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KEY TO SYMBOLS

Peak~to-peak FM deviation (Hz)

Fourier coefficient of v(t)v*(t~t). This is identical to a
secticn of the ambiguity function cut perpendicular to the

frequency axis at the frequency kwp--see(12b)

Deviation sensitivity of the FM modulator (radian/sec-volt)

Periodic frequency modulating waveform
Periodic reference signal used for coherent detectioan

Fourier coefficient for the kth harmonic of the periodic
reference signal

Range response obtained by doppler processing
about the nth harmonic of the modulation frequency

t
elD S m(t)dt complex envelope of the radiated RF signal

Normalized round-trip time delay between the radar and the

target
Mixer output signal

Processed doppler output signal

Complex envelope of the processed doppler signal obtained by
detection about the nth harmonic of the modulation frequency

Difference phase between the transmitted and received RF
signals

Radian currier frequency
Radian doppler frequency

]
d0q(,T) Instantaneous difference frequency (rad/sec) b
dt the transmitted and received RF signals

%% Fundameutal modulating frequency (rad/sec)

Fundamental frequency of the periodic reference signal,
the nth harmonic of che modulating signal

etween
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RANGE LAWS FOR FM RADARS WITH HARMONIC

PROCESSING AND ARBITRARY MODULATING WAVESHAPES

1. INTRODUCTION

The range response or range laws* for FM radars with arbitrary modulating-
signal waveshapes are examined in this report. The range law depends on the
type of processing that is used as well as the modulating-signal waveshape.

It is assumed that the modulating signal is periodic so that the video cut-
put of the radar is periodic with energy concertrated about harmonics of the
modulating frequency. By detecting the signal in these harmonics, range laws
are obtained. The particular runge law that is obtained will depend on (1) the
frequency-modulating-signal waveshape, (2) the harmonic number that is detected
and (3) whether the harmonic energy is coherently or incoherently detected. If
coherent processing is used, the range law also depends on the waveshape of the
reference signal (e.g. sinusoidal or syuare-wave) and on the phase angle of the
reference with respect to the modulating waveform.

Harmonic processing is desirable because the range laws can be made to peak }
up at non-zero distances from the target. This eliminates the need for a delay ‘
line. A single antenna may be used for both transmission and reception if the ,
incidental AM is sufficiently small. Thus, harmonic processing gives a low cost ’
radar.

Range laws with low sidelobe~levels are desired for good target resolution.
Here it is desired to find the modulating-~signal waveshape and harmonic processing
system which in combination will yield the best range laws (i.e. maximum sidelobe
suppression). In choosing the best combination to use, hardware considerations
ere important, since there are many waveforms and harmonic processing schemes
which yield equally good range laws, but some are more expensive to implement
than others.

A nonlinear modulating waveform which gives 30dB of sidelobe suppression is
well-known [1,2,3]. However, the range law peaks up at zero and consequently is
not useful unless delay lines are used in the radar. The triangular modulating
waverorm is ofven used because of economic consideration but the sidelobe ratio
is less than 14dB for harmonic processing [4,5,6]. Here we propose systems which
are economically competitive with the triangular FM system but which oftfer mucrh
better sidelobe suppression, up to 30dB.

As indicated above, the response of the harmonic system depends on the type
of processing that is used, such as incoherent, coherent, or single-sid:band.

In this report, the exact range response of these systems is derived in terms of

*The range law of the radar is the envelope (or amplitude) of the doppler signal
as a function of the round-trip time delay to an ideal point targe:, neglecting
the space loss.



Fourier coefficients of the complex envelope of the post-mixer spectrum. These
coefficients are identical to the value of the ambiguicy function at the cor-
responding harmonic frequency and round-trip time delay to the target. Conse~
quently, if the ambiguity function for the modulating signal is known, the
response of these harmonic processers is known via these formulass.

Tozzi has analyzed harmonic FM systems with linear and sinusoidal modulating
waveforms [5]. For the linear case his analysis included the effect of the "turn
around"” time. In this report the Fourier coefficients are derived for a wodu-
lating waveshape consisting of an arbitrary number of linear segments, neglecting
the "turn-around” effect. This waveform may be used to approximate an arbitrary
modulating waveshape (linear or nonlinear) by specifying a set of parameters.
Using thesa Fourier coefficients in the formula for the appropriate processing
system, the approximate range law for a particular processing system and modu-
lating waveshape is.obtained. Siuce the "turn-around" time is negiected ir the
pilecewise-linear model these results are valid when the round trip time delay
is much smaller than the duration of any of the segments of the piecewilse wave-
form.

