    High-pass smoothing was achieved by means of the 

method described in section III-B by making 10 passes through the 

data with the smoothing function describei by Eq.   (12).    TTie result- 

ing low- and high-pass power transfer functions are shown in Figure 

11.    A maximum lag of 25 min  (= 50 lags   x v0 sec) was chosen to 

balance frequency resolution against statistical reliability.    This 

resulted in a frequency resolution  Af = 0.33 raHz.    The degrees of 

freedom k therefore ranged from 18.5  (k h data set) to 5^.9 (12 h 

data set), providing the high degree of statistical reliability 

necessary for the study (very low amplitude fluctuations were being 

sought). 

The data normalization and power spectra calculations were 

achieved using the subroutine listed In Appendix I.    After the power 

spectrum was calculated it was post-darkened to compensate for the 

pre-whitening by multiplying with the Inverse of the high-pass power 

transfer function shown in Figure 11.    An example of the resulting 

spectra with confidence limits, normalized to a value of 10 In the 

range of U—5 mHz for display purposes,  :s shown In Figure 12 for 

the frequency range 0—15 mHz.    All calculations were carried out on 

a Unlvac Ul8 computer. 
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FIGURE CAPTIGKS 

Figure 9     The confidence factor as a function of degrees of freedom 

k  (see page 35). 

Figure 10   Typical plot of antenna temperature versus tinie with 50 

sec time resolution.    Data records used to compute power 

spectra were chosen to exclude the end pieces of each data 

day. 

Figure 11   Low-pass and high-pass filter functions R(f) and n'(t) 

used to pre-whiten the data prior to calculation of the 

power spectra.    Post-darkening is achieved by multiplying 

the resultant spectra by l/fi'ff). 

Figure 1?   Power spectrum of the single record containing a statis- 

tically significant peak near !t mHz. 
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APPENDIX I 

A FORTRAN SUBROUTINE FOR CALCULATING POWER SPECTRA 

The following is an example of a subroutine for an MLP calcu- 

lation of a power spectrum. IVe-whitening is assumed to have been 

completed prior to entry into the subroutine, and post-darkening and 

conversion to absolute units from normalized units is assumed to 

take place after return. 

The program was written from the definitions for the auto- 

correlation function and discrete cosine transform. However, to 

facilitate the transform operation a cosine table is constructed and 

a table look-up procedure is Incorporated into the program rather 

than requiring a double precision cosine to be computed each time 

it is needed. The table is constructed In the first call of the 

subroutine and each time the autocorrelation function maximum lag is 

changed; succeeding calls use the table already constructed. 

As shown below, the program win accommodate a maximum of 1500 

data points with an autocorrelation function maximum lag of 500. 

These figures may be raised or lowered as desired by dimensioning the 

relevant arrays accordingly. 
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A. Subroutine Arguments 

Input variables; 

X  - Double precision array containing data to be power 

spectrum analyzed 

If  - Integer specifying the number of data points In X (may 

be smaller than the dimension size of X) 

MA  - Integer specifying the maximum number of lags for the 

autocorrelation function (may be smaller than the dimen- 

sion size of R) 

Output variables: 

U  - Single precision array containing M + 1 hamming smoothed 

normalized power spectral estimates 

R  - Double precision array containing M + 1 values of the 

normalized autocorrelation coefficients 

XBAR - Double precision variable for the mean of the input 

data set 

SX  - Double precision variable for the standard deviation 

of the Input data set. This variable is necessary if 

absolute units are to be calculated for the power spec- 

trum (not done here) 

■ 
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B.    Subroutine 

SUBROUTINE SPBCTR(X,N,MA,U,R,XBAR,SX) 
DOUBLE PRECISION X,AL,CS,XBAR,SX,R 
DOUBLE PRECISION FAC,ARGtDCOS,DBLE,DSQRT,PI,AHfD 
D1HEHSION X(1500),U(501),R(501) ,CS(501),AL(501) 
DATA Pl/.5lUl59ß65i4D+Ol/,M/0/ 

C 
C NORMALIZE DATA TO ZERO MEAN AND UNIT STANDARD DEVIATION 

XBAR-0.0 
DO 5 I-1,N 

?   XBAR-XBAR+XU) 
XBAR-XBAR/DBLE (FLOAT (N )) 
SX-O.OD+00 
DO 6 I-l.N 
X(I)«X(I).XBAR 

6 SX-SX+X(I)»X(I) 
SX-DSQRT (SX/DBLE (FLOAT (N))) 
DO 7 I-l.N 

7 X(I)JC(IVSX 
c 
c BUILD COSINE TABLE .08. FOR INTERVAL . 

IF(MA.Bq.M) GO TO 200 
M4fA 
MF4(-(-l 
AVERG-DBLE (FLOAT (M )) 
DO 2 I-1,MP 
ARO-DBT* (FLOAT (1-1)) 
ARG-(PI*ARG)/AVEHG 

2 CS(I)-DC0S(ARG) 

c 
c 

200 CONTINUE 

CALCULATE AUTOCORRELATION COEFFICIENTS 
DO 30 J-1,MP 
R(J)-O.OD+00 
JP*J-1 
IEND-N-JP 
AEND-DBI£(FLQAT(IEND)) 
DO 25 I-1,IEND 
INDX-I+JP 

c 

25 R(j)-R(J)+X(l)»X(lNrX) 
50 R(j)-R(J)/Ann) 

.0. to .PI. 

■ 
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C       CALCULATE POWER SPECTRUM 
C       (FOURIER TRANSFORM A/C FUNCTION .H.) 

MX24P2 
MFK2-MX2+2 

DO UO J«1,MP 
AL(J)»O.OD400 
JIW-1 
DO 35 K-1,MM 

C 
C       CALCULATE INDEX .INDCS. FOR RETRIEVING 
C       PROPER COSINE FROM TABLE 

INDCS^!OD( (JP»K ) ,MX2)+1 
IF(INDCS.GT.MP) INDCS^PX2-INDCS 

55 AL(JML(J)+2.0D+00»R(K+1)«CS(INDCS) 
FAC-l.ODKX) 
IF(M0D(JP,2).BQ.1) FAC—l.OD+OO 

ko AL(JML(J)+R(I)-«-R(MP)»FAC 
C 
C APPLY HAWING SMOOTHING FUNCTION TO ESTIMATES  .AL. 
C TO YIELD SMOOTHED POWER SPECTRUM ESTIMATES .U. 

U(l )-SNBL (0.51*D+00»AL (l )+0. U6D+00»AL(2)) 
U(MP)«SIICL(O.5UD+OO»AL(MP)+O.U6D+OO»AL(M)) 
DO 50 >2,M 

50 U(I)-SIIBLCO.S^D^JO^ALd)+0.23D4O0»(AL(l-l)+AL(l+l))) 
RETURN 
END 

■ 
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