In summary, the range law is derived for some useful FM harmonic processing
systems in terms of Fourier coefficients which are identical to points on the
ambiguity function. The Fourler coefficients are evaluated for a pilecewise-
linear modulation waveform which may be used to approximate an arbitrary modu-
lating waveshape. Examples of new nonlinear waveforms are given which, when
used with the proper processing, give range responses with 30dB sidelobe sup-
pression.

2. FM RADAR

An FM radar with incoherent harmonic processing is shown in Figure 1. The
transmitted signal is frequency modulated by a periodic waveform. The spectrum
of the mixer output is concentrated abtout harmonics of the modulating frequency,
wp. The range response, or range law, is the envelope of the detector response

x¢ (t)
~xe (1) P Target,
FM Radar T - — e — = = = — =
': Jand Pass Filter > Envelope
"] about num Detector |
L T e o e . - w— i)
v Mixer Output 4 Detector Output

P

y(L’l) ¢
Incoherent Harmonic Processing

Figure 1. FM Radar
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for a point target where T is the round~trip time delay between the radar and

the target.* It will be denoted by Rp(t). For purely linear modulation the

range law peaks up for a target spacing corresponding to a round-trip time delay
of 19 = n/2B where B is the peak-to-peak frequency deviation (Hz). Any modula-
tion nonlinearity will shift this 1y slightly and alter the side-lobe levels.

If there is a doppler present the range law is the envelope of the doppler signal.
The processing is of the matched filter type for n=0, or for any value of n if

the modulation is purely linear.

For periodic modulation the range law is obtained by evaluating the Fourier
coefficlent for the mixer output of the radar. Referring to Figure 1, the trans~
mitted signal is represented by

xe (t) = /2 Re {v(t)ejwct} 1)

where wc is the radian carrier frequency and v(t) is the complex envelope [7].
Then the corresponding received signal is

xe(£) = VZ Re {v(e-r)edve(t=Ty 2
where 1 is the round trip time delay.
To the first approximation, the mixer output is given by the cross-product term
y(t,T) = Re {v(t)v*(t-T)ejwcT} (3)

where the output about 2w, has been neglected since it is filtered out.

For a frequency modulated radar

5D rtm(e)de]
v(it) =e O

where D is the deviation sensitivity (radians/volt-sec) and m(t) is the periodic
frequency modulating waveform. Then

.

v(t)vk(t-1) = &8a(tsT) (4)
where
t
04(t,T) =D S m(o)do . (4a)
t-1

84(t,7) is the mixer output difference phase with T being a parameter.

The instantaneous difference radian frequency associated with the mixer
output is then

sy (t,
wig(t,t) = —-%éf—ll-- d{m(t) - m(t-1)) (5)

*The range law of the radar is defined as the radar response (in this radar R,(t))
as a function of the round-trip time delay to an ideal point target, neglecting
the space loss. This gives the range resolution capability of the radar and, for
the n=0 case, is the magnitude of the autocorrelation function associated with

the transmitted spectrum. In Figure + . constant closing velocity with respect

to the target will produce a sinusoidal doppler signal at the cutfuc ol (Ne enve-
lope detector. Rp(1) is the amplitude (or envelope) of the doppler signal.
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where it is assumed that the variation of 1 with respect to t is negligible,
i.e. the doppler frequency is much less than the carrier frequency. Thus,

84(t,t) = Doft[n(t) - m(e-n)ldr . (6)

Note that (6) neglects a phase constant that was included in (4a) but which
was lost xa (5)., If m(t) is periodic, then, 84(t,7) is periodic with respect
to t. Thus, from (4), v{r)vk(t=-t) 13 also periodic and can be expanded in a
Fourier series

kmeo
v(t)vk(t-T) = ejed(t’r) = X ckejkwmt ¢))
Ke—m
where
T/2 T/2
k% 0t D dkumbye L Ly r(e-ye I Untae (8)
~1f2 -T/2

wy i3 the angular frequency of the modulating waveform and T is the period.
Thus, wy = 27/T.

Furthermore, the mixer output, as described by (3) is periodic so that

ye,0 = 1 yyed Kon 9)
where
/2 )
i = % TV Jhomt (10)

Equation (10) can be related to (8) by

- T
Y = %-eijT o + % e 1% ek . (11)

This explicitly shows the variation of yi with the doppler since wet * wgt + ¢9

vhere wy is the radian doppler frequency. ¢o is the phase angle of the dop-
pler at t=0 and we will assume that ¢o=0 for mathematical simplicity.

It is interesting to note that the {cig} are related directly to the ambi-
guity function. If Helstrom's definition of the ambiguity functicn [10] 18
used, the relationship is [6]

kme

3
() = e 2 a(-t,kup) . (12a)




Using Woodward's definition [11], the relationship is

L_fk(r) = x (~Tokug) | (12b)

For either of these definitions

|ck(1)! = A (-1,kug) | . (13)
Thus [8]

lex(ts] s |eg(@| . (14)

3. INCOHERENT HARMONIC PROCESSING

Referring to Figure 1, the formula for the range law Rn(1) will be obtained

for incoherent detection of the nth harmonic component of the mixer output.

Using (9) the output of the ideal band-pass filter isa

Yout (t,1) = Ynejnwmt + Y-ne-jnwmt . (15)

Since y(t,7) is a real function y_, = yg and (15) becomes
Inupt
Yout (t,T) = 2 Re {ype } . (16)

The output of the envelope detector is the magnitude of the complex envelope
of (16):

Ydet {tsT) = 2|yn] = Ra(1)

I U (17)

Rn(t) = |cqe

This equation cannot be reduced further unless some simplifying assumptions
are made or unless {cy} are evaluated for a particular modulating waveshape.
For example, if the instantaneous difference frequency has half-wave odd
symmetry, that is if

wid(t,T) = -wiq(t +% y T) (18)

then ck = c_x [6]. Then, (17) becomes, for n ¢ 0,

Ydet (t,7) = 2|eq||coslug(t-te) + fegl| , n # 0 (19)

11
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where wg is the radian doppler frequency and ty is the vaiue of t at the first
turn-sround time of the modulation [6]. For n ¢ 0, yger(t,1) 18 a full-wave
rectified sine-wave and its envelope varies with 7 to give the range response.
For n = 0, the band-pass filter becomes a low-pass filter and the envelope
detector would not be needed. Thus,

Yout (t,1) = |co| cos[wg(t-tg) + égg] , n=20 (20)
Thus, for modulating waveforms such that the difference frequency has half-
wvave odd symmetry, incoherent detection produces the range laws

leo(t)| , n=0
R (1) =
2lea(n)] (21)
This shows that if the difference frequency has hali~wave odd symmetry, the
range response of the FM radar with incoherent harmonic processing is the magni-

tude of the ambiguity function along the Tt axis where tle slice is taken at
w = nup [see (13).]

4, COHERENT HARMONIC PROCESSING WITH A PERIODIC REFERENCE SIGNAL

n=1,2 ¢ .

4.1 General Periodic Reference Signal

Referring to Figure 2, the range law will now be calculated for tha case of
coherent detection where any periodic reference signal, r(t), is used. Usiug
these results, we will later obtain specific results for a sinusoidal reference
and a square~wave reference.

wr=k(nm

—_ %¢ (t) - .
-“-— " { Target
xr (t)
FM [
Radar
FM Mixer
Mod Output
Output y(t,T)
r-— - - -1 - - - = = =71
' (e, I b yder(t,D)
! wem——-¢ LOW Pass ...'._____.).
Filter ! |
! |
I unct
Sync In [FunctZon |
[ Y enerator LLit) 1
| I
| -

ZZL-CohereLt Harmonic Processing

Figure 2. FM Radar with Coherent Harmonic Processing




The periodic reference is represented by thz Fourler series:

r(t) = ) rkejkwr(t-to)
kn~w
or
ey = § rkej(kmrt + Kk6p) 22)

k-—ﬂ)

where w, = nuwyp. That is, the fundamental frequency of the reference waveform is
some harmonic of the fundamental of the modulation frequency. 8g = -wety is

the reference phase angle, and t; correspends to any time shift of the reference
waveform with respect to the t =« 0 point on the modulating-signal wavefornm.

Note that the iudex k is chosen with respect tc the reference frequency (not

the modulating frequency).

Using (9) and (22), the multiplier output is

yi{t,1) = y(tr,0)r(t)

- E ygej Ewmt] [of rke‘; (kwet + kec)]

fu—co s

and using wp = nug

a o0

i[ (nk+ + k8p1
yi(t,7) = ] )} yafkej“(" Junt 0 (23)
fmew kn-w
The output of the low-pass filter is then
an ke
Yae (€41) = ) y_pyrye <00 : (24)

ks->

Using (11), (24) can be reduced to the form where the doppler aignal is
geen explicitly. Thus

x>

. 1
Ydet (t,1) = E 3 [c_nke
ke-w

Jwet + *t ke—jchJ rkejkeo
-n

JkHD + anr-ke-'jk(,c]) ejd)e‘!

1 "
= 3 leerg ¥ ) Le_pyrye
k=1

L, & © o a _ fkn, " - 4kigyy = Juer
+ 0 {cor0 + kzl [cnkrke o+ ¢ _okF-k® ]re '=c (25)




Since r(t) is a real function r_j = ri and since 2Re{at+ib} = [a+ib] + [a+jb]*,
then

o "
Ydet (t,T) = Re [%Coro + ] [C-nkrkejkeo + anr»ke-jkeol}ercTJ (26)
k=1

Define
A v k8 ~Jk8
z, ® corg + kzl [c_nkrkej 0 + cnkr-ke b 0]
@ km-1
. 1k, 1Ko
coro + kzl Conkfk® kz_m Cfe - @D
‘Thus,
Ydet (€,1) = lzg| cos {wet + [zn} (28)
2a(1) = ] C(_nk)(r)rkejkeo (29) -
ku=o

where |z,| denotes the magnitude of z,(t)
[zn denotes the angle of z,(1)
{ry} are the Fourier (refficients of the periodic reference waveform

[cg} are the Fourier coefficients of v(t)v*(t-1) where v(t) is the
complex envelope of the FM signal [see (8) and (51)] and & = -nk

and 09 is the phase ang.e of the fundamental of the periodic reference signal
with respect to the t = 0 point of the modulating signal., The {cg} are also
directly related to a section of the .nbiguity function taken along the

axis at the frequency w = fwy. That <, referring to (12b)

cy (1) = x(-71, fLuy) (3C)

Equation (28) explicitly shows the doppler signal phase since wci = wyt where
wq 18 the radian doppler frequency.

The range law for coherent harmonic processing is given by the envelope of.

the doppler signal, which is

[—;;(r) = |zn(1)] (31)

where the n denotes that this particular range response is obtained when the
fundamental frequency of the reference signal is the nth harmonic of the modu-
lation frequency, wy = nuy. From (29), (30) and (31), it is evident that the
range response is obtained by the superposition of sections of the ambiguity




function with appropriate complex-weighting factors.

4.2 Sinusoidal Reference Signal

To coherently process the doppler signal about the nth harmonic of the

mixer output, the reference signal is

cos [uwrt + 8]

r(t) = cos [nupt + 6]

or
r(e) = % JJlurt + 6], _2_ oot + 6]

(32)

(33)

where wy = nwy. Thus, the Fourier coefficients in (22) become

%-. for |k| = 1

"
0, for |k| # n

(34)

Using (29) and (31), the range law for coherent detection about the nth harmonic

of the modulation frequency (i.e. sinusoidal reference) is

R (1) = |zn (1) |

vhere

za(1) = % [c_n(t)eje + ep(r)e Y]

4.3 Square Wave (Gating) Reference Signal

(35)

(36)

A square wave (gating) reference signal with a period of T/n is shown

below.

r(t)

2n

t—d= up T = nug

15
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The Fourier coefficients are,

o= 1 sin (kn/2)
kK™ 2 Txn/2

37

Using (29) and (31), the range law for coherent detection using a square wave
reference is

Ry (1) = |zp(1)]

where

2]

1 k
za(0) = | € nk (V) 5'§iﬂi§7gigl

k==x

or

1

zp(1) = oo - -L-C_3n(r)e-j300 +=c

3n

(38)
(39a)
n(r)e~je°+%- c0(1)+% cn('r)eJeo
- 3 eaa(ed¥0 | (3ob)

5.

the mixer output signal as shown in Figure 3,

SINGLE-SIDEBAND PROCESSING FOR DIRECTIONAL DOPFLER DETECTION

The range law will be calculated for single-sideband (SSB) processing of

By using the appropriate

modulating waveform, range laws can be obtained which peek up either for
approaching or receding targets.

vhere woT=wyt.

Using (7) in (3), the mixer cutput is

4o
y(t,1) = E Re{cye

k=~

ter is —

YI(t)T) =

L—Be[t;n

wq is the doppler frequency.
targets and negative for approaching targets.

Re[c+ ej(tnwm+wd)t] » Wq > 0
=n

ej(lnwm+md)t] y owg <0

j(kwm+wd)t}

It is positive for receding

The output of the sideband fil-
q

where the upper set of signs is used if the filter passes upper SSB signals
and the lower set of signs is used if the filter passes lower SSB signals.
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The multiplier output is

y2(t,7) = yy(t,0)r(t)

= y1(t,7)Re{e] (Mmt¥),

Using the identity v,v, = %Re{z,25} + %Re{z,z,} when v, 2 Re{ .;} and v, & Re{z;,}
and assuming that n ¥ 0, the detector output is

—* _ -
%_Re{cznej(tnmm+wd)t e+j(nwmt+0)} . ug>0
Ydet(tpT) -
% Re{c;nej(+nwm+wd)t etj(nwmt+e)} wg < Q__
% Re{Ci“(T)ej(mdt+e)} | > 0
_% Re{c;n(r)ej(wdtte)} y g < 0__ .

*The SSB processor shown here is the filter type. Assuming ideal filters,
the same result is obtained 41f the phasing type~--also known as Kalmus fil-

ter [5,12,13]-- is used. 17

= e

~ b




Thus, the detector (doppler) output is

— —
Heen(O | cos [wgtFor fsn(] , ug > 0

Yder (E,1) = (40)
é|c_-|-_n('r)| cos [wdtte+ {c—](r)] » wg <0

The range law for the SSB detector is

—

%lcin(T)l , wg >0

Ry(1) = (41)

1
Lzlc;n(rﬂ y wg <0

L

where the upper signs give the response if an USSB filter is used in the pro-
cessor and the lower signs give the response for an LSSB filter.,

For detection of directional doppler we require a modulating waveshape such
that the |°+n(T)| is appreciably different from the Ic_n(1)| for the range of t
that is of interest (usually 1 > 0). If an USSB filter is used in the processor,
|c+n(1)| is obtained for positive doppler frequencies (receding targets) and
|con(t)| for approaching targets. Conversely, an LSSB doppler filter would be
used to obtain |c+n(r)[ for approaching targets and |c_n(r)[ for receding tar-
gets. For example, if a positivc~slope sawtooth modulating waveform is used,
Figure 10 shows that |c+n(r)l peaks up at x = 2Bv~n and [c-n(7)| peaks up at
X = =2Bt=-n and it is approximately zero for positive 7.

6. FOURIER COEFFICIENTS FOR A PIECEWISE LINEAR MODULATING WAVEFORM

As seen from the above, the complex Fourier coefficients {ck)} must be known
in order to determine the range law. These coefficients are difficult to ob-
tain for frequency modulation by a complicated waveshape but, by approximating
the modulating voltage with a series of straight lines, a general formula for
the {ck)} may be obtained.

Referring to Figure 4, any periondic modulating waveform may be specified
as precisely as desired by using a sufficient number of piecewise-linear segments.
f1(t) is the instantaneous frequency of the FM radar with respect to the carrier
frequency and B ig the peak-to-peak frequency deviation. {y;} and {pg} are the
parameters that specify the fractional frequency excursion and fractional time
duration of the Lth linear segment.




x = 2Bt

T = round-trip time
delay £1(t)

B = p-p frequency ] ‘W 4F- ”,f”f
deviation Yy B <‘_“”’;f
pl+‘)2+o 3+pu 1] vég;

where p, = "duty- II’T-—V
cycle" during 2th T
interval
| -% B 2
Yy = frequency devi-'2 2 2
ation over the
2th interval x
nterva 0B
Note y, may be nega- y . |
tive.
¢— 0 T PT g 03T i 0, T ~——p
Figure 4. Pierewise Linear Modulating Waveform for L=4 Segments
6.1 General Case
Referring to (8) the Fourier coefficients are given by
T/2
-T/2
where
t
8a(t,r) = 2r S f£4(t)dt . (42%)
t-1

Referring to Figure 5, the instantaneous frequency during the Lth interval is

B
£i(t) = [%&E (t-t) + £,  &th interval ] . (43)
)
£4(t)
Y
B Tf
pe— Py
ty t->

Figure 5. Pilecewise-Linear Segment
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Substituting (43) into (42b) the difference phase during the %th interval, where
T is assumed to be small with respect to pyT so that the exact behavier of 84(t)
during the turn-around time can be neglected, is

8a(t,t) = [wgt + 03] , 2th interval (44)
w
where wy = ;E‘% X = difference frequency during the &th interval (45)
A V2
6y = n [By - or ug]x = phase constant during the Lth interval (46)
x & 2m¢ (47)
A1 1
ag =ty o= - "'[l -2 X 0y) = og] (48)
E 3=1
A1 '3
Bp =g fa=- "[1 -2 2 by) = vl (49)
j=1
Substituting (44) into (41), it becomes
p L j[w t+68p] Jkugt
k=7 1 25 T P g IKimE gy (50)
i=1 ch interval

where L is the number of segments that are used over a period of the modulation
waveform. Equation (50), when evaluated, becomes

M gailey - 2oageeli2 (T op-pgd e xei)
ey (1) = z [}2 e APV 4a1 AR ZAT 7YY

=1

sin [%(wzx-Zozk)]

3(0gx-204K)

Using (48) and (49) this can be reduced to

L 1 1 e

) = ) o£e+J¢g(x) sin [S(ygz-20pk) ] 51
= Fhax-205K)

where

0y (x) = + 5 ([1-2( 2 04)=pgl2k - [1-2<121 ¥3) - bplxl (52)

Y S



L is the total number of piecewise-linear segments

pg is the proportional part of the period that is used by the %th
linear segment

¥y is the proportional part of the peak-to-peak frequency deviation
used by the Lth linear segment

x=2Bt 1is the normalized round-trip time delay to the target where Tt is
the actual time delay and B is the peak-to-peak frequency deviation.

2=~1
In using this equation, note that z p3 = 0 for & = 1.
i=1

The {ck} of (51) can be evaluated by use of a digital computer. The {ck}
approximate the {ck} of any modulating signal waveshape since the piecewise
linear waveform can approximate any modulating waveshape as accurately as desired
by taking enough segments.

The range response corresponding to any modulation waveshape
can ther be evaluated for incoherent processing by use of
(51) in (21); or for coherent harmonic processing with a
periodic reference by using (51) in (29) and (31).

In summary, once (51), (21), (29) and (31) are programed on a digital
computer, the range response of any FM radar witli harmonic processing can be \
obtained by simply specifying the parameters o{ the piecewise-linear modulating
waveform. Equation (51) can also be used *2 obtain simplified solutions when ’

L is not too large.

The accuracy of the range law obtained from the pilecewise-linear approxi- ‘
mation is shown in Appendix I.

6.2 Example 1--Non-Symmetrical Triangular FM

The Fourier coefficients {cy} will now be evaluated for a non-symmetrical
triangular waveform as shown in Figure 6.

T__/\ £4(t)
B -

Dl |

Figure 6, Non-Symmetrical Triangular Modulation

3

J.Nh-]

€t ~>=

Comparing Figure 6 with Figures 4 and 5 it is seen that
L=2

Py =0 4 P2 = 1=p
lbl = 1 N W2 - -1 _:‘ ?-\

21




22

Using these parameters in /51), the Fourier coefficients for v(t) ®v(t-r)
corresponding to a non-symaetrical triangular modulating waveform are then

sin [T(x-20k)]
i pejﬂ(l--p)k 2

Ck
7 (x=20K)

ympk 810 [F0et2(1-0)0)]

+ (1-p)e (53)

%(x+2(1-o)k)

where p is the '"duty cycle" of the up-sweep of the non-symmetrical triangle
waveform,

6.3 Example 2~-~Symmetrical Triangular FM

When the triangle modulation is symmetric, p = %-ané (53) reduces to the
well-known coefficients [5,6,9]:

35k | sin Z(x=k) sin —(x+k)
ck=3e’ 2 bk —2 . (54)
~’21(x-k) -g—(x+k)

6.4 Example 3--Stepped Triangle M

A stepped-triangle FM waveform is shown in Figure 7 below. Using (51) with

i 4
y §B
-1
B
N\, : ! +
t —>
&
i S X

Figure 7. Stepped-Triangle FM

L=4, the Fourier coefficients are

312‘-(5x+y.) sin -%{(1-6)x—k] 1 «j%(sxﬂc) sin %{(l-d)xﬂc] 55)
ck =5 e + 5 e 5
2 %[(M)x—k] 2 §[(1-s)x+k]



Using coherent detection with a sinusoidal reference, r(t) = cos{nuyt + 6], the
resulting range response is, from (35) and (36)

Rn('l') = ‘an (56)

sin %{(l-d)x-n]
%{(l-é)x-n]

8in %{(1—6)x+n]
L (1-6)x+n)

2n = %e cos(%dx-e) + (-1)“cos(%6x+e)

(57)

The graph of this range response will be discussed below. These examples show
how the complexity of (51) can be reduced for some particular waveshapes. How-
ever, (51) is the general equation for the {ck)} to be used in (28) and (29).

r 7. COMPUTED RANGE LAWS

7.1 Linear Modulation and Coherent Detection with a Sinusoidal Reference

As an example of the synthesis of & range law by using (51) to obtain the
¢n to be used in (35) and (36), we will choose the fourth harmonic law (n=4)
and a sine-wave reference (at a phase angle 8,) so that the relative range law
is determined from

24 ()] = Je_, (VeI®F + ¢, (1307 (58)

The modulating waveform and the reference voltage are then related as
shown below

e———p x4 >,l: P

|

»2M0D

y1=1 Yo=-1

be I

t =

M

ve=cos (wyt+6y) + I
2

-I
2
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— s e i =




The results of computing the values of c,, are given on Figure 8, where
the amplitude and phase of each c are shown. 3ince the detection angle is 0°,
¢y and c_, are added vectorially to obtain the range law r, and its associated

doppler phase fz,.

As was pointed out by (12), the two c's involved are the values of the (com-
plex) ambiguity function evaluated along the *4uwy axes. By single-sideband de~
tection techniques, either cy or c., can be detected separately or they may be
combined according to (58) by detecting with a coherent sine-~wave reference at
an angle of 6.. The result of changing the reference phase from 0 to 0.4r is
shown on Figure 9. The range response is now a more acceptable single~lobe
response of larger amplitude and lower side-lobe level.

Figures 10, 11, and 12 show examples of standard linear sweep FM. The saw-
tooth sweeps of Figures 10 and 11 exhibit unsyrmetrical sideband responses
vherea: :he triangular sweep of Figure 12 exhibits symmetrical sideband responses.

7.2 Non-Linear Modulation--N=0 Range Law

A simple example of non-linear FM modulation is obtained by the addition of
a square wave to linear sweep. Figure 13 shows an example of the n=0 range law
for this type of modulation. In this example the normal sin U/U range law is
modified to, using (57) in (35) and (36)

sin [%(l-d)x]
Ro(x) = cos [% §x] , x = 2Bt (59)
[5(1-8)x]

The first null of the cosine term can be positioned to cancel the peak of the
first range sidelobe to produce a lower side-lobe level.

Adding a second square wave to the triangular FM can further reduce the
side-lobes as shown on Figure 14, The range law is now given by:

sin [Z(1-61-6,)x]
Ro (1) = - 2 L2 cos [%-Glx] cos [%-sz] . (69)
[5(1-8,-67)x]

The maximum side-lobe ratio is now reduced to -27d3 at the expense of
widening the main lobe width from x=2 to x = 3.1 (a natural consequenne of the
law of conservation of volume under the ambiguity function). The extra nulls
in the firat two side-lobes are indicated by arrows and occur at x; = 1/§) and -

The cosine modifiers shown in (60) apply not only to lincar FM but also -
to any periodic modulation waveform when the square-waves are properly added
to the waveform. For instance, for sine-wave FM, (60) is valid if the function

§-1-2[—%—1-15 replaced by Jo[ ).

e ————




A non-linear modulating waveform, such as one Taylor weighted [2] for a
reduced side~lobe ratio, is approximated by seven straight line segments as
showr on Figure 15. The computed range law shows a side-lobe ratio of -28dB,
and a main lobe increased in width from x = 2 to x = 3,4, This vesult is more
easily achieved by the addition of two square waves as was shown on Figure 14,

7.3 Non-Linear Modulation--Detection with a Sinusoidal Reference

Sidelobe reduction can also be accomplished on harmonic reference systems,
As shown on Figures 16 and 17, the third harmonic range laws for frequency
modulation by either a triangular or sawtooth waveform when combined with a
synchronized square wave are identical. This response is obtained with a co-
herent sine wave reference given by cos (3wmpt + n/2). It is interesting to
note that extra .ange law nulls do not exist in either the upper or lower
sideband of Figure 15 whereas, on Figure 16, they exist in both sidebands.

7.4 Non-Linear Modulation--Detection with a Square-Wave Reference

An example of a computed fourth-harmonic range law using a square-wave
reference voltage is shown on Figure 18. Here, we not only reduce the side-
lobes with the addition of a square-wave to the linear modulation, but also
eliminate the twelveth harmonic range law by phasing the reference voltage to
60°. Another example of a range law obtained by using a square-wave reference
voltage is shown on Figure 19. The side-lobes here are even further reduced
by adding two square-waves to the triangular modulation voltage.

The advantage of using square-waves added to the modulation and also for
the reference of the coherent detector is that they are simply obtained in
digital circuitry.

8. EXPERIMENTAL RANGE LAWS

Examples of experimentally measured range laws are shown on Figuras 20, 21,
and 2", These curves illustrate that improved sidelobe levels can be obtained
in practice and are in general agreement with the computad responses previously
shown,

9. CONCLUSIONS

A general formula (51) for obtaining the complex Fourier coefficients to be
used in determining the range law for a piecewise linear periodic frequency
modulation waveform has been shown to be of great value in computing the range
response for a complicated modulation. The approximate range responge corre-
sponding to any periodic modulating waveshape can be obtained by simply speci-~
fying the piecewise-linear parameters for that waveehape. The amplitude and
phase of the complex Fourier coefficients provide the range response and dop~

pler phase for single-sideband detection of the n'th harmonic. The vector addi-

tion of these appropriate coefficients with proper complex weighting gives the
doppler output for double sideband (coherent or incoherent) detection.

Suppression of range side~lobes by using synchronized square-waves properly
added to the periodic modulation was demonstrated to be realized with simple
aigital circuitry. This method was shown to be just as effective as the use of
a more complicated non-linear Taylor-weighted modulation waveform.
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APPENDIX I

Accuracy of Piecewise~Linear Approximation

In order to show that the range law for a continuous frequency modulation
function approaches that of a piecewise linear appruximation of the modulation
function, a cosine modulation waveform was approximated by straight line seg-
ments and the resulting range law compared to the known nth harmonic range law[2]
given by Jn(nB1).

The appropriate values of )y and py to be used in (51) were determined
as shown below.

l * +T/2

- /& r-}

Plecewisc Linear Approximation of Cosine Wave
(L Must be an Even Integer 2 6)

4 = 0.5 (com [2n Sl%ll]- cos [Zn%]) , Lel,2 .1

The cosine waveform wan divided i{nto both 10 and 14 equal time segments
and the resulting plecewine )inear waveform was then used to compute the range
laws shown on Figures 21 to 23, Although the higher harmonic range laws re-
quire a larger numher of sections for the same degree of accuracy, it is
obvious that am the numhe: uf sections are increased the computed response
wmore nearly approximat . 1,
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Figure 23. N = 0 Range Law for Ten and Fourteen Section
Approximation to Sine Wave Modulation
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Figure 24,

N = 4 Range Law for Ten and Fourteen Section
Approximation to Sine Wave Modulation
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Figure 25, N = 8 Range Law for Ten and Fourteen Segtion
Approximation to Sine Wave Modulation
